WorldWideScience

Sample records for surface representation scheme

  1. A resistance representation of schemes for evaporation from bare and partly plant-covered surfaces for use in atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Mihailovic, D.T.; Pielke, R.A.; Rajkovic, B.; Lee, T.J.; Jeftic, M. (Novi Sad Univ. (Yugoslavia) Colorado State Univ., Fort Collins (United States) Belgrade Univ. (Yugoslavia))

    1993-06-01

    In the parameterization of land surface processes, attention must be devoted to surface evaporation, one of the main processes in the air-land energy exchange. One of the most used approaches is the resistance representation which requires the calculation of aerodynamic resistances. These resistances are calculated using K theory for different morphologies of plant communities; then, the performance of the evaporation schemes within the alpha, beta, and their combination approaches that parameterize evaporation from bare and partly plant-covered soil surfaces are discussed. Additionally, a new alpha scheme is proposed based on an assumed power dependence alpha on volumetric soil moisture content and its saturated value. Finally, the performance of the considered and the proposed schemes is tested based on time integrations using real data. The first set was for 4 June 1982, and the second for 3 June 1981 at the experimental site in Rimski Sancevi, Yugoslavia, on chernozem soil, as representative for a bare, and partly plant-covered surface, respectively. 63 refs.

  2. Sub-grid scale representation of vegetation in global land surface schemes: implications for estimation of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    J. R. Melton

    2014-02-01

    Full Text Available Terrestrial ecosystem models commonly represent vegetation in terms of plant functional types (PFTs and use their vegetation attributes in calculations of the energy and water balance as well as to investigate the terrestrial carbon cycle. Sub-grid scale variability of PFTs in these models is represented using different approaches with the "composite" and "mosaic" approaches being the two end-members. The impact of these two approaches on the global carbon balance has been investigated with the Canadian Terrestrial Ecosystem Model (CTEM v 1.2 coupled to the Canadian Land Surface Scheme (CLASS v 3.6. In the composite (single-tile approach, the vegetation attributes of different PFTs present in a grid cell are aggregated and used in calculations to determine the resulting physical environmental conditions (soil moisture, soil temperature, etc. that are common to all PFTs. In the mosaic (multi-tile approach, energy and water balance calculations are performed separately for each PFT tile and each tile's physical land surface environmental conditions evolve independently. Pre-industrial equilibrium CLASS-CTEM simulations yield global totals of vegetation biomass, net primary productivity, and soil carbon that compare reasonably well with observation-based estimates and differ by less than 5% between the mosaic and composite configurations. However, on a regional scale the two approaches can differ by > 30%, especially in areas with high heterogeneity in land cover. Simulations over the historical period (1959–2005 show different responses to evolving climate and carbon dioxide concentrations from the two approaches. The cumulative global terrestrial carbon sink estimated over the 1959–2005 period (excluding land use change (LUC effects differs by around 5% between the two approaches (96.3 and 101.3 Pg, for the mosaic and composite approaches, respectively and compares well with the observation-based estimate of 82.2 ± 35 Pg C over the same

  3. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R.E.

    1990-02-19

    The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

  4. Computer representation of molecular surfaces

    International Nuclear Information System (INIS)

    Max, N.L.

    1981-01-01

    This review article surveys recent work on computer representation of molecular surfaces. Several different algorithms are discussed for producing vector or raster drawings of space-filling models formed as the union of spheres. Other smoother surfaces are also considered

  5. Computer aided surface representation

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R E

    1987-11-01

    The aims of this research are the creation of new surface forms and the determination of geometric and physical properties of surfaces. The full sweep from constructive mathematics through the implementation of algorithms and the interactive computer graphics display of surfaces is utilized. Both three-dimensional and multi- dimensional surfaces are considered. Particular emphasis is given to the scientific computing solution of Department of Energy problems. The methods that we have developed and that we are proposing to develop allow applications such as: Producing smooth contour maps from measured data, such as weather maps. Modeling the heat distribution inside a furnace from sample measurements. Terrain modeling based on satellite pictures. The investigation of new surface forms includes the topics of triangular interpolants, multivariate interpolation, surfaces defined on surfaces and monotone and/or convex surfaces. The geometric and physical properties considered include contours, the intersection of surfaces, curvatures as a interrogation tool, and numerical integration.

  6. Lectures on Hilbert schemes of points on surfaces

    CERN Document Server

    Nakajima, Hiraku

    1999-01-01

    This beautifully written book deals with one shining example: the Hilbert schemes of points on algebraic surfaces ... The topics are carefully and tastefully chosen ... The young person will profit from reading this book. --Mathematical Reviews The Hilbert scheme of a surface X describes collections of n (not necessarily distinct) points on X. More precisely, it is the moduli space for 0-dimensional subschemes of X of length n. Recently it was realized that Hilbert schemes originally studied in algebraic geometry are closely related to several branches of mathematics, such as singularities, symplectic geometry, representation theory--even theoretical physics. The discussion in the book reflects this feature of Hilbert schemes. One example of the modern, broader interest in the subject is a construction of the representation of the infinite-dimensional Heisenberg algebra, i.e., Fock space. This representation has been studied extensively in the literature in connection with affine Lie algebras, conformal field...

  7. Computing Visible-Surface Representations,

    Science.gov (United States)

    1985-03-01

    Terzopoulos N00014-75-C-0643 9. PERFORMING ORGANIZATION NAME AMC ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Artificial Inteligence Laboratory AREA A...Massachusetts Institute of lechnolog,. Support lbr the laboratory’s Artificial Intelligence research is provided in part by the Advanced Rtccarcl Proj...dynamically maintaining visible surface representations. Whether the intention is to model human vision or to design competent artificial vision systems

  8. Freeform surface descriptions. Part I: Mathematical representations

    Science.gov (United States)

    Broemel, Anika; Lippmann, Uwe; Gross, Herbert

    2017-10-01

    Optical systems can benefit strongly from freeform surfaces; however, the choice of the right surface representation is not trivial and many aspects must be considered. In this work, we discuss the general approach classical globally defined representations, as well as the basic mathematics and properties of the most commonly used descriptions and present a new description developed by us for describing freeform surfaces.

  9. Minimal Surfaces for Hitchin Representations

    DEFF Research Database (Denmark)

    Li, Qiongling; Dai, Song

    2018-01-01

    . In this paper, we investigate the properties of immersed minimal surfaces inside symmetric space associated to a subloci of Hitchin component: $q_n$ and $q_{n-1}$ case. First, we show that the pullback metric of the minimal surface dominates a constant multiple of the hyperbolic metric in the same conformal...... class and has a strong rigidity property. Secondly, we show that the immersed minimal surface is never tangential to any flat inside the symmetric space. As a direct corollary, the pullback metric of the minimal surface is always strictly negatively curved. In the end, we find a fully decoupled system...

  10. A Knowledge-Based Representation Scheme for Environmental Science Models

    Science.gov (United States)

    Keller, Richard M.; Dungan, Jennifer L.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    One of the primary methods available for studying environmental phenomena is the construction and analysis of computational models. We have been studying how artificial intelligence techniques can be applied to assist in the development and use of environmental science models within the context of NASA-sponsored activities. We have identified several high-utility areas as potential targets for research and development: model development; data visualization, analysis, and interpretation; model publishing and reuse, training and education; and framing, posing, and answering questions. Central to progress on any of the above areas is a representation for environmental models that contains a great deal more information than is present in a traditional software implementation. In particular, a traditional software implementation is devoid of any semantic information that connects the code with the environmental context that forms the background for the modeling activity. Before we can build AI systems to assist in model development and usage, we must develop a representation for environmental models that adequately describes a model's semantics and explicitly represents the relationship between the code and the modeling task at hand. We have developed one such representation in conjunction with our work on the SIGMA (Scientists' Intelligent Graphical Modeling Assistant) environment. The key feature of the representation is that it provides a semantic grounding for the symbols in a set of modeling equations by linking those symbols to an explicit representation of the underlying environmental scenario.

  11. Flavor unifying schemes with a single fermionic representation

    International Nuclear Information System (INIS)

    Davidson, A.; Wali, K.C.

    1980-05-01

    If quarks and leptons are indeed elementary, it is natural that they belong to a single representation of a unifying group, G. It is shown that such a requirement, which is inconsistent with G = SU(N), can be satisfied within the semi-simple group G = SU(N) x SU(N). Furthermore, N = 7 emerges as the unique solution accompanied by a fermionic set that exhibits a natural generation structure

  12. New advection schemes for free surface flows

    International Nuclear Information System (INIS)

    Pavan, Sara

    2016-01-01

    The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemann solver. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by Audusse, E. and Bristeau, M.O. [13]. The Monotonic Upwind Scheme for Conservation Law, combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in

  13. Nanolayer surface passivation schemes for silicon solar cells

    NARCIS (Netherlands)

    Dingemans, G.

    2011-01-01

    This thesis is concerned with nanolayer surface passivation schemes and corresponding deposition processes, for envisaged applications in crystalline silicon solar cells. Surface passivation, i.e. the reduction of electronic recombination processes at semiconductor surfaces, is essential for

  14. Nonabelian Jacobian of projective surfaces geometry and representation theory

    CERN Document Server

    Reider, Igor

    2013-01-01

    The Jacobian of a smooth projective curve is undoubtedly one of the most remarkable and beautiful objects in algebraic geometry. This work is an attempt to develop an analogous theory for smooth projective surfaces - a theory of the nonabelian Jacobian of smooth projective surfaces. Just like its classical counterpart, our nonabelian Jacobian relates to vector bundles (of rank 2) on a surface as well as its Hilbert scheme of points. But it also comes equipped with the variation of Hodge-like structures, which produces a sheaf of reductive Lie algebras naturally attached to our Jacobian. This constitutes a nonabelian analogue of the (abelian) Lie algebra structure of the classical Jacobian. This feature naturally relates geometry of surfaces with the representation theory of reductive Lie algebras/groups. This work’s main focus is on providing an in-depth study of various aspects of this relation. It presents a substantial body of evidence that the sheaf of Lie algebras on the nonabelian Jacobian is an effic...

  15. METHODS FOR THE REPRESENTATION OF THE HELICOIDAL SURFACE

    Directory of Open Access Journals (Sweden)

    SCURTU Liviu-Iacob

    2017-05-01

    Full Text Available In this paper there are presented the graphical methods to determine the parameters of an helicoidal stairs. The first part of this paper shows the used methods to generate the helicoidal curves using descriptive geometry methods. It has represented the state of the art of the generation of a helical surface studies. The second part of this study shows the helical stairs surface representation using descriptive geometry methods. For the representation of the helicoidal stairs are used two projections, the front and top view. A method of the stairs representation is solved using CAD modelling dedicated software. Following the helical surface representation in both methods, has been achieved a comparative study by using two representation methods. Conclusions about these two representation methods are presented in the end of this paper.

  16. Application of Genetic Algorithm for the Bin Packing Problem with a New Representation Scheme

    Directory of Open Access Journals (Sweden)

    N. Mohamadi

    2010-10-01

    Full Text Available The Bin Packing Problem (BPP is to find the minimum number of binsneeded to pack a given set of objects of known sizes so that they donot exceed the capacity of each bin. This problem is known to beNP-Hard [5]; hence many heuristic procedures for its solution havebeen suggested. In this paper we propose a new representation schemeand solve the problem by a Genetic Algorithm. Limited computationalresults show the efficiency of this scheme.

  17. Conformal-Based Surface Morphing and Multi-Scale Representation

    Directory of Open Access Journals (Sweden)

    Ka Chun Lam

    2014-05-01

    Full Text Available This paper presents two algorithms, based on conformal geometry, for the multi-scale representations of geometric shapes and surface morphing. A multi-scale surface representation aims to describe a 3D shape at different levels of geometric detail, which allows analyzing or editing surfaces at the global or local scales effectively. Surface morphing refers to the process of interpolating between two geometric shapes, which has been widely applied to estimate or analyze deformations in computer graphics, computer vision and medical imaging. In this work, we propose two geometric models for surface morphing and multi-scale representation for 3D surfaces. The basic idea is to represent a 3D surface by its mean curvature function, H, and conformal factor function λ, which uniquely determine the geometry of the surface according to Riemann surface theory. Once we have the (λ, H parameterization of the surface, post-processing of the surface can be done directly on the conformal parameter domain. In particular, the problem of multi-scale representations of shapes can be reduced to the signal filtering on the λ and H parameters. On the other hand, the surface morphing problem can be transformed to an interpolation process of two sets of (λ, H parameters. We test the proposed algorithms on 3D human face data and MRI-derived brain surfaces. Experimental results show that our proposed methods can effectively obtain multi-scale surface representations and give natural surface morphing results.

  18. Hilbert schemes of points on some classes surface singularities

    OpenAIRE

    Gyenge, Ádám

    2016-01-01

    We study the geometry and topology of Hilbert schemes of points on the orbifold surface [C^2/G], respectively the singular quotient surface C^2/G, where G is a finite subgroup of SL(2,C) of type A or D. We give a decomposition of the (equivariant) Hilbert scheme of the orbifold into affine space strata indexed by a certain combinatorial set, the set of Young walls. The generating series of Euler characteristics of Hilbert schemes of points of the singular surface of type A or D is computed in...

  19. Groupoid extensions of mapping class representations for bordered surfaces

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Bene, Alex; Penner, Robert

    2009-01-01

    by explicit formulae depending upon six essential cases, and the kernel and image of the groupoid representation are computed. Furthermore, this provides groupoid extensions of any representation of the mapping class group that factors through its action on the fundamental group of the surface including...

  20. Nested Hilbert schemes on surfaces: Virtual fundamental class

    DEFF Research Database (Denmark)

    Gholampour, Amin; Sheshmani, Artan; Yau, Shing-Tung

    We construct natural virtual fundamental classes for nested Hilbert schemes on a nonsingular projective surface S. This allows us to define new invariants of S that recover some of the known important cases such as Poincare invariants of Durr-Kabanov-Okonek and the stable pair invariants of Kool......-Thomas. In the case of the nested Hilbert scheme of points, we can express these invariants in terms of integrals over the products of Hilbert scheme of points on S, and relate them to the vertex operator formulas found by Carlsson-Okounkov. The virtual fundamental classes of the nested Hilbert schemes play a crucial...

  1. Encoding Schemes For A Digital Optical Multiplier Using The Modified Signed-Digit Number Representation

    Science.gov (United States)

    Lasher, Mark E.; Henderson, Thomas B.; Drake, Barry L.; Bocker, Richard P.

    1986-09-01

    The modified signed-digit (MSD) number representation offers full parallel, carry-free addition. A MSD adder has been described by the authors. This paper describes how the adder can be used in a tree structure to implement an optical multiply algorithm. Three different optical schemes, involving position, polarization, and intensity encoding, are proposed for realizing the trinary logic system. When configured in the generic multiplier architecture, these schemes yield the combinatorial logic necessary to carry out the multiplication algorithm. The optical systems are essentially three dimensional arrangements composed of modular units. Of course, this modularity is important for design considerations, while the parallelism and noninterfering communication channels of optical systems are important from the standpoint of reduced complexity. The authors have also designed electronic hardware to demonstrate and model the combinatorial logic required to carry out the algorithm. The electronic and proposed optical systems will be compared in terms of complexity and speed.

  2. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    Science.gov (United States)

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Metallic surface description in a localized representation

    International Nuclear Information System (INIS)

    Kirtman, B.; Melo, C.P. de

    1981-01-01

    Binding orders for a three-dimensional system (cubium) are obtained. The study of convergence of these values with the progressive interiorization in the solid gives an indication of the perturbation magnitude introduced with the surface creation. Following Goddard's hint in which the nickel reactivity is denominated by the 4s orbitals, such a model is applied to this metal. The base transformation of atomic orbitals for the correspondent Wannier functions is obtained. (L.C.) [pt

  4. String partition functions, Hilbert schemes and affine Lie algebra representations on homology groups

    International Nuclear Information System (INIS)

    Bonora, Loriano; Bytsenko, Andrey; Elizalde, Emilio

    2012-01-01

    This review paper contains a concise introduction to highest weight representations of infinite-dimensional Lie algebras, vertex operator algebras and Hilbert schemes of points, together with their physical applications to elliptic genera of superconformal quantum mechanics and superstring models. The common link of all these concepts and of the many examples considered in this paper is to be found in a very important feature of the theory of infinite-dimensional Lie algebras: the modular properties of the characters (generating functions) of certain representations. The characters of the highest weight modules represent the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. We discuss the role of the unimodular (and modular) groups and the (Selberg-type) Ruelle spectral functions of hyperbolic geometry in the calculation of elliptic genera and associated q-series. For mathematicians, elliptic genera are commonly associated with new mathematical invariants for spaces, while for physicists elliptic genera are one-loop string partition function. (Therefore, they are applicable, for instance, to topological Casimir effect calculations.) We show that elliptic genera can be conveniently transformed into product expressions, which can then inherit the homology properties of appropriate polygraded Lie algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)

  5. Implementation schemes in NMR of quantum processors and the Deutsch-Jozsa algorithm by using virtual spin representation

    International Nuclear Information System (INIS)

    Kessel, Alexander R.; Yakovleva, Natalia M.

    2002-01-01

    Schemes of experimental realization of the main two-qubit processors for quantum computers and the Deutsch-Jozsa algorithm are derived in virtual spin representation. The results are applicable for every four quantum states allowing the required properties for quantum processor implementation if for qubit encoding, virtual spin representation is used. A four-dimensional Hilbert space of nuclear spin 3/2 is considered in detail for this aim

  6. A Coupled Surface Nudging Scheme for use in Retrospective ...

    Science.gov (United States)

    A surface analysis nudging scheme coupling atmospheric and land surface thermodynamic parameters has been implemented into WRF v3.8 (latest version) for use with retrospective weather and climate simulations, as well as for applications in air quality, hydrology, and ecosystem modeling. This scheme is known as the flux-adjusting surface data assimilation system (FASDAS) developed by Alapaty et al. (2008). This scheme provides continuous adjustments for soil moisture and temperature (via indirect nudging) and for surface air temperature and water vapor mixing ratio (via direct nudging). The simultaneous application of indirect and direct nudging maintains greater consistency between the soil temperature–moisture and the atmospheric surface layer mass-field variables. The new method, FASDAS, consistently improved the accuracy of the model simulations at weather prediction scales for different horizontal grid resolutions, as well as for high resolution regional climate predictions. This new capability has been released in WRF Version 3.8 as option grid_sfdda = 2. This new capability increased the accuracy of atmospheric inputs for use air quality, hydrology, and ecosystem modeling research to improve the accuracy of respective end-point research outcome. IMPACT: A new method, FASDAS, was implemented into the WRF model to consistently improve the accuracy of the model simulations at weather prediction scales for different horizontal grid resolutions, as wel

  7. Surface representations of Wilson loop expectations in lattice gauge theory

    International Nuclear Information System (INIS)

    Brydges, D.C.; Giffen, C.; Durhuus, B.; Froehlich, J.

    1986-01-01

    Expectations of Wilson loops in lattice gauge theory with gauge group G=Z 2 , U(1) or SU(2) are expressed as weighted sums over surfaces with boundary equal to the loops labelling the observables. For G=Z 2 and U(1), the weights are all positive. For G=SU(2), the weights can have either sign depending on the Euler characteristic of the surface. Our surface (or flux sheet-) representations are partial resummations of the strong coupling expansion and provide some qualitative understanding of confinement. The significance of flux sheets with nontrivial topology for permanent confinement in the SU(2)-theory is elucidated. (orig.)

  8. Improvements and validation of the linear surface characteristics scheme

    International Nuclear Information System (INIS)

    Santandrea, S.; Jaboulay, J.C.; Bellier, P.; Fevotte, F.; Golfier, H.

    2009-01-01

    In this paper we present the last improvements of the recently proposed linear surface (LS) characteristics scheme for unstructured meshes. First we introduce a new numerical tracking technique, specifically adapted to the LS method, which tailors transverse integration weights to take into account the geometrical discontinuities that appear along the pipe affected to every trajectory in classical characteristics schemes. Another development allows using the volumetric flux variation of the LS method to re-compute step-wise constant fluxes to be used in other parts of a computational scheme. This permits to take greater advantage of the higher precision of the LS method without necessarily conceiving specialized theories for all the modular functionalities of a spectral code such as APOLLO2. Moreover we present a multi-level domain decomposition method for solving the synthetic acceleration operator that is used to accelerate the free iterations for the LS method. We discuss all these new developments by illustrating some benchmarks results obtained with the LS method. This is done by detailed comparisons with Monte-Carlo calculations. In particular we show that the new method can be used not only as a reference tool, but also inside a suitable industrial calculation scheme

  9. Elastic representation surfaces of unidirectional graphite/epoxy composites

    International Nuclear Information System (INIS)

    Kriz, R.D.; Ledbetter, H.M.

    1985-01-01

    Unidirectional graphite/epoxy composites exhibit high elastic anisotropy and unusual geometrical features in their elastic-property polar diagrams. From the five-component transverse-isotropic elastic-stiffness tensor we compute and display representation surfaces for Young's modulus, torsional modulus, linear compressibility, and Poisson's ratios. Based on Christoffel-equation solutions, we describe some unusual elastic-wave-surface topological features. Musgrave considered in detail the differences between phase-velocity and group-velocity surfaces arising from high elastic anisotropy. For these composites, we find effects similar to, but more dramatic than, Musgrave's. Some new, unexpected results for graphite/epoxy include: a shear-wave velocity that exceeds a longitudinal velocity in the plane transverse to the fiber; a wave that changes polarization character from longitudinal to transverse as the propagation direction sweeps from the fiber axis to the perpendicular axis

  10. Efficient free-form surface representation with application in orthodontics

    Science.gov (United States)

    Yamany, Sameh M.; El-Bialy, Ahmed M.

    1999-03-01

    Orthodontics is the branch of dentistry concerned with the study of growth of the craniofacial complex. The detection and correction of malocclusion and other dental abnormalities is one of the most important and critical phases of orthodontic diagnosis. This paper introduces a system that can assist in automatic orthodontics diagnosis. The system can be used to classify skeletal and dental malocclusion from a limited number of measurements. This system is not intended to deal with several cases but is aimed at cases more likely to be encountered in epidemiological studies. Prior to the measurement of the orthodontics parameters, the position of the teeth in the jaw model must be detected. A new free-form surface representation is adopted for the efficient and accurate segmentation and separation of teeth from a scanned jaw model. THe new representation encodes the curvature and surface normal information into a 2D image. Image segmentation tools are then sued to extract structures of high/low curvature. By iteratively removing these structures, individual teeth surfaces are obtained.

  11. Texture segregation, surface representation and figure-ground separation.

    Science.gov (United States)

    Grossberg, S; Pessoa, L

    1998-09-01

    A widespread view is that most texture segregation can be accounted for by differences in the spatial frequency content of texture regions. Evidence from both psychophysical and physiological studies indicate, however, that beyond these early filtering stages, there are stages of 3-D boundary segmentation and surface representation that are used to segregate textures. Chromatic segregation of element-arrangement patterns--as studied by Beck and colleagues--cannot be completely explained by the filtering mechanisms previously employed to account for achromatic segregation. An element arrangement pattern is composed of two types of elements that are arranged differently in different image regions (e.g. vertically on top and diagonally on the bottom). FACADE theory mechanisms that have previously been used to explain data about 3-D vision and figure-ground separation are here used to simulate chromatic texture segregation data, including data with equiluminant elements on dark or light homogeneous backgrounds, or backgrounds composed of vertical and horizontal dark or light stripes, or horizontal notched stripes. These data include the fact that segregation of patterns composed of red and blue squares decreases with increasing luminance of the interspaces. Asymmetric segregation properties under 3-D viewing conditions with the equiluminant elements close or far are also simulated. Two key model properties are a spatial impenetrability property that inhibits boundary grouping across regions with non-collinear texture elements and a boundary-surface consistency property that uses feedback between boundary and surface representations to eliminate spurious boundary groupings and separate figures from their backgrounds.

  12. Improvement in the Modeled Representation of North American Monsoon Precipitation Using a Modified Kain–Fritsch Convective Parameterization Scheme

    KAUST Repository

    Luong, Thang

    2018-01-22

    A commonly noted problem in the simulation of warm season convection in the North American monsoon region has been the inability of atmospheric models at the meso-β scales (10 s to 100 s of kilometers) to simulate organized convection, principally mesoscale convective systems. With the use of convective parameterization, high precipitation biases in model simulations are typically observed over the peaks of mountain ranges. To address this issue, the Kain–Fritsch (KF) cumulus parameterization scheme has been modified with new diagnostic equations to compute the updraft velocity, the convective available potential energy closure assumption, and the convective trigger function. The scheme has been adapted for use in the Weather Research and Forecasting (WRF). A numerical weather prediction-type simulation is conducted for the North American Monsoon Experiment Intensive Observing Period 2 and a regional climate simulation is performed, by dynamically downscaling. In both of these applications, there are notable improvements in the WRF model-simulated precipitation due to the better representation of organized, propagating convection. The use of the modified KF scheme for atmospheric model simulations may provide a more computationally economical alternative to improve the representation of organized convection, as compared to convective-permitting simulations at the kilometer scale or a super-parameterization approach.

  13. Impact of improved Greenland ice sheet surface representation in the NASA GISS ModelE2 GCM on simulated surface mass balance and regional climate

    Science.gov (United States)

    Alexander, P. M.; LeGrande, A. N.; Fischer, E.; Tedesco, M.; Kelley, M.; Schmidt, G. A.; Fettweis, X.

    2017-12-01

    Towards achieving coupled simulations between the NASA Goddard Institute for Space Studies (GISS) ModelE2 general circulation model (GCM) and ice sheet models (ISMs), improvements have been made to the representation of the ice sheet surface in ModelE2. These include a sub-grid-scale elevation class scheme, a multi-layer snow model, a time-variable surface albedo scheme, and adjustments to parameterization of sublimation/evaporation. These changes improve the spatial resolution and physical representation of the ice sheet surface such that the surface is represented at a level of detail closer to that of Regional Climate Models (RCMs). We assess the impact of these changes on simulated Greenland Ice Sheet (GrIS) surface mass balance (SMB). We also compare ModelE2 simulations in which winds have been nudged to match the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis with simulations from the Modèle Atmosphérique Régionale (MAR) RCM forced by the same reanalysis. Adding surface elevation classes results in a much higher spatial resolution representation of the surface necessary for coupling with ISMs, but has a negligible impact on overall SMB. Implementing a variable surface albedo scheme increases melt by 100%, bringing it closer to melt simulated by MAR. Adjustments made to the representation of topography-influenced surface roughness length in ModelE2 reduce a positive bias in evaporation relative to MAR. We also examine the impact of changes to the GrIS surface on regional atmospheric and oceanic climate in coupled ocean-atmosphere simulations with ModelE2, finding a general warming of the Arctic due to a warmer GrIS, and a cooler North Atlantic in scenarios with doubled atmospheric CO2 relative to pre-industrial levels. The substantial influence of changes to the GrIS surface on the oceans and atmosphere highlight the importance of including these processes in the GCM, in view of potential feedbacks between the ice sheet

  14. Representation

    National Research Council Canada - National Science Library

    Little, Daniel

    2006-01-01

    ...). The reason this is so is due to hierarchies that we take for granted. By hierarchies I mean that there is a layer of representation of us as individuals, as military professional, as members of a military unit and as citizens of an entire nation...

  15. Representation

    Science.gov (United States)

    2006-09-01

    two weeks to arrive. Source: http://beergame.mit.edu/ Permission Granted – MIT Supply Chain Forum 2005 Professor Sterman –Sloan School of...Management - MITSource: http://web.mit.edu/jsterman/www/ SDG /beergame.html Rules of Engagement The MIT Beer Game Simulation 04-04 Slide Number 10 Professor...Sterman –Sloan School of Management - MITSource: http://web.mit.edu/jsterman/www/ SDG /beergame.html What is the Significance of Representation

  16. A factorial assessment of the sensitivity of the BATS land-surface parameterization scheme. [BATS (Biosphere-Atmosphere Transfer Scheme)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A. (Macquarie Univ., North Ryde, New South Wales (Australia))

    1993-02-01

    Land-surface schemes developed for incorporation into global climate models include parameterizations that are not yet fully validated and depend upon the specification of a large (20-50) number of ecological and soil parameters, the values of which are not yet well known. There are two methods of investigating the sensitivity of a land-surface scheme to prescribed values: simple one-at-a-time changes or factorial experiments. Factorial experiments offer information about interactions between parameters and are thus a more powerful tool. Here the results of a suite of factorial experiments are reported. These are designed (i) to illustrate the usefulness of this methodology and (ii) to identify factors important to the performance of complex land-surface schemes. The Biosphere-Atmosphere Transfer Scheme (BATS) is used and its sensitivity is considered (a) to prescribed ecological and soil parameters and (b) to atmospheric forcing used in the off-line tests undertaken. Results indicate that the most important atmospheric forcings are mean monthly temperature and the interaction between mean monthly temperature and total monthly precipitation, although fractional cloudiness and other parameters are also important. The most important ecological parameters are vegetation roughness length, soil porosity, and a factor describing the sensitivity of the stomatal resistance of vegetation to the amount of photosynthetically active solar radiation and, to a lesser extent, soil and vegetation albedos. Two-factor interactions including vegetation roughness length are more important than many of the 23 specified single factors. The results of factorial sensitivity experiments such as these could form the basis for intercomparison of land-surface parameterization schemes and for field experiments and satellite-based observation programs aimed at improving evaluation of important parameters.

  17. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. III. Representations and calculations.

    Science.gov (United States)

    Poirier, Bill; Salam, A

    2004-07-22

    In a previous paper [J. Theo. Comput. Chem. 2, 65 (2003)], one of the authors (B.P.) presented a method for solving the multidimensional Schrodinger equation, using modified Wilson-Daubechies wavelets, and a simple phase space truncation scheme. Unprecedented numerical efficiency was achieved, enabling a ten-dimensional calculation of nearly 600 eigenvalues to be performed using direct matrix diagonalization techniques. In a second paper [J. Chem. Phys. 121, 1690 (2004)], and in this paper, we extend and elaborate upon the previous work in several important ways. The second paper focuses on construction and optimization of the wavelength functions, from theoretical and numerical viewpoints, and also examines their localization. This paper deals with their use in representations and eigenproblem calculations, which are extended to 15-dimensional systems. Even higher dimensionalities are possible using more sophisticated linear algebra techniques. This approach is ideally suited to rovibrational spectroscopy applications, but can be used in any context where differential equations are involved.

  18. An interactive ocean surface albedo scheme (OSAv1.0): formulation and evaluation in ARPEGE-Climat (V6.1) and LMDZ (V5A)

    Science.gov (United States)

    Séférian, Roland; Baek, Sunghye; Boucher, Olivier; Dufresne, Jean-Louis; Decharme, Bertrand; Saint-Martin, David; Roehrig, Romain

    2018-01-01

    Ocean surface represents roughly 70 % of the Earth's surface, playing a large role in the partitioning of the energy flow within the climate system. The ocean surface albedo (OSA) is an important parameter in this partitioning because it governs the amount of energy penetrating into the ocean or reflected towards space. The old OSA schemes in the ARPEGE-Climat and LMDZ models only resolve the latitudinal dependence in an ad hoc way without an accurate representation of the solar zenith angle dependence. Here, we propose a new interactive OSA scheme suited for Earth system models, which enables coupling between Earth system model components like surface ocean waves and marine biogeochemistry. This scheme resolves spectrally the various contributions of the surface for direct and diffuse solar radiation. The implementation of this scheme in two Earth system models leads to substantial improvements in simulated OSA. At the local scale, models using the interactive OSA scheme better replicate the day-to-day distribution of OSA derived from ground-based observations in contrast to old schemes. At global scale, the improved representation of OSA for diffuse radiation reduces model biases by up to 80 % over the tropical oceans, reducing annual-mean model-data error in surface upwelling shortwave radiation by up to 7 W m-2 over this domain. The spatial correlation coefficient between modeled and observed OSA at monthly resolution has been increased from 0.1 to 0.8. Despite its complexity, this interactive OSA scheme is computationally efficient for enabling precise OSA calculation without penalizing the elapsed model time.

  19. Evaluating radiative transfer schemes treatment of vegetation canopy architecture in land surface models

    Science.gov (United States)

    Braghiere, Renato; Quaife, Tristan; Black, Emily

    2016-04-01

    Incoming shortwave radiation is the primary source of energy driving the majority of the Earth's climate system. The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most of biogeophysical processes, including leaf temperature changes and photosynthesis, and it is currently calculated by most of land surface schemes (LSS) of climate and/or numerical weather prediction models. The most commonly used radiative transfer scheme in LSS is the two-stream approximation, however it does not explicitly account for vegetation architectural effects on shortwave radiation partitioning. Detailed three-dimensional (3D) canopy radiative transfer schemes have been developed, but they are too computationally expensive to address large-scale related studies over long time periods. Using a straightforward one-dimensional (1D) parameterisation proposed by Pinty et al. (2006), we modified a two-stream radiative transfer scheme by including a simple function of Sun zenith angle, so-called "structure factor", which does not require an explicit description and understanding of the complex phenomena arising from the presence of vegetation heterogeneous architecture, and it guarantees accurate simulations of the radiative balance consistently with 3D representations. In order to evaluate the ability of the proposed parameterisation in accurately represent the radiative balance of more complex 3D schemes, a comparison between the modified two-stream approximation with the "structure factor" parameterisation and state-of-art 3D radiative transfer schemes was conducted, following a set of virtual scenarios described in the RAMI4PILPS experiment. These experiments have been evaluating the radiative balance of several models under perfectly controlled conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical

  20. Cabauw Experimental Results from the Project for Intercomparison of Land-Surface Parameterization Schemes.

    Science.gov (United States)

    Chen, T. H.; Henderson-Sellers, A.; Milly, P. C. D.; Pitman, A. J.; Beljaars, A. C. M.; Polcher, J.; Abramopoulos, F.; Boone, A.; Chang, S.; Chen, F.; Dai, Y.; Desborough, C. E.; Dickinson, R. E.; Dümenil, L.; Ek, M.; Garratt, J. R.; Gedney, N.; Gusev, Y. M.;  Kim, J.;  Koster, R.;  Kowalczyk, E. A.;  Laval, K.;  Lean, J.;  Lettenmaier, D.;  Liang, X.;  Mahfouf, J.-F.;  Mengelkamp, H.-T.;  Mitchell, K.;  Nasonova, O. N.;  Noilhan, J.;  Robock, A.;  Rosenzweig, C.;  Schaake, J.;  Schlosser, C. A.;  Schulz, J.-P.;  Shao, Y.;  Shmakin, A. B.;  Verseghy, D. L.;  Wetzel, P.;  Wood, E. F.;  Xue, Y.;  Yang, Z.-L.;  Zeng, Q.

    1997-06-01

    In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m2 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (±10 W m2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models' neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of30 W m2 and 25 W m2, respectively. Annual totals of evapotranspiration and runoff, into which the precipitation is partitioned, both have ranges of 315 mm. These ranges in annual heat and water fluxes were approximately halved upon exclusion of the three schemes that have no stomatal resistance under non-water-stressed conditions. Many schemes tend to underestimate latent heat flux and overestimate sensible heat flux in summer, with a reverse tendency in winter. For six schemes, root-mean-square deviations of predictions from monthly observations are less than the estimated upper bounds on observation errors (5 W m2 for sensible heat flux and 10 W m2 for latent heat flux). Actual

  1. Enhancing the representation of subgrid land surface characteristics in land surface models

    Directory of Open Access Journals (Sweden)

    Y. Ke

    2013-09-01

    Full Text Available Land surface heterogeneity has long been recognized as important to represent in the land surface models. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types, although subgrid topography also has major controls on surface processes. In this study, we developed a new subgrid classification method (SGC that accounts for variability of both topography and vegetation cover. Each model grid cell was represented with a variable number of elevation classes and each elevation class was further described by a variable number of vegetation types optimized for each model grid given a predetermined total number of land response units (LRUs. The subgrid structure of the Community Land Model (CLM was used to illustrate the newly developed method in this study. Although the new method increases the computational burden in the model simulation compared to the CLM subgrid vegetation representation, it greatly reduced the variations of elevation within each subgrid class and is able to explain at least 80% of the total subgrid plant functional types (PFTs. The new method was also evaluated against two other subgrid methods (SGC1 and SGC2 that assigned fixed numbers of elevation and vegetation classes for each model grid (SGC1: M elevation bands–N PFTs method; SGC2: N PFTs–M elevation bands method. Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0°and 2.0° with three maximum-allowed total number of LRUs (i.e., NLRU of 24, 18 and 12 over North America (NA, the new method yielded more computationally efficient subgrid representation compared to SGC1 and SGC2, particularly at coarser model resolutions and moderate computational intensity (NLRU = 18. It also explained the most PFTs and elevation variability that is more homogeneously distributed spatially. The SGC method will be implemented in CLM over the NA continent to assess its impacts on

  2. An adaptive interpolation scheme for molecular potential energy surfaces

    Science.gov (United States)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  3. A Coupled Surface Nudging Scheme for use in Retrospective Weather and Climate Simulations for Environmental Applications

    Science.gov (United States)

    A surface analysis nudging scheme coupling atmospheric and land surface thermodynamic parameters has been implemented into WRF v3.8 (latest version) for use with retrospective weather and climate simulations, as well as for applications in air quality, hydrology, and ecosystem mo...

  4. Computer aided surface representation. Progress report, June 1, 1989--May 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Barnhill, R.E.

    1990-02-19

    The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a ``surface defined on a surface``. Sometimes properties of an already defined surface are desired, which is ``geometry processing``. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

  5. Application of Intel Many Integrated Core (MIC) accelerators to the Pleim-Xiu land surface scheme

    Science.gov (United States)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2015-10-01

    The land-surface model (LSM) is one physics process in the weather research and forecast (WRF) model. The LSM includes atmospheric information from the surface layer scheme, radiative forcing from the radiation scheme, and precipitation forcing from the microphysics and convective schemes, together with internal information on the land's state variables and land-surface properties. The LSM is to provide heat and moisture fluxes over land points and sea-ice points. The Pleim-Xiu (PX) scheme is one LSM. The PX LSM features three pathways for moisture fluxes: evapotranspiration, soil evaporation, and evaporation from wet canopies. To accelerate the computation process of this scheme, we employ Intel Xeon Phi Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.3x and 11.7x as compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670.

  6. Development of an Urban Multilayer Radiation Scheme and Its Application to the Urban Surface Warming Potential

    Science.gov (United States)

    Aoyagi, Toshinori; Takahashi, Shunji

    2012-02-01

    To investigate how a three-dimensional structure such as an urban canyon can affect urban surface warming, we developed an urban multilayer radiation scheme. The complete consideration of multiple scattering of shortwave and longwave radiation using the radiosity method is an important feature of the present scheme. A brief description of this scheme is presented, followed by evaluations that compare its results with observations of the effective albedo and radiative temperature for urban blocks. Next, we calculate the urban surface warming potential (USWP), defined as the difference between the daily mean radiative temperature of urban surfaces (which are assumed to be black bodies), including their canyon effects and the daily mean temperature of a flat surface with the same material properties, under a radiative equilibrium state. Assuming standard material properties (albedo and emissivity of 0.4 and 0.9, respectively), we studied the sensitivity of the USWP to various aspect ratios of building heights to road widths. The results show that the temporally-averaged surface temperature of an urban area can be higher than that of a flat surface. In addition, we determined the overestimation of the effective temperature of urban surfaces induced by the overestimation of the radiation distribution to the walls when one uses a single-layer scheme for urban block arrays that have a low sky-view factor less than around 0.5.

  7. Detecting fine scratches on smooth surfaces with multiscale wavelet representation

    International Nuclear Information System (INIS)

    Yao, Li; Wan, Yan; Yao, Ming; Xu, Bugao

    2012-01-01

    This paper presents a set of image-processing algorithms for automatic detection of fine scratches on smooth surfaces, such as automobile paint surfaces. The scratches to be detected have random directions, inconspicuous gray levels and background noise. The multiscale wavelet transform was used to extract texture features, and a controlled edge fusion model was employed to merge the detailed (horizontal, vertical and diagonal) wavelet coefficient maps. Based on the fused detail map, multivariate statistics were applied to synthesize features in multiple scales and directions, and an optimal threshold was set to separate scratches from the background. The experimental results of 24 automobile paint surface showed that the presented algorithms can effectively suppress background noise and detect scratches accurately. (paper)

  8. Continuous Surface Rendering, Passing from CAD to Physical Representation

    Directory of Open Access Journals (Sweden)

    Mario Covarrubias

    2013-06-01

    Full Text Available This paper describes a desktop-mechatronic interface that has been conceived to support designers in the evaluation of aesthetic virtual shapes. This device allows a continuous and smooth free hand contact interaction on a real and developable plastic tape actuated by a servo-controlled mechanism. The objective in designing this device is to reproduce a virtual surface with a consistent physical rendering well adapted to designers' needs. The desktop-mechatronic interface consists in a servo-actuated plastic strip that has been devised and implemented using seven interpolation points. In fact, by using the MEC (Minimal Energy Curve Spline approach, a developable real surface is rendered taking into account the CAD geometry of the virtual shapes. In this paper, we describe the working principles of the interface by using both absolute and relative approaches to control the position on each single control point on the MEC spline. Then, we describe the methodology that has been implemented, passing from the CAD geometry, linked to VisualNastran in order to maintain the parametric properties of the virtual shape. Then, we present the co-simulation between VisualNastran and MATLAB/Simulink used for achieving this goal and controlling the system and finally, we present the results of the subsequent testing session specifically carried out to evaluate the accuracy and the effectiveness of the mechatronic device.

  9. The impact of implementing the bare essentials of surface transfer land surface scheme into the BMRC GCM

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.L. [Univ. of Arizona, Tucson, AZ (United States); Pitman, A.J. [Macquarie Univ., Sydney (Australia); McAvaney, B. [Bureau of Meterology Research Centre, Melbourne (Australia)] [and others

    1995-07-01

    This study describes the first order impacts of incorporating a complex land-surface scheme, the bare essentials of surface transfer (BEST), into the Australian Bureau of Meteorology Research Centre (BMRC) global atmospheric general circulation model (GCM). Land seasonal climatologies averaged over the last six years of integrations after equilibrium from the GCM with BEST and without BEST (the control) are compared. The modeled results are evaluated with comprehensive sources of data, including the layer-cloud climatologies project (ISCCP) data from 1983 to 1991 and the surface-observed global data of Warrent et al., a five-year climatology of surface albedo estimated from earth radiation budget experiment (ERBE) top-of-the-atmosphere (TOA) radiative fluxes, global grid point datasets of precipitation, and the climatological analyses of surface evaporation and albedo. Emphasis is placed on the surface evaluation of simulations of land-surface conditions such as surface roughness, surface albedo and the surface wetness factor, and on their effects on surface evaporation, precipitation, layer-cloud and surface temperature. The improvements due to the inclusion of BEST are: a realistic geographical distribution of surface roughness, a decrease in surface albedo over areas with seasonal snow cover, an an increase in surface albedo over snow-free land. The simulated reduction in surface evaporation due, in part, to the bio-physical control of vegetation, is also consistent with the previous studies. Since the control climate has a dry bias, the overall simulations from the GCM with BEST are degraded, except for significant improvements for the northern winter hemisphere because of the realistic vegetation-masking effects. The implications of our results for synergistic developments of other aspects of model parameterization schemes such as boundary layer dynamics, clouds, convection and rainfall are discussed. 82 refs., 9 figs., 3 tabs.

  10. Representation theory of current algebra and conformal field theory on Riemann surfaces

    International Nuclear Information System (INIS)

    Yamada, Yasuhiko

    1989-01-01

    We study conformal field theories with current algebra (WZW-model) on general Riemann surfaces based on the integrable representation theory of current algebra. The space of chiral conformal blocks defined as solutions of current and conformal Ward identities is shown to be finite dimensional and satisfies the factorization properties. (author)

  11. A new scheme for urban impervious surface classification from SAR images

    Science.gov (United States)

    Zhang, Hongsheng; Lin, Hui; Wang, Yunpeng

    2018-05-01

    Urban impervious surfaces have been recognized as a significant indicator for various environmental and socio-economic studies. There is an increasingly urgent demand for timely and accurate monitoring of the impervious surfaces with satellite technology from local to global scales. In the past decades, optical remote sensing has been widely employed for this task with various techniques. However, there are still a range of challenges, e.g. handling cloud contamination on optical data. Therefore, the Synthetic Aperture Radar (SAR) was introduced for the challenging task because it is uniquely all-time- and all-weather-capable. Nevertheless, with an increasing number of SAR data applied, the methodology used for impervious surfaces classification remains unchanged from the methods used for optical datasets. This shortcoming has prevented the community from fully exploring the potential of using SAR data for impervious surfaces classification. We proposed a new scheme that is comparable to the well-known and fundamental Vegetation-Impervious surface-Soil (V-I-S) model for mapping urban impervious surfaces. Three scenes of fully polarimetric Radsarsat-2 data for the cities of Shenzhen, Hong Kong and Macau were employed to test and validate the proposed methodology. Experimental results indicated that the overall accuracy and Kappa coefficient were 96.00% and 0.8808 in Shenzhen, 93.87% and 0.8307 in Hong Kong and 97.48% and 0.9354 in Macau, indicating the applicability and great potential of the new scheme for impervious surfaces classification using polarimetric SAR data. Comparison with the traditional scheme indicated that this new scheme was able to improve the overall accuracy by up to 4.6% and Kappa coefficient by up to 0.18.

  12. Impact of Vegetation Cover Fraction Parameterization schemes on Land Surface Temperature Simulation in the Tibetan Plateau

    Science.gov (United States)

    Lv, M.; Li, C.; Lu, H.; Yang, K.; Chen, Y.

    2017-12-01

    The parameterization of vegetation cover fraction (VCF) is an important component of land surface models. This paper investigates the impacts of three VCF parameterization schemes on land surface temperature (LST) simulation by the Common Land Model (CoLM) in the Tibetan Plateau (TP). The first scheme is a simple land cover (LC) based method; the second one is based on remote sensing observation (hereafter named as RNVCF) , in which multi-year climatology VCFs is derived from Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI (Normalized Difference Vegetation Index); the third VCF parameterization scheme derives VCF from the LAI simulated by LSM and clump index at every model time step (hereafter named as SMVCF). Simulated land surface temperature(LST) and soil temperature by CoLM with three VCF parameterization schemes were evaluated by using satellite LST observation and in situ soil temperature observation, respectively, during the period of 2010 to 2013. The comparison against MODIS Aqua LST indicates that (1) CTL produces large biases for both four seasons in early afternoon (about 13:30, local solar time), while the mean bias in spring reach to 12.14K; (2) RNVCF and SMVCF reduce the mean bias significantly, especially in spring as such reduce is about 6.5K. Surface soil temperature observed at 5 cm depth from three soil moisture and temperature monitoring networks is also employed to assess the skill of three VCF schemes. The three networks, crossing TP from West to East, have different climate and vegetation conditions. In the Ngari network, located in the Western TP with an arid climate, there are not obvious differences among three schemes. In Naqu network, located in central TP with a semi-arid climate condition, CTL shows a severe overestimates (12.1 K), but such overestimations can be reduced by 79% by RNVCF and 87% by SMVCF. In the third humid network (Maqu in eastern TP), CoLM performs similar to Naqu. However, at both Naqu and Maqu networks

  13. Multi-scale freeform surface texture filtering using a mesh relaxation scheme

    International Nuclear Information System (INIS)

    Jiang, Xiangqian; Abdul-Rahman, Hussein S; Scott, Paul J

    2013-01-01

    Surface filtering algorithms using Fourier, Gaussian, wavelets, etc, are well-established for simple Euclidean geometries. However, these filtration techniques cannot be applied to today's complex freeform surfaces, which have non-Euclidean geometries, without distortion of the results. This paper proposes a new multi-scale filtering algorithm for freeform surfaces that are represented by triangular meshes based on a mesh relaxation scheme. The proposed algorithm is capable of decomposing a freeform surface into different scales and separating surface roughness, waviness and form from each other, as will be demonstrated throughout the paper. Results of applying the proposed algorithm to computer-generated as well as real surfaces are represented and compared with a lifting wavelet filtering algorithm. (paper)

  14. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    Science.gov (United States)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  15. SURFACE FLUID REGISTRATION OF CONFORMAL REPRESENTATION: APPLICATION TO DETECT DISEASE BURDEN AND GENETIC INFLUENCE ON HIPPOCAMPUS

    Science.gov (United States)

    Shi, Jie; Thompson, Paul M.; Gutman, Boris; Wang, Yalin

    2013-01-01

    In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistentsurface fluid registration, and multivariate tensor-based morphometry (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by combining its local conformal factor and mean curvature and linearly scale the dynamic range of the conformal representation to form the feature image of the surface. Third, we align the feature image with a chosen template image via the fluid image registration algorithm, which has been extended into the curvilinear coordinates to adjust for the distortion introduced by surface parameterization. The inverse consistent image registration algorithm is also incorporated in the system to jointly estimate the forward and inverse transformations between the study and template images. This alignment induces a corresponding deformation on the surface. We tested the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric surface, we nonlinearly registered each surface with a selected template surface. Then we used mTBM to analyze the morphometrydifference between diagnostic groups. Experimental results show that the new system has better performance than two publically available subcortical surface registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the Apolipoprotein E ε4 allele (ApoE4),which is considered as the most prevalent risk factor for AD.Our work successfully detected statistically significant difference between ApoE4 carriers and non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so that our workprovides

  16. Global Performance of a Fast Parameterization Scheme for Estimating Surface Solar Radiation from MODIS data

    Science.gov (United States)

    Tang, W.; Yang, K.; Sun, Z.; Qin, J.; Niu, X.

