WorldWideScience

Sample records for surface regeneration tests

  1. DEVELOPMENT AND UTILIZATION OF TEST FACILITY FOR THE STUDY OF CANDLE FILTER SURFACE REGENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Bruce S. Kang; Eric K. Johnson

    2003-07-14

    Hot gas particulate filtration is a basic component in advanced power generation systems such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These systems require effective particulate removal to protect the downstream gas turbine and also to meet environmental emission requirements. The ceramic barrier filter is one of the options for hot gas filtration. Hot gases flow through ceramic candle filters leaving ash deposited on the outer surface of the filter. A process known as surface regeneration removes the deposited ash periodically by using a high pressure pulse of gas to back flush the filter. After this cleaning process has been completed there may be some residual ash on the filter surface. This residual ash may grow and this may then lead to mechanical failure of the filter. A Room Temperature Test Facility (RTTF) and a High Temperature Test Facility (HTTF) were built to investigate the ash characteristics during surface regeneration at room and selected high temperatures. The RTTF system was used to gain experience with the selected instrumentation and develop an operating procedure to be used later at elevated temperatures. The HTTF system is capable of conducting surface regeneration tests of a single candle filter at temperatures up to 1500 F. In order to obtain sequential digital images of ash particle distribution during the surface regeneration process, a high resolution, high speed image acquisition system was integrated into the HTTF system. The regeneration pressure and the transient pressure difference between the inside of the candle filter and the chamber during regeneration were measured using a high speed PC data acquisition system. The control variables for the high temperature regeneration tests were (1) face velocity, (2) pressure of the back pulse, and (3) cyclic ash built-up time. Coal ash sample obtained from the Power System Development Facility (PSDF) at Wilsonville, AL was used at the

  2. Regeneration Study Test Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data (2 excel files) consist of the analytical test results on water sample collected from the two adsorption media tanks of the arsenic removal system during the...

  3. Regeneration

    Science.gov (United States)

    George A. Schier; Wayne D. Shepperd; John R. Jones

    1985-01-01

    There are basically two approaches to regenerating aspen stands-sexual reproduction using seed, or vegetative regeneration by root suckering. In the West, root suckering is the most practical method. The advantage of having an existing, well established root system capable of producing numerous root suckers easily outweighs natural or artificial reforestation in the...

  4. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption

    Science.gov (United States)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  5. Testing predator-driven evolution with Paleozoic crinoid arm regeneration.

    Science.gov (United States)

    Baumiller, Tomasz K; Gahn, Forest J

    2004-09-03

    Regenerating arms of crinoids represent direct evidence of nonlethal attacks by predators and provide an opportunity for exploring the importance of predation through geologic time. Analysis of 11 Paleozoic crinoid Lagerstätten revealed a significant increase in arm regeneration during the Siluro-Devonian. During this interval, referred to as the Middle Paleozoic Marine Revolution, the diversity of shell-crushing predators increased, and antipredatory morphologies among invertebrate prey, such as crinoids, became more common. Crinoid arm regeneration data suggest an increase in nonlethal attacks at this time and represent a causal link between those patterns, which implies an important role for predator-driven evolution.

  6. Effects of calcium ions on titanium surfaces for bone regeneration.

    Science.gov (United States)

    Anitua, Eduardo; Piñas, Laura; Murias, Alia; Prado, Roberto; Tejero, Ricardo

    2015-06-01

    The chemistry and topography of implant surfaces are of paramount importance for the successful tissue integration of load-bearing dental and orthopedic implants. Here we evaluate in vitro and in vivo titanium implant surfaces modified with calcium ions (Ca(2+) surfaces). Calcium ions produce a durable chemical and nano-topographical modification of the titanium oxide interface. Time of flight secondary ion mass spectrometry examination of the outermost surface composition, shows that calcium ions in Ca(2+) surfaces effectively prevent adventitious hydrocarbon passivation of the oxide layer. In aqueous solutions Ca(2+) surfaces release within the first minute, 2/3 of the total measured Ca(2+), the rest is released over the following 85 days. Additionally, Ca(2+) surfaces significantly increase human fetal osteoblasts-like cell adhesion, proliferation and differentiation, as measured by the autocrine synthesis of osteopontin. Relevant for clinical application, after 12 weeks of healing in sheep tibia, microcomputer tomography and histomorphometric analysis show that Ca(2+) surfaces develop significantly more bone contacts and higher bone density in the 1mm region around the implant. Consequently, titanium implants modified with calcium ions represent a valuable tool to improve endosseous integration in the clinical practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cartilage regeneration and repair testing in a surrogate large animal model.

    Science.gov (United States)

    Simon, Timothy M; Aberman, Harold M

    2010-02-01

    The aging human population is experiencing increasing numbers of symptoms related to its degenerative articular cartilage (AC), which has stimulated the investigation of methods to regenerate or repair AC. However, the seemingly inherent limited capacity for AC to regenerate persists to confound the various repair treatment strategies proposed or studied. Animal models for testing AC implant devices and reparative materials are an important and required part of the Food and Drug Administration approval process. Although final testing is ultimately performed in humans, animal testing allows for a wider range of parameters and combinations of test materials subjected to all the biological interactions of a living system. We review here considerations, evaluations, and experiences with selection and use of animal models and describe two untreated lesion models useful for testing AC repair strategies. These created lesion models, one deep (6 mm and through the subchondral plate) the other shallow (to the level of the subchondral bone plate) were placed in the middle one-third of the medial femoral condyle of the knee joints of goats. At 1-year neither the deep nor the shallow full-thickness chondral defects generated a repair that duplicated natural AC. Moreover, progressive deleterious changes occurred in the AC surrounding the defects. There are challenges in translation from animals to humans as anatomy and structures are different and immobilization to protect delicate repairs can be difficult. The tissues potentially generated by proposed cartilage repair strategies must be compared with the spontaneous changes that occur in similarly created untreated lesions. The prevention of the secondary changes in the surrounding cartilage and subchondral bone described in this article should be addressed with the introduction of treatments for repairs of the articulating surface.

  8. Diesel particulate filter regeneration via resistive surface heating

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-10-08

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  9. Passive characterization and active testing of epoxy bonded regenerators for room temperature magnetic refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Navickaité, Kristina; Engelbrecht, Kurt

    2017-01-01

    Epoxy bonded regenerators of both spherical and irregular La(Fe,Mn,Si)13Hy particles have been developed aiming at increasing the mechanical strength of active magnetic regenerators (AMR) loaded with brittle magnetocaloric materials and improving the flexibility of shaping the regenerator geometry......-layer AMR based on spherical particles is tested actively in a small reciprocating magnetic refrigerator, achieving a no-load temperature span of 16.8 °C using about 143 g of epoxy-bonded La(Fe,Mn,Si)13Hy materials. Simulations based on a one-dimensional (1D) AMR model are also implemented to validate...... and analyze the results from the active test....

  10. Mobility of chemisorbed molecules and surface regeneration of active centers during dehydration of isopropanol on aluminium oxide and aluminosilicate

    International Nuclear Information System (INIS)

    Makhlis, L.A.; Vasserberg, V.Eh.

    1976-01-01

    By a differential isotope method involving 14 C the authors have investigated the surface mobility of chemisorbed molecules of isopropanol during its dehydration in an adsorption layer on aluminium oxide and aluminosilicate. The chemisorbed alcohol molecules possess marked surface mobility which plays a decisive part in the mechanism of surface regeneration of the active catalyst centers in the process of dehydration. The cessation of the reaction long before the adsorbed alcohol is completely used up is explained by the hypothesis that there is local overpopulation of the active sectors by water formed by the reaction; this hinders further surface regeneration and repetition of the elementary events of dehydration

  11. Regenerated collagen fibers with grooved surface texture: Physicochemical characterization and cytocompatibility

    International Nuclear Information System (INIS)

    Wang, Xiang; Wu, Tong; Wang, Wei; Huang, Chen; Jin, Xiangyu

    2016-01-01

    A novel type of protein fibers, regenerated collagen fibers (RC) from cattle skin, was prepared through wet-spinning. Due to the combined effect of solvent exchange and subsequent drawing process, the fibers were found to have a grooved surface texture. The grooves provided not only ordered topographical cues, but also increased surface area. Protein content of the RC fibers was confirmed by Fourier Transform infrared spectroscopy (FTIR) and ninhydrin color reaction. The fibers could be readily fabricated into nonwovens or other textiles, owning to their comparable physical properties to other commercialized fibers. Cell growth behavior on RC nonwovens suggested both early adhesion and prompt proliferation. The high moisture regain, good processability, along with the excellent cytocompatibility indicated that the RC fibers and nonwovens developed in this study might offer a good candidate for biomedical and healthcare applications. - Highlights: • Wet-spun regenerated collagen fibers having aligned surface grooves • Comparable physiochemical properties to commercialized fibers • Readily processed into nonwovens • Excellent cytocompatibility with prompt cell adhesion and proliferation

  12. Regenerated collagen fibers with grooved surface texture: Physicochemical characterization and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang [Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Wu, Tong [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Wang, Wei [Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Huang, Chen, E-mail: hc@dhu.edu.cn [Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Jin, Xiangyu [Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China)

    2016-01-01

    A novel type of protein fibers, regenerated collagen fibers (RC) from cattle skin, was prepared through wet-spinning. Due to the combined effect of solvent exchange and subsequent drawing process, the fibers were found to have a grooved surface texture. The grooves provided not only ordered topographical cues, but also increased surface area. Protein content of the RC fibers was confirmed by Fourier Transform infrared spectroscopy (FTIR) and ninhydrin color reaction. The fibers could be readily fabricated into nonwovens or other textiles, owning to their comparable physical properties to other commercialized fibers. Cell growth behavior on RC nonwovens suggested both early adhesion and prompt proliferation. The high moisture regain, good processability, along with the excellent cytocompatibility indicated that the RC fibers and nonwovens developed in this study might offer a good candidate for biomedical and healthcare applications. - Highlights: • Wet-spun regenerated collagen fibers having aligned surface grooves • Comparable physiochemical properties to commercialized fibers • Readily processed into nonwovens • Excellent cytocompatibility with prompt cell adhesion and proliferation.

  13. Surface grafting of styrene on polypropylene fibers by argon plasma and its adsorption-regeneration of BTX

    Science.gov (United States)

    Xu, J. J.; Guo, M. L.; Chen, Q. G.; Lian, Z. Y.; Wei, W. J.; Luo, Z. W.; Xie, G.; Chen, H. N.; Dong, K.

    2017-08-01

    Active macromolecular free radicals were generated on polypropylene (PP) fibers surfaces by argon (Ar) plasma irradiation, then, PP surface modified fibers (PP-g-St fibers) were prepared by in-situ grafting reaction of styrene monomers (St). Effects of reaction parameters on grafting percentage were studied and adsorption capacities of PP-g-St fibers for benzene, toluene and xylene (BTX) were evaluated. Afterwards, regeneration adsorption efficiencies after maximum adsorption were explored. The results indicated that the optimum input power, irradiation time and grafting reaction time are 90 W, 3 min and 3 h respectively and the grafting percentage of St reached 5.7 %. The adsorption capacities of PP-g-St fibers towards toluene and xylene emulsions and solutions in water increased by 336.89 % and 344.57 % respectively, compared to pristine PP fibers. In addition, regeneration adsorption efficiencies of modified fibers remained > 90 % after six cycles of regeneration-adsorption experiments, which showed excellent regeneration ability.

  14. Cells responding to surface structure of calcium phosphate ceramics for bone regeneration.

    Science.gov (United States)

    Zhang, Jingwei; Sun, Lanying; Luo, Xiaoman; Barbieri, Davide; de Bruijn, Joost D; van Blitterswijk, Clemens A; Moroni, Lorenzo; Yuan, Huipin

    2017-11-01

    Surface structure largely affects the inductive bone-forming potential of calcium phosphate (CaP) ceramics in ectopic sites and bone regeneration in critical-sized bone defects. Surface-dependent osteogenic differentiation of bone marrow stromal cells (BMSCs) partially explained the improved bone-forming ability of submicron surface structured CaP ceramics. In this study, we investigated the possible influence of surface structure on different bone-related cells, which may potentially participate in the process of improved bone formation in CaP ceramics. Besides BMSCs, the response of human brain vascular pericytes (HBVP), C2C12 (osteogenic inducible cells), MC3T3-E1 (osteogenic precursors), SV-HFO (pre-osteoblasts), MG63 (osteoblasts) and SAOS-2 (mature osteoblasts) to the surface structure was evaluated in terms of cell proliferation, osteogenic differentiation and gene expression. The cells were cultured on tricalcium phosphate (TCP) ceramics with either micron-scaled surface structure (TCP-B) or submicron-scaled surface structure (TCP-S) for up to 14 days, followed by DNA, alkaline phosphatase (ALP) and quantitative polymerase chain reaction gene assays. HBVP were not sensitive to surface structure with respect to cell proliferation and osteogenic differentiation, but had downregulated angiogenesis-related gene expression (i.e. vascular endothelial growth factor) on TCP-S. Without additional osteogenic inducing factors, submicron-scaled surface structure enhanced ALP activity and osteocalcin gene expression of human (h)BMSCs and C2C12 cells, favoured the proliferation of MC3T3-E1, MG63 and SAOS-2, and increased ALP activity of MC3T3-E1 and SV-HFO. The results herein indicate that cells with osteogenic potency (either osteogenic inducible cells or osteogenic cells) could be sensitive to surface structure and responded to osteoinductive submicron-structured CaP ceramics in cell proliferation, ALP production or osteogenic gene expression, which favour bone

  15. Regenerated collagen fibers with grooved surface texture: Physicochemical characterization and cytocompatibility.

    Science.gov (United States)

    Wang, Xiang; Wu, Tong; Wang, Wei; Huang, Chen; Jin, Xiangyu

    2016-01-01

    A novel type of protein fibers, regenerated collagen fibers (RC) from cattle skin, was prepared through wet-spinning. Due to the combined effect of solvent exchange and subsequent drawing process, the fibers were found to have a grooved surface texture. The grooves provided not only ordered topographical cues, but also increased surface area. Protein content of the RC fibers was confirmed by Fourier Transform infrared spectroscopy (FTIR) and ninhydrin color reaction. The fibers could be readily fabricated into nonwovens or other textiles, owning to their comparable physical properties to other commercialized fibers. Cell growth behavior on RC nonwovens suggested both early adhesion and prompt proliferation. The high moisture regain, good processability, along with the excellent cytocompatibility indicated that the RC fibers and nonwovens developed in this study might offer a good candidate for biomedical and healthcare applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Development of genetically modified eliminable human dermal fibroblast feeder cells for ocular surface regeneration medicine.

    Science.gov (United States)

    Li, Yingli; Inoue, Tomoyuki; Takamatsu, Fumihiko; Maeda, Naoyuki; Ohashi, Yuichi; Nishida, Kohji

    2013-11-15

    Cultured human corneal limbal stem/progenitor cells are usually established and maintained on feeder layers. However, animal feeder cells are associated with viral infection, pathogen transmission, and xenogenic contamination. All feeder cells also can be mixed easily into cell-sheet production, causing self-contamination. We developed a line of labeled, immortalized, eliminable human dermal fibroblast cells to eliminate these problems. The enhanced green fluorescent protein gene, human-derived telomerase reverse transcriptase gene, and herpes simplex virus thymidine kinase gene were transfected into human dermal fibroblast cells to establish labeled, immortalized, eliminable feeder cells. Established eliminable dermal fibroblasts (TERT+TK-D) were treated with mitomycin, cocultured with human limbal stem/progenitor cells to regenerate epithelium sheets, and compared with 3T3 feeder cells. Established TERT+TK-D feeder cells maintained immortalization, visualization, and eliminable characteristics during 6 months of continuous passages. The colony-forming efficiency of limbal stem/progenitor cells was similar in the TERT+TK-D group (11.77 ± 0.21%) and the 3T3 group (12.8 ± 1.61%) (P = 0.332). All cell sheets were well stratified into 4 to 5 layers. The TERT+TK-D group colonies and epithelial cell sheets showed weaker staining of corneal epithelium differentiation marker K3 than the 3T3 group and quantitative analysis of mRNA transcripts. Moreover, PCR analysis against the long terminal repeat sequence of the lentiviral vector integrated into the genetically modified feeder cells showed no contamination of ganciclovir-treated regeneration epithelial sheets. Genetically modified, labeled, immortalized, eliminable human dermal feeder cells are promising substitutes for 3T3 feeder cells for xenogeny-free ocular surface regeneration.

  17. Test surfaces useful for calibration of surface profilometers

    Science.gov (United States)

    Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z

    2013-12-31

    The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.

  18. Test for intercalary regeneration of the metameric pattern of the leafhopperEuscelis plebejus fall. (homoptera).

    Science.gov (United States)

    Vogel, Otto

    1983-09-01

    Immerging U-shaped germ bands of the leafhopperEuscelis plebejus were cut twice by constriction in order to combine the anterior and posterior ends of the embryo. Although these terminal parts fused in a number of cases, no intercalary regeneration was observed.In addition, the experiments revealed that constriction during anatrepsis (germ anlage extension) causes gaps of varying size in the abdominal part of the segment pattern.The data suggest that "differential adhesion" between yolk cells and the surface of the germ anlage might play a part in the immersion of the germ anlage into the yolk.

  19. Cells transplanted onto the surface of the glial scar reveal hidden potential for functional neural regeneration.

    Science.gov (United States)

    Sekiya, Tetsuji; Holley, Matthew C; Hashido, Kento; Ono, Kazuya; Shimomura, Koichiro; Horie, Rie T; Hamaguchi, Kiyomi; Yoshida, Atsuhiro; Sakamoto, Tatsunori; Ito, Juichi

    2015-06-30

    Cell transplantation therapy has long been investigated as a therapeutic intervention for neurodegenerative disorders, including spinal cord injury, Parkinson's disease, and amyotrophic lateral sclerosis. Indeed, patients have high hopes for a cell-based therapy. However, there are numerous practical challenges for clinical translation. One major problem is that only very low numbers of donor cells survive and achieve functional integration into the host. Glial scar tissue in chronic neurodegenerative disorders strongly inhibits regeneration, and this inhibition must be overcome to accomplish successful cell transplantation. Intraneural cell transplantation is considered to be the best way to deliver cells to the host. We questioned this view with experiments in vivo on a rat glial scar model of the auditory system. Our results show that intraneural transplantation to the auditory nerve, preceded by chondroitinase ABC (ChABC)-treatment, is ineffective. There is no functional recovery, and almost all transplanted cells die within a few weeks. However, when donor cells are placed on the surface of a ChABC-treated gliotic auditory nerve, they autonomously migrate into it and recapitulate glia- and neuron-guided cell migration modes to repair the auditory pathway and recover auditory function. Surface transplantation may thus pave the way for improved functional integration of donor cells into host tissue, providing a less invasive approach to rescue clinically important neural tracts.

  20. The development and testing of a regenerable CO2 and humidity control system for Shuttle

    Science.gov (United States)

    Boehm, A. M.

    1977-01-01

    A regenerable CO2 and humidity control system is presently being developed for potential use on Shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. The system utilizes a sorbent material (designated 'HS-C') to adsorb CO2 and water vapor from the cabin atmosphere and desorb the CO2 and water vapor overboard when exposed to a space vacuum. Continuous operation is achieved by utilizing two beds which are alternately cycled between adsorption and desorption. This paper presents the significant hardware development and test accomplishments of the past year. A half-size breadboard system utilizing a flight configuration canister was successfully performance tested in simulated Shuttle missions. A vacuum desorption test provided considerable insight into the desorption phenomena and allowed a significant reduction of the Shuttle vacuum duct size. The fabrication and testing of a flight prototype canister and flight prototype vacuum valves have proven the feasibility of these full-size, flight-weight components.

  1. Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves.

    Science.gov (United States)

    Yannas, I V; Tzeranis, D; So, P T

    2015-12-23

    We review the details of preparation and of the recently elucidated mechanism of biological (regenerative) activity of a collagen scaffold (dermis regeneration template, DRT) that has induced regeneration of skin and peripheral nerves (PN) in a variety of animal models and in the clinic. DRT is a 3D protein network with optimized pore size in the range 20-125 µm, degradation half-life 14 ± 7 d and ligand densities that exceed 200 µM α1β1 or α2β1 ligands. The pore has been optimized to allow migration of contractile cells (myofibroblasts, MFB) into the scaffold and to provide sufficient specific surface for cell-scaffold interaction; the degradation half-life provides the required time window for satisfactory binding interaction of MFB with the scaffold surface; and the ligand density supplies the appropriate ligands for specific binding of MFB on the scaffold surface. A dramatic change in MFB phenotype takes place following MFB-scaffold binding which has been shown to result in blocking of wound contraction. In both skin wounds and PN wounds the evidence has shown clearly that contraction blocking by DRT is followed by induction of regeneration of nearly perfect organs. The biologically active structure of DRT is required for contraction blocking; well-matched collagen scaffold controls of DRT, with structures that varied from that of DRT, have failed to induce regeneration. Careful processing of collagen scaffolds is required for adequate biological activity of the scaffold surface. The newly understood mechanism provides a relatively complete paradigm of regenerative medicine that can be used to prepare scaffolds that may induce regeneration of other organs in future studies.

  2. Instructive function of surface structure of calcium phosphate ceramics in bone regeneration

    NARCIS (Netherlands)

    Zhang, Jingwei

    2016-01-01

    The incidence of patients which require spinal fusion or bone regeneration in large bone defects caused by trauma, tumors, tumor resection, infections or abnormal skeletal development, is on the rise. Traditionally, in both spinal fusion surgery and other bone regeneration approaches, bone grafts

  3. The Surface Warfare Test Ship

    Science.gov (United States)

    2000-01-26

    reactivated, resulting in algae in the tanks and tank seepage. This has led to degraded fuel quality and fuel leakage into ship’s storerooms. The inherent...The cosmetic bulkhead is smooth like line 1; only 1 % of the reflected power is reflected along the sea surface. 4. Angled Bulkhead around Fantail... algae present and require continuous treatment to prevent fouling of the main engines and generators. The ship s tank system was not properly

  4. ACTIVITY TEST AND REGENERATION OF NiMo/Z CATALYST FOR HYDROCRACKING OF WASTE PLASTIC FRACTION TO GASOLINE FRACTION

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2010-06-01

    Full Text Available Activity test and regeneration of NiMo/active natural zeolite catalyst for hydrocracking of waste plastic fraction of polyprophylene (PP type have been carried out. The catalysts was prepared by loading Mo followed by Ni Metals onto the natural zeolite (Z sample, then calcined at 500oC, oxidized and reduced at 400oC under nitrogen, oxygen and hydrogen stream, respectively. The characterization of catalysts including spesific surface area, average pore radius, and total pore volume were performed by gas sorption analyzer, amount of total acid sites was determined by gas sorption method, and acid site strength was confirmed by IR spectroscopy. The hydrocracking process was carried out in a semi-flow reactor system at 360 oC and catalyst:feed ratio 0.5 under hydrogen stream (150 mL/hour. The feed was vaporized from the pyrolisis reactor into the hydrocracking reactor. A liquid product was collected and analyzed by gas chromatography (GC and gas chromatography-mass spectroscopy (GC-MS. The characterization results showed that spesific surface area, average pore radius, and total pore volume of the Z sample decreased after loading of the Ni and Mo metals. Amount of total acid sites of the NiMo/Z catalyst was higher than that of the Z sample. The activity of NiMo/Z catalyst decreased after several continously runs. Its regeneration produced the NiMo/Z reg catalyst with similar activity and selectivity to the fresh catalyst (NiMo/Z. The activity of catalysts at the optimum condition followed the order of NiMo/Z reg>NiMo/Z>Z (conversion of hydrocarbon C>12 and NiMo/Z reg>NiMo/Z>Z (total yield of gasoline fraction. The selectivity of catalysts for C7-C8 product followed the order of Z>NiMo/Z>NiMo/Z reg. Keywords: activity, polyprophylene, catalyst, gasoline fraction.

  5. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

    Science.gov (United States)

    Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  6. Electrochemical testing of laser treated bronze surface

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [Dept. of Mechanical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261 (Saudi Arabia); Toor, Ihsan-ul-Haq; Malik, Jahanzaib; Patel, F. [Dept. of Mechanical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261 (Saudi Arabia); Karatas, C. [Engineering Faculty, Hacettepe University, Ankara (Turkey)

    2013-06-25

    Highlights: ► Laser treated surface is free from asperities. ► Laser treated layer extends uniformly below the surface with a thickness in the order of 40 μm. ► Presence of Cu{sub 3}N nitrides is evident from X-ray diffractogram. ► Dendritic structure is formed below the surface due to relatively slower cooling rates as compared to that at the surface. ► The corrosion current density for the laser treated surface is much less than that of the as-received surface. -- Abstract: Electrochemical testing of laser treated bronze surface is carried out and corrosion resistance of the surface is assessed. Morphological and metallurgical changes in the laser treated layer are examined using scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction. The pit sites formed at the surface are analyzed using scanning electron microscope. It is found that laser treatment improves the corrosion resistance of the treated surface. Fine grains are formed in the surface region of the laser treated layer, which are attributed to the large cooling rates from the surface.