    2016-12-01

    A fast parameterization scheme named SUNFLUX is used in this study to estimate instantaneous surface solar radiation (SSR) based on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard both Terra and Aqua platforms. The scheme mainly takes into account the absorption and scattering processes due to clouds, aerosols and gas in the atmosphere. The estimated instantaneous SSR is evaluated against surface observations obtained from seven stations of the Surface Radiation Budget Network (SURFRAD), four stations in the North China Plain (NCP) and 40 stations of the Baseline Surface Radiation Network (BSRN). The statistical results for evaluation against these three datasets show that the relative root-mean-square error (RMSE) values of SUNFLUX are less than 15%, 16% and 17%, respectively. Daily SSR is derived through temporal upscaling from the MODIS-based instantaneous SSR estimates, and is validated against surface observations. The relative RMSE values for daily SSR estimates are about 16% at the seven SURFRAD stations, four NCP stations, 40 BSRN stations and 90 China Meteorological Administration (CMA) radiation stations.

  17. An analysis of the accuracy of an initial value representation surface hopping wave function in the interaction and asymptotic regions

    International Nuclear Information System (INIS)

    Sergeev, Alexey; Herman, Michael F.

    2006-01-01

    The behavior of an initial value representation surface hopping wave function is examined. Since this method is an initial value representation for the semiclassical solution of the time independent Schroedinger equation for nonadiabatic problems, it has computational advantages over the primitive surface hopping wave function. The primitive wave function has been shown to provide transition probabilities that accurately compare with quantum results for model problems. The analysis presented in this work shows that the multistate initial value representation surface hopping wave function should approach the primitive result in asymptotic regions and provide transition probabilities with the same level of accuracy for scattering problems as the primitive method

  18. 3D surface parameterization using manifold learning for medial shape representation

    Science.gov (United States)

    Ward, Aaron D.; Hamarneh, Ghassan

    2007-03-01

    The choice of 3D shape representation for anatomical structures determines the effectiveness with which segmentation, visualization, deformation, and shape statistics are performed. Medial axis-based shape representations have attracted considerable attention due to their inherent ability to encode information about the natural geometry of parts of the anatomy. In this paper, we propose a novel approach, based on nonlinear manifold learning, to the parameterization of medial sheets and object surfaces based on the results of skeletonization. For each single-sheet figure in an anatomical structure, we skeletonize the figure, and classify its surface points according to whether they lie on the upper or lower surface, based on their relationship to the skeleton points. We then perform nonlinear dimensionality reduction on the skeleton, upper, and lower surface points, to find the intrinsic 2D coordinate system of each. We then center a planar mesh over each of the low-dimensional representations of the points, and map the meshes back to 3D using the mappings obtained by manifold learning. Correspondence between mesh vertices, established in their intrinsic 2D coordinate spaces, is used in order to compute the thickness vectors emanating from the medial sheet. We show results of our algorithm on real brain and musculoskeletal structures extracted from MRI, as well as an artificial multi-sheet example. The main advantages to this method are its relative simplicity and noniterative nature, and its ability to correctly compute nonintersecting thickness vectors for a medial sheet regardless of both the amount of coincident bending and thickness in the object, and of the incidence of local concavities and convexities in the object's surface.

  19. Microbial counts of food contact surfaces at schools depending on a feeding scheme

    Directory of Open Access Journals (Sweden)

    Nthabiseng Nhlapo

    2014-11-01

    Full Text Available The prominence of disease transmission between individuals in confined environments is a concern, particularly in the educational environment. With respect to school feeding schemes, food contact surfaces have been shown to be potential vehicles of foodborne pathogens. The aim of this study was to assess the cleanliness of the surfaces that come into contact with food that is provided to children through the National School Nutrition Programme in central South Africa. In each school under study, microbiological samples were collected from the preparation surface and the dominant hand and apron of the food handler. The samples were analysed for total viable counts, coliforms, Escherichia coli, Staphylococcus aureus and yeasts and moulds. The criteria specified in the British Columbia Guide for Environmental Health Officers were used to evaluate the results. Total viable counts were high for all surfaces, with the majority of colonies being too numerous to count (over 100 colonies per plate. Counts of organisms were relatively low, with 20% of the surfaces producing unsatisfactory enumeration of S. aureus and E. coli and 30% unsatisfactory for coliforms. Yeast and mould produced 50% and 60% unsatisfactory counts from preparation surfaces and aprons, respectively. Statistically significant differences could not be established amongst microbial counts of the surfaces, which suggests cross-contamination may have occurred. Contamination may be attributed to foodstuffs and animals in the vicinity of the preparation area rather than to the food handlers, because hands had the lowest counts of enumerated organisms amongst the analysed surfaces.

  20. An Extended Eddy-Diffusivity Mass-Flux Scheme for Unified Representation of Subgrid-Scale Turbulence and Convection

    Science.gov (United States)

    Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Schneider, Tapio; Teixeira, João.

    2018-03-01

    Large-scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid-scale turbulence and convection—such as that they adjust instantaneously to changes in resolved-scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary-layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large-scale models. Here we lay the theoretical foundations for an extended eddy-diffusivity mass-flux (EDMF) scheme that has explicit time-dependence and memory of subgrid-scale variables and is designed to represent all subgrid-scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross-sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large-scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time-dependent life cycle.

  1. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Garrick, Daniel P. [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States); Owkes, Mark [Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT (United States); Regele, Jonathan D., E-mail: jregele@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States)

    2017-06-15

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  2. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  3. Dynamics of a Rydberg hydrogen atom near a metal surface in the electron-extraction scheme

    Energy Technology Data Exchange (ETDEWEB)

    Iñarrea, Manuel [Área de Física Aplicada, Universidad de La Rioja, Logroño (Spain); Lanchares, Víctor [Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja (Spain); Palacián, Jesús [Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, Pamplona (Spain); Pascual, Ana I. [Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja (Spain); Salas, J. Pablo, E-mail: josepablo.salas@unirioja.es [Área de Física Aplicada, Universidad de La Rioja, Logroño (Spain); Yanguas, Patricia [Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, Pamplona (Spain)

    2015-01-23

    We study the classical dynamics of a Rydberg hydrogen atom near a metal surface in the presence of a constant electric field in the electron-extraction situation [1], e.g., when the field attracts the electron to the vacuum. From a dynamical point of view, this field configuration provides a dynamics richer than in the usual ion-extraction scheme, because, depending on the values of field and the atom–surface distance, the atom can be ionized only towards the metal surface, only to the vacuum or to the both sides. The evolution of the phase space structure as a function of the atom–surface distance is explored in the bound regime of the atom. In the high energy regime, the ionization mechanism is also investigated. We find that the classical results of this work are in good agreement with the results obtained in the wave-packet propagation study carried out by So et al. [1]. - Highlights: • We study a classical hydrogen atom near a metal surface plus a electric field. • We explore the phase space structure as a function of the field strength. • We find most of the electronic orbits are oriented along the field direction. • We study the ionization of the atom for several atom–surface distances. • This classical study is in good agreement with the quantum results.

  4. Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization.

    Science.gov (United States)

    Craft, David

    2010-10-01

    A discrete set of points and their convex combinations can serve as a sparse representation of the Pareto surface in multiple objective convex optimization. We develop a method to evaluate the quality of such a representation, and show by example that in multiple objective radiotherapy planning, the number of Pareto optimal solutions needed to represent Pareto surfaces of up to five dimensions grows at most linearly with the number of objectives. The method described is also applicable to the representation of convex sets. Copyright © 2009 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Assessment of a surface-layer parameterization scheme in an atmospheric model for varying meteorological conditions

    Directory of Open Access Journals (Sweden)

    T. J. Anurose

    2014-06-01

    Full Text Available The performance of a surface-layer parameterization scheme in a high-resolution regional model (HRM is carried out by comparing the model-simulated sensible heat flux (H with the concurrent in situ measurements recorded at Thiruvananthapuram (8.5° N, 76.9° E, a coastal station in India. With a view to examining the role of atmospheric stability in conjunction with the roughness lengths in the determination of heat exchange coefficient (CH and H for varying meteorological conditions, the model simulations are repeated by assigning different values to the ratio of momentum and thermal roughness lengths (i.e. z0m/z0h in three distinct configurations of the surface-layer scheme designed for the present study. These three configurations resulted in differential behaviour for the varying meteorological conditions, which is attributed to the sensitivity of CH to the bulk Richardson number (RiB under extremely unstable, near-neutral and stable stratification of the atmosphere.

  6. A surface evolution scheme to identify nanoscale intrinsic geometry from AFM experimental data

    International Nuclear Information System (INIS)

    Jang, Hong-Lae; Kim, Hyun-Seok; Park, Youmie; Cho, Seonho

    2013-01-01

    The geometrical properties of metallic nanoparticles such as the size and morphology have significant impacts on the structure and stability of the adsorbed biological entities as well as the nanoscale structural performances. To identify the nanoscale intrinsic geometry from the height images by atomic force microscopy (AFM), we developed a curvature-dependent evolution scheme that can eliminate the noise and smoothen the surfaces. The principal curvatures are computed directly from the first and second derivatives of the discrete AFM height data. The principal curvatures and directions correspond to the eigenvalues and eigenvectors of shape operator matrix, respectively. The evolution equation using the principal curvature flows smoothens the images in the corresponding principal directions. For an idealized model, κ 2 flow successfully identifies the major valley lines to represent the boundary of nanoparticles without referring to the phase information, whereas the mean curvature flow eliminates all the minor ones leaving only the major feature of the boundary. To demonstrate the capability of noise removal, smoothing surfaces, the identification of ridge and valley lines, and the extraction of intrinsic geometry, the developed numerical scheme is applied to real AFM data that include the silver nanoparticles of 24 nm diameter and the gold nanoparticles of 33–56 nm diameters

  7. Contributions of feature shapes and surface cues to the recognition and neural representation of facial identity.

    Science.gov (United States)

    Andrews, Timothy J; Baseler, Heidi; Jenkins, Rob; Burton, A Mike; Young, Andrew W

    2016-10-01

    A full understanding of face recognition will involve identifying the visual information that is used to discriminate different identities and how this is represented in the brain. The aim of this study was to explore the importance of shape and surface properties in the recognition and neural representation of familiar faces. We used image morphing techniques to generate hybrid faces that mixed shape properties (more specifically, second order spatial configural information as defined by feature positions in the 2D-image) from one identity and surface properties from a different identity. Behavioural responses showed that recognition and matching of these hybrid faces was primarily based on their surface properties. These behavioural findings contrasted with neural responses recorded using a block design fMRI adaptation paradigm to test the sensitivity of Haxby et al.'s (2000) core face-selective regions in the human brain to the shape or surface properties of the face. The fusiform face area (FFA) and occipital face area (OFA) showed a lower response (adaptation) to repeated images of the same face (same shape, same surface) compared to different faces (different shapes, different surfaces). From the behavioural data indicating the critical contribution of surface properties to the recognition of identity, we predicted that brain regions responsible for familiar face recognition should continue to adapt to faces that vary in shape but not surface properties, but show a release from adaptation to faces that vary in surface properties but not shape. However, we found that the FFA and OFA showed an equivalent release from adaptation to changes in both shape and surface properties. The dissociation between the neural and perceptual responses suggests that, although they may play a role in the process, these core face regions are not solely responsible for the recognition of facial identity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Steps towards equal gender representation: TANDEMplusIDEA - an international mentoring and personal development scheme for female scientists

    Science.gov (United States)

    Schaefli, Bettina; Breuer, Elke

    2010-05-01

    TANDEMplusIDEA was a European mentoring programme conducted by the technical universities RWTH Aachen, Imperial College London, ETH Zurich and TU Delft between 2007 and 2010 to achieve more gender equality in science. Given the continuing underrepresentation of women in science and technology and the well-known structural and systematic disadvantages in male-dominated scientific cultures, the main goal of this programme was to promote excellent female scientists through a high-level professional and personal development programme. Based on the mentoring concept of the RWTH Aachen, TANDEMplusIDEA was the first mentoring programme for female scientists realized in international cooperation. As a pilot scheme funded by the 6th Framework Programme of the European Commission, the scientific evaluation was an essential part of the programme, in particular in view of the development of a best practice model for international mentoring. The participants of this programme were female scientists at an early stage of their academic career (postdoc or assistant professor) covering a wide range of science disciplines, including geosciences. This transdisciplinarity as well as the international dimension of the programme have been identified by the participants as one of the keys of success of the programme. In particular, the peer-mentoring across discipline boarders proved to have been an invaluable component of the development programme. This presentation will highlight some of the main findings of the scientific evaluation of the programme and focus on some additional personal insights from the participants.

  9. Soliton surfaces via a zero-curvature representation of differential equations

    International Nuclear Information System (INIS)

    Grundland, A M; Post, S

    2012-01-01

    The main aim of this paper is to introduce a new version of the Fokas–Gel’fand formula for immersion of soliton surfaces in Lie algebras. The paper contains a detailed exposition of the technique for obtaining exact forms of 2D surfaces associated with any solution of a given nonlinear ordinary differential equation which can be written in the zero-curvature form. That is, for any generalized symmetry of the zero-curvature condition of the associated integrable model, it is possible to construct soliton surfaces whose Gauss–Mainardi–Codazzi equations are equivalent to infinitesimal deformations of the zero-curvature representation of the considered model. Conversely, it is shown (proposition 1) that for a given immersion function of a 2D soliton surface in a Lie algebra, it is possible to derive the associated generalized vector field in the evolutionary form which characterizes all symmetries of the zero-curvature condition. The theoretical considerations are illustrated via surfaces associated with the Painlevé equations P1, P2 and P3, including transcendental functions, the special cases of the rational and Airy solutions of P2 and the classical solutions of P3. (paper)

  10. Uniform surface-to-line integral reduction of physical optics for curved surfaces by modified edge representation with higher-order correction

    Science.gov (United States)

    Lyu, Pengfei; Ando, Makoto

    2017-09-01

    The modified edge representation is one of the equivalent edge currents approximation methods for calculating the physical optics surface radiation integrals in diffraction analysis. The Stokes' theorem is used in the derivation of the modified edge representation from the physical optics for the planar scatterer case, which implies that the surface integral is rigorously reduced into the line integral of the modified edge representation equivalent edge currents, defined in terms of the local shape of the edge. On the contrary, for curved surfaces, the results of radiation integrals depend upon the global shape of the scatterer. The physical optics surface integral consists of two components, from the inner stationary phase point and the edge. The modified edge representation is defined independently from the orientation of the actual edge, and therefore, it could be available not only at the edge but also at the arbitrary points on the scatterer except the stationary phase point where the modified edge representation equivalent edge currents becomes infinite. If stationary phase point exists inside the illuminated region, the physical optics surface integration is reduced into two kinds of the modified edge representation line integrations, along the edge and infinitesimally small integration around the inner stationary phase point, the former and the latter give the diffraction and reflection components, respectively. The accuracy of the latter has been discussed for the curved surfaces and published. This paper focuses on the errors of the former and discusses its correction. It has been numerically observed that the modified edge representation works well for the physical optics diffraction in flat and concave surfaces; errors appear especially for the observer near the reflection shadow boundary if the frequency is low for the convex scatterer. This paper gives the explicit expression of the higher-order correction for the modified edge representation.

  11. Surface based detection schemes for molecular interferometry experiments - implications and possible applications

    Science.gov (United States)

    Juffmann, Thomas; Milic, Adriana; Muellneritsch, Michael; Arndt, Markus

    2011-03-01

    Surface based detection schemes for molecular interferometry experiments might be crucial in the search for the quantum properties of larger and larger objects since they provide single particle sensitivity. Here we report on molecular interferograms of different biomolecules imaged using fluorescence microscopy. Being able to watch the build-up of an interferogram live and in situ reveals the matter-wave behavior of these complex molecules in an unprecedented way. We examine several problems encountered due to van-der-Waals forces between the molecules and the diffraction grating and discuss possible ways to circumvent these. Especially the advent of ultra-thin (1-100 atomic layers) diffraction masks might path the way towards molecular holography. We also discuss other possible applications such as coherent molecular microscopy.

  12. Holomorphic representation of constant mean curvature surfaces in Minkowski space: Consequences of non-compactness in loop group methods

    DEFF Research Database (Denmark)

    Brander, David; Rossman, Wayne; Schmitt, Nicholas

    2010-01-01

    We give an infinite dimensional generalized Weierstrass representation for spacelike constant mean curvature (CMC) surfaces in Minkowski 3-space $\\R^{2,1}$. The formulation is analogous to that given by Dorfmeister, Pedit and Wu for CMC surfaces in Euclidean space, replacing the group $SU_2$ with...

  13. Incorporating contact angles in the surface tension force with the ACES interface curvature scheme

    Science.gov (United States)

    Owkes, Mark

    2017-11-01

    In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).

  14. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  15. Infinitesimal-area 2D radiative analysis using parametric surface representation, through NURBS

    Energy Technology Data Exchange (ETDEWEB)

    Daun, K J; Hollands, K G.T.

    1999-07-01

    The use of form factors in the treatment of radiant enclosures requires that the radiosity and surface properties be treated as uniform over finite areas. This restriction can be relaxed by applying an infinitesimal-area analysis, where the radiant exchange is taken to be between infinitesimal areas, rather than finite areas. This paper presents a generic infinitesimal-area formulation that can be applied to two-dimensional enclosure problems. (Previous infinitesimal-area analyses have largely been restricted to specific, one-dimensional problems.) Specifically, the paper shows how the analytical expression for the kernel of the integral equation can be obtained without human intervention, once the enclosure surface has been defined parametrically. This can be accomplished by using a computer algebra package or by using NURBS algorithms, which are the industry standard for the geometrical representations used in CAD-CAM codes. Once the kernel has been obtained by this formalism, the 2D integral equation can be set up and solved numerically. The result is a single general-purpose infinitesimal-area analysis code that can proceed from surface specification to solution. The authors have implemented this 2D code and tested it on 1D problems, whose solutions have been given in the literature, obtaining agreement commensurate with the accuracy of the published solutions.

  16. Development of a J-estimation scheme for internal circumferential and axial surface cracks in elbows

    International Nuclear Information System (INIS)

    Mohan, R.; Brust, F.W.; Ghadiali, N.; Wilkowski, G.

    1996-06-01

    This report summarizes efforts to develop elastic and elastic-plastic fracture mechanics analyses for internal surface cracks in elbows. The analyses involved development of a GE/EPRI type J-estimation scheme which requires an elastic and fully plastic contribution to crack-driving force in terms of the J-integral parameter. The elastic analyses require the development of F-function values to relate the J e term to applied loads. Similarly, the fully plastic analyses require the development of h-functions to relate the J p term to the applied loads. The F- and h-functions were determined from a matrix of finite element analyses. To minimize the cost of the analyses, three-dimensional ABAQUS finite element analyses were compared to a simpler finite element technique called the line-spring method. The line-spring method provides a significant computational savings over the full three-dimensional analysis. The comparison showed excellent agreement between the line-spring and three-dimensional analysis. This experience was consistent with comparisons with circumferential surface-crack analyses in straight pipes during the NRC's Short Cracks in Piping and Piping Welds program

  17. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Højmark Rasmussen, Søren; Drews, Martin

    2016-01-01

    The land surface-atmosphere interaction is described differently in large scale surface schemes of regional climate models and small scale spatially distributed hydrological models. In particular, the hydrological models include the influence of shallow groundwater on evapotranspiration during dry...... by HIRHAM simulated precipitation. The last two simulations include iv) a standard HIRHAM simulation, and v) a fully coupled HIRHAM-MIKE SHE simulation locally replacing the land surface scheme by MIKE SHE for the FIFE area, while HIRHAM in standard configuration is used for the remaining model area...

  18. Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology

    Directory of Open Access Journals (Sweden)

    I. Gouttevin

    2012-04-01

    Full Text Available Soil freezing is a major feature of boreal regions with substantial impact on climate. The present paper describes the implementation of the thermal and hydrological effects of soil freezing in the land surface model ORCHIDEE, which includes a physical description of continental hydrology. The new soil freezing scheme is evaluated against analytical solutions and in-situ observations at a variety of scales in order to test its numerical robustness, explore its sensitivity to parameterization choices and confront its performance to field measurements at typical application scales.

    Our soil freezing model exhibits a low sensitivity to the vertical discretization for spatial steps in the range of a few millimetres to a few centimetres. It is however sensitive to the temperature interval around the freezing point where phase change occurs, which should be 1 °C to 2 °C wide. Furthermore, linear and thermodynamical parameterizations of the liquid water content lead to similar results in terms of water redistribution within the soil and thermal evolution under freezing. Our approach does not allow firm discrimination of the performance of one approach over the other.

    The new soil freezing scheme considerably improves the representation of runoff and river discharge in regions underlain by permafrost or subject to seasonal freezing. A thermodynamical parameterization of the liquid water content appears more appropriate for an integrated description of the hydrological processes at the scale of the vast Siberian basins. The use of a subgrid variability approach and the representation of wetlands could help capture the features of the Arctic hydrological regime with more accuracy.

    The modeling of the soil thermal regime is generally improved by the representation of soil freezing processes. In particular, the dynamics of the active layer is captured with more accuracy, which is of crucial importance in the prospect of

  19. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies†

    Science.gov (United States)

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.

    2016-01-01

    described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials. PMID:25790032

  20. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies.

    Science.gov (United States)

    Nallathamby, Prakash D; Mortensen, Ninell P; Palko, Heather A; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J; Gu, Baohua; Roeder, Ryan K; Wang, Wei; Retterer, Scott T

    2015-04-21

    described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.

  1. Intercomparison between BATS and LSPM surface schemes, using point micrometeorological data set

    Energy Technology Data Exchange (ETDEWEB)

    Ruti, P.M.; Cacciamani, C.; Paccagnella, T. [Servizio Meteorologico Regionale, Bologna (Italy); Cassardo, C. [Turin Univ., Alessandria (Italy). Dipt. di Scienze e Technologie Avanzate; Longhetto, A. [Turin Univ. (Italy). Ist. di Fisica Generale; Bargagli, A. [ENEA, Roma (Italy). Gruppo di Dinamica dell`Atmosfera e dell`Oceano

    1997-08-01

    This work has been developed with the aim to create an archive of climatological values of sensible, latent and ground-atmosphere heat fluxes in the Po valley (CLIPS experiment); due to the unavailability of climatological archives of turbulent fluxes at synoptic scale, we have used the outputs of ``stand-alone`` runnings of biospheric models; this archive could be used to check the parametrizations of large- and mesoscale models in the surface layer. We started to check the reliability of our proposal by testing the model outputs by a comparison with observed data. We selected a flat, rural area in the middle-east Po valley (San Pietro Capofiume, Italy) and used the data gathered in the experimental campaign SPCFLUX93 carried out there. The models adopted for the intercomparison have been the biosphere-atmosphere transfer scheme (BATS) of Dickinson et al. (1986 version) and the land surface process model (LSPM) of Cassardo et al. (1996 version). An improved version of BATS has been implemented by us changing in a substantial way the soil thermal and hydrological subroutines. The upper boundary conditions used for all models were taken by interpolating the synoptic observations carried out at San Pietro Capofiume (Italy) station; the algorithm used for the interpolations was tested with the data achieved in a fortnight campaign (SPCFLUX93) carried out at the same location during June 1993, showing a good agreement between interpolated and observed variables. Two experiments have been carried out; in the first one, the vegetation parameter set used by BATS has been used to force all models, while in the second one a vegetation cover value closest to the observations in the site has been used. 30 refs.

  2. Updating representation of land surface-atmosphere feedbacks in airborne campaign modeling analysis

    Science.gov (United States)

    Huang, M.; Carmichael, G. R.; Crawford, J. H.; Chan, S.; Xu, X.; Fisher, J. A.

    2017-12-01

    An updated modeling system to support airborne field campaigns is being built at NASA Ames Pleiades, with focus on adjusting the representation of land surface-atmosphere feedbacks. The main updates, referring to previous experiences with ARCTAS-CARB and CalNex in the western US to study air pollution inflows, include: 1) migrating the WRF (Weather Research and Forecasting) coupled land surface model from Noah to improved/more complex models especially Noah-MP and Rapid Update Cycle; 2) enabling the WRF land initialization with suitably spun-up land model output; 3) incorporating satellite land cover, vegetation dynamics, and soil moisture data (i.e., assimilating Soil Moisture Active Passive data using the ensemble Kalman filter approach) into WRF. Examples are given of comparing the model fields with available aircraft observations during spring-summer 2016 field campaigns taken place at the eastern side of continents (KORUS-AQ in South Korea and ACT-America in the eastern US), the air pollution export regions. Under fair weather and stormy conditions, air pollution vertical distributions and column amounts, as well as the impact from land surface, are compared. These help identify challenges and opportunities for LEO/GEO satellite remote sensing and modeling of air quality in the northern hemisphere. Finally, we briefly show applications of this system on simulating Australian conditions, which would explore the needs for further development of the observing system in the southern hemisphere and inform the Clean Air and Urban Landscapes (https://www.nespurban.edu.au) modelers.

  3. Evaluating the performance of SURFEXv5 as a new land surface scheme for the ALADINcy36 and ALARO-0 models

    Science.gov (United States)

    Hamdi, R.; Degrauwe, D.; Duerinckx, A.; Cedilnik, J.; Costa, V.; Dalkilic, T.; Essaouini, K.; Jerczynki, M.; Kocaman, F.; Kullmann, L.; Mahfouf, J.-F.; Meier, F.; Sassi, M.; Schneider, S.; Váňa, F.; Termonia, P.

    2014-01-01

    The newly developed land surface scheme SURFEX (SURFace EXternalisée) is implemented into a limited-area numerical weather prediction model running operationally in a number of countries of the ALADIN and HIRLAM consortia. The primary question addressed is the ability of SURFEX to be used as a new land surface scheme and thus assessing its potential use in an operational configuration instead of the original ISBA (Interactions between Soil, Biosphere, and Atmosphere) scheme. The results show that the introduction of SURFEX either shows improvement for or has a neutral impact on the 2 m temperature, 2 m relative humidity and 10 m wind. However, it seems that SURFEX has a tendency to produce higher maximum temperatures at high-elevation stations during winter daytime, which degrades the 2 m temperature scores. In addition, surface radiative and energy fluxes improve compared to observations from the Cabauw tower. The results also show that promising improvements with a demonstrated positive impact on the forecast performance are achieved by introducing the town energy balance (TEB) scheme. It was found that the use of SURFEX has a neutral impact on the precipitation scores. However, the implementation of TEB within SURFEX for a high-resolution run tends to cause rainfall to be locally concentrated, and the total accumulated precipitation obviously decreases during the summer. One of the novel features developed in SURFEX is the availability of a more advanced surface data assimilation using the extended Kalman filter. The results over Belgium show that the forecast scores are similar between the extended Kalman filter and the classical optimal interpolation scheme. Finally, concerning the vertical scores, the introduction of SURFEX either shows improvement for or has a neutral impact in the free atmosphere.

  4. Evaluation of land surface model representation of phenology: an analysis of model runs submitted to the NACP Interim Site Synthesis

    Science.gov (United States)

    Richardson, A. D.; Nacp Interim Site Synthesis Participants

    2010-12-01

    Phenology represents a critical intersection point between organisms and their growth environment. It is for this reason that phenology is a sensitive and robust integrator of the biological impacts of year-to-year climate variability and longer-term climate change on natural systems. However, it is perhaps equally important that phenology, by controlling the seasonal activity of vegetation on the land surface, plays a fundamental role in regulating ecosystem processes, competitive interactions, and feedbacks to the climate system. Unfortunately, the phenological sub-models implemented in most state-of-the-art ecosystem models and land surface schemes are overly simplified. We quantified model errors in the representation of the seasonal cycles of leaf area index (LAI), gross ecosystem photosynthesis (GEP), and net ecosystem exchange of CO2. Our analysis was based on site-level model runs (14 different models) submitted to the North American Carbon Program (NACP) Interim Synthesis, and long-term measurements from 10 forested (5 evergreen conifer, 5 deciduous broadleaf) sites within the AmeriFlux and Fluxnet-Canada networks. Model predictions of the seasonality of LAI and GEP were unacceptable, particularly in spring, and especially for deciduous forests. This is despite an historical emphasis on deciduous forest phenology, and the perception that controls on spring phenology are better understood than autumn phenology. Errors of up to 25 days in predicting “spring onset” transition dates were common, and errors of up to 50 days were observed. For deciduous sites, virtually every model was biased towards spring onset being too early, and autumn senescence being too late. Thus, models predicted growing seasons that were far too long for deciduous forests. For most models, errors in the seasonal representation of deciduous forest LAI were highly correlated with errors in the seasonality of both GPP and NEE, indicating the importance of getting the underlying

  5. A new design of the LAPS land surface scheme for use over and through heterogeneous and non-heterogeneous surfaces: Numerical simulations and tests

    Science.gov (United States)

    Mihailovic, Dragutin T.; Lazic, Jelena; Leśny, Jacek; Olejnik, Janusz; Lalic, Branislava; Kapor, Darko; Cirisan, Ana

    2010-05-01

    Numerical simulations and tests with the recently redesigned land-air parameterization scheme (LAPS) are presented. In all experiments, supported either by one-point micrometeorological, 1D or 3D simulations, the attention has been directed to: (1) comparison of simulation outputs, expressing the energy transfer over and through heterogeneous and non-heterogeneous surfaces, versus observations and (2) analysis of uncertainties occurring in the solution of the energy balance equation at the land-air interface. To check the proposed method for aggregation of albedo, "propagating hole" sensitivity tests with LAPS over a sandstone rock grid cell have been performed with the forcing meteorological data for July 17, 1999 in Baxter site, Philadelphia (USA). Micrometeorological and biophysical measurements from the surface experiments conducted over crops and apple orchard in Serbia, Poland, Austria and France were used to test the operation of LAPS in calculating surface fluxes and canopy environment temperatures within and above plant covers of different densities. In addition, sensitivity tests with single canopy covers over the Central Europe region and comparison against the observations taken from SYNOP data using 3D simulations were made. Validation of LAPS performances over a solid surface has been done by comparison of 2 m air temperature observations against 5-day simulations over the Sahara Desert rocky ground using 3D model. To examine how realistically the LAPS simulates surface processes over a heterogeneous surface, we compared the air temperature measured at 2 m and that predicted by the 1D model with the LAPS as the surface scheme. Finally, the scheme behaviour over urban surface was tested by runs over different parts of a hypothetical urban area. The corresponding 1D simulations were carried out with an imposed meteorological dataset collected during HAPEX-MOBILHY experiment at Caumont (France). The quantities predicted by the LAPS compare well with the

  6. Soil Surface Runoff Scheme for Improving Land-Hydrology and Surface Fluxes in Simple SiB (SSiB)

    Science.gov (United States)

    Sud, Y. C.; Mocko, David M.

    1999-01-01

    Evapotranspiration on land is hard to measure and difficult to simulate. On the scale of a GCM grid, there is large subgrid-scale variability of orography, soil moisture, and vegetation. Our hope is to be able to tune the biophysical constants of vegetation and soil parameters to get the most realistic space-averaged diurnal cycle of evaporation and its climatology. Field experiments such as First ISLSCP Field Experiment (FIFE), Boreal Ecosystem-Atmosphere Study (BOREAS), and LBA help a great deal in improving our evapotranspiration schemes. However, these improvements have to be matched with, and coupled to, consistent improvement in land-hydrology; otherwise, the runoff problems will intrinsically reflect on the soil moisture and evapotranspiration errors. Indeed, a realistic runoff simulation also ensures a reasonable evapotranspiration simulation provided the precipitation forcing is reliable. We have been working on all of the above problems to improve the simulated hydrologic cycle. Through our participation in the evaluation and intercomparison of land-models under the behest of Global Soil Wetness Project (GSWP), we identified a few problems with Simple SiB (SSIB; Xue et al., 1991) hydrology in regions of significant snowmelt. Sud and Mocko (1999) show that inclusion of a separate snowpack model, with its own energy budget and fluxes with the atmosphere aloft and soil beneath, helps to ameliorate some of the deficiencies of delayed snowmelt and excessive spring season runoff. Thus, much more realistic timing of melt water generation was simulated with the new snowpack model in the subsequent GSWP re-evaluations using 2 years of ISLSCP Initiative I forcing data for 1987 and 1988. However, we noted an overcorrection of the low meltwater infiltration of SSiB. While the improvement in snowmelt timing was found everywhere, the snowmelt infiltration has became excessive in some regions, e.g., Lena river basin. This leads to much reduced runoff in many basins as

  7. Evaluation of fitting functions for the representation of an O(3P)+H2 potential energy surface. I

    International Nuclear Information System (INIS)

    Wagner, A.F.; Schatz, G.C.; Bowman, J.M.

    1981-01-01

    The DIM surface of Whitlock, Muckerman, and Fisher for the O( 3 P)+H 2 system is used as a test case to evaluate the usefulness of a variety of fitting functions for the representation of potential energy surfaces. Fitting functions based on LEPS, BEBO, and rotated Morse oscillator (RMO) forms are examined. Fitting procedures are developed for combining information about a small portion of the surface and the fitting function to predict where on the surface more information must be obtained to improve the accuracy of the fit. Both unbiased procedures and procedures heavily biased toward the saddle point region of the surface are investigated. Collinear quasiclassical trajectory calculations of the reaction rate constant and one and three dimensional transition state theory rate constant calculations are performed and compared for selected fits and the exact DIM test surface. Fitting functions based on BEBO and RMO forms are found to give quite accurate results

  8. Hilbert schemes of points and infinite dimensional Lie algebras

    CERN Document Server

    Qin, Zhenbo

    2018-01-01

    Hilbert schemes, which parametrize subschemes in algebraic varieties, have been extensively studied in algebraic geometry for the last 50 years. The most interesting class of Hilbert schemes are schemes X^{[n]} of collections of n points (zero-dimensional subschemes) in a smooth algebraic surface X. Schemes X^{[n]} turn out to be closely related to many areas of mathematics, such as algebraic combinatorics, integrable systems, representation theory, and mathematical physics, among others. This book surveys recent developments of the theory of Hilbert schemes of points on complex surfaces and its interplay with infinite dimensional Lie algebras. It starts with the basics of Hilbert schemes of points and presents in detail an example of Hilbert schemes of points on the projective plane. Then the author turns to the study of cohomology of X^{[n]}, including the construction of the action of infinite dimensional Lie algebras on this cohomology, the ring structure of cohomology, equivariant cohomology of X^{[n]} a...

  9. Blending of Radial HF Radar Surface Current and Model Using ETKF Scheme For The Sunda Strait

    Science.gov (United States)

    Mujiasih, Subekti; Riyadi, Mochammad; Wandono, Dr; Wayan Suardana, I.; Nyoman Gede Wiryajaya, I.; Nyoman Suarsa, I.; Hartanto, Dwi; Barth, Alexander; Beckers, Jean-Marie

    2017-04-01

    Preliminary study of data blending of surface current for Sunda Strait-Indonesia has been done using the analysis scheme of the Ensemble Transform Kalman Filter (ETKF). The method is utilized to combine radial velocity from HF Radar and u and v component of velocity from Global Copernicus - Marine environment monitoring service (CMEMS) model. The initial ensemble is based on the time variability of the CMEMS model result. Data tested are from 2 CODAR Seasonde radar sites in Sunda Strait and 2 dates such as 09 September 2013 and 08 February 2016 at 12.00 UTC. The radial HF Radar data has a hourly temporal resolution, 20-60 km of spatial range, 3 km of range resolution, 5 degree of angular resolution and spatial resolution and 11.5-14 MHz of frequency range. The u and v component of the model velocity represents a daily mean with 1/12 degree spatial resolution. The radial data from one HF radar site is analyzed and the result compared to the equivalent radial velocity from CMEMS for the second HF radar site. Error checking is calculated by root mean squared error (RMSE). Calculation of ensemble analysis and ensemble mean is using Sangoma software package. The tested R which represents observation error covariance matrix, is a diagonal matrix with diagonal elements equal 0.05, 0.5 or 1.0 m2/s2. The initial ensemble members comes from a model simulation spanning a month (September 2013 or February 2016), one year (2013) or 4 years (2013-2016). The spatial distribution of the radial current are analyzed and the RMSE values obtained from independent HF radar station are optimized. It was verified that the analysis reproduces well the structure included in the analyzed HF radar data. More importantly, the analysis was also improved relative to the second independent HF radar site. RMSE of the improved analysis is better than first HF Radar site Analysis. The best result of the blending exercise was obtained for observation error variance equal to 0.05 m2/s2. This study is

  10. The Representation of Color across the Human Visual Cortex: Distinguishing Chromatic Signals Contributing to Object Form Versus Surface Color.

    Science.gov (United States)

    Seymour, K J; Williams, M A; Rich, A N

    2016-05-01

    Many theories of visual object perception assume the visual system initially extracts borders between objects and their background and then "fills in" color to the resulting object surfaces. We investigated the transformation of chromatic signals across the human ventral visual stream, with particular interest in distinguishing representations of object surface color from representations of chromatic signals reflecting the retinal input. We used fMRI to measure brain activity while participants viewed figure-ground stimuli that differed either in the position or in the color contrast polarity of the foreground object (the figure). Multivariate pattern analysis revealed that classifiers were able to decode information about which color was presented at a particular retinal location from early visual areas, whereas regions further along the ventral stream exhibited biases for representing color as part of an object's surface, irrespective of its position on the retina. Additional analyses showed that although activity in V2 contained strong chromatic contrast information to support the early parsing of objects within a visual scene, activity in this area also signaled information about object surface color. These findings are consistent with the view that mechanisms underlying scene segmentation and the binding of color to object surfaces converge in V2. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation v1.0: impacts of geomorphological parameters and river flow representation

    Science.gov (United States)

    Luo, Xiangyu; Li, Hong-Yi; Leung, L. Ruby; Tesfa, Teklu K.; Getirana, Augusto; Papa, Fabrice; Hess, Laura L.

    2017-03-01

    In the Amazon Basin, floodplain inundation is a key component of surface water dynamics and plays an important role in water, energy and carbon cycles. The Model for Scale Adaptive River Transport (MOSART) was extended with a macroscale inundation scheme for representing floodplain inundation. The extended model, named MOSART-Inundation, was used to simulate surface hydrology of the entire Amazon Basin. Previous hydrologic modeling studies in the Amazon Basin identified and addressed a few challenges in simulating surface hydrology of this basin, including uncertainties of floodplain topography and channel geometry, and the representation of river flow in reaches with mild slopes. This study further addressed four aspects of these challenges. First, the spatial variability of vegetation-caused biases embedded in the HydroSHEDS digital elevation model (DEM) data was explicitly addressed. A vegetation height map of about 1 km resolution and a land cover dataset of about 90 m resolution were used in a DEM correction procedure that resulted in an average elevation reduction of 13.2 m for the entire basin and led to evident changes in the floodplain topography. Second, basin-wide empirical formulae for channel cross-sectional dimensions were refined for various subregions to improve the representation of spatial variability in channel geometry. Third, the channel Manning roughness coefficient was allowed to vary with the channel depth, as the effect of riverbed resistance on river flow generally declines with increasing river size. Lastly, backwater effects were accounted for to better represent river flow in mild-slope reaches. The model was evaluated against in situ streamflow records and remotely sensed Envisat altimetry data and Global Inundation Extent from Multi-Satellites (GIEMS) inundation data. In a sensitivity study, seven simulations were compared to evaluate the impacts of the five modeling aspects addressed in this study. The comparisons showed that

  12. Pose Estimation using a Hierarchical 3D Representation of Contours and Surfaces

    DEFF Research Database (Denmark)

    Buch, Anders Glent; Kraft, Dirk; Kämäräinen, Joni-Kristian

    2013-01-01

    We present a system for detecting the pose of rigid objects using texture and contour information. From a stereo image view of a scene, a sparse hierarchical scene representation is reconstructed using an early cognitive vision system. We define an object model in terms of a simple context...

  13. Efficient generation of sum-of-products representations of high-dimensional potential energy surfaces based on multimode expansions

    Science.gov (United States)

    Ziegler, Benjamin; Rauhut, Guntram

    2016-03-01

    The transformation of multi-dimensional potential energy surfaces (PESs) from a grid-based multimode representation to an analytical one is a standard procedure in quantum chemical programs. Within the framework of linear least squares fitting, a simple and highly efficient algorithm is presented, which relies on a direct product representation of the PES and a repeated use of Kronecker products. It shows the same scalings in computational cost and memory requirements as the potfit approach. In comparison to customary linear least squares fitting algorithms, this corresponds to a speed-up and memory saving by several orders of magnitude. Different fitting bases are tested, namely, polynomials, B-splines, and distributed Gaussians. Benchmark calculations are provided for the PESs of a set of small molecules.

  14. The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons

    Science.gov (United States)

    Baik, H.; Kim, J.

    2017-07-01

    The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.

  15. Utilizing CLASIC observations and multiscale models to study the impact of improved Land surface representation on modeling cloud- convection

    Energy Technology Data Exchange (ETDEWEB)

    Niyogi, Devdutta S. [Purdue

    2013-06-07

    The CLASIC experiment was conducted over the US southern great plains (SGP) in June 2007 with an objective to lead an enhanced understanding of the cumulus convection particularly as it relates to land surface conditions. This project was design to help assist with understanding the overall improvement of land atmosphere convection initiation representation of which is important for global and regional models. The study helped address one of the critical documented deficiency in the models central to the ARM objectives for cumulus convection initiation and particularly under summer time conditions. This project was guided by the scientific question building on the CLASIC theme questions: What is the effect of improved land surface representation on the ability of coupled models to simulate cumulus and convection initiation? The focus was on the US Southern Great Plains region. Since the CLASIC period was anomalously wet the strategy has been to use other periods and domains to develop the comparative assessment for the CLASIC data period, and to understand the mechanisms of the anomalous wet conditions on the tropical systems and convection over land. The data periods include the IHOP 2002 field experiment that was over roughly same domain as the CLASIC in the SGP, and some of the DOE funded Ameriflux datasets.

  16. Computerization of the Electronic Scheme Drawing Equipment on Printed-Circuit-Board (PCB) Surface (Phase One)

    International Nuclear Information System (INIS)

    Abdul Hafid; Pinitoyo, A.; Demon H; Kussigit S; Paidjo; Riswan Dj; Natsir, M.; Dedy H; Edy Karyanta; Edy S

    2003-01-01

    To increase the capability of the PCB immersion machine developed previous a computerized drawing machine on PCB surface is proposed for drawing the schematic electronic, PROTEL software is used Used is Roland DXY 1100 type which had been modified to accommodate the PCB characteristic, because it is used originally for paper. Concerning, the plotter ink, the waterproof type must be used. (author)

  17. Tensor-based cortical surface morphometry via weighted spherical harmonic representation.

    Science.gov (United States)

    Chung, Moo K; Dalton, Kim M; Davidson, Richard J

    2008-08-01

    We present a new tensor-based morphometric framework that quantifies cortical shape variations using a local area element. The local area element is computed from the Riemannian metric tensors, which are obtained from the smooth functional parametrization of a cortical mesh. For the smooth parametrization, we have developed a novel weighted spherical harmonic (SPHARM) representation, which generalizes the traditional SPHARM as a special case. For a specific choice of weights, the weighted-SPHARM is shown to be the least squares approximation to the solution of an isotropic heat diffusion on a unit sphere. The main aims of this paper are to present the weighted-SPHARM and to show how it can be used in the tensor-based morphometry. As an illustration, the methodology has been applied in the problem of detecting abnormal cortical regions in the group of high functioning autistic subjects.

  18. Physical interpretation and geometrical representation of constant curvature surfaces in Euclidean and pseudo-Euclidean spaces

    International Nuclear Information System (INIS)

    Catoni, Francesco; Cannata, Roberto; Zampetti, Paolo

    2005-08-01

    The Riemann and Lorentz constant curvature surfaces are investigated from an Euclidean point of view. The four surfaces (constant positive and constant negative curvatures with definite and non-definite fine elements) are represented as surfaces in a Riemannian or in a particular semi-Riemannian flat space and it is shown that the complex and the hyperbolic numbers allow to obtain the same equations for the corresponding Riemann and Lorentz surfaces, respectively. Moreover it is shown that the geodesics on the Lorentz surfaces states, from a physical point of view, a link between curvature and fields. This result is obtained just as a consequence of the space-time geometrical symmetry, without invoking the famous Einstein general relativity postulate [it

  19. Improving Limit Surface Search Algorithms in RAVEN Using Acceleration Schemes: Level II Milestone

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsi, Andrea [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Sen, Ramazan Sonat [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Smith, Curtis Lee [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    , subject of the analysis. These methodologies are named, in the RAVEN environment, adaptive sampling strategies. These methodologies infer system responses from surrogate models constructed from already existing samples (produced using high fidelity simulations) and suggest the most relevant location (coordinate in the input space) of the next sampling point to be explored in the uncertain/parametric domain. When using those methodologies, it is possible to understand features of the system response with a small number of carefully selected samples. This report focuses on the development and improvement of the limit surface search. The limit surface is an important concept in system reliability analysis. Without going into the details, which will be covered later in the report, the limit surface could be briefly described as an hyper-surface in the system uncertainty/parametric space separating the regions leading to a prescribed system outcome. For example, if the uncertainty/parametric space is the one generated by the reactor power level and the duration of the batteries, the system is a nuclear power plant and the system outcome discriminating variable is the clad failure in a station blackout scenario, then the limit surface separates the combinations of reactor power level and battery duration that lead to clad failure from the ones that do not.

  20. The greening of the McGill Paleoclimate Model. Part I: Improved land surface scheme with vegetation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Mysak, Lawrence A.; Wang, Zhaomin [McGill University, Department of Atmospheric and Oceanic Sciences, Global Environmental and Climate Change Centre (GEC3), Montreal, QC (Canada); Brovkin, Victor [Potsdam Institute for Climate Impact Research (PIK), Potsdam (Germany)

    2005-04-01

    The formulation of a new land surface scheme (LSS) with vegetation dynamics for coupling to the McGill Paleoclimate Model (MPM) is presented. This LSS has the following notable improvements over the old version: (1) parameterization of deciduous and evergreen trees by using the model's climatology and the output of the dynamic global vegetation model, VECODE (Brovkin et al. in Ecological Modelling 101:251-261 (1997), Global Biogeochemical Cycles 16(4):1139, (2002)); (2) parameterization of tree leaf budburst and leaf drop by using the model's climatology; (3) parameterization of the seasonal cycle of the grass leaf area index; (4) parameterization of the seasonal cycle of tree leaf area index by using the time-dependent growth of the leaves; (5) calculation of land surface albedo by using vegetation-related parameters, snow depth and the model's climatology. The results show considerable improvement of the model's simulation of the present-day climate as compared with that simulated in the original physically-based MPM. In particular, the strong seasonality of terrestrial vegetation and the associated land surface albedo variations are in good agreement with several satellite observations of these quantities. The application of this new version of the MPM (the ''green'' MPM) to Holocene millennial-scale climate changes is described in a companion paper, Part II. (orig.)

  1. An Operational Scheme for Deriving Standardised Surface Reflectance from Landsat TM/ETM+ and SPOT HRG Imagery for Eastern Australia

    Directory of Open Access Journals (Sweden)

    Neil Flood

    2013-01-01

    Full Text Available Operational monitoring of vegetation and land surface change over large areas can make good use of satellite sensors that measure radiance reflected from the Earth’s surface. Monitoring programs use multiple images for complete spatial coverage over time. Accurate retrievals of vegetation cover and vegetation change estimates can be hampered by variation, in both space and time, in the measured radiance, caused by atmospheric conditions, topography, sensor location, and sun elevation. In order to obtain estimates of cover that are comparable between images, and to retrieve accurate estimates of change, these sources of variation must be removed. In this paper we present a preprocessing scheme for minimising atmospheric, topographic and bi-directional reflectance effects on Landsat-5 TM, Landsat-7 ETM+ and SPOT-5 HRG imagery. The approach involves atmospheric correction to compute surface-leaving radiance, and bi-directional reflectance modelling to remove the effects of topography and angular variation in reflectance. The bi-directional reflectance model has been parameterised for eastern Australia, but the general approach is more widely applicable. The result is surface reflectance standardised to a fixed viewing and illumination geometry. The method can be applied to the entire record for these instruments, without intervention, which is of increasing importance with the increased availability of long term image archives. Validation shows that the corrections improve the estimation of reflectance at any given angular configuration, thus allowing the removal from the reflectance signal of much variation due to factors independent of the land surface. The method has been used to process over 45,000 Landsat-5 TM and Landsat-7 ETM+ scenes and 2,500 SPOT-5 scenes, over eastern Australia, and is now in use in operational monitoring programs.

  2. A finite area scheme for shallow granular flows on three-dimensional surfaces

    Science.gov (United States)

    Rauter, Matthias

    2017-04-01

    Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.

  3. Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface

    Science.gov (United States)

    Webster, Clare; Rutter, Nick; Jonas, Tobias

    2017-09-01

    A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.

  4. Expanding surfaces: The viewer immersed in multiple modes of representation Following the drawing on the ground

    DEFF Research Database (Denmark)

    Carbone, Claudia

    2015-01-01

    The experience of the exhibition On the Surface – a retrospective of the work of Metis, the Edinburgh-based atelier of Mark Dorrian and Adrian Hawker, presented in the exhibition space of The Aarhus School of Architecture – is choreographed as a walk over superimposed fragments of architectural...

  5. Modeling Surface Water Dynamics in the Amazon Basin Using Mosart-Inundation-v1.0: Impacts of Geomorphological Parameters and River Flow Representation

    Science.gov (United States)

    Luo, Xiangyu; Li, Hong-Yi; Leung, Ruby; Tesfa, Teklu K.; Getirana, Augusto; Papa, Fabrice; Hess, Laura L.

    2017-01-01

    Surface water dynamics play an important role in water, energy and carbon cycles of the Amazon Basin. A macro-scale inundation scheme was integrated with a surface-water transport model and the extended model was applied in this vast basin. We addressed the challenges of improving basin-wide geomorphological parameters and river flow representation for 15 large-scale applications. Vegetation-caused biases embedded in the HydroSHEDS DEM data were alleviated by using a vegetation height map of about 1-km resolution and a land cover dataset of about 90-m resolution. The average elevation deduction from the DEM correction was about 13.2 m for the entire basin. Basin-wide empirical formulae for channel cross-sectional geometry were adjusted based on local information for the major portion of the basin, which could significantly reduce the cross-sectional area for the channels of some subregions. The Manning roughness coefficient of the channel 20 varied with the channel depth to reflect the general rule that the relative importance of riverbed resistance in river flow declined with the increase of river size. The entire basin was discretized into 5395 subbasins (with an average area of 1091.7 km2), which were used as computation units. The model was driven by runoff estimates of 14 years (1994 2007) generated by the ISBA land surface model. The simulated results were evaluated against in situ streamflow records, and remotely sensed Envisat altimetry data and GIEMS inundation data. The hydrographs were reproduced fairly well for the majority of 25 13 major stream gauges. For the 11 subbasins containing or close to 11 of the 13 gauges, the timing of river stage fluctuations was captured; for most of the 11 subbasins, the magnitude of river stage fluctuations was represented well. The inundation estimates were comparable to the GIEMS observations. Sensitivity analyses demonstrated that refining floodplain topography, channel morphology and Manning roughness coefficients

  6. Extended averaging phase-shift schemes for Fizeau interferometry on high-numerical-aperture spherical surfaces

    Science.gov (United States)

    Burke, Jan

    2010-08-01

    Phase-shifting Fizeau interferometry on spherical surfaces is impaired by phase-shift errors increasing with the numerical aperture, unless a custom optical set-up or wavelength shifting is used. This poses a problem especially for larger numerical apertures, and requires good error tolerance of the phase-shift method used; but it also constitutes a useful testing facility for phase-shift formulae, because a vast range of phase-shift intervals can be tested in a single measurement. In this paper I show how the "characteristic polynomials" method can be used to generate a phase-shifting method for the actual numerical aperture, and analyse residual cyclical phase errors by comparing a phase map from an interferogram with a few fringes to a phase mpa from a nulled fringe. Unrelated to the phase-shift miscalibration, thirdharmonic error fringes are found. These can be dealt with by changing the nominal phase shift from 90°/step to 60°/step and re-tailoring the evaluation formula for third-harmonic rejection. The residual error has the same frequency as the phase-shift signal itself, and can be removed by averaging measurements. Some interesting features of the characteristic polynomials for the averaged formulae emerge, which also shed some light on the mechanism that generates cyclical phase errors.

  7. Fractional Step Like Schemes for Free Surface Problems with Thermal Coupling Using the Lagrangian PFEM

    Science.gov (United States)

    Aubry, R.; Oñate, E.; Idelsohn, S. R.

    2006-09-01

    The method presented in Aubry et al. (Comput Struc 83:1459-1475, 2005) for the solution of an incompressible viscous fluid flow with heat transfer using a fully Lagrangian description of motion is extended to three dimensions (3D) with particular emphasis on mass conservation. A modified fractional step (FS) based on the pressure Schur complement (Turek 1999), and related to the class of algebraic splittings Quarteroni et al. (Comput Methods Appl Mech Eng 188:505-526, 2000), is used and a new advantage of the splittings of the equations compared with the classical FS is highlighted for free surface problems. The temperature is semi-coupled with the displacement, which is the main variable in a Lagrangian description. Comparisons for various mesh Reynolds numbers are performed with the classical FS, an algebraic splitting and a monolithic solution, in order to illustrate the behaviour of the Uzawa operator and the mass conservation. As the classical fractional step is equivalent to one iteration of the Uzawa algorithm performed with a standard Laplacian as a preconditioner, it will behave well only in a Reynold mesh number domain where the preconditioner is efficient. Numerical results are provided to assess the superiority of the modified algebraic splitting to the classical FS.

  8. Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif

    2014-08-01

    Full Text Available Surface plasmon resonance (SPR is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.

  9. Sea surface temperature predictions using a multi-ocean analysis ensemble scheme

    Science.gov (United States)

    Zhang, Ying; Zhu, Jieshun; Li, Zhongxian; Chen, Haishan; Zeng, Gang

    2017-08-01

    This study examined the global sea surface temperature (SST) predictions by a so-called multiple-ocean analysis ensemble (MAE) initialization method which was applied in the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2). Different from most operational climate prediction practices which are initialized by a specific ocean analysis system, the MAE method is based on multiple ocean analyses. In the paper, the MAE method was first justified by analyzing the ocean temperature variability in four ocean analyses which all are/were applied for operational climate predictions either at the European Centre for Medium-range Weather Forecasts or at NCEP. It was found that these systems exhibit substantial uncertainties in estimating the ocean states, especially at the deep layers. Further, a set of MAE hindcasts was conducted based on the four ocean analyses with CFSv2, starting from each April during 1982-2007. The MAE hindcasts were verified against a subset of hindcasts from the NCEP CFS Reanalysis and Reforecast (CFSRR) Project. Comparisons suggested that MAE shows better SST predictions than CFSRR over most regions where ocean dynamics plays a vital role in SST evolutions, such as the El Niño and Atlantic Niño regions. Furthermore, significant improvements were also found in summer precipitation predictions over the equatorial eastern Pacific and Atlantic oceans, for which the local SST prediction improvements should be responsible. The prediction improvements by MAE imply a problem for most current climate predictions which are based on a specific ocean analysis system. That is, their predictions would drift towards states biased by errors inherent in their ocean initialization system, and thus have large prediction errors. In contrast, MAE arguably has an advantage by sampling such structural uncertainties, and could efficiently cancel these errors out in their predictions.

  10. ARIMA representation for daily solar irradiance and surface air temperature time series

    Science.gov (United States)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  11. Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking.

    Science.gov (United States)

    Kihara, Daisuke; Sael, Lee; Chikhi, Rayan; Esquivel-Rodriguez, Juan

    2011-09-01

    The tertiary structures of proteins have been solved in an increasing pace in recent years. To capitalize the enormous efforts paid for accumulating the structure data, efficient and effective computational methods need to be developed for comparing, searching, and investigating interactions of protein structures. We introduce the 3D Zernike descriptor (3DZD), an emerging technique to describe molecular surfaces. The 3DZD is a series expansion of mathematical three-dimensional function, and thus a tertiary structure is represented compactly by a vector of coefficients of terms in the series. A strong advantage of the 3DZD is that it is invariant to rotation of target object to be represented. These two characteristics of the 3DZD allow rapid comparison of surface shapes, which is sufficient for real-time structure database screening. In this article, we review various applications of the 3DZD, which have been recently proposed.

  12. Image Reconstruction and Evaluation: Applications on Micro-Surfaces and Lenna Image Representation

    Directory of Open Access Journals (Sweden)

    Mohammad Mayyas

    2016-09-01

    Full Text Available This article develops algorithms for the characterization and the visualization of micro-scale features using a small number of sample points, with the goal of mitigating the measurement shortcomings, which are often destructive or time consuming. The popular measurement techniques that are used in imaging of micro-surfaces include the 3D stylus or interferometric profilometry and Scanning Electron Microscopy (SEM, where both could represent the micro-surface characteristics in terms of 3D dimensional topology and greyscale image, respectively. Such images could be highly dense; therefore, traditional image processing techniques might be computationally expensive. We implement the algorithms in several case studies to rapidly examine the microscopic features of micro-surface of Microelectromechanical System (MEMS, and then we validate the results using a popular greyscale image; i.e., “Lenna” image. The contributions of this research include: First, development of local and global algorithm based on modified Thin Plate Spline (TPS model to reconstruct high resolution images of the micro-surface’s topography, and its derivatives using low resolution images. Second, development of a bending energy algorithm from our modified TPS model for filtering out image defects. Finally, development of a computationally efficient technique, referred to as Windowing, which combines TPS and Linear Sequential Estimation (LSE methods, to enhance the visualization of images. The Windowing technique allows rapid image reconstruction based on the reduction of inverse problem.

  13. Comparison of surface freshwater fluxes from different climate forecasts produced through different ensemble generation schemes.

    Science.gov (United States)

    Romanova, Vanya; Hense, Andreas; Wahl, Sabrina; Brune, Sebastian; Baehr, Johanna

    2016-04-01

    The decadal variability and its predictability of the surface net freshwater fluxes is compared in a set of retrospective predictions, all using the same model setup, and only differing in the implemented ocean initialisation method and ensemble generation method. The basic aim is to deduce the differences between the initialization/ensemble generation methods in view of the uncertainty of the verifying observational data sets. The analysis will give an approximation of the uncertainties of the net freshwater fluxes, which up to now appear to be one of the most uncertain products in observational data and model outputs. All ensemble generation methods are implemented into the MPI-ESM earth system model in the framework of the ongoing MiKlip project (www.fona-miklip.de). Hindcast experiments are initialised annually between 2000-2004, and from each start year 10 ensemble members are initialized for 5 years each. Four different ensemble generation methods are compared: (i) a method based on the Anomaly Transform method (Romanova and Hense, 2015) in which the initial oceanic perturbations represent orthogonal and balanced anomaly structures in space and time and between the variables taken from a control run, (ii) one-day-lagged ocean states from the MPI-ESM-LR baseline system (iii) one-day-lagged of ocean and atmospheric states with preceding full-field nudging to re-analysis in both the atmospheric and the oceanic component of the system - the baseline one MPI-ESM-LR system, (iv) an Ensemble Kalman Filter (EnKF) implemented into oceanic part of MPI-ESM (Brune et al. 2015), assimilating monthly subsurface oceanic temperature and salinity (EN3) using the Parallel Data Assimilation Framework (PDAF). The hindcasts are evaluated probabilistically using fresh water flux data sets from four different reanalysis data sets: MERRA, NCEP-R1, GFDL ocean reanalysis and GECCO2. The assessments show no clear differences in the evaluations scores on regional scales. However, on the

  14. Investigation of the Representation of OLEs and Terrain Effects Within the Costal Zone in the EDMF Parameterization Scheme: An Airborne Doppler Wind Lidar Perspective

    Science.gov (United States)

    2014-10-20

    This platform relative navigation has been done and is reported in attachment 3. The second step is to compute heat, moisture and momentum fluxes for...Prospecting DWL mode 2° forward stare ~6km surface intercept from 300 m flight level Line-of-Sight wind speed (VLOS) ’ Stacked VLOS ~2m vertical, 50 m...instabilities (non-convective). WY^ Particle probes j* TODWL scanner ^ ^^■^^1 ; ^ ’^^H ^^^immmm CTV Surface Temperature Sensor / iW

  15. Interaction of Model Inhibitor Compounds with Minimalist Cluster Representations of Hydroxyl Terminated Metal Oxide Surfaces

    Directory of Open Access Journals (Sweden)

    Christopher D. Taylor

    2018-01-01

    Full Text Available The computational modeling of corrosion inhibitors at the level of molecular interactions has been pursued for decades, and recent developments are allowing increasingly realistic models to be developed for inhibitor–inhibitor, inhibitor–solvent and inhibitor–metal interactions. At the same time, there remains a need for simplistic models to be used for the purpose of screening molecules for proposed inhibitor performance. Herein, we apply a reductionist model for metal surfaces consisting of a metal cation with hydroxide ligands and use quantum chemical modeling to approximate the free energy of adsorption for several imidazoline class candidate corrosion inhibitors. The approximation is made using the binding energy and the partition coefficient. As in some previous work, we consider different methods for incorporating solvent and reference systems for the partition coefficient. We compare the findings from this short study with some previous theoretical work on similar systems. The binding energies for the inhibitors to the metal hydroxide clusters are found to be intermediate to the binding energies calculated in other work for bare metal vs. metal oxide surfaces. The method is applied to copper, iron, aluminum and nickel metal systems.

  16. The Word Composite Effect Depends on Abstract Lexical Representations But Not Surface Features Like Case and Font

    Directory of Open Access Journals (Sweden)

    Paulo Ventura

    2017-06-01

    Full Text Available Prior studies have shown that words show a composite effect: When readers perform a same-different matching task on a target-part of a word, performance is affected by the irrelevant part, whose influence is severely reduced when the two parts are misaligned. However, the locus of this word composite effect is largely unknown. To enlighten it, in two experiments, Portuguese readers performed the composite task on letter strings: in Experiment 1, in written words varying in surface features (between-participants: courier, notera, alternating-cAsE, and in Experiment 2 in pseudowords. The word composite effect, signaled by a significant interaction between alignment of the two word parts and congruence between parts was found in the three conditions of Experiment 1, being unaffected by NoVeLtY of the configuration or by handwritten form. This effect seems to have a lexical locus, given that in Experiment 2 only the main effect of congruence between parts was significant and was not modulated by alignment. Indeed, the cross-experiment analysis showed that words presented stronger congruence effects than pseudowords only in the aligned condition, because when misaligned the whole lexical item configuration was disrupted. Therefore, the word composite effect strongly depends on abstract lexical representations, as it is unaffected by surface features and is specific to lexical items.

  17. The Word Composite Effect Depends on Abstract Lexical Representations But Not Surface Features Like Case and Font.

    Science.gov (United States)

    Ventura, Paulo; Fernandes, Tânia; Leite, Isabel; Almeida, Vítor B; Casqueiro, Inês; Wong, Alan C-N

    2017-01-01

    Prior studies have shown that words show a composite effect: When readers perform a same-different matching task on a target-part of a word, performance is affected by the irrelevant part, whose influence is severely reduced when the two parts are misaligned. However, the locus of this word composite effect is largely unknown. To enlighten it, in two experiments, Portuguese readers performed the composite task on letter strings: in Experiment 1, in written words varying in surface features (between-participants: courier, notera, alternating-cAsE), and in Experiment 2 in pseudowords. The word composite effect, signaled by a significant interaction between alignment of the two word parts and congruence between parts was found in the three conditions of Experiment 1, being unaffected by NoVeLtY of the configuration or by handwritten form. This effect seems to have a lexical locus, given that in Experiment 2 only the main effect of congruence between parts was significant and was not modulated by alignment. Indeed, the cross-experiment analysis showed that words presented stronger congruence effects than pseudowords only in the aligned condition, because when misaligned the whole lexical item configuration was disrupted. Therefore, the word composite effect strongly depends on abstract lexical representations, as it is unaffected by surface features and is specific to lexical items.

  18. Improved representations of coupled soil-canopy processes in the CABLE land surface model (Subversion revision 3432)

    Science.gov (United States)

    Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.; Harman, Ian N.

    2016-09-01

    CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil-canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil-air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.

  19. A Theta lift representation for the Kawazumi-Zhang and Faltings invariants of genus-two Riemann surfaces

    CERN Document Server

    Pioline, Boris

    2016-01-01

    The Kawazumi-Zhang invariant $\\varphi$ for compact genus-two Riemann surfaces was recently shown to be a eigenmode of the Laplacian on the Siegel upper half-plane, away from the separating degeneration divisor. Using this fact and the known behavior of $\\varphi$ in the non-separating degeneration limit, it is shown that $\\varphi$ is equal to the Theta lift of the unique (up to normalization) weak Jacobi form of weight $-2$. This identification provides the complete Fourier-Jacobi expansion of $\\varphi$ near the non-separating node, gives full control on the asymptotics of $\\varphi$ in the various degeneration limits, and provides a efficient numerical procedure to evaluate $\\varphi$ to arbitrary accuracy. It also reveals a mock-type holomorphic Siegel modular form of weight $-2$ underlying $\\varphi$. From the general relation between the Faltings invariant, the Kawazumi-Zhang invariant and the discriminant for hyperelliptic Riemann surfaces, a Theta lift representation for the Faltings invariant in genus two ...

  20. Representation of Glossy Material Surface in Ventral Superior Temporal Sulcal Area of Common Marmosets.

    Science.gov (United States)

    Miyakawa, Naohisa; Banno, Taku; Abe, Hiroshi; Tani, Toshiki; Suzuki, Wataru; Ichinohe, Noritaka

    2017-01-01

    The common marmoset ( Callithrix jacchus ) is one of the smallest species of primates, with high visual recognition abilities that allow them to judge the identity and quality of food and objects in their environment. To address the cortical processing of visual information related to material surface features in marmosets, we presented a set of stimuli that have identical three-dimensional shapes (bone, torus or amorphous) but different material appearances (ceramic, glass, fur, leather, metal, stone, wood, or matte) to anesthetized marmoset, and recorded multiunit activities from an area ventral to the superior temporal sulcus (STS) using multi-shanked, and depth resolved multi-electrode array. Out of 143 visually responsive multiunits recorded from four animals, 29% had significant main effect only of the material, 3% only of the shape and 43% of both the material and the shape. Furthermore, we found neuronal cluster(s), in which most cells: (1) showed a significant main effect in material appearance; (2) the best stimulus was a glossy material (glass or metal); and (3) had reduced response to the pixel-shuffled version of the glossy material images. The location of the gloss-selective area was in agreement with previous macaque studies, showing activation in the ventral bank of STS. Our results suggest that perception of gloss is an important ability preserved across wide range of primate species.

  1. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    Science.gov (United States)

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  2. Uncertainty Quantification and Regional Sensitivity Analysis of Snow-related Parameters in the Canadian LAnd Surface Scheme (CLASS)

    Science.gov (United States)

    Badawy, B.; Fletcher, C. G.

    2017-12-01

    The parameterization of snow processes in land surface models is an important source of uncertainty in climate simulations. Quantifying the importance of snow-related parameters, and their uncertainties, may therefore lead to better understanding and quantification of uncertainty within integrated earth system models. However, quantifying the uncertainty arising from parameterized snow processes is challenging due to the high-dimensional parameter space, poor observational constraints, and parameter interaction. In this study, we investigate the sensitivity of the land simulation to uncertainty in snow microphysical parameters in the Canadian LAnd Surface Scheme (CLASS) using an uncertainty quantification (UQ) approach. A set of training cases (n=400) from CLASS is used to sample each parameter across its full range of empirical uncertainty, as determined from available observations and expert elicitation. A statistical learning model using support vector regression (SVR) is then constructed from the training data (CLASS output variables) to efficiently emulate the dynamical CLASS simulations over a much larger (n=220) set of cases. This approach is used to constrain the plausible range for each parameter using a skill score, and to identify the parameters with largest influence on the land simulation in CLASS at global and regional scales, using a random forest (RF) permutation importance algorithm. Preliminary sensitivity tests indicate that snow albedo refreshment threshold and the limiting snow depth, below which bare patches begin to appear, have the highest impact on snow output variables. The results also show a considerable reduction of the plausible ranges of the parameters values and hence reducing their uncertainty ranges, which can lead to a significant reduction of the model uncertainty. The implementation and results of this study will be presented and discussed in details.

  3. Training of an incidence of radiation on surfaces by vectorial representation; Didactica del analisis de la incidencia de radiacion solar mediante una representacion vectorial

    Energy Technology Data Exchange (ETDEWEB)

    Luis, F. J. de; Perez-Garcia, M.; Barbero, F. J.; Batlles, F. J.

    2004-07-01

    This work gathers and it exposes a set of educational contents extracted from the general bibliography and from the own experience in Engineering studies and courses on the application of a vector representation to the description of the apparent movement of the sun, the shading evaluation and the incidence of radiation on surfaces. (Author)

  4. A sampling scheme intended for tandem measurements of sodium transport and microvillous surface area in the coprodaeal epithelium of hens on high- and low-salt diets.

    Science.gov (United States)

    Mayhew, T M; Dantzer, V; Elbrønd, V S; Skadhauge, E

    1990-12-01

    A tissue sampling protocol for combined morphometric and physiological studies on the mucosa of the avian coprodaeum is presented. The morphometric goal is to estimate the surface area due to microvilli at the epithelial cell apex and the proposed scheme is illustrated using material from three White Plymouth Rock hens. The scheme is designed to satisfy sampling requirements for the unbiased estimation of surface areas by vertical sectioning coupled with cycloid test lines and it incorporates a number of useful internal checks. It relies on multi-level sampling with four levels of stereological estimation. At Level I, macroscopic estimates of coprodaeal volume are obtained. Light microscopy is employed at Level II to calculate epithelial volume density. Levels III and IV require low and high power electron microscopy to estimate the surface density of the epithelial apical border and the amplification factor due to microvilli. Worked examples of the calculation steps are provided.

  5. Evaluation of the impact of observations on blended sea surface winds in a two-dimensional variational scheme using degrees of freedom

    Science.gov (United States)

    Wang, Ting; Xiang, Jie; Fei, Jianfang; Wang, Yi; Liu, Chunxia; Li, Yuanxiang

    2017-12-01

    This paper presents an evaluation of the observational impacts on blended sea surface winds from a two-dimensional variational data assimilation (2D-Var) scheme. We begin by briefly introducing the analysis sensitivity with respect to observations in variational data assimilation systems and its relationship with the degrees of freedom for signal (DFS), and then the DFS concept is applied to the 2D-Var sea surface wind blending scheme. Two methods, a priori and a posteriori, are used to estimate the DFS of the zonal ( u) and meridional ( v) components of winds in the 2D-Var blending scheme. The a posteriori method can obtain almost the same results as the a priori method. Because only by-products of the blending scheme are used for the a posteriori method, the computation time is reduced significantly. The magnitude of the DFS is critically related to the observational and background error statistics. Changing the observational and background error variances can affect the DFS value. Because the observation error variances are assumed to be uniform, the observational influence at each observational location is related to the background error variance, and the observations located at the place where there are larger background error variances have larger influences. The average observational influence of u and v with respect to the analysis is about 40%, implying that the background influence with respect to the analysis is about 60%.

  6. Uncertainties associated to the representation of surface processes in impact studies. A study in the Mediterranean area.

    Science.gov (United States)

    Quéguiner, Solen; Martin, Eric; Lafont, Sébastien; Calvet, Jean-Christophe; Faroux, Stéphanie

    2010-05-01

    In the framework of the assessment of the impact of climate change, the uncertainty associated to the direct effect of CO2 on plant physiology was seldom addressed, while some other sources of uncertainties have been more studied, such as those related to climate modeling or the downscaling method. A few studies are available at global or continental scale. The purpose of this study is to quantify this effect in a regional study focussed on the Mediterranean area of France. The Safran-Isba-Modcou chain was used. This chain is composed of a meteorological analysis system (SAFRAN), a land surface model describing the exchange with the atmosphere (ISBA) and a hydrogeological model (MODCOU), and has already been used in many studies in France. The present study focuses on the uncertainties related to the representation of carbon cycle and the photosynthesis in the surface model. Two versions of ISBA were used and compared. The standard version simulates the mass and energy exchanges between the continental surface (including vegetation and snow) and the atmosphere. In this version, the LAI (Leaf Area Index) is provided by the ECOCLIMAP2 database and the vegetation is divided into 12 types. The A-gs version accounts for the process of photosynthesis taking into account the vegetation assimilation of atmospheric CO2 concentration, and simulates the evolution of the biomass and the LAI. The domain studied is the French mediterranean basin, in which a sub domain was defined (latitude < 45 °N et height < 1000m) in order to identify the low land area pertaining to a Mediterranean climate. The study focuses on the impact of the climate change on the surface variables (LAI, water balance) and the discharges. The periods chosen to compare the changes are the end of the 20th century (1995-2005) and the end of the 21st century (2090-2099). A first comparison is made for the present climate between the versions of model and the observations of discharges, using two type of

  7. Optical 3D scans for orthodontic diagnostics performed on full-arch impressions. Completeness of surface structure representation.

    Science.gov (United States)

    Vogel, Annike B; Kilic, Fatih; Schmidt, Falko; Rübel, Sebastian; Lapatki, Bernd G

    2015-11-01

    The purpose of this work was to evaluate the completeness of surface structure representation offered by full-arch impression scans in different situations of tooth (mal)alignment and whether this completeness could be improved by performing rescans on the same impressions reduced sequentially to different levels of gingival height and by adding extra single scans to the number of single scans recommended by the manufacturer. Three pairs of full-arch resin models were used as reference, characterized either by normal occlusion, by anterior diastematic protrusion (and edentulous spaces in the lower posterior segments), or by anterior crowding. An alginate impression of each arch was taken and digitized with a structured-light scanner, followed by three rescans with the impression cut back to 10, 5, and 1 mm of gingival height. Both the initial scan and the rescans were performed both with 19 basic single scans and with 10 extra single scans. Each impression scan was analyzed for quantitative completeness relative to its homologous direct scan of the original resin model. In addition, the topography of voids in the resultant digital model was assessed by visual inspection. Compared to the homologous reference scans of the original resin models, completeness of the original impression scans--in the absence of both gingival cutback and extra single scans--was 97.23 ± 0.066% in the maxilla or 95.72 ± 0.070% in the mandible with normal occlusion, 91.11 ± 0.132% or 96.07 ± 0.109% in the arches with anterior diastematic protrusion, and 98.24 ± 0.085% or 93.39 ± 0.146% in those with anterior crowding. Gingival cutback and extra single scans were found to improve these values up to 100.35 ± 0.066% or 99.53 ± 0.070% in the arches with normal occlusion, 91.77 ± 0.132% or 97.95 ± 0.109% in those with anterior diastematic protrusion, and 98.59 ± 0.085% or 98.96 ± 0.146% in those with anterior crowding. In strictly quantitative terms, the impression scans did capture

  8. A Finite Difference Scheme for Double-Diffusive Unsteady Free Convection from a Curved Surface to a Saturated Porous Medium with a Non-Newtonian Fluid

    KAUST Repository

    El-Amin, Mohamed

    2011-05-14

    In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.

  9. New analytic unitarization schemes

    International Nuclear Information System (INIS)

    Cudell, J.-R.; Predazzi, E.; Selyugin, O. V.

    2009-01-01

    We consider two well-known classes of unitarization of Born amplitudes of hadron elastic scattering. The standard class, which saturates at the black-disk limit includes the standard eikonal representation, while the other class, which goes beyond the black-disk limit to reach the full unitarity circle, includes the U matrix. It is shown that the basic properties of these schemes are independent of the functional form used for the unitarization, and that U matrix and eikonal schemes can be extended to have similar properties. A common form of unitarization is proposed interpolating between both classes. The correspondence with different nonlinear equations are also briefly examined.

  10. Impact of different parameterization schemes on simulation of mesoscale convective system over south-east India

    Science.gov (United States)

    Madhulatha, A.; Rajeevan, M.

    2018-02-01

    Main objective of the present paper is to examine the role of various parameterization schemes in simulating the evolution of mesoscale convective system (MCS) occurred over south-east India. Using the Weather Research and Forecasting (WRF) model, numerical experiments are conducted by considering various planetary boundary layer, microphysics, and cumulus parameterization schemes. Performances of different schemes are evaluated by examining boundary layer, reflectivity, and precipitation features of MCS using ground-based and satellite observations. Among various physical parameterization schemes, Mellor-Yamada-Janjic (MYJ) boundary layer scheme is able to produce deep boundary layer height by simulating warm temperatures necessary for storm initiation; Thompson (THM) microphysics scheme is capable to simulate the reflectivity by reasonable distribution of different hydrometeors during various stages of system; Betts-Miller-Janjic (BMJ) cumulus scheme is able to capture the precipitation by proper representation of convective instability associated with MCS. Present analysis suggests that MYJ, a local turbulent kinetic energy boundary layer scheme, which accounts strong vertical mixing; THM, a six-class hybrid moment microphysics scheme, which considers number concentration along with mixing ratio of rain hydrometeors; and BMJ, a closure cumulus scheme, which adjusts thermodynamic profiles based on climatological profiles might have contributed for better performance of respective model simulations. Numerical simulation carried out using the above combination of schemes is able to capture storm initiation, propagation, surface variations, thermodynamic structure, and precipitation features reasonably well. This study clearly demonstrates that the simulation of MCS characteristics is highly sensitive to the choice of parameterization schemes.

  11. SURVEY, REPRESENTATION AND ANALYSIS OF A WAR I COMPLEX SYSTEM OF SURFACE AND UNDERGROUND FORTIFICATIONS IN THE GRESTA VALLEY, ITALY

    Directory of Open Access Journals (Sweden)

    I. Salvador

    2012-09-01

    Full Text Available This work is part of a research on the use of terrestrial laser scanner, integrated with total station and GPS, for the documentation and comprehension of complex architectures in up-land sites. The research is performed in the framework of the project "Ambiente e Paesaggi dei siti di Altura Trentini" – APSAT (Environment and landscape of hill-top sites in Trentino, a multidisciplinary project focused on the evolution of hill-top anthropic system in the Trentino region, Italy. The study area is located in the Gresta Valley and this work concerns on the Nagià Grom site, fortified by the Austria-Hungarian Army during the World War I. The site has been interested by a significant restore operation of a large series of entrenches paths and fortifications in the last decade. The survey herein described has involved an area once interested by military barracks with Officers' Mess, water provision and by one of the biggest field kitchens discovered in the Trentino region. A second survey involved the tunnel connecting the ammunition depot to the artillery stations. The nature of such complex architectures, characterized by an irregular and composite 3D span leads, in general, to necessary simple surveys and representations and somehow to simplified studies too. The 3D point cloud, once filtered by the massive presence of dense vegetation, eventually constitutes a rich data set for further analyses on the spatial, geological, architectural and historical properties of the site. The analysis has been carried out on two different scales. At the architectural-scale, the comparison to historic photos has allowed to understand how the original structure of the barracks was made and to find building characters that now are lost. The on-site observation of the underground stratigraphic splices and their analysis in the 3D point cloud, e.g., spatial extension and slope, have permitted the understanding of the special excavation process guided by the

  12. Numerical Representation of Wintertime Near-Surface Inversions in the Arctic with a 2.5-km Version of the Global Environmental Multiscale (GEM) Model

    Science.gov (United States)

    Dehghan, A.; Mariani, Z.; Gascon, G.; Bélair, S.; Milbrandt, J.; Joe, P. I.; Crawford, R.; Melo, S.

    2017-12-01

    Environment and Climate Change Canada (ECCC) is implementing a 2.5-km resolution version of the Global Environmental Multiscale (GEM) model over the Canadian Arctic. Radiosonde observations were used to evaluate the numerical representation of surface-based temperature inversion which is a major feature in the Arctic region. Arctic surface-based inversions are often created by imbalance between radiative cooling processes at surface and warm air advection above. This can have a significant effect on vertical mixing of pollutants and moisture, and ultimately, on cloud formation. It is therefore important to correctly predict the existence of surface inversions along with their characteristics (i.e., intensity and depth). Previous climatological studies showed that the frequency and intensity of surface-based inversions are larger during colder months in the Arctic. Therefore, surface-based inversions were estimated using radiosonde measurements during winter (December 2015 to February 2016) at Iqaluit (Nunavut, Canada). Results show that the inversion intensity can exceed 10 K with depths as large as 1 km. Preliminary evaluation of GEM outputs reveals that the model tends to underestimate the intensity of near-surface inversions, and in some cases, the model failed to predict an inversion. This study presents the factors contributing to this bias including surface temperature and snow cover.

  13. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Science.gov (United States)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2017-01-01

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.

  14. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5 on carbon fluxes, pools, and turnover in temperate forests

    Directory of Open Access Journals (Sweden)

    F. Montané

    2017-09-01

    Full Text Available How carbon (C is allocated to different plant tissues (leaves, stem, and roots determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI measurements to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM, the Community Land Model (CLM4.5. We ran CLM4.5 for nine temperate (including evergreen and deciduous forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5" with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP; ii. an alternative dynamic C allocation scheme (named "D-Litton", where, similar to (i, C allocation is a dynamic function of annual NPP, but unlike (i includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen" and the other of observations in deciduous forests (named "F-Deciduous". D-CLM4.5 generally overestimated gross primary production (GPP and ecosystem respiration, and underestimated net ecosystem exchange (NEE. In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m−2 for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011 was highly underestimated (between 1222 and 7557 g C m−2 for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the

  15. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    Science.gov (United States)

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; MacBean, Natasha; Alexander, M. Ross; Dye, Alex; Bishop, Daniel A.; Trouet, Valerie; Babst, Flurin; Hessl, Amy E.; Pederson, Neil; Blanken, Peter D.; Bohrer, Gil; Gough, Christopher M.; Litvak, Marcy E.; Novick, Kimberly A.; Phillips, Richard P.; Wood, Jeffrey D.; Moore, David J. P.

    2017-09-01

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.-iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m-2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m-2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C-LAI relationship in the model did not match the observed leaf C

  16. Improving the representation of river-groundwater interactions in land surface modeling at the regional scale: Observational evidence and parameterization applied in the Community Land Model

    KAUST Repository

    Zampieri, Matteo

    2012-02-01

    Groundwater is an important component of the hydrological cycle, included in many land surface models to provide a lower boundary condition for soil moisture, which in turn plays a key role in the land-vegetation-atmosphere interactions and the ecosystem dynamics. In regional-scale climate applications land surface models (LSMs) are commonly coupled to atmospheric models to close the surface energy, mass and carbon balance. LSMs in these applications are used to resolve the momentum, heat, water and carbon vertical fluxes, accounting for the effect of vegetation, soil type and other surface parameters, while lack of adequate resolution prevents using them to resolve horizontal sub-grid processes. Specifically, LSMs resolve the large-scale runoff production associated with infiltration excess and sub-grid groundwater convergence, but they neglect the effect from loosing streams to groundwater. Through the analysis of observed data of soil moisture obtained from the Oklahoma Mesoscale Network stations and land surface temperature derived from MODIS we provide evidence that the regional scale soil moisture and surface temperature patterns are affected by the rivers. This is demonstrated on the basis of simulations from a land surface model (i.e., Community Land Model - CLM, version 3.5). We show that the model cannot reproduce the features of the observed soil moisture and temperature spatial patterns that are related to the underlying mechanism of reinfiltration of river water to groundwater. Therefore, we implement a simple parameterization of this process in CLM showing the ability to reproduce the soil moisture and surface temperature spatial variabilities that relate to the river distribution at regional scale. The CLM with this new parameterization is used to evaluate impacts of the improved representation of river-groundwater interactions on the simulated water cycle parameters and the surface energy budget at the regional scale. © 2011 Elsevier B.V.

  17. Poetic representation

    DEFF Research Database (Denmark)

    Wulf-Andersen, Trine Østergaard

    2012-01-01

    , and dialogue, of situated participants. The article includes a lengthy example of a poetic representation of one participant’s story, and the author comments on the potentials of ‘doing’ poetic representations as an example of writing in ways that challenges what sometimes goes unasked in participative social...

  18. A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin

    Directory of Open Access Journals (Sweden)

    É. Gaborit

    2017-09-01

    Full Text Available This work explores the potential of the distributed GEM-Hydro runoff modeling platform, developed at Environment and Climate Change Canada (ECCC over the last decade. More precisely, the aim is to develop a robust implementation methodology to perform reliable streamflow simulations with a distributed model over large and partly ungauged basins, in an efficient manner. The latest version of GEM-Hydro combines the SVS (Soil, Vegetation and Snow land-surface scheme and the WATROUTE routing scheme. SVS has never been evaluated from a hydrological point of view, which is done here for all major rivers flowing into Lake Ontario. Two established hydrological models are confronted to GEM-Hydro, namely MESH and WATFLOOD, which share the same routing scheme (WATROUTE but rely on different land-surface schemes. All models are calibrated using the same meteorological forcings, objective function, calibration algorithm, and basin delineation. GEM-Hydro is shown to be competitive with MESH and WATFLOOD: the NSE  √  (Nash–Sutcliffe criterion computed on the square root of the flows is for example equal to 0.83 for MESH and GEM-Hydro in validation on the Moira River basin, and to 0.68 for WATFLOOD. A computationally efficient strategy is proposed to calibrate SVS: a simple unit hydrograph is used for routing instead of WATROUTE. Global and local calibration strategies are compared in order to estimate runoff for ungauged portions of the Lake Ontario basin. Overall, streamflow predictions obtained using a global calibration strategy, in which a single parameter set is identified for the whole basin of Lake Ontario, show accuracy comparable to the predictions based on local calibration: the average NSE  √  in validation and over seven subbasins is 0.73 and 0.61, respectively for local and global calibrations. Hence, global calibration provides spatially consistent parameter values, robust performance at gauged locations, and reduces the

  19. A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin

    Science.gov (United States)

    Gaborit, Étienne; Fortin, Vincent; Xu, Xiaoyong; Seglenieks, Frank; Tolson, Bryan; Fry, Lauren M.; Hunter, Tim; Anctil, François; Gronewold, Andrew D.

    2017-09-01

    This work explores the potential of the distributed GEM-Hydro runoff modeling platform, developed at Environment and Climate Change Canada (ECCC) over the last decade. More precisely, the aim is to develop a robust implementation methodology to perform reliable streamflow simulations with a distributed model over large and partly ungauged basins, in an efficient manner. The latest version of GEM-Hydro combines the SVS (Soil, Vegetation and Snow) land-surface scheme and the WATROUTE routing scheme. SVS has never been evaluated from a hydrological point of view, which is done here for all major rivers flowing into Lake Ontario. Two established hydrological models are confronted to GEM-Hydro, namely MESH and WATFLOOD, which share the same routing scheme (WATROUTE) but rely on different land-surface schemes. All models are calibrated using the same meteorological forcings, objective function, calibration algorithm, and basin delineation. GEM-Hydro is shown to be competitive with MESH and WATFLOOD: the NSE √ (Nash-Sutcliffe criterion computed on the square root of the flows) is for example equal to 0.83 for MESH and GEM-Hydro in validation on the Moira River basin, and to 0.68 for WATFLOOD. A computationally efficient strategy is proposed to calibrate SVS: a simple unit hydrograph is used for routing instead of WATROUTE. Global and local calibration strategies are compared in order to estimate runoff for ungauged portions of the Lake Ontario basin. Overall, streamflow predictions obtained using a global calibration strategy, in which a single parameter set is identified for the whole basin of Lake Ontario, show accuracy comparable to the predictions based on local calibration: the average NSE √ in validation and over seven subbasins is 0.73 and 0.61, respectively for local and global calibrations. Hence, global calibration provides spatially consistent parameter values, robust performance at gauged locations, and reduces the complexity and computation burden of the

  20. Colour schemes

    DEFF Research Database (Denmark)

    van Leeuwen, Theo

    2013-01-01

    This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation.......This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation....

  1. Sensitivity experiments of a regional climate model to the different convective schemes over Central Africa

    Science.gov (United States)

    Armand J, K. M.

    2017-12-01

    In this study, version 4 of the regional climate model (RegCM4) is used to perform 6 years simulation including one year for spin-up (from January 2001 to December 2006) over Central Africa using four convective schemes: The Emmanuel scheme (MIT), the Grell scheme with Arakawa-Schulbert closure assumption (GAS), the Grell scheme with Fritsch-Chappell closure assumption (GFC) and the Anthes-Kuo scheme (Kuo). We have investigated the ability of the model to simulate precipitation, surface temperature, wind and aerosols optical depth. Emphasis in the model results were made in December-January-February (DJF) and July-August-September (JAS) periods. Two subregions have been identified for more specific analysis namely: zone 1 which corresponds to the sahel region mainly classified as desert and steppe and zone 2 which is a region spanning the tropical rain forest and is characterised by a bimodal rain regime. We found that regardless of periods or simulated parameters, MIT scheme generally has a tendency to overestimate. The GAS scheme is more suitable in simulating the aforementioned parameters, as well as the diurnal cycle of precipitations everywhere over the study domain irrespective of the season. In JAS, model results are similar in the representation of regional wind circulation. Apart from the MIT scheme, all the convective schemes give the same trends in aerosols optical depth simulations. Additional experiment reveals that the use of BATS instead of Zeng scheme to calculate ocean flux appears to improve the quality of the model simulations.

  2. A generalized wavelet extrema representation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian; Lades, M.

    1995-10-01

    The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.

  3. Balancing an accurate representation of the molecular surface in generalized Born formalisms with integrator stability in molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Chocholoušová, Jana; Feig, M.

    2006-01-01

    Roč. 27, č. 6 (2006), s. 719-729 ISSN 0192-8651 Keywords : molecular surface * generalized Born formalisms * molecular dynamic simulations Subject RIV: CC - Organic Chemistry Impact factor: 4.893, year: 2006

  4. Functional Representation for the Born-Oppenheimer Diagonal Correction and Born-Huang Adiabatic Potential Energy Surfaces for Isotopomers of H3

    International Nuclear Information System (INIS)

    Mielke, Steven L.; Schwenke, David; Schatz, George C.; Garrett, Bruce C.; Peterson, Kirk A.

    2009-01-01

    Multireference configuration interaction (MRCI) calculations of the Born-Oppenheimer diagonal correction (BODC) for H3 were performed at 1397 symmetry-unique configurations using the Born-Huang approach; isotopic substitution leads to 4041 symmetry-unique configurations for the DH2 mass combination. These results were then fit to a functional form that permits calculation of the BODC for any combination of isotopes. Mean unsigned fitting errors on a test grid of configurations not included in the fitting process were 0.14, 0.12, and 0.65 cm-1 for the H3, DH2, and MuH2 isotopomers, respectively. This representation can be combined with any Born-Oppenheimer potential energy surface (PES) to yield Born-Huang (BH) PESs; herein we choose the CCI potential energy surface, the uncertainties of which (∼0.01 kcal/mol) are much smaller than the magnitude of the BODC. FORTRAN routines to evaluate these BH surfaces are provided. Variational transition state theory calculations are presented comparing thermal rate constants for reactions on the BO and BH surfaces to provide an initial estimate of the significance of the diagonal correction for the dynamics.

  5. Impact and Suggestion of Column-to-Surface Vertical Correction Scheme on the Relationship between Satellite AOD and Ground-Level PM2.5 in China

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2017-10-01

    Full Text Available As China is suffering from severe fine particle pollution from dense industrialization and urbanization, satellite-derived aerosol optical depth (AOD has been widely used for estimating particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5. However, the correlation between satellite AOD and ground-level PM2.5 could be influenced by aerosol vertical distribution, as satellite AOD represents the entire column, rather than just ground-level concentration. Here, a new column-to-surface vertical correction scheme is proposed to improve separation of the near-surface and elevated aerosol layers, based on the ratio of the integrated extinction coefficient within 200–500 m above ground level (AGL, using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP aerosol profile products. There are distinct differences in climate, meteorology, terrain, and aerosol transmission throughout China, so comparisons between vertical correction via CALIOP ratio and planetary boundary layer height (PBLH were conducted in different regions from 2014 to 2015, combined with the original Pearson coefficient between satellite AOD and ground-level PM2.5 for reference. Furthermore, the best vertical correction scheme was suggested for different regions to achieve optimal correlation with PM2.5, based on the analysis and discussion of regional and seasonal characteristics of aerosol vertical distribution. According to our results and discussions, vertical correction via PBLH is recommended in northwestern China, where the PBLH varies dramatically, stretching or compressing the surface aerosol layer; vertical correction via the CALIOP ratio is recommended in northeastern China, southwestern China, Central China (excluding summer, North China Plain (excluding Beijing, and the spring in the southeast coast, areas that are susceptible to exogenous aerosols and exhibit the elevated aerosol layer; and original AOD without vertical correction is

  6. Deep-subwavelength light routing in nanowire-loaded surface plasmon polariton waveguides: an alternative to the hybrid guiding scheme

    International Nuclear Information System (INIS)

    Bian, Yusheng; Gong, Qihuang

    2013-01-01

    Nanowire-loaded surface plasmon polariton waveguide is an extremely simple structure that can be naturally formed by directly dropping a dielectric cylinder onto a metallic substrate. However, despite the substantial emphasis devoted to its hybrid plasmonic counterparts, this waveguiding structure has been paid little attention to so far. Here in this paper, through comprehensive numerical analysis, we reveal that such a configuration can be leveraged to achieve deep-subwavelength field confinement with mode area more than one order of magnitude smaller than that of the conventional hybrid waveguide, while maintaining a moderate attenuation with propagation distance over tens of microns. Two-dimensional parameter mapping concerning physical dimension, shape and material of the nanowire as well as the refractive index of the cladding has disclosed the wide-range existence nature of this plasmonic mode and the feasibility to further balance its confinement and loss. (paper)

  7. Seasonal evaluation of the land surface scheme HTESSEL against remote sensing derived energy fluxes of the Transdanubian region in Hungary

    Directory of Open Access Journals (Sweden)

    E. L. Wipfler

    2011-04-01

    Full Text Available The skill of the land surface model HTESSEL is assessed to reproduce evaporation in response to land surface characteristics and atmospheric forcing, both being spatially variable. Evaporation estimates for the 2005 growing season are inferred from satellite observations of the Western part of Hungary and compared to model outcomes. Atmospheric forcings are obtained from a hindcast run with the Regional Climate Model RACMO2. Although HTESSEL slightly underpredicts the seasonal evaporative fraction as compared to satellite estimates, the mean, 10th and 90th percentile of this variable are of the same magnitude as the satellite observations. The initial water as stored in the soil and snow layer does not have a significant effect on the statistical properties of the evaporative fraction. However, the spatial distribution of the initial soil and snow water significantly affects the spatial distribution of the calculated evaporative fraction and the models ability to reproduce evaporation correctly in low precipitation areas in the considered region. HTESSEL performs weaker in dryer areas. In Western Hungary these areas are situated in the Danube valley, which is partly covered by irrigated cropland and which also may be affected by shallow groundwater. Incorporating (lateral groundwater flow and irrigation, processes that are not included now, may improve HTESSELs ability to predict evaporation correctly. Evaluation of the model skills using other test areas and larger evaluation periods is needed to confirm the results.

    Based on earlier sensitivity analysis, the effect of a number of modifications to HTESSEL has been assessed. A more physically based reduction function for dry soils has been introduced, the soil depth is made variable and the effect of swallow groundwater included. However, the combined modification does not lead to a significantly improved performance of HTESSEL.

  8. Using isotopes to improve impact and hydrological predictions of land-surface schemes in global climate models

    International Nuclear Information System (INIS)

    McGuffie, K.; Henderson-Sellers, A.