  7. Physical Readiness Testing of Surface Warfare Officers

    Science.gov (United States)

    1991-06-01

    NA% I PHISICAL READIiESS TEST (PRT QUEST1OthAIRE I. hE ARE CONDUCTI NG THESIS RESEAR H 0N HO- ELL THE PRT SUPPORT5 TNE R 0 T i E 0F St RF AC E ’ARAR...AD-A245 519 NAVAL POSTGRADUATE SCHOOL Monterey, California DTIC CTE.EC a% FEB071992 CI THESIS Physical Readiness Testing of Surface Warfare Officers...READINESS TESTING OF SURFACE WARFARE OFFICERS 12. PERSONAL AUTHOR(S) Hatch, William D. II and Swinney, Lori D. 13a. TYPE OF REPORT 13b. TIME COVERED 14

  8. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Alejandro, Serguei [Laboratorio de Tecnologías Limpias (F. Ingeniería), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción (Chile); Núcleo de Energías Renovables (F. Ingeniería), Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco (Chile); Valdés, Héctor, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologías Limpias (F. Ingeniería), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción (Chile); Manéro, Marie-Hélène [Université de Toulouse (France); INPT, UPS (France); Laboratoire de Génie Chimique, 4, Allée Emile Monso, F–31030 Toulouse (France); CNRS (France); Laboratoire de Génie Chimique, F–31030 Toulouse (France); Zaror, Claudio A. [Departamento de Ingeniería Química (F. Ingeniería), Universidad de Concepción, Concepción, Correo 3, Casilla 160–C (Chile)

    2014-06-01

    Highlights: • Surface acidity of modified natural zeolite is related to its chemical reactivity. • Brønsted acid sites are associated to toluene adsorption. • Lewis acid sites could decompose ozone generating surface active oxygen species. • Infrared spectra evidence active atomic oxygen and oxidation by-product formation. • 2NH4Z1 sample shows the highest reactivity toward adsorbed toluene. - Abstract: In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823 K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623 K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity.

  9. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics

    International Nuclear Information System (INIS)

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A.

    2014-01-01

    Highlights: • Surface acidity of modified natural zeolite is related to its chemical reactivity. • Brønsted acid sites are associated to toluene adsorption. • Lewis acid sites could decompose ozone generating surface active oxygen species. • Infrared spectra evidence active atomic oxygen and oxidation by-product formation. • 2NH4Z1 sample shows the highest reactivity toward adsorbed toluene. - Abstract: In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823 K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623 K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity

  10. Determining the functional sensibility of the hand in patients with peripheral nerve repair: Feasibility of using a novel manual tactile test for monitoring the progression of nerve regeneration.

    Science.gov (United States)

    Hsu, Hsiu-Yun; Kuo, Li-Chieh; Kuan, Ta-Shen; Yang, Hsiu-Ching; Su, Fong-Chin; Chiu, Haw-Yen; Shieh, Shyh-Jou

    Case-controlled cohort study. Sensory function is difficult to observe during nerve regeneration processes. Traditional sensory tests are limited to identifying the level of functioning hand sensation for sensory stimulus is given passively to the cutaneous surface of the hand. To examine the outcome changes in the manual tactile test (MTT), Semmes-Weinstein monofilament (SWM) and 2-point discrimination (2PD) tests for patients with nerve repair and to investigate the concurrent validity of MTT by comparing it with the results of traditional tests. Fifteen patients with nerve injury of the upper limbs were recruited, along with 15 matched healthy controls. The MTT, SWM, and 2PD tests were used to examine the sensory status of the subjects. Three subtests (barognosis, roughness differentiation, and stereognosis) in MTT showed that the patients improved with time. A moderate and mild correlation was found between the MTT and 2PD results and between the barognosis and SWM results. The MTT provides practical and functional perspectives on detecting nerve progression during the courses of degeneration and regeneration. IV. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  11. Surface stability test plan for protective barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1989-01-01

    Natural-material protective barriers for long-term isolation of buried waste have been identified as integral components of a plan to isolate a number of Hanford defense waste sites. Standards currently being developed for internal and external barrier performance will mandate a barrier surface layer that is resistant to the eolian erosion processes of wind erosion (deflation) and windborne particle deposition (formation of sand dunes). Thus, experiments are needed to measure rates of eolian erosion processes impacting those surfaces under different surface and climatological conditions. Data from these studies will provide information for use in the evaluation of selected surface layers as a means of providing stable cover over waste sites throughout the design life span of protective barriers. The multi-year test plan described in this plan is directed at understanding processes of wind erosion and windborne particle deposition, providing measurements of erosion rates for models, and suggesting construction materials and methods for reducing the effect of long-term eolian erosion on the barrier. Specifically, this plan describes possible methods to measure rates of eolian erosion, including field and laboratory procedure. Advantages and disadvantages of laboratory (wind tunnel) tests are discussed, and continued wind tunnel tests are recommended for wind erosion studies. A comparison between field and wind tunnel erosive forces is discussed. Plans for testing surfaces are described. Guidance is also presented for studying the processes controlling sand dune and blowout formation. 24 refs., 7 figs., 3 tabs

  12. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid electrospun fibrous scaffold for bone regeneration

    Directory of Open Access Journals (Sweden)

    Chen SJ

    2015-06-01

    Full Text Available Shijie Chen,1,* Zhiyuan Jian,2,* Linsheng Huang,2,* Wei Xu,3,* Shaohua Liu,4 Dajiang Song,3 Zongmiao Wan,3 Amanda Vaughn,5 Ruisen Zhan,1 Chaoyue Zhang,1 Song Wu,1 Minghua Hu,6 Jinsong Li1 1Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 2The First General Surgery Department of Shiyan Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, People’s Republic of China; 3Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, People’s Republic of China; 4Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 5Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA; 6Department of Anthropotomy, Changsha Medical College, Changsha, Hunan, People’s Republic of China *These authors contributed equally to this work Abstract: A mesoporous bioactive glass (MBG surface modified with poly(lactic-co-glycolic acid (PLGA electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds

  13. Investigation of Carboxymethyl Cellulose Adsorption onto Regenerated Cellulose Surfaces via Quartz Crystal Microbalance with Dissipation Monitoring and Surface Plasmon Resonance Spectroscopy

    Science.gov (United States)

    Liu, Zelin; Gatenholm, Paul; Esker, Alan

    2009-03-01

    The adsorption of anionic polyeletrolytes, sodium salts of carboxymethyl celluloses (CMC), with different degrees of substitution (DS = 0.9 and 1.2) from aqueous electrolyte solutions onto regenerated cellulose surface was studied via quartz microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR). The influence of both calcium chloride (CaCl2) and sodium chloride (NaCl) was examined. Both QCM-D and SPR results indicate that CMC adsorption onto regenerated cellulose surfaces increases with increasing electrolyte concentration and CaCl2 (divalent cation) showed a significant effect on CMC adsorption compared to NaCl (monovalent cation) at the same ionic strength. Voigt-based viscoelastic modeling of the QCM-D data and analysis of the SPR data are consistent with the existence of a swollen CMC layer on the cellulose surface with a viscosity of ˜1.3×10-3 kg m-1 s-1 and an elastic shear modulus of ˜10^5 kg m-1 s-2.

  14. Exposure testing of solar absorber surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Moore, S.W.

    1986-01-01

    The Los Alamos National Laboratory has been involved in supporting, monitoring and conducting exposure testing of solar materials for approximately ten years. The Laboratory has provided technical monitoring of the IITRI, DSET, Lockheed, and Berry contracts and has operated the Los Alamos exposure Facility for over five years. This report will outline some of the past exposure testing, the testing still in progress, and describe some of the major findings. While this report will primarily emphasize solar absorber surfaces, some of the significant findings relative to advanced glazing will be discussed.

  15. Destruction and regeneration of seminiferous tubules after local x-irradiation of testes of the adult rats

    International Nuclear Information System (INIS)

    Kurnosova, T.R.; Rajtsina, S.S.

    1987-01-01

    It was established that the local X-irradiation (1000 R) of testes of the adult rats results in a total destruction of seminiferous tubules. The restitution of the organ structure proceeds via formation of new seminiferous tubules in which spermatogenic epithelium later develops. Rete testis and germ cells preserved in its epithelium from embryogenesis are a source of regeneration material. The results obtained favour the suggestion about the dynamic structure of mammalian testis

  16. Functionalization of regenerated cellulose membrane via surface initiated atom transfer radical polymerization for boron removal from aqueous solution.

    Science.gov (United States)

    Wei, Yu-Ting; Zheng, Yu-Ming; Chen, J Paul

    2011-05-17

    In this study, an adsorptive membrane was prepared for efficient boron removal. Poly(glycidyl methacrylate) was grafted on the surfaces of the regenerated cellulose (RC) membrane via surface-initiated atom transfer radical polymerization, and N-methylglucamine was used to further react with epoxide rings to introduce polyhydroxyl functional groups, which served as the major binding sites for boron. The pristine and modified membranes were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), dynamic water contact angle measurement, and scanning electron microscopy. It was shown that the designed functional groups were successfully grafted onto the RC membrane, and surface modification contributed to higher boron binding capability. The optimal pH range for boron adsorption was 4-8. Under a neutral pH condition, the maximum adsorption capacity of the modified membrane was determined to be 0.75 mmol/g, which was comparable with those of commercial resins. Studies of electrolyte influence indicated the formation of inner-sphere surface complexes on the membrane surface. The ATR-FTIR and XPS analyses showed that secondary alcohol and tertiary amine groups were mainly involved in boron adsorption, and tetrahedral boron complexes were found on the membrane surface.

  17. Structural, chemical surface and transport modifications of regenerated cellulose dense membranes due to low-dose γ-radiation

    International Nuclear Information System (INIS)

    Vazquez, M.I.; Heredia-Guerrero, J.A.; Galan, P.; Benitez, J.J.; Benavente, J.

    2011-01-01

    Research highlights: → Low dose γ-radiation causes slight structural, chemical and morphological changes on regenerated cellulose films. → Induced structural changes increase the fragility of irradiated films. → Structural modifications reduce ion permeability of films. - Abstract: Modifications caused in commercial dense regenerated cellulose (RC) flat membranes by low-dose γ-irradiation (average photons energy of 1.23 MeV) are studied. Slight structural, chemical and morphological surface changes due to irradiation in three films with different RC content were determined by ATR-FTIR, XRD, XPS and AFM. Also, the alteration of their mechanical elasticity has been studied. Modification of membrane performance was determined from solute diffusion coefficient and effective membrane fixed charge concentration obtained from NaCl diffusion measurements. Induced structural changes defining new and effective fracture propagation directions are considered to be responsible for the increase of fragility of irradiated RC membranes. The same structural changes are proposed to explain the reduction of the membrane ion permeability through a mechanism involving either ion pathways elongation and/or blocking.

  18. Design and experimental tests of a rotary active magnetic regenerator prototype

    DEFF Research Database (Denmark)

    Eriksen, Dan; Engelbrecht, Kurt; Bahl, Christian

    2015-01-01

    A rotary active magnetic regenerator (AMR) prototype with efficiency and compact design as focus points has been designed and built. The main objective is to demonstrate improved efficiency for rotary devices by reducing heat leaks from the environment and parasitic mechanical work losses while...

  19. Central Solenoid On-surface Test

    CERN Multimedia

    Ruber, R

    2004-01-01

    A full scale on-surface test of the central solenoid has been performed before its final installation in the ATLAS cavern starting in November. The successful integration of the central solenoid into the barrel cryostat, as reported in the March 2004 ATLAS eNews, was hardly finished when testing started. After a six-week period to cool down the LAr calorimeter, the solenoid underwent a similar procedure. Cooling it down to 4.6 Kelvin from room temperature took just over five and a half days. Cold and superconducting, it was time to validate the functionality of the control and safety systems. These systems were largely the same as the systems to be used in the final underground installation, and will be used not only for the solenoid and toroid magnets, but parts of it also for other LHC experiments. This solenoid test was the first occasion to test the system functionality in a real working environment. Several days were spent to fine tune the systems, especially the critical safety system, which turned out...

  20. Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration

    NARCIS (Netherlands)

    Nandakumar, A.; Tahmasebi Birgani, Zeinab; Reis Santos, Diogo; Mentink-Leusink, Anouk; Auffermann, N.; van der Werf, Kees; Bennink, Martin L.; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    Plasma treatment is a method to modify the physicochemical properties of biomaterials, which consequently may affect interactions with cells. Based on the rationale that physical cues on the surface of culture substrates and implants, such as surface roughness, have proven to alter cell behaviour,

  1. Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches

    Science.gov (United States)

    Piai, Juliana Francis; da Silva, Marta Alves; Martins, Albino; Torres, Ana Bela; Faria, Susana; Reis, Rui L.; Muniz, Edvani Curti; Neves, Nuno M.

    2017-05-01

    Aiming at improving the biocompatibility of biomaterial scaffolds, surface modification presents a way to preserve their mechanical properties and to improve the surface bioactivity. In this work, chondroitin sulfate (CS) was immobilized at the surface of electrospun poly(caprolactone) nanofiber meshes (PCL NFMs), previously functionalized by UV/O3 exposure and aminolysis. Contact angle, SEM, optical profilometry, FTIR, X-ray photoelectron spectroscopy techniques confirmed the success of CS-immobilization in PCL NFMs. Furthermore, CS-immobilized PCL NFMs showed lower roughness and higher hydrophilicity than the samples without CS. Human articular chondrocytes (hACs) were cultured on electrospun PCL NFMs with or without CS immobilization. It was observed that hACs proliferated through the entire time course of the experiment in both types of nanofibrous scaffolds, as well as for the production of glycosaminoglycans. Quantitative-PCR results demonstrated over-expression of cartilage-related genes such as Aggrecan, Collagen type II, COMP and Sox9 on both types of nanofibrous scaffolds. Morphological observations from SEM and LSCM revealed that hACs maintained their characteristic round shape and cellular agglomeration exclusively on PCL NFMs with CS immobilization. In conclusion, CS immobilization at the surface of PCL NFMs was achieved successfully and provides a valid platform enabling further surface functionalization methods in scaffolds to be developed for cartilage tissue engineering.

  2. Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches

    Energy Technology Data Exchange (ETDEWEB)

    Piai, Juliana Francis [3B’s Research Group − Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães (Portugal); ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães (Portugal); Grupo de Materiais Poliméricos e Compósitos, GMPC – Departamento de Química- Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná (Brazil); Alves da Silva, Marta; Martins, Albino; Torres, Ana Bela [3B’s Research Group − Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães (Portugal); ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães (Portugal); Faria, Susana [Research Center Officinal Mathematical, Department of Mathematics for Science and Technology, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); and others

    2017-05-01

    Highlights: • Chemical immobilization of chondroitin sulfate at the surface of nanofiber meshes. • CS-immobilized NFMs showed lower roughness and higher hydrophilicity. • CS-immobilized NFMs offer a highly effective substrate for hACs phenotypic stability. - Abstract: Aiming at improving the biocompatibility of biomaterial scaffolds, surface modification presents a way to preserve their mechanical properties and to improve the surface bioactivity. In this work, chondroitin sulfate (CS) was immobilized at the surface of electrospun poly(caprolactone) nanofiber meshes (PCL NFMs), previously functionalized by UV/O{sub 3} exposure and aminolysis. Contact angle, SEM, optical profilometry, FTIR, X-ray photoelectron spectroscopy techniques confirmed the success of CS-immobilization in PCL NFMs. Furthermore, CS-immobilized PCL NFMs showed lower roughness and higher hydrophilicity than the samples without CS. Human articular chondrocytes (hACs) were cultured on electrospun PCL NFMs with or without CS immobilization. It was observed that hACs proliferated through the entire time course of the experiment in both types of nanofibrous scaffolds, as well as for the production of glycosaminoglycans. Quantitative-PCR results demonstrated over-expression of cartilage-related genes such as Aggrecan, Collagen type II, COMP and Sox9 on both types of nanofibrous scaffolds. Morphological observations from SEM and LSCM revealed that hACs maintained their characteristic round shape and cellular agglomeration exclusively on PCL NFMs with CS immobilization. In conclusion, CS immobilization at the surface of PCL NFMs was achieved successfully and provides a valid platform enabling further surface functionalization methods in scaffolds to be developed for cartilage tissue engineering.

  3. The influence of activated carbon surface properties on the adsorption of the herbicide molinate and the bio-regeneration of the adsorbent.

    Science.gov (United States)

    Coelho, Cláudia; Oliveira, Ana Sofia; Pereira, Manuel Fernando R; Nunes, Olga C

    2006-11-16

    In the present study, the effect of the textural and surface chemistry properties of the activated carbon were evaluated in a combined treatment system to remove the herbicide molinate from waters. The process consists of an initial adsorption step followed by the bio-regeneration of the activated carbon through the utilization of a defined bacterial mixed culture (DC), previously described as able to mineralize molinate. Molinate adsorption and partial bio-regeneration was favoured with activated carbons with larger pores, consisting mainly of meso and macropores. In order to study the effect of different surface chemical characteristics while maintaining the original textural properties, a commercial activated carbon was submitted to thermal and nitric acid treatments. The thermal treatment improved the molinate adsorption capacity of activated carbon. However, the bio-regeneration of the nitric acid oxidised activated carbon was slightly higher. With all the activated carbon materials used it was observed that the biological consumption of molinate present in the liquid phase displaced the equilibrium towards the activated carbon partial regeneration.

  4. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

    Science.gov (United States)

    Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J

    2016-12-01

    Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied. Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. Although their success is related to their ability to exactly mimic the structure of natural tissues and control mechanical

  5. Natural Regeneration of Longleaf Pine

    Science.gov (United States)

    William D. Boyer

    1979-01-01

    Natural regeneration is now a reliable alternative for existing longleaf pine forests. The shelterwood system, or modifications of it, has been used experimentally to regenerate longleaf pine for over 20 years, and regional tests have confirmed its value for a wide range of site conditions. Natural regeneration, because of its low cost when compared to other...

  6. Characterisation and Testing of Multifunctional Surfaces

    DEFF Research Database (Denmark)

    Godi, Alessandro

    Surface texturing is considered an effective way for reducing friction losses and wear occurrence in mechanical systems. A large number of surfaces with textures artificially engineered has been proposed by researchers worldwide and among them lie a new developed typology: MUFU surfaces, where....... The introduction of MUFU surfaces is however bound with a series of challenges constituting the topic of the present work. The exploration touches a number of disciplines encompassing metrology, tribology and modelling. The metrological investigation represents the core of the work as further researches are bound...... to a clear and comprehensive description of the surfaces analysed. Robust filtering methods are adopted, extended, coded and implemented in the commercial software SPIPTM. These methods prove to be extremely suitable in handling the raw data coming out from a measuring instrument and yield a correctly...

  7. Targeted selection of brownfields from portfolios for sustainable regeneration: User experiences from five cases testing the Timbre Brownfield Prioritization Tool.

    Science.gov (United States)

    Bartke, Stephan; Martinát, Stanislav; Klusáček, Petr; Pizzol, Lisa; Alexandrescu, Filip; Frantál, Bohumil; Critto, Andrea; Zabeo, Alex

    2016-12-15

    Prioritizing brownfields for redevelopment in real estate portfolios can contribute to more sustainable regeneration and land management. Owners of large real estate and brownfield portfolios are challenged to allocate their limited resources to the development of the most critical or promising sites, in terms of time and cost efficiency. Authorities worried about the negative impacts of brownfields - in particular in the case of potential contamination - on the environment and society also need to prioritize their resources to those brownfields that most urgently deserve attention and intervention. Yet, numerous factors have to be considered for prioritizing actions, in particular when adhering to sustainability principles. Several multiple-criteria decision analysis (MCDA) approaches and tools have been suggested in order to support these actors in managing their brownfield portfolios. Based on lessons learned from the literature on success factors, sustainability assessment and MCDA approaches, researchers from a recent EU project have developed the web-based Timbre Brownfield Prioritization Tool (TBPT). It facilitates assessment and prioritization of a portfolio of sites on the basis of the probability of successful and sustainable regeneration or according to individually specified objectives. This paper introduces the challenges of brownfield portfolio management in general and reports about the application of the TBPT in five cases: practical test-uses by two large institutional land owners from Germany, a local and a regional administrative body from the Czech Republic, and an expert from a national environmental authority from Romania. Based on literature requirements for sustainability assessment tools and on the end-users' feedbacks from the practical tests, we discuss the TBPT's strengths and weaknesses in order to inform and give recommendations for future development of prioritization tools. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Remote surface testing and inspection vehicle

    International Nuclear Information System (INIS)

    Hyde, E.A.; Goldsmith, H.A.; Proudlove, M.J.

    1981-01-01

    A remotely controlled vehicle capable of roving over the outer surface of a nuclear reactor primary vessel carrying inspection instrumentation. The vehicle comprises an elongate bridge having a pair of suction support pads. Each pad carries gas thrusters for acting in opposition to the suction effort thereby to reduce adherence of the pads and enable displacement of the vehicle over the surface. The vehicle is supported by a services conducting umbilical. (author)

  9. The X-37 Hot Structure Control Surface Testing

    Science.gov (United States)

    Hudson, Larry D.; Stephens, Craig A.

    2006-01-01

    Thermal-structural testing of three hot structure control surface subcomponent test articles (STA) designed for the X-37 (Boeing Phantom Works, Huntington Beach, California) Orbital Vehicle (OV) has been completed. The test articles were subcomponents of the X-37 OV bodyflap and flaperon control surfaces.

  10. Use of micro-tomography for validation of method to identify interfacial shear strength from tensile tests of short regenerated cellulose fibre composites

    DEFF Research Database (Denmark)

    Hajlane, A.; Miettinen, A.; Madsen, Bo

    2016-01-01

    The interfacial shear strength of short regenerated cellulose fibre/polylactide composites was characterized by means of an industry-friendly adhesion test method. The interfacial shear strength was back-calculated from the experimental tensile stress-strain curves of composites by using a micro-...

  11. Improved bioactivity of selective laser melting titanium: Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation.

    Science.gov (United States)

    Xu, Jia-Yun; Chen, Xian-Shuai; Zhang, Chun-Yu; Liu, Yun; Wang, Jing; Deng, Fei-Long

    2016-11-01

    Selective laser melting (SLM) titanium requires surface modification to improve its bioactivity. The microrough surface of it can be utilized as the micro primary substrate to create a micro-/nano-textured topography for improved bone regeneration. In this study, the microrough SLM titanium substrate was optimized by sandblasting, and nano-porous features of orderly arranged nanotubes and disorderly arranged nanonet were produced by anodization (SAN) and alkali-heat treatment (SAH), respectively. The results were compared with the control group of an untreated surface (native-SLM) and a microtopography only surface treated by acid etching (SLA). The effects of the different topographies on cell functions and bone formation performance were evaluated in vitro and in vivo. It was found that micro-/nano-textured topographies of SAN and SAH showed enhanced cell behaviour relative to the microtopography of SLA with significantly higher proliferation on the 1st, 3rd, 5th and 7th day (P<0.05) and higher total protein contents on the 14th day (P<0.05). In vivo, SAN and SAH formed more successively regenerated bone, which resulted in higher bone-implant contact (BIC%) and bone-bonding force than native-SLM and SLA. In addition, the three-dimensional nanonet of SAH was expected to be more similar to native extracellular matrix (ECM) and thus led to better bone formation. The alkaline phosphatase activity of SAH was significantly higher than the other three groups at an earlier stage of the 7th day (P<0.05) and the BIC% was nearly double that of native-SLM and SLA in the 8th week. In conclusion, the addition of nano-porous features on the microrough SLM titanium surface is effective in improving the bioactivity and bone regeneration performance, in which the ECM-like nanonet with a disorderly arranged biomimetic feature is suggested to be more efficient than nanotubes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Test case for a near-surface repository

    International Nuclear Information System (INIS)

    Elert, M.; Jones, C.; Nilsson, L.B.; Skagius, K.; Wiborgh, M.

    1998-01-01

    A test case is presented for assessment of a near-surface disposal facility for radioactive waste. The case includes waste characterization and repository design, requirements and constraints in an assessment context, scenario development, model description and test calculations

  13. Surface stabilization and revegetation test plots

    International Nuclear Information System (INIS)

    Sackschewsky, M.R.; Kemp, C.J.; Hayward, W.M.

    1993-09-01

    Westinghouse Hanford Company Decommissioning and Decontamination Engineering Group and Environmental Technology and Assessment Groups are developing new technologies to improve revegetation techniques for interim stabilization control over underground waste sites within the Radiation Area Remedial Action Program. Successful revegetation is an integral aspect of waste isolation strategy. Unfortunately, revegetation can be very difficult to achieve on the Hanford Site due to several factors: low annual precipitation, unpredictable timing of precipitation, low fertility of available soils, and coarse physical texture of soils covering waste sites. The tests in this report were performed during fiscal years 1992 and 1993 and include the use of two soil sealants in combination with bare soil and a soil/compost mixture and a comparison of a wheatgrass mixture and a native seed mixture. Hydroprobe access ports were placed in one-half of the test plots and moisture data was collected. Soil fertility and plant community characteristics were monitored during the two years of the test. During the first year all sites with compost provided additional fertility and retained greater amounts of soil moisture than noncomposted sites. The use of Enduraseal soil fixative provided greater soil moisture than the use of Aerospray-77 soil fixative. During the second year the use of compost and soil fixative's had a lesser effect on soil moisture. During late summer periods all treatments had very similar soil moisture profiles. The use of compost greatly increased vegetative cover and soil fertility in comparison to sites that had no compost added. Testing of the seed mixtures found that Siberian wheatgrass and Sandberg's bluegrass were the most dominant of the seeded species observed. All plots exhibited a dominant plant cover of volunteer cheatgrass. Biomass production was significantly greater on plots with compost than on the noncomposted plots

  14. Surface heparinization and blood compatibility modification of small intestinal submucosa (SIS) for small-caliber vascular regeneration.