    2002-01-01

    Global climate model (GCM) predictions of the impact of large-scale land-use change date back to 1984 as do the earliest isotopic studies of large-basin hydrology. Despite this coincidence in interest and geography, with both papers focussed on the Amazon, there have been few studies that have tried to exploit isotopic information with the goal of improving climate model simulations of the land-surface. In this paper we analyze isotopic results from the IAEA global data base specifically with the goal of identifying signatures of potential value for improving global and regional climate model simulations of the land-surface. Evaluation of climate model predictions of the impacts of deforestation of the Amazon has been shown to be of significance by recent results which indicate impacts occurring distant from the Amazon i.e. tele-connections causing climate change elsewhere around the globe. It is suggested that these could be similar in magnitude and extent to the global impacts of ENSO events. Validation of GCM predictions associated with Amazonian deforestation are increasingly urgently required because of the additional effects of other aspects of climate change, particularly synergies occurring between forest removal and greenhouse gas increases, especially CO 2 . Here we examine three decades distributions of deuterium excess across the Amazon and use the results to evaluate the relative importance of the fractionating (partial evaporation) and non-fractionating (transpiration) processes. These results illuminate GCM scenarios of importance to the regional climate and hydrology: (i) the possible impact of increased stomatal resistance in the rainforest caused by higher levels of atmospheric CO2 [4]; and (ii) the consequences of the combined effects of deforestation and global warming on the regions climate and hydrology

  9. An initial assessment of a SMAP soil moisture disaggregation scheme using TIR surface evaporation data over the continental United States

    Science.gov (United States)

    Mishra, Vikalp; Ellenburg, W. Lee; Griffin, Robert E.; Mecikalski, John R.; Cruise, James F.; Hain, Christopher R.; Anderson, Martha C.

    2018-06-01

    The Soil Moisture Active Passive (SMAP) mission is dedicated toward global soil moisture mapping. Typically, an L-band microwave radiometer has spatial resolution on the order of 36-40 km, which is too coarse for many specific hydro-meteorological and agricultural applications. With the failure of the SMAP active radar within three months of becoming operational, an intermediate (9-km) and finer (3-km) scale soil moisture product solely from the SMAP mission is no longer possible. Therefore, the focus of this study is a disaggregation of the 36-km resolution SMAP passive-only surface soil moisture (SSM) using the Soil Evaporative Efficiency (SEE) approach to spatial scales of 3-km and 9-km. The SEE was computed using thermal-infrared (TIR) estimation of surface evaporation over Continental U.S. (CONUS). The disaggregation results were compared with the 3 months of SMAP-Active (SMAP-A) and Active/Passive (AP) products, while comparisons with SMAP-Enhanced (SMAP-E), SMAP-Passive (SMAP-P), as well as with more than 180 Soil Climate Analysis Network (SCAN) stations across CONUS were performed for a 19 month period. At the 9-km spatial scale, the TIR-Downscaled data correlated strongly with the SMAP-E SSM both spatially (r = 0.90) and temporally (r = 0.87). In comparison with SCAN observations, overall correlations of 0.49 and 0.47; bias of -0.022 and -0.019 and unbiased RMSD of 0.105 and 0.100 were found for SMAP-E and TIR-Downscaled SSM across the Continental U.S., respectively. At 3-km scale, TIR-Downscaled and SMAP-A had a mean temporal correlation of only 0.27. In terms of gain statistics, the highest percentage of SCAN sites with positive gains (>55%) was observed with the TIR-Downscaled SSM at 9-km. Overall, the TIR-based downscaled SSM showed strong correspondence with SMAP-E; compared to SCAN, and overall both SMAP-E and TIR-Downscaled performed similarly, however, gain statistics show that TIR-Downscaled SSM slightly outperformed SMAP-E.

  10. Tradable schemes

    NARCIS (Netherlands)

    J.K. Hoogland (Jiri); C.D.D. Neumann

    2000-01-01

    textabstractIn this article we present a new approach to the numerical valuation of derivative securities. The method is based on our previous work where we formulated the theory of pricing in terms of tradables. The basic idea is to fit a finite difference scheme to exact solutions of the pricing

  11. Braid group representation on quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Ryan Kasyfil, E-mail: kasyfilryan@gmail.com [Department of Computational Sciences, Bandung Institute of Technology (Indonesia); Muchtadi-Alamsyah, Intan, E-mail: ntan@math.itb.ac.id [Algebra Research Group, Bandung Institute of Technology (Indonesia)

    2015-09-30

    There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.

  12. An idealized radiative transfer scheme for use in a mechanistic general circulation model from the surface up to the mesopause region

    International Nuclear Information System (INIS)

    Knoepfel, Rahel; Becker, Erich

    2011-01-01

    A new and numerically efficient method to compute radiative flux densities and heating rates in a general atmospheric circulation model is presented. Our method accommodates the fundamental differences between the troposphere and middle atmosphere in the long-wave regime within a single parameterization that extends continuously from the surface up to the mesopause region and takes the deviations from the gray limit and from the local thermodynamic equilibrium into account. For this purpose, frequency-averaged Eddington-type transfer equations are derived for four broad absorber bands. The frequency variation inside each band is parameterized by application of the Elsasser band model extended by a slowly varying envelope function. This yields additional transfer equations for the perturbation amplitudes that are solved numerically along with the mean transfer equations. Deviations from local thermodynamic equilibrium are included in terms of isotropic scattering, calculating the single scattering albedo from the two-level model for each band. Solar radiative flux densities are computed for four energetically defined bands using the simple Beer-Bougert-Lambert relation for absorption within the atmosphere. The new scheme is implemented in a mechanistic general circulation model from the surface up to the mesopause region. A test simulation with prescribed concentrations of the radiatively active constituents shows quite reasonable results. In particular, since we take the full surface energy budget into account by means of a swamp ocean, and since the internal dynamics and turbulent diffusion of the model are formulated in accordance with the conservation laws, an equilibrated climatological radiation budget is obtained both at the top of the atmosphere and at the surface.

  13. Quiver representations

    CERN Document Server

    Schiffler, Ralf

    2014-01-01

    This book is intended to serve as a textbook for a course in Representation Theory of Algebras at the beginning graduate level. The text has two parts. In Part I, the theory is studied in an elementary way using quivers and their representations. This is a very hands-on approach and requires only basic knowledge of linear algebra. The main tool for describing the representation theory of a finite-dimensional algebra is its Auslander-Reiten quiver, and the text introduces these quivers as early as possible. Part II then uses the language of algebras and modules to build on the material developed before. The equivalence of the two approaches is proved in the text. The last chapter gives a proof of Gabriel’s Theorem. The language of category theory is developed along the way as needed.

  14. Representational Machines

    DEFF Research Database (Denmark)

    Photography not only represents space. Space is produced photographically. Since its inception in the 19th century, photography has brought to light a vast array of represented subjects. Always situated in some spatial order, photographic representations have been operatively underpinned by social...... to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...... possibilities, and genre distinctions. Presenting several distinct ways of producing space photographically, this book opens a new and important field of inquiry for photography research....

  15. Group representations

    CERN Document Server

    Karpilovsky, G

    1994-01-01

    This third volume can be roughly divided into two parts. The first part is devoted to the investigation of various properties of projective characters. Special attention is drawn to spin representations and their character tables and to various correspondences for projective characters. Among other topics, projective Schur index and projective representations of abelian groups are covered. The last topic is investigated by introducing a symplectic geometry on finite abelian groups. The second part is devoted to Clifford theory for graded algebras and its application to the corresponding theory

  16. Value Representations

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegaard; Petersen, Marianne Graves

    2011-01-01

    Stereotypic presumptions about gender affect the design process, both in relation to how users are understood and how products are designed. As a way to decrease the influence of stereotypic presumptions in design process, we propose not to disregard the aspect of gender in the design process......, as the perspective brings valuable insights on different approaches to technology, but instead to view gender through a value lens. Contributing to this perspective, we have developed Value Representations as a design-oriented instrument for staging a reflective dialogue with users. Value Representations...

  17. Hologram representation of design data in an expert system knowledge base

    Science.gov (United States)

    Shiva, S. G.; Klon, Peter F.

    1988-01-01

    A novel representational scheme for design object descriptions is presented. An abstract notion of modules and signals is developed as a conceptual foundation for the scheme. This abstraction relates the objects to the meaning of system descriptions. Anchored on this abstraction, a representational model which incorporates dynamic semantics for these objects is presented. This representational model is called a hologram scheme since it represents dual level information, namely, structural and semantic. The benefits of this scheme are presented.

  18. Estimating Neural Control from Concentric vs. Eccentric Surface Electromyographic Representations during Fatiguing, Cyclic Submaximal Back Extension Exercises

    Directory of Open Access Journals (Sweden)

    Gerold R. Ebenbichler

    2017-05-01

    Full Text Available Purpose: To investigate the differences in neural control of back muscles activated during the eccentric vs. the concentric portions of a cyclic, submaximal, fatiguing trunk extension exercise via the analysis of amplitude and time-frequency parameters derived from surface electromyographic (SEMG data.Methods: Using back dynamometers, 87 healthy volunteers performed three maximum voluntary isometric trunk extensions (MVC's, an isometric trunk extension at 80% MVC, and 25 cyclic, dynamic trunk extensions at 50% MVC. Dynamic testing was performed with the trunk angular displacement ranging from 0° to 40° and the trunk angular velocity set at 20°/s. SEMG data was recorded bilaterally from the iliocostalis lumborum at L1, the longissimus dorsi at L2, and the multifidus muscles at L5. The initial value and slope of the root mean square (RMS-SEMG and the instantaneous median frequency (IMDF-SEMG estimates derived from the SEMG recorded during each exercise cycle were used to investigate the differences in MU control marking the eccentric vs. the concentric portions of the exercise.Results: During the concentric portions of the exercise, the initial RMS-SEMG values were almost twice those observed during the eccentric portions of the exercise. The RMS-SEMG values generally increased during the concentric portions of the exercise while they mostly remained unchanged during the eccentric portions of the exercise with significant differences between contraction types. Neither the initial IMDF-SEMG values nor the time-course of the IMDF-SEMG values significantly differed between the eccentric and the concentric portions of the exercise.Conclusions: The comparison of the investigated SEMG parameters revealed distinct neural control strategies during the eccentric vs. the concentric portions of the cyclic exercise. We explain these differences by relying upon the principles of orderly recruitment and common drive governing motor unit behavior.

  19. A warm-season comparison of WRF coupled to the CLM4.0, Noah-MP, and Bucket hydrology land surface schemes over the central USA

    Science.gov (United States)

    Van Den Broeke, Matthew S.; Kalin, Andrew; Alavez, Jose Abraham Torres; Oglesby, Robert; Hu, Qi

    2017-11-01

    In climate modeling studies, there is a need to choose a suitable land surface model (LSM) while adhering to available resources. In this study, the viability of three LSM options (Community Land Model version 4.0 [CLM4.0], Noah-MP, and the five-layer thermal diffusion [Bucket] scheme) in the Weather Research and Forecasting model version 3.6 (WRF3.6) was examined for the warm season in a domain centered on the central USA. Model output was compared to Parameter-elevation Relationships on Independent Slopes Model (PRISM) data, a gridded observational dataset including mean monthly temperature and total monthly precipitation. Model output temperature, precipitation, latent heat (LH) flux, sensible heat (SH) flux, and soil water content (SWC) were compared to observations from sites in the Central and Southern Great Plains region. An overall warm bias was found in CLM4.0 and Noah-MP, with a cool bias of larger magnitude in the Bucket model. These three LSMs produced similar patterns of wet and dry biases. Model output of SWC and LH/SH fluxes were compared to observations, and did not show a consistent bias. Both sophisticated LSMs appear to be viable options for simulating the effects of land use change in the central USA.

  20. A satellite based scheme for predicting the effects of land cover change on local microclimate and surface hydrology: Development of an operational regional planning tool

    Science.gov (United States)

    Arthur, Sandra Traci

    Humans have diverse goals for their use of land: mining, water supply, aesthetic enjoyment, recreation, transportation, housing, etc. Any individual living within an actively developing community can look back in time and note how, perhaps slowly but nonetheless dramatically, the total land area dedicated to human use has increased. As our society's basic functioning intensifies, the disappearance of "free" open space is apparent---today, even conservation areas are carefully designated, mapped and controlled. This transition in land use is a result of many individual decisions that occur throughout space and time, often with little concern for the potential impacts on the local environment. Two specific environmental components---the microclimate and surface hydrology---are the focus of this thesis. This study, as well as related tools and bodies of knowledge, should be used to broaden the scientific basis behind land use management decisions. It will be shown that development can induce predictable changes in measures of the local radiant surface temperature and evapotranspiration fraction---as long as certain features of the development are known. Specifically, the vegetation changes that accompany the development must be noted, as well as the initial climatic state of the land parcel. Additionally, plots of runoff vs. rainfall for gauged basins will be interpreted in terms of the proportion of the basin contributing to a storm event's runoff signal. For a particular basin, four distinct runoff responses, separated by season and antecedent moisture conditions, will be distinguished. The response for the non-summer months under typical antecedent moisture conditions will be shown to be the most representative of and responsive to a basin's land use patterns. A scheme that makes use of satellite-derived land cover patterns and other physical attributes of the basin in order to determine this particular runoff response will be presented. The Soil Conservation

  1. Representational Thickness

    DEFF Research Database (Denmark)

    Mullins, Michael

    Contemporary communicational and informational processes contribute to the shaping of our physical environment by having a powerful influence on the process of design. Applications of virtual reality (VR) are transforming the way architecture is conceived and produced by introducing dynamic...... elements into the process of design. Through its immersive properties, virtual reality allows access to a spatial experience of a computer model very different to both screen based simulations as well as traditional forms of architectural representation. The dissertation focuses on processes of the current...... representation? How is virtual reality used in public participation and how do virtual environments affect participatory decision making? How does VR thus affect the physical world of built environment? Given the practical collaborative possibilities of immersive technology, how can they best be implemented...

  2. Closing the scale gap between land surface parameterizations and GCMs with a new scheme, SiB3-Bins: SOIL MOISTURE SCALE GAP

    International Nuclear Information System (INIS)

    Baker, I. T.; Sellers, P. J.; Denning, A. S.; Medina, I.; Kraus, P.

    2017-01-01

    The interaction of land with the atmosphere is sensitive to soil moisture (W). Evapotranspiration (ET) reacts to soil moisture in a nonlinear way, f(W), as soils dry from saturation to wilt point. This nonlinear behavior and the fact that soil moisture varies on scales as small as 1–10 m in nature, while numerical general circulation models (GCMs) have grid cell sizes on the order of 1 to 100s of kilometers, makes the calculation of grid cell-average ET problematic. It is impractical to simulate the land in GCMs on the small scales seen in nature, so techniques have been developed to represent subgrid scale heterogeneity, including: (1) statistical-dynamical representations of grid subelements of varying wetness, (2) relaxation of f(W), (3) moderating f(W) with approximations of catchment hydrology, (4) “tiling” the landscape into vegetation types, and (5) hyperresolution. Here we present an alternative method for representing subgrid variability in W, one proven in a conceptual framework where landscape-scale W is represented as a series of “Bins” of increasing wetness from dry to saturated. The grid cell-level f(W) is defined by the integral of the fractional area of the wetness bins and the value of f(W) associated with each. This approach accounts for the spatiotemporal dynamics of W. We implemented this approach in the SiB3 land surface parameterization and then evaluated its performance against a control, which assumes a horizontally uniform field of W. We demonstrate that the Bins method, with a physical basis, attenuates unrealistic jumps in model state and ET seen in the control runs.

  3. Additive operator-difference schemes splitting schemes

    CERN Document Server

    Vabishchevich, Petr N

    2013-01-01

    Applied mathematical modeling isconcerned with solving unsteady problems. This bookshows how toconstruct additive difference schemes to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods)and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for sy

  4. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    Science.gov (United States)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  5. Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0)

    Science.gov (United States)

    Druel, Arsène; Peylin, Philippe; Krinner, Gerhard; Ciais, Philippe; Viovy, Nicolas; Peregon, Anna; Bastrikov, Vladislav; Kosykh, Natalya; Mironycheva-Tokareva, Nina

    2017-12-01

    Simulation of vegetation-climate feedbacks in high latitudes in the ORCHIDEE land surface model was improved by the addition of three new circumpolar plant functional types (PFTs), namely non-vascular plants representing bryophytes and lichens, Arctic shrubs and Arctic C3 grasses. Non-vascular plants are assigned no stomatal conductance, very shallow roots, and can desiccate during dry episodes and become active again during wet periods, which gives them a larger phenological plasticity (i.e. adaptability and resilience to severe climatic constraints) compared to grasses and shrubs. Shrubs have a specific carbon allocation scheme, and differ from trees by their larger survival rates in winter, due to protection by snow. Arctic C3 grasses have the same equations as in the original ORCHIDEE version, but different parameter values, optimised from in situ observations of biomass and net primary productivity (NPP) in Siberia. In situ observations of living biomass and productivity from Siberia were used to calibrate the parameters of the new PFTs using a Bayesian optimisation procedure. With the new PFTs, we obtain a lower NPP by 31 % (from 55° N), as well as a lower roughness length (-41 %), transpiration (-33 %) and a higher winter albedo (by +3.6 %) due to increased snow cover. A simulation of the water balance and runoff and drainage in the high northern latitudes using the new PFTs results in an increase of fresh water discharge in the Arctic ocean by 11 % (+140 km3 yr-1), owing to less evapotranspiration. Future developments should focus on the competition between these three PFTs and boreal tree PFTs, in order to simulate their area changes in response to climate change, and the effect of carbon-nitrogen interactions.

  6. Matroids and quantum-secret-sharing schemes

    International Nuclear Information System (INIS)

    Sarvepalli, Pradeep; Raussendorf, Robert

    2010-01-01

    A secret-sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient secret-sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret-sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum-secret-sharing schemes. In addition to providing a new perspective on quantum-secret-sharing schemes, this characterization has important benefits. While previous work has shown how to construct quantum-secret-sharing schemes for general access structures, these schemes are not claimed to be efficient. In this context the present results prove to be useful; they enable us to construct efficient quantum-secret-sharing schemes for many general access structures. More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a pure-state quantum-secret-sharing scheme with information rate 1.

  7. The complete flux scheme in cylindrical coordinates

    NARCIS (Netherlands)

    Anthonissen, M.J.H.; Thije Boonkkamp, ten J.H.M.

    2014-01-01

    We consider the complete ¿ux (CF) scheme, a ¿nite volume method (FVM) presented in [1]. CF is based on an integral representation for the ¿uxes, found by solving a local boundary value problem that includes the source term. It performs well (second order accuracy) for both diffusion and advection

  8. Attention and Representational Momentum

    OpenAIRE

    Hayes, Amy; Freyd, Jennifer J

    1995-01-01

    Representational momentum, the tendency for memory to be distorted in the direction of an implied transformation, suggests that dynamics are an intrinsic part of perceptual representations. We examined the effect of attention on dynamic representation by testing for representational momentum under conditions of distraction. Forward memory shifts increase when attention is divided. Attention may be involved in halting but not in maintaining dynamic representations.

  9. Mental Representations of the Text Surface, the Text Base, and the Situation Model in Auditory and Audiovisual Texts in 7-, 9-, and 11-Year-Olds

    Science.gov (United States)

    Wannagat, Wienke; Waizenegger, Gesine; Hauf, Juliane; Nieding, Gerhild

    2018-01-01

    This study investigated the effects of auditory and audiovisual text presentation on the three levels of mental representations assumed in theories of discourse processing. A sample of 106 children aged 7, 9, and 11 years listened to 16 short narrative texts, 8 of which were accompanied by a series of pictures illustrating the content.…

  10. Representations in Calculus: Two Contrasting Cases.

    Science.gov (United States)

    Aspinwall, Leslie; Shaw, Kenneth L.

    2002-01-01

    Illustrates the contrasting thinking processes of two beginning calculus students' geometric and analytic schemes for the derivative function. Suggests that teachers can enhance students' understanding by continuing to demonstrate how different representations of the same mathematical concept provide additional information. (KHR)

  11. Representation and redistribution in federations.

    Science.gov (United States)

    Dragu, Tiberiu; Rodden, Jonathan

    2011-05-24

    Many of the world's most populous democracies are political unions composed of states or provinces that are unequally represented in the national legislature. Scattered empirical studies, most of them focusing on the United States, have discovered that overrepresented states appear to receive larger shares of the national budget. Although this relationship is typically attributed to bargaining advantages associated with greater legislative representation, an important threat to empirical identification stems from the fact that the representation scheme was chosen by the provinces. Thus, it is possible that representation and fiscal transfers are both determined by other characteristics of the provinces in a specific country. To obtain an improved estimate of the relationship between representation and redistribution, we collect and analyze provincial-level data from nine federations over several decades, taking advantage of the historical process through which federations formed and expanded. Controlling for a variety of country- and province-level factors and using a variety of estimation techniques, we show that overrepresented provinces in political unions around the world are rather dramatically favored in the distribution of resources.

  12. A Comparison of Global Indexing Schemes to Facilitate Earth Science Data Management

    Science.gov (United States)

    Griessbaum, N.; Frew, J.; Rilee, M. L.; Kuo, K. S.

    2017-12-01

    Recent advances in database technology have led to systems optimized for managing petabyte-scale multidimensional arrays. These array databases are a good fit for subsets of the Earth's surface that can be projected into a rectangular coordinate system with acceptable geometric fidelity. However, for global analyses, array databases must address the same distortions and discontinuities that apply to map projections in general. The array database SciDB supports enormous databases spread across thousands of computing nodes. Additionally, the following SciDB characteristics are particularly germane to the coordinate system problem: SciDB efficiently stores and manipulates sparse (i.e. mostly empty) arrays. SciDB arrays have 64-bit indexes. SciDB supports user-defined data types, functions, and operators. We have implemented two geospatial indexing schemes in SciDB. The simplest uses two array dimensions to represent longitude and latitude. For representation as 64-bit integers, the coordinates are multiplied by a scale factor large enough to yield an appropriate Earth surface resolution (e.g., a scale factor of 100,000 yields a resolution of approximately 1m at the equator). Aside from the longitudinal discontinuity, the principal disadvantage of this scheme is its fixed scale factor. The second scheme uses a single array dimension to represent the bit-codes for locations in a hierarchical triangular mesh (HTM) coordinate system. A HTM maps the Earth's surface onto an octahedron, and then recursively subdivides each triangular face to the desired resolution. Earth surface locations are represented as the concatenation of an octahedron face code and a quadtree code within the face. Unlike our integerized lat-lon scheme, the HTM allow for objects of different size (e.g., pixels with differing resolutions) to be represented in the same indexing scheme. We present an evaluation of the relative utility of these two schemes for managing and analyzing MODIS swath data.

  13. Factorizations and physical representations

    International Nuclear Information System (INIS)

    Revzen, M; Khanna, F C; Mann, A; Zak, J

    2006-01-01

    A Hilbert space in M dimensions is shown explicitly to accommodate representations that reflect the decomposition of M into prime numbers. Representations that exhibit the factorization of M into two relatively prime numbers: the kq representation (Zak J 1970 Phys. Today 23 51), and related representations termed q 1 q 2 representations (together with their conjugates) are analysed, as well as a representation that exhibits the complete factorization of M. In this latter representation each quantum number varies in a subspace that is associated with one of the prime numbers that make up M

  14. Homogenization scheme for acoustic metamaterials

    KAUST Repository

    Yang, Min

    2014-02-26

    We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.

  15. N-Heterocyclic carbenes on close-packed coinage metal surfaces: bis-carbene metal adatom bonding scheme of monolayer films on Au, Ag and Cu.

    Science.gov (United States)

    Jiang, Li; Zhang, Bodong; Médard, Guillaume; Seitsonen, Ari Paavo; Haag, Felix; Allegretti, Francesco; Reichert, Joachim; Kuster, Bernhard; Barth, Johannes V; Papageorgiou, Anthoula C

    2017-12-01

    By means of scanning tunnelling microscopy (STM), complementary density functional theory (DFT) and X-ray photoelectron spectroscopy (XPS) we investigate the binding and self-assembly of a saturated molecular layer of model N -heterocyclic carbene (NHC) on Cu(111), Ag(111) and Au(111) surfaces under ultra-high vacuum (UHV) conditions. XPS reveals that at room temperature, coverages up to a monolayer exist, with the molecules engaged in metal carbene bonds. On all three surfaces, we resolve similar arrangements, which can be interpreted only in terms of mononuclear M(NHC) 2 (M = Cu, Ag, Au) complexes, reminiscent of the paired bonding of thiols to surface gold adatoms. Theoretical investigations for the case of Au unravel the charge distribution of a Au(111) surface covered by Au(NHC) 2 and reveal that this is the energetically preferential adsorption configuration.

  16. Finite Boltzmann schemes

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the

  17. New schemes for particle accelerators

    International Nuclear Information System (INIS)

    Nishida, Y.

    1985-01-01

    In the present paper, the authors propose new schemes for realizing the v/sub p/xB accelerator, by using no plasma system for producing the strong longitudinal waves. The first method is to use a grating for obtaining extended interaction of an electron beam moving along the grating surface with light beam incident also along the surface. Here, the light beam propagates obliquely to the grating grooves for producing strong electric field, and the electron beam propagates in parallel to the light beam. The static magnetic field is applied perpendicularly to the grating surface. In the present system, the beam interacts synchronously with the p-polarized wave which has the electric field be parallel to the grating surface. Another conventional scheme is to use a delay circuit. Here, the light beam propagates obliquely between a pair of array of conductor fins or slots. The phase velocity of the spatial harmonics in the y-direction (right angle to the array of slots) is slower than the speed of light. With the aid of powerful laser light or microwave source, it should be possible to miniaturise linacs by using the v/sub p/xB effect and schemes proposed here

  18. Knowledge representation an approach to artificial intelligence

    CERN Document Server

    Bench-Capon, TJM

    1990-01-01

    Although many texts exist offering an introduction to artificial intelligence (AI), this book is unique in that it places an emphasis on knowledge representation (KR) concepts. It includes small-scale implementations in PROLOG to illustrate the major KR paradigms and their developments.****back cover copy:**Knowledge representation is at the heart of the artificial intelligence enterprise: anyone writing a program which seeks to work by encoding and manipulating knowledge needs to pay attention to the scheme whereby he will represent the knowledge, and to be aware of the consequences of the ch

  19. Representation in Memory.

    Science.gov (United States)

    Rumelhart, David E.; Norman, Donald A.

    This paper reviews work on the representation of knowledge from within psychology and artificial intelligence. The work covers the nature of representation, the distinction between the represented world and the representing world, and significant issues concerned with propositional, analogical, and superpositional representations. Specific topics…

  20. Improving the representation of river-groundwater interactions in land surface modeling at the regional scale: Observational evidence and parameterization applied in the Community Land Model

    KAUST Repository

    Zampieri, Matteo; Serpetzoglou, Efthymios; Anagnostou, Emmanouil N.; Nikolopoulos, Efthymios I.; Papadopoulos, Anastasios

    2012-01-01

    Groundwater is an important component of the hydrological cycle, included in many land surface models to provide a lower boundary condition for soil moisture, which in turn plays a key role in the land-vegetation-atmosphere interactions

  1. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    International Nuclear Information System (INIS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-01-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time. (paper)

  2. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    Science.gov (United States)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-08-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.

  3. Generalization of binary tensor product schemes depends upon four parameters

    International Nuclear Information System (INIS)

    Bashir, R.; Bari, M.; Mustafa, G.

    2018-01-01

    This article deals with general formulae of parametric and non parametric bivariate subdivision scheme with four parameters. By assigning specific values to those parameters we get some special cases of existing tensor product schemes as well as a new proposed scheme. The behavior of schemes produced by the general formulae is interpolating, approximating and relaxed. Approximating bivariate subdivision schemes produce some other surfaces as compared to interpolating bivariate subdivision schemes. Polynomial reproduction and polynomial generation are desirable properties of subdivision schemes. Capability of polynomial reproduction and polynomial generation is strongly connected with smoothness, sum rules, convergence and approximation order. We also calculate the polynomial generation and polynomial reproduction of 9-point bivariate approximating subdivision scheme. Comparison of polynomial reproduction, polynomial generation and continuity of existing and proposed schemes has also been established. Some numerical examples are also presented to show the behavior of bivariate schemes. (author)

  4. A statistical-dynamical scheme for reconstructing ocean forcing in the Atlantic. Part I: weather regimes as predictors for ocean surface variables

    Energy Technology Data Exchange (ETDEWEB)

    Cassou, Christophe; Minvielle, Marie; Terray, Laurent [CERFACS/CNRS, Climate Modelling and Global Change Team, Toulouse (France); Perigaud, Claire [JPL-NASA, Ocean Science Element, Pasadena, CA (United States)

    2011-01-15

    The links between the observed variability of the surface ocean variables estimated from reanalysis and the overlying atmosphere decomposed in classes of large-scale atmospheric circulation via clustering are investigated over the Atlantic from 1958 to 2002. Daily 500 hPa geopotential height and 1,000 hPa wind anomaly maps are classified following a weather-typing approach to describe the North Atlantic and tropical Atlantic atmospheric dynamics, respectively. The algorithm yields patterns that correspond in the extratropics to the well-known North Atlantic-Europe weather regimes (NAE-WR) accounting for the barotropic dynamics, and in the tropics to wind classes (T-WC) representing the alteration of the trades. 10-m wind and 2-m temperature (T2) anomaly composites derived from regime/wind class occurrence are indicative of strong relationships between daily large-scale atmospheric circulation and ocean surface over the entire Atlantic basin. High temporal correlation values are obtained basin-wide at low frequency between the observed fields and their reconstruction by multiple linear regressions with the frequencies of occurrence of both NAE-WR and T-WC used as sole predictors. Additional multiple linear regressions also emphasize the importance of accounting for the strength of the daily anomalous atmospheric circulation estimated by the combined distances to all regimes centroids in order to reproduce the daily to interannual variability of the Atlantic ocean. We show that for most of the North Atlantic basin the occurrence of NAE-WR generally sets the sign of the ocean surface anomaly for a given day, and that the inter-regime distances are valuable predictors for the magnitude of that anomaly. Finally, we provide evidence that a large fraction of the low-frequency trends in the Atlantic observed at the surface over the last 50 years can be traced back, except for T2, to changes in occurrence of tropical and extratropical weather classes. All together, our

  5. Delivery of parameterization schemes for the determination of the regional evapotranspiration of different land surfaces. Final report; Bereitstellung von Parameterisierungsverfahren zur Bestimmung der regionalen Verdunstung verschiedener Landoberflaechen. Abschlussbericht 1997

    Energy Technology Data Exchange (ETDEWEB)

    Haenel, H.D.; Loepmeier, F.J.

    1998-03-01

    The task was the delivery of parameterization schemes for the calculation of the regional evapotranspiration of different land surfaces. The main weight was on the discussion of existing approaches and on the development of new ones for the calculation of evapotranspiration. After consideration of different concepts the well-known Penman-Monteith equation proved to the optimal basis of calculation. The surface resistance, respectively the related bulk-stomata resistance, is an important part of the resistance pattern (analogous to Ohm`s law) on which the Penman-Monteith equation is based. Under consideration of the dependence of these resistances of the spatial scale (leaf, canopy) as well as of the time scale (hour, day) possibilities for their estimation were discussed. An important step to determine the surface resistances from literature data of vegetation evapotranspiration was the development of a converting scheme of Haude`s factors to surface resistances. For bare soil an approach was developed which allows approximately to give a new interpretation to surface resistances from evapotranspiration courses, described in literature as proportional to the square root of time. (orig.) [Deutsch] Die Aufgabenstellung bestand in der Bereitstellung von Parametrisierungsverfahren zur Bestimmung der regionalen Verdunstung verschiedener Landoberflaechen. Dabei lag das Schwergewicht auf der Diskussion bereits bestehender und der Entwicklung neuer Ansaetze zur Berechnung der Verdunstung. Nach der Betrachtung unterschiedlicher Konzepte erwies sich die bekannte Penman-Monteith-Gleichung als optimale Berechnungsgrundlage. Ein wesentlicher Bestandteil des der Penman-Monteith-Gleichung zugrundeliegenden Widerstandsschemas (Analogie zum Ohmschen Gesetz) ist der Oberflaechenwiderstand bzw. der damit verwandte Bulk-Stomatawiderstand. Unter Beruecksichtigung der Abhaengigkeit dieser Widerstaende sowohl von der raeumlichen Skala (Blatt/Bestand) als auch von der zeitlichen Skala

  6. Variational nonadiabatic dynamics in the moving crude adiabatic representation: Further merging of nuclear dynamics and electronic structure

    Science.gov (United States)

    Joubert-Doriol, Loïc; Izmaylov, Artur F.

    2018-03-01

    A new methodology of simulating nonadiabatic dynamics using frozen-width Gaussian wavepackets within the moving crude adiabatic representation with the on-the-fly evaluation of electronic structure is presented. The main feature of the new approach is the elimination of any global or local model representation of electronic potential energy surfaces; instead, the electron-nuclear interaction is treated explicitly using the Gaussian integration. As a result, the new scheme does not introduce any uncontrolled approximations. The employed variational principle ensures the energy conservation and leaves the number of electronic and nuclear basis functions as the only parameter determining the accuracy. To assess performance of the approach, a model with two electronic and two nuclear spacial degrees of freedom containing conical intersections between potential energy surfaces has been considered. Dynamical features associated with nonadiabatic transitions and nontrivial geometric (or Berry) phases were successfully reproduced within a limited basis expansion.

  7. Scheme Program Documentation Tools

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2004-01-01

    are separate and intended for different documentation purposes they are related to each other in several ways. Both tools are based on XML languages for tool setup and for documentation authoring. In addition, both tools rely on the LAML framework which---in a systematic way---makes an XML language available...... as named functions in Scheme. Finally, the Scheme Elucidator is able to integrate SchemeDoc resources as part of an internal documentation resource....

  8. A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2012-10-01

    Full Text Available In situ soil moisture data from 122 stations across the United States are used to evaluate the impact of a new bare ground evaporation formulation at ECMWF. In November 2010, the bare ground evaporation used in ECMWF's operational Integrated Forecasting System (IFS was enhanced by adopting a lower stress threshold than for the vegetation, allowing a higher evaporation. It results in more realistic soil moisture values when compared to in situ data, particularly over dry areas. Use was made of the operational IFS and offline experiments for the evaluation. The latter are based on a fixed version of the IFS and make it possible to assess the impact of a single modification, while the operational analysis is based on a continuous effort to improve the analysis and modelling systems, resulting in frequent updates (a few times a year. Considering the field sites with a fraction of bare ground greater than 0.2, the root mean square difference (RMSD of soil moisture is shown to decrease from 0.118 m3 m−3 to 0.087 m3 m−3 when using the new formulation in offline experiments, and from 0.110 m3 m−3 to 0.088 m3 m−3 in operations. It also improves correlations. Additionally, the impact of the new formulation on the terrestrial microwave emission at a global scale is investigated. Realistic and dynamically consistent fields of brightness temperature as a function of the land surface conditions are required for the assimilation of the SMOS data. Brightness temperature simulated from surface fields from two offline experiments with the Community Microwave Emission Modelling (CMEM platform present monthly mean differences up to 7 K. Offline experiments with the new formulation present drier soil moisture, hence simulated brightness temperature with its surface fields are larger. They are also closer to SMOS remotely sensed brightness temperature.

  9. Qualitative aspects of representational competence among college chemistry students: Multiple representations and their role in the understanding of ideal gases

    Science.gov (United States)

    Madden, Sean Patrick

    This study examined the role of multiple representations of chemical phenomena, specifically, the temperature-pressure relationship of ideal gases, in the problem solving strategies of college chemistry students. Volunteers included students enrolled in a first semester general chemistry course at a western university. Two additional volunteers from the same university were asked to participate and serve as models of greater sophistication. One was a senior chemistry major; another was a junior science writing major. Volunteers completed an initial screening task involving multiple representations of concentration and dilution concepts. Based on the results of this screening instrument a smaller set of subjects were asked to complete a think aloud session involving multiple representations of the temperature-pressure relationship. Data consisted of the written work of the volunteers and transcripts from videotaped think aloud sessions. The data were evaluated by the researcher and two other graduate students in chemical education using a coding scheme (Kozma, Schank, Coppola, Michalchik, and Allen. 2000). This coding scheme was designed to identify essential features of representational competence and differences in uses of multiple representations. The results indicate that students tend to have a strong preference for one type of representation. Students scoring low on representational competence, as measured by the rubric, ignored important features of some representations or acknowledged them only superficially. Students scoring higher on representational competence made meaningful connections among representations. The more advanced students, those who rated highly on representational competence, tended to use their preferred representation in a heuristic manner to establish meaning for other representations. The more advanced students also reflected upon the problem at greater length before beginning work. Molecular level sketches seemed to be the most

  10. Converting boundary representation solid models to half-space representation models for Monte Carlo analysis

    International Nuclear Information System (INIS)

    Davis, J. E.; Eddy, M. J.; Sutton, T. M.; Altomari, T. J.

    2007-01-01

    Solid modeling computer software systems provide for the design of three-dimensional solid models used in the design and analysis of physical components. The current state-of-the-art in solid modeling representation uses a boundary representation format in which geometry and topology are used to form three-dimensional boundaries of the solid. The geometry representation used in these systems is cubic B-spline curves and surfaces - a network of cubic B-spline functions in three-dimensional Cartesian coordinate space. Many Monte Carlo codes, however, use a geometry representation in which geometry units are specified by intersections and unions of half-spaces. This paper describes an algorithm for converting from a boundary representation to a half-space representation. (authors)

  11. Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models; implications for simulated land surface fluxes and variables at various spatiotemporal scales

    Science.gov (United States)

    Egea, G.; Verhoef, A.; Vidale, P. L.; Black, E.; Van den Hoof, C.

    2012-04-01

    Coupled photosynthesis-stomatal conductance (A-gs) models are commonly used in ecosystem models to represent the exchange rate of CO2 and H2O between vegetation and the atmosphere. The ways these models account for water stress differ greatly among modelling schemes. This study provides insight into the impact of contrasting model configurations of water stress on the simulated leaf-level values of net photosynthesis (A), stomatal conductance (gs), the functional relationship among them and their ratio, the intrinsic water use efficiency (A/gs), as soil dries. A simple, yet versatile, normalized soil moisture dependent function was used to account for the effects of water stress on gs, on mesophyll conductance (gm ) and on the biochemical capacity (Egea et al., 2011). Model output was compared to leaf-level values obtained from the literature. The sensitivity analyses emphasized the necessity to combine both stomatal and non-stomatal limitations of A in coupled A-gs models to accurately capture the observed functional relationships A vs. gs and A/gs vs. gs in response to drought. Accounting for water stress in coupled A-gs models by imposing either stomatal or biochemical limitations of A, as commonly practiced in most ecosystem models, failed to reproduce the observed functional relationship between key leaf gas exchange attributes. A quantitative limitation analysis revealed that the general pattern of C3 photosynthetic response to water stress can be represented in coupled A-gs models by imposing the highest limitation strength to mesophyll conductance, then to stomatal conductance and finally to the biochemical capacity. This more realistic representation of soil water stress on the simulated leaf-level values of A and gs was embedded in the JULES (Joint UK Land Environment Simulator; Best et al., 2011), model and tested for a number of vegetation types, for which driving and flux verification data were available. These simulations provide an insight into the

  12. Understanding representations in design

    DEFF Research Database (Denmark)

    Bødker, Susanne

    1998-01-01

    Representing computer applications and their use is an important aspect of design. In various ways, designers need to externalize design proposals and present them to other designers, users, or managers. This article deals with understanding design representations and the work they do in design....... The article is based on a series of theoretical concepts coming out of studies of scientific and other work practices and on practical experiences from design of computer applications. The article presents alternatives to the ideas that design representations are mappings of present or future work situations...... and computer applications. It suggests that representations are primarily containers of ideas and that representation is situated at the same time as representations are crossing boundaries between various design and use activities. As such, representations should be carriers of their own contexts regarding...

  13. Improved surface-roughness scattering and mobility models for multi-gate FETs with arbitrary cross-section and biasing scheme

    Science.gov (United States)

    Lizzit, D.; Badami, O.; Specogna, R.; Esseni, D.

    2017-06-01

    We present a new model for surface roughness (SR) scattering in n-type multi-gate FETs (MuGFETs) and gate-all-around nanowire FETs with fairly arbitrary cross-sections, its implementation in a complete device simulator, and the validation against experimental electron mobility data. The model describes the SR scattering matrix elements as non-linear transformations of interface fluctuations, which strongly influences the root mean square value of the roughness required to reproduce experimental mobility data. Mobility simulations are performed via the deterministic solution of the Boltzmann transport equation for a 1D-electron gas and including the most relevant scattering mechanisms for electronic transport, such as acoustic, polar, and non-polar optical phonon scattering, Coulomb scattering, and SR scattering. Simulation results show the importance of accounting for arbitrary cross-sections and biasing conditions when compared to experimental data. We also discuss how mobility is affected by the shape of the cross-section as well as by its area in gate-all-around and tri-gate MuGFETs.

  14. IR subtraction schemes. Integrating the counterterms at NNLO in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, Paolo; Somogyi, Gabor

    2010-06-15

    We briefly review a subtraction scheme for computing radiative corrections to QCD jet cross sections that can be defined at any order in perturbation theory. Hereafter we discuss the computational methods used to evaluate analytically and numerically the integrated counterterms arising from such a subtraction scheme. Basically these methods the Mellin-Barnes (MB) representations technique together with the harmonic summation and the sector decomposition. (orig.)

  15. IR subtraction schemes. Integrating the counterterms at NNLO in QCD

    International Nuclear Information System (INIS)

    Bolzoni, Paolo; Somogyi, Gabor

    2010-06-01

    We briefly review a subtraction scheme for computing radiative corrections to QCD jet cross sections that can be defined at any order in perturbation theory. Hereafter we discuss the computational methods used to evaluate analytically and numerically the integrated counterterms arising from such a subtraction scheme. Basically these methods the Mellin-Barnes (MB) representations technique together with the harmonic summation and the sector decomposition. (orig.)

  16. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  17. Adaptive protection scheme

    Directory of Open Access Journals (Sweden)

    R. Sitharthan

    2016-09-01

    Full Text Available This paper aims at modelling an electronically coupled distributed energy resource with an adaptive protection scheme. The electronically coupled distributed energy resource is a microgrid framework formed by coupling the renewable energy source electronically. Further, the proposed adaptive protection scheme provides a suitable protection to the microgrid for various fault conditions irrespective of the operating mode of the microgrid: namely, grid connected mode and islanded mode. The outstanding aspect of the developed adaptive protection scheme is that it monitors the microgrid and instantly updates relay fault current according to the variations that occur in the system. The proposed adaptive protection scheme also employs auto reclosures, through which the proposed adaptive protection scheme recovers faster from the fault and thereby increases the consistency of the microgrid. The effectiveness of the proposed adaptive protection is studied through the time domain simulations carried out in the PSCAD⧹EMTDC software environment.

  18. Quiver representations and quiver varieties

    CERN Document Server

    Jr, Alexander Kirillov

    2016-01-01

    This book is an introduction to the theory of quiver representations and quiver varieties, starting with basic definitions and ending with Nakajima's work on quiver varieties and the geometric realization of Kac-Moody Lie algebras. The first part of the book is devoted to the classical theory of quivers of finite type. Here the exposition is mostly self-contained and all important proofs are presented in detail. The second part contains the more recent topics of quiver theory that are related to quivers of infinite type: Coxeter functor, tame and wild quivers, McKay correspondence, and representations of Euclidean quivers. In the third part, topics related to geometric aspects of quiver theory are discussed, such as quiver varieties, Hilbert schemes, and the geometric realization of Kac-Moody algebras. Here some of the more technical proofs are omitted; instead only the statements and some ideas of the proofs are given, and the reader is referred to original papers for details. The exposition in the book requ...

  19. Prediction of heavy rainfall over Chennai Metropolitan City, Tamil Nadu, India: Impact of microphysical parameterization schemes

    Science.gov (United States)

    Singh, K. S.; Bonthu, Subbareddy; Purvaja, R.; Robin, R. S.; Kannan, B. A. M.; Ramesh, R.

    2018-04-01

    This study attempts to investigate the real-time prediction of a heavy rainfall event over the Chennai Metropolitan City, Tamil Nadu, India that occurred on 01 December 2015 using Advanced Research Weather Research and Forecasting (WRF-ARW) model. The study evaluates the impact of six microphysical (Lin, WSM6, Goddard, Thompson, Morrison and WDM6) parameterization schemes of the model on prediction of heavy rainfall event. In addition, model sensitivity has also been evaluated with six Planetary Boundary Layer (PBL) and two Land Surface Model (LSM) schemes. Model forecast was carried out using nested domain and the impact of model horizontal grid resolutions were assessed at 9 km, 6 km and 3 km. Analysis of the synoptic features using National Center for Environmental Prediction Global Forecast System (NCEP-GFS) analysis data revealed strong upper-level divergence and high moisture content at lower level were favorable for the occurrence of heavy rainfall event over the northeast coast of Tamil Nadu. The study signified that forecasted rainfall was more sensitive to the microphysics and PBL schemes compared to the LSM schemes. The model provided better forecast of the heavy rainfall event using the logical combination of Goddard microphysics, YSU PBL and Noah LSM schemes, and it was mostly attributed to timely initiation and development of the convective system. The forecast with different horizontal resolutions using cumulus parameterization indicated that the rainfall prediction was not well represented at 9 km and 6 km. The forecast with 3 km horizontal resolution provided better prediction in terms of timely initiation and development of the event. The study highlights that forecast of heavy rainfall events using a high-resolution mesoscale model with suitable representations of physical parameterization schemes are useful for disaster management and planning to minimize the potential loss of life and property.

  20. String operator formalism and functional intergal in the holomorphic representation

    International Nuclear Information System (INIS)

    Losev, A.S.; Morozov, A.Yu.; Rislyj, A.A.; Shatashvili, S.L.

    1989-01-01

    Connection between the continual integral over open Riemann surfaces and the operator formalism on closed Riemann surfaces is discussed. States of the operator formalism are the holomorphic representation of the continual integral

  1. Embedded data representations

    DEFF Research Database (Denmark)

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

    2017-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles...

  2. Group and representation theory

    CERN Document Server

    Vergados, J D

    2017-01-01

    This volume goes beyond the understanding of symmetries and exploits them in the study of the behavior of both classical and quantum physical systems. Thus it is important to study the symmetries described by continuous (Lie) groups of transformations. We then discuss how we get operators that form a Lie algebra. Of particular interest to physics is the representation of the elements of the algebra and the group in terms of matrices and, in particular, the irreducible representations. These representations can be identified with physical observables. This leads to the study of the classical Lie algebras, associated with unitary, unimodular, orthogonal and symplectic transformations. We also discuss some special algebras in some detail. The discussion proceeds along the lines of the Cartan-Weyl theory via the root vectors and root diagrams and, in particular, the Dynkin representation of the roots. Thus the representations are expressed in terms of weights, which are generated by the application of the elemen...

  3. Introduction to representation theory

    CERN Document Server

    Etingof, Pavel; Hensel, Sebastian; Liu, Tiankai; Schwendner, Alex

    2011-01-01

    Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a "holistic" introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic k...

  4. Threshold Signature Schemes Application

    Directory of Open Access Journals (Sweden)

    Anastasiya Victorovna Beresneva

    2015-10-01

    Full Text Available This work is devoted to an investigation of threshold signature schemes. The systematization of the threshold signature schemes was done, cryptographic constructions based on interpolation Lagrange polynomial, elliptic curves and bilinear pairings were examined. Different methods of generation and verification of threshold signatures were explored, the availability of practical usage of threshold schemes in mobile agents, Internet banking and e-currency was shown. The topics of further investigation were given and it could reduce a level of counterfeit electronic documents signed by a group of users.

  5. An Energy Decaying Scheme for Nonlinear Dynamics of Shells

    Science.gov (United States)

    Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.

  6. Covariant representations of nuclear *-algebras

    International Nuclear Information System (INIS)

    Moore, S.M.

    1978-01-01

    Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations

  7. CSR schemes in agribusiness

    DEFF Research Database (Denmark)

    Pötz, Katharina Anna; Haas, Rainer; Balzarova, Michaela

    2013-01-01

    of schemes that can be categorized on focus areas, scales, mechanisms, origins, types and commitment levels. Research limitations/implications – The findings contribute to conceptual and empirical research on existing models to compare and analyse CSR standards. Sampling technique and depth of analysis limit......Purpose – The rise of CSR followed a demand for CSR standards and guidelines. In a sector already characterized by a large number of standards, the authors seek to ask what CSR schemes apply to agribusiness, and how they can be systematically compared and analysed. Design....../methodology/approach – Following a deductive-inductive approach the authors develop a model to compare and analyse CSR schemes based on existing studies and on coding qualitative data on 216 CSR schemes. Findings – The authors confirm that CSR standards and guidelines have entered agribusiness and identify a complex landscape...

  8. Tabled Execution in Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  9. Convexity-preserving Bernstein–Bézier quartic scheme

    Directory of Open Access Journals (Sweden)

    Maria Hussain

    2014-07-01

    Full Text Available A C1 convex surface data interpolation scheme is presented to preserve the shape of scattered data arranged over a triangular grid. Bernstein–Bézier quartic function is used for interpolation. Lower bound of the boundary and inner Bézier ordinates is determined to guarantee convexity of surface. The developed scheme is flexible and involves more relaxed constraints.

  10. Evaluating statistical cloud schemes

    OpenAIRE

    Grützun, Verena; Quaas, Johannes; Morcrette , Cyril J.; Ament, Felix

    2015-01-01

    Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based re...

  11. Gamma spectrometry; level schemes

    International Nuclear Information System (INIS)

    Blachot, J.; Bocquet, J.P.; Monnand, E.; Schussler, F.

    1977-01-01

    The research presented dealt with: a new beta emitter, isomer of 131 Sn; the 136 I levels fed through the radioactive decay of 136 Te (20.9s); the A=145 chain (β decay of Ba, La and Ce, and level schemes for 145 La, 145 Ce, 145 Pr); the A=47 chain (La and Ce, β decay, and the level schemes of 147 Ce and 147 Pr) [fr

  12. Scheme of energy utilities

    International Nuclear Information System (INIS)

    2002-04-01

    This scheme defines the objectives relative to the renewable energies and the rational use of the energy in the framework of the national energy policy. It evaluates the needs and the potentialities of the regions and preconizes the actions between the government and the territorial organizations. The document is presented in four parts: the situation, the stakes and forecasts; the possible actions for new measures; the scheme management and the regional contributions analysis. (A.L.B.)

  13. Special functions and the theory of group representations

    CERN Document Server

    Vilenkin, N Ja

    1968-01-01

    A standard scheme for a relation between special functions and group representation theory is the following: certain classes of special functions are interpreted as matrix elements of irreducible representations of a certain Lie group, and then properties of special functions are related to (and derived from) simple well-known facts of representation theory. The book combines the majority of known results in this direction. In particular, the author describes connections between the exponential functions and the additive group of real numbers (Fourier analysis), Legendre and Jacobi polynomials and representations of the group SU(2), and the hypergeometric function and representations of the group SL(2,R), as well as many other classes of special functions.

  14. Schrodinger representation in renormalizable quantum field theory

    International Nuclear Information System (INIS)

    Symanzik, K.

    1983-01-01

    The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward

  15. Representations and Relations

    Czech Academy of Sciences Publication Activity Database

    Koťátko, Petr

    2014-01-01

    Roč. 21, č. 3 (2014), s. 282-302 ISSN 1335-0668 Institutional support: RVO:67985955 Keywords : representation * proposition * truth-conditions * belief-ascriptions * reference * externalism * fiction Subject RIV: AA - Philosophy ; Religion

  16. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  17. Boundary representation modelling techniques

    CERN Document Server

    2006-01-01

    Provides the most complete presentation of boundary representation solid modelling yet publishedOffers basic reference information for software developers, application developers and users Includes a historical perspective as well as giving a background for modern research.

  18. Polynomial representations of GLn

    CERN Document Server

    Green, James A; Erdmann, Karin

    2007-01-01

    The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.

  19. Polynomial representations of GLN

    CERN Document Server

    Green, James A

    1980-01-01

    The first half of this book contains the text of the first edition of LNM volume 830, Polynomial Representations of GLn. This classic account of matrix representations, the Schur algebra, the modular representations of GLn, and connections with symmetric groups, has been the basis of much research in representation theory. The second half is an Appendix, and can be read independently of the first. It is an account of the Littelmann path model for the case gln. In this case, Littelmann's 'paths' become 'words', and so the Appendix works with the combinatorics on words. This leads to the repesentation theory of the 'Littelmann algebra', which is a close analogue of the Schur algebra. The treatment is self- contained; in particular complete proofs are given of classical theorems of Schensted and Knuth.

  20. Procedural Media Representation

    OpenAIRE

    Henrysson, Anders

    2002-01-01

    We present a concept for using procedural techniques to represent media. Procedural methods allow us to represent digital media (2D images, 3D environments etc.) with very little information and to render it photo realistically. Since not all kind of content can be created procedurally, traditional media representations (bitmaps, polygons etc.) must be used as well. We have adopted an object-based media representation where an object can be represented either with a procedure or with its trad...

  1. Assessment of Planetary-Boundary-Layer Schemes in the Weather Research and Forecasting Model Within and Above an Urban Canopy Layer

    Science.gov (United States)

    Ferrero, Enrico; Alessandrini, Stefano; Vandenberghe, Francois

    2018-03-01

    We tested several planetary-boundary-layer (PBL) schemes available in the Weather Research and Forecasting (WRF) model against measured wind speed and direction, temperature and turbulent kinetic energy (TKE) at three levels (5, 9, 25 m). The Urban Turbulence Project dataset, gathered from the outskirts of Turin, Italy and used for the comparison, provides measurements made by sonic anemometers for more than 1 year. In contrast to other similar studies, which have mainly focused on short-time periods, we considered 2 months of measurements (January and July) representing both the seasonal and the daily variabilities. To understand how the WRF-model PBL schemes perform in an urban environment, often characterized by low wind-speed conditions, we first compared six PBL schemes against observations taken by the highest anemometer located in the inertial sub-layer. The availability of the TKE measurements allows us to directly evaluate the performances of the model; results of the model evaluation are presented in terms of quantile versus quantile plots and statistical indices. Secondly, we considered WRF-model PBL schemes that can be coupled to the urban-surface exchange parametrizations and compared the simulation results with measurements from the two lower anemometers located inside the canopy layer. We find that the PBL schemes accounting for TKE are more accurate and the model representation of the roughness sub-layer improves when the urban model is coupled to each PBL scheme.

  2. The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces

    KAUST Repository

    Chen, Yujia

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. Elliptic partial differential equations are important from both application and analysis points of view. In this paper we apply the closest point method to solve elliptic equations on general curved surfaces. Based on the closest point representation of the underlying surface, we formulate an embedding equation for the surface elliptic problem, then discretize it using standard finite differences and interpolation schemes on banded but uniform Cartesian grids. We prove the convergence of the difference scheme for the Poisson\\'s equation on a smooth closed curve. In order to solve the resulting large sparse linear systems, we propose a specific geometric multigrid method in the setting of the closest point method. Convergence studies in both the accuracy of the difference scheme and the speed of the multigrid algorithm show that our approaches are effective.

  3. Spatiotemporal representation of cardiac vectorcardiogram (VCG signals

    Directory of Open Access Journals (Sweden)

    Yang Hui

    2012-03-01

    Full Text Available Abstract Background Vectorcardiogram (VCG signals monitor both spatial and temporal cardiac electrical activities along three orthogonal planes of the body. However, the absence of spatiotemporal resolution in conventional VCG representations is a major impediment for medical interpretation and clinical usage of VCG. This is especially so because time-domain features of 12-lead ECG, instead of both spatial and temporal characteristics of VCG, are widely used for the automatic assessment of cardiac pathological patterns. Materials and methods We present a novel representation approach that captures critical spatiotemporal heart dynamics by displaying the real time motion of VCG cardiac vectors in a 3D space. Such a dynamic display can also be realized with only one lead ECG signal (e.g., ambulatory ECG through an alternative lag-reconstructed ECG representation from nonlinear dynamics principles. Furthermore, the trajectories are color coded with additional dynamical properties of space-time VCG signals, e.g., the curvature, speed, octant and phase angles to enhance the information visibility. Results In this investigation, spatiotemporal VCG signal representation is used to characterize various spatiotemporal pathological patterns for healthy control (HC, myocardial infarction (MI, atrial fibrillation (AF and bundle branch block (BBB. The proposed color coding scheme revealed that the spatial locations of the peak of T waves are in the Octant 6 for the majority (i.e., 74 out of 80 of healthy recordings in the PhysioNet PTB database. In contrast, the peak of T waves from 31.79% (117/368 of MI subjects are found to remain in Octant 6 and the rest (68.21% spread over all other octants. The spatiotemporal VCG signal representation is shown to capture the same important heart characteristics as the 12-lead ECG plots and more. Conclusions Spatiotemporal VCG signal representation is shown to facilitate the characterization of space-time cardiac

  4. Towards Symbolic Encryption Schemes

    DEFF Research Database (Denmark)

    Ahmed, Naveed; Jensen, Christian D.; Zenner, Erik

    2012-01-01

    , namely an authenticated encryption scheme that is secure under chosen ciphertext attack. Therefore, many reasonable encryption schemes, such as AES in the CBC or CFB mode, are not among the implementation options. In this paper, we report new attacks on CBC and CFB based implementations of the well......Symbolic encryption, in the style of Dolev-Yao models, is ubiquitous in formal security models. In its common use, encryption on a whole message is specified as a single monolithic block. From a cryptographic perspective, however, this may require a resource-intensive cryptographic algorithm......-known Needham-Schroeder and Denning-Sacco protocols. To avoid such problems, we advocate the use of refined notions of symbolic encryption that have natural correspondence to standard cryptographic encryption schemes....

  5. Compact Spreader Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  6. Knowledge representation and use. II. Representations

    Energy Technology Data Exchange (ETDEWEB)

    Lauriere, J L

    1982-03-01

    The use of computers is less and less restricted to numerical and data processing. On the other hand, current software mostly contains algorithms on universes with complete information. The paper discusses a different family of programs: expert systems are designed as aids in human reasoning in various specific areas. Symbolic knowledge manipulation, uncertain and incomplete deduction capabilities, natural communication with humans in non-procedural ways are their essential features. This part is mainly a reflection and a debate about the various modes of acquisition and representation of human knowledge. 32 references.

  7. Efficient 2-D DCT Computation from an Image Representation Point of View

    OpenAIRE

    Papakostas, G.A.; Koulouriotis, D.E.; Karakasis, E.G.

    2009-01-01

    A novel methodology that ensures the computation of 2-D DCT coefficients in gray-scale images as well as in binary ones, with high computation rates, was presented in the previous sections. Through a new image representation scheme, called ISR (Image Slice Representation) the 2-D DCT coefficients can be computed in significantly reduced time, with the same accuracy.

  8. Efficient Computations and Representations of Visible Surfaces.

    Science.gov (United States)

    1979-12-01

    position as stated. The smooth contour generator may lie along a sharp ridge, for instance. Richards & Stevens -28- 6m lace contout s ?S ,.......... ceoonec...From understanding computation to understanding neural circuitry. Neurosci. Res. Prog. Bull. 13. 470-488. Metelli, F. 1970 An algebraic development of

  9. TLC scheme for numerical solution of the transport equation on equilateral triangular meshes

    International Nuclear Information System (INIS)

    Walters, W.F.

    1983-01-01

    A new triangular linear characteristic TLC scheme for numerically solving the transport equation on equilateral triangular meshes has been developed. This scheme uses the analytic solution of the transport equation in the triangle as its basis. The data on edges of the triangle are assumed linear as is the source representation. A characteristic approach or nodal approach is used to obtain the analytic solution. Test problems indicate that the new TLC is superior to the widely used DITRI scheme for accuracy

  10. 4. Payment Schemes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Electronic Commerce - Payment Schemes. V Rajaraman. Series Article Volume 6 Issue 2 February 2001 pp 6-13. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/02/0006-0013 ...

  11. Contract saving schemes

    NARCIS (Netherlands)

    Ronald, R.; Smith, S.J.; Elsinga, M.; Eng, O.S.; Fox O'Mahony, L.; Wachter, S.

    2012-01-01

    Contractual saving schemes for housing are institutionalised savings programmes normally linked to rights to loans for home purchase. They are diverse types as they have been developed differently in each national context, but normally fall into categories of open, closed, compulsory, and ‘free

  12. Alternative reprocessing schemes evaluation

    International Nuclear Information System (INIS)

    1979-02-01

    This paper reviews the parameters which determine the inaccessibility of the plutonium in reprocessing plants. Among the various parameters, the physical and chemical characteristics of the materials, the various processing schemes and the confinement are considered. The emphasis is placed on that latter parameter, and the advantages of an increased confinement in the socalled PIPEX reprocessing plant type are presented

  13. Introduction to association schemes

    NARCIS (Netherlands)

    Seidel, J.J.

    1991-01-01

    The present paper gives an introduction to the theory of association schemes, following Bose-Mesner (1959), Biggs (1974), Delsarte (1973), Bannai-Ito (1984) and Brouwer-Cohen-Neumaier (1989). Apart from definitions and many examples, also several proofs and some problems are included. The paragraphs

  14. Reaction schemes of immunoanalysis

    International Nuclear Information System (INIS)

    Delaage, M.; Barbet, J.

    1991-01-01

    The authors apply a general theory for multiple equilibria to the reaction schemes of immunoanalysis, competition and sandwich. This approach allows the manufacturer to optimize the system and provide the user with interpolation functions for the standard curve and its first derivative as well, thus giving access to variance [fr

  15. Alternative health insurance schemes

    DEFF Research Database (Denmark)

    Keiding, Hans; Hansen, Bodil O.

    2002-01-01

    In this paper, we present a simple model of health insurance with asymmetric information, where we compare two alternative ways of organizing the insurance market. Either as a competitive insurance market, where some risks remain uninsured, or as a compulsory scheme, where however, the level...... competitive insurance; this situation turns out to be at least as good as either of the alternatives...

  16. Operator representations of frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Hasannasab, Marzieh

    2017-01-01

    of the properties of the operator T requires more work. For example it is a delicate issue to obtain a representation with a bounded operator, and the availability of such a representation not only depends on the frame considered as a set, but also on the chosen indexing. Using results from operator theory we show......The purpose of this paper is to consider representations of frames {fk}k∈I in a Hilbert space ℋ of the form {fk}k∈I = {Tkf0}k∈I for a linear operator T; here the index set I is either ℤ or ℒ0. While a representation of this form is available under weak conditions on the frame, the analysis...... that by embedding the Hilbert space ℋ into a larger Hilbert space, we can always represent a frame via iterations of a bounded operator, composed with the orthogonal projection onto ℋ. The paper closes with a discussion of an open problem concerning representations of Gabor frames via iterations of a bounded...

  17. Representation Elements of Spatial Thinking

    Science.gov (United States)

    Fiantika, F. R.

    2017-04-01

    This paper aims to add a reference in revealing spatial thinking. There several definitions of spatial thinking but it is not easy to defining it. We can start to discuss the concept, its basic a forming representation. Initially, the five sense catch the natural phenomenon and forward it to memory for processing. Abstraction plays a role in processing information into a concept. There are two types of representation, namely internal representation and external representation. The internal representation is also known as mental representation; this representation is in the human mind. The external representation may include images, auditory and kinesthetic which can be used to describe, explain and communicate the structure, operation, the function of the object as well as relationships. There are two main elements, representations properties and object relationships. These elements play a role in forming a representation.

  18. Mobilities and Representations

    DEFF Research Database (Denmark)

    Thelle, Mikkel

    2017-01-01

    to consider how they and their peers are currently confronting representations of mobility. This is particularly timely given the growing academic focus on practices, material mediation, and nonrepresentational theories, as well as on bodily reactions, emotions, and feelings that, according to those theories......As the centerpiece of the eighth T2M yearbook, the following interview about representations of mobility signals a new and exciting focus area for Mobility in History. In future issues we hope to include reviews that grapple more with how mobilities have been imagined and represented in the arts......, literature, and film. Moreover, we hope the authors of future reviews will reflect on the ways they approached those representations. Such commentaries would provide valuable methodological insights, and we hope to begin that effort with this interview. We have asked four prominent mobility scholars...

  19. Memetics of representation

    Directory of Open Access Journals (Sweden)

    Roberto De Rubertis

    2012-06-01

    Full Text Available This article will discuss about the physiological genesis of representation and then it will illustrate the developments, especially in evolutionary perspective, and it will show how these are mainly a result of accidental circumstances, rather than of deliberate intention of improvement. In particular, it will be argue that the representation has behaved like a meme that has arrived to its own progressive evolution coming into symbiosis with the different cultures in which it has spread, and using in this activity human work “unconsciously”. Finally it will be shown how in this action the geometry is an element key, linked to representation both to construct images using graphics operations and to erect buildings using concrete operations.

  20. Post-representational cartography

    Directory of Open Access Journals (Sweden)

    Rob Kitchin

    2010-03-01

    Full Text Available Over the past decade there has been a move amongst critical cartographers to rethink maps from a post-representational perspective – that is, a vantage point that does not privilege representational modes of thinking (wherein maps are assumed to be mirrors of the world and automatically presumes the ontological security of a map as a map, but rather rethinks and destabilises such notions. This new theorisation extends beyond the earlier critiques of Brian Harley (1989 that argued maps were social constructions. For Harley a map still conveyed the truth of a landscape, albeit its message was bound within the ideological frame of its creator. He thus advocated a strategy of identifying the politics of representation within maps in order to circumnavigate them (to reveal the truth lurking underneath, with the ontology of cartographic practice remaining unquestioned.

  1. Introduction to computer data representation

    CERN Document Server

    Fenwick, Peter

    2014-01-01

    Introduction to Computer Data Representation introduces readers to the representation of data within computers. Starting from basic principles of number representation in computers, the book covers the representation of both integer and floating point numbers, and characters or text. It comprehensively explains the main techniques of computer arithmetic and logical manipulation. The book also features chapters covering the less usual topics of basic checksums and 'universal' or variable length representations for integers, with additional coverage of Gray Codes, BCD codes and logarithmic repre

  2. Representation Discovery using Harmonic Analysis

    CERN Document Server

    Mahadevan, Sridhar

    2008-01-01

    Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu

  3. Additive and polynomial representations

    CERN Document Server

    Krantz, David H; Suppes, Patrick

    1971-01-01

    Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz

  4. On the spinor representation

    Energy Technology Data Exchange (ETDEWEB)

    Hoff da Silva, J.M.; Rogerio, R.J.B. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Villalobos, C.H.C. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil); Rocha, Roldao da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)

    2017-07-15

    A systematic study of the spinor representation by means of the fermionic physical space is accomplished and implemented. The spinor representation space is shown to be constrained by the Fierz-Pauli-Kofink identities among the spinor bilinear covariants. A robust geometric and topological structure can be manifested from the spinor space, wherein the first and second homotopy groups play prominent roles on the underlying physical properties, associated to fermionic fields. The mapping that changes spinor fields classes is then exemplified, in an Einstein-Dirac system that provides the spacetime generated by a fermion. (orig.)

  5. On Converting Secret Sharing Scheme to Visual Secret Sharing Scheme

    Directory of Open Access Journals (Sweden)

    Wang Daoshun

    2010-01-01

    Full Text Available Abstract Traditional Secret Sharing (SS schemes reconstruct secret exactly the same as the original one but involve complex computation. Visual Secret Sharing (VSS schemes decode the secret without computation, but each share is m times as big as the original and the quality of the reconstructed secret image is reduced. Probabilistic visual secret sharing (Prob.VSS schemes for a binary image use only one subpixel to share the secret image; however the probability of white pixels in a white area is higher than that in a black area in the reconstructed secret image. SS schemes, VSS schemes, and Prob. VSS schemes have various construction methods and advantages. This paper first presents an approach to convert (transform a -SS scheme to a -VSS scheme for greyscale images. The generation of the shadow images (shares is based on Boolean XOR operation. The secret image can be reconstructed directly by performing Boolean OR operation, as in most conventional VSS schemes. Its pixel expansion is significantly smaller than that of VSS schemes. The quality of the reconstructed images, measured by average contrast, is the same as VSS schemes. Then a novel matrix-concatenation approach is used to extend the greyscale -SS scheme to a more general case of greyscale -VSS scheme.

  6. Hilbert schemes of points and Heisenberg algebras

    International Nuclear Information System (INIS)

    Ellingsrud, G.; Goettsche, L.

    2000-01-01

    Let X [n] be the Hilbert scheme of n points on a smooth projective surface X over the complex numbers. In these lectures we describe the action of the Heisenberg algebra on the direct sum of the cohomologies of all the X [n] , which has been constructed by Nakajima. In the second half of the lectures we study the relation of the Heisenberg algebra action and the ring structures of the cohomologies of the X [n] , following recent work of Lehn. In particular we study the Chern and Segre classes of tautological vector bundles on the Hilbert schemes X [n] . (author)

  7. Selectively strippable paint schemes

    Science.gov (United States)

    Stein, R.; Thumm, D.; Blackford, Roger W.

    1993-03-01

    In order to meet the requirements of more environmentally acceptable paint stripping processes many different removal methods are under evaluation. These new processes can be divided into mechanical and chemical methods. ICI has developed a paint scheme with intermediate coat and fluid resistant polyurethane topcoat which can be stripped chemically in a short period of time with methylene chloride free and phenol free paint strippers.

  8. Going beyond representational anthropology

    DEFF Research Database (Denmark)

    Winther, Ida Wentzel

    Going beyond representational anthropology: Re-presenting bodily, emotional and virtual practices in everyday life. Separated youngsters and families in Greenland Greenland is a huge island, with a total of four high-schools. Many youngsters (age 16-18) move far away from home in order to get...

  9. Reflection on Political Representation

    DEFF Research Database (Denmark)

    Kusche, Isabel

    2017-01-01

    This article compares how Members of Parliament in the United Kingdom and Ireland reflect on constituency service as an aspect of political representation. It differs from existing research on the constituency role of MPs in two regards. First, it approaches the question from a sociological viewp...

  10. Social representations about cancer

    Directory of Open Access Journals (Sweden)

    Andreja Cirila Škufca

    2003-09-01

    Full Text Available In this article we are presenting the results of the comparison study on social representations and causal attributions about cancer. We compared a breast cancer survivors group and control group without own experience of cancer of their own. Although social representations about cancer differ in each group, they are closely related to the concept of suffering, dying and death. We found differences in causal attribution of cancer. In both groups we found a category of risky behavior, which attributes a responsibility for a disease to an individual. Besides these factors we found predominate stress and psychological influences in cancer survivors group. On the other hand control group indicated factors outside the ones control e.g. heredity and environmental factors. Representations about a disease inside person's social space are important in co-shaping the individual process of coping with own disease. Since these representations are not always coherent with the knowledge of modern medicine their knowledge and appreciation in the course of treatment is of great value. We find the findingss of applied social psychology important as starting points in the therapeutic work with patients.

  11. The Problem of Representation

    Science.gov (United States)

    Tervo, Juuso

    2012-01-01

    In "Postphysical Vision: Art Education's Challenge in an Age of Globalized Aesthetics (AMondofesto)" (2008) and "Beyond Aesthetics: Returning Force and Truth to Art and Its Education" (2009), jan jagodzinski argued for politics that go "beyond" representation--a project that radically questions visual culture…

  12. Women and political representation.

    Science.gov (United States)

    Rathod, P B

    1999-01-01

    A remarkable progress in women's participation in politics throughout the world was witnessed in the final decade of the 20th century. According to the Inter-Parliamentary Union report, there were only eight countries with no women in their legislatures in 1998. The number of women ministers at the cabinet level worldwide doubled in a decade, and the number of countries without any women ministers dropped from 93 to 48 during 1987-96. However, this progress is far from satisfactory. Political representation of women, minorities, and other social groups is still inadequate. This may be due to a complex combination of socioeconomic, cultural, and institutional factors. The view that women's political participation increases with social and economic development is supported by data from the Nordic countries, where there are higher proportions of women legislators than in less developed countries. While better levels of socioeconomic development, having a women-friendly political culture, and higher literacy are considered favorable factors for women's increased political representation, adopting one of the proportional representation systems (such as a party-list system, a single transferable vote system, or a mixed proportional system with multi-member constituencies) is the single factor most responsible for the higher representation of women.

  13. Scalable Nonlinear Compact Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  14. Parallel S/sub n/ iteration schemes

    International Nuclear Information System (INIS)

    Wienke, B.R.; Hiromoto, R.E.

    1986-01-01

    The iterative, multigroup, discrete ordinates (S/sub n/) technique for solving the linear transport equation enjoys widespread usage and appeal. Serial iteration schemes and numerical algorithms developed over the years provide a timely framework for parallel extension. On the Denelcor HEP, the authors investigate three parallel iteration schemes for solving the one-dimensional S/sub n/ transport equation. The multigroup representation and serial iteration methods are also reviewed. This analysis represents a first attempt to extend serial S/sub n/ algorithms to parallel environments and provides good baseline estimates on ease of parallel implementation, relative algorithm efficiency, comparative speedup, and some future directions. The authors examine ordered and chaotic versions of these strategies, with and without concurrent rebalance and diffusion acceleration. Two strategies efficiently support high degrees of parallelization and appear to be robust parallel iteration techniques. The third strategy is a weaker parallel algorithm. Chaotic iteration, difficult to simulate on serial machines, holds promise and converges faster than ordered versions of the schemes. Actual parallel speedup and efficiency are high and payoff appears substantial

  15. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  16. Estimating plume dispersion: a comparison of several sigma schemes

    International Nuclear Information System (INIS)

    Irwin, J.S.

    1983-01-01

    The lateral and vertical Gaussian plume dispersion parameters are estimated and compared with field tracer data collected at 11 sites. The dispersion parameter schemes used in this analysis include Cramer's scheme, suggested for tall stack dispersion estimates, Draxler's scheme, suggested for elevated and surface releases, Pasquill's scheme, suggested for interim use in dispersion estimates, and the Pasquill--Gifford scheme using Turner's technique for assigning stability categories. The schemes suggested by Cramer, Draxler and Pasquill estimate the dispersion parameters using onsite measurements of the vertical and lateral wind-velocity variances at the effective release height. The performances of these schemes in estimating the dispersion parameters are compared with that of the Pasquill--Gifford scheme, using the Prairie Grass and Karlsruhe data. For these two experiments, the estimates of the dispersion parameters using Draxler's scheme correlate better with the measurements than did estimates using the Pasquill--Gifford scheme. Comparison of the dispersion parameter estimates with the measurement suggests that Draxler's scheme for characterizing the dispersion results in the smallest mean fractional error in the estimated dispersion parameters and the smallest variance of the fractional errors

  17. Technical note: A hydrological routing scheme for the Ecosystem Demography model (ED2+R tested in the Tapajós River basin in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    F. F. Pereira

    2017-09-01

    Full Text Available Land surface models are excellent tools for studying how climate change and land use affect surface hydrology. However, in order to assess the impacts of Earth processes on river flows, simulated changes in runoff need to be routed through the landscape. In this technical note, we describe the integration of the Ecosystem Demography (ED2 model with a hydrological routing scheme. The purpose of the study was to create a tool capable of incorporating to hydrological predictions the terrestrial ecosystem responses to climate, carbon dioxide, and land-use change, as simulated with terrestrial biosphere models. The resulting ED2+R model calculates the lateral routing of surface and subsurface runoff resulting from the terrestrial biosphere models' vertical water balance in order to determine spatiotemporal patterns of river flows within the simulated region. We evaluated the ED2+R model in the Tapajós, a 476 674 km2 river basin in the southeastern Amazon, Brazil. The results showed that the integration of ED2 with the lateral routing scheme results in an adequate representation (Nash–Sutcliffe efficiency up to 0.76, Kling–Gupta efficiency up to 0.86, Pearson's R up to 0.88, and volume ratio up to 1.06 of daily to decadal river flow dynamics in the Tapajós. These results are a consistent step forward with respect to the no river representation common among terrestrial biosphere models, such as the initial version of ED2.

  18. ESCAP mobile training scheme.

    Science.gov (United States)

    Yasas, F M

    1977-01-01

    In response to a United Nations resolution, the Mobile Training Scheme (MTS) was set up to provide training to the trainers of national cadres engaged in frontline and supervisory tasks in social welfare and rural development. The training is innovative in its being based on an analysis of field realities. The MTS team consisted of a leader, an expert on teaching methods and materials, and an expert on action research and evaluation. The country's trainers from different departments were sent to villages to work for a short period and to report their problems in fulfilling their roles. From these grass roots experiences, they made an analysis of the job, determining what knowledge, attitude and skills it required. Analysis of daily incidents and problems were used to produce indigenous teaching materials drawn from actual field practice. How to consider the problems encountered through government structures for policy making and decisions was also learned. Tasks of the students were to identify the skills needed for role performance by job analysis, daily diaries and project histories; to analyze the particular community by village profiles; to produce indigenous teaching materials; and to practice the role skills by actual role performance. The MTS scheme was tried in Nepal in 1974-75; 3 training programs trained 25 trainers and 51 frontline workers; indigenous teaching materials were created; technical papers written; and consultations were provided. In Afghanistan the scheme was used in 1975-76; 45 participants completed the training; seminars were held; and an ongoing Council was created. It is hoped that the training program will be expanded to other countries.

  19. Bonus schemes and trading activity

    NARCIS (Netherlands)

    Pikulina, E.S.; Renneboog, L.D.R.; ter Horst, J.R.; Tobler, P.N.

    2014-01-01

    Little is known about how different bonus schemes affect traders' propensity to trade and which bonus schemes improve traders' performance. We study the effects of linear versus threshold bonus schemes on traders' behavior. Traders buy and sell shares in an experimental stock market on the basis of

  20. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  1. Succesful labelling schemes

    DEFF Research Database (Denmark)

    Juhl, Hans Jørn; Stacey, Julia

    2001-01-01

    . In the spring of 2001 MAPP carried out an extensive consumer study with special emphasis on the Nordic environmentally friendly label 'the swan'. The purpose was to find out how much consumers actually know and use various labelling schemes. 869 households were contacted and asked to fill in a questionnaire...... it into consideration when I go shopping. The respondent was asked to pick the most suitable answer, which described her use of each label. 29% - also called 'the labelling blind' - responded that they basically only knew the recycling label and the Government controlled organic label 'Ø-mærket'. Another segment of 6...

  2. Scheme of stepmotor control

    International Nuclear Information System (INIS)

    Grashilin, V.A.; Karyshev, Yu.Ya.

    1982-01-01

    A 6-cycle scheme of step motor is described. The block-diagram and the basic circuit of the step motor control are presented. The step motor control comprises a pulse shaper, electronic commutator and power amplifiers. The step motor supply from 6-cycle electronic commutator provides for higher reliability and accuracy than from 3-cycle commutator. The control of step motor work is realised by the program given by the external source of control signals. Time-dependent diagrams for step motor control are presented. The specifications of the step-motor is given

  3. Constructing visual representations

    DEFF Research Database (Denmark)

    Huron, Samuel; Jansen, Yvonne; Carpendale, Sheelagh

    2014-01-01

    tangible building blocks. We learned that all participants, most of whom had little experience in visualization authoring, were readily able to create and talk about their own visualizations. Based on our observations, we discuss participants’ actions during the development of their visual representations......The accessibility of infovis authoring tools to a wide audience has been identified as a major research challenge. A key task in the authoring process is the development of visual mappings. While the infovis community has long been deeply interested in finding effective visual mappings......, comparatively little attention has been placed on how people construct visual mappings. In this paper, we present the results of a study designed to shed light on how people transform data into visual representations. We asked people to create, update and explain their own information visualizations using only...

  4. Naturalising Representational Content

    Science.gov (United States)

    Shea, Nicholas

    2014-01-01

    This paper sets out a view about the explanatory role of representational content and advocates one approach to naturalising content – to giving a naturalistic account of what makes an entity a representation and in virtue of what it has the content it does. It argues for pluralism about the metaphysics of content and suggests that a good strategy is to ask the content question with respect to a variety of predictively successful information processing models in experimental psychology and cognitive neuroscience; and hence that data from psychology and cognitive neuroscience should play a greater role in theorising about the nature of content. Finally, the contours of the view are illustrated by drawing out and defending a surprising consequence: that individuation of vehicles of content is partly externalist. PMID:24563661

  5. Knowledge Representation and Ontologies

    Science.gov (United States)

    Grimm, Stephan

    Knowledge representation and reasoning aims at designing computer systems that reason about a machine-interpretable representation of the world. Knowledge-based systems have a computational model of some domain of interest in which symbols serve as surrogates for real world domain artefacts, such as physical objects, events, relationships, etc. [1]. The domain of interest can cover any part of the real world or any hypothetical system about which one desires to represent knowledge for com-putational purposes. A knowledge-based system maintains a knowledge base, which stores the symbols of the computational model in the form of statements about the domain, and it performs reasoning by manipulating these symbols. Applications can base their decisions on answers to domain-relevant questions posed to a knowledge base.

  6. Improving the representation of radiation interception and photosynthesis for climate model applications

    International Nuclear Information System (INIS)

    Mercado, Lina M.; Huntingford, Chris; Gash, John H.C.; Cox, Peter M.; Jogireddy, Venkata

    2007-01-01

    The Joint UK Land Environment Simulator (JULES) (which is based on Met Office Surface Exchange Scheme MOSES), the land surface scheme of the Hadley Centre General Circulation Models (GCM) has been improved to contain an explicit description of light interception for different canopy levels, which consequently leads to a multilayer approach to scaling from leaf to canopy level photosynthesis. We test the improved JULES model at a site in the Amazonian rainforest by comparing against measurements of vertical profiles of radiation through the canopy, eddy covariance measurements of carbon and energy fluxes, and also measurements of carbon isotopic fractionation from top canopy leaves. Overall, the new light interception formulation improves modelled photosynthetic carbon uptake compared to the standard big leaf approach used in the original JULES formulation. Additional model improvement was not significant when incorporating more realistic vertical variation of photosynthetic capacity. Even with the improved representation of radiation interception, JULES simulations of net carbon uptake underestimate eddy covariance measurements by 14%. This discrepancy can be removed by either increasing the photosynthetic capacity throughout the canopy or by explicitly including light inhibition of leaf respiration. Along with published evidence of such inhibition of leaf respiration, our study suggests this effect should be considered for inclusion in other GCMs

  7. A Description Logic Based Knowledge Representation Model for Concept Understanding

    DEFF Research Database (Denmark)

    Badie, Farshad

    2017-01-01

    This research employs Description Logics in order to focus on logical description and analysis of the phenomenon of ‘concept understanding’. The article will deal with a formal-semantic model for figuring out the underlying logical assumptions of ‘concept understanding’ in knowledge representation...... systems. In other words, it attempts to describe a theoretical model for concept understanding and to reflect the phenomenon of ‘concept understanding’ in terminological knowledge representation systems. Finally, it will design an ontology that schemes the structure of concept understanding based...

  8. Divergence from factorizable distributions and matroid representations by partitions

    Czech Academy of Sciences Publication Activity Database

    Matúš, František

    2009-01-01

    Roč. 55, č. 12 (2009), s. 5375-5381 ISSN 0018-9448 R&D Projects: GA AV ČR IAA100750603; GA ČR GA201/04/0393 Institutional research plan: CEZ:AV0Z10750506 Keywords : Information divergence * relative entropy * Shannon entropy * exponential family * hierarchical model * log-linear model * contingency table * Gibbs distribution * matroid representation * secret sharing scheme * maximum likelihood. Subject RIV: BA - General Mathematics Impact factor: 2.357, year: 2009 http://library.utia.cas.cz/separaty/2009/MTR/matus-divergence from factorizable distributions and matroid representations by partitions.pdf

  9. Europe representations in textbooks

    OpenAIRE

    Brennetot , Arnaud

    2011-01-01

    This EuroBroadMap working paper presents an analysis of textbooks dealing with the representations of Europe and European Union. In most of these textbooks from secondary school, the teaching of the geography of Europe precedes the evocation of the EU. Europe is often depicted as a given object, reduced to a number of structural aspects (relief, climate, demography, traditional cultures, economic activities, etc.) whose only common point is their location within conventional boundaries. Such ...

  10. Non-Representational Theory

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2016-01-01

    Dette kapitel gennemgår den såkaldte ”Non-Representational Theory” (NRT), der primært er kendt fra den Angelsaksiske humangeografi, og som særligt er blevet fremført af den engelske geograf Nigel Thrift siden midten af 2000 årtiet. Da positionen ikke kan siges at være specielt homogen vil kapitlet...

  11. Harmonic Analysis and Group Representation

    CERN Document Server

    Figa-Talamanca, Alessandro

    2011-01-01

    This title includes: Lectures - A. Auslander, R. Tolimeri - Nilpotent groups and abelian varieties, M Cowling - Unitary and uniformly bounded representations of some simple Lie groups, M. Duflo - Construction de representations unitaires d'un groupe de Lie, R. Howe - On a notion of rank for unitary representations of the classical groups, V.S. Varadarajan - Eigenfunction expansions of semisimple Lie groups, and R. Zimmer - Ergodic theory, group representations and rigidity; and, Seminars - A. Koranyi - Some applications of Gelfand pairs in classical analysis.

  12. Functional representations for quantized fields

    International Nuclear Information System (INIS)

    Jackiw, R.

    1988-01-01

    This paper provides information on Representing transformations in quantum theory bosonic quantum field theories: Schrodinger Picture; Represnting Transformations in Bosonic Quantum Field Theory; Two-Dimensional Conformal Transformations, Schrodinger picture representation, Fock space representation, Inequivalent Schrodinger picture representations; Discussion, Self-Dual and Other Models; Field Theory in de Sitter Space. Fermionic Quantum Field Theories: Schroedinger Picture; Schrodinger Picture Representation for Two-Dimensional; Conformal Transformations; Fock Space Dynamics in the Schrodinger Picture; Fock Space Evaluation of Anomalous Current and Conformal Commutators

  13. Pioneers of representation theory

    CERN Document Server

    Curtis, Charles W

    1999-01-01

    The year 1897 was marked by two important mathematical events: the publication of the first paper on representations of finite groups by Ferdinand Georg Frobenius (1849-1917) and the appearance of the first treatise in English on the theory of finite groups by William Burnside (1852-1927). Burnside soon developed his own approach to representations of finite groups. In the next few years, working independently, Frobenius and Burnside explored the new subject and its applications to finite group theory. They were soon joined in this enterprise by Issai Schur (1875-1941) and some years later, by Richard Brauer (1901-1977). These mathematicians' pioneering research is the subject of this book. It presents an account of the early history of representation theory through an analysis of the published work of the principals and others with whom the principals' work was interwoven. Also included are biographical sketches and enough mathematics to enable readers to follow the development of the subject. An introductor...

  14. Cohen-Macaulay representations

    CERN Document Server

    Leuschke, Graham J

    2012-01-01

    This book is a comprehensive treatment of the representation theory of maximal Cohen-Macaulay (MCM) modules over local rings. This topic is at the intersection of commutative algebra, singularity theory, and representations of groups and algebras. Two introductory chapters treat the Krull-Remak-Schmidt Theorem on uniqueness of direct-sum decompositions and its failure for modules over local rings. Chapters 3-10 study the central problem of classifying the rings with only finitely many indecomposable MCM modules up to isomorphism, i.e., rings of finite CM type. The fundamental material--ADE/simple singularities, the double branched cover, Auslander-Reiten theory, and the Brauer-Thrall conjectures--is covered clearly and completely. Much of the content has never before appeared in book form. Examples include the representation theory of Artinian pairs and Burban-Drozd's related construction in dimension two, an introduction to the McKay correspondence from the point of view of maximal Cohen-Macaulay modules, Au...

  15. Packet reversed packet combining scheme

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2006-07-01

    The packet combining scheme is a well defined simple error correction scheme with erroneous copies at the receiver. It offers higher throughput combined with ARQ protocols in networks than that of basic ARQ protocols. But packet combining scheme fails to correct errors when the errors occur in the same bit locations of two erroneous copies. In the present work, we propose a scheme that will correct error if the errors occur at the same bit location of the erroneous copies. The proposed scheme when combined with ARQ protocol will offer higher throughput. (author)

  16. A full quantum network scheme

    International Nuclear Information System (INIS)

    Ma Hai-Qiang; Wei Ke-Jin; Yang Jian-Hui; Li Rui-Xue; Zhu Wu

    2014-01-01

    We present a full quantum network scheme using a modified BB84 protocol. Unlike other quantum network schemes, it allows quantum keys to be distributed between two arbitrary users with the help of an intermediary detecting user. Moreover, it has good expansibility and prevents all potential attacks using loopholes in a detector, so it is more practical to apply. Because the fiber birefringence effects are automatically compensated, the scheme is distinctly stable in principle and in experiment. The simple components for every user make our scheme easier for many applications. The experimental results demonstrate the stability and feasibility of this scheme. (general)

  17. Scheme for Quantum Computing Immune to Decoherence

    Science.gov (United States)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report

  18. MIDI Programming in Scheme

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2010-01-01

    makes it possible to carry out systematic modifications and transformations of MIDI contents with use of pure functional programming. Side by side with the XML-inspired MIDI language, the paper describes an Emacs-based, textual programming environment that supports the MIDI programming process....... The programming environment also supports a variety of interactive features - similar to MIDI sequencers - but restricted to a textual representation of the music. The main contributions of the work are considered to be (1) An accumulated MIDI function library, which can transform MIDI files in many non......-trivial ways; (2) A proposed working process alternating between creative mode and programmatic editing mode within a MIDI programming environment; and (3) A textual MIDI programming environment with embedded support of many interactive, MIDI-related functionalities....

  19. Surface hopping simulation of vibrational predissociation of methanol dimer

    Science.gov (United States)

    Jiang, Ruomu; Sibert, Edwin L.

    2012-06-01

    The mixed quantum-classical surface hopping method is applied to the vibrational predissociation of methanol dimer, and the results are compared to more exact quantum calculations. Utilizing the vibrational SCF basis, the predissociation problem is cast into a curve crossing problem between dissociative and quasibound surfaces with different vibrational character. The varied features of the dissociative surfaces, arising from the large amplitude OH torsion, generate rich predissociation dynamics. The fewest switches surface hopping algorithm of Tully [J. Chem. Phys. 93, 1061 (1990), 10.1063/1.459170] is applied to both diabatic and adiabatic representations. The comparison affords new insight into the criterion for selecting the suitable representation. The adiabatic method's difficulty with low energy trajectories is highlighted. In the normal crossing case, the diabatic calculations yield good results, albeit showing its limitation in situations where tunneling is important. The quadratic scaling of the rates on coupling strength is confirmed. An interesting resonance behavior is identified and is dealt with using a simple decoherence scheme. For low lying dissociative surfaces that do not cross the quasibound surface, the diabatic method tends to overestimate the predissociation rate whereas the adiabatic method is qualitatively correct. Analysis reveals the major culprits involve Rabi-like oscillation, treatment of classically forbidden hops, and overcoherence. Improvements of the surface hopping results are achieved by adopting a few changes to the original surface hopping algorithms.

  20. Categorification and higher representation theory

    CERN Document Server

    Beliakova, Anna

    2017-01-01

    The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorified representation theory, or higher representation theory, aims to understand a new level of structure present in representation theory. Rather than studying actions of algebras on vector spaces where algebra elements act by linear endomorphisms of the vector space, higher representation theory describes the structure present when algebras act on categories, with algebra elements acting by functors. The new level of structure in higher representation theory arises by studying the natural transformations between functors. This enhanced perspective brings into play a powerful new set of tools that deepens our understanding of traditional representation theory. This volume exhibits some of the current trends in higher representation theory and the diverse te...

  1. Fractional Delayer Utilizing Hermite Interpolation with Caratheodory Representation

    Directory of Open Access Journals (Sweden)

    Qiang DU

    2018-04-01

    Full Text Available Fractional delay is indispensable for many sorts of circuits and signal processing applications. Fractional delay filter (FDF utilizing Hermite interpolation with an analog differentiator is a straightforward way to delay discrete signals. This method has a low time-domain error, but a complicated sampling module than the Shannon sampling scheme. A simplified scheme, which is based on Shannon sampling and utilizing Hermite interpolation with a digital differentiator, will lead a much higher time-domain error when the signal frequency approaches the Nyquist rate. In this letter, we propose a novel fractional delayer utilizing Hermite interpolation with Caratheodory representation. The samples of differential signal are obtained by Caratheodory representation from the samples of the original signal only. So, only one sampler is needed and the sampling module is simple. Simulation results for four types of signals demonstrate that the proposed method has significantly higher interpolation accuracy than Hermite interpolation with digital differentiator.

  2. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    International Nuclear Information System (INIS)

    Smedley-Stevenson, Richard P.; McClarren, Ryan G.

    2015-01-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes

  3. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, Richard P., E-mail: richard.smedley-stevenson@awe.co.uk [AWE PLC, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); McClarren, Ryan G., E-mail: rmcclarren@ne.tamu.edu [Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843-3133 (United States)

    2015-04-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.

  4. Application of stable adaptive schemes to nuclear reactor systems, (1)

    International Nuclear Information System (INIS)

    Fukuda, Toshio

    1978-01-01

    Parameter identification and adaptive control schemes are presented for a point reactor with internal feedbacks which lead to the nonlinearity of the overall system. Both are shown stable with new representation of the system, which corresponds to the nonminimal system representation, in the vein of the Model Reference Adaptive System (MRAS) via the Lyapunov's method. For the sake of the parameter identification, model parameters can be adjusted adaptively as soon as measurements start, while plant parameters can also adaptively be compensated through control input to reduce the output error between the model and the plant for the case of the adaptive control. In the case of the adaptive control, control schemes are presented for two cases, the case of the unknown decay constant of the delayed neutron and the case of the known constant. The adaptive control scheme for the latter case is shown extremely simpler than that for the former. Furthermore, when plant parameters vary slowly with time, computer simulations show that the proposed adaptive control scheme works satisfactorily enough to stabilize an unstable reactor and that it does even in the noise with small variance. (auth.)

  5. A Stereo Music Preprocessing Scheme for Cochlear Implant Users.

    Science.gov (United States)

    Buyens, Wim; van Dijk, Bas; Wouters, Jan; Moonen, Marc

    2015-10-01

    Listening to music is still one of the more challenging aspects of using a cochlear implant (CI) for most users. Simple musical structures, a clear rhythm/beat, and lyrics that are easy to follow are among the top factors contributing to music appreciation for CI users. Modifying the audio mix of complex music potentially improves music enjoyment in CI users. A stereo music preprocessing scheme is described in which vocals, drums, and bass are emphasized based on the representation of the harmonic and the percussive components in the input spectrogram, combined with the spatial allocation of instruments in typical stereo recordings. The scheme is assessed with postlingually deafened CI subjects (N = 7) using pop/rock music excerpts with different complexity levels. The scheme is capable of modifying relative instrument level settings, with the aim of improving music appreciation in CI users, and allows individual preference adjustments. The assessment with CI subjects confirms the preference for more emphasis on vocals, drums, and bass as offered by the preprocessing scheme, especially for songs with higher complexity. The stereo music preprocessing scheme has the potential to improve music enjoyment in CI users by modifying the audio mix in widespread (stereo) music recordings. Since music enjoyment in CI users is generally poor, this scheme can assist the music listening experience of CI users as a training or rehabilitation tool.

  6. Representation of the Divine

    DEFF Research Database (Denmark)

    Loddegaard, Anne

    2012-01-01

    out of place in a novel belonging to the serious combat literature of the Catholic Revival, and the direct representation of the supernatural is also surprising because previous Catholic Revival novelists, such as Léon Bloy and Karl-Joris Huysmans, maintain a realistic, non-magical world and deal...... Satan episode in Under Satan’s Sun is neither a break with the seriousness nor with the realism of the Catholic novel. On the basis of Tvetan Todorov’s definition of the traditional fantastic tale, the analysis shows that only the beginning of the fantastic episode follows Todorov’s definition...

  7. Representation of the Divine

    DEFF Research Database (Denmark)

    Loddegaard, Anne

    2009-01-01

    out of place in a novel belonging to the serious combat literature of the Catholic Revival, and the direct representation of the supernatural is also surprising because previous Catholic Revival novelists, such as Léon Bloy and Karl-Joris Huysmans, maintain a realistic, non-magical world and deal...... Satan episode in Under Satan’s Sun is neither a break with the seriousness nor with the realism of the Catholic novel. On the basis of Tvetan Todorov’s definition of the traditional fantastic tale, the analysis shows that only the beginning of the fantastic episode follows Todorov’s definition...

  8. Representations of commonsense knowledge

    CERN Document Server

    Davis, Ernest

    1990-01-01

    Representations of Commonsense Knowledge provides a rich language for expressing commonsense knowledge and inference techniques for carrying out commonsense knowledge. This book provides a survey of the research on commonsense knowledge.Organized into 10 chapters, this book begins with an overview of the basic ideas on artificial intelligence commonsense reasoning. This text then examines the structure of logic, which is roughly analogous to that of a programming language. Other chapters describe how rules of universal validity can be applied to facts known with absolute certainty to deduce ot

  9. Between Representation and Eternity

    DEFF Research Database (Denmark)

    Atzbach, Rainer

    2016-01-01

    This paper seeks to explore how prayer and praying practice are reflected in archaeological sources. Apart from objects directly involved in the personal act of praying, such as rosaries and praying books, churches and religious foundations played a major role in the medieval system of intercession....... At death, an indi- vidual’s corpse and burial primarily reflect the social act of representation during the funeral. The position of the arms, which have incorrectly been used as a chronological tool in Scandinavia, may indicate an evolution from a more collective act of prayer up to the eleventh century...

  10. A new representation for ground states and its Legendre transforms

    International Nuclear Information System (INIS)

    Cedillo, A.