    Science.gov (United States)

    Han, Bensong; Xue, Feng; Fan, Cunyi; Mo, Xiumei

    2017-01-01

    This study aims to investigate the small intestinal submucosal (SIS) surface after heparinization with the hypothermia plasma technique, to improve the blood compatibility of SIS, and to explore the possibility of construction of small-caliber vascular grafts with modified SIS scaffolds in vivo. SIS films prepared from jejunums of pigs were processed for surface treatment at different time periods with the argon plasma initiation technique under vacuum, and were then immediately immersed in 4% (m/v) heparin sodium solution for 24-h heparinization. The surface morphologies of heparinized SIS were observed under a scanning electron microscope (SEM). The antithrombogenicity of the modified SIS films was tested by measuring the water contact angle, blood coagulation time, activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), and observation of platelet adherence by SEM. Heparinized SIS films were sewn into a small caliber (3-mm) tube and implanted into the defect of a canine femur by anastomosis as a vascular graft. The efficiency of the SIS graft was evaluated according to the patency for the circulation of blood with Doppler color ultrasonography and hematoxylin-eosin staining. Heparinized SIS showed a significantly different surface morphology compared with that of untreated SIS. The SIS surface resembles wrinkled film, but the heparinized SIS surface is uniformly coated with microdots, and appears to have a layer of heparin adhesion. Heparin was attached to the SIS surface after hypothermia plasma treatment. Hydrophilicity and antithrombogenicity of heparinized SIS were clearly increased. The heparinized SIS vascular graft showed great potential for replacement of defective small-caliber vessels.

  15. Bone regeneration at implants with turned or rough surfaces in self-contained defects. An experimental study in the dog.

    Science.gov (United States)

    Botticelli, Daniele; Berglundh, Tord; Persson, Leif G; Lindhe, Jan

    2005-05-01

    statistically significant (paired t-test). Osseointegration at implants placed in sites with marginal defects is influenced by the surface characteristics of the implant.

  16. TEST PROGRAM FOR ALUMINA REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; GEINESSE D

    2011-01-28

    This test program sets a multi-phased development path to support the development of the Lithium Hydrotalcite process, in order to raise its Technology Readiness Level from 3 to 6, based on tasks ranging from laboratory scale scientific research to integrated pilot facilities.

  17. Test Program For Alumina Removal And Sodium Hydroxide Regeneration From Hanford Waste By Lithium Hydrotalcite Precipitation

    International Nuclear Information System (INIS)

    Sams, T.L.; Geinesse, D.

    2011-01-01

    This test program sets a multi-phased development path to support the development of the Lithium Hydrotalcite process, in order to raise its Technology Readiness Level from 3 to 6, based on tasks ranging from laboratory scale scientific research to integrated pilot facilities.

  18. Testing of isolation barrier sealing surfaces

    International Nuclear Information System (INIS)

    Graves, C.E.

    1994-01-01

    Isolation barrier doors are to be installed in the 105KE and 105KW basins as part of the 1994 unreviewed safety question (USQ) resolution plan to isolate the fuel storage basin from the fuel discharge chute. Included in this installation is the placement of new sealing surfaces for the barriers by affixing stainless steel plates to existing carbon steel angle bars with a specially formulated epoxy adhesive/sealant material. The sealant is a two-part component consisting of an epoxy resin (the condensation product of bisphenol A and epichlorohydrin) and a curing agent (a proprietary cycloaliphatic polyamine). The sealant is solvent free (complying with air pollution regulations) and capable of withstanding the surrounding radiation fields over an estimated 15-year service life. The epoxy sealant experiences negligible water damage partly because of its hydrophobic (water-repelling) nature. With bond tensile strengths measured at greater than 862 kPa (125 lbf/in 2 ), the epoxy sealant is judged acceptable for its intended application. The four-hour pot life of the epoxy sealant provides sufficient time to apply the epoxy, examine the epoxy bead for continuity, and position the stainless steel sealing plates

  19. Testing of isolation barrier sealing surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Graves, C.E.

    1994-12-15

    Isolation barrier doors are to be installed in the 105KE and 105KW basins as part of the 1994 unreviewed safety question (USQ) resolution plan to isolate the fuel storage basin from the fuel discharge chute. Included in this installation is the placement of new sealing surfaces for the barriers by affixing stainless steel plates to existing carbon steel angle bars with a specially formulated epoxy adhesive/sealant material. The sealant is a two-part component consisting of an epoxy resin (the condensation product of bisphenol A and epichlorohydrin) and a curing agent (a proprietary cycloaliphatic polyamine). The sealant is solvent free (complying with air pollution regulations) and capable of withstanding the surrounding radiation fields over an estimated 15-year service life. The epoxy sealant experiences negligible water damage partly because of its hydrophobic (water-repelling) nature. With bond tensile strengths measured at greater than 862 kPa (125 lbf/in{sup 2}), the epoxy sealant is judged acceptable for its intended application. The four-hour pot life of the epoxy sealant provides sufficient time to apply the epoxy, examine the epoxy bead for continuity, and position the stainless steel sealing plates.

  20. Liver regeneration

    NARCIS (Netherlands)

    Chamuleau, R. A.; Bosman, D. K.

    1988-01-01

    Despite great advances in analysing hemodynamic, morphological and biochemical changes during the process of liver regeneration, the exact (patho)physiological mechanism is still unknown. A short survey of literature is given of the kinetics of liver regeneration and the significance of different

  1. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization.

    Science.gov (United States)

    Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao

    2014-12-10

    In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be

  2. Activated carbon regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Skripnik, K.I.; Burachevskii, I.I.; Tarkovskaya, I.A.; Yarovenko, V.L.

    1981-01-01

    The regeneration process was tested by oxidative treatment of activated carbon, employable in the vodka industry, with an aqueous KMnO/sub 4/ (I) solution. The spent carbon is exposed to a 0.4% solution of for 30-50 min, then washed with water, and blown through for 15-30 min with steam at a temperature of 105-110/sup 0/ C under 0.07 MPa pressure. A check of the activity of the regenerated carbon revealed an increase in pore volume by 29% with respect to benzene adsorption and a higher adsorptive capacity (by a factor of about 2) with respect to fatty acids by comparison with carbon regenerated by the conventional steam procedure. Application of the process in the plant made it possible to use the carbon for 3-4 months additionally because of an increase in activity after regeneration. Iodine comsumption amounts to 5-6 kg per column.

  3. Regeneration of Skin Surface by Multipotent Mesenchymal Stem Cells of Adipose Tissue in Laboratory Animals with Infected Wounds

    OpenAIRE

    Sahab, A. Haydar; Tretyak, S.; Nedzved, M.K.; Baranov, E.V.; Nadyrov, E.; Lobanok, H.H.; Vasilevich, I.B.; Welcome, M.O.

    2013-01-01

    This paper presents results of experimental studies in laboratory animals with a simulated infected wound, for which mesenchymal stem cells (MSCs) derived from adipose tissue were used in its treatment. The following peculiarities of MSCs for regeneration of skin defects are established: faster arrest of inflammation, accelerated wound healing processes, as well as observed stimulation of growth of skin appendages. The results of this study may serve the basis for further research from develo...

  4. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin.

    Directory of Open Access Journals (Sweden)

    Gaotian Shen

    Full Text Available Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8 and a positively charged regenerated silk fibroin solution (pH = 2. Finally, the negatively charged regenerated silk fibroin solution (pH = 8 was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting

  5. Testing of newly developed functional surfaces under pure sliding conditions

    DEFF Research Database (Denmark)

    Godi, Alessandro; Mohaghegh, Kamran; Grønbæk, J.

    2013-01-01

    -polished counterpart. A number of experiments were carried out at different normal pressures employing for all specimens the same reciprocating movement and the same lubrication. The measured friction forces were plotted against the incremental normal pressure, and the friction coefficients were calculated....... The results comparison showed clearly how employing multifunctional surfaces can reduce friction forces up to 50 % at high normal loads compared to regularly ground or turned surfaces. Friction coefficients approximately equal to 0.12 were found for classically machined surfaces, whereas the values were 0...... the surfaces in an industrial context. In this paper, a number of experimental tests were performed using a novel test rig, called axial sliding test, simulating the contact of surfaces under pure sliding conditions. The aim of the experiments is to evaluate the frictional behavior of a new typology...

  6. 30 CFR 7.101 - Surface temperature tests.

    Science.gov (United States)

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Power Packages Intended for Use in Areas of Underground Coal Mines Where Permissible Electric Equipment is Required § 7.101 Surface...

  7. Echinoderm regenerative response as a sensitive ecotoxicological test for the exposure to endocrine disrupters: effects of p,p'DDE and CPA on crinoid arm regeneration.

    Science.gov (United States)

    Sugni, Michela; Manno, Valentina; Barbaglio, Alice; Mozzi, Daniela; Bonasoro, Francesco; Tremolada, Paolo; Candia Carnevali, M Daniela

    2008-12-01

    Echinoderms are valuable test species in marine ecotoxicology and offer a wide range of biological processes appropriate for this approach. Regenerating echinoderms can be regarded as amenable experimental models for testing the effects of exposure to contaminants, particularly endocrine disrupter compounds (EDCs). As regeneration is a typical developmental process, physiologically regulated by humoral mechanisms, it is highly susceptible to the action of pseudo-hormonal contaminants which appear to be obvious candidates for exerting deleterious actions. In our laboratory experiments, selected EDCs suspected for their antiandrogenic action (p,p'-DDE and cyproterone acetate) were tested at low concentrations on regenerating specimens of the crinoid Antedon mediterranea. An integrated approach which combines exposure experiments and different morphological analyses was employed; the obtained results suggest an overall pattern of plausible endocrine disruption in the exposed samples, showing that processes such as regenerative growth, histogenesis, and differentiation are affected by the exposure to the selected compounds. These results confirm that (1) regenerative phenomena of echinoderms can be considered valuable alternative models to assess the effects of exposure to exogenous substances such as EDCs, and (2) these compounds significantly interfere with fundamental processes of developmental physiology (proliferation, differentiation, etc...) plausibly via endocrine alterations. In terms of future prospects, taking into account the increasing need to propose animal models different from vertebrates, echinoderms represent a group on which ecotoxicological studies should be encouraged and specifically addressed.

  8. Regional Longleaf Pine (Pinus palustris) Natural Regeneration

    Science.gov (United States)

    William D. Boyer

    1998-01-01

    Duration: 1968-present Objective: Test the shelterwood system of longleaf pine natural regeneration. Methods: Longleaf pine natural regeneration tests were established from 1966 through 1970 at ten locations in seven states from North Carolina to Louisiana. One of these was established on a 50-acre flatwoods site on Eglin AFB in 1968. Regeneration was initially...

  9. An Axial Sliding Test for machine elements surfaces

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; Mohaghegh, Kamran

    2012-01-01

    are necessary: a press to provide the normal pressure and a tensile machine to perform the axial movements. The test is calibrated so that the correspondence between the normal pressure and the container advancement is found. Finally, preliminary tests are carried out involving a multifunctional and a fine......Throughout the years, it has become more and more important to find new methods for reducing friction and wear occurrence in machine elements. A possible solution is found in texturing the surfaces under tribological contact, hence the development and spread of plateau-honed surface for cylinder...... liners. To prove the efficacy of a particular textured surface, it is paramount to perform experimental tests under controlled laboratory conditions. In this paper a new test rig simulating pure sliding conditions is presented, dubbed Axial Sliding Test. It presents four major components: a rod, a sleeve...

  10. Skid resistance and surface roughness testing of historic stone surfaces: advantages and limitations

    Science.gov (United States)

    Török, Ákos

    2013-04-01

    Skid resistance tests are mostly applied for testing road surfaces and almost never applied for testing stones at cultural heritage sites. The present study focuses on the possibilities of using these techniques in assessing the surface roughness of paving stones at a historic site. Two different methods were used in a comparative way to evaluate the surface properties of various types of stones ranging from travertine to non-porous limestone and granite. The applied techniques included the use of SRT pendulum (Skid Resistance Tester) providing USRV values and a mobile equipment to analyze the surface properties (Floor Slide Control) by surface profiling and providing angle of friction. The main aims of tests were to understand the wearing of stone materials due to intense pedestrian use and to detect surface changes/surface roughness and slip resistance within few year periods. The measured loss in surface slip resistance (i.e. USRV values) was in the order of 20% for granites, while most limestones lost at least 40% in terms of USRV values. An opposite trend was detected for a porous travertine type, where the surface became rougher after years of use. The limitations of these techniques are also addressed in the paper. The tests have shown that the introduction of the use of these equipments in heritage studies provide useful information on the longevity of historic stone pavements that are open for public use.

  11. 3D-Printed Bioactive Ca3SiO5Bone Cement Scaffolds with Nano Surface Structure for Bone Regeneration.

    Science.gov (United States)

    Yang, Chen; Wang, Xiaoya; Ma, Bing; Zhu, Haibo; Huan, Zhiguang; Ma, Nan; Wu, Chengtie; Chang, Jiang

    2017-02-22

    Silicate bioactive materials have been widely studied for bone regeneration because of their eminent physicochemical properties and outstanding osteogenic bioactivity, and different methods have been developed to prepare porous silicate bioactive ceramics scaffolds for bone-tissue engineering applications. Among all of these methods, the 3D-printing technique is obviously the most efficient way to control the porous structure. However, 3D-printed bioceramic porous scaffolds need high-temperature sintering, which will cause volume shrinkage and reduce the controllability of the pore structure accuracy. Unlike silicate bioceramic, bioactive silicate cements such as tricalcium silicate (Ca 3 SiO 5 and C 3 S) can be self-set in water to obtain high mechanical strength under mild conditions. Another advantage of using C 3 S to prepare 3D scaffolds is the possibility of simultaneous drug loading. Herein, we, for the first time, demonstrated successful preparation of uniform 3D-printed C 3 S bone cement scaffolds with controllable 3D structure at room temperature. The scaffolds were loaded with two model drugs and showed a loading location controllable drug-release profile. In addition, we developed a surface modification process to create controllable nanotopography on the surface of pore wall of the scaffolds, which showed activity to enhance rat bone-marrow stem cells (rBMSCs) attachment, spreading, and ALP activities. The in vivo experiments revealed that the 3D-printed C 3 S bone cement scaffolds with nanoneedle-structured surfaces significantly improved bone regeneration, as compared to pure C 3 S bone cement scaffolds, suggesting that 3D-printed C 3 S bone cement scaffolds with controllable nanotopography surface are bioactive implantable biomaterials for bone repair.

  12. Evaluation of Surface Infiltration Testing Procedures in Permeable Pavement Systems

    Science.gov (United States)

    The ASTM method (ASTM C1701) for measuring infiltration rate of in-place pervious concrete provides limited guidance on how to select testing locations, so research is needed to evaluate how testing sites should be selected and how results should be interpreted to assess surface ...

  13. Disturbance induced by surface preparation on instrumented indentation test

    International Nuclear Information System (INIS)

    Li, Yugang; Kanouté, Pascale; François, Manuel

    2015-01-01

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h max (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease

  14. Fracture Testing with Surface Crack Specimens. [especially the residual tensile strength test

    Science.gov (United States)

    Orange, T. W.

    1974-01-01

    Recommendations are given for the design, preparation, and static fracture testing of surface crack specimens. The recommendations are preceded by background information including discussions of stress intensity factors, crack opening displacements, and fracture toughness values associated with surface crack specimens. Cyclic load and sustained load tests are discussed briefly.

  15. The effects of surface treatments on rapid chloride permeability tests

    KAUST Repository

    Yoon, Seyoon

    2012-08-01

    Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

  16. Effects of rhBMP-2 on Sandblasted and Acid Etched Titanium Implant Surfaces on Bone Regeneration and Osseointegration: Spilt-Mouth Designed Pilot Study

    Directory of Open Access Journals (Sweden)

    Nam-Ho Kim

    2015-01-01

    Full Text Available This study was conducted to evaluate effects of rhBMP-2 applied at different concentrations to sandblasted and acid etched (SLA implants on osseointegration and bone regeneration in a bone defect of beagle dogs as pilot study using split-mouth design. Methods. For experimental groups, SLA implants were coated with different concentrations of rhBMP-2 (0.1, 0.5, and 1 mg/mL. After assessment of surface characteristics and rhBMP-2 releasing profile, the experimental groups and untreated control groups (n = 6 in each group, two animals in each group were placed in split-mouth designed animal models with buccal open defect. At 8 weeks after implant placement, implant stability quotients (ISQ values were recorded and vertical bone height (VBH, mm, bone-to-implant contact ratio (BIC, %, and bone volume (BV, % in the upper 3 mm defect areas were measured. Results. The ISQ values were highest in the 1.0 group. Mean values of VBH (mm, BIC (%, and BV (% were greater in the 0.5 mg/mL and 1.0 mg/mL groups than those in 0.1 and control groups in buccal defect areas. Conclusion. In the open defect area surrounding the SLA implant, coating with 0.5 and 1.0 mg/mL concentrations of rhBMP-2 was more effective, compared with untreated group, in promoting bone regeneration and osseointegration.

  17. Comparison of Guided Bone Regeneration Between Surface-Modified and Pristine Titanium Membranes in a Rat Calvarial Model.

    Science.gov (United States)

    Nguyen, Thuy-Duong; Moon, So-Hee; Oh, Tae-Ju; Seok, Jung-Jin; Lee, Min-Ho; Bae, Tae-Sung

    2016-01-01

    The objectives of this study were to evaluate bioactivity of a titanium membrane with anodization, cyclic precalcification, and heat (APH) treatment (APHTM), and to compare APHTM and nontreated titanium membrane (NTTM) in guided bone regeneration using histologic analysis and microcomputed tomography (micro-CT). APHTM samples were prepared and immersed in simulated body fluid for 2 days, then observed using field-emission scanning electron microscopy, followed by an analysis of calcium and phosphate precipitation using an energy dispersive x-ray spectroscopy. For the in vivo experiment, critical-size defects were created in rat calvaria (diameter, 8 mm) and treated with either APHTM or NTTM (n = 14 each). Biopsies were performed at 2 and 4 weeks for histologic analysis (n = 3 per group each time). Fluorochrome bone markers were injected in three rats in each group at 3 (alizarin red) and 5 weeks (calcein green), followed by histologic examination at 7 weeks. Micro-CT was performed at 8 weeks (n = 5 per group). APHTM exhibited high bioactivity, characterized by dense nano-sized flakelike crystals throughout the membrane and an increase in the calcium-phosphate concentrations after 2-day immersion in simulated body fluid. At 2 and 4 weeks, APHTM samples showed an intimate bone formation onto the membrane, whereas NTTM samples demonstrated interposition of connective tissue between the membrane and newly formed bone. The same pattern was found in the fluorescent study. The micro-CT analysis revealed significantly lower bone volume but higher bone mineral density in the APHTM samples than in the NTTM samples (P bone formation toward the membrane, thus increasing structural durability for bone regeneration. Further research is warranted to confirm the results found in these in vitro and in vivo experiments.

  18. Surface moisture measurement system hardware acceptance test procedure

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1996-01-01

    The purpose of this acceptance test procedure is to verify that the mechanical and electrical features of the Surface Moisture Measurement System are operating as designed and that the unit is ready for field service. This procedure will be used in conjunction with a software acceptance test procedure, which addresses testing of software and electrical features not addressed in this document. Hardware testing will be performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  19. Preliminary test of two stump surface protectants against Fomes annosus.

    Science.gov (United States)

    E.E. Nelson; C.Y. Li

    1980-01-01

    Two materials, monolaurin (at two concentrations) and an unidentified species of the genus Streptomyces, were tested along with borax for ability to protect freshly cut stump surfaces of western hemlock (Tsuga heterophylla (Raf.) Sarg.) from colonization by Fomes annosus. Protectants were significantly (P...

  20. Surface moisture measurement system hardware acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.A., Westinghouse Hanford

    1996-05-28

    This document summarizes the results of the hardware acceptance test for the Surface Moisture Measurement System (SMMS). This test verified that the mechanical and electrical features of the SMMS functioned as designed and that the unit is ready for field service. The bulk of hardware testing was performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. The SMMS was developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks.

  1. Periodontal regeneration.

    Science.gov (United States)

    Ivanovski, S

    2009-09-01

    The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.

  2. The laboratory station for tyres grip testing on different surfaces

    Science.gov (United States)

    Kalinowski, K.; Grabowik, C.; Janik, W.; Ćwikła, G.; Skowera, M.

    2015-11-01

    The paper presents the conception of the device for tyre grip testing in the laboratory conditions. The main purpose is to provide a device working in confined spaces, which enables rapid changes of the tested samples of the road surfaces. Among the key assumptions the minimization of the device dimensions and the relative ease of transportation and mobility - the ability to quick assemble and disassemble were also assumed. The main components of the projected workstation includes: the replaceable platform for mounting samples of a road surface, the roller conveyor, the drive of the platform, the wheel mounting assembly and the axial force measuring system. At the design the station a morphological structure method has been used, particular elements have been optimized individually.

  3. Biointrusion test plan for the Permanent Isolation Surface Barrier Prototype

    International Nuclear Information System (INIS)

    Link, S.O.; Cadwell, L.L.; Brandt, C.A.; Downs, J.L.; Rossi, R.E.; Gee, G.W.

    1994-04-01

    This document provides a testing and monitoring plan for the biological component of the prototype barrier slated for construction at the Hanford Site. The prototype barrier is an aboveground structure engineered to demonstrate the basic features of an earthen cover system. It is designed to permanently isolate waste from the biosphere. The features of the barrier include multiple layers of soil and rock materials and a low-permeability asphalt sublayer. The surface of the barrier consists of silt loam soil, covered with plants. The barrier sides are reinforced with rock or coarse earthen-fill to protect against wind and water erosion. The sublayers inhibit plant and animal intrusion and percolation of water. A series of tests will be conducted on the prototype barrier over the next several years to evaluate barrier performance under extreme climatic conditions. Plants and animals will play a significant role in the hydrologic and water and wind erosion characteristics of the prototype barrier. Studies on the biological component of the prototype barrier will include work on the initial revegetation of the surface, continued monitoring of the developing plant community, rooting depth and dispersion in the context of biointrusion potential, the role of plants in the hydrology of the surface and toe regions of the barrier, the role of plants in stabilizing the surface against water and wind erosion, and the role of burrowing animals in the hydrology and water and wind erosion of the barrier

  4. Can atom-surface potential measurements test atomic structure models?

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  5. Layer-by-layer generation of PEG-based regenerable immunosensing surfaces for small-sized analytes.

    Science.gov (United States)

    Huebner, Maria; Ben Haddada, Maroua; Méthivier, Christophe; Niessner, Reinhard; Knopp, Dietmar; Boujday, Souhir

    2015-05-15

    Small molecules (haptens) like pharmaceuticals or peptides can serve as targets for antibody binding in competitive immunoassay-based flow-through assays. In this work, a strategy for preparing polyethylene glycol (PEG) coatings for subsequent hapten immobilization on glass-type silica surfaces is presented and characterized in detail. Two substrates bearing terminal silanol groups were utilized, a glass slide and a silicon wafer. First, surfaces were thoroughly cleaned and pretreated to generate additional silanol groups. Then, a silane layer with terminal epoxy groups was created using 3-glycidyloxypropyltrimethoxysilane (GOPTS). Epoxy groups were used to bind a layer of diamino-poly(ethylene glycol) (DAPEG) with terminal amino groups. Finally, the low molecular weight compound diclofenac was bound to the surface to be used as model ligand for competitive biosensing of haptens. The elementary steps were characterized using atomic force microscopy (AFM), water contact angle measurement, grazing-angle attenuated total reflection (GA-ATR) FT-IR spectroscopy, and X-ray photoelectron spectroscopy (XPS). The data collected using these techniques have confirmed the successive grafting of the molecular species, evidencing, that homogeneous monolayers were created on the silica surfaces and validated the proposed mechanism of functionalization. The resulting surfaces were used to investigate polyclonal anti-diclofenac antibodies recognition and reversibility using quartz crystal microbalance with dissipation (QCM-D) measurements or an automated flow-through immunoassay with chemiluminescence (CL) read-out. For both techniques, recognition and reversibility of the antibody binding were observed. The stability of sensors over time was also assessed and no decrease in CL response was observed upon 14 days in aqueous solution. The herein presented strategy for surface functionalization can be used in the future as reproducible and reusable universal platform for hapten

  6. Jet-Surface Interaction - High Aspect Ratio Nozzle Test: Test Summary

    Science.gov (United States)

    Brown, Clifford A.

    2016-01-01

    The Jet-Surface Interaction High Aspect Ratio Nozzle Test was conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center in the fall of 2015. There were four primary goals specified for this test: (1) extend the current noise database for rectangular nozzles to higher aspect ratios, (2) verify data previously acquired at small-scale with data from a larger model, (3) acquired jet-surface interaction noise data suitable for creating verifying empirical noise models and (4) investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise. These slides give a summary of the test with representative results for each goal.

  7. An active magnetic regenerator device

    DEFF Research Database (Denmark)

    2015-01-01

    A rotating active magnetic regenerator (AMR) device comprising two or more regenerator beds, a magnet arrangement and a valve arrangement. The valve arrangement comprises a plurality of valve elements arranged substantially immovably with respect to the regenerator beds along a rotational direction....... A cam surface is arranged substantially immovably with respect to the magnet arrangement along the rotational direction, and comprises a plurality of cam elements arranged to cooperate with the valve elements in order to control opening degrees of the valve elements, in accordance with a relative...... position of the cam elements and the valve elements. Thereby the opening degree of each valve element is controlled in accordance with a relative angular position of the regenerator beds and the magnet arrangement....

  8. New surface layers with low rolling resistance tested in Denmark

    DEFF Research Database (Denmark)

    Pettinari, Matteo; Schmidt, Bjarne; Jensen, Bjarne Bo

    2014-01-01

    The project ‘CO2 emission reduction by exploitation of rolling resistance modeling of pavements’ (COOEE) was started in 2011 to establish a scientific background for development of novel pavement types and asset management solutions that minimize the rolling resistance for cars and trucks......, the purpose being to reduce CO2 emission from the transport sector. In summer 2012, three different test sections were constructed on a highway located near Vordingborg, Denmark, in order to verify the respective Rolling Resistances; the main purpose was to develop and design new surface layers with reduced...... Rolling Resistance coefficient that could improve energy efficiency of the roads. In particular, two new types of Split Mastic Asphalt (SMA) were developed and compared to a reference one; both mixtures have a relatively small maximum grain-size, 6 mm and 8 mm, respectively. Surface measurements...