    1994-01-01

    The ground-state energy of an electronic system is a functional of the number of electrons (N) and the external potential (v): E = E(N,V), this is the energy representation for ground states. In 1982, Nalewajski defined the Legendre transforms of this representation, taking advantage of the strict concavity of E with respect to their variables (concave respect v and convex respect N), and he also constructed a scheme for the reduction of derivatives of his representations. Unfortunately, N and the electronic density (p) were the independent variables of one of these representations, but p depends explicitly on N. In this work, this problem is avoided using the energy per particle (ε) as the basic variables, and the Legendre transformations can be defined. A procedure for the reduction of derivatives is generated for the new four representations and, in contrast to the Nalewajski's procedure, it only includes derivatives of the four representations. Finally, the reduction of derivatives is used to test some relationships between the hardness and softness kernels

  11. A Novel Quantum Image Steganography Scheme Based on LSB

    Science.gov (United States)

    Zhou, Ri-Gui; Luo, Jia; Liu, XingAo; Zhu, Changming; Wei, Lai; Zhang, Xiafen

    2018-06-01

    Based on the NEQR representation of quantum images and least significant bit (LSB) scheme, a novel quantum image steganography scheme is proposed. The sizes of the cover image and the original information image are assumed to be 4 n × 4 n and n × n, respectively. Firstly, the bit-plane scrambling method is used to scramble the original information image. Then the scrambled information image is expanded to the same size of the cover image by using the key only known to the operator. The expanded image is scrambled to be a meaningless image with the Arnold scrambling. The embedding procedure and extracting procedure are carried out by K 1 and K 2 which are under control of the operator. For validation of the presented scheme, the peak-signal-to-noise ratio (PSNR), the capacity, the security of the images and the circuit complexity are analyzed.

  12. Modified Aggressive Packet Combining Scheme

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2010-06-01

    In this letter, a few schemes are presented to improve the performance of aggressive packet combining scheme (APC). To combat error in computer/data communication networks, ARQ (Automatic Repeat Request) techniques are used. Several modifications to improve the performance of ARQ are suggested by recent research and are found in literature. The important modifications are majority packet combining scheme (MjPC proposed by Wicker), packet combining scheme (PC proposed by Chakraborty), modified packet combining scheme (MPC proposed by Bhunia), and packet reversed packet combining (PRPC proposed by Bhunia) scheme. These modifications are appropriate for improving throughput of conventional ARQ protocols. Leung proposed an idea of APC for error control in wireless networks with the basic objective of error control in uplink wireless data network. We suggest a few modifications of APC to improve its performance in terms of higher throughput, lower delay and higher error correction capability. (author)

  13. Transmission usage cost allocation schemes

    International Nuclear Information System (INIS)

    Abou El Ela, A.A.; El-Sehiemy, R.A.

    2009-01-01

    This paper presents different suggested transmission usage cost allocation (TCA) schemes to the system individuals. Different independent system operator (ISO) visions are presented using the proportional rata and flow-based TCA methods. There are two proposed flow-based TCA schemes (FTCA). The first FTCA scheme generalizes the equivalent bilateral exchanges (EBE) concepts for lossy networks through two-stage procedure. The second FTCA scheme is based on the modified sensitivity factors (MSF). These factors are developed from the actual measurements of power flows in transmission lines and the power injections at different buses. The proposed schemes exhibit desirable apportioning properties and are easy to implement and understand. Case studies for different loading conditions are carried out to show the capability of the proposed schemes for solving the TCA problem. (author)

  14. Social Representations of Intelligence

    Directory of Open Access Journals (Sweden)

    Elena Zubieta

    2016-02-01

    Full Text Available The article stresses the relationship between Explicit and Implicit theories of Intelligence. Following the line of common sense epistemology and the theory of Social Representations, a study was carried out in order to analyze naive’s explanations about Intelligence Definitions. Based on Mugny & Carugati (1989 research, a self-administered questionnaire was designed and filled in by 286 subjects. Results are congruent with the main hyphotesis postulated: A general overlap between explicit and implicit theories showed up. According to the results Intelligence appears as both, a social attribute related to social adaptation and as a concept defined in relation with contextual variables similar to expert’s current discourses. Nevertheless, conceptions based on “gifted ideology” still are present stressing the main axes of Intelligence debate: biological and sociological determinism. In the same sense, unfamiliarity and social identity are reaffirmed as organizing principles of social representation. The distance with the object -measured as the belief in intelligence differences as a solve/non solve problem- and the level of implication with the topic -teachers/no teachers- appear as discriminating elements at the moment of supporting specific dimensions. 

  15. Learning Multimodal Deep Representations for Crowd Anomaly Event Detection

    Directory of Open Access Journals (Sweden)

    Shaonian Huang

    2018-01-01

    Full Text Available Anomaly event detection in crowd scenes is extremely important; however, the majority of existing studies merely use hand-crafted features to detect anomalies. In this study, a novel unsupervised deep learning framework is proposed to detect anomaly events in crowded scenes. Specifically, low-level visual features, energy features, and motion map features are simultaneously extracted based on spatiotemporal energy measurements. Three convolutional restricted Boltzmann machines are trained to model the mid-level feature representation of normal patterns. Then a multimodal fusion scheme is utilized to learn the deep representation of crowd patterns. Based on the learned deep representation, a one-class support vector machine model is used to detect anomaly events. The proposed method is evaluated using two available public datasets and compared with state-of-the-art methods. The experimental results show its competitive performance for anomaly event detection in video surveillance.

  16. Vision and the representation of the surroundings in spatial memory.

    Science.gov (United States)

    Tatler, Benjamin W; Land, Michael F

    2011-02-27

    One of the paradoxes of vision is that the world as it appears to us and the image on the retina at any moment are not much like each other. The visual world seems to be extensive and continuous across time. However, the manner in which we sample the visual environment is neither extensive nor continuous. How does the brain reconcile these differences? Here, we consider existing evidence from both static and dynamic viewing paradigms together with the logical requirements of any representational scheme that would be able to support active behaviour. While static scene viewing paradigms favour extensive, but perhaps abstracted, memory representations, dynamic settings suggest sparser and task-selective representation. We suggest that in dynamic settings where movement within extended environments is required to complete a task, the combination of visual input, egocentric and allocentric representations work together to allow efficient behaviour. The egocentric model serves as a coding scheme in which actions can be planned, but also offers a potential means of providing the perceptual stability that we experience.

  17. Vision and the representation of the surroundings in spatial memory

    Science.gov (United States)

    Tatler, Benjamin W.; Land, Michael F.

    2011-01-01

    One of the paradoxes of vision is that the world as it appears to us and the image on the retina at any moment are not much like each other. The visual world seems to be extensive and continuous across time. However, the manner in which we sample the visual environment is neither extensive nor continuous. How does the brain reconcile these differences? Here, we consider existing evidence from both static and dynamic viewing paradigms together with the logical requirements of any representational scheme that would be able to support active behaviour. While static scene viewing paradigms favour extensive, but perhaps abstracted, memory representations, dynamic settings suggest sparser and task-selective representation. We suggest that in dynamic settings where movement within extended environments is required to complete a task, the combination of visual input, egocentric and allocentric representations work together to allow efficient behaviour. The egocentric model serves as a coding scheme in which actions can be planned, but also offers a potential means of providing the perceptual stability that we experience. PMID:21242146

  18. Providing a non-deterministic representation of spatial variability of precipitation in the Everest region

    Directory of Open Access Journals (Sweden)

    J. Eeckman

    2017-09-01

    Full Text Available This paper provides a new representation of the effect of altitude on precipitation that represents spatial and temporal variability in precipitation in the Everest region. Exclusive observation data are used to infer a piecewise linear function for the relation between altitude and precipitation and significant seasonal variations are highlighted. An original ensemble approach is applied to provide non-deterministic water budgets for middle and high-mountain catchments. Physical processes at the soil–atmosphere interface are represented through the Interactions Soil–Biosphere–Atmosphere (ISBA surface scheme. Uncertainties associated with the model parametrization are limited by the integration of in situ measurements of soils and vegetation properties. Uncertainties associated with the representation of the orographic effect are shown to account for up to 16 % of annual total precipitation. Annual evapotranspiration is shown to represent 26 % ± 1 % of annual total precipitation for the mid-altitude catchment and 34% ± 3 % for the high-altitude catchment. Snowfall contribution is shown to be neglectable for the mid-altitude catchment, and it represents up to 44 % ± 8 % of total precipitation for the high-altitude catchment. These simulations on the local scale enhance current knowledge of the spatial variability in hydroclimatic processes in high- and mid-altitude mountain environments.

  19. Diffeomorphism Group Representations in Relativistic Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Goldin, Gerald A. [Rutgers Univ., Piscataway, NJ (United States); Sharp, David H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-20

    We explore the role played by the di eomorphism group and its unitary representations in relativistic quantum eld theory. From the quantum kinematics of particles described by representations of the di eomorphism group of a space-like surface in an inertial reference frame, we reconstruct the local relativistic neutral scalar eld in the Fock representation. An explicit expression for the free Hamiltonian is obtained in terms of the Lie algebra generators (mass and momentum densities). We suggest that this approach can be generalized to elds whose quanta are spatially extended objects.

  20. Approximation by Cylinder Surfaces

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1997-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  1. Parental representations of transsexuals.

    Science.gov (United States)

    Parker, G; Barr, R

    1982-06-01

    The parental representations of 30 male-to-female transsexuals were rated using a measure of fundamental parental dimensions and shown to be of acceptable validity as a measure both of perceived and actual parental characteristics. Scores on that measure were compared separately against scores returned by matched male and female controls. The transsexuals did not differ from the male controls in their scoring of their mothers but did score their fathers as less caring and more overprotective. These differences were weaker for the comparisons made against the female controls. Item analyses suggested that the greater paternal "overprotection" experienced by transsexuals was due to their fathers being perceived as offering less encouragement to their sons' independence and autonomy. Several interpretations of the findings are considered.

  2. The representation of neutron polarization

    International Nuclear Information System (INIS)

    Byrne, J.

    1979-01-01

    Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

  3. Sinusoidal Representation of Acoustic Signals

    Science.gov (United States)

    Honda, Masaaki

    Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

  4. Coordinated renewable energy support schemes

    DEFF Research Database (Denmark)

    Morthorst, P.E.; Jensen, S.G.

    2006-01-01

    . The first example covers countries with regional power markets that also regionalise their support schemes, the second countries with separate national power markets that regionalise their support schemes. The main findings indicate that the almost ideal situation exists if the region prior to regionalising...

  5. CANONICAL BACKWARD DIFFERENTIATION SCHEMES FOR ...

    African Journals Online (AJOL)

    This paper describes a new nonlinear backward differentiation schemes for the numerical solution of nonlinear initial value problems of first order ordinary differential equations. The schemes are based on rational interpolation obtained from canonical polynomials. They are A-stable. The test problems show that they give ...

  6. EMG-Torque Relation in Chronic Stroke: A Novel EMG Complexity Representation With a Linear Electrode Array.

    Science.gov (United States)

    Zhang, Xu; Wang, Dongqing; Yu, Zaiyang; Chen, Xiang; Li, Sheng; Zhou, Ping

    2017-11-01

    This study examines the electromyogram (EMG)-torque relation for chronic stroke survivors using a novel EMG complexity representation. Ten stroke subjects performed a series of submaximal isometric elbow flexion tasks using their affected and contralateral arms, respectively, while a 20-channel linear electrode array was used to record surface EMG from the biceps brachii muscles. The sample entropy (SampEn) of surface EMG signals was calculated with both global and local tolerance schemes. A regression analysis was performed between SampEn of each channel's surface EMG and elbow flexion torque. It was found that a linear regression can be used to well describe the relation between surface EMG SampEn and the torque. Each channel's root mean square (RMS) amplitude of surface EMG signal in the different torque level was computed to determine the channel with the highest EMG amplitude. The slope of the regression (observed from the channel with the highest EMG amplitude) was smaller on the impaired side than on the nonimpaired side in 8 of the 10 subjects, regardless of the tolerance scheme (global or local) and the range of torques (full or matched range) used for comparison. The surface EMG signals from the channels above the estimated muscle innervation zones demonstrated significantly lower levels of complexity compared with other channels between innervation zones and muscle tendons. The study provides a novel point of view of the EMG-torque relation in the complexity domain, and reveals its alterations post stroke, which are associated with complex neural and muscular changes post stroke. The slope difference between channels with regard to innervation zones also confirms the relevance of electrode position in surface EMG analysis.

  7. Congruence properties of induced representations

    DEFF Research Database (Denmark)

    Mayer, Dieter; Momeni, Arash; Venkov, Alexei

    In this paper we study representations of the projective modular group induced from the Hecke congruence group of level 4 with Selberg's character. We show that the well known congruence properties of Selberg's character are equivalent to the congruence properties of the induced representations...

  8. Factorial representations of path groups

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoegh-Krohn, R.; Testard, D.; Vershik, A.

    1983-11-01

    We give the reduction of the energy representation of the group of mappings from I = [ 0,1 ], S 1 , IRsub(+) or IR into a compact semi simple Lie group G. For G = SU(2) we prove the factoriality of the representation, which is of type III in the case I = IR

  9. Using Integer Manipulatives: Representational Determinism

    Science.gov (United States)

    Bossé, Michael J.; Lynch-Davis, Kathleen; Adu-Gyamfi, Kwaku; Chandler, Kayla

    2016-01-01

    Teachers and students commonly use various concrete representations during mathematical instruction. These representations can be utilized to help students understand mathematical concepts and processes, increase flexibility of thinking, facilitate problem solving, and reduce anxiety while doing mathematics. Unfortunately, the manner in which some…

  10. Knowledge Representation: A Brief Review.

    Science.gov (United States)

    Vickery, B. C.

    1986-01-01

    Reviews different structures and techniques of knowledge representation: structure of database records and files, data structures in computer programming, syntatic and semantic structure of natural language, knowledge representation in artificial intelligence, and models of human memory. A prototype expert system that makes use of some of these…

  11. International agreements on commercial representation

    OpenAIRE

    Slanař, Jan

    2014-01-01

    The purpose of the thesis is to describe the possibilities for fixing the position of a company in the market through contracts for commercial representation with a focus to finding legal and economic impact on the company that contracted for exclusive representation.

  12. Scientific Representation and Science Learning

    Science.gov (United States)

    Matta, Corrado

    2014-01-01

    In this article I examine three examples of philosophical theories of scientific representation with the aim of assessing which of these is a good candidate for a philosophical theory of scientific representation in science learning. The three candidate theories are Giere's intentional approach, Suárez's inferential approach and Lynch and…

  13. Exact scattering solutions in an energy sudden (ES) representation

    International Nuclear Information System (INIS)

    Chang, B.; Eno, L.; Rabitz, H.

    1983-01-01

    In this paper, we lay down the theoretical foundations for computing exact scattering wave functions in a reference frame which moves in unison with the system internal coordinates. In this frame the (internal) coordinates appear to be fixed and its adoption leads very naturally (in zeroth order) to the energy sudden (ES) approximation [and the related infinite order sudden (IOS) method]. For this reason we call the new representation for describing the exact dynamics of a many channel scattering problem, the ES representation. Exact scattering solutions are derived in both time dependent and time independent frameworks for the representation and many interesting results in these frames are established. It is shown, e.g., that in a time dependent frame the usual Schroedinger propagator factorizes into internal Hamiltonian, ES, and energy correcting propagators. We also show that in a time independent frame the full Green's functions can be similarly factorized. Another important feature of the new representation is that it forms a firm foundation for seeking corrections to the ES approximation. Thus, for example, the singularity which arises in conventional perturbative expansions of the full Green's functions (with the ES Green's function as the zeroth order solution) is avoided in the ES representation. Finally, a number of both time independent and time dependent ES correction schemes are suggested

  14. Affine histories in quantum gravity: introduction and the representation for a cosmological model

    International Nuclear Information System (INIS)

    Kessari, Smaragda

    2007-01-01

    It is shown how consistent histories quantum cosmology can be realized through Isham's histories projection operator consistent histories scheme. This is done by using an affine algebra instead of a canonical one and also by using cocycle representations. A regularization scheme allows us to find a history Hamiltonian which exists as a proper self-adjoint operator. The role of a cocycle choice is also discussed

  15. Multiple representations in physics education

    CERN Document Server

    Duit, Reinders; Fischer, Hans E

    2017-01-01

    This volume is important because despite various external representations, such as analogies, metaphors, and visualizations being commonly used by physics teachers, educators and researchers, the notion of using the pedagogical functions of multiple representations to support teaching and learning is still a gap in physics education. The research presented in the three sections of the book is introduced by descriptions of various psychological theories that are applied in different ways for designing physics teaching and learning in classroom settings. The following chapters of the book illustrate teaching and learning with respect to applying specific physics multiple representations in different levels of the education system and in different physics topics using analogies and models, different modes, and in reasoning and representational competence. When multiple representations are used in physics for teaching, the expectation is that they should be successful. To ensure this is the case, the implementati...

  16. hybrid modulation scheme fo rid modulation scheme fo dulation

    African Journals Online (AJOL)

    eobe

    control technique is done through simulations and ex control technique .... HYBRID MODULATION SCHEME FOR CASCADED H-BRIDGE INVERTER CELLS. C. I. Odeh ..... and OR operations. Referring to ... MATLAB/SIMULINK environment.

  17. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J; Sawant, Amit; Ruan, Dan

    2015-11-01

    To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. On phantom point clouds, their method achieved submillimeter

  18. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, California 90095 (United States); Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-11-15

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method

  19. Islam and Media Representations

    Directory of Open Access Journals (Sweden)

    Mohamed Bensalah

    2006-04-01

    Full Text Available For the author of this article, the media’s treatment of Islam has raised numerous polymorphous questions and debates. Reactivated by the great scares of current events, the issue, though an ancient one, calls many things into question. By way of introduction, the author tries to analyse the complex processes of elaboration and perception of the representations that have prevailed during the past century. In referring to the semantic decoding of the abundant colonial literature and iconography, the author strives to translate the extreme xenophobic tensions and the identity crystallisations associated with the current media orchestration of Islam, both in theWest and the East. He then evokes the excesses of the media that are found at the origin of many amalgams wisely maintained between Islam, Islamism and Islamic terrorism, underscoring their duplicity and their willingness to put themselves, consciously, in service to deceivers and directors of awareness, who are very active at the heart of the politico-media sphere. After levelling a severe accusation against the harmful drifts of the media, especially in times of crisis and war, the author concludes by asserting that these tools of communication, once they are freed of their masks and invective apparatuses, can be re-appropriated by new words and bya true communication between peoples and cultures.

  20. Chemical thermodynamic representation of

    International Nuclear Information System (INIS)

    Lindemer, T.B.; Besmann, T.M.

    1984-01-01

    The entire data base for the dependence of the nonstoichiometry, x, on temperature and chemical potential of oxygen (oxygen potential) was retrieved from the literature and represented. This data base was interpreted by least-squares analysis using equations derived from the classical thermodynamic theory for the solid solution of a solute in a solvent. For hyperstoichiometric oxide at oxygen potentials more positive than -266700 + 16.5T kJ/mol, the data were best represented by a [UO 2 ]-[U 3 O 7 ] solution. For O/U ratios above 2 and oxygen potentials below this boundary, a [UO 2 ]-[U 2 O 4 . 5 ] solution represented the data. The data were represented by a [UO 2 ]-[U 1 / 3 ] solution. The resulting equations represent the experimental ln(PO 2 ) - ln(x) behavior and can be used in thermodynamic calculations to predict phase boundary compositions consistent with the literature. Collectively, the present analysis permits a mathematical representation of the behavior of the total data base

  1. Good governance for pension schemes

    CERN Document Server

    Thornton, Paul

    2011-01-01

    Regulatory and market developments have transformed the way in which UK private sector pension schemes operate. This has increased demands on trustees and advisors and the trusteeship governance model must evolve in order to remain fit for purpose. This volume brings together leading practitioners to provide an overview of what today constitutes good governance for pension schemes, from both a legal and a practical perspective. It provides the reader with an appreciation of the distinctive characteristics of UK occupational pension schemes, how they sit within the capital markets and their social and fiduciary responsibilities. Providing a holistic analysis of pension risk, both from the trustee and the corporate perspective, the essays cover the crucial role of the employer covenant, financing and investment risk, developments in longevity risk hedging and insurance de-risking, and best practice scheme administration.

  2. Optimum RA reactor fuelling scheme

    International Nuclear Information System (INIS)

    Strugar, P.; Nikolic, V.

    1965-10-01

    Ideal reactor refueling scheme can be achieved only by continuous fuel elements movement in the core, which is not possible, and thus approximations are applied. One of the possible approximations is discontinuous movement of fuel elements groups in radial direction. This enables higher burnup especially if axial exchange is possible. Analysis of refueling schemes in the RA reactor core and schemes with mixing the fresh and used fuel elements show that 30% higher burnup can be achieved by applying mixing, and even 40% if reactivity due to decrease in experimental space is taken into account. Up to now, mean burnup of 4400 MWd/t has been achieved, and the proposed fueling scheme with reduction of experimental space could achieve mean burnup of 6300 MWd/t which means about 25 Mwd/t per fuel channel [sr

  3. A Novel Iris Segmentation Scheme

    Directory of Open Access Journals (Sweden)

    Chen-Chung Liu

    2014-01-01

    Full Text Available One of the key steps in the iris recognition system is the accurate iris segmentation from its surrounding noises including pupil, sclera, eyelashes, and eyebrows of a captured eye-image. This paper presents a novel iris segmentation scheme which utilizes the orientation matching transform to outline the outer and inner iris boundaries initially. It then employs Delogne-Kåsa circle fitting (instead of the traditional Hough transform to further eliminate the outlier points to extract a more precise iris area from an eye-image. In the extracted iris region, the proposed scheme further utilizes the differences in the intensity and positional characteristics of the iris, eyelid, and eyelashes to detect and delete these noises. The scheme is then applied on iris image database, UBIRIS.v1. The experimental results show that the presented scheme provides a more effective and efficient iris segmentation than other conventional methods.

  4. Numerical schemes for explosion hazards

    International Nuclear Information System (INIS)

    Therme, Nicolas

    2015-01-01

    In nuclear facilities, internal or external explosions can cause confinement breaches and radioactive materials release in the environment. Hence, modeling such phenomena is crucial for safety matters. Blast waves resulting from explosions are modeled by the system of Euler equations for compressible flows, whereas Navier-Stokes equations with reactive source terms and level set techniques are used to simulate the propagation of flame front during the deflagration phase. The purpose of this thesis is to contribute to the creation of efficient numerical schemes to solve these complex models. The work presented here focuses on two major aspects: first, the development of consistent schemes for the Euler equations, then the buildup of reliable schemes for the front propagation. In both cases, explicit in time schemes are used, but we also introduce a pressure correction scheme for the Euler equations. Staggered discretization is used in space. It is based on the internal energy formulation of the Euler system, which insures its positivity and avoids tedious discretization of the total energy over staggered grids. A discrete kinetic energy balance is derived from the scheme and a source term is added in the discrete internal energy balance equation to preserve the exact total energy balance at the limit. High order methods of MUSCL type are used in the discrete convective operators, based solely on material velocity. They lead to positivity of density and internal energy under CFL conditions. This ensures that the total energy cannot grow and we can furthermore derive a discrete entropy inequality. Under stability assumptions of the discrete L8 and BV norms of the scheme's solutions one can prove that a sequence of converging discrete solutions necessarily converges towards the weak solution of the Euler system. Besides it satisfies a weak entropy inequality at the limit. Concerning the front propagation, we transform the flame front evolution equation (the so called

  5. Hilbert scheme of points on cyclic quotient singularities of type (p,1)

    OpenAIRE

    Gyenge, Ádám

    2016-01-01

    In this note we investigate the generating series of the Euler characteristics of Hilbert scheme of points on cyclic quotient singularities of type (p,1). We link the appearing combinatorics to p-fountains, a generalization of the notion of fountain of coins. We obtain a representation of the generating series as coefficient of a two variable generating series.

  6. A predictive control scheme for real-time demand response applications

    NARCIS (Netherlands)

    Lampropoulos, I.; Baghina, N.G.; Kling, W.L.; Ribeiro, P.F.

    2013-01-01

    In this work, the focus is placed on the proof of concept of a novel control scheme for demand response. The control architecture considers a uniform representation of non-homogeneous distributed energy resources and allows the participation of virtually all system users in electricity markets. The

  7. Breeding schemes in reindeer husbandry

    Directory of Open Access Journals (Sweden)

    Lars Rönnegård

    2003-04-01

    Full Text Available The objective of the paper was to investigate annual genetic gain from selection (G, and the influence of selection on the inbreeding effective population size (Ne, for different possible breeding schemes within a reindeer herding district. The breeding schemes were analysed for different proportions of the population within a herding district included in the selection programme. Two different breeding schemes were analysed: an open nucleus scheme where males mix and mate between owner flocks, and a closed nucleus scheme where the males in non-selected owner flocks are culled to maximise G in the whole population. The theory of expected long-term genetic contributions was used and maternal effects were included in the analyses. Realistic parameter values were used for the population, modelled with 5000 reindeer in the population and a sex ratio of 14 adult females per male. The standard deviation of calf weights was 4.1 kg. Four different situations were explored and the results showed: 1. When the population was randomly culled, Ne equalled 2400. 2. When the whole population was selected on calf weights, Ne equalled 1700 and the total annual genetic gain (direct + maternal in calf weight was 0.42 kg. 3. For the open nucleus scheme, G increased monotonically from 0 to 0.42 kg as the proportion of the population included in the selection programme increased from 0 to 1.0, and Ne decreased correspondingly from 2400 to 1700. 4. In the closed nucleus scheme the lowest value of Ne was 1300. For a given proportion of the population included in the selection programme, the difference in G between a closed nucleus scheme and an open one was up to 0.13 kg. We conclude that for mass selection based on calf weights in herding districts with 2000 animals or more, there are no risks of inbreeding effects caused by selection.

  8. Parameterization of convective transport in the boundary layer and its impact on the representation of the diurnal cycle of wind and dust emissions

    Directory of Open Access Journals (Sweden)

    F. Hourdin

    2015-06-01

    boundary layer by a mass flux scheme leads to realistic representation of the diurnal cycle of wind in spring, with a maximum near-surface wind in the morning. This maximum occurs when the thermal plumes reach the low-level jet that forms during the night at a few hundred meters above surface. The horizontal momentum in the jet is transported downward to the surface by compensating subsidence around thermal plumes in typically less than 1 h. This leads to a rapid increase of wind speed at surface and therefore of dust emissions owing to the strong nonlinearity of emission laws. The numerical experiments are performed with a zoomed and nudged configuration of the LMDZ general circulation model coupled to the emission module of the CHIMERE chemistry transport model, in which winds are relaxed toward that of the ERA-Interim reanalyses. The new set of parameterizations leads to a strong improvement of the representation of the diurnal cycle of wind when compared to a previous version of LMDZ as well as to the reanalyses used for nudging themselves. It also generates dust emissions in better agreement with current estimates, but the aerosol optical thickness is still significantly underestimated.

  9. Decomposability and mental representation of French verbs.

    Science.gov (United States)

    Estivalet, Gustavo L; Meunier, Fanny E

    2015-01-01

    In French, regardless of stem regularity, inflectional verbal suffixes are extremely regular and paradigmatic. Considering the complexity of the French verbal system, we argue that all French verbs are polymorphemic forms that are decomposed during visual recognition independently of their stem regularity. We conducted a behavioral experiment in which we manipulated the surface and cumulative frequencies of verbal inflected forms and asked participants to perform a visual lexical decision task. We tested four types of verbs with respect to their stem variants: a. fully regular (parler "to speak," [parl-]); b. phonological change e/E verbs with orthographic markers (répéter "to repeat," [répét-] and [répèt-]); c. phonological change o/O verbs without orthographic markers (adorer "to adore," [ador-] and [adOr-]); and d. idiosyncratic (boire "to drink," [boi-] and [buv-]). For each type of verb, we contrasted four conditions, forms with high and low surface frequencies and forms with high and low cumulative frequencies. Our results showed a significant cumulative frequency effect for the fully regular and idiosyncratic verbs, indicating that different stems within idiosyncratic verbs (such as [boi-] and [buv-]) have distinct representations in the mental lexicon as different fully regular verbs. For the phonological change verbs, we found a significant cumulative frequency effect only when considering the two forms of the stem together ([répét-] and [répèt-]), suggesting that they share a single abstract and under specified phonological representation. Our results also revealed a significant surface frequency effect for all types of verbs, which may reflect the recombination of the stem lexical representation with the functional information of the suffixes. Overall, these results indicate that all inflected verbal forms in French are decomposed during visual recognition and that this process could be due to the regularities of the French inflectional verbal

  10. Decomposability and mental representation of French verbs

    Directory of Open Access Journals (Sweden)

    Gustavo Lopez Estivalet

    2015-01-01

    Full Text Available In French, regardless of stem regularity, inflectional verbal suffixes are extremely regular and paradigmatic. Considering the complexity of the French verbal system, we argue that all French verbs are polymorphemic forms that are decomposed during visual recognition independently of their stem regularity. We conducted a behavioural experiment in which we manipulated the surface and cumulative frequencies of verbal inflected forms and asked participants to perform a visual lexical decision task. We tested four types of verbs with respect to their stem variants: a. fully regular (parler ‘to speak’, [parl-]; b. phonological change e/E verbs with orthographic markers (répéter ‘to repeat’, [répét-] and [répèt-]; c. phonological change o/O verbs without orthographic markers (adorer ‘to adore’, [ador-] and [adOr-]; and d. idiosyncratic (boire ‘to drink’, [boi-] and [buv-]. For each type of verb, we contrasted four conditions, forms with high and low surface frequencies and forms with high and low cumulative frequencies. Our results showed a significant cumulative frequency effect for the fully regular and idiosyncratic verbs, indicating that different stems within idiosyncratic verbs (such as [boi-] and [buv-] have distinct representations in the mental lexicon as different fully regular verbs. For the phonological change verbs, we found a significant cumulative frequency effect only when considering the two forms of the stem together ([répét-] and [répèt-], suggesting that they share a single abstract and underspecified phonological representation. Our results also revealed a significant surface frequency effect for all types of verbs, which may reflect the recombination of the stem lexical representation with the functional information of the suffixes. Overall, these results indicate that all inflected verbal forms in French are decomposed during visual recognition and that this process could be due to the regularities of

  11. Event generators for address event representation transmitters

    Science.gov (United States)

    Serrano-Gotarredona, Rafael; Serrano-Gotarredona, Teresa; Linares Barranco, Bernabe

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. In a typical AER transmitter chip, there is an array of neurons that generate events. They send events to a peripheral circuitry (let's call it "AER Generator") that transforms those events to neurons coordinates (addresses) which are put sequentially on an interchip high speed digital bus. This bus includes a parallel multi-bit address word plus a Rqst (request) and Ack (acknowledge) handshaking signals for asynchronous data exchange. There have been two main approaches published in the literature for implementing such "AER Generator" circuits. They differ on the way of handling event collisions coming from the array of neurons. One approach is based on detecting and discarding collisions, while the other incorporates arbitration for sequencing colliding events . The first approach is supposed to be simpler and faster, while the second is able to handle much higher event traffic. In this article we will concentrate on the second arbiter-based approach. Boahen has been publishing several techniques for implementing and improving the arbiter based approach. Originally, he proposed an arbitration squeme by rows, followed by a column arbitration. In this scheme, while one neuron was selected by the arbiters to transmit his event out of the chip, the rest of neurons in the array were

  12. Contribution to a neutronic calculation scheme for pressurized water reactors

    International Nuclear Information System (INIS)

    Martin Del Campo, C.

    1987-01-01

    This research thesis aims at developing and validating the set of data and codes which build up the neutron computation scheme of pressurized water reactors. More precisely, it focuses on the improvement of the precision of calculation of command clusters (absorbing components which can be inserted into the core to control the reactivity), and on the modelling of reflector representation (material placed around the core and reflecting back the escaping neutrons). For the first case, a precise calculation is performed, based on the transport theory. For the second case, diffusion constants obtained in the previous case and simplified equations are used to reduce the calculation cost

  13. Vietnamese Document Representation and Classification

    Science.gov (United States)

    Nguyen, Giang-Son; Gao, Xiaoying; Andreae, Peter

    Vietnamese is very different from English and little research has been done on Vietnamese document classification, or indeed, on any kind of Vietnamese language processing, and only a few small corpora are available for research. We created a large Vietnamese text corpus with about 18000 documents, and manually classified them based on different criteria such as topics and styles, giving several classification tasks of different difficulty levels. This paper introduces a new syllable-based document representation at the morphological level of the language for efficient classification. We tested the representation on our corpus with different classification tasks using six classification algorithms and two feature selection techniques. Our experiments show that the new representation is effective for Vietnamese categorization, and suggest that best performance can be achieved using syllable-pair document representation, an SVM with a polynomial kernel as the learning algorithm, and using Information gain and an external dictionary for feature selection.

  14. Number theory via Representation theory

    Indian Academy of Sciences (India)

    2014-11-09

    Number theory via Representation theory. Eknath Ghate. November 9, 2014. Eightieth Annual Meeting, Chennai. Indian Academy of Sciences1. 1. This is a non-technical 20 minute talk intended for a general Academy audience.

  15. (Self)-representations on youtube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    This paper examines forms of self-representation on YouTube with specific focus on Vlogs (Video blogs). The analytical scope of the paper is on how User-generated Content on YouTube initiates a certain kind of audiovisual representation and a particular interpretation of reality that can...... be distinguished within Vlogs. This will be analysed through selected case studies taken from a representative sample of empirically based observations of YouTube videos. The analysis includes a focus on how certain forms of representation can be identified as representations of the self (Turkle 1995, Scannell...... 1996, Walker 2005) and further how these forms must be comprehended within a context of technological constrains, institutional structures and social as well as economical practices on YouTube (Burgess and Green 2009, Van Dijck 2009). It is argued that these different contexts play a vital part...

  16. Semantic Knowledge Representation (SKR) API

    Data.gov (United States)

    U.S. Department of Health & Human Services — The SKR Project was initiated at NLM in order to develop programs to provide usable semantic representation of biomedical free text by building on resources...

  17. Solitons and theory of representations

    International Nuclear Information System (INIS)

    Kulish, P.P.

    1985-01-01

    Problems on the theory of group representations finding application in constructing the quantum variant of the inverse scattering problem are discussed. The multicomponent nonlinear Shroedinger equation is considered as a main example of nonlinear evolution equations (NEE)

  18. Paired structures in knowledge representation

    DEFF Research Database (Denmark)

    Montero, J.; Bustince, H.; Franco de los Ríos, Camilo

    2016-01-01

    In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here...... of the relationships between several existing knowledge representation formalisms, providing a basis from which more expressive models can be later developed....

  19. Functional representations of integrable hierarchies

    International Nuclear Information System (INIS)

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert

    2006-01-01

    We consider a general framework for integrable hierarchies in Lax form and derive certain universal equations from which 'functional representations' of particular hierarchies (such as KP, discrete KP, mKP, AKNS), i.e. formulations in terms of functional equations, are systematically and quite easily obtained. The formalism genuinely applies to hierarchies where the dependent variables live in a noncommutative (typically matrix) algebra. The obtained functional representations can be understood as 'noncommutative' analogues of 'Fay identities' for the KP hierarchy

  20. Configurable data and CAMAC hardware representations for implementation of the SPHERE DAQ and offline systems

    International Nuclear Information System (INIS)

    Isupov, A.Yu.

    2001-01-01

    An implementation of the experimental data configurable representation for using in the DAQ and offline systems of the SPHERE setup at the LHE, JINR is described. A software scheme of the SPHERE CAMAC hardware's configurable description, intended to online data acquisition (DAQ) implementation based on the qdpb system, is issued

  1. Multiuser switched diversity scheduling schemes

    KAUST Repository

    Shaqfeh, Mohammad; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim

    2012-01-01

    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.

  2. Nonlinear secret image sharing scheme.

    Science.gov (United States)

    Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively.

  3. Multiuser switched diversity scheduling schemes

    KAUST Repository

    Shaqfeh, Mohammad

    2012-09-01

    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.

  4. New Hamiltonians for loop quantum cosmology with arbitrary spin representations

    Science.gov (United States)

    Ben Achour, Jibril; Brahma, Suddhasattwa; Geiller, Marc

    2017-04-01

    In loop quantum cosmology, one has to make a choice of SU(2) irreducible representation in which to compute holonomies and regularize the curvature of the connection. The systematic choice made in the literature is to work in the fundamental representation, and very little is known about the physics associated with higher spin labels. This constitutes an ambiguity of which the understanding, we believe, is fundamental for connecting loop quantum cosmology to full theories of quantum gravity like loop quantum gravity, its spin foam formulation, or cosmological group field theory. We take a step in this direction by providing here a new closed formula for the Hamiltonian of flat Friedmann-Lemaître-Robertson-Walker models regularized in a representation of arbitrary spin. This expression is furthermore polynomial in the basic variables which correspond to well-defined operators in the quantum theory, takes into account the so-called inverse-volume corrections, and treats in a unified way two different regularization schemes for the curvature. After studying the effective classical dynamics corresponding to single and multiple-spin Hamiltonians, we study the behavior of the critical density when the number of representations is increased and the stability of the difference equations in the quantum theory.

  5. Electrical Injection Schemes for Nanolasers

    DEFF Research Database (Denmark)

    Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten

    2014-01-01

    Three electrical injection schemes based on recently demonstrated electrically pumped photonic crystal nanolasers have been numerically investigated: 1) a vertical p-i-n junction through a post structure; 2) a lateral p-i-n junction with a homostructure; and 3) a lateral p-i-n junction....... For this analysis, the properties of different schemes, i.e., electrical resistance, threshold voltage, threshold current, and internal efficiency as energy requirements for optical interconnects are compared and the physics behind the differences is discussed....

  6. Signal multiplexing scheme for LINAC

    International Nuclear Information System (INIS)

    Sujo, C.I.; Mohan, Shyam; Joshi, Gopal; Singh, S.K.; Karande, Jitendra

    2004-01-01

    For the proper operation of the LINAC some signals, RF (radio frequency) as well as LF (low frequency) have to be available at the Master Control Station (MCS). These signals are needed to control, calibrate and characterize the RF fields in the resonators. This can be achieved by proper multiplexing of various signals locally and then routing the selected signals to the MCS. A multiplexing scheme has been designed and implemented, which will allow the signals from the selected cavity to the MCS. High isolation between channels and low insertion loss for a given signal are important issues while selecting the multiplexing scheme. (author)

  7. Capacity-achieving CPM schemes

    OpenAIRE

    Perotti, Alberto; Tarable, Alberto; Benedetto, Sergio; Montorsi, Guido

    2008-01-01

    The pragmatic approach to coded continuous-phase modulation (CPM) is proposed as a capacity-achieving low-complexity alternative to the serially-concatenated CPM (SC-CPM) coding scheme. In this paper, we first perform a selection of the best spectrally-efficient CPM modulations to be embedded into SC-CPM schemes. Then, we consider the pragmatic capacity (a.k.a. BICM capacity) of CPM modulations and optimize it through a careful design of the mapping between input bits and CPM waveforms. The s...

  8. Evolved Representation and Computational Creativity

    Directory of Open Access Journals (Sweden)

    Ashraf Fouad Hafez Ismail

    2001-01-01

    Full Text Available Advances in science and technology have influenced designing activity in architecture throughout its history. Observing the fundamental changes to architectural designing due to the substantial influences of the advent of the computing era, we now witness our design environment gradually changing from conventional pencil and paper to digital multi-media. Although designing is considered to be a unique human activity, there has always been a great dependency on design aid tools. One of the greatest aids to architectural design, amongst the many conventional and widely accepted computational tools, is the computer-aided object modeling and rendering tool, commonly known as a CAD package. But even though conventional modeling tools have provided designers with fast and precise object handling capabilities that were not available in the pencil-and-paper age, they normally show weaknesses and limitations in covering the whole design process.In any kind of design activity, the design worked on has to be represented in some way. For a human designer, designs are for example represented using models, drawings, or verbal descriptions. If a computer is used for design work, designs are usually represented by groups of pixels (paintbrush programs, lines and shapes (general-purpose CAD programs or higher-level objects like ‘walls’ and ‘rooms’ (purpose-specific CAD programs.A human designer usually has a large number of representations available, and can use the representation most suitable for what he or she is working on. Humans can also introduce new representations and thereby represent objects that are not part of the world they experience with their sensory organs, for example vector representations of four and five dimensional objects. In design computing on the other hand, the representation or representations used have to be explicitly defined. Many different representations have been suggested, often optimized for specific design domains

  9. Lecture notes in topics in path integrals and string representations

    CERN Document Server

    Botelho, Luiz C L

    2017-01-01

    Functional Integrals is a well-established method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and string theory. This book presents a unique, original and modern treatment of strings representations on Bosonic Quantum Chromodynamics and Bosonization theory on 2d Gauge Field Models, besides of rigorous mathematical studies on the analytical regularization scheme on Euclidean quantum field path integrals and stochastic quantum field theory. It follows an analytic approach based on Loop space techniques, functional determinant exact evaluations and exactly solubility of four dimensional QCD loop wave equations through Elfin Botelho fermionic extrinsic self avoiding string path integrals.

  10. A Policy Representation Using Weighted Multiple Normal Distribution

    Science.gov (United States)

    Kimura, Hajime; Aramaki, Takeshi; Kobayashi, Shigenobu

    In this paper, we challenge to solve a reinforcement learning problem for a 5-linked ring robot within a real-time so that the real-robot can stand up to the trial and error. On this robot, incomplete perception problems are caused from noisy sensors and cheap position-control motor systems. This incomplete perception also causes varying optimum actions with the progress of the learning. To cope with this problem, we adopt an actor-critic method, and we propose a new hierarchical policy representation scheme, that consists of discrete action selection on the top level and continuous action selection on the low level of the hierarchy. The proposed hierarchical scheme accelerates learning on continuous action space, and it can pursue the optimum actions varying with the progress of learning on our robotics problem. This paper compares and discusses several learning algorithms through simulations, and demonstrates the proposed method showing application for the real robot.

  11. On Behavioral Equivalence of Rational Representations

    NARCIS (Netherlands)

    Trentelman, Harry L.; Willems, JC; Hara, S; Ohta, Y; Fujioka, H

    2010-01-01

    This article deals with the equivalence of representations of behaviors of linear differential systems In general. the behavior of a given linear differential system has many different representations. In this paper we restrict ourselves to kernel representations and image representations Two kernel

  12. A Unified Graphical Representation of Chemical Thermodynamics and Equilibrium

    Science.gov (United States)

    Hanson, Robert M.

    2012-01-01

    During the years 1873-1879, J. Willard Gibbs published his now-famous set of articles that form the basis of the current perspective on chemical thermodynamics. The second article of this series, "A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces," published in 1873, is particularly notable…

  13. On Representation in Information Theory

    Directory of Open Access Journals (Sweden)

    Joseph E. Brenner

    2011-09-01

    Full Text Available Semiotics is widely applied in theories of information. Following the original triadic characterization of reality by Peirce, the linguistic processes involved in information—production, transmission, reception, and understanding—would all appear to be interpretable in terms of signs and their relations to their objects. Perhaps the most important of these relations is that of the representation-one, entity, standing for or representing some other. For example, an index—one of the three major kinds of signs—is said to represent something by being directly related to its object. My position, however, is that the concept of symbolic representations having such roles in information, as intermediaries, is fraught with the same difficulties as in representational theories of mind. I have proposed an extension of logic to complex real phenomena, including mind and information (Logic in Reality; LIR, most recently at the 4th International Conference on the Foundations of Information Science (Beijing, August, 2010. LIR provides explanations for the evolution of complex processes, including information, that do not require any entities other than the processes themselves. In this paper, I discuss the limitations of the standard relation of representation. I argue that more realistic pictures of informational systems can be provided by reference to information as an energetic process, following the categorial ontology of LIR. This approach enables naïve, anti-realist conceptions of anti-representationalism to be avoided, and enables an approach to both information and meaning in the same novel logical framework.

  14. On 165Ho level scheme

    International Nuclear Information System (INIS)

    Ardisson, Claire; Ardisson, Gerard.

    1976-01-01

    A 165 Ho level scheme was constructed which led to the interpretation of sixty γ rays belonging to the decay of 165 Dy. A new 702.9keV level was identified to be the 5/2 - member of the 1/2 ) 7541{ Nilsson orbit. )] [fr

  15. Homogenization scheme for acoustic metamaterials

    KAUST Repository

    Yang, Min; Ma, Guancong; Wu, Ying; Yang, Zhiyu; Sheng, Ping

    2014-01-01

    the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost

  16. New practicable Siberian Snake schemes

    International Nuclear Information System (INIS)

    Steffen, K.

    1983-07-01

    Siberian Snake schemes can be inserted in ring accelerators for making the spin tune almost independent of energy. Two such schemes are here suggested which lend particularly well to practical application over a wide energy range. Being composed of horizontal and vertical bending magnets, the proposed snakes are designed to have a small maximum beam excursion in one plane. By applying in this plane a bending correction that varies with energy, they can be operated at fixed geometry in the other plane where most of the bending occurs, thus avoiding complicated magnet motion or excessively large magnet apertures that would otherwise be needed for large energy variations. The first of the proposed schemes employs a pair of standard-type Siberian Snakes, i.e. of the usual 1st and 2nd kind which rotate the spin about the longitudinal and the transverse horizontal axis, respectively. The second scheme employs a pair of novel-type snakes which rotate the spin about either one of the horizontal axes that are at 45 0 to the beam direction. In obvious reference to these axes, they are called left-pointed and right-pointed snakes. (orig.)

  17. Nonlinear Secret Image Sharing Scheme

    Directory of Open Access Journals (Sweden)

    Sang-Ho Shin

    2014-01-01

    efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB and 1.74tlog2⁡m bit-per-pixel (bpp, respectively.

  18. A representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid

    International Nuclear Information System (INIS)

    Kirkpatrick, M.P.; Armfield, S.W.; Kent, J.H.

    2003-01-01

    A method is presented for representing curved boundaries for the solution of the Navier-Stokes equations on a non-uniform, staggered, three-dimensional Cartesian grid. The approach involves truncating the Cartesian cells at the boundary surface to create new cells which conform to the shape of the surface. We discuss in some detail the problems unique to the development of a cut cell method on a staggered grid. Methods for calculating the fluxes through the boundary cell faces, for representing pressure forces and for calculating the wall shear stress are derived and it is verified that the new scheme retains second-order accuracy in space. In addition, a novel 'cell-linking' method is developed which overcomes problems associated with the creation of small cells while avoiding the complexities involved with other cell-merging approaches. Techniques are presented for generating the geometric information required for the scheme based on the representation of the boundaries as quadric surfaces. The new method is tested for flow through a channel placed oblique to the grid and flow past a cylinder at Re=40 and is shown to give significant improvement over a staircase boundary formulation. Finally, it is used to calculate unsteady flow past a hemispheric protuberance on a plate at a Reynolds number of 800. Good agreement is obtained with experimental results for this flow

  19. Social representations of female orgasm.

    Science.gov (United States)

    Lavie-Ajayi, Maya; Joffe, Hélène

    2009-01-01

    This study examines women's social representations of female orgasm. Fifty semi-structured interviews were conducted with British women. The data were thematically analysed and compared with the content of female orgasm-related writing in two women's magazines over a 30-year period. The results indicate that orgasm is deemed the goal of sex with emphasis on its physiological dimension. However, the women and the magazines graft onto this scientifically driven representation the importance of relational and emotive aspects of orgasm. For the women, particularly those who experience themselves as having problems with orgasm, the scientifically driven representations induce feelings of failure, but are also resisted. The findings highlight the role played by the social context in women's subjective experience of their sexual health.

  20. An introduction to quiver representations

    CERN Document Server

    Derksen, Harm

    2017-01-01

    This book is an introduction to the representation theory of quivers and finite dimensional algebras. It gives a thorough and modern treatment of the algebraic approach based on Auslander-Reiten theory as well as the approach based on geometric invariant theory. The material in the opening chapters is developed starting slowly with topics such as homological algebra, Morita equivalence, and Gabriel's theorem. Next, the book presents Auslander-Reiten theory, including almost split sequences and the Auslander-Reiten transform, and gives a proof of Kac's generalization of Gabriel's theorem. Once this basic material is established, the book goes on with developing the geometric invariant theory of quiver representations. The book features the exposition of the saturation theorem for semi-invariants of quiver representations and its application to Littlewood-Richardson coefficients. In the final chapters, the book exposes tilting modules, exceptional sequences and a connection to cluster categories. The book is su...

  1. Preon representations and composite models

    International Nuclear Information System (INIS)

    Kang, Kyungsik

    1982-01-01

    This is a brief report on the preon models which are investigated by In-Gyu Koh, A. N. Schellekens and myself and based on complex, anomaly-free and asymptotically free representations of SU(3) to SU(8), SO(4N+2) and E 6 with no more than two different preons. Complete list of the representations that are complex anomaly-free and asymptotically free has been given by E. Eichten, I.-G. Koh and myself. The assumptions made about the ground state composites and the role of Fermi statistics to determine the metaflavor wave functions are discussed in some detail. We explain the method of decompositions of tensor products with definite permutation properties which has been developed for this purpose by I.-G. Koh, A.N. Schellekens and myself. An example based on an anomaly-free representation of the confining metacolor group SU(5) is discussed

  2. Representational constraints on children's suggestibility.

    Science.gov (United States)

    Ceci, Stephen J; Papierno, Paul B; Kulkofsky, Sarah

    2007-06-01

    In a multistage experiment, twelve 4- and 9-year-old children participated in a triad rating task. Their ratings were mapped with multidimensional scaling, from which euclidean distances were computed to operationalize semantic distance between items in target pairs. These children and age-mates then participated in an experiment that employed these target pairs in a story, which was followed by a misinformation manipulation. Analyses linked individual and developmental differences in suggestibility to children's representations of the target items. Semantic proximity was a strong predictor of differences in suggestibility: The closer a suggested distractor was to the original item's representation, the greater was the distractor's suggestive influence. The triad participants' semantic proximity subsequently served as the basis for correctly predicting memory performance in the larger group. Semantic proximity enabled a priori counterintuitive predictions of reverse age-related trends to be confirmed whenever the distance between representations of items in a target pair was greater for younger than for older children.

  3. Digital models for architectonical representation

    Directory of Open Access Journals (Sweden)

    Stefano Brusaporci

    2011-12-01

    Full Text Available Digital instruments and technologies enrich architectonical representation and communication opportunities. Computer graphics is organized according the two phases of visualization and construction, that is modeling and rendering, structuring dichotomy of software technologies. Visualization modalities give different kinds of representations of the same 3D model and instruments produce a separation between drawing and image’s creation. Reverse modeling can be related to a synthesis process, ‘direct modeling’ follows an analytic procedure. The difference between interactive and not interactive applications is connected to the possibilities offered by informatics instruments, and relates to modeling and rendering. At the same time the word ‘model’ describes different phenomenon (i.e. files: mathematical model of the building and of the scene; raster representation and post-processing model. All these correlated different models constitute the architectonical interpretative model, that is a simulation of reality made by the model for improving the knowledge.

  4. Asymptotical representation of discrete groups

    International Nuclear Information System (INIS)

    Mishchenko, A.S.; Mohammad, N.

    1995-08-01

    If one has a unitary representation ρ: π → U(H) of the fundamental group π 1 (M) of the manifold M then one can do may useful things: 1. To construct a natural vector bundle over M; 2. To construct the cohomology groups with respect to the local system of coefficients; 3. To construct the signature of manifold M with respect to the local system of coefficients; and others. In particular, one can write the Hirzebruch formula which compares the signature with the characteristic classes of the manifold M, further based on this, find the homotopy invariant characteristic classes (i.e. the Novikov conjecture). Taking into account that the family of known representations is not sufficiently large, it would be interesting to extend this family to some larger one. Using the ideas of A.Connes, M.Gromov and H.Moscovici a proper notion of asymptotical representation is defined. (author). 7 refs

  5. Vivid Representations and Their Effects

    Directory of Open Access Journals (Sweden)

    Kengo Miyazono

    2018-04-01

    Full Text Available Sinhababu’s Humean Nature contains many interesting and important ideas, but in this short commentary I focus on the idea of vivid representations. Sinhababu inherits his idea of vivid representations from Hume’s discussions, in particular his discussion of calm and violent passions. I am sympathetic to the idea of developing Hume’s insight that has been largely neglected by philosophers. I believe that Sinhababu and Hume are on the right track. What I do in this short commentary is to raise some questions about the details. The aim of asking these questions is not to challenge Sinhababu’s proposal (at least his main ideas, but rather to point at some interesting issues arising out of his proposal. The questions are about (1 the nature of vividness, (2 the effects of vivid representations, and (3 Sinhababu’s account of alief cases.

  6. Hybrid Numerical-Analytical Scheme for Calculating Elastic Wave Diffraction in Locally Inhomogeneous Waveguides

    Science.gov (United States)

    Glushkov, E. V.; Glushkova, N. V.; Evdokimov, A. A.

    2018-01-01

    Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.

  7. (Self)-representations on youtube

    OpenAIRE

    Simonsen, Thomas Mosebo

    2011-01-01

    This paper examines forms of self-representation on YouTube with specific focus on Vlogs (Video blogs). The analytical scope of the paper is on how User-generated Content on YouTube initiates a certain kind of audiovisual representation and a particular interpretation of reality that can be distinguished within Vlogs. This will be analysed through selected case studies taken from a representative sample of empirically based observations of YouTube videos. The analysis includes a focus on how ...

  8. Concepts, ontologies, and knowledge representation

    CERN Document Server

    Jakus, Grega; Omerovic, Sanida; Tomažic, Sašo

    2013-01-01

    Recording knowledge in a common framework that would make it possible to seamlessly share global knowledge remains an important challenge for researchers. This brief examines several ideas about the representation of knowledge addressing this challenge. A widespread general agreement is followed that states uniform knowledge representation should be achievable by using ontologies populated with concepts. A separate chapter is dedicated to each of the three introduced topics, following a uniform outline: definition, organization, and use. This brief is intended for those who want to get to know

  9. Thinking together with material representations

    DEFF Research Database (Denmark)

    Stege Bjørndahl, Johanne; Fusaroli, Riccardo; Østergaard, Svend

    2014-01-01

    of an experiment. Qualitative micro-analyses of the group interactions motivate a taxonomy of different roles that the material representations play in the joint epistemic processes: illustration, elaboration and exploration. Firstly, the LEGO blocks were used to illustrate already well-formed ideas in support......-down and bottom-up cognitive processes and division of cognitive labor.......How do material representations such as models, diagrams and drawings come to shape and aid collective, epistemic processes? This study investigated how groups of participants spontaneously recruited material objects (in this case LEGO blocks) to support collective creative processes in the context...

  10. Representation of the Saharan atmospheric boundary layer in the Weather and Research Forecast (WRF) model: A sensitivity analysis.

    Science.gov (United States)

    Todd, Martin; Cavazos, Carolina; Wang, Yi

    2013-04-01

    The Saharan atmospheric boundary layer (SABL) during summer is one of the deepest on Earth, and is crucial in controlling the vertical redistribution and long-range transport of dust in the Sahara. The SABL is typically made up of an actively growing convective layer driven by high sensible heating at the surface, with a deep, near-neutrally stratified Saharan residual layer (SRL) above it, which is mostly well mixed in humidity and temperature and reaches a height of ˜5-6km. These two layers are usually separated by a weak (≤1K) temperature inversion. Model representation of the SPBL structure and evolution is important for accurate weather/climate and aerosol prediction. In this work, we evaluate model performance of the Weather Research and Forecasting (WRF) to represent key multi-scale processes in the SABL during summer 2011, including depiction of the diurnal cycle. For this purpose, a sensitivity analysis is performed to examine the performance of seven PBL schemes (YSU, MYJ, QNSE, MYNN, ACM, Boulac and MRF) and two land-surface model (Noah and RUC) schemes. In addition, the sensitivity to the choice of lateral boundary conditions (ERA-Interim and NCEP) and land use classification maps (USGS and MODIS-based) is tested. Model outputs were confronted upper-air and surface observations from the Fennec super-site at Bordj Moktar and automatic weather station (AWS) in Southern Algeria Vertical profiles of wind speed, potential temperature and water vapour mixing ratio were examined to diagnose differences in PBL heights and model efficacy to reproduce the diurnal cycle of the SABL. We find that the structure of the model SABL is most sensitive the choice of land surface model and lateral boundary conditions and relatively insensitive to the PBL scheme. Overall the model represents well the diurnal cycle in the structure of the SABL. Consistent model biases include (i) a moist (1-2 gkg-1) and slightly cool (~1K) bias in the daytime convective boundary layer (ii

  11. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms

    CERN Document Server

    Somogyi, Gabor

    2013-01-01

    We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of the regularised doubly virtual contribution to the NNLO cross section becomes feasible.

  12. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms

    Science.gov (United States)

    Somogyi, Gábor

    2013-04-01

    We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.

  13. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms

    OpenAIRE

    Somogyi, Gabor

    2013-01-01

    We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.

  14. A more accurate scheme for calculating Earth's skin temperature

    Science.gov (United States)

    Tsuang, Ben-Jei; Tu, Chia-Ying; Tsai, Jeng-Lin; Dracup, John A.; Arpe, Klaus; Meyers, Tilden

    2009-02-01

    The theoretical framework of the vertical discretization of a ground column for calculating Earth’s skin temperature is presented. The suggested discretization is derived from the evenly heat-content discretization with the optimal effective thickness for layer-temperature simulation. For the same level number, the suggested discretization is more accurate in skin temperature as well as surface ground heat flux simulations than those used in some state-of-the-art models. A proposed scheme (“op(3,2,0)”) can reduce the normalized root-mean-square error (or RMSE/STD ratio) of the calculated surface ground heat flux of a cropland site significantly to 2% (or 0.9 W m-2), from 11% (or 5 W m-2) by a 5-layer scheme used in ECMWF, from 19% (or 8 W m-2) by a 5-layer scheme used in ECHAM, and from 74% (or 32 W m-2) by a single-layer scheme used in the UCLA GCM. Better accuracy can be achieved by including more layers to the vertical discretization. Similar improvements are expected for other locations with different land types since the numerical error is inherited into the models for all the land types. The proposed scheme can be easily implemented into state-of-the-art climate models for the temperature simulation of snow, ice and soil.

  15. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-05-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.

  16. Wavelet representation of the nuclear dynamics

    International Nuclear Information System (INIS)

    Jouault, B.; Sebille, F.; De La Mota, V.

    1997-01-01

    The study of the transport phenomena in nuclear matter is addressed in a new approach based on wavelet theory and the projection methods of statistical physics. The advantage of this framework is to optimize the representation spaces and the numerical treatment which gives the opportunity to enlarge the spectra of physical processes taken into account to preserve some important quantum information. At the same time this approach is more efficient than the usual solving schemes and mathematical formulations of the equations based on usual concepts. The application of this methodology to the the study of the physical phenomena related to the heavy ion collisions at intermediate energies has resulted in a model named DYWAN (DYnamical WAvelets in Nuclei). The results obtained with DYWAN for the central collisions in the system Ca + Ca at three different beam energies are reported. These are in agreement with the experimental results since a fusion process at 30 MeV is observed as well as a binary reaction at 50 MeV and kind of an explosion of the system at 90 MeV

  17. Apparatus for producing a visual representation of a radiographic scan

    International Nuclear Information System (INIS)

    Hounsfield, G.N.

    1976-01-01

    An apparatus is disclosed for providing a visual representation of the absorption or transmission coefficients of the elements of a two dimensional matrix of elements notionally defined in a cross-sectional plane through a body. The representation is in the form of an analogue display comprising superimposed lines of information scanned on the surface of a suitable screen, the brightness of each line being indicative of the absorption suffered by penetrating radiation on traversing a respective path through said plane of the body. The orientation of each scanned line depends on the orientation of the respective path with respect to the body. 7 Claims, 4 Drawing Figures

  18. Theory of phonon inelastic atom--surface scattering. I. Quantum mechanical treatment of collision dynamics

    International Nuclear Information System (INIS)

    Choi, B.H.; Poe, R.T.

    1985-01-01

    We present a systematic formulation of the atom--surface scattering dynamics which includes the vibrational states of the atoms in the solid (phonons). The properties of the total scattering wave function of the system, a representation of the interaction potential matrix, and the characteristics of the independent physical solutions are all derived from the translational invariance of the full Hamiltonian. The scattering equations in the integral forms as well as the related Green functions were also obtained. The configurational representations of the Green functions, in particular, are quite different from those of the conventional scattering theory where the collision partners are spatially localized. Various versions of the integral expression of scattering, transition, and reactance matrices were also obtained. They are useful for introducing approximation schemes. From the present formulation, some specific theoretical schemes which are more realistic compared to those that have been employed so far and at the same time capable of yielding effective ab initio computation are derived in the following paper. The time reversal invariance and the microscopic reversibility of the atom--surface scattering were discussed. The relations between the in and outgoing scattering wave functions which are satisfied in the atom--surface system and important in the transition matrix methods were presented. The phonon annihilation and creation, and the adsorption and desorption of the atom are related through the time reversal invariance, and thus the microscopic reversibility can be tested by the experiment

  19. Approximation of Surfaces by Cylinders

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1998-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  20. Studies of the plasma droplet accelerator scheme

    International Nuclear Information System (INIS)

    Mori, W.B.; Joshi, C.; Dawson, J.M.; Lee, K.; Forslund, D.W.; Kindel, J.M.

    1985-01-01

    In the plasma droplet accelerator scheme, proposed by R. Palmer, a sequence of liquid micro-spheres generated by a jet printer are ionized by an incoming intense laser. The hope is that the micro-spheres now acting as conducting balls will allow efficient coupling of the incoming laser radiation into an accelerating mode. Motivated by this the authors have carried out 2D, particle simulations in order to answer some of the plasma physics questions hitherto unaddressed. In particular they find that at least for laser intensities exceeding v 0 /c=0.03 (/sup ∼/10 13 w/cm 2 for a CO 2 laser), the incident laser light is rather efficiently absorbed in a hot electron distribution. Up to 70% of the incident energy can be absorbed by these electrons which rapidly expand and fill the vacuum space between the microspheres with a low density plasma. These results indicate that it is advisable to stay clear of plasma formation and thus put on an upper limit on the maximum surface fields that can be tolerated in the droplet-accelerator scheme

  1. Studies of the plasma droplet accelerator scheme

    International Nuclear Information System (INIS)

    Mori, W.B.; Dawson, J.M.; Forslund, D.W.; Joshi, C.; Kindel, J.M.; Lee, K.

    1985-01-01

    In the plasma droplet accelerator scheme, proposed by R. Palmer, a sequence of liquid micro-spheres generated by a jet printer are ionized by an incoming intense laser. The hope is that the micro-spheres now acting as conducting balls will allow efficient coupling of the incoming laser radiation into an accelerating mode. Motivated by this we have carried out 2D, particle simulations in order to answer some of the plasma physics questions hitherto unaddressed. In particular we find that at least for laser intensities exceeding v /SUB o/ /c=0.03 ( about10 13 w/cm 2 for a CO 2 laser), the incident laser light is rather efficiently absorbed in a hot electron distribution. Up to 70% of the incident energy can be absorbed by these electrons which rapidly expand and fill the vacuum space between the microspheres with a low density plasma. These results indicate that it is advisable to stay clear of plasma formation and thus put on an upper limit on the maximum surface fields that can be tolerated in the droplet-accelerator scheme

  2. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    Science.gov (United States)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  3. Representations of quantum bicrossproduct algebras

    International Nuclear Information System (INIS)

    Arratia, Oscar; Olmo, Mariano A del

    2002-01-01

    We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra

  4. Reusable Lexical Representations for Idioms

    NARCIS (Netherlands)

    Odijk, J.E.J.M.

    2004-01-01

    In this paper I introduce (1) a technically simple and highly theory-independent way for lexically representing flexible idiomatic expressions, and (2) a procedure to incorporate these lexical representations in a wide variety of NLP systems. The method is based on Structural EQuivalence Classes

  5. Symmetric group representations and Z

    OpenAIRE

    Adve, Anshul; Yong, Alexander

    2017-01-01

    We discuss implications of the following statement about the representation theory of symmetric groups: every integer appears infinitely often as an irreducible character evaluation, and every nonnegative integer appears infinitely often as a Littlewood-Richardson coefficient and as a Kronecker coefficient.

  6. Guideline Knowledge Representation Model (GLIKREM)

    Czech Academy of Sciences Publication Activity Database

    Buchtela, David; Peleška, Jan; Veselý, Arnošt; Zvárová, Jana; Zvolský, Miroslav

    2008-01-01

    Roč. 4, č. 1 (2008), s. 17-23 ISSN 1801-5603 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : knowledge representation * GLIF model * guidelines Subject RIV: IN - Informatics, Computer Science http://www.ejbi.org/articles/200812/34/1.html

  7. Conceptual Knowledge Representation and Reasoning

    DEFF Research Database (Denmark)

    Oldager, Steen Nikolaj

    2003-01-01

    One of the main areas in knowledge representation and logic-based artificial intelligence concerns logical formalisms that can be used for representing and reasoning with concepts. For almost 30 years, since research in this area began, the issue of intensionality has had a special status...

  8. Octonionic matrix representation and electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Chanyal, B. C. [Kumaun University, S. S. J. Campus, Almora (India)

    2014-12-15

    Keeping in mind the important role of octonion algebra, we have obtained the electromagnetic field equations of dyons with an octonionic 8 x 8 matrix representation. In this paper, we consider the eight - dimensional octonionic space as a combination of two (external and internal) four-dimensional spaces for the existence of magnetic monopoles (dyons) in a higher-dimensional formalism. As such, we describe the octonion wave equations in terms of eight components from the 8 x 8 matrix representation. The octonion forms of the generalized potential, fields and current source of dyons in terms of 8 x 8 matrix are discussed in a consistent manner. Thus, we have obtained the generalized Dirac-Maxwell equations of dyons from an 8x8 matrix representation of the octonion wave equations in a compact and consistent manner. The generalized Dirac-Maxwell equations are fully symmetric Maxwell equations and allow for the possibility of magnetic charges and currents, analogous to electric charges and currents. Accordingly, we have obtained the octonionic Dirac wave equations in an external field from the matrix representation of the octonion-valued potentials of dyons.

  9. Realizations of the canonical representation

    Indian Academy of Sciences (India)

    Traditionally, the canonical representation is realized on the Hilbert space ... Fix a decomposition R2n = Rn × Rn ..... to an orthonormal basis {ψ1,ψ2,. ..... [7] Vemuri M K, A non-commutative Sobolev inequality and its application to spectral.

  10. Non-Hermitian Heisenberg representation

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2015-01-01

    Roč. 379, č. 36 (2015), s. 2013-2017 ISSN 0375-9601 Institutional support: RVO:61389005 Keywords : quantum mechanics * Non-Hermitian representation of observables * Generalized Heisenberg equations Subject RIV: BE - Theoretical Physics Impact factor: 1.677, year: 2015

  11. Adaptive representations for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.

    2010-01-01

    This book presents new algorithms for reinforcement learning, a form of machine learning in which an autonomous agent seeks a control policy for a sequential decision task. Since current methods typically rely on manually designed solution representations, agents that automatically adapt their own

  12. Visual representation of spatiotemporal structure

    Science.gov (United States)

    Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.

    1998-07-01

    The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.

  13. Representational Momentum in Older Adults

    Science.gov (United States)

    Piotrowski, Andrea S.; Jakobson, Lorna S.

    2011-01-01

    Humans have a tendency to perceive motion even in static images that simply "imply" movement. This tendency is so strong that our memory for actions depicted in static images is distorted in the direction of implied motion--a phenomenon known as representational momentum (RM). In the present study, we created an RM display depicting a pattern of…

  14. The representation of inherent properties.

    Science.gov (United States)

    Prasada, Sandeep

    2014-10-01

    Research on the representation of generic knowledge suggests that inherent properties can have either a principled or a causal connection to a kind. The type of connection determines whether the outcome of the storytelling process will include intuitions of inevitability and a normative dimension and whether it will ground causal explanations.

  15. Support Schemes and Ownership Structures

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Schröder, Sascha Thorsten; Costa, Ana

    , Denmark, France and Portugal. Another crucial aspect for the diffusion of the mCHP technology is possible ownership structures. These may range from full consumer ownership to ownership by utilities and energy service companies, which is discussed in Section 6. Finally, a conclusion (Section 7) wraps up......In recent years, fuel cell based micro‐combined heat and power has received increasing attention due to its potential contribution to energy savings, efficiency gains, customer proximity and flexibility in operation and capacity size. The FC4Home project assesses technical and economic aspects...... of support scheme simultaneously affects risk and technological development, which is the focus of Section 4. Subsequent to this conceptual overview, Section 5 takes a glance at the national application of support schemes for mCHP in practice, notably in the three country cases of the FC4Home project...

  16. [PICS: pharmaceutical inspection cooperation scheme].

    Science.gov (United States)

    Morénas, J

    2009-01-01

    The pharmaceutical inspection cooperation scheme (PICS) is a structure containing 34 participating authorities located worldwide (October 2008). It has been created in 1995 on the basis of the pharmaceutical inspection convention (PIC) settled by the European free trade association (EFTA) in1970. This scheme has different goals as to be an international recognised body in the field of good manufacturing practices (GMP), for training inspectors (by the way of an annual seminar and experts circles related notably to active pharmaceutical ingredients [API], quality risk management, computerized systems, useful for the writing of inspection's aide-memoires). PICS is also leading to high standards for GMP inspectorates (through regular crossed audits) and being a room for exchanges on technical matters between inspectors but also between inspectors and pharmaceutical industry.

  17. Project financing renewable energy schemes

    International Nuclear Information System (INIS)

    Brandler, A.

    1993-01-01

    The viability of many Renewable Energy projects is critically dependent upon the ability of these projects to secure the necessary financing on acceptable terms. The principal objective of the study was to provide an overview to project developers of project financing techniques and the conditions under which project finance for Renewable Energy schemes could be raised, focussing on the potential sources of finance, the typical project financing structures that could be utilised for Renewable Energy schemes and the risk/return and security requirements of lenders, investors and other potential sources of financing. A second objective is to describe the appropriate strategy and tactics for developers to adopt in approaching the financing markets for such projects. (author)

  18. Network Regulation and Support Schemes

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Schröder, Sascha Thorsten; Jacobsen, Henrik

    2009-01-01

    -in tariffs to market-based quota systems, and network regulation approaches, comprising rate-of-return and incentive regulation. National regulation and the vertical structure of the electricity sector shape the incentives of market agents, notably of distributed generators and network operators......At present, there exists no explicit European policy framework on distributed generation. Various Directives encompass distributed generation; inherently, their implementation is to the discretion of the Member States. The latter have adopted different kinds of support schemes, ranging from feed....... This article seeks to investigate the interactions between the policy dimensions of support schemes and network regulation and how they affect the deployment of distributed generation. Firstly, a conceptual analysis examines how the incentives of the different market agents are affected. In particular...

  19. Distance labeling schemes for trees

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Gørtz, Inge Li; Bistrup Halvorsen, Esben

    2016-01-01

    We consider distance labeling schemes for trees: given a tree with n nodes, label the nodes with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the distance in the tree between the two nodes. A lower bound by Gavoille et al. [Gavoille...... variants such as, for example, small distances in trees [Alstrup et al., SODA, 2003]. We improve the known upper and lower bounds of exact distance labeling by showing that 1/4 log2(n) bits are needed and that 1/2 log2(n) bits are sufficient. We also give (1 + ε)-stretch labeling schemes using Theta...

  20. Small-scale classification schemes

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2004-01-01

    Small-scale classification schemes are used extensively in the coordination of cooperative work. This study investigates the creation and use of a classification scheme for handling the system requirements during the redevelopment of a nation-wide information system. This requirements...... classification inherited a lot of its structure from the existing system and rendered requirements that transcended the framework laid out by the existing system almost invisible. As a result, the requirements classification became a defining element of the requirements-engineering process, though its main...... effects remained largely implicit. The requirements classification contributed to constraining the requirements-engineering process by supporting the software engineers in maintaining some level of control over the process. This way, the requirements classification provided the software engineers...

  1. A Classification Scheme for Glaciological AVA Responses

    Science.gov (United States)

    Booth, A.; Emir, E.

    2014-12-01

    A classification scheme is proposed for amplitude vs. angle (AVA) responses as an aid to the interpretation of seismic reflectivity in glaciological research campaigns. AVA responses are a powerful tool in characterising the material properties of glacier ice and its substrate. However, before interpreting AVA data, careful true amplitude processing is required to constrain basal reflectivity and compensate amplitude decay mechanisms, including anelastic attenuation and spherical divergence. These fundamental processing steps can be difficult to design in cases of noisy data, e.g. where a target reflection is contaminated by surface wave energy (in the case of shallow glaciers) or by energy reflected from out of the survey plane. AVA methods have equally powerful usage in estimating the fluid fill of potential hydrocarbon reservoirs. However, such applications seldom use true amplitude data and instead consider qualitative AVA responses using a well-defined classification scheme. Such schemes are often defined in terms of the characteristics of best-fit responses to the observed reflectivity, e.g. the intercept (I) and gradient (G) of a linear approximation to the AVA data. The position of the response on a cross-plot of I and G then offers a diagnostic attribute for certain fluid types. We investigate the advantages in glaciology of emulating this practice, and develop a cross-plot based on the 3-term Shuey AVA approximation (using I, G, and a curvature term C). Model AVA curves define a clear lithification trend: AVA responses to stiff (lithified) substrates fall discretely into one quadrant of the cross-plot, with positive I and negative G, whereas those to fluid-rich substrates plot diagonally opposite (in the negative I and positive G quadrant). The remaining quadrants are unoccupied by plausible single-layer responses and may therefore be diagnostic of complex thin-layer reflectivity, and the magnitude and polarity of the C term serves as a further indicator

  2. Brain activation related to the representations of external space and body scheme in visuomotor control

    NARCIS (Netherlands)

    de Jong, BM; van der Graaf, FHCE; Paans, AMJ

    2001-01-01

    Regional cerebral blood flow was assessed during reaching movements with either target or finger selection. Measurements were performed with positron emission tomography in normal subjects. We thus identified two patterns of cerebral activation representing parietal command functions based on either

  3. Cambridge community Optometry Glaucoma Scheme.

    Science.gov (United States)

    Keenan, Jonathan; Shahid, Humma; Bourne, Rupert R; White, Andrew J; Martin, Keith R

    2015-04-01

    With a higher life expectancy, there is an increased demand for hospital glaucoma services in the United Kingdom. The Cambridge community Optometry Glaucoma Scheme (COGS) was initiated in 2010, where new referrals for suspected glaucoma are evaluated by community optometrists with a special interest in glaucoma, with virtual electronic review and validation by a consultant ophthalmologist with special interest in glaucoma. 1733 patients were evaluated by this scheme between 2010 and 2013. Clinical assessment is performed by the optometrist at a remote site. Goldmann applanation tonometry, pachymetry, monoscopic colour optic disc photographs and automated Humphrey visual field testing are performed. A clinical decision is made as to whether a patient has glaucoma or is a suspect, and referred on or discharged as a false positive referral. The clinical findings, optic disc photographs and visual field test results are transmitted electronically for virtual review by a consultant ophthalmologist. The number of false positive referrals from initial referral into the scheme. Of the patients, 46.6% were discharged at assessment and a further 5.7% were discharged following virtual review. Of the patients initially discharged, 2.8% were recalled following virtual review. Following assessment at the hospital, a further 10.5% were discharged after a single visit. The COGS community-based glaucoma screening programme is a safe and effective way of evaluating glaucoma referrals in the community and reducing false-positive referrals for glaucoma into the hospital system. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  4. Children's schemes for anticipating the validity of nets for solids

    Science.gov (United States)

    Wright, Vince; Smith, Ken

    2017-09-01

    There is growing acknowledgement of the importance of spatial abilities to student achievement across a broad range of domains and disciplines. Nets are one way to connect three-dimensional shapes and their two-dimensional representations and are a common focus of geometry curricula. Thirty-four students at year 6 (upper primary school) were interviewed on two occasions about their anticipation of whether or not given nets for the cube- and square-based pyramid would fold to form the target solid. Vergnaud's ( Journal of Mathematical Behavior, 17(2), 167-181, 1998, Human Development, 52, 83-94, 2009) four characteristics of schemes were used as a theoretical lens to analyse the data. Successful schemes depended on the interaction of operational invariants, such as strategic choice of the base, rules for action, particularly rotation of shapes, and anticipations of composites of polygons in the net forming arrangements of faces in the solid. Inferences were rare. These data suggest that students need teacher support to make inferences, in order to create transferable schemes.

  5. A Memory Efficient Network Encryption Scheme

    Science.gov (United States)

    El-Fotouh, Mohamed Abo; Diepold, Klaus

    In this paper, we studied the two widely used encryption schemes in network applications. Shortcomings have been found in both schemes, as these schemes consume either more memory to gain high throughput or low memory with low throughput. The need has aroused for a scheme that has low memory requirements and in the same time possesses high speed, as the number of the internet users increases each day. We used the SSM model [1], to construct an encryption scheme based on the AES. The proposed scheme possesses high throughput together with low memory requirements.

  6. An Arbitrated Quantum Signature Scheme without Entanglement*

    International Nuclear Information System (INIS)

    Li Hui-Ran; Luo Ming-Xing; Peng Dai-Yuan; Wang Xiao-Jun

    2017-01-01

    Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and DoS attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks . (paper)

  7. The protection of warranties and representations

    International Nuclear Information System (INIS)

    Spence, C.D.; Thusoo, N.

    1999-01-01

    Most acquisition contracts within the oil and gas industry consist of representations and warranties. The legal distinction between representations and warranties was explained as follows: a representation is a statement of fact made by the representor before making the contract, but a warranty is a statement of fact which forms part of the terms of the contract. The paper outlines the nature of a representation or warranty and explains why certain warranties are not given. The protection offered by representations and warranties in breach of contract cases is also explained. Suggestions are offered for increasing protection by representations and warranties. 22 refs

  8. A fast and accurate dihedral interpolation loop subdivision scheme

    Science.gov (United States)

    Shi, Zhuo; An, Yalei; Wang, Zhongshuai; Yu, Ke; Zhong, Si; Lan, Rushi; Luo, Xiaonan

    2018-04-01

    In this paper, we propose a fast and accurate dihedral interpolation Loop subdivision scheme for subdivision surfaces based on triangular meshes. In order to solve the problem of surface shrinkage, we keep the limit condition unchanged, which is important. Extraordinary vertices are handled using modified Butterfly rules. Subdivision schemes are computationally costly as the number of faces grows exponentially at higher levels of subdivision. To address this problem, our approach is to use local surface information to adaptively refine the model. This is achieved simply by changing the threshold value of the dihedral angle parameter, i.e., the angle between the normals of a triangular face and its adjacent faces. We then demonstrate the effectiveness of the proposed method for various 3D graphic triangular meshes, and extensive experimental results show that it can match or exceed the expected results at lower computational cost.

  9. Integration of object-oriented knowledge representation with the CLIPS rule based system

    Science.gov (United States)

    Logie, David S.; Kamil, Hasan

    1990-01-01

    The paper describes a portion of the work aimed at developing an integrated, knowledge based environment for the development of engineering-oriented applications. An Object Representation Language (ORL) was implemented in C++ which is used to build and modify an object-oriented knowledge base. The ORL was designed in such a way so as to be easily integrated with other representation schemes that could effectively reason with the object base. Specifically, the integration of the ORL with the rule based system C Language Production Systems (CLIPS), developed at the NASA Johnson Space Center, will be discussed. The object-oriented knowledge representation provides a natural means of representing problem data as a collection of related objects. Objects are comprised of descriptive properties and interrelationships. The object-oriented model promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects. Data is inherited through an object network via the relationship links. Together, the two schemes complement each other in that the object-oriented approach efficiently handles problem data while the rule based knowledge is used to simulate the reasoning process. Alone, the object based knowledge is little more than an object-oriented data storage scheme; however, the CLIPS inference engine adds the mechanism to directly and automatically reason with that knowledge. In this hybrid scheme, the expert system dynamically queries for data and can modify the object base with complete access to all the functionality of the ORL from rules.

  10. Contingent sounds change the mental representation of one's finger length.

    Science.gov (United States)

    Tajadura-Jiménez, Ana; Vakali, Maria; Fairhurst, Merle T; Mandrigin, Alisa; Bianchi-Berthouze, Nadia; Deroy, Ophelia

    2017-07-18

    Mental body-representations are highly plastic and can be modified after brief exposure to unexpected sensory feedback. While the role of vision, touch and proprioception in shaping body-representations has been highlighted by many studies, the auditory influences on mental body-representations remain poorly understood. Changes in body-representations by the manipulation of natural sounds produced when one's body impacts on surfaces have recently been evidenced. But will these changes also occur with non-naturalistic sounds, which provide no information about the impact produced by or on the body? Drawing on the well-documented capacity of dynamic changes in pitch to elicit impressions of motion along the vertical plane and of changes in object size, we asked participants to pull on their right index fingertip with their left hand while they were presented with brief sounds of rising, falling or constant pitches, and in the absence of visual information of their hands. Results show an "auditory Pinocchio" effect, with participants feeling and estimating their finger to be longer after the rising pitch condition. These results provide the first evidence that sounds that are not indicative of veridical movement, such as non-naturalistic sounds, can induce a Pinocchio-like change in body-representation when arbitrarily paired with a bodily action.

  11. Social Representations of the Process of Ageing in Young and Mature Romanian Adults

    Directory of Open Access Journals (Sweden)

    Gherman, M.A.

    2015-01-01

    Full Text Available The aim of this research was to investigate Romanians’ social representations of ageing and positive ageing, as well as the variations of these social representations according to the age and gender of the participants in what regards the centrality of the components and basic cognitive scheme activations. Study 1 was conducted on 80 participants who filled in two associative map tasks (Dafinoiu & Crumpei, 2013 that had as inductors “ageing” and, respectively, “positive ageing”. Results have shown a notable variation between the two social representations, in the sense that the latter was entirely made up of positive associations, whereas the former comprised both positive and negative associations. The second study was conducted on another sample of 80 participants (20 young adult men and 20 young adult women and, respectively, 20 mature adult men and 20 mature adult women and it found by employing the questioning principle (“mise-en-cause”, Moliner, 1994 that two core elements of the social representation of ageing vary in centrality according to the age of the participants. Moreover, variations across age were also encountered in the overall activation of basic cognitive schemes as well as in the activation of the three dimensions: Description, Praxis and Attribution / Evaluation (Rateau, 1995. Results are discussed in the light of their contribution to the social representations theory.

  12. Decoupling schemes for the SSC Collider

    International Nuclear Information System (INIS)

    Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.

    1993-05-01

    A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper

  13. Renormalization scheme-invariant perturbation theory

    International Nuclear Information System (INIS)

    Dhar, A.

    1983-01-01

    A complete solution to the problem of the renormalization scheme dependence of perturbative approximants to physical quantities is presented. An equation is derived which determines any physical quantity implicitly as a function of only scheme independent variables. (orig.)

  14. Wireless Broadband Access and Accounting Schemes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we propose two wireless broadband access and accounting schemes. In both schemes, the accounting system adopts RADIUS protocol, but the access system adopts SSH and SSL protocols respectively.

  15. 48 CFR 2009.570-4 - Representation.

    Science.gov (United States)

    2010-10-01

    ... type required by the organizational conflicts of interest representation provisions has previously been... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Organizational Conflicts of Interest 2009.570-4 Representation... whether situations or relationships exist which may constitute organizational conflicts of interest with...

  16. Unconditionally energy stable numerical schemes for phase-field vesicle membrane model

    Science.gov (United States)

    Guillén-González, F.; Tierra, G.

    2018-02-01

    Numerical schemes to simulate the deformation of vesicles membranes via minimizing the bending energy have been widely studied in recent times due to its connection with many biological motivated problems. In this work we propose a new unconditionally energy stable numerical scheme for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area constraint. Moreover, we extend these ideas to present an unconditionally energy stable splitting scheme decoupling the interaction of the vesicle with a surrounding fluid. Finally, the well behavior of the proposed schemes are illustrated through several computational experiments.

  17. The impact of runoff and surface hydrology on Titan's climate

    Science.gov (United States)

    Faulk, Sean; Lora, Juan; Mitchell, Jonathan

    2017-10-01

    Titan’s surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane “wetlands” reservoirs realistically produce many observed features of Titan’s atmosphere, whereas “aquaplanet” simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan’s surface. The wetlands configuration is, in part, motivated by Titan’s large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. To isolate the singular impact of surface runoff on Titan’s climatology, we run simulations without parameterizations of subsurface flow and topography-atmosphere interactions. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan’s hydrology provides new insight into the complex interaction between Titan’s atmosphere and surface, demonstrates the influence of surface runoff on Titan’s global climate

  18. Tightly Secure Signatures From Lossy Identification Schemes

    OpenAIRE

    Abdalla , Michel; Fouque , Pierre-Alain; Lyubashevsky , Vadim; Tibouchi , Mehdi

    2015-01-01

    International audience; In this paper, we present three digital signature schemes with tight security reductions in the random oracle model. Our first signature scheme is a particularly efficient version of the short exponent discrete log-based scheme of Girault et al. (J Cryptol 19(4):463–487, 2006). Our scheme has a tight reduction to the decisional short discrete logarithm problem, while still maintaining the non-tight reduction to the computational version of the problem upon which the or...

  19. Democracy and Representation in Paraguay

    Directory of Open Access Journals (Sweden)

    Liliana Rocío Duarte-Recalde

    2017-05-01

    Full Text Available This article reviews the electoral accountability dimension as a constitutive mechanism of Paraguayan democracy since 1989, analyzing the factors that limit the representation contained in the administration of the Paraguayan government as a result of the electoral process. We provide an analytic contrast between the democratic principles that guide the Paraguayan electoral institutions and the way their designs are enforced, identifying the gap between formal and informal rules as determinants of political representation. We also describe the barriers that prevent effective access of the population to political participation and competition, the advantages possessed by traditional political parties and interest groups, as well as their implications for democracy. We also review the degree to which elected officials are representative of historically excluded social groups as a result, emphasizing the way women, indigenous and peasant communities have potentially limited power to exercise political influence due to limitations to participation by structural and institutional factors.

  20. Time representations in social science.

    Science.gov (United States)

    Schulz, Yvan

    2012-12-01

    Time has long been a major topic of study in social science, as in other sciences or in philosophy. Social scientists have tended to focus on collective representations of time, and on the ways in which these representations shape our everyday experiences. This contribution addresses work from such disciplines as anthropology, sociology and history. It focuses on several of the main theories that have preoccupied specialists in social science, such as the alleged "acceleration" of life and overgrowth of the present in contemporary Western societies, or the distinction between so-called linear and circular conceptions of time. The presentation of these theories is accompanied by some of the critiques they have provoked, in order to enable the reader to form her or his own opinion of them.

  1. Quantum control and representation theory

    International Nuclear Information System (INIS)

    Ibort, A; Perez-Pardo, J M

    2009-01-01

    A new notion of controllability for quantum systems that takes advantage of the linear superposition of quantum states is introduced. We call such a notion von Neumann controllability, and it is shown that it is strictly weaker than the usual notion of pure state and operator controllability. We provide a simple and effective characterization of it by using tools from the theory of unitary representations of Lie groups. In this sense, we are able to approach the problem of control of quantum states from a new perspective, that of the theory of unitary representations of Lie groups. A few examples of physical interest and the particular instances of compact and nilpotent dynamical Lie groups are discussed

  2. Berry phase in Heisenberg representation

    Science.gov (United States)

    Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.

    1994-01-01

    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.

  3. Representation theory of finite monoids

    CERN Document Server

    Steinberg, Benjamin

    2016-01-01

    This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional ...

  4. Temporal Representation in Semantic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Levandoski, J J; Abdulla, G M

    2007-08-07

    A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.

  5. Experience representation in information systems

    OpenAIRE

    Kaczmarek, Jan

    2014-01-01

    This thesis looks into the ways subjective dimension of experience could be represented in artificial, non-biological systems, in particular information systems. The pivotal assumption is that experience as opposed to mainstream thinking in information science is not equal to knowledge, so that experience is a broader term which encapsulates both knowledge and subjective, affective component of experience, which so far has not been properly embraced by knowledge representation theories. This ...

  6. Experience representation in information systems

    OpenAIRE

    Kaczmarek, Jan

    2014-01-01

    This thesis looks into the ways subjective dimension of experience could be represented in artificial, non-biological systems, in particular information systems. The pivotal assumption is that experience as opposed to mainstream thinking in information science is not equal to knowledge, so that experience is a broader term which encapsulates both knowledge and subjective, affective component of experience, which so far has not been properly embraced by knowledge representation theories. Th...

  7. Generalized oscillator representations for Calogero Hamiltonians

    International Nuclear Information System (INIS)

    Tyutin, I V; Voronov, B L

    2013-01-01

    This paper is a natural continuation of the previous paper (Gitman et al 2011 J. Phys. A: Math. Theor. 44 425204), where oscillator representations for nonnegative Calogero Hamiltonians with coupling constant α ⩾ − 1/4 were constructed. In this paper, we present generalized oscillator representations for all Calogero Hamiltonians with α ⩾ − 1/4. These representations are generally highly nonunique, but there exists an optimum representation for each Hamiltonian. (comment)

  8. Comparative study of numerical schemes of TVD3, UNO3-ACM and optimized compact scheme

    Science.gov (United States)

    Lee, Duck-Joo; Hwang, Chang-Jeon; Ko, Duck-Kon; Kim, Jae-Wook

    1995-01-01

    Three different schemes are employed to solve the benchmark problem. The first one is a conventional TVD-MUSCL (Monotone Upwind Schemes for Conservation Laws) scheme. The second scheme is a UNO3-ACM (Uniformly Non-Oscillatory Artificial Compression Method) scheme. The third scheme is an optimized compact finite difference scheme modified by us: the 4th order Runge Kutta time stepping, the 4th order pentadiagonal compact spatial discretization with the maximum resolution characteristics. The problems of category 1 are solved by using the second (UNO3-ACM) and third (Optimized Compact) schemes. The problems of category 2 are solved by using the first (TVD3) and second (UNO3-ACM) schemes. The problem of category 5 is solved by using the first (TVD3) scheme. It can be concluded from the present calculations that the Optimized Compact scheme and the UN03-ACM show good resolutions for category 1 and category 2 respectively.

  9. Evaluation of remote maintenance schemes by plasma equilibrium analysis in Tokamak DEMO reactor

    International Nuclear Information System (INIS)

    Utoh, Hiroyasu; Tobita, Kenji; Asakura, Nobuyuki; Sakamoto, Yoshiteru

    2014-01-01

    Highlights: • The remote maintenance schemes in DEMO reactor were evaluated by the plasma equilibrium analysis. • Horizontal sector transport maintenance scheme requires the largest total PF coil current. • The difference of total PF coil current for MHD equilibrium in between the large segmented divertor maintenance and the segmentalized divertor maintenance was about 10%. - Abstract: The remote maintenance schemes in a DEMO reactor are categorized by insertion direction, blanket segmentation, and divertor maintenance scheme, and are quantitatively evaluated by analysing the plasma equilibrium. The positions of the poloidal field (PF) coil are limited by the size of the toroidal field (TF) coil and the maintenance port layout of each remote maintenance scheme. Because the PF coils are located near the larger TF coil and far from the plasma surface, the horizontal sector transport maintenance scheme requires the largest part of total PF coil current, 25% larger than that required for separated sector transport using vertical maintenance ports with segmented divertor maintenance (SDM). In the unsegmented divertor maintenance (UDM) scheme, the total magnetic stored energy in the PF coils at plasma equilibrium is about 30% larger than that stored in the SDM scheme, but the time required for removal and installation of all the divertor cassettes in the UDM scheme is roughly a third of that required in the SDM scheme because the number of divertor cassettes in the UDM scheme is a third of that in the SDM scheme. From the viewpoint of simple maintenance operations, the merit of the UDM scheme has more merit than the SDM scheme

  10. Optimal Sales Schemes for Network Goods

    DEFF Research Database (Denmark)

    Parakhonyak, Alexei; Vikander, Nick

    consumers simultaneously, serve them all sequentially, or employ any intermediate scheme. We show that the optimal sales scheme is purely sequential, where each consumer observes all previous sales before choosing whether to buy himself. A sequential scheme maximizes the amount of information available...

  11. THROUGHPUT ANALYSIS OF EXTENDED ARQ SCHEMES

    African Journals Online (AJOL)

    PUBLICATIONS1

    ABSTRACT. Various Automatic Repeat Request (ARQ) schemes have been used to combat errors that befall in- formation transmitted in digital communication systems. Such schemes include simple ARQ, mixed mode ARQ and Hybrid ARQ (HARQ). In this study we introduce extended ARQ schemes and derive.

  12. Arbitrated quantum signature scheme with message recovery

    International Nuclear Information System (INIS)

    Lee, Hwayean; Hong, Changho; Kim, Hyunsang; Lim, Jongin; Yang, Hyung Jin

    2004-01-01

    Two quantum signature schemes with message recovery relying on the availability of an arbitrator are proposed. One scheme uses a public board and the other does not. However both schemes provide confidentiality of the message and a higher efficiency in transmission

  13. Neural Representations of Physics Concepts.

    Science.gov (United States)

    Mason, Robert A; Just, Marcel Adam

    2016-06-01

    We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems. © The Author(s) 2016.

  14. Impossibility Theorem in Proportional Representation Problem

    International Nuclear Information System (INIS)

    Karpov, Alexander

    2010-01-01

    The study examines general axiomatics of Balinski and Young and analyzes existed proportional representation methods using this approach. The second part of the paper provides new axiomatics based on rational choice models. New system of axioms is applied to study known proportional representation systems. It is shown that there is no proportional representation method satisfying a minimal set of the axioms (monotonicity and neutrality).

  15. Facilitating Mathematical Practices through Visual Representations

    Science.gov (United States)

    Murata, Aki; Stewart, Chana

    2017-01-01

    Effective use of mathematical representation is key to supporting student learning. In "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014), "use and connect mathematical representations" is one of the effective Mathematics Teaching Practices. By using different representations, students examine concepts…

  16. Computability and Representations of the Zero Set

    NARCIS (Netherlands)

    P.J. Collins (Pieter)

    2008-01-01

    htmlabstractIn this note we give a new representation for closed sets under which the robust zero set of a function is computable. We call this representation the component cover representation. The computation of the zero set is based on topological index theory, the most powerful tool for finding

  17. Lifts of matroid representations over partial fields

    NARCIS (Netherlands)

    Pendavingh, R.A.; Zwam, van S.H.M.

    2010-01-01

    There exist several theorems which state that when a matroid is representable over distinct fields F1,...,Fk , it is also representable over other fields. We prove a theorem, the Lift Theorem, that implies many of these results. First, parts of Whittle's characterization of representations of

  18. Equivalence of rational representations of behaviors

    NARCIS (Netherlands)

    Gottimukkala, Sasanka; Fiaz, Shaik; Trentelman, H.L.

    This article deals with the equivalence of representations of behaviors of linear differential systems. In general, the behavior of a given linear differential system has many different representations. In this paper we restrict ourselves to kernel and image representations. Two kernel

  19. Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves

    Science.gov (United States)

    Yuan, Y. O.; Simons, F. J.; Bozdag, E.

    2014-12-01

    We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.

  20. A simple proof of renormalization group equation in the minimal subtraction scheme

    International Nuclear Information System (INIS)

    Chetyrkin, K.G.

    1989-04-01

    We give a simple combinatorial proof of the renormalization group equation in the minimal subtraction scheme. Being mathematically rigorous, the proof avoids both the notorious complexity of techniques using parametric representations of Feynman diagrams and heuristic arguments of usual ''proofs'' calling up bare fields living in the space-time of complex dimension. It also copes easily with the general case of Green functions of arbitrary number of composite fields. (author). 24 refs

  1. On the representation matrices of the spin permutation group. [for atomic and molecular electronic structures

    Science.gov (United States)

    Wilson, S.

    1977-01-01

    A method is presented for the determination of the representation matrices of the spin permutation group (symmetric group), a detailed knowledge of these matrices being required in the study of the electronic structure of atoms and molecules. The method is characterized by the use of two different coupling schemes. Unlike the Yamanouchi spin algebraic scheme, the method is not recursive. The matrices for the fundamental transpositions can be written down directly in one of the two bases. The method results in a computationally significant reduction in the number of matrix elements that have to be stored when compared with, say, the standard Young tableaux group theoretical approach.

  2. REMINDER: Saved Leave Scheme (SLS)

    CERN Multimedia

    2003-01-01

    Transfer of leave to saved leave accounts Under the provisions of the voluntary saved leave scheme (SLS), a maximum total of 10 days'* annual and compensatory leave (excluding saved leave accumulated in accordance with the provisions of Administrative Circular No 22B) can be transferred to the saved leave account at the end of the leave year (30 September). We remind you that unused leave of all those taking part in the saved leave scheme at the closure of the leave year accounts is transferred automatically to the saved leave account on that date. Therefore, staff members have no administrative steps to take. In addition, the transfer, which eliminates the risk of omitting to request leave transfers and rules out calculation errors in transfer requests, will be clearly shown in the list of leave transactions that can be consulted in EDH from October 2003 onwards. Furthermore, this automatic leave transfer optimizes staff members' chances of benefiting from a saved leave bonus provided that they ar...