  9. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.

    2014-08-05

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  10. Source effects on surface waves from Nevada Test Site explosions

    International Nuclear Information System (INIS)

    Patton, H.J.; Vergino, E.S.

    1981-11-01

    Surface waves recorded on the Lawrence Livermore National Laboratory (LLNL) digital network have been used to study five underground nuclear explosions detonated in Yucca Valley at the Nevada Test Site. The purpose of this study is to characterize the reduced displacement potential (RDP) at low frequencies and to test secondary source models of underground explosions. The observations consist of Rayleigh- and Love-wave amplitude and phase spectra in the frequency range 0.03 to 0.16 Hz. We have found that Rayleigh-wave spectral amplitudes are modeled well by a RDP with little or no overshoot for explosions detonated in alluvium and tuff. On the basis of comparisons between observed and predicted source phase, the spall closure source proposed by Viecelli does not appear to be a significant source of Rayleigh waves that reach the far field. We tested two other secondary source models, the strike-slip, tectonic strain release model proposed by Toksoez and Kehrer and the dip-slip thrust model of Masse. The surface-wave observations do not provide sufficient information to discriminate between these models at the low F-values (0.2 to 0.8) obtained for these explosions. In the case of the strike-slip model, the principal stress axes inferred from the fault slip angle and strike angle are in good agreement with the regional tectonic stress field for all but one explosion, Nessel. The results of the Nessel explosion suggest a mechanism other than tectonic strain release

  11. Surface functional polymers by post-polymerization modification using diarylcarbenes: introduction, release and regeneration of hydrogen peroxide and bactericidal activity.

    Science.gov (United States)

    Griffiths, Jon-Paul; Maliha, Bushra; Moloney, Mark G; Thompson, Amber L; Hussain, Ishtiaq

    2010-09-07

    Functionalized diarylcarbenes are excellent reactive intermediates suitable for the direct surface modification of organic polymers, and these may be used to introduce urea and thiourea functions onto polystyrene at loading levels of up to 2.3 x 10(13) molecules/cm(2). These functions are capable of the reversible binding and release of peroxide at loading levels of up to 0.6 mmol/g and give polymers that display biocidal activity against a spectrum of gram-positive and gram-negative bacteria.

  12. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  13. Mechanisms of Cardiac Regeneration

    Science.gov (United States)

    Uygur, Aysu; Lee, Richard T.

    2016-01-01

    Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology. PMID:26906733

  14. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration.

    Science.gov (United States)

    Lin, Bojie; Miao, Yong; Wang, Jin; Fan, Zhexiang; Du, Lijuan; Su, Yongsheng; Liu, Bingcheng; Hu, Zhiqi; Xing, Malcolm

    2016-03-09

    Human dermal papilla (DP) cells have been studied extensively when grown in the conventional monolayer. However, because of great deviation from the real in vivo three-dimensional (3D) environment, these two-dimensional (2D) grown cells tend to lose the hair-inducible capability during passaging. Hence, these 2D caused concerns have motivated the development of novel 3D culture techniques to produce cellular microtissues with suitable mimics. The hanging-drop approach is based on surface tension-based technique and the interaction between surface tension and gravity field that makes a convergence of liquid drops. This study used this technique in a converged drop to form cellular spheroids of dermal papilla cells. It leads to a controllable 3Dspheroid model for scalable fabrication of inductive DP microtissues. The optimal conditions for culturing high-passaged (P8) DP spheroids were determined first. Then, the morphological, histological and functional studies were performed. In addition, expressions of hair-inductive markers including alkaline phosphatase, α-smooth muscle actin and neural cell adhesion molecule were also analyzed by quantitative RT-PCR, immunostaining and immunoblotting. Finally, P8-DP microtissues were coimplanted with newborn mouse epidermal cells (EPCs) into nude mice. Our results indicated that the formation of 3D microtissues not only endowed P8-DP microtissues many similarities to primary DP, but also confer these microtissues an enhanced ability to induce hair-follicle (HF) neogenesis in vivo. This model provides a potential to elucidate the native biology of human DP, and also shows the promising for the controllable and scalable production of inductive DP cells applied in future follicle regeneration.

  15. Standard Test Method for Hydrophobic Surface Films by the Water-Break Test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the detection of the presence of hydrophobic (nonwetting) films on surfaces and the presence of hydrophobic organic materials in processing ambients. When properly conducted, the test will enable detection of molecular layers of hydrophobic organic contaminants. On very rough or porous surfaces, the sensitivity of the test may be significantly decreased. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Standard Test Method for Hydrophobic Surface Films by the Atomizer Test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1965-01-01

    1.1 This test method covers the detection of the presence of hydrophobic (nonwetting) films on surfaces and the presence of hydrophobic organic materials in processing ambients. When properly conducted, the test will enable detection of fractional molecular layers of hydrophobic organic contaminants. On very rough or porous surfaces the sensitivity of the test may be significantly decreased. 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Scanning Long-wave Optical Test System: a new ground optical surface slope test system

    Science.gov (United States)

    Su, Tianquan; Park, Won Hyun; Parks, Robert E.; Su, Peng; Burge, James H.

    2011-09-01

    The scanning long-wave optical test system (SLOTS) is under development at the University of Arizona to provide rapid and accurate measurements of aspherical optical surfaces during the grinding stage. It is based on the success of the software configurable optical test system (SCOTS) which uses visible light to measure surface slopes. Working at long wave infrared (LWIR, 7-14 μm), SLOTS measures ground optical surface slopes by viewing the specular reflection of a scanning hot wire. A thermal imaging camera collects data while motorized stages scan the wire through the field. Current experiments show that the system can achieve a high precision at micro-radian level with fairly low cost equipment. The measured surface map is comparable with interferometer for slow optics. This IR system could be applied early in the grinding stage of fabrication of large telescope mirrors to minimize the surface shape error imparted during processing. This advantage combined with the simplicity of the optical system (no null optics, no high power carbon dioxide laser) would improve the efficiency and shorten the processing time.

  18. Improved Nanomechanical Test Techniques for Surface Engineered Materials

    Directory of Open Access Journals (Sweden)

    Stephen R. Goodes

    2010-06-01

    Full Text Available The development and implementation of a wide range of innovative nanomechanical test techniques to solve tribological problems in applications as diverse as biomedical and automotive are described in this review. For improved wear resistance and durability, the importance of understanding the system response rather than the coating-only properties is emphasized. There are many applications involving mechanical contact where the key to understanding the problem is to test at higher load and to combine reliable measurements taken across different length scales using both nano- and micro-indentation and related wear measurement techniques which more closely simulate contact conditions to fully understand the mechanical behaviour and hence deliver improved application performance. Results are presented with the NanoTest platform for applications for biomedical devices and surface engineering of lightweight alloys for the automotive industry. By combining results with different techniques it is possible to postulate predictive design rules – based on the elastic and plastic deformation energies involved in contact - to aid the reliable optimisation of mechanical properties in the various contact situations in the different applications.

  19. The oxidation capacity of Mn3O4 nanoparticles is significantly enhanced by anchoring them onto reduced graphene oxide to facilitate regeneration of surface-associated Mn(III).

    Science.gov (United States)

    Duan, Lin; Wang, Zhongyuan; Hou, Yan; Wang, Zepeng; Gao, Guandao; Chen, Wei; Alvarez, Pedro J J

    2016-10-15

    Metal oxides are often anchored to graphene materials to achieve greater contaminant removal efficiency. To date, the enhanced performance has mainly been attributed to the role of graphene materials as a conductor for electron transfer. Herein, we report a new mechanism via which graphene materials enhance oxidation of organic contaminants by metal oxides. Specifically, Mn3O4-rGO nanocomposites (Mn3O4 nanoparticles anchored to reduced graphene oxide (rGO) nanosheets) enhanced oxidation of 1-naphthylamine (used here as a reaction probe) compared to bare Mn3O4. Spectroscopic analyses (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) show that the rGO component of Mn3O4-rGO was further reduced during the oxidation of 1-naphthylamine, although rGO reduction was not the result of direct interaction with 1-naphthylamine. We postulate that rGO improved the oxidation efficiency of anchored Mn3O4 by re-oxidizing Mn(II) formed from the reaction between Mn3O4 and 1-naphthylamine, thereby regenerating the surface-associated oxidant Mn(III). The proposed role of rGO was verified by separate experiments demonstrating its ability to oxidize dissolved Mn(II) to Mn(III), which subsequently can oxidize 1-naphthylamine. The role of dissolved oxygen in re-oxidizing Mn(II) was ruled out by anoxic (N2-purged) control experiments showing similar results as O2-sparged tests. Opposite pH effects on the oxidation efficiency of Mn3O4-rGO versus bare Mn3O4 were also observed, corroborating the proposed mechanism because higher pH facilitates oxidation of surface-associated Mn(II) even though it lowers the oxidation potential of Mn3O4. Overall, these findings may guide the development of novel metal oxide-graphene nanocomposites for contaminant removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Land surface cleanup of plutonium at the Nevada Test Site

    International Nuclear Information System (INIS)

    Ebeling, L.L.; Evans, R.B.; Walsh, E.J.

    1991-01-01

    The Nevada Test Site (NTS) covers approximately 3300 km 2 of high desert and is located approximately 100 km northwest of Las Vegas, Nevada. Soil contaminated by plutonium exists on the NTS and surrounding areas from safety tests conducted in the 1950s and 1960s. About 150 curies of contamination have been measured over 1200 hectares of land surface. Most contamination is found in the top 5 cm of soil but may be found deep as 25 cm. The cost of conventional removal and disposal of the full soil volume has been estimated at over $500,000,000. This study is directed toward minimizing the volume of waste which must be further processed and disposed of by precisely controlling soil removal depth. The following soil removal machines were demonstrated at the NTS: (1) a CMI Corporation Model PR-500FL pavement profiler, (2) a CMI Corporation Model Tr-225B trimmer reclaimer, (3) a Caterpillar Model 623 elevating scraper equipped with laser depth control, (4) a Caterpillar Model 14G motor grader equipped with laser depth control, (5) a Caterpillar Model 637 auger scraper, and (6) a XCR Series Guzzler vacuum truck. 5 refs., 5 figs

  1. Regeneration of Full Scale Adsorptive Media Systems - Update

    Science.gov (United States)

    Presentation provides an update of the regeneration studies conducted at Twentynine Palms, CA. Following a short introduction, the presentation summarizes the results of the three regeneration tests conducted on the exhausted media of the arsenic removal system at Twentynine Pal...

  2. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Godfroy, T. J.; Schoenfeld, M.; Webster, K.; Briggs, M. H.; Geng, S. M.; Adkins, H. E.; Werner, J. E.

    2010-01-01

    The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%.

  3. Capabilities and Testing of the Fission Surface Power Primary Test Circuit (FSP-PTC)

    Science.gov (United States)

    Garber, Anne E.

    2007-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK), which was used in the SNAP-10A fission reactor, was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around a 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. NaK flow rates of greater than 1 kg/sec may be achieved, depending upon the power applied to the EM pump. The heat exchanger provides for the removal of thermal energy from the circuit, simulating the presence of an energy conversion system. The presence of the test section increases the versatility of the circuit. A second liquid metal pump, an energy conversion system, and highly instrumented thermal simulators are all being considered for inclusion within the test section. This paper summarizes the capabilities and ongoing testing of the Fission Surface Power Primary Test Circuit (FSP-PTC).

  4. Using Response Surface Methods to Correlate the Modal Test of an Inflatable Test Article

    Science.gov (United States)

    Gupta, Anju

    2013-01-01

    This paper presents a practical application of response surface methods (RSM) to correlate a finite element model of a structural modal test. The test article is a quasi-cylindrical inflatable structure which primarily consists of a fabric weave, with an internal bladder and metallic bulkheads on either end. To mitigate model size, the fabric weave was simplified by representing it with shell elements. The task at hand is to represent the material behavior of the weave. The success of the model correlation is measured by comparing the four major modal frequencies of the analysis model to the four major modal frequencies of the test article. Given that only individual strap material properties were provided and material properties of the overall weave were not available, defining the material properties of the finite element model became very complex. First it was necessary to determine which material properties (modulus of elasticity in the hoop and longitudinal directions, shear modulus, Poisson's ratio, etc.) affected the modal frequencies. Then a Latin Hypercube of the parameter space was created to form an efficiently distributed finite case set. Each case was then analyzed with the results input into RSM. In the resulting response surface it was possible to see how each material parameter affected the modal frequencies of the analysis model. If the modal frequencies of the analysis model and its corresponding parameters match the test with acceptable accuracy, it can be said that the model correlation is successful.

  5. A practical approach for the validation of sterility, endotoxin and potency testing of bone marrow mononucleated cells used in cardiac regeneration in compliance with good manufacturing practice

    Directory of Open Access Journals (Sweden)

    Gola Mauro

    2009-09-01

    Full Text Available Abstract Background Main scope of the EU and FDA regulations is to establish a classification criterion for advanced therapy medicinal products (ATMP. Regulations require that ATMPs must be prepared under good manufacturing practice (GMP. We have validated a commercial system for the determination of bacterial endotoxins in compliance with EU Pharmacopoeia 2.6.14, the sterility testing in compliance with EU Pharmacopoeia 2.6.1 and a potency assay in an ATMP constituted of mononucleated cells used in cardiac regeneration. Methods For the potency assay, cells were placed in the upper part of a modified Boyden chamber containing Endocult Basal Medium with supplements and transmigrated cells were scored. The invasion index was expressed as the ratio between the numbers of invading cells relative to cell migration through a control insert membrane. For endotoxins, we used a commercially available system based on the kinetic chromogenic LAL-test. Validation of sterility was performed by direct inoculation of TSB and FTM media with the cell product following Eu Ph 2.6.1 guideline. Results and discussion The calculated MVD and endotoxin limit were 780× and 39 EU/ml respectively. The 1:10 and 1:100 dilutions were selected for the validation. For sterility, all the FTM cultures were positive after 3 days. For TSB cultures, Mycetes and B. subtilis were positive after 5 and 3 days respectively. The detection limit was 1-10 colonies. A total of four invasion assay were performed: the calculated invasion index was 28.89 ± 16.82% (mean ± SD. Conclusion We have validated a strategy for endotoxin, sterility and potency testing in an ATMP used in cardiac regeneration. Unlike pharmaceutical products, many stem-cell-based products may originate in hospitals where personnel are unfamiliar with the applicable regulations. As new ATMPs are developed, the regulatory framework is likely to evolve. Meanwhile, existing regulations provide an appropriate structure for

  6. A practical approach for the validation of sterility, endotoxin and potency testing of bone marrow mononucleated cells used in cardiac regeneration in compliance with good manufacturing practice.

    Science.gov (United States)

    Soncin, Sabrina; Lo Cicero, Viviana; Astori, Giuseppe; Soldati, Gianni; Gola, Mauro; Sürder, Daniel; Moccetti, Tiziano

    2009-09-08

    Main scope of the EU and FDA regulations is to establish a classification criterion for advanced therapy medicinal products (ATMP). Regulations require that ATMPs must be prepared under good manufacturing practice (GMP). We have validated a commercial system for the determination of bacterial endotoxins in compliance with EU Pharmacopoeia 2.6.14, the sterility testing in compliance with EU Pharmacopoeia 2.6.1 and a potency assay in an ATMP constituted of mononucleated cells used in cardiac regeneration. For the potency assay, cells were placed in the upper part of a modified Boyden chamber containing Endocult Basal Medium with supplements and transmigrated cells were scored. The invasion index was expressed as the ratio between the numbers of invading cells relative to cell migration through a control insert membrane. For endotoxins, we used a commercially available system based on the kinetic chromogenic LAL-test. Validation of sterility was performed by direct inoculation of TSB and FTM media with the cell product following Eu Ph 2.6.1 guideline. The calculated MVD and endotoxin limit were 780x and 39 EU/ml respectively. The 1:10 and 1:100 dilutions were selected for the validation. For sterility, all the FTM cultures were positive after 3 days. For TSB cultures, Mycetes and B. subtilis were positive after 5 and 3 days respectively. The detection limit was 1-10 colonies. A total of four invasion assay were performed: the calculated invasion index was 28.89 +/- 16.82% (mean +/- SD). We have validated a strategy for endotoxin, sterility and potency testing in an ATMP used in cardiac regeneration. Unlike pharmaceutical products, many stem-cell-based products may originate in hospitals where personnel are unfamiliar with the applicable regulations. As new ATMPs are developed, the regulatory framework is likely to evolve. Meanwhile, existing regulations provide an appropriate structure for ensuring the safety and efficacy of the next generation of ATMPs. Personnel

  7. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  8. Topographical evaluation of different glass and quartz fiber post surface treatments by a tridimensional surface roughness test.

    Science.gov (United States)

    Soares, Leandro Passos; Dias, Katia Regina Hostilio Cervantes; de Vasconcellos, Adalberto Bastos; Sampaio, Eduardo Martins; Limaverde, Aricelso Maia; Barceleiro, Marcos de Oliveira

    2010-01-01

    A tridimensional surface roughness test evaluation is a nondestructive method that can be used to perform a topographic analysis of different surface treatments for glass and quartz fiber posts. This study divided 75 fiber posts into three groups according to their manufacturer. Each group was divided into five subgroups (n = 5), according to the surface treatment each received: immersion in hydrofluoric acid, sandblasting, immersion in hydrogen peroxide, sandblasting followed by immersion in hydrofluoric acid, or sandblasting followed by immersion in hydrogen peroxide. Surface roughness was measured using a tridimensional surface roughness test and analyzed with three-dimensional analysis software. Results were statistically analyzed using Student's t-test. The only surface treatment to modify the surface topography of glass and quartz fiber posts and provide a significant increase in roughness was sandblasting airborne-particle abrasion with 50 micro alumina at a distance of 30 mm, using 2.5 bars of pressure for five seconds.

  9. Surface Disturbances at the Punggye-ri Nuclear Test Site: Another Indicator of Nuclear Testing?

    Energy Technology Data Exchange (ETDEWEB)

    Pabian, Frank V. [Los Alamos National Laboratory; Coblentz, David [Los Alamos National Laboratory

    2017-02-03

    A review of available very high-resolution commercial satellite imagery (bracketing the time of North Korea’s most recent underground nuclear test on 9 September 2016 at the Punggye-ri Underground Nuclear Test Site) has led to the detection and identification of several minor surface disturbances on the southern flank of Mt. Mantap. These surface disturbances occur in the form of small landslides, either alone or together with small zones of disturbed bare rock that appear to have been vertically lofted (“spalled”) as a result of the most recent underground explosion. Typically, spall can be uniquely attributed to underground nuclear testing and is not a result of natural processes. However, given the time gap of up to three months between images (pre- and post-event), which was coincident with a period of heavy typhoon flooding in the area1, it is not possible to determine whether the small landslides were exclusively explosion induced, the consequence of heavy rainfall erosion, or some combination of the two.

  10. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Van Bael, Simon, E-mail: simon.vanbael@mech.kuleuven.be [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300c, bus 2419, 3001 Heverlee (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Desmet, Tim [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000 (Belgium); Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent (Belgium); Chai, Yoke Chin [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Pyka, Gregory [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, bus 2450, 3001 Leuven (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000 (Belgium); Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent (Belgium); Kruth, Jean-Pierre [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Schrooten, Jan [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium)

    2013-08-01

    In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O{sub 2} plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O{sub 2} plasma PCL scaffolds when OM was used. - Highlights: • Polycaprolactone scaffolds are produced with selective laser sintering. • 2 types of plasma based surface functionalization were applied. • Plasma had no significant effect on strut roughness and pore morphology. • Plasma improved surface hydrophilicity. • In vitro cell differentiation increased with plasma protein coated functionalization.

  11. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Van Bael, Simon; Desmet, Tim; Chai, Yoke Chin; Pyka, Gregory; Dubruel, Peter; Kruth, Jean-Pierre; Schrooten, Jan

    2013-01-01

    In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O 2 plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O 2 plasma PCL scaffolds when OM was used. - Highlights: • Polycaprolactone scaffolds are produced with selective laser sintering. • 2 types of plasma based surface functionalization were applied. • Plasma had no significant effect on strut roughness and pore morphology. • Plasma improved surface hydrophilicity. • In vitro cell differentiation increased with plasma protein coated functionalization

  12. Regeneration of begonia plantlets by direct organogenesis

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... Figure 1. Regeneration of B. tuberus' pedicel explant in BA-NAA hormone concentrations. A triangilation approach was adopted and both multiple comparisons tests of Turkey's HSD and Fisher's least significiant difference (LSD) were run to identify whether regeneration in different hormone concentrations ...

  13. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  14. Modified surface testing method for large convex aspheric surfaces based on diffraction optics.

    Science.gov (United States)

    Zhang, Haidong; Wang, Xiaokun; Xue, Donglin; Zhang, Xuejun

    2017-12-01

    Large convex aspheric optical elements have been widely applied in advanced optical systems, which have presented a challenging metrology problem. Conventional testing methods cannot satisfy the demand gradually with the change of definition of "large." A modified method is proposed in this paper, which utilizes a relatively small computer-generated hologram and an illumination lens with certain feasibility to measure the large convex aspherics. Two example systems are designed to demonstrate the applicability, and also, the sensitivity of this configuration is analyzed, which proves the accuracy of the configuration can be better than 6 nm with careful alignment and calibration of the illumination lens in advance. Design examples and analysis show that this configuration is applicable to measure the large convex aspheric surfaces.

  15. Numerical modeling of the Near Surface Test Facility No. 1 and No. 2 heater tests

    International Nuclear Information System (INIS)

    Hocking, G.; Williams, J.; Boonlualohr, P.; Mathews, I.; Mustoe, G.

    1981-01-01

    Thermomechanical predictive calculations have been undertaken for two full scale heater tests No. 1 and No. 2 at the Near Surface Test Facility (NSTF) at Hanford, Washington. Numerical predictions were made of the basaltic rock response involving temperatures, displacements, strains and stresses due to energizing the electrical heaters. The basalt rock mass was modeled as an isotropic thermal material but with temperature dependent thermal conductivity, specific heat and thermal expansion. The fractured nature of the basalt necessitated that it be modeled as a cross anisotropic medium with a bi-linear locking stress strain relationship. The cross-anisotropic idealization was selected after characterization studies indicated that a vertical columnar structure persisted throughout the test area and no major throughgoing discontinuities were present. The deformational properties were determined from fracture frequency and orientation, joint deformational data, Goodman Jack results and two rock mass classification schemes. Similar deformational moduli were determined from these techniques, except for the Goodman Jack results. The finite element technique was utilized for both the non-linear thermal and mechanical computations. An incremental stiffness method with residual force correction was employed to solve the non-linear problem by piecewise linearization. Two and three dimensional thermomechanical scoping calculations were made to assess the significance of various parameters and associated errors with geometrical idealizations. Both heater tests were modeled as two dimensional axisymmetric geometry with water assumed to be absent. Instrument response was predicted for all of the thermocouples, extensometers, USBM borehole deformation and IRAD gages for the entire duration of both tests

  16. Angiogenesis is inhibitory for mammalian digit regeneration

    Science.gov (United States)

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  17. DIAGNOSTICS AND REGENERATION OF COMMON RAIL INJECTORS

    Directory of Open Access Journals (Sweden)

    Łukasz KONIECZNY

    2015-03-01

    Full Text Available The article presents the methodology of Common Rail injector diagnostic, regeneration and regulation with use of professional test stands. The EPS 815 machine can be used to test and repair all BOSCH injectors fully satisfying the producer requirements and standards. The article describes an example injector diagnosis with use of such test stand and additionally presents appropriate injector regeneration and encoding techniques

  18. Microwave regeneration of molecular sieves

    International Nuclear Information System (INIS)

    Singh, V.P.

    1984-05-01

    Molecular sieve driers have been included in the design of tritium handling systems for fusion reactors. In these systems there is a need to maintain extremely low exit dew points from the driers as well as a capability to rapidly reduce tritium concentrations following an accident. The required capacity of the driers is very high. The conventional method of regenerating these sieves after a water adsorption cycle is with hot air. However, because water is rapidly heated by microwave energy, this technology may be suitable for decreasing the bed regeneration time and hence may allow reduced capital and operating costs associated with a smaller bed. The present study was conducted to obtain preliminary information on the technical feasibility of regenerating molecular sieves with microwave energy. The study concentrated on Type 4A molecular sieve with a few tests on Type 13X sieve and also a silica gel adsorbent

  19. Macrophages are necessary for epimorphic regeneration in African spiny mice.

    Science.gov (United States)

    Simkin, Jennifer; Gawriluk, Thomas R; Gensel, John C; Seifert, Ashley W

    2017-05-16

    How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration ( Acomys cahirinus ) and scarring ( Mus musculus ), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate a functional requirement for these cells to stimulate regeneration. Importantly, the spatial distribution of activated macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for inflammatory cells to regulate a regenerative response.

  20. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  1. Accuracy of Topcon CM-1000 videokeratoscope on spherical test surfaces.

    Science.gov (United States)

    Pérez-Yern, E; Fimia-Gil, A; Mateos, F; Carretero, L

    1997-01-01

    Many videokeratoscopes use mathematical formulas to calculate corneal radii; calculations depend on slope, curvature, coordinate position, or focal properties of the surface. Accuracy of each type of videokeratoscope must be evaluated. A controversy exists about whether axial or tangential methods best provide a precise description of corneal shape; therefore results with the Topcon CM-1000 using both methods were evaluated. Measurements were done on black polymethylmethacrylate (PMMA) spherical calibrated surfaces. Lenses were first aligned and measured and then misaligned in different directions and measured. Results for each position were compared with the zero or alignment position. Accuracy of the CM-1000 was high even under extreme misalignment conditions. Tolerance to misalignment was high (about 300 mm). Misalignment-induced variations in the output results were small (usually less than 0.05 mm). However, important variations (more than 1.00 diopter [D]) were found for the lowest measured radius (6 mm). In some cases, small differences between axial and tangential radii for the same point could be found. With the exception of extremely low radii of curvature, the CM-1000 was accurate for measuring spherical surfaces. Further investigation remains to be done on aspheric surfaces and in clinical practice.

  2. Modeling of active magnetic regenerators and experimental investigation of passive regenerators with oscillating flow

    DEFF Research Database (Denmark)

    Lei, Tian

    This thesis presents numerical modeling of active magnetic regenerator (AMR) and passive regenerator tests with oscillating flow. The work serves to investigate and improve the understanding of emerging concepts and technologies in the area of magnetic refrigeration. The discretization scheme of ...

  3. Surface brightness parameters as tests of galactic evolution

    International Nuclear Information System (INIS)

    Tinsley, B.M.

    1976-01-01

    It is shown that surface brightness parameters defined in terms of an isophotal radius are insensitive to galactic evolution, because the effects of luminosity evolution on the flux and isophotal radius almost cancel each other. Surface brightness parameters defined in terms of a metric radius are able to give fairly direct information on evolution, but only if the metric scale of each galaxy in the sample is determined by photometry of the galaxy itself. If, instead, a metric radius is estimated by means of a fiducial value of q 0 , the brightness-redshift relation yields only a function of both evoluting and the unknown cosmological model, which is very similar to the function obtained from the Hubble diagram

  4. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    Science.gov (United States)

    Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie

    2014-06-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.

  5. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    International Nuclear Information System (INIS)

    Qu Guangzhou; Liang Dongli; Qu Dong; Huang Yimei; Li Jie

    2014-01-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O 3 ) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O 3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O 3 regeneration. O 3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O 3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O 3 regeneration has a lower weight loss than DBD plasma regeneration

  6. Adsorption of Ammonia on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wójtowicz, Marek A.; Cosgrove, Jesph E.; Serio, Michael A..; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Data on sorption and desorption of ammonia, which is a major TC of concern, are presented in this paper. The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for ammonia sorption. Ammonia-sorption capacity was related to carbon pore structure characteristics, and the temperature of oxidative carbon-surface treatment was optimized for enhanced ammonia-sorption performance.

  7. A novel test method for quantifying surface tack of polypropylene compound surfaces

    Directory of Open Access Journals (Sweden)

    2011-11-01

    Full Text Available While adhesiveness is required for polymer surfaces in special applications, tacky surfaces are generally undesirable in many applications like automotive interior parts. The tackiness of polymer surface results from a combination of composition and additivation, and it can change significantly in natural or accelerated ageing. Since there is no established, uniform method to characterize surface tack, the major focus of the present work was on the development of an objective quantification method. A setup having a soft die tip attached to a standard tensile tester was developed aiming for correlation to the human sense of touch. Three different model thermoplastic polyolefin (TPO compound formulations based on a high-impact isotactic polypropylene (iPP composition with varying amounts and types of anti-scratch additives were used for these investigations. As the surface tack phenomenon is related to ageing and weathering, the material’s examination was also performed after various intervals of weathering. The developed method allows a fast assessment of the effect of polymer composition variations and different additive formulations on surface tack and gives identical rankings as the standardized haptic panel.

  8. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun

    2017-03-06

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  9. PREPARATION, CHARACTERIZATION, ACTIVITY, DEACTIVATION, AND REGENERATION TESTS OF CoO-MoO/ZnO AND CoO-MoO/ZnO-ACTIVATED ZEOLITE CATALYSTS FOR THE HYDROGEN PRODUCTION FROM FUSEL OIL

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Preparation, characterization, activation, deactivation, and regeneration tests of CoO-MoO/ZnO and CoO-MoO/ZnO-Activated Zeolite (AZ catalysts for the hydrogen production using steam reforming of alcohols in fusel oil have been conducted. Both catalysts were prepared by impregnation of Co and Mo onto ZnO or ZnO-AZ powder then followed by calcination at 400 °C for 5 h under N2 stream. The BET method and pyridine adsorption were used for catalysts characterization. The study of activation, deactivation, and regeneration of catalysts were conducted by using steam reforming method in the semi flow reactor. The reaction condition were: weight ratio of catalysts/feed = 0.1, temperature: 450 °C, duration: 45 min. The gas product was trapped in a 250 mL vacuum pyrex bottle filled with 50 mL of 4 M NaOH solution and analyzed by GC with TCD system to determine H2 existance and HCl titration to determine CO2 produced during the process that was dissolved in NaOH solution. The results showed that CoO-MoO/ZnO-AZ catalyst produced higher gas conversion than CoO-MoO/ZnO catalyst. However, it had short catalyst lifetime due to its high amount of coke deposited during the process. The regeneration test could enhance the catalyst activity. The gas product consisted of H2 (14.70% and CO2 (24.41%.   Keywords: fusel oil, steam reforming, deactivation, regeneration, hydrogen production.

  10. Characterization of holding brake friction pad surface after pin-on-plate wear test

    DEFF Research Database (Denmark)

    Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.

    2018-01-01

    This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different...... materials’ surfaces have been characterized after wear from data obtained with a focus variation 3D microscope. A new surface characterization approach with plateau identification is proposed, using the number of plateau on the surface, equivalent diameter, length and breadth as measurands...

  11. Can the material properties of regenerate bone be predicted with non-invasive methods of assessment? Exploring the correlation between dual X-ray absorptiometry and compression testing to failure in an animal model of distraction osteogenesis.

    Science.gov (United States)

    Monsell, Fergal; Hughes, Andrew William; Turner, James; Bellemore, Michael C; Bilston, Lynne

    2014-04-01

    Evaluation of the material properties of regenerate bone is of fundamental importance to a successful outcome following distraction osteogenesis using an external fixator. Plain radiographs are in widespread use for assessment of alignment and the distraction gap but are unable to detect bone formation in the early stages of distraction osteogenesis and do not quantify accurately the structural properties of the regenerate. Dual X-ray absorptiometry (DXA) is a widely available non-invasive imaging modality that, unlike X-ray, can be used to measure bone mineral content (BMC) and density quantitatively. In order to be useful as a clinical investigation; however, the structural two-dimensional geometry and density distributions assessed by DXA should reflect material properties such as modulus and also predict the structural mechanical properties of the regenerate bone formed. We explored the hypothesis that there is a relationship between DXA assessment of regenerate bone and structural mechanical properties in an animal model of distraction osteogenesis. Distraction osteogenesis was carried out on the tibial diaphysis of 41 male, 12 week old, New Zealand white rabbits as part of a larger study. Distraction started after a latent period of 24 h at a rate of 0.375 mm every 12 h and continued for 10-days, achieving average lengthening of 7.1 mm. Following an 18-day period of consolidation, the regenerate bone was subject to bone density measurements using a total body dual-energy X-ray densitometer. This produced measurement of BMC, bone mineral density (BMD) and volumetric bone mineral density (vBMD). The tibiae were then disarticulated and cleaned of soft tissue before loading in compression to failure using an Instron mechanical testing machine (Instron Corporation, Massachusetts USA). Using Spearman rank correlation and linear regression, there was a significant correlation between vBMD and the Modulus of Elasticity, Yield Stress and Failure Stress of the

  12. Advanced Engineering Strategies for Periodontal Complex Regeneration

    Directory of Open Access Journals (Sweden)

    Chan Ho Park

    2016-01-01

    Full Text Available The regeneration and integration of multiple tissue types is critical for efforts to restore the function of musculoskeletal complex. In particular, the neogenesis of periodontal constructs for systematic tooth-supporting functions is a current challenge due to micron-scaled tissue compartmentalization, oblique/perpendicular orientations of fibrous connective tissues to the tooth root surface and the orchestration of multiple regenerated tissues. Although there have been various biological and biochemical achievements, periodontal tissue regeneration remains limited and unpredictable. The purpose of this paper is to discuss current advanced engineering approaches for periodontal complex formations; computer-designed, customized scaffolding architectures; cell sheet technology-based multi-phasic approaches; and patient-specific constructs using bioresorbable polymeric material and 3-D printing technology for clinical application. The review covers various advanced technologies for periodontal complex regeneration and state-of-the-art therapeutic avenues in periodontal tissue engineering.

  13. Advanced Engineering Strategies for Periodontal Complex Regeneration

    Science.gov (United States)

    Park, Chan Ho; Kim, Kyoung-Hwa; Lee, Yong-Moo; Seol, Yang-Jo

    2016-01-01

    The regeneration and integration of multiple tissue types is critical for efforts to restore the function of musculoskeletal complex. In particular, the neogenesis of periodontal constructs for systematic tooth-supporting functions is a current challenge due to micron-scaled tissue compartmentalization, oblique/perpendicular orientations of fibrous connective tissues to the tooth root surface and the orchestration of multiple regenerated tissues. Although there have been various biological and biochemical achievements, periodontal tissue regeneration remains limited and unpredictable. The purpose of this paper is to discuss current advanced engineering approaches for periodontal complex formations; computer-designed, customized scaffolding architectures; cell sheet technology-based multi-phasic approaches; and patient-specific constructs using bioresorbable polymeric material and 3-D printing technology for clinical application. The review covers various advanced technologies for periodontal complex regeneration and state-of-the-art therapeutic avenues in periodontal tissue engineering. PMID:28787856

  14. Virtual simulation of maneuvering captive tests for a surface vessel

    Directory of Open Access Journals (Sweden)

    Ahmad Hajivand

    2015-09-01

    Full Text Available Hydrodynamic derivatives or coefficients are required to predict the maneuvering characteristics of a marine vehicle. These derivatives are obtained numerically for a DTMB 5512 model ship by virtual simulating of captive model tests in a CFD environment. The computed coefficients are applied to predict the turning circle and zigzag maneuvers of the model ship. The comparison of the simulated results with the available experimental data shows a very good agreement among them. The simulations show that the CFD is precise and affordable tool at the preliminary design stage to obtain maneuverability performance of a marine vehicles.

  15. Comparison contemporary methods of regeneration sodium-cationic filters

    Science.gov (United States)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  16. Retina regeneration in zebrafish.

    Science.gov (United States)

    Wan, Jin; Goldman, Daniel

    2016-10-01

    Unlike mammals, zebrafish are able to regenerate a damaged retina. Key to this regenerative response are Müller glia that respond to retinal injury by undergoing a reprogramming event that allows them to divide and generate a retinal progenitor that is multipotent and responsible for regenerating all major retinal neuron types. The fish and mammalian retina are composed of similar cell types with conserved function. Because of this it is anticipated that studies of retina regeneration in fish may suggest strategies for stimulating Müller glia reprogramming and retina regeneration in mammals. In this review we describe recent advances and future directions in retina regeneration research using zebrafish as a model system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Surface preparation for residual stress measurement of an accelerated corrosion tested welded marine steel

    International Nuclear Information System (INIS)

    Ahmad, Bilal; Fitzpatrick, Michael E.

    2015-01-01

    Residual stress measurement is often required for the assessment of structural integrity of components. Measurement of residual stress in corrosion tested specimens is challenging owing to the difficulty of accessing the surface because of the rust layer. This study explored the potential methods for the surface preparation of an ultrasonically-peened and accelerated corrosion tested DH36 marine steel fillet welded specimen to ease the way for subsequent residual stress measurement using neutron diffraction and the contour method. We find that hydroblasting introduces compressive residual stress at the surface that will alter the surface stress to be measured

  18. Field Measurements of PCB emissions from Building Surfaces Using a New Portable Emission Test Cell

    DEFF Research Database (Denmark)

    Lyng, Nadja; Haven, Rune; Gunnarsen, Lars Bo

    2016-01-01

    Danish elementary school. The emission test cell was capable of measuring widely varying specific emission rates of PCBtotal (8-3357 ng/(m2·h)). Remediated measures were found to reduce the emission rates by more than 96% compared with similar untreated surfaces. Emission rates may be affected...... by the conditions in the test cell (such as clean air and increased air velocity) and thereby potentially be different without the test cell attached to the surface. Still the measured emission rates obtained by using the test cell are valuable for determination of mitigation strategies. Additionally the test cell...

  19. Pixel-based absolute surface metrology by three flat test with shifted and rotated maps

    Science.gov (United States)

    Zhai, Dede; Chen, Shanyong; Xue, Shuai; Yin, Ziqiang

    2018-03-01

    In traditional three flat test, it only provides the absolute profile along one surface diameter. In this paper, an absolute testing algorithm based on shift-rotation with three flat test has been proposed to reconstruct two-dimensional surface exactly. Pitch and yaw error during shift procedure is analyzed and compensated in our method. Compared with multi-rotation method proposed before, it only needs a 90° rotation and a shift, which is easy to carry out especially in condition of large size surface. It allows pixel level spatial resolution to be achieved without interpolation or assumption to the test surface. In addition, numerical simulations and optical tests are implemented and show the high accuracy recovery capability of the proposed method.

  20. Characterisation and full-scale production testing of multifunctional surfaces for deep drawing applications

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; De Chiffre, Leonardo

    2017-01-01

    Full-scale deep drawing tests using tools featuring multifunctional surfaces are carried out in a production environment. Multifunctional tools display regularly spaced, transversal grooves for lubricant retention obtained by hard-turning, separated by smooth bearing plateaus realized by robot...... assisted polishing. Advanced methods are employed to characterise the tools' surface topographies, detecting the surface features and analysing them separately according to their specific function. Four different multifunctional dies as well as two un-textured references are selected for testing. The tests...

  1. Preparation and Support of a Tap Test on the Leading Edge Surfaces of the Space Shuttle

    Science.gov (United States)

    Bohr, Jerry

    2009-01-01

    This slide presentation reports on a Tap test for the leading edge surfaces of the Space Shuttle. A description of the Wing Leading Edge Impact Detection System (WLEIDS) flight system is given, and the rationale and approach for improving the WLEIDS system. The three phases of the strategy of the test project amd the results of the tests are reviewed.

  2. Signaling Molecules and Pulp Regeneration.

    Science.gov (United States)

    Schmalz, Gottfried; Widbiller, Matthias; Galler, Kerstin M

    2017-09-01

    Signaling molecules play an essential role in tissue engineering because they regulate regenerative processes. Evidence exists from animal studies that single molecules such as members of the transforming growth factor beta superfamily and factors that induce the growth of blood vessels (vascular endothelial growth factor), nerves (brain-derived neurotrophic factor), or fibroblasts (fibroblast growth factor) may induce reparative dentin formation. Mainly the formation of atubular dentin (osteodentin) has been described after the application of single molecules or combinations of recombinant growth factors on healthy exposed pulps or in pulp regeneration. Generally, such preparations have not received regulatory approval on the market so far. Only the use of granulocyte colony-stimulating factors together with cell transplantation is presently tested clinically. Besides approaches with only 1 or few combined molecules, the exploitation of tissue-derived growth factors depicts a third promising way in dental pulp tissue engineering. Preparations such as platelet-rich plasma or platelet-rich fibrin provide a multitude of endogenous signaling molecules, and special regulatory approval for the market does not seem necessary. Furthermore, dentin is a perfect reservoir of signaling molecules that can be mobilized by treatment with demineralizing agents such as EDTA. This conditions the dentin surface and allows for contact differentiation of pulp stem cells into odontoblastlike cells, protects dentin from resorption, and enhances cell growth as well as attachment to dentin. By ultrasonic activation, signaling molecules can be further released from EDTA pretreated dentin into saline, thus avoiding cytotoxic EDTA in the final preparation. The use of dentin-derived growth factors offers a number of advantages because they are locally available and presumably are most fit to induce signaling processes in dental pulp. However, better characterization and standardization of the

  3. Heater test planning for the near surface test facility at the Hanford reservation

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, A.; Binnall, E.; Chan, T.; McEvoy, M.; Nelson, P.; Remer, J.

    1979-03-01

    The underground test facility NSTF being constructed at Gable Mountain, is the site for a group of experiments designed to evaluate the thermo-mechanical suitability of a deep basalt stratum as a permanent repository for nuclear waste. Thermo-mechanical modeling was performed to help design the instrumentation arrays for the three proposed heater tests (two full scale tests and one time scale test) and predict the thermal environment of the heaters and instruments. The modeling does not reflect recent RHO revisions to the in situ heater experiment plan. Heaters, instrumentation, and data acquisition system designs and recommendations were adapted from those used in Sweden. (DLC)

  4. Heater test planning for the near surface test facility at the Hanford reservation

    International Nuclear Information System (INIS)

    DuBois, A.; Binnall, E.; Chan, T.; McEvoy, M.; Nelson, P.; Remer, J.

    1979-03-01

    The underground test facility NSTF being constructed at Gable Mountain, is the site for a group of experiments designed to evaluate the thermo-mechanical suitability of a deep basalt stratum as a permanent repository for nuclear waste. Thermo-mechanical modeling was performed to help design the instrumentation arrays for the three proposed heater tests (two full scale tests and one time scale test) and predict the thermal environment of the heaters and instruments. The modeling does not reflect recent RHO revisions to the in situ heater experiment plan. Heaters, instrumentation, and data acquisition system designs and recommendations were adapted from those used in Sweden

  5. Practical experience with microbiological soil regeneration - on-site methods

    International Nuclear Information System (INIS)

    Kaestner, M.

    1992-01-01

    The paper first of all outlines the history of biological soil regeneration methods. Subsequently, the results of regeneration tests carried through to data by different companies on selected soil contaminations are presented and compared with laboratory tests. Against this background, the possibilities and limits of the methods are discussed and possible perspectives of further process advances are described. (orig.) [de

  6. Production and testing of an s-band resonator with a Nb3Sn surface

    International Nuclear Information System (INIS)

    Peiniger, M.

    1983-01-01

    This report describes the preparation of a niobium s-band resonator with Nb3Sn surface using a special vapor phase deposition method. High-frequency superconductivity tests were performed on this resonator. Measurements of transition temperature, penetration depth, energy gap, and temperature dependence of surface conductivity of Nb3Sn, and resonator behaviour at high electrical field strengths are reported. (GSCH)

  7. Testing stem cell therapy in a rat model of inflammatory bowel disease: role of bone marrow stem cells and stem cell factor in mucosal regeneration.

    Science.gov (United States)

    Qu, Bo; Xin, Guo-Rong; Zhao, Li-Xia; Xing, Hui; Lian, Li-Ying; Jiang, Hai-Yan; Tong, Jia-Zhao; Wang, Bei-Bei; Jin, Shi-Zhu

    2014-01-01

    The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD). BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls. PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group. BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD.

  8. Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests

    Science.gov (United States)

    Jang, Hyun-Sic; Zhang, Qing-Zhao; Kang, Seong-Seung; Jang, Bo-An

    2018-04-01

    Samples of Hwangdeung granite from Korea and Berea sandstone from USA, both containing sliding planes, were prepared by saw-cutting or polishing using either #100 or #600 grinding powders. Their basic friction angles were measured by direct shear testing, triaxial compression testing, and tilt testing. The direct shear tests and triaxial compression tests on the saw-cut, #100, and #600 surfaces indicated that the most reliable results were obtained from the #100 surface: basic friction angle of 29.4° for granite and 34.1° for sandstone. To examine the effect of surface conditions on the friction angle in tilt tests, the sliding angles were measured 50 times with two surface conditions (surfaces cleaned and not cleaned after each measurement). The initial sliding angles were high regardless of rock type and surface conditions and decreased exponentially as measurements continued. The characteristics of the sliding angles, differences between tilt tests, and dispersion between measurements in each test indicated that #100 surface produced the most reliable basic friction angle measurement. Without cleaning the surfaces, the average angles for granite (32 measurements) and sandstone (23 measurements) were similar to the basic friction angle. When 20-50 measurements without cleaning were averaged, the basic friction angle was within ± 2° for granite and ± 3° for sandstone. Sliding angles using five different tilting speeds were measured but the average was similar, indicating that tilting speed (between 0.2° and 1.6°/s) has little effect on the sliding angle. Sliding angles using four different sample sizes were measured with the best results obtained for samples larger than 8 × 8 cm.

  9. A New Rig for Testing Textured Surfaces in Pure Sliding Conditions

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; Mohaghegh, Kamran

    2013-01-01

    machineries are necessary: a press to provide the normal pressure and a tensile machine to perform the axial movements. The test is calibrated so that the correspondence between the normal pressure and the container advancement is found. Preliminary tests are carried out involving a multifunctional and a fine......Throughout the years, it has become more and more important to find new methods for reducing friction and wear occurrence in machine elements. A possible solution is found in texturing the surfaces under tribological contact, as demonstrated by the development and spread of plateau-honed surface...... for cylinder liners. To prove the efficacy of a particular textured surface, it is paramount to perform experimental tests under controlled laboratory conditions. In this paper, a new test rig simulating pure sliding conditions is presented, dubbed axial sliding test. It presents four major components: a rod...

  10. Orientated Guidance of Peripheral Nerve Regeneration Using Conduits with a Microtube Array Sheet (MTAS).

    Science.gov (United States)

    Wang, Yueming; Wang, Wenjin; Wo, Yan; Gui, Ting; Zhu, Hao; Mo, Xiumei; Chen, Chien-Chung; Li, Qingfeng; Ding, Wenlong

    2015-04-29

    Material surface topography has been shown to affect the biological behavior of cells in vitro; however, the in vivo effect on peripheral nerve regeneration has not been explored. Here, we studied the potential of a microtube array sheet (MTAS) with a unique longitudinal surface topography to promote peripheral nerve regeneration efficiency, both in vivo and in vitro. Schwann cells, spinal cord motor neurons, and dorsal root ganglion neurons were seeded on the MTAS to study the effect of the construct on the biological properties and behaviors of neural cells. The MTAS guided the oriented migration of Schwann cells without affecting other critical biological properties, such as proliferation and neurotrophin expression. In addition, the MTAS guided the directed extension of neurites from both types of neurons. Next, we tested the capability of the MTAS to facilitate peripheral nerve regeneration by bridging a 10 mm sciatic nerve defect in rats with a nerve conduit equipped with an MTAS lining. The MTAS significantly promoted peripheral nerve regeneration, as suggested by the greater fiber caliber in the midconduit and the greater abundance of fibers in nerve segment distal to the conduit. Moreover, scanning electron microscopy (SEM) analysis suggested the orientated guidance of nerve regeneration by the MTAS, as indicated by the smaller eccentricity of the nerve fibers and the concordant arrangement of the collagen fiber in both the fibers and the matrix in the MTAS group. Our results collectively suggest that the conduits with the MTAS developed in this study have significant potential for facilitating peripheral nerve regeneration by modifying critical biological behaviors and guiding orientated nerve growth.

  11. Effect of a new regeneration process by adsorption-coagulation and flocculation on the physicochemical properties and the detergent efficiency of regenerated cleaning solutions.

    Science.gov (United States)

    Blel, Walid; Dif, Mehdi; Sire, Olivier

    2015-05-15

    Reprocessing soiled cleaning-in-place (CIP) solutions has large economic and environmental costs, and it would be cheaper and greener to recycle them. In food industries, recycling of CIP solutions requires a suitable green process engineered to take into account the extreme physicochemical conditions of cleaning while not altering the process efficiency. To this end, an innovative treatment process combining adsorption-coagulation with flocculation was tested on multiple recycling of acid and basic cleaning solutions. In-depth analysis of time-course evolutions was carried out in the physicochemical properties (concentration, surface tension, viscosity, COD, total nitrogen) of these solutions over the course of successive regenerations. Cleaning and disinfection efficiencies were assessed based on both microbiological analyses and organic matter detachment and solubilization from fouled stainless steel surfaces. Microbiological analyses using a resistant bacterial strain (Bacillus subtilis spores) highlighted that solutions regenerated up to 20 times maintained the same bactericidal efficiency as de novo NaOH solutions. The cleanability of stainless steel surfaces showed that regenerated solutions allow better surface wettability, which goes to explain the improved detachment and solubilization found on different types of organic and inorganic fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Test data on electrical contacts at high surface velocities and high current densities for homopolar generators

    International Nuclear Information System (INIS)

    Brennan, M.; Tolk, K.M.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    Test data is presented for one grade of copper graphite brush material, Morganite CMlS, over a wide range of surface velocities, atmospheres, and current densities that are expected for fast discharge (<100 ms) homopolar generators. The brushes were run on a copper coated 7075-T6 aluminum disk at surface speeds up to 277 m/sec. One electroplated copper and three flame sprayed copper coatings were used during the tests. Significant differences in contact voltage drops and surface mechanical properties of the copper coatings were observed

  13. On the Development of a Unique Arc Jet Test Apparatus for Control Surface Seal Evaluations

    Science.gov (United States)

    Finkbeiner, Joshua R.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Robbie, Malcolm; Baker, Gus; Erker, Arthur

    2004-01-01

    NASA Glenn has developed a unique test apparatus capable of evaluating control surface seal and flap designs under simulated reentry heating conditions in NASA Johnson's arc jet test facility. The test apparatus is capable of testing a variety of seal designs with a variety of control surface materials and designs using modular components. The flap angle can be varied during testing, allowing modification of the seal environment while testing is in progress. The flap angle is varied using an innovative transmission system which limits heat transfer from the hot flap structure to the motor, all while keeping the components properly aligned regardless of thermal expansion. A combination of active and passive cooling is employed to prevent thermal damage to the test fixture while still obtaining the target seal temperature.

  14. MHD (Magnetohydrodynamics) recovery and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    McIlroy, R. A. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Probert, P. B. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lahoda, E. J. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Swift, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jackson, D. M. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Prasad, J. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Martin, J. [Hudson Engineering (United States); Rogers, C. [Hudson Engineering (United States); Ho, K. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Senary, M. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lee, S. [Univ. of Akron, OH (United States)

    1988-10-01

    A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.

  15. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments

    Directory of Open Access Journals (Sweden)

    Li Li Zhang

    2016-11-01

    Full Text Available The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km2 and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2 surface based on flight test data which measured the near- and short-wave infrared (NIR reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO2 in the flight area using the limited flight test data and the approximate surface of XCO2, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM platform to fill the gaps where there is no information on XCO2 in the flight test area, which takes the approximate surface of XCO2 as its driving field and the XCO2 observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO2 were constructed with HASM based on the flight’s observations. The results showed that the mean XCO2 in the flight test area is about 400 ppm and that XCO2 over urban areas is much higher than in other places. Compared with OCO-2’s XCO2, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO2 surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  16. Off-line testing of multifunctional surfaces for metal forming applications

    DEFF Research Database (Denmark)

    Godi, A.; Grønbæk, J.; De Chiffre, L.

    2015-01-01

    In this paper, Bending-Under-Tension, an off-line test method simulating deep-drawing, is chosen for investigating the effectiveness of multifunctional (MUFU) surfaces in metal forming operations. Four different MUFU surfaces, characterized by a plateau bearing area and grooves for lubricant...... retention, are manufactured, together with two polished references. During the tests, surface texture is the only variable. The results show how MUFU surfaces perform better than the polished references, which produce severe galling, while MUFU surfaces with low bearing area display no clear evidence...... of galling. Metal-to-metal contact occurs anyway, but the strip material is pulverized and deposited onto the tool instead of cold-welding to it. The pockets create a discontinuity on the texture hindering pick-up propagation....

  17. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration.

    Science.gov (United States)

    Mukherjee, Sarmistha; Chellappa, Karthikeyani; Moffitt, Andrea; Ndungu, Joan; Dellinger, Ryan W; Davis, James G; Agarwal, Beamon; Baur, Joseph A

    2017-02-01

    The regenerative capacity of the liver is essential for recovery from surgical resection or injuries induced by trauma or toxins. During liver regeneration, the concentration of nicotinamide adenine dinucleotide (NAD) falls, at least in part due to metabolic competition for precursors. To test whether NAD availability restricts the rate of liver regeneration, we supplied nicotinamide riboside (NR), an NAD precursor, in the drinking water of mice subjected to partial hepatectomy. NR increased DNA synthesis, mitotic index, and mass restoration in the regenerating livers. Intriguingly, NR also ameliorated the steatosis that normally accompanies liver regeneration. To distinguish the role of hepatocyte NAD levels from any systemic effects of NR, we generated mice overexpressing nicotinamide phosphoribosyltransferase, a rate-limiting enzyme for NAD synthesis, specifically in the liver. Nicotinamide phosphoribosyltransferase overexpressing mice were mildly hyperglycemic at baseline and, similar to mice treated with NR, exhibited enhanced liver regeneration and reduced steatosis following partial hepatectomy. Conversely, mice lacking nicotinamide phosphoribosyltransferase in hepatocytes exhibited impaired regenerative capacity that was completely rescued by administering NR. NAD availability is limiting during liver regeneration, and supplementation with precursors such as NR may be therapeutic in settings of acute liver injury. (Hepatology 2017;65:616-630). © 2016 by the American Association for the Study of Liver Diseases.

  18. Regenerated thermosetting styrene-co-acrylonitrile sandwich ...

    Indian Academy of Sciences (India)

    exhibited in SEM photographs. Besides, the water absorption of DMAc-treated fibres composite was lower than other SAN/jute fibre-reinforced sandwich composite panels. Keywords. Jute fibre composite; thermosetting SAN; regeneration; fibre surface treatment; mechanical property; water absorption. 1. Introduction.

  19. Full-scale heater tests No. 1 and No. 2 at the Near-Surface Test Facility: preliminary results

    International Nuclear Information System (INIS)

    Case, J.B.; Krug, A.D.; Williams, J.

    1980-01-01

    The Basalt Waste Isolation Project, as part of the National Waste Terminal Storage Program, initiated two full-scale electrical heater tests in basalt at the Near-Surface Test Facility, near Richland, Washington. The electric heaters simulate heat generation from radioactive waste canisters emplaced in the floor of a basalt rock mass. Preliminary analysis of the temperature data accumulated over 70 days since the July 1, 1980 startup suggest that the principal mode of heat transfer within the near field for the tested conditions is by heat conduction and that temperatures are largely unaffected by surface convection from the tunnel floor. Laboratory measurements of thermal properties used in conjunction with transient heat conduction analysis can be used to predict temperatures within a basalt rock mass reasonably well

  20. Adhesive organ regeneration in Macrostomum lignano.

    Science.gov (United States)

    Lengerer, Birgit; Hennebert, Elise; Flammang, Patrick; Salvenmoser, Willi; Ladurner, Peter

    2016-06-02

    Flatworms possess pluripotent stem cells that can give rise to all cell types, which allows them to restore lost body parts after injury or amputation. This makes flatworms excellent model systems for studying regeneration. In this study, we present the adhesive organs of a marine flatworm as a simple model system for organ regeneration. Macrostomum lignano has approximately 130 adhesive organs at the ventral side of its tail plate. One adhesive organ consists of three interacting cells: one adhesive gland cell, one releasing gland cell, and one modified epidermal cell, called an anchor cell. However, no specific markers for these cell types were available to study the regeneration of adhesive organs. We tested 15 commercially available lectins for their ability to label adhesive organs and found one lectin (peanut agglutinin) to be specific to adhesive gland cells. We visualized the morphology of regenerating adhesive organs using lectin- and antibody staining as well as transmission electron microscopy. Our findings indicate that the two gland cells differentiate earlier than the connected anchor cells. Using EdU/lectin staining of partially amputated adhesive organs, we showed that their regeneration can proceed in two ways. First, adhesive gland cell bodies are able to survive partial amputation and reconnect with newly formed anchor cells. Second, adhesive gland cell bodies are cleared away, and the entire adhesive organ is build anew. Our results provide the first insights into adhesive organ regeneration and describe ten new markers for differentiated cells and tissues in M. lignano. The position of adhesive organ cells within the blastema and their chronological differentiation have been shown for the first time. M. lignano can regenerate adhesive organs de novo but also replace individual anchor cells in an injured organ. Our findings contribute to a better understanding of organogenesis in flatworms and enable further molecular investigations of cell

  1. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  2. Regeneration of Iron-based Adsorptive Media Used for Removing Arsenic from Groundwater

    Science.gov (United States)

    The journal article will describe batch and column regeneration tests and results that were conducted on six exhausted iron media products to determine whether an iron based media can be successfully regenerated and reused.

  3. Comparison of mechanical properties of surface layers with use of nanoindentation and microindentation tests

    Directory of Open Access Journals (Sweden)

    M. Zeleňák

    2012-07-01

    Full Text Available The objective of the paper is a mutual comparison of different methods for evaluation of mechanical properties of surface layers. Mechanical properties were tested with the use of nanoindentation and microindentation tests. Different loads and constant deformation speed were used in both cases. For the evaluation of mechanical properties, the AISI 304 type Chromium-Nickel steel commonly used in mechanical engineering industry was tested. Knowledge of relations and differences between nano and micromechanical properties is necessary for understanding of mechanical processes continuously occurring in surface layers during cutting processes.

  4. Test Cases for the Benchmark Active Controls: Spoiler and Control Surface Oscillations and Flutter

    Science.gov (United States)

    Bennett, Robert M.; Scott, Robert C.; Wieseman, Carol D.

    2000-01-01

    As a portion of the Benchmark Models Program at NASA Langley, a simple generic model was developed for active controls research and was called BACT for Benchmark Active Controls Technology model. This model was based on the previously-tested Benchmark Models rectangular wing with the NACA 0012 airfoil section that was mounted on the Pitch and Plunge Apparatus (PAPA) for flutter testing. The BACT model had an upper surface spoiler, a lower surface spoiler, and a trailing edge control surface for use in flutter suppression and dynamic response excitation. Previous experience with flutter suppression indicated a need for measured control surface aerodynamics for accurate control law design. Three different types of flutter instability boundaries had also been determined for the NACA 0012/PAPA model, a classical flutter boundary, a transonic stall flutter boundary at angle of attack, and a plunge instability near M = 0.9. Therefore an extensive set of steady and control surface oscillation data was generated spanning the range of the three types of instabilities. This information was subsequently used to design control laws to suppress each flutter instability. There have been three tests of the BACT model. The objective of the first test, TDT Test 485, was to generate a data set of steady and unsteady control surface effectiveness data, and to determine the open loop dynamic characteristics of the control systems including the actuators. Unsteady pressures, loads, and transfer functions were measured. The other two tests, TDT Test 502 and TDT Test 5 18, were primarily oriented towards active controls research, but some data supplementary to the first test were obtained. Dynamic response of the flexible system to control surface excitation and open loop flutter characteristics were determined during Test 502. Loads were not measured during the last two tests. During these tests, a database of over 3000 data sets was obtained. A reasonably extensive subset of the data

  5. Radioactive contamination of some rubber or plastic surfaces by fission products. Decontamination tests

    International Nuclear Information System (INIS)

    Mestre, E.; Sautiez, N.

    1957-10-01

    With the objective of notably addressing the contamination and decontamination of gloves and floor covering, this report first presents some characteristics of contaminating radioactive materials (nature, physical and chemical condition), of contaminated surfaces (surface condition, surface nature), and of decontamination processes (physical, chemical or mechanical action). It describes the operational modality implemented to test decontamination processes on various glove or flooring materials: sample preparation, counting, decontamination, reproducibility of decontamination tests, results in terms of activity reduction. It more precisely describes the tested samples: short gloves, gloves from glove boxes, floor and wall coverings. Results are presented and discussed in terms of sample susceptibility to contamination, and of decontamination, but also for re-contamination tests after a Nab-based decontamination (susceptibility to contamination, decontamination gain)

  6. Dose Prediction for surface nuclear explosions: case studies for Semipalatinsk and Lop Nur tests

    International Nuclear Information System (INIS)

    Takada, Jun

    2008-01-01

    Dose prediction method RAPS after surface nuclear explosion has been developed by using the empirical dose function of USA nuclear test. This method which provides us external total dose, dose rate at any distant, at any time for any yield of nuclear explosion, is useful for radiation protection in case of nuclear events such as terrorism and nuclear war. The validity of RAPS has been confirmed by application to historical surface nuclear test explosions. The first test case study which was done for the first test explosion of the former USSR at the Semipalatinsk Nuclear Test Site on August 29th 1949, shows a good agreement with luminescence dosimetry on a brick. This dose prediction method was applied nuclear tests in Lop Nur. The results indicate dangerous nuclear radiation influences including fatal risk in the wide Uygur area. (author)

  7. Test Operation Procedure (TOP) 01-1-010A Vehicle Test Course Severity (Surface Roughness)

    Science.gov (United States)

    2017-12-12

    natural terrain by the addition of course material (known locally as tosca) to improve traction, and by the addition of several logs buried in...sections of the course that must be traversed; the logs are buried approximately to the midpoint of their diameters, range from approximately half a foot...of Establishment of Quality Control Charts for Test Course Inspection Roughness, TECOM Project No. 9-CO-011-000-055, John P. Sobczyk, July 1972. c

  8. Radiation flaw detector for testing non-uniform surface bodies of revolution

    International Nuclear Information System (INIS)

    Valevich, M.I.

    1984-01-01

    Radiation flaw detector for testing bodies of revolution with non-uniform surface, welded joints, etc., based on spatial filtration and differentiation of ionizing radiation flux has been described. The calculation of the most important unit of flaw detector - integrators - is made. Experimental studies of the sensitivity have shown, that the radiation flaw detector can be used for rapid testing of products with the sensitivity comparable with the sensitivity of radiographic testing of steel

  9. Testing the Secondary Mirror Surface Form of a Radiotelescope «Millimetron»

    Directory of Open Access Journals (Sweden)

    A. V. Kapustin

    2015-01-01

    Full Text Available A new method to test a surface form of the convex high-aperture hyperbolic mirrors has been developed with the secondary mirror of a telescope «Millimetron» as an example. It was proposed to use the selfsame auxiliary spherical mirror relatively small in diameter for testing the inner central part and outer part of a hyperbolic mirror.To test the central part of a hyperbolic mirror, an aberration-free points method is offered. It uses the non-traditional ray path for the secondary mirror. As a result, the overall length of interferometer measurement branch optical system is significantly reduced. Working wave front is reflected trice from the auxiliary spherical mirror surface and twice from the hyperbolic mirror under test. Double interaction of the working wave front with tested surface increases sensitivity of optical testing.The feature of the working bundle ray path is that the rays fall towards the auxiliary mirror once perpendicular to the surface and twice at the arbitrary angles to the surface. As a result, the homocentricity of the ray bundle is violated, i.e. the spherical aberrations arise. To compensate aberrations, a Mangin mirror compensator is used. It is placed in the central non-working zone of a hyperbolic mirror.The outer part of hyperbolic mirror is tested using the selfsame auxiliary spherical mirror according to Hindle scheme in several stages with serial imposition of the auxiliary mirror until information about the whole surface is collected. The interferometer provides measurements recording the interferogram from each part of the surface of tested mirror. Then to obtain complete information about the mirror surface form the interferograms are united.The article presents calculation results of the optical systems for testing the hyperbolic secondary mirror of the radiotelescope «Millimetron», which has extremely high aperture. It has been shown that the auxiliary spherical mirror of 665 mm in diameter and with 500

  10. Callus induction and regeneration of elite Indian maize inbreds ...

    African Journals Online (AJOL)

    N6 supplemented with 2 mg/l of 2,4-D has shown highest percentage of embryogenic callus induction. Among the five genotypes tested, CM300 gave highest percentage of embryogenic calli. CM300 and LM5 both have shown higher regeneration percentage of 12.22%. Key words: Maize, in-vitro culture and regeneration.

  11. Effects of surface roughness on magnetic flux leakage testing of micro-cracks

    Science.gov (United States)

    Deng, Zhiyang; Sun, Yanhua; Yang, Yun; Kang, Yihua

    2017-04-01

    Magnetic flux leakage (MFL) testing owns the advantages of high inspection sensitivity and stability, but its testing results are always affected by surface roughness. The relationship between the surface roughness ({{R}a} ) and detection signals for surface-breaking cracks is mainly discussed. The existence of roughness magnetic compression effect (RMCE) in present MFL testing is specially pointed out and its relevant theory is also analyzed, which manifest themselves in the compression of MFL signal in its peak value and the baseline drifts mixed with noise. An experimental investigation on surface comparators with different arithmetic average height ({{R}a} ) and artificial notch size, is performed to analyze the effects of surface roughness on detection signals of cracks. The detection limit (DL) of micro-crack is analyzed by comparing the {{B}y} noise-signal ratio ({{S}y} ) and peak-peak signals of the cracks. Meanwhile, {{S}y} increases with the {{R}a} and R{{S}m} , in this case, relatively shallow defects cannot be clearly distinguished at determined rough surface. Afterwards, a series of simulations are designed and performed to verify the effects of surface roughness on characteristic {{B}y} of the electromagnetic field, and a theoretical DL of micro-crack is presented as: DL=2.88{{R}a}+7.00 . Furthermore, the optimal lift-off value is selected for the micro-cracks’ detection to weaken the negative magnetic compression effect. MFL signals cannot reflect the accurate sizes of the cracks on rough surface due to the RMCE and its relevant phenomenon. The discovery and results will benefit the quantitative evaluation of the MFL testing.

  12. Applied research for profilometric testing of the state of interior surfaces in heat exchanger tubes

    International Nuclear Information System (INIS)

    Gyongyosi, Tiberiu; Panaitescu, Valeriu Nicolae

    2009-01-01

    Generally, the surface flaws identified at heat exchangers tubing are characteristic for the heat secondary systems, located on the external surfaces of the heat exchanger tubes and are mostly the results of the ageing phenomena in systems operation. The tests performed, with the impressing replicating device confirmed the applicability of the technique, functionality of the device and resulted in replicas on metal support, these being the hard copy of the negative of the test tube surface, allowing the profile measurement. The visual inspection of the replicas on the metallic support gives information about the surface geometry replicated, pointing out the marks, which belong to the same area under observation. The minimum and maximum values for the depth of the channel worked out in the inner test tube wall have been determined by profile graphic measurement on the replicas. The paper presents the structural and functional description of the experimental devices. The first results and some conclusions are also included. Two patent applications were submitted at State Office for Inventions and Trademarks (OSIM) covering the original data to protect royalty: 'The local pit flaws, scratches, incipient micro-cracks replicating device on inner cylindrical surfaces', under no. A/00299/17.04.2008 and 'The annular local flaw, incipient micro-cracks replicating device on inner cylindrical surface' under no. A/00300/17.04.2008

  13. Designing reliability into high-effectiveness industrial gas turbine regenerators

    International Nuclear Information System (INIS)

    Valentino, S.J.

    1979-01-01

    The paper addresses the measures necessary to achieve a reliable regenerator design that can withstand higher temperatures (1000-1200 F) and many start and stop cycles - conditions encountered in high-efficiency operation in pipeline applications. The discussion is limited to three major areas: (1) structural analysis of the heat exchanger core - the part of the regenerator that must withstand the higher temperatures and cyclic duty (2) materials data and material selection and (3) a comprehensive test program to demonstrate the reliability of the regenerator. This program includes life-cycle tests, pressure containment in fin panels, core-to-core joint structural test, bellows pressure containment test, sliding pad test, core gas-side passage flow distribution test, and production test. Today's regenerators must have high cyclic life capability, stainless steel construction, and long fault-free service life of 120,000 hr

  14. Standard Test Method for Measuring Heat Flux Using Surface-Mounted One-Dimensional Flat Gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes the measurement of the net heat flux normal to a surface using flat gages mounted onto the surface. Conduction heat flux is not the focus of this standard. Conduction applications related to insulation materials are covered by Test Method C 518 and Practices C 1041 and C 1046. The sensors covered by this test method all use a measurement of the temperature difference between two parallel planes normal to the surface to determine the heat that is exchanged to or from the surface in keeping with Fourier’s Law. The gages operate by the same principles for heat transfer in either direction. 1.2 This test method is quite broad in its field of application, size and construction. Different sensor types are described in detail in later sections as examples of the general method for measuring heat flux from the temperature gradient normal to a surface (1). Applications include both radiation and convection heat transfer. The gages have broad application from aerospace to biomedical en...

  15. Peeling tests for assessing the cohesion and consolidation characteristics of mortar and render surfaces

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Lesák, Jaroslav; Niedoba, Krzysztof; Valach, Jaroslav

    2015-01-01

    Roč. 48, č. 6 (2015), s. 1947-1963 ISSN 1359-5997 R&D Projects: GA ČR(CZ) GBP105/12/G059; GA MŠk(CZ) ED1.1.00/02.0060 Institutional support: RVO:68378297 Keywords : peeling test * rendered surface * surface consolidation * cohesion * non-destructive testing Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.453, year: 2015 http://link.springer.com/article/10.1617/s11527-014-0285-8

  16. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    Science.gov (United States)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  17. Heat transfer tests under forced convection conditions with high wettable heater surface

    Energy Technology Data Exchange (ETDEWEB)

    Mitsutake, Toru; Morooka, Shin-ichi; Miura, Shigeru; Akiba, Miyuki; Sato, Hisaki; Shirakawa, Ken-etsu; Oosato, Tetsuo; Yamamoto, Seiji [Toshiba Co., Kanagawa (Japan)

    2002-07-01

    Under forced convection and atmospheric pressure conditions, heat transfer tests were performed using the annulus channel of a heater rod with highly wettable surface. Improvement of boiling heat transfer requires that the cooling liquid can contact the heating surface, or a high-wettability heating surface, even if a vapor bubble layer is generated on the surface. >From this point of view, high-wettable heating surface was studied. As oxide semiconductor-coated materials are highly-wettable, we made a TiO{sub 2} coated heater rod. TiO{sub 2} coated surface has a high-wettability, in terms of contact angle and Leidenfrost temperature. The boiling curve was measured with and without TiO coated surface. The results showed difference between with and without TiO{sub 2} coating. TiO{sub 2} coating rod showed lower boiling onset heat flux, wider nucleate boiling region and higher critical heat flux than without coating. In summary, high wettablity heater surface produced higher boiling heat transfer characteristics under forced convection conditions. (author)

  18. Chitosan Based Regenerated Cellulose Fibers Functionalized with Plasma and Ultrasound

    Directory of Open Access Journals (Sweden)

    Urška Vrabič Brodnjak

    2018-04-01

    Full Text Available The great potential of regenerated cellulose fibers, which offer excellent possibilities as a matrix for the design of bioactive materials, was the lead for our research. We focused on the surface modification of fibers to improve the sorption properties of regenerated cellulose and biocomposite regenerated cellulose/chitosan fibers, which are on the market. The purpose of our investigation was also the modification of regenerated cellulose fibers with the functionalization by chitosan as a means of obtaining similar properties to biocomposite regenerated cellulose/chitosan fibers on the market. Argon gas plasma was used for fiber surface activation and chitosan adsorption. Ultrasound was also used as a treatment procedure for the surface activation of regenerated cellulose fibers and treatment with chitosan. Analyses have shown that ultrasonic energy or plasma change the accessibility of free functional groups, structure and reactivity, especially in regenerated cellulose fibers. Changes that occurred in the morphology and in the structure of fibers were also reflected in their physical and chemical properties. Consequently, moisture content, sorption properties and water retention improved.

  19. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    International Nuclear Information System (INIS)

    Sheryl Morton; Carl Baily; Tom Hill; Jim Werner

    2006-01-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform post test examination. Capability for waste disposal is also available at the INL

  20. [Regeneration of airway epithelium].

    Science.gov (United States)

    Adam, D; Perotin, J-M; Lebargy, F; Birembaut, P; Deslée, G; Coraux, C

    2014-04-01

    Epithelial regeneration is a complex process. It can lead to the remodeling of the airway epithelium as in asthma, COPD or cystic fibrosis. The development of in vivo and in vitro models has allowed the analysis of remodeling mechanisms and showed the role of components of extracellular matrix, proteases, cytokines and growth factors. Airway epithelial progenitors and stems cells have been studied in these models. However, their identification remains difficult. Identification and characterization of airway epithelial progenitor/stem-cells, and a better knowledge of the regeneration process may allow the development of new therapeutic strategies for airway epithelial reconstitution. Copyright © 2013 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  1. Standard test method for calibration of surface/stress measuring devices

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    Return to Contents page 1.1 This test method covers calibration or verification of calibration, or both, of surface-stress measuring devices used to measure stress in annealed and heat-strengthened or tempered glass using polariscopic or refractometry based principles. 1.2 This test method is nondestructive. 1.3 This test method uses transmitted light, and therefore, is applicable to light-transmitting glasses. 1.4 This test method is not applicable to chemically tempered glass. 1.5 Using the procedure described, surface stresses can be measured only on the “tin” side of float glass. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  2. Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study

    International Nuclear Information System (INIS)

    Tavakol, S.; Nikpour, M. R.; Amani, A.; Soltani, M.; Rabiee, S. M.; Rezayat, S. M.; Chen, P.; Jahanshahi, M.

    2013-01-01

    Surface morphology, surface wettability, and size distribution of biomaterials affect their in vitro and in vivo bone regeneration potential. Since nano-hydroxyapatite has a great chemical and structural similarity to natural bone and dental tissues, incorporated biomaterial of such products could improve bioactivity and bone bonding ability. In this research, nano-hydroxyapatite (23 ± 0.09 nm) and its composites with variety of chitosan content [2, 4, and 6 g (45 ± 0.19, 32 ± 0.12, and 28 ± 0.12 nm, respectively)] were prepared via an in situ hybridization route. Size distribution of the particles, protein adsorption, and calcium deposition of powders by the osteoblast cells, gene expression and percentage of new bone formation area were investigated. The highest degree of bone regeneration potential was observed in nano-hydroxyapatite powder, while the bone regeneration was lowest in nano-hydroxyapatite with 6 g of chitosan. Regarding these data, suitable size distribution next to size distribution of hydroxyapatite in bone, smaller size, higher wettability, lower surface roughness of the nano-hydroxyapatite particles and homogeneity in surface resulted in higher protein adsorption, cell differentiation and percentage of bone formation area. Results obtained from in vivo and in vitro tests confirmed the role of surface morphology, surface wettability, mean size and size distribution of biomaterial besides surface chemistry as a temporary bone substitute.

  3. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    Energy Technology Data Exchange (ETDEWEB)

    Sheryl Morton; Carl Baily; Tom Hill; Jim Werner

    2006-02-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  4. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    International Nuclear Information System (INIS)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL

  5. Enhanced regeneration in explants of tomato (Lycopersicon ...

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... laid out in randomized complete block design. Each treatment was replicated thrice and ten test tubes in the case of callus induction and eight flasks in the case ...... Berlin,Heidelberg, New York. Lakshmanan P, Loh CS, Goh CJ (1995). An in vitro method for rapid regeneration of a monopodial orchid hybrid ...

  6. Rapid plant regeneration of chrysanthemum (Chrysanthemum ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... Choi DC, Seo SY, Kim JM, Choi JS, Choi YG (2002). Plant regeneration and test of kanauycin concentration through the leaf explants culture in chrysanthemum. A symposium : Technologies for manipulation quality and productivity traits in horticultural crops. XXVIth. International Horticultural Congress, P.

  7. Methods to Use Surface Infiltration Tests in Permeable Pavement Systems to Determine Maintenance Frequency

    Science.gov (United States)

    Currently, there is limited guidance on selecting test sites to measure surface infiltration rates in permeable pavement systems to determine maintenance frequency. The ASTM method (ASTM C1701) for measuring infiltration rate of in-place pervious concrete suggest to either (1) p...

  8. Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System

    Science.gov (United States)

    Duncan, Joshua J.; Youngquist, Robert C.

    2013-01-01

    The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors

  9. Chemistry of the sea surface microlayer. 1. Fabrication and testing of the sampler

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; Narvekar, P.V.

    A screen sampler fabricated to study the sea surface microlayer (SML) has been described. The screen sampler was tested in the Mandovi estuary and adjacent waters. Physico-chemical parameters of the subsurface waters from a depth of 25 cm was also...

  10. Hand grip function assessed by the box and block test is affected by object surfaces.

    Science.gov (United States)

    Seo, Na Jin; Enders, Leah R

    2012-01-01

    N/A. One of the hand function assessment tools is the Box and Block Test (BBT). To examine if the BBT score is affected by grip surfaces. Thirteen adults performed the BBT with wooden, rubber-covered, and paper-covered blocks. The BBT scores and time for seven movements (finger closing, contact to lift-off, transport before barrier, transport after barrier, release, return, and reach) were compared across the three block types. The mean BBT score was 8% higher for the rubber blocks than the paper and wooden blocks (pblock until the block is lifted). Hand function assessments should be controlled for object surfaces. Therapists may vary grip difficulties by changing object surfaces. Redesigning daily objects with high-friction surfaces may increase grip function. N/A. Copyright © 2012 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  11. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests

    Directory of Open Access Journals (Sweden)

    Donatella Feretti

    2012-02-01

    Full Text Available Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L and surface water (TOC=7.5 mg/L. These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia. No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  12. Essentials in Periodontal Regeneration

    OpenAIRE

    F. Haghighati; G. Saaveh

    2007-01-01

    Various materials and techniques have been used in the treatment of periodontal disease to achieve regeneration of lost periodontal tissues including cementum, periodontal ligament (PDL) and alveolar bone. The composition, regenerative potential, application and therapeutic characteristics of several regenerative materials have been evaluated in the present study.

  13. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  14. Status report on the full-scale electric heater tests at the Hanford Near-Surface Test Facility

    International Nuclear Information System (INIS)

    Baxter, J.T.; Cunningham, J.P.; Gregory, E.C.; Jimenez, R.F.; Topcubasi, A.F.

    1982-08-01

    A Near-Surface Test Facility (NSTF) was constructed at the Hanford Site, in order to evaluate the thermomechanical response of basalt subjected to thermal loads. Two large-scale field tests using electric heaters to simulate nuclear waste canisters were started in July 1980, and are scheduled for completion during 1982. These tests are part of the program to examine the feasibility and provide the technology needed to design and construct a geological repository for the emplacement of high-level radioactive waste in basalt formations. In both tests, electric heaters were placed in vertical boreholes in the Pomona basalt flow in the floor of the NSTF. Full-Scale Heater Test No. 1 consists of a central heater canister surrounded by eight peripheral heaters. Heater power increased progressively during the test. Rock temperature at the borehole wall was in excess of 400 0 C after 2 years of operation. Full-Scale Heater Test No. 2 consists of a single heater canister. Heater power increased progressively for 1-1/2 years followed by a 120-day cooldown period. The heater was restarted and power is currently being raised to the limits of the equipment. Rock temperature at the borehole wall just prior to cooldown was in excess of 400 0 C. A visual comparison of a heater borehole wall was made from photographs taken prior to testing and during the cooldown. Rock temperature was in excess of 400 0 C at the start of cooldown and had been in excess of 300 0 C for about 300 days. No appreciable borehole decrepitation or thermally induced cracking was observed

  15. Delay/Disruption Tolerant Networks (DTN): Testing and Demonstration for Lunar Surface Applications

    Science.gov (United States)

    2009-01-01

    This slide presentation reviews the testing of the Delay/Disruption Tolerant Network (DTN) designed for use with Lunar Surface applications. This is being done through the DTN experimental Network (DEN), that permit access and testing by other NASA centers, DTN team members and protocol developers. The objective of this work is to demonstrate DTN for high return applications in lunar scenarios, provide DEN connectivity with analogs of Constellation elements, emulators, and other resources from DTN Team Members, serve as a wireless communications staging ground for remote analog excursions and enable testing of detailed communication scenarios and evaluation of network performance. Three scenarios for DTN on the Lunar surface are reviewed: Motion imagery, Voice and sensor telemetry, and Navigation telemetry.

  16. Instruments for reproducible setting of defects in cartilage and harvesting of osteochondral plugs for standardisation of preclinical tests for articular cartilage regeneration.

    Science.gov (United States)

    Schwarz, Markus L; Schneider-Wald, Barbara; Brade, Joachim; Schleich, Dieter; Schütte, Andy; Reisig, Gregor

    2015-07-28

    Standardisation is required in research, so are approval procedures for advanced therapy medical products and other procedures for articular cartilage therapies. The process of creating samples needs to be reproducible. The aim of this study was to design, create and validate instruments (1) to create reproducible and accurate defects and (2) to isolate samples in the shape of osteochondral cylinders in a quick, reliable and sterile manner. Adjustable instruments were created: a crown mill with a resolution of 0.05 mm and a front mill to create defects in articular cartilage and subchondral bone. The instruments were tested on knee joints of pigs from the slaughterhouse; 48 defects were created and evaluated. A punching machine was designed to harvest osteochondral plugs. These were validated in an in vivo animal study. The instruments respect the desired depth of 0.5 and 1.5 mm when creating the defects, depending on whether the person using the instrument is highly experienced (0.451 mm; confidence interval (CI): 0.390 mm; 0.512 mm and 1.403 mm; CI: 1.305 mm; 1.502 mm) or less so (0.369 mm; CI: 0.297 mm; 0.440 mm and 1.241 mm; CI: 1.141 mm; 1.341 mm). Eighty samples were taken from knee joints of Göttingen Minipigs with this punching technique. The time needed for the harvesting of the samples was 7.52 min (±2.18 min), the parallelism of the sides of the cylinders deviated by -0.63° (CI: -1.33°; 0.08°) and the surface of the cartilage deviated from the perpendicularity by 4.86° (CI: 4.154°; 5.573°). In all assessed cases, a sterile procedure was observed. Instruments and procedures for standardised creation and validation of defects in articular cartilage and subchondral bone were designed. Harvesting of samples in the shape of osteochondral cylinders can now be performed in a quick, reliable and sterile manner. The presented instruments and procedures can serve as helpful steps towards standardised operating procedures in the field of

  17. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone nerve conduit with tailored degradation rate

    Directory of Open Access Journals (Sweden)

    Jiang Xinquan

    2011-07-01

    Full Text Available Abstract Background To cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure. Results In this study we fabricated a collagen/poly(ε-caprolactone (collagen/PCL fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate. Conclusions All the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it

  18. Standard practice for fracture testing with surface-crack tension specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This practice covers the design, preparation, and testing of surface-crack tension (SCT) specimens. It relates specifically to testing under continuously increasing force and excludes cyclic and sustained loadings. The quantity determined is the residual strength of a specimen having a semielliptical or circular-segment fatigue crack in one surface. This value depends on the crack dimensions and the specimen thickness as well as the characteristics of the material. 1.2 Metallic materials that can be tested are not limited by strength, thickness, or toughness. However, tests of thick specimens of tough materials may require a tension test machine of extremely high capacity. The applicability of this practice to nonmetallic materials has not been determined. 1.3 This practice is limited to specimens having a uniform rectangular cross section in the test section. The test section width and length must be large with respect to the crack length. Crack depth and length should be chosen to suit the ultimate pu...

  19. Model tests for corrosion influence of electrode surface on electroosmosis in marine sludge

    Science.gov (United States)

    Zheng, Lingwei; Li, Jinzhu; Shi, Hanru

    2017-11-01

    The corrosion of metal electrodes is inevitable on electroosmosis in soil. Surface corrosion of electrodes is also one of the reasons for increasing energy consumption in electroosmosis treatment. A series of laboratory tests were conducted employing three kinds of materials, aluminium, steel, and brass. To explore the impact of surface corrosion degree on electroosmosis, metal electrodes were pretreated with durations 0 h, 12 h, 24 h, and 36 h. After the pretreatment, corroded electrodes are used as anodes on electroosmosis. Water discharge, current, voltage potential were measured during the tests; water content was also tested at three points after the electroosmosis. The results showed that aluminium was better than steel in electroosmotic drainage while brass provided the worst dewatering performance. Surface corrosion did not influence the aluminium and steel on electroosmosis in marine sludge, but brass did. In the pretreatment of brass electrodes, corrosion rate had started to slow down at later periods, with the deterioration rate of dewatering reduced afterwards. As the results showed, it is not recommended to employ those easily deteriorated electrode materials from surface corrosion in practical engineering, such as brass; electrode material with higher electroosmosis exchange rate is recommended, such as aluminium.

  20. Site selection report basalt waste isolation program near-surface test facility

    International Nuclear Information System (INIS)

    Sharpe, S.D.

    1978-01-01

    A site selection committee was established to review the information gathered on potential sites and to select a site for the Near-Surface Test Facility Phase I. A decision was made to use a site on the north face of Gable Mountain located on the Hanford Site. This site provided convenient access to the Pomona Basalt Flow. This flow was selected for use at this site because it exhibited the characteristics established in the primary criteria. These criteria were: the flows thickness; its dryness; its nearness to the surface; and, its similarities to basalt units which are candidates for the repository. After the selection of the Near-Surface Test Facility Phase I Site, the need arose for an additional facility to demonstrate safe handling, storage techniques, and the physical effects of radioactive materials on an in situ basalt formation. The committee reviewed the sites selected for Phase I and chose the same site for locating Phase II of the Near-Surface Test Facility

  1. Investigation of Aqueous Lubricants on Polymer Surfaces by Nanoindenter-based Scratch Tests

    Science.gov (United States)

    Krause, Wendy E.; Liang, Jing; Song, Junlong; Rojas, Orlando J.

    2010-03-01

    Nanoindenter-based scratch (nanoscratch) tests were successfully used to study lubrication at the microscale in the presence of a fluid film. The influence of aqueous lubricants on both hydrophobic (polypropylene and polyethylene) and hydrophilic (cellulose) surfaces was investigated. The lubricants consisted of aqueous solutions of amphiphilic block copolymers of ethylene oxide (EO) and propylene oxide (PO). The coefficients of friction were measured in the presence of lubricant solution on the solid surfaces. An improved lubricity (i.e., coefficient of friction decreased) was observed to occur as the adsorption excess increased.

  2. Deactivation and Regeneration of Ni/ZA Catalyst in Hydrocracking of Polypropylene

    Directory of Open Access Journals (Sweden)

    Imam Khabib

    2014-07-01

    Full Text Available The phenomena of catalyst deactivation and the effects of regeneration method on the characteristics and activity of Ni/ZA catalyst after being used in a continuous cracking reaction of polypropylene have been studied. Ni/ZA catalyst was prepared using sonochemical method with total metal intake of 4%. Characteristics and activity of fresh, spent, and regenerated catalyst were evaluated to get a better understanding about the catalyst deactivation. Characteristics which have been observed include catalyst acidity, porosity, crystallinity, and surface morphology. Catalytic activity test of Ni/ZA catalyst on polypropylene cracking reaction at temperature of 500 °C with H2 flow rate of 20 mL/min and catalyst:feed ratio of 1:2 (w/w showed the decrease of some catalyst characteristics such as specific surface area, total pore volume, and acidity due to coke fouling over a five-times continuous experiment. Regeneration of catalyst with oxidation-reduction method has been able to increase the activity and acidity of catalyst up to 7.47% and 38.54%, respectively, compared to those of spent catalyst, while the catalyst surface area and total pore volume decreased up to 32.83% and 26.92%, respectively.

  3. Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials

    Science.gov (United States)

    Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.

    2010-01-01

    Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (sieved version of the simulant. The lunar dust displayed abrasivity to all of the test materials, which are likely to be used in lunar landing equipment. Based on this test experience and pilot results obtained, recommendations are made for systematic abrasion testing of candidate materials intended for use in lunar exploration systems and in other environments with similar dust challenges.

  4. A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests

    Science.gov (United States)

    Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars

    2015-09-01

    The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (develop strategies that mitigate the stability problem by making larger (at least ∼10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes α and β parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which α and β parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate and stable for steep slopes, and also conclude that, for longer time steps, the optimal

  5. Standard test method for damage to contacting solid surfaces under fretting conditions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the studying or ranking the susceptibility of candidate materials to fretting corrosion or fretting wear for the purposes of material selection for applications where fretting corrosion or fretting wear can limit serviceability. 1.2 This test method uses a tribological bench test apparatus with a mechanism or device that will produce the necessary relative motion between a contacting hemispherical rider and a flat counterface. The rider is pressed against the flat counterface with a loading mass. The test method is intended for use in room temperature air, but future editions could include fretting in the presence of lubricants or other environments. 1.3 The purpose of this test method is to rub two solid surfaces together under controlled fretting conditions and to quantify the damage to both surfaces in units of volume loss for the test method. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5...

  6. Liver Development, Regeneration, and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Janet W. C. Kung

    2010-01-01

    Full Text Available The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.

  7. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  8. Mathematical modelling of ultrasonic testing of components with defects close to a non-planar surface

    International Nuclear Information System (INIS)

    Westlund, Jonathan; Bostroem, Anders

    2011-05-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry. To develop and qualify the methods extensive experimental work with test blocks is usually required. This can be very time-consuming and costly and it also requires a good physical intuition of the situation. A reliable mathematical model of the testing situation can, therefore, be very valuable and cost-effective as it can reduce experimental work significantly. A good mathematical model enhances the physical intuition and is very useful for parametric studies, as a pedagogical tool, and for the qualification of procedures and personnel. The aim of the present report is to describe work that has been performed to model ultrasonic testing of components that contain a defect close to a nonplanar surface. For nuclear power applications this may be a crack or other defect on the inside of a pipe with a diameter change or connection. This is an extension of the computer program UTDefect, which previously only admits a planar back surface (which is often applicable also to pipes if the pipe diameter is large enough). The problems are investigated in both 2D and 3D, and in 2D both the simpler anti-plane (SH) and the in-plane (P-SV) problem are studied. The 2D investigations are primarily solved to get a 'feeling' for the solution procedure, the discretizations, etc. In all cases an integral equation approach with a Green's function in the kernel is taken. The nonplanar surface is treated by the boundary element method (BEM) where a division of the surface is made in small elements. The defects are mainly cracks, strip-like (in 2D) or rectangular (in 3D), and these are treated with more analytical methods. In 2D also more general defects are treated with the help of their transition (T) matrix. As in other parts of UTDefect the ultrasonic probes in transmission and reception are included in the model. In 3D normalization by a side drilled hole is possible. Some numerical results

  9. Aluminum Removal And Sodium Hydroxide Regeneration From Hanford Tank Waste By Lithium Hydrotalcite Precipitation Summary Of Prior Lab-Scale Testing

    International Nuclear Information System (INIS)

    Sams, T.L.; Guillot, S.

    2011-01-01

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  10. Urban regeneration and bioregionalism

    Directory of Open Access Journals (Sweden)

    Antonio Passaro

    2015-11-01

    Full Text Available The sustainable development and the bioregionalism find their meeting point in the strategies of urban regeneration adoptable in the Campania Region. In the article, following a brief consideration about possible scenarios of short chain to be triggered between the agricultural and the building sector, three samples of experimental actions are described, which are under development in three areas, in S. Arsenio in the Diano valley, in S. Antonio Abate and in Naples. All the here presented cases are object of a collaboration between the University (Research and education institution, the local authorities and the Small and Medium Enterprises of the bioregions, which has led to application of those principles within design proposals of sustainable and bioregionalist urban regeneration.

  11. Bionanomaterials for skin regeneration

    CERN Document Server

    Leonida, Mihaela D

    2016-01-01

    This book gives a concise overview of bionanomaterials with applications for skin regeneration. The advantages and challenges of nanoscale materials are covered in detail, giving a basic view of the skin structure and conditions that require transdermal or topical applications. Medical applications, such as wound healing, care for burns, skin disease, and cosmetic care, such as aging of the skin and photodamage, and how they benefit from bionanomaterials, are described in detail. A final chapter is devoted to the ethical and social issues related to the use of bionanomaterials for skin regeneration. This is an ideal book for researchers in materials science, medical scientists specialized in dermatology, and cosmetic chemists working in formulations. It can also serve as a reference for nanotechnologists, dermatologists, microbiologists, engineers, and polymer chemists, as well as students studying in these fields.

  12. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  13. Regeneration of Optic Nerve

    Directory of Open Access Journals (Sweden)

    Kwok-Fai So

    2011-05-01

    Full Text Available The optic nerve is part of the central nervous system (CNS and has a structure similar to other CNS tracts. The axons that form the optic nerve originate in the ganglion cell layer of the retina and extend through the optic tract. As a tissue, the optic nerve has the same organization as the white matter of the brain in regard to its glia. There are three types of glial cells: Oligodendrocytes, astrocytes, and microglia. Little structural and functional regeneration of the CNS takes place spontaneously following injury in adult mammals. In contrast, the ability of the mammalian peripheral nervous system (PNS to regenerate axons after injury is well documented. A number of factors are involved in the lack of CNS regeneration, including: (i the response of neuronal cell bodies against the damage; (ii myelin-mediated inhibition by oligodendrocytes; (iii glial scarring, by astrocytes; (iv macrophage infiltration; and (v insufficient trophic factor support. The fundamental difference in the regenerative capacity between CNS and PNS neuronal cell bodies has been the subject of intensive research. In the CNS the target normally conveys a retrograde trophic signal to the cell body. CNS neurons die because of trophic deprivation. Damage to the optic nerve disconnects the neuronal cell body from its target-derived trophic peptides, leading to the death of retinal ganglion cells. Furthermore, the axontomized neurons become less responsive to the peptide trophic signals they do receive. On the other hand, adult PNS neurons are intrinsically responsive to neurotrophic factors and do not lose trophic responsiveness after axotomy. In this talk different strategies to promote optic-nerve regeneration in adult mammals are reviewed. Much work is still needed to resolve many issues. This is a very important area of neuroregeneration and neuroprotection, as currently there is no cure after traumatic optic nerve injury or retinal disease such as glaucoma, which

  14. Surface feature characterization test plan: Conceptual design of a high level nuclear waste repository in salt

    International Nuclear Information System (INIS)

    1984-06-01

    This report presents the Surface Feature Characterization Test Plan for conceptual design. The Test Plan is part of the surface feature characterization program for conceptual design which will obtain information on site topography, hydrology, stratigraphy, and soil and rock engineering properties. The information will be obtained by the Geologic Project Manager (GPM). This Test Plan provides guidance to the GPM as to (1) the kinds of data to be collected, (2) anticipated methods, (3) the level of detail required, (4) interpretation to be made, and (5) the format for presentation. Based on this Test Plan and on conditions at the site that is selected, the GPM will develop an Activity Plan describing the methods to be used in obtaining the needed information. For each item of information, the Test Plan describes those facilities which require it for their design. The GPM can then determine the appropriate methods and level of effort for obtaining the information, taking into account its use and conditions at the selected site. 7 figs., 3 tabs

  15. Preliminary Correlation Map of Geomorphic Surfaces in North-Central Frenchman Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2005-08-01

    This correlation map (scale = 1:12,000) presents the results of a mapping initiative that was part of the comprehensive site characterization required to operate the Area 5 Radioactive Waste Management Site, a low-level radioactive waste disposal facility located in northern Frenchman Flat at the Nevada Test Site. Eight primary map units are recognized for Quaternary surfaces: remnants of six alluvial fan or terrace surfaces, one unit that includes colluvial aprons associated with hill slopes, and one unit for anthropogenically disturbed surfaces. This surficial geology map provides fundamental data on natural processes for reconstruction of the Quaternary history of northern Frenchman Flat, which in turn will aid in the understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. The bedrock units identified on this map were derived from previous published mapping efforts and are included for completeness.

  16. Preliminary Correlation Map of Geomorphic Surfaces in North-Central Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    This correlation map (scale = 1:12,000) presents the results of a mapping initiative that was part of the comprehensive site characterization required to operate the Area 5 Radioactive Waste Management Site, a low-level radioactive waste disposal facility located in northern Frenchman Flat at the Nevada Test Site. Eight primary map units are recognized for Quaternary surfaces: remnants of six alluvial fan or terrace surfaces, one unit that includes colluvial aprons associated with hill slopes, and one unit for anthropogenically disturbed surfaces. This surficial geology map provides fundamental data on natural processes for reconstruction of the Quaternary history of northern Frenchman Flat, which in turn will aid in the understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. The bedrock units identified on this map were derived from previous published mapping efforts and are included for completeness

  17. Digit Tip Regeneration: Merging Regeneration Biology with Regenerative Medicine.

    Science.gov (United States)

    Dolan, Connor P; Dawson, Lindsay A; Muneoka, Ken

    2018-03-01

    Regeneration Biology is the study of organisms with endogenous regenerative abilities, whereas Regenerative Medicine focuses on engineering solutions for human injuries that do not regenerate. While the two fields are fundamentally different in their approach, there is an obvious interface involving mammalian regeneration models. The fingertip is the only part of the human limb that is regeneration-competent and the regenerating mouse digit tip has emerged as a model to study a clinically relevant regenerative response. In this article, we discuss how studies of digit tip regeneration have identified critical components of the regenerative response, and how an understanding of endogenous regeneration can lead to expanding the regenerative capabilities of nonregenerative amputation wounds. Such studies demonstrate that regeneration-incompetent wounds can respond to treatment with individual morphogenetic agents by initiating a multi-tissue response that culminates in structural regeneration. In addition, the healing process of nonregenerative wounds are found to cycle through nonresponsive, responsive and nonresponsive phases, and we call the responsive phase the Regeneration Window. We also find the responsiveness of mature healed amputation wounds can be reactivated by reinjury, thus nonregenerated wounds retain a potential for regeneration. We propose that regeneration-incompetent injuries possess dormant regenerative potential that can be activated by targeted treatment with specific morphogenetic agents. We believe that future Regenerative Medicine-based-therapies should be designed to promote, not replace, regenerative responses. Stem Cells Translational Medicine 2018;7:262-270. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  18. Near-surface test facility. Phase I. Geologic site characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Moak, D.J.; Wintczak, T.M.

    1980-08-01

    The report is a description of the geology and characterization of the rock mass of the area in which the Phase I qualification tests at the Near-Surface Test Facility (NSTF) are being performed. The NSTF is located on Gable Mountain within the Hanford Site near Richland, Washington. It is located in the entablature of the Pomona Member, an upper flow in the Columbia River Basalt Group, and is approximately 150 feet (47.5 meters) below the surface. Core logging from the instrument boreholes coupled with joint mapping, statistics, and other test data provided the basis for a detailed characterization of the 16-foot x 20-foot x 28-foot (5-meter x 6-meter x 9-meter) rock masses surrounding Full-Scale Heater Tests No. 1 and No. 2. The Pomona entablature contains three joint sets delineated by their degree of dip, each with apertures averaging 0.25 millimeter and having no preferred strike orientation. Although joint frequencies in the study area exceed 4 joints per foot (13 per meter), the rock-mass classification rating is good.

  19. Mechanical Q-factor measurements on a test mass with a structured surface

    Energy Technology Data Exchange (ETDEWEB)

    Nawrodt, R [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Zimmer, A [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Koettig, T [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Clausnitzer, T [Institut fuer Angewandte Physik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Bunkowski, A [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover, Callinstr. 38, D-30167 Hannover (Germany); Kley, E B [Institut fuer Angewandte Physik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Schnabel, R [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover, Callinstr. 38, D-30167 Hannover (Germany); Danzmann, K [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover, Callinstr. 38, D-30167 Hannover (Germany); Nietzsche, S [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Vodel, W [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Tuennermann, A [Institut fuer Angewandte Physik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany)

    2007-07-15

    We present mechanical Q-factors (quality factors) of a crystalline quartz test mass with a nano-structured surface, measured in the temperature regime from 5 to 300 K. The nano-structure was a grating with a period of 2 {mu}m and a depth of about 0.1 {mu}m. Comparative measurements were performed on the plain substrate and on the structured test mass with different numbers of SiO{sub 2}/Ta{sub 2}O{sub 5} coating layers. The measurements at different stages of the test mass fabrication process show that the surface distortion induced by the nanostructure does not severely lower the mechanical Q-factor of the substrate. Damping due to a multi-layer coating stack was found to be orders of magnitude higher. The results provide vital information concerning the potential usage of low-thermal noise nano-structured test masses in future generations of high-precision laser interferometers and in current attempts to measure quantum effects of macroscopic mirror oscillators.

  20. Evaluation of penicylinders used in disinfectant testing: bacterial attachment and surface texture.

    Science.gov (United States)

    Cole, E C; Rutala, W A; Carson, J L

    1987-01-01

    Two possible deficiencies in the AOAC use-dilution method for registration of chemical disinfectants by the Environmental Protection Agency are examined: (1) the physical disparities among brands of penicylinders and (2) the variability of bacterial numbers on penicylinders depending upon test strain and penicylinder surface texture. Textural differences of 2 brands of stainless steel penicylinders, one brand of porcelain, and one brand of glass were assessed by scanning electron microscopy. A considerable variation in smoothness of both inner and outer surfaces of stainless steel and porcelain penicylinders was observed. Glass penicylinders were very smooth. Numbers of bacteria attached to a penicylinder were assessed by vortexing the penicylinders 30 s at No. 4 after using the AOAC method of bacterial inoculation and drying 40 min at 37 degrees C. With this methodology, stainless steel carriers retained the 3 AOAC-recommended bacterial test strains differentially: ca 10(7) for Pseudomonas aeruginosa, 5 X 10(6) for Staphylococcus aureus, and 10(6) for Salmonella choleraesuis; glass retained 10(6)-10(7) organisms of all 3 test strains; porcelain retained about that amount of S. aureus but 10(5)-10(6) P. aeruginosa and 10(3)-10(4) S. choleraesuis. These data suggest that disinfectants are not similarly challenged with the AOAC-recommended test bacteria and that an alternative method should be considered to ensure comparable numbers of bacteria on penicylinders.

  1. Standard Test Methods for Total Normal Emittance of Surfaces Using Inspection-Meter Techniques

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1971-01-01

    1.1 These test methods cover determination of the total normal emittance (Note) of surfaces by means of portable, inspection-meter instruments. Note 1—Total normal emittance (εN) is defined as the ratio of the normal radiance of a specimen to that of a blackbody radiator at the same temperature. The equation relating εN to wavelength and spectral normal emittance [εN (λ)] is where: L b(λ, T) = Planck's blackbody radiation function = c1π −1λ−5(ec2/λT − 1)−1, c1 = 3.7415 × 10−16 W·m 2, c2 = 1.4388 × 10−2 m·K, T = absolute temperature, K, λ = wavelength, m, Lb(λ, T)dλ = Δπ −1T4, and Δ = Stefan-Boltzmann constant = 5.66961 × 10 −8 W·m2·K−4 1.2 These test methods are intended for measurements on large surfaces when rapid measurements must be made and where a nondestructive test is desired. They are particularly useful for production control tests. 1.3 The values stated in SI units are to be regarded as standard. No other units of measu...

  2. Evaluation of a platelet lysate bilayered system for periodontal regeneration in a rat intrabony three-wall periodontal defect.

    Science.gov (United States)

    Babo, Pedro S; Cai, Xinjie; Plachokova, Adelina S; Reis, Rui L; Jansen, John; Gomes, Manuela E; Walboomers, X Frank

    2018-02-01

    With currently available therapies, full regeneration of lost periodontal tissues after periodontitis cannot be achieved. In this study, a combined compartmentalized system was tested, composed of (a) a platelet lysate (PL)-based construct, which was placed along the root aiming to regenerate the root cementum and periodontal ligament, and (b) a calcium phosphate cement composite incorporated with hyaluronic acid microspheres loaded with PL, aiming to promote the regeneration of alveolar bone. This bilayered system was assessed in a 3-wall periodontal defect in Wistar rats. The periodontal healing and the inflammatory response of the materials were scored for a period up to 6 weeks after implantation. Furthermore, histomorphometrical measurements were performed to assess the epithelial downgrowth, the formation of alveolar bone, and the formation of new connective tissue attachment. Our data showed that the stabilization of platelet-origin proteins on the root surface increased the overall periodontal healing score and restricted the formation of long epithelial junctions. Nevertheless, the faster degradation of the cement component with incorporated hyaluronic acid microspheres compromised the stability of the system, which hampered the periodontal regeneration. Overall, in this work, we proved the positive therapeutic effect of the immobilization of a PL-based construct over the root surface in a combined compartmentalized system to assist predictable healing of functional periodontium. Therefore, after optimization of the hard tissue analogue, the system should be further elaborated in (pre)clinical validation studies. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Foam Core Particleboards with Intumescent FRT Veneer: Cone Calorimeter Testing With Varying Adhesives, Surface Layer Thicknesses, and Processing Conditions

    Science.gov (United States)

    Mark A. Dietenberger; Johannes Welling; Ali Shalbafan

    2014-01-01

    Intumescent FRT Veneers adhered to the surface of foam core particleboard to provide adequate fire protection were evaluated by means of cone calorimeter tests (ASTM E1354). The foam core particleboards were prepared with variations in surface layer treatment, adhesives, surface layer thicknesses, and processing conditions. Ignitability, heat release rate profile, peak...

  4. A fundamental study of a regenerator for an Ericsson magnetic refrigerator

    International Nuclear Information System (INIS)

    Matsumoto, K.; Ito, T.; Numazawa, T.; Hashimoto, T.; Kuriyama, T.; Nakagome, H.

    1986-01-01

    The authors studied an Ericsson magnetic refrigerator above 20 K. The magnetic working material passes through the regenerator during internal heat transfer processes. In the temperature range above 20 K, a solid is indispensable for a regenerator in need of the large volumetric heat capacity. Therefore lead is used for the testing regenerator. As thermal conduction of gaseous helium is expected to be useful for the heat transfer between the regenerator and the working material, the authors have made the gap between them small in order to achieve good heat transfer. They investigated the heat transfer process between working material and regenerator experimentally in the temperature from 25 K to 55 K

  5. Nanocomposites for bone tissue regeneration.

    Science.gov (United States)

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  6. First reliability test of a surface micromachined microengine using SHiMMeR

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, D.M.; Smith, N.F.; Bowman, D.J. [and others

    1997-08-01

    The first-ever reliability stress test on surface micromachined microengines developed at Sandia National Laboratories (SNL) has been completed. We stressed 41 microengines at 36,000 RPM and inspected the functionality at 60 RPM. We have observed an infant mortality region, a region of low failure rate (useful life), and no signs of wearout in the data. The reliability data are presented and interpreted using standard reliability methods. Failure analysis results on the stressed microengines are presented. In our effort to study the reliability of MEMS, we need to observe the failures of large numbers of parts to determine the failure modes. To facilitate testing of large numbers of micromachines. The Sandia High Volume Measurement of Micromachine Reliability (SHiMMeR) system has computer controlled positioning and the capability to inspect moving parts. The development of this parallel testing system is discussed in detail.

  7. Roll Damping Derivatives from Generalized Lifting-Surface Theory and Wind Tunnel Forced-Oscillation Tests

    Science.gov (United States)

    Pototzky, Anthony S; Murphy, Patrick C.

    2014-01-01

    Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.

  8. Natural regeneration of lodgepole pine in south-central Oregon

    Science.gov (United States)

    P.H. Cochran

    1973-01-01

    A sequence of events is necessary for natural regeneration in the pumice soil region: Adequate seed must be probed and distributed over the area, germination must be favored by warm and moist surface soils, daily surface temperature variation must be moderate, seedlings must survive summer drought, and weather conditions must prevent severe frost heaving the fall after...

  9. Decontamination effects of detergents on the market for radioactive surface contamination. Their comparative test (2)

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, Kenjiro; Takasaki, Koji; Horiuchi, N. [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Yasunaka, Hideo; Izumi, Yuichi [Japan Environment Research Co. Ltd., Tokyo (Japan)

    1999-04-01

    There happens frequently radioactive surface contamination on human body and skin under radiation works in controlled area. The surface contamination should be removed from the body and the skin as soon as possible for radiation control and exposure management. Titanium oxide paste, which is reserved as detergent for radioactive surface contamination, has satisfactory results and reliability for decontamination effects. The titanium oxide paste, however, has a short preservation period, and must be exchanged and supplied every several months. Decontamination tests for 22 kinds of detergents on the market were carried out with swine skin and radiation materials, Cs-137 and Ru-106. Radiation solution of Cs-137 or Ru-106 was dropped on the swine skin sample, which was left for 5 min or 40 min as it is. Radioactivity of the sample was measured before and after washing of the detergents. Decontamination effects of the detergents for Cs-137 were similar to those for Ge-144 which were tested in the previous year. The decontamination effects for Ru-106, however, were remarkably lower than those for both cases of Cs-137 and Ge-144. (M. Suetake)

  10. Puddle jumping: Spontaneous ejection of large liquid droplets from hydrophobic surfaces during drop tower tests

    Science.gov (United States)

    Attari, B.; Weislogel, M.; Wollman, A.; Chen, Y.; Snyder, T.

    2016-10-01

    Large droplets and puddles jump spontaneously from sufficiently hydrophobic surfaces during routine drop tower tests. The simple low-cost passive mechanism can in turn be used as an experimental device to investigate dynamic droplet phenomena for drops up to 104 times larger than their normal terrestrial counterparts. We provide and/or confirm quick and qualitative design guides for such "drop shooters" as employed in drop tower tests including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, and fluid properties including contact angle. The latter is determined via profile image comparisons with numerical equilibrium interface computations. Water drop volumes of 0.04-400 ml at ejection speeds of -0.007-0.12 m/s are demonstrated herein. A sample application of the drop jump method is made to the classic problem of low-gravity phase change heat transfer for large impinging drops. Many other candidate problems might be identified by the reader.

  11. Standard test method for determination of surface lubrication on flexible webs

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This test method has been used since 1988 as an ANSI/ISO standard test for determination of lubrication on processed photographic films. Its purpose was to determine the presence of process-surviving lubricants on photographic films. It is the purpose of this test method to expand the applicability of this test method to other flexible webs that may need lubrication for suitable performance. This test measures the breakaway (static) coefficient of friction of a metal rider on the web by the inclined plane method. The objectives of the test is to determine if a web surface has a lubricant present or not. It is not intended to assign a friction coefficient to a material. It is not intended to rank lubricants. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish ...

  12. PRISM hepatitis B surface antigen detection of hepatits B virus minipool nucleic acid testing yield samples.

    Science.gov (United States)

    Linauts, Sandy; Saldanha, John; Strong, D Michael

    2008-07-01

    Hepatitis B virus (HBV) residual risk has been estimated at 1:63,000-1:205,000 and introduction of more sensitive serological tests and nucleic acid testing (NAT) would reduce that risk. Sensitivity of the recently licensed Abbott PRISM hepatitis B surface antigen (HBsAg) CLIA and minipool (MP) HBV NAT has been described as comparable and thus the need for HBV NAT has not been compelling. In this study, eight samples identified as yield samples with MP HBV NAT were tested using the PRISM test. Seven samples were identified using the Roche COBAS AmpliScreen HBV test and one additional sample was obtained from the clinical trial for the Roche cobas TaqScreen MPX test. Each of these samples was reactive by MP HBV NAT and nonreactive for HBsAg using one of three licensed enzyme immunoassay (EIA) tests. After licensure of the PRISM HBsAg, aliquots were tested with this assay, and DNA quantitation and genotyping were repeated where sample volume permitted. Three samples (2000, 2300, and 61,000 copies/mL) produced reactive results with PRISM. Four samples with viral loads less than 300 copies per mL produced nonreactive results. One sample, originally quantitated at 37,000 copies per mL (but 3850 copies/mL in repeat testing) was also nonreactive by PRISM. Genotyping of this sample indicated a type C genotype with no mutations. Adding serological sensitivity of PRISM CLIA reduced the NAT yield from the original 1: 385,555 to 1:610,488. However, MP HBV NAT still provides additional sensitivity over CLIA, even for a donation with a viral load of almost 4000 copies per mL.

  13. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  14. Understanding Urban Regeneration in Turkey

    Science.gov (United States)

    Candas, E.; Flacke, J.; Yomralioglu, T.

    2016-06-01

    In Turkey, rapid population growth, informal settlements, and buildings and infrastructures vulnerable to natural hazards are seen as the most important problems of cities. Particularly disaster risk cannot be disregarded, as large parts of various cities are facing risks from earthquakes, floods and landslides and have experienced loss of lives in the recent past. Urban regeneration is an important planning tool implemented by local and central governments in order to reduce to disaster risk and to design livable environments for the citizens. The Law on the Regeneration of Areas under Disaster Risk, commonly known as the Urban Regeneration Law, was enacted in 2012 (Law No.6306, May 2012). The regulation on Implementation of Law No. 6306 explains the fundamental steps of the urban regeneration process. The relevant institutions furnished with various authorities such as expropriation, confiscation and changing the type and place of your property which makes urban regeneration projects very important in terms of property rights. Therefore, urban regeneration projects have to be transparent, comprehensible and acceptable for all actors in the projects. In order to understand the urban regeneration process, the legislation and projects of different municipalities in Istanbul have been analyzed. While some steps of it are spatial data demanding, others relate to land values. In this paper an overview of the urban regeneration history and activities in Turkey is given. Fundamental steps of the urban regeneration process are defined, and particularly spatial-data demanding steps are identified.

  15. Laboratory and field testing results of the LMT/GTM primary surface actuators

    Science.gov (United States)

    Smith, David R.; Souccar, Kamal; Montalvo, Gabriela; Arteaga Magaña, César; Hernández Rebollar, José Luis; Olmos Tapia, Arak; Gallieni, Daniele; Lazzarini, Paolo; Fumi, Pierluigi; Anaclerio, Enzo

    2016-07-01

    With the final installation of the two outermost rings of the primary surface of the Large Millimeter Telescope/ Gran Telescopio Milimétrico (LMT/GTM), the project is also upgrading the primary surface actuators. There are commercial actuators that can approach the required operational accuracy and stroke, but the combination of the size and load requirements ultimately required a customized design. The new actuators fit within the volume constraints imposed by the tighter interior angles in the outer rings and are designed to support the operational and survival loading conditions even for the largest surface segments. Laboratory testing confirmed that the actuators should meet the precision, repeatability, load, and lifetime requirements. However, the LMT/GTM is at a particularly difficult site for electromechanical systems. The high altitude has the usual effect of reducing cooling effectiveness for the drives and motors, and the ambient temperature hovers near freezing. Since there is a significant amount of precipitation during some times of the year, there are frequent freeze/thaw cycles. The constant formation and either sublimation or melting of ice, along with the associated high humidity, has been a challenge for the environmental protection of many devices at the LMT/GTM. Because there are a total of 720 primary surface actuators in the system, it is particularly important that the actuators, their local drive control boxes, and their cable connections be able to meet its specifications even under the site conditions. To confirm the suitability of the actuators, the LMT/GTM procured an initial set of sixteen actuators for testing at the site. After laboratory testing, the actuators were installed into the outer two rings of the telescope and cycled during the early winter months of the 2015-16 scientific observing season. Because of the continuing installation activities in these two rings, they are not illuminated by the receivers, so field testing

  16. Superhydrophobicity and regeneration of PVDF/SiO2 composite films

    Science.gov (United States)

    Liu, Tao; Li, Xianfeng; Wang, Daohui; Huang, Qinglin; Liu, Zhen; Li, Nana; Xiao, Changfa

    2017-02-01

    Superhydrophobicity of polymers is easily destroyed by careless touching due to the softness of microstructures. In this study, based on a well-constructed polyvinylidene fluoride (PVDF) surface, a novel superhydrophobic PVDF/SiO2 composite film was fabricated by adding hydrophobic SiO2 nanoparticle and solvent into a coagulation bath. The water contact angle of the composite film reached 162.3° and the sliding angle was as low as 1.5°. More importantly, the composite film could be regenerated only through immersing the composite film in the designed regeneration agent. The composition of the designed regeneration agent ensured that SiO2 nanoparticles were firmly adhered on the film surface even under the ultrasonic cleaning. Hence, the superhydrophobicity and self-cleaing property could be regenerated and maintained effectively, and moreover, these propeties could resist a proper pressure. In addition, after many rubbing-regenerating cycles, the regeneration method was still valid.

  17. NEW CONCEPTS AND TEST METHODS OF CURVE PROFILE AREA DENSITY IN SURFACE: ESTIMATION OF AREAL DENSITY ON CURVED SPATIAL SURFACE

    OpenAIRE

    Hong Shen

    2011-01-01

    The concepts of curve profile, curve intercept, curve intercept density, curve profile area density, intersection density in containing intersection (or intersection density relied on intersection reference), curve profile intersection density in surface (or curve intercept intersection density relied on intersection of containing curve), and curve profile area density in surface (AS) were defined. AS expressed the amount of curve profile area of Y phase in the unit containing surface area, S...

  18. Carbon regeneration in the Cariaco Basin, Venezuela

    Directory of Open Access Journals (Sweden)

    Arístides Marquez

    Full Text Available Abstract The carbon regeneration in the water column of the Cariaco Basin (Venezuela was investigated using a regression model of total alkalinity (TA and the concentration of total inorganic carbon (TCO2. Primary productivity (PP was determined from the inorganic carbon fraction assimilated by phytoplankton and the variation of the 22 and 23ºC isotherm was used as an indicator of coastal upwelling. The results indicate that CO2 levels were lowest (1962 µmol/kg at the surface and increased to 2451 µmol/kg below the oxic-anoxic redox interface. The vertical regeneration distribution of carbon was dominated (82% by organic carbon originating from the soft tissue of photosynthetic organisms, whereas 18% originated from the dissolution of biogenic calcite. The regeneration of organic carbon was highest in the surface layer in agreement with the primary productivity values. However, at the oxic-anoxic interface a second more intense maximum was detected (70-80%, generated by chemotrophic respiration of organic material by microorganisms. The percentages in the anoxic layers were lower than in the oxic zone because aerobic decomposition occurs more rapidly than anaerobic respiration of organic material because more labile fractions of organic carbon have already been mineralized in the upper layers.

  19. A COMPUTATIONAL HYDRODYNAMIC ANALYSIS OF DUISBURG TEST CASE WITH FREE SURFACE AND PROPELLER

    Directory of Open Access Journals (Sweden)

    Omer Kemal Kinaci

    2016-01-01

    Full Text Available This paper discusses the effects of the free surface and the propeller on a benchmark Post-Panamax Ship, Duisburg Test Case (DTC. The experimental results are already available in the literature. The computational study carried out in this work is verified first with the experiments and then used to explain some of the physical aspects associated with viscous ship flows. There are two interesting outcomes of this work. The first one is, the existence of the propeller contributes to the pressure resistance of the ship by increasing the wave elevations along the hull and the fluid domain substantially. The second outcome is; by changing the pressure distribution along the hull and the propeller, the free surface increases the efficiency of the propulsion system. These specific outcomes are thoroughly discussed in the paper with CFD generated results and physical explanations.

  20. Microbiological soil regeneration

    International Nuclear Information System (INIS)

    Behrens, D.; Wiesner, J.

    1992-01-01

    The Interdiciplinary Task Force ''Environmental Biotechnology - Soil'' of DECHEMA aims to pool the knowledge potential of the Dechema study committees on environmental biotechnology and soil protection with a view to the advancement of microbiological soil decontamination techniques. This conference volume on the 9th expert meeting of Dechema on environmental protection subjects entitled ''Microbiological Soil Regeneration'', held on February 27th and 28th, 1991, and the subsequent compilation of results give an intermediate account of the ongoing work of the Dechema Task Force. (orig.) [de

  1. Low Temperature Regenerator Study.

    Science.gov (United States)

    1979-08-01

    a definite value: where eis Avogadros number k is the Boltzman constant and V. is the gas constant. This relationship, known as the law of Dulong and...for bulk material. 2.2 Bulk Lattice Specific Heat The first law of thermodynamics is written as S = 4 + (2) wheresis heat absorbed by a system 1Uis...TEMPERATURE REGENERATOR STUDY. Augutwt -*e Aug4W79 7. AUHO~t()_,_ . CONTRACT OR GRANT NUN8ER( s ) P. 7J.alshF33615-78-c-3425-( 9. PERFORMING

  2. A surprisingly poor correlation between in vitro and in vivo testing of biomaterials for bone regeneration: results of a multicentre analysis.

    Science.gov (United States)

    Hulsart-Billström, G; Dawson, J I; Hofmann, S; Müller, R; Stoddart, M J; Alini, M; Redl, H; El Haj, A; Brown, R; Salih, V; Hilborn, J; Larsson, S; Oreffo, R O

    2016-05-24

    New regenerative materials and approaches need to be assessed through reliable and comparable methods for rapid translation to the clinic. There is a considerable need for proven in vitro assays that are able to reduce the burden on animal testing, by allowing assessment of biomaterial utility predictive of the results currently obtained through in vivo studies. The purpose of this multicentre review was to investigate the correlation between existing in vitro results with in vivo outcomes observed for a range of biomaterials. Members from the European consortium BioDesign, comprising 8 universities in a European multicentre study, provided data from 36 in vivo studies and 47 in vitro assays testing 93 different biomaterials. The outcomes of the in vitro and in vivo experiments were scored according to commonly recognised measures of success relevant to each experiment. The correlation of in vitro with in vivo scores for each assay alone and in combination was assessed. A surprisingly poor correlation between in vitro and in vivo assessments of biomaterials was revealed indicating a clear need for further development of relevant in vitro assays. There was no significant overall correlation between in vitro and in vivo outcome. The mean in vitro scores revealed a trend of covariance to in vivo score with 58 %. The inadequacies of the current in vitro assessments highlighted here further stress the need for the development of novel approaches to in vitro biomaterial testing and validated pre-clinical pipelines.

  3. Surface self-potential patterns related to transmissive fracture trends during a water injection test

    Science.gov (United States)

    DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB

    2018-03-01

    Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.

  4. Design, enhanced Thermal and Flow efficiency of a 2KW active magnetic regenerator

    DEFF Research Database (Denmark)

    Dallolio, Stefano; Eriksen, Dan; Engelbrecht, Kurt

    power of 1500 W over a temperature span of 25 K. This paper explains several details of the device, such as the design of the magnet, the regenerator housing and the flow system. In particular, this paper investigates the best geometry for the regenerator bed to achieve a thermal and mechanically....... These quantities have been decreased by creating an embossment on the bottom surface of the regenerator and by placing a thin rubber sheet between the magnetocaloric material and the steel lid, respectively....

  5. Development of a test system for the determination of biodegradability in surface waters

    International Nuclear Information System (INIS)

    Kalsch, W.; Knacker, T.; Robertz, M.; Schallnass, H.J.

    1997-01-01

    The study presented here describes the development of a laboratory test system for the determination of aerobic biodegradability of substances at low concentrations in surface water. It was aimed to prepare a draft guideline for a biodegradation simulation test according to OECD format. The experimental approach was based on a literature study conducted within the frame of this project. Further useful information on the possible test design was derived from the German BBA guideline 5-1. Natural water and sediments were collected. Radiolabelled Lindane or 4-Nitrophenol was added. The test vessels (reactors) were aerated and incubated under controlled conditions for up to 92 days. The results showed biological stability of the sediment/water systems even without addition of nutrients and adherence to non-reducing conditions. Mineralisation of 4-Nitrophenol was influenced by the sediment type, the method of aeration and temperature. Factors affecting the mineralisation of Lindane were the method of application and again, the sediment type and temperature. Considerable amounts of the radioactivity were bound to the sediment and were to a large extent unextractable. The potential of a reactor to mineralise a test substance could not be correlated with the biological parameters measured. (orig.) [de

  6. Testing external surface of fuel element tubes for power nuclear reactors

    International Nuclear Information System (INIS)

    Naugol'nykh, O.G.; Nelyubin, Yu.V.

    1987-01-01

    Optical methods are regarded perspective for discovery and detection of flaws of external surfaces of fuel element tubes. The TV method has highest information content among them. Two mock-ups of facilities based on the TV method using a ''dissector'' type TV device and a TV tube with charge accumulation (vidikon) have been developed. It is concluded that complex testing - combination of ultrasonic, photoelectric and TV methods in a facility is necessary for discovery and analysis of the whole variety of flaws, though sensitivity of the TV method is enough for disclosure of all the main defects

  7. Development of a Novel Degradation-Controlled Magnesium-Based Regeneration Membrane for Future Guided Bone Regeneration (GBR Therapy

    Directory of Open Access Journals (Sweden)

    Da-Jun Lin

    2017-11-01

    Full Text Available This study aimed to develop and evaluate the ECO-friendly Mg-5Zn-0.5Zr (ECO505 alloy for application in dental-guided bone regeneration (GBR. The microstructure and surface properties of biomedical Mg materials greatly influence anti-corrosion performance and biocompatibility. Accordingly, for the purpose of microstructure and surface modification, heat treatments and surface coatings were chosen to provide varied functional characteristics. We developed and integrated both an optimized solution heat-treatment condition and surface fluoride coating technique to fabricate a Mg-based regeneration membrane. The heat-treated Mg regeneration membrane (ARRm-H380 and duplex-treated regeneration membrane group (ARRm-H380-F24 h were thoroughly investigated to characterize the mechanical properties, as well as the in vitro corrosion and in vivo degradation behaviors. Significant enhancement in ductility and corrosion resistance for the ARRm-H380 was obtained through the optimized solid-solution heat treatment; meanwhile, the corrosion resistance of ARRm-H380-F24 h showed further improvement, resulting in superior substrate integrity. In addition, the ARRm-H380 provided the proper amount of Mg-ion concentration to accelerate bone growth in the early stage (more than 80% new bone formation. From a specific biomedical application point of view, these research results point out a successful manufacturing route and suggest that the heat treatment and duplex treatment could be employed to offer custom functional regeneration membranes for different clinical patients.

  8. First accelerator test of vacuum components with laser-engineered surfaces for electron-cloud mitigation

    Science.gov (United States)

    Calatroni, Sergio; Garcia-Tabares Valdivieso, Elisa; Neupert, Holger; Nistor, Valentin; Perez Fontenla, Ana Teresa; Taborelli, Mauro; Chiggiato, Paolo; Malyshev, Oleg; Valizadeh, Reza; Wackerow, Stefan; Zolotovskaya, Svetlana A.; Gillespie, W. Allan; Abdolvand, Amin

    2017-11-01

    Electron cloud mitigation is an essential requirement for high-intensity proton circular accelerators. Among other solutions, laser engineered surface structures (LESS) present the advantages of having potentially a very low secondary electron yield (SEY) and allowing simple scalability for mass production. Two copper liners with LESS have been manufactured and successfully tested by monitoring the electron cloud current in a dipole magnet in the SPS accelerator at CERN