  3. Comparison of three ice cloud optical schemes in climate simulations with community atmospheric model version 5

    Science.gov (United States)

    Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan

    2018-05-01

    A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.

  4. Computerized calculation scheme for toric intraocular lenses.

    Science.gov (United States)

    Langenbucher, Achim; Seitz, Berthold

    2004-06-01

    While a number of intraocular lens (IOL) power prediction formulae are well established for determination of spherical lenses, no common strategy has been published for the computation of toric IOLs. The purpose of this study is to describe a paraxial computing scheme for tracing an axial pencil of rays through the 'optical system eye' containing astigmatic refractive surfaces with their axes at random. The capabilities of this computing scheme are demonstrated with clinical examples. Based on a schematic model eye with spherocylindric surfaces, we use two alternative notations for description of vergences or prescriptions: (1) standard notation (refraction in both cardinal meridians and axis), and (2) component notation (spherical equivalent and cylindric component in 0 degrees and 45 degrees. Refractive surfaces are added to the vergence in component notation, whereas the transformation of the vergence through media is performed in the standard notation for both cardinal meridians. For calculation of the toric lens implant, a pencil of rays is traced through the spectacle and the cornea to the estimated lens position as well as backwards from the retina to the estimated lens position. For calculation of residual spectacle refraction, a pencil of rays is traced backwards from the retina through the toric lens implant and the cornea to the spectacle plane. In example 1 we calculate a 'thin toric lens' for compensation of a corneal astigmatism to achieve a spherical target refraction. In example 2 we compute a 'thick toric lens', which has to compensate for an oblique corneal astigmatism and rotate the spectacle cylinder to the against the rule position to enhance near vision. In example 3 we estimate the residual refraction at the corneal plane after implantation of a thick toric lens, when the cylinder of the lens implant is compensating the corneal cylinder in part and the axis of implantation is not fully aligned with the axis of the corneal astigmatism. This

  5. Quantum Secure Communication Scheme with W State

    International Nuclear Information System (INIS)

    Wang Jian; Zhang Quan; Tang Chaojng

    2007-01-01

    We present a quantum secure communication scheme using three-qubit W state. It is unnecessary for the present scheme to use alternative measurement or Bell basis measurement. Compared with the quantum secure direct communication scheme proposed by Cao et al. [H.J. Cao and H.S. Song, Chin. Phys. Lett. 23 (2006) 290], in our scheme, the detection probability for an eavesdropper's attack increases from 8.3% to 25%. We also show that our scheme is secure for a noise quantum channel.

  6. Labeling schemes for bounded degree graphs

    DEFF Research Database (Denmark)

    Adjiashvili, David; Rotbart, Noy Galil

    2014-01-01

    We investigate adjacency labeling schemes for graphs of bounded degree Δ = O(1). In particular, we present an optimal (up to an additive constant) log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar...... graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 2010], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 2002]. We also provide improved labeling schemes for bounded degree...

  7. Three-moment representation of rain in a cloud microphysics model

    Science.gov (United States)

    Paukert, M.; Fan, J.; Rasch, P. J.; Morrison, H.; Milbrandt, J.; Khain, A.; Shpund, J.

    2017-12-01

    Two-moment microphysics schemes have been commonly used for cloud simulation in models across different scales - from large-eddy simulations to global climate models. These schemes have yielded valuable insights into cloud and precipitation processes, however the size distributions are limited to two degrees of freedom, and thus the shape parameter is typically fixed or diagnosed. We have developed a three-moment approach for the rain category in order to provide an additional degree of freedom to the size distribution and thereby improve the cloud microphysics representations for more accurate weather and climate simulations. The approach is applied to the Predicted Particle Properties (P3) scheme. In addition to the rain number and mass mixing ratios predicted in the two-moment P3, we now include prognostic equations for the sixth moment of the size distribution (radar reflectivity), thus allowing the shape parameter to evolve freely. We employ the spectral bin microphysics (SBM) model to formulate the three-moment process rates in P3 for drop collisions and breakup. We first test the three-moment scheme with a maritime stratocumulus case from the VOCALS field campaign, and compare the model results with respect to cloud and precipitation properties from the new P3 scheme, original two-moment P3 scheme, SBM, and in-situ aircraft measurements. The improved simulation results by the new P3 scheme will be discussed and physically explained.

  8. Critical behavior from Schrodinger representation

    International Nuclear Information System (INIS)

    Suranyi, P.

    1992-01-01

    In this paper, the Schrodinger equation for φ 4 field theory is reduced to an infinite set of integral equations. A systematic truncation scheme is proposed and it is solved in second order to obtain the approximate critical behavior of the renormalized mass. The correlation exponent is given as a solution of a transcendental equation. It is in good agreement with the Ising model in all physical dimensions

  9. Alternative approach to nuclear data representation

    International Nuclear Information System (INIS)

    Pruet, J.; Brown, D.; Beck, B.; McNabb, D.P.

    2006-01-01

    This paper considers an approach for representing nuclear data that is qualitatively different from the approach currently adopted by the nuclear science community. Specifically, we examine a representation in which complicated data is described through collections of distinct and self-contained simple data structures. This structure-based representation is compared with the ENDF and ENDL formats, which can be roughly characterized as dictionary-based representations. A pilot data representation for replacing the format currently used at LLNL is presented. Examples are given as is a discussion of promises and shortcomings associated with moving from traditional dictionary-based formats to a structure-rich or class-like representation

  10. On the phase space representations. 1

    International Nuclear Information System (INIS)

    Polubarinov, I.V.

    1978-01-01

    The Dirac representation theory deals usually with the amplitude formalism of the quantum theory. An introduction is given into a theory of some other representations, which are applicable in the density matrix formalism and can naturally be called phase space representations (PSR). They use terms of phase space variables (x and p simultaneously) and give a description, close to the classical phase space description. Definitions and algebraic properties are given in quantum mechanics for such PSRs as the Wigner representation, coherent state representation and others. Completeness relations of a matrix type are used as a starting point. The case of quantum field theory is also outlined

  11. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Alex [University of California, Los Angeles, CA (United States). Joint Institute for Regional Earth System Science and Engineering

    2013-07-24

    the mostly dry mountain-breeze circulations force an additional component that results in semi-diurnal variations near the coast. A series of numerical tests, however, reveal sensitivity of the simulations to the choice of vertical grid, limiting the possibility of solid quantitative statements on the amplitudes and phases of the diurnal and semidiurnal components across the domain. According to our experiments, the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer scheme and the WSM6 microphysics scheme is the combination of schemes that performs best. For that combination, mean cloud cover, liquid water path, and cloud depth are fairly wellsimulated, while mean cloud top height remains too low in comparison to observations. Both microphysics and boundary layer schemes contribute to the spread in liquid water path and cloud depth, although the microphysics contribution is slightly more prominent. Boundary layer schemes are the primary contributors to cloud top height, degree of adiabaticity, and cloud cover. Cloud top height is closely related to surface fluxes and boundary layer structure. Thus, our study infers that an appropriate tuning of cloud top height would likely improve the low-cloud representation in the model. Finally, we show that entrainment governs the degree of adiabaticity, while boundary layer decoupling is a control on cloud cover. In the intercomparison study using WRF single-column model experiments, most parameterizations show a poor agreement of the vertical boundary layer structure when compared with large-eddy simulation models. We also implement a new Total-Energy/Mass- Flux boundary layer scheme into the WRF model and evaluate its ability to simulate both stratocumulus and shallow cumulus clouds. Result comparisons against large-eddy simulation show that this advanced parameterization based on the new Eddy-Diffusivity/Mass-Flux approach provides a better performance than other boundary layer parameterizations.

  12. ipole: Semianalytic scheme for relativistic polarized radiative transport

    Science.gov (United States)

    Moscibrodzka, Monika; Gammie, Charles F.

    2018-04-01

    ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.

  13. Cross-cutting categorization schemes in the digital humanities.

    Science.gov (United States)

    Allen, Colin

    2013-09-01

    Digital access to large amounts of scholarly text presents both challenges and opportunities for researchers in the humanities. Meeting these challenges depends on having high-quality representations of the contents of digital resources suitable for both machines and humans to use. Different ways of categorizing these contents are appropriate for different purposes, leading to the further problem of relating the contents of different categorization schemes to each other. This essay discusses the rationale for categorizing philosophical concepts and surveys some of the main approaches to doing so for materials that are continuously changing. It describes the goals and methods of the Indiana Philosophy Ontology (InPhO) project and provides an example of the kind of analysis that is made possible by powerful modeling methods.

  14. Analysis of core calculation schemes for advanced water reactors

    International Nuclear Information System (INIS)

    Nicolas, Anne

    1989-01-01

    This research thesis addresses the analysis of the core control of sub-moderated water reactors with plutonium fuel and varying spectrum. Firstly, a calculation scheme is defined, based on transport theory for the three existing assembly configurations. It is based on the efficiency analysis of the control cluster and of the flow sheet shape in the assembly. Secondly, studies of the assembly with control cluster and within a theory of diffusion with homogenization or detailed assembly representation are performed by taking the environment into account in order to assess errors. Thirdly, due to the presence of a very efficient absorbent in control clusters, a deeper physical analysis requires the study of the flow gradient existing at the interface between assemblies. A parameter is defined to assess this gradient, and theoretically calculated by using finite elements. Developed software is validated [fr

  15. Unitary Representations of Gauge Groups

    Science.gov (United States)

    Huerfano, Ruth Stella

    I generalize to the case of gauge groups over non-trivial principal bundles representations that I. M. Gelfand, M. I. Graev and A. M. Versik constructed for current groups. The gauge group of the principal G-bundle P over M, (G a Lie group with an euclidean structure, M a compact, connected and oriented manifold), as the smooth sections of the associated group bundle is presented and studied in chapter I. Chapter II describes the symmetric algebra associated to a Hilbert space, its Hilbert structure, a convenient exponential and a total set that later play a key role in the construction of the representation. Chapter III is concerned with the calculus needed to make the space of Lie algebra valued 1-forms a Gaussian L^2-space. This is accomplished by studying general projective systems of finitely measurable spaces and the corresponding systems of sigma -additive measures, all of these leading to the description of a promeasure, a concept modeled after Bourbaki and classical measure theory. In the case of a locally convex vector space E, the corresponding Fourier transform, family of characters and the existence of a promeasure for every quadratic form on E^' are established, so the Gaussian L^2-space associated to a real Hilbert space is constructed. Chapter III finishes by exhibiting the explicit Hilbert space isomorphism between the Gaussian L ^2-space associated to a real Hilbert space and the complexification of its symmetric algebra. In chapter IV taking as a Hilbert space H the L^2-space of the Lie algebra valued 1-forms on P, the gauge group acts on the motion group of H defining in an straight forward fashion the representation desired.

  16. Wigner representation in scattering problems

    International Nuclear Information System (INIS)

    Remler, E.A.

    1975-01-01

    The basic equations of quantum scattering are translated into the Wigner representation. This puts quantum mechanics in the form of a stochastic process in phase space. Instead of complex valued wavefunctions and transition matrices, one now works with real-valued probability distributions and source functions, objects more responsive to physical intuition. Aside from writing out certain necessary basic expressions, the main purpose is to develop and stress the interpretive picture associated with this representation and to derive results used in applications published elsewhere. The quasiclassical guise assumed by the formalism lends itself particularly to approximations of complex multiparticle scattering problems is laid. The foundation for a systematic application of statistical approximations to such problems. The form of the integral equation for scattering as well as its mulitple scattering expansion in this representation are derived. Since this formalism remains unchanged upon taking the classical limit, these results also constitute a general treatment of classical multiparticle collision theory. Quantum corrections to classical propogators are discussed briefly. The basic approximation used in the Monte Carlo method is derived in a fashion that allows for future refinement and includes bound state production. The close connection that must exist between inclusive production of a bound state and of its constituents is brought out in an especially graphic way by this formalism. In particular one can see how comparisons between such cross sections yield direct physical insight into relevant production mechanisms. A simple illustration of scattering by a bound two-body system is treated. Simple expressions for single- and double-scattering contributions to total and differential cross sections, as well as for all necessary shadow corrections thereto, are obtained and compared to previous results of Glauber and Goldberger

  17. Spectral representation in stochastic quantization

    International Nuclear Information System (INIS)

    Nakazato, Hiromichi.

    1988-10-01

    A spectral representation of stationary 2-point functions is investigated based on the operator formalism in stochastic quantization. Assuming the existence of asymptotic non-interacting fields, we can diagonalize the total Hamiltonian in terms of asymptotic fields and show that the correlation length along the fictious time is proportional to the physical mass expected in the usual field theory. A relation between renormalization factors in the operator formalism is derived as a byproduct and its validity is checked with the perturbative results calculated in this formalism. (orig.)

  18. Multimedia ontology representation and applications

    CERN Document Server

    Chaudhury, Santanu; Ghosh, Hiranmay

    2015-01-01

    The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled.The book contains information that helps with building semantic, content-based

  19. Statistical representation of quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Montina, A [Dipartimento di Fisica, Universita di Firenze, Via Sansone 1, 50019 Sesto Fiorentino (Italy)

    2007-05-15

    In the standard interpretation of quantum mechanics, the state is described by an abstract wave function in the representation space. Conversely, in a realistic interpretation, the quantum state is replaced by a probability distribution of physical quantities. Bohm mechanics is a consistent example of realistic theory, where the wave function and the particle positions are classically defined quantities. Recently, we proved that the probability distribution in a realistic theory cannot be a quadratic function of the quantum state, in contrast to the apparently obvious suggestion given by the Born rule for transition probabilities. Here, we provide a simplified version of this proof.

  20. Fragment separator momentum compression schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, Laura, E-mail: bandura@anl.gov [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Erdelyi, Bela [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Hausmann, Marc [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Kubo, Toshiyuki [RIKEN Nishina Center, RIKEN, Wako (Japan); Nolen, Jerry [Argonne National Laboratory, Argonne, IL 60439 (United States); Portillo, Mauricio [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Sherrill, Bradley M. [National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States)

    2011-07-21

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  1. Fragment separator momentum compression schemes

    International Nuclear Information System (INIS)

    Bandura, Laura; Erdelyi, Bela; Hausmann, Marc; Kubo, Toshiyuki; Nolen, Jerry; Portillo, Mauricio; Sherrill, Bradley M.

    2011-01-01

    We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.

  2. Electrical injection schemes for nanolasers

    DEFF Research Database (Denmark)

    Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten

    2013-01-01

    The performance of injection schemes among recently demonstrated electrically pumped photonic crystal nanolasers has been investigated numerically. The computation has been carried out at room temperature using a commercial semiconductor simulation software. For the simulations two electrical...... of 3 InGaAsP QWs on an InP substrate has been chosen for the modeling. In the simulations the main focus is on the electrical and optical properties of the nanolasers i.e. electrical resistance, threshold voltage, threshold current and wallplug efficiency. In the current flow evaluation the lowest...... threshold current has been achieved with the lateral electrical injection through the BH; while the lowest resistance has been obtained from the current post structure even though this model shows a higher current threshold because of the lack of carrier confinement. Final scope of the simulations...

  3. Scheme of thinking quantum systems

    International Nuclear Information System (INIS)

    Yukalov, V I; Sornette, D

    2009-01-01

    A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field

  4. Yellow light for green scheme

    International Nuclear Information System (INIS)

    Morch, Stein

    2004-01-01

    The article asserts that there could be an investment boom for wind, hydro and bio power in a common Norwegian-Swedish market scheme for green certificates. The Swedish authorities are ready, and the Norwegian government is preparing a report to the Norwegian Parliament. What are the ambitions of Norway, and will hydro power be included? A green certificate market common to more countries have never before been established and requires the solution of many challenging problems. In Sweden, certificate support is expected to promote primarily bioenergy, wind power and small-scale hydro power. In Norway there is an evident potential for wind power, and more hydro power can be developed if desired

  5. Pomeranchuk conjecture and symmetry schemes

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, A.; Morales, A.; Ruegg, H. [Junta de Energia Nuclear, Madrid (Spain); European Organization for Nuclear Research, Geneva (Switzerland); University of Geneva, Geneva (Switzerland)

    1963-01-15

    Pomeranchuk has conjectured that the cross-sections for charge-exchange processes vanish asymptotically as the energy tends to infinity. (By ''charge'' it is meant any internal quantum number, like electric charge, hypercharge, .. . ). It has been stated by several people that this conjecture implies equalities among the total cross-sections whenever any symmetry scheme is invoked for the strong interactions. But to our knowledge no explicit general proof of this statement has been given so far. We want to give this proof for any compact Lie group. We also prove, under certain assumptions, that the equality of the total cross-sections implies that s{sup -l} times the charge-exchange forward scattering absorptive amplitudes tend to zero as s -> ∞.

  6. On the Benefits of Divergent Search for Evolved Representations

    DEFF Research Database (Denmark)

    Lehman, Joel; Risi, Sebastian; Stanley, Kenneth O

    2012-01-01

    Evolved representations in evolutionary computation are often fragile, which can impede representation-dependent mechanisms such as self-adaptation. In contrast, evolved representations in nature are robust, evolvable, and creatively exploit available representational features. This paper provide...

  7. Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatments-A Review.

    Science.gov (United States)

    Garratt, J. R.

    1993-03-01

    realistic surface representation in general circulation models of the atmosphere. It is not yet clear how detailed this representation needs to be, but even allowing for the importance of surface processes, the parameterization of boundary-layer and convective clouds probably represents a greater challenge to improved climate simulations. This is illustrated in the case of surface net radiation for Aniazonia, which is not well simulated and tends to be overestimated, leading to evaporation rates that are too large. Underestimates in cloudiness, cloud albedo, and clear-sky shortwave absorption, rather than in surface albedo, appear to be the main culprits.There are three major tasks that confront the researcher so far as the development and validation of atmospheric boundary-layer (ABL) and surface schemes in GCMs are concerned:(i) There is a need to as' critically the impact of `improved' parameterization schemes on WM simulations, taking into account the problem of natural variability and hence the statistical significance of the induced changes.(ii) There is a need to compare GCM simulations of surface and ABL behavior (particularly regarding the diurnal cycle of surface fluxes, air temperature, and ABL depth) with observations over a range of surface types (vegetation, desert, ocean). In this context, area-average values of surface fluxes will be required to calibrate directly the ABL/land-surface scheme in the GCM.(iii) There is a need for intercomparisons of ABL and land-surface schemes used in GCMS, both for one- dimensional stand-alone models and for GCMs that incorporate the respective schemes.

  8. Teaching and Learning about Force with a Representational Focus: Pedagogy and Teacher Change

    Science.gov (United States)

    Hubber, Peter; Tytler, Russell; Haslam, Filocha

    2010-01-01

    A large body of research in the conceptual change tradition has shown the difficulty of learning fundamental science concepts, yet conceptual change schemes have failed to convincingly demonstrate improvements in supporting significant student learning. Recent work in cognitive science has challenged this purely conceptual view of learning, emphasising the role of language, and the importance of personal and contextual aspects of understanding science. The research described in this paper is designed around the notion that learning involves the recognition and development of students’ representational resources. In particular, we argue that conceptual difficulties with the concept of force are fundamentally representational in nature. This paper describes a classroom sequence in force that focuses on representations and their negotiation, and reports on the effectiveness of this perspective in guiding teaching, and in providing insight into student learning. Classroom sequences involving three teachers were videotaped using a combined focus on the teacher and groups of students. Video analysis software was used to capture the variety of representations used, and sequences of representational negotiation. Stimulated recall interviews were conducted with teachers and students. The paper reports on the nature of the pedagogies developed as part of this representational focus, its effectiveness in supporting student learning, and on the pedagogical and epistemological challenges negotiated by teachers in implementing this approach.

  9. A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models

    Directory of Open Access Journals (Sweden)

    Volker Kuell

    2008-12-01

    Full Text Available The correct representation of convection in numerical weather prediction (NWP models is essential for quantitative precipitation forecasts. Due to its small horizontal scale convection usually has to be parameterized, e.g. by mass flux convection schemes. Classical schemes originally developed for use in coarse grid NWP models assume zero net convective mass flux, because the whole circulation of a convective cell is confined to the local grid column and all convective mass fluxes cancel out. However, in contemporary NWP models with grid sizes of a few kilometers this assumption becomes questionable, because here convection is partially resolved on the grid. To overcome this conceptual problem we propose a hybrid mass flux convection scheme (HYMACS in which only the convective updrafts and downdrafts are parameterized. The generation of the larger scale environmental subsidence, which may cover several grid columns, is transferred to the grid scale equations. This means that the convection scheme now has to generate a net convective mass flux exerting a direct dynamical forcing to the grid scale model via pressure gradient forces. The hybrid convection scheme implemented into the COSMO model of Deutscher Wetterdienst (DWD is tested in an idealized simulation of a sea breeze circulation initiating convection in a realistic manner. The results are compared with analogous simulations with the classical Tiedtke and Kain-Fritsch convection schemes.

  10. Sparse approximation of currents for statistics on curves and surfaces.

    Science.gov (United States)

    Durrleman, Stanley; Pennec, Xavier; Trouvé, Alain; Ayache, Nicholas

    2008-01-01

    Computing, processing, visualizing statistics on shapes like curves or surfaces is a real challenge with many applications ranging from medical image analysis to computational geometry. Modelling such geometrical primitives with currents avoids feature-based approach as well as point-correspondence method. This framework has been proved to be powerful to register brain surfaces or to measure geometrical invariants. However, if the state-of-the-art methods perform efficiently pairwise registrations, new numerical schemes are required to process groupwise statistics due to an increasing complexity when the size of the database is growing. Statistics such as mean and principal modes of a set of shapes often have a heavy and highly redundant representation. We propose therefore to find an adapted basis on which mean and principal modes have a sparse decomposition. Besides the computational improvement, this sparse representation offers a way to visualize and interpret statistics on currents. Experiments show the relevance of the approach on 34 sets of 70 sulcal lines and on 50 sets of 10 meshes of deep brain structures.

  11. Sparse Reconstruction Schemes for Nonlinear Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2016-03-01

    Electromagnetic imaging is the problem of determining material properties from scattered fields measured away from the domain under investigation. Solving this inverse problem is a challenging task because (i) it is ill-posed due to the presence of (smoothing) integral operators used in the representation of scattered fields in terms of material properties, and scattered fields are obtained at a finite set of points through noisy measurements; and (ii) it is nonlinear simply due the fact that scattered fields are nonlinear functions of the material properties. The work described in this thesis tackles the ill-posedness of the electromagnetic imaging problem using sparsity-based regularization techniques, which assume that the scatterer(s) occupy only a small fraction of the investigation domain. More specifically, four novel imaging methods are formulated and implemented. (i) Sparsity-regularized Born iterative method iteratively linearizes the nonlinear inverse scattering problem and each linear problem is regularized using an improved iterative shrinkage algorithm enforcing the sparsity constraint. (ii) Sparsity-regularized nonlinear inexact Newton method calls for the solution of a linear system involving the Frechet derivative matrix of the forward scattering operator at every iteration step. For faster convergence, the solution of this matrix system is regularized under the sparsity constraint and preconditioned by leveling the matrix singular values. (iii) Sparsity-regularized nonlinear Tikhonov method directly solves the nonlinear minimization problem using Landweber iterations, where a thresholding function is applied at every iteration step to enforce the sparsity constraint. (iv) This last scheme is accelerated using a projected steepest descent method when it is applied to three-dimensional investigation domains. Projection replaces the thresholding operation and enforces the sparsity constraint. Numerical experiments, which are carried out using

  12. Representation theory a first course

    CERN Document Server

    Fulton, William

    1991-01-01

    The primary goal of these lectures is to introduce a beginner to the finite­ dimensional representations of Lie groups and Lie algebras. Since this goal is shared by quite a few other books, we should explain in this Preface how our approach differs, although the potential reader can probably see this better by a quick browse through the book. Representation theory is simple to define: it is the study of the ways in which a given group may act on vector spaces. It is almost certainly unique, however, among such clearly delineated subjects, in the breadth of its interest to mathematicians. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e. g. , a cohomology group, tangent space, etc. }. As a consequence, many mathematicians other than specialists in the field {or even those who think they might want to be} come in contact with the subject in various ways. It is for ...

  13. Spacetime representation of topological phononics

    Science.gov (United States)

    Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.

    2018-05-01

    Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.

  14. Spatial Representation of Ordinal Information

    Directory of Open Access Journals (Sweden)

    Meng eZhang

    2016-04-01

    Full Text Available Right hand responds faster than left hand when shown larger numbers and vice-versa when shown smaller numbers (the SNARC effect. Accumulating evidence suggests that the SNARC effect may not be exclusive for numbers and can be extended to other ordinal sequences (e.g., months or letters in the alphabet as well. In this study, we tested the SNARC effect with a non-numerically ordered sequence: The Chinese notations for the color spectrum (Red, Orange, Yellow, Green, Blue, Indigo, and Violet. Chinese color word sequence reserves relatively weak ordinal information, because each element color in the sequence normally appears in non-sequential contexts, making it ideal to test the spatial organization of sequential information that was stored in the long-term memory. This study found a reliable SNARC-like effect for Chinese color words (deciding whether the presented color word was before or after the reference color word green, suggesting that, without access to any quantitative information or exposure to any previous training, ordinal representation can still activate a sense of space. The results support that weak ordinal information without quantitative magnitude encoded in the long-term memory can activate spatial representation in a comparison task.

  15. Spatial Representation of Ordinal Information.

    Science.gov (United States)

    Zhang, Meng; Gao, Xuefei; Li, Baichen; Yu, Shuyuan; Gong, Tianwei; Jiang, Ting; Hu, Qingfen; Chen, Yinghe

    2016-01-01

    Right hand responds faster than left hand when shown larger numbers and vice-versa when shown smaller numbers (the SNARC effect). Accumulating evidence suggests that the SNARC effect may not be exclusive for numbers and can be extended to other ordinal sequences (e.g., months or letters in the alphabet) as well. In this study, we tested the SNARC effect with a non-numerically ordered sequence: the Chinese notations for the color spectrum (Red, Orange, Yellow, Green, Blue, Indigo, and Violet). Chinese color word sequence reserves relatively weak ordinal information, because each element color in the sequence normally appears in non-sequential contexts, making it ideal to test the spatial organization of sequential information that was stored in the long-term memory. This study found a reliable SNARC-like effect for Chinese color words (deciding whether the presented color word was before or after the reference color word "green"), suggesting that, without access to any quantitative information or exposure to any previous training, ordinal representation can still activate a sense of space. The results support that weak ordinal information without quantitative magnitude encoded in the long-term memory can activate spatial representation in a comparison task.

  16. Cortical representations of communication sounds.

    Science.gov (United States)

    Heiser, Marc A; Cheung, Steven W

    2008-10-01

    This review summarizes recent research into cortical processing of vocalizations in animals and humans. There has been a resurgent interest in this topic accompanied by an increased number of studies using animal models with complex vocalizations and new methods in human brain imaging. Recent results from such studies are discussed. Experiments have begun to reveal the bilateral cortical fields involved in communication sound processing and the transformations of neural representations that occur among those fields. Advances have also been made in understanding the neuronal basis of interaction between developmental exposures and behavioral experiences with vocalization perception. Exposure to sounds during the developmental period produces large effects on brain responses, as do a variety of specific trained tasks in adults. Studies have also uncovered a neural link between the motor production of vocalizations and the representation of vocalizations in cortex. Parallel experiments in humans and animals are answering important questions about vocalization processing in the central nervous system. This dual approach promises to reveal microscopic, mesoscopic, and macroscopic principles of large-scale dynamic interactions between brain regions that underlie the complex phenomenon of vocalization perception. Such advances will yield a greater understanding of the causes, consequences, and treatment of disorders related to speech processing.

  17. Visual representations of Iranian transgenders.

    Science.gov (United States)

    Shakerifar, Elhum

    2011-01-01

    Transsexuality in Iran has gained much attention and media coverage in the past few years, particularly in its questionable depiction as a permitted loophole for homosexuality, which is prohibited under Iran's Islamic-inspired legal system. Of course, attention in the West is also encouraged by the “shock” that sex change is available in Iran, a country that Western media and society delights in portraying as monolithically repressive. As a result, Iranian filmmakers inevitably have their own agendas, which are unsurprisingly brought into the film making process—from a desire to sell a product that will appeal to the Western market, to films that endorse specific socio-political agendas. This paper is an attempt to situate sex change and representations of sex change in Iran within a wider theoretical framework than the frequently reiterated conflation with homosexuality, and to open and engage with a wider debate concerning transsexuality in Iran, as well as to specifically analyze the representation of transexuality, in view of its current prominent presence in media.

  18. Visual tracking based on the sparse representation of the PCA subspace

    Science.gov (United States)

    Chen, Dian-bing; Zhu, Ming; Wang, Hui-li

    2017-09-01

    We construct a collaborative model of the sparse representation and the subspace representation. First, we represent the tracking target in the principle component analysis (PCA) subspace, and then we employ an L 1 regularization to restrict the sparsity of the residual term, an L 2 regularization term to restrict the sparsity of the representation coefficients, and an L 2 norm to restrict the distance between the reconstruction and the target. Then we implement the algorithm in the particle filter framework. Furthermore, an iterative method is presented to get the global minimum of the residual and the coefficients. Finally, an alternative template update scheme is adopted to avoid the tracking drift which is caused by the inaccurate update. In the experiment, we test the algorithm on 9 sequences, and compare the results with 5 state-of-art methods. According to the results, we can conclude that our algorithm is more robust than the other methods.

  19. Computational hologram synthesis and representation on spatial light modulators for real-time 3D holographic imaging

    International Nuclear Information System (INIS)

    Reichelt, Stephan; Leister, Norbert

    2013-01-01

    In dynamic computer-generated holography that utilizes spatial light modulators, both hologram synthesis and hologram representation are essential in terms of fast computation and high reconstruction quality. For hologram synthesis, i.e. the computation step, Fresnel transform based or point-source based raytracing methods can be applied. In the encoding step, the complex wave-field has to be optimally represented by the SLM with its given modulation capability. For proper hologram reconstruction that implies a simultaneous and independent amplitude and phase modulation of the input wave-field by the SLM. In this paper, we discuss full complex hologram representation methods on SLMs by considering inherent SLM parameter such as modulation type and bit depth on their reconstruction performance such as diffraction efficiency and SNR. We review the three implementation schemes of Burckhardt amplitude-only representation, phase-only macro-pixel representation, and two-phase interference representation. Besides the optical performance we address their hardware complexity and required computational load. Finally, we experimentally demonstrate holographic reconstructions of different representation schemes as obtained by functional prototypes utilizing SeeReal's viewing-window holographic display technology. The proposed hardware implementations enable a fast encoding of complex-valued hologram data and thus will pave the way for commercial real-time holographic 3D imaging in the near future.

  20. A Subdivision-Based Representation for Vector Image Editing.

    Science.gov (United States)

    Liao, Zicheng; Hoppe, Hugues; Forsyth, David; Yu, Yizhou

    2012-11-01

    Vector graphics has been employed in a wide variety of applications due to its scalability and editability. Editability is a high priority for artists and designers who wish to produce vector-based graphical content with user interaction. In this paper, we introduce a new vector image representation based on piecewise smooth subdivision surfaces, which is a simple, unified and flexible framework that supports a variety of operations, including shape editing, color editing, image stylization, and vector image processing. These operations effectively create novel vector graphics by reusing and altering existing image vectorization results. Because image vectorization yields an abstraction of the original raster image, controlling the level of detail of this abstraction is highly desirable. To this end, we design a feature-oriented vector image pyramid that offers multiple levels of abstraction simultaneously. Our new vector image representation can be rasterized efficiently using GPU-accelerated subdivision. Experiments indicate that our vector image representation achieves high visual quality and better supports editing operations than existing representations.

  1. Implicit geometric representations for optimal design of gas turbine blades

    International Nuclear Information System (INIS)

    Mansour, T.; Ghaly, W.

    2004-01-01

    Shape optimization requires a proper geometric representation of the blade profile; the parameters of such a representation are usually taken as design variables in the optimization process. This implies that the model must possess three specific features: flexibility, efficiency, and accuracy. For the specific task of aerodynamic optimization for turbine blades, it is critical to have flexibility in both the global and local design spaces in order to obtain a successful optimization. This work is concerned with the development of two geometric representations of turbine blade profiles that are appropriate for aerodynamic optimization: the Modified Rapid Axial Turbine Design (MRATD) model where the blade is represented by five low-order curves that satisfy eleven designer parameters; this model is suitable for a global search of the design space. The second model is NURBS parameterization of the blade profile that can be used for a local refinement. The two models are presented and are assessed for flexibility and accuracy when representing several typical turbine blade profiles. The models will be further discussed in terms of curve smoothness and blade shape representation with a multi-NURBS curve versus one curve and its effect on the flow field, in particular the pressure distribution along the blade surfaces, will be elaborated. (author)

  2. How can conceptual schemes change teaching?

    Science.gov (United States)

    Wickman, Per-Olof

    2012-03-01

    Lundqvist, Almqvist and Östman describe a teacher's manner of teaching and the possible consequences it may have for students' meaning making. In doing this the article examines a teacher's classroom practice by systematizing the teacher's transactions with the students in terms of certain conceptual schemes, namely the epistemological moves, educational philosophies and the selective traditions of this practice. In connection to their study one may ask how conceptual schemes could change teaching. This article examines how the relationship of the conceptual schemes produced by educational researchers to educational praxis has developed from the middle of the last century to today. The relationship is described as having been transformed in three steps: (1) teacher deficit and social engineering, where conceptual schemes are little acknowledged, (2) reflecting practitioners, where conceptual schemes are mangled through teacher practice to aid the choices of already knowledgeable teachers, and (3) the mangling of the conceptual schemes by researchers through practice with the purpose of revising theory.

  3. Spherical and hyperspherical harmonics representation of van der Waals aggregates

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo; Grossi, Gaia; Albernaz, Alessandra F.; Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.

    2016-12-01

    The representation of the potential energy surfaces of atom-molecule or molecular dimers interactions should account faithfully for the symmetry properties of the systems, preserving at the same time a compact analytical form. To this aim, the choice of a proper set of coordinates is a necessary precondition. Here we illustrate a description in terms of hyperspherical coordinates and the expansion of the intermolecular interaction energy in terms of hypersherical harmonics, as a general method for building potential energy surfaces suitable for molecular dynamics simulations of van der Waals aggregates. Examples for the prototypical case diatomic-molecule-diatomic-molecule interactions are shown.

  4. Representation of geographic terrain surface using global indexing

    DEFF Research Database (Denmark)

    Kolar, Jan

    2004-01-01

    . Unlike cartographic maps, 3D models can capture the geometry of geographic features without flattening the environment, without cartographic projection?can avoid geometric distortion. More interestingly, however, 3D models can be composed into a single model spanning the whole world; it can be navigated...... visually in order to access information and data in the same geometric space as we navigate ourselves in our real environment.   This article attempts to narrow down the overhead of problems in visualization of 3D geographic information and intends to identify fundamental issues common to other systems......A global 3D geographic model a feasible solution for its visualization and management remains a challenging vision. The existence of a reusable platform would provide an unprecedented potential for development of applications related to geography and facilitate comprehension of geographic data...

  5. Improvement Schemes for Indoor Mobile Location Estimation: A Survey

    Directory of Open Access Journals (Sweden)

    Jianga Shang

    2015-01-01

    Full Text Available Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation, including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR, and cooperative localization. Next, we focus on the location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research.

  6. A calculational scheme for nonequilibrium quantum field system

    International Nuclear Information System (INIS)

    Yamanaka, Y.

    1991-01-01

    A new calculational scheme is presented for interacting nonequi-librium time dependent quantum field systems within the framework of thermo field dynamics (TFD), taking account of the fact that the thermal vacuum should go through many inequivalent state vector spaces. A para-meter parametrizing various state vector spaces has to be introduced and plays a role of new time-variable. Thus we have double-time TFD. The 2 requirements in this double-time TFD are imposed to establish a quasi-particle picture to get an attainable scheme of perturbative calculation : the existence of the spectral representation for the full propagator and the diagonalization of the quasi-particle Hamiltonian. The 1st condition turns out to amount to the existence of local-time tempera-ture. The 2nd condition leads to the master equation for the number density. This formalism is applied to high-energy heavy ion collision process. The very fundamental question is then how the thermodynamical properties such as heat and temperature appear in such an isolated system. This double-time TFD, suitable for isolated thermal systems of quantum fields, can handle the situation from the beginning of the process. (author). 24 refs.; 1 fig

  7. Resonance ionization scheme development for europium

    Energy Technology Data Exchange (ETDEWEB)

    Chrysalidis, K., E-mail: katerina.chrysalidis@cern.ch; Goodacre, T. Day; Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Naubereit, P. [Johannes Gutenberg-Universität, Institiut für Physik (Germany); Rothe, S.; Seiffert, C. [CERN (Switzerland); Kron, T.; Wendt, K. [Johannes Gutenberg-Universität, Institiut für Physik (Germany)

    2017-11-15

    Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.

  8. Secure RAID Schemes for Distributed Storage

    OpenAIRE

    Huang, Wentao; Bruck, Jehoshua

    2016-01-01

    We propose secure RAID, i.e., low-complexity schemes to store information in a distributed manner that is resilient to node failures and resistant to node eavesdropping. We generalize the concept of systematic encoding to secure RAID and show that systematic schemes have significant advantages in the efficiencies of encoding, decoding and random access. For the practical high rate regime, we construct three XOR-based systematic secure RAID schemes with optimal or almost optimal encoding and ...

  9. Surface reconstruction and deformation monitoring of stratospheric airship based on laser scanning technology

    Science.gov (United States)

    Guo, Kai; Xie, Yongjie; Ye, Hu; Zhang, Song; Li, Yunfei

    2018-04-01

    Due to the uncertainty of stratospheric airship's shape and the security problem caused by the uncertainty, surface reconstruction and surface deformation monitoring of airship was conducted based on laser scanning technology and a √3-subdivision scheme based on Shepard interpolation was developed. Then, comparison was conducted between our subdivision scheme and the original √3-subdivision scheme. The result shows our subdivision scheme could reduce the shrinkage of surface and the number of narrow triangles. In addition, our subdivision scheme could keep the sharp features. So, surface reconstruction and surface deformation monitoring of airship could be conducted precisely by our subdivision scheme.

  10. Reliability in the Location of Hindlimb Motor Representations in Fischer-344 Rats

    Science.gov (United States)

    Frost, Shawn B.; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J.

    2014-01-01

    Object The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for locating cortical motor representations of the hindlimb reliably. Methods Intracortical Microstimulation (ICMS) techniques were used to derive detailed maps of the hindlimb motor representations in six adult Fischer-344 rats. Results The organization of the hindlimb movement representation, while variable across individuals in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and postero-lateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 +/− 0.50 mm2. Superimposing individual maps revealed an overlapping area measuring 0.35 mm2, indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25–3.75 mm posterior to Bregma, with an average center location ~ 2.6 mm posterior to Bregma. Likewise, the hindlimb representation was found 1–3.25 mm lateral to the midline, with an average center location ~ 2 mm lateral to midline. Conclusions The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to Bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being used increasingly in the development of brain-computer interfaces for restoration of function after spinal cord injury. PMID:23725395

  11. Reliability in the location of hindlimb motor representations in Fischer-344 rats: laboratory investigation.

    Science.gov (United States)

    Frost, Shawn B; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J

    2013-08-01

    The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for reliably locating cortical motor representations of the hindlimb. Intracortical microstimulation techniques were used to derive detailed maps of the hindlimb motor representations in 6 adult Fischer-344 rats. The organization of the hindlimb movement representation, while variable across individual rats in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and posterolateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 ± 0.50 mm(2). Superimposing individual maps revealed an overlapping area measuring 0.35 mm(2), indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25-3.75 mm posterior to the bregma, with an average center location approximately 2.6 mm posterior to the bregma. Likewise, the hindlimb representation was found 1-3.25 mm lateral to the midline, with an average center location approximately 2 mm lateral to the midline. The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to the bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being increasingly used in the development of brain-computer interfaces for restoration of function after spinal cord injury.

  12. Vertical and horizontal resolution dependency in the model representation of tracer dispersion along the continental slope in the northern Gulf of Mexico

    Science.gov (United States)

    Bracco, Annalisa; Choi, Jun; Kurian, Jaison; Chang, Ping

    2018-02-01

    A set of nine regional ocean model simulations at various horizontal (from 1 to 9 km) and vertical (from 25 to 150 layers) resolutions with different vertical mixing parameterizations is carried out to examine the transport and mixing of a passive tracer released near the ocean bottom over the continental slope in the northern Gulf of Mexico. The release location is in proximity to the Deepwater Horizon oil well that ruptured in April 2010. Horizontal and diapycnal diffusivities are calculated and their dependence on the model set-up and on the representation of mesoscale and submesoscale circulations is discussed. Horizontal and vertical resolutions play a comparable role in determining the modeled horizontal diffusivities. Vertical resolution is key to a proper representation of passive tracer propagation and - in the case of the Gulf of Mexico - contributes to both confining the tracer along the continental slope and limiting its vertical spreading. The choice of the tracer advection scheme is also important, with positive definiteness in the tracer concentration being achieved at the price of spurious mixing across density surfaces. In all cases, however, the diapycnal mixing coefficient derived from the model simulations overestimates the observed value, indicating an area where model improvement is needed.

  13. A new access scheme in OFDMA systems

    Institute of Scientific and Technical Information of China (English)

    GU Xue-lin; YAN Wei; TIAN Hui; ZHANG Ping

    2006-01-01

    This article presents a dynamic random access scheme for orthogonal frequency division multiple access (OFDMA) systems. The key features of the proposed scheme are:it is a combination of both the distributed and the centralized schemes, it can accommodate several delay sensitivity classes,and it can adjust the number of random access channels in a media access control (MAC) frame and the access probability according to the outcome of Mobile Terminals access attempts in previous MAC frames. For floating populated packet-based networks, the proposed scheme possibly leads to high average user satisfaction.

  14. A Spatial Domain Quantum Watermarking Scheme

    International Nuclear Information System (INIS)

    Wei Zhan-Hong; Chen Xiu-Bo; Niu Xin-Xin; Yang Yi-Xian; Xu Shu-Jiang

    2016-01-01

    This paper presents a spatial domain quantum watermarking scheme. For a quantum watermarking scheme, a feasible quantum circuit is a key to achieve it. This paper gives a feasible quantum circuit for the presented scheme. In order to give the quantum circuit, a new quantum multi-control rotation gate, which can be achieved with quantum basic gates, is designed. With this quantum circuit, our scheme can arbitrarily control the embedding position of watermark images on carrier images with the aid of auxiliary qubits. Besides reversely acting the given quantum circuit, the paper gives another watermark extracting algorithm based on quantum measurements. Moreover, this paper also gives a new quantum image scrambling method and its quantum circuit. Differ from other quantum watermarking schemes, all given quantum circuits can be implemented with basic quantum gates. Moreover, the scheme is a spatial domain watermarking scheme, and is not based on any transform algorithm on quantum images. Meanwhile, it can make sure the watermark be secure even though the watermark has been found. With the given quantum circuit, this paper implements simulation experiments for the presented scheme. The experimental result shows that the scheme does well in the visual quality and the embedding capacity. (paper)

  15. Quantum signature scheme for known quantum messages

    International Nuclear Information System (INIS)

    Kim, Taewan; Lee, Hyang-Sook

    2015-01-01

    When we want to sign a quantum message that we create, we can use arbitrated quantum signature schemes which are possible to sign for not only known quantum messages but also unknown quantum messages. However, since the arbitrated quantum signature schemes need the help of a trusted arbitrator in each verification of the signature, it is known that the schemes are not convenient in practical use. If we consider only known quantum messages such as the above situation, there can exist a quantum signature scheme with more efficient structure. In this paper, we present a new quantum signature scheme for known quantum messages without the help of an arbitrator. Differing from arbitrated quantum signature schemes based on the quantum one-time pad with the symmetric key, since our scheme is based on quantum public-key cryptosystems, the validity of the signature can be verified by a receiver without the help of an arbitrator. Moreover, we show that our scheme provides the functions of quantum message integrity, user authentication and non-repudiation of the origin as in digital signature schemes. (paper)

  16. Racial Representation in Physical Education Textbooks for Secondary Schools

    Directory of Open Access Journals (Sweden)

    María Inés Táboas-Pais

    2015-03-01

    Full Text Available The purpose of this article is to examine the representation of race through images that are published in Spanish physical education textbooks for secondary schools and to offer an insight into students’ beliefs related to racial stereotypes in physical education. The sample was composed of 2,583 images and 87 secondary school pupils. The analysis was carried out through the elaboration of an ad hoc coding scheme. The results showed that people whose appearance is similar to the in-group predominate. The kind of physical activity, the field, space, and level of competence vary according to race. The textbooks analyzed in this study engender a stigmatized vision of racial diversity, and the images reproduce and reinforce racial prejudice.

  17. A computer graphics program system for protein structure representation.

    Science.gov (United States)

    Ross, A M; Golub, E E

    1988-01-01

    We have developed a computer graphics program system for the schematic representation of several protein secondary structure analysis algorithms. The programs calculate the probability of occurrence of alpha-helix, beta-sheet and beta-turns by the method of Chou and Fasman and assign unique predicted structure to each residue using a novel conflict resolution algorithm based on maximum likelihood. A detailed structure map containing secondary structure, hydrophobicity, sequence identity, sequence numbering and the location of putative N-linked glycosylation sites is then produced. In addition, helical wheel diagrams and hydrophobic moment calculations can be performed to further analyze the properties of selected regions of the sequence. As they require only structure specification as input, the graphics programs can easily be adapted for use with other secondary structure prediction schemes. The use of these programs to analyze protein structure-function relationships is described and evaluated. PMID:2832829

  18. Improving a Spectral Bin Microphysical Scheme Using TRMM Satellite Observations

    Science.gov (United States)

    Li, Xiaowen; Tao, Wei-Kuo; Matsui, Toshihisa; Liu, Chuntao; Masunaga, Hirohiko

    2010-01-01

    Comparisons between cloud model simulations and observations are crucial in validating model performance and improving physical processes represented in the mod Tel.hese modeled physical processes are idealized representations and almost always have large rooms for improvements. In this study, we use data from two different sensors onboard TRMM (Tropical Rainfall Measurement Mission) satellite to improve the microphysical scheme in the Goddard Cumulus Ensemble (GCE) model. TRMM observed mature-stage squall lines during late spring, early summer in central US over a 9-year period are compiled and compared with a case simulation by GCE model. A unique aspect of the GCE model is that it has a state-of-the-art spectral bin microphysical scheme, which uses 33 different bins to represent particle size distribution of each of the seven hydrometeor species. A forward radiative transfer model calculates TRMM Precipitation Radar (PR) reflectivity and TRMM Microwave Imager (TMI) 85 GHz brightness temperatures from simulated particle size distributions. Comparisons between model outputs and observations reveal that the model overestimates sizes of snow/aggregates in the stratiform region of the squall line. After adjusting temperature-dependent collection coefficients among ice-phase particles, PR comparisons become good while TMI comparisons worsen. Further investigations show that the partitioning between graupel (a high-density form of aggregate), and snow (a low-density form of aggregate) needs to be adjusted in order to have good comparisons in both PR reflectivity and TMI brightness temperature. This study shows that long-term satellite observations, especially those with multiple sensors, can be very useful in constraining model microphysics. It is also the first study in validating and improving a sophisticated spectral bin microphysical scheme according to long-term satellite observations.

  19. Knowledge Representation in Travelling Texts

    DEFF Research Database (Denmark)

    Mousten, Birthe; Locmele, Gunta

    2014-01-01

    Today, information travels fast. Texts travel, too. In a corporate context, the question is how to manage which knowledge elements should travel to a new language area or market and in which form? The decision to let knowledge elements travel or not travel highly depends on the limitation...... and the purpose of the text in a new context as well as on predefined parameters for text travel. For texts used in marketing and in technology, the question is whether culture-bound knowledge representation should be domesticated or kept as foreign elements, or should be mirrored or moulded—or should not travel...... at all! When should semantic and pragmatic elements in a text be replaced and by which other elements? The empirical basis of our work is marketing and technical texts in English, which travel into the Latvian and Danish markets, respectively....

  20. Social representations of climate change

    International Nuclear Information System (INIS)

    BOY, D.

    2013-01-01

    Each year since 2000, the French 'ADEME' (Agency for Environment and Energy Management) conducts a survey on the social representations of greenhouse effect and global warming. This survey is administered by telephone to a representative sample of the French population. The information gathered in the database can answer a series of basic questions concerning public perception in this area. What do the concepts of 'greenhouse effect' and 'global warming' mean for the public? To what extent do people think there is a consensus among scientists to explain these phenomena? Is responsibility for human action clearly established? What kind of solutions, based on public regulation or private initiative can help to remedy this situation? Finally, what were the major changes in public opinion over this 12 years period? (author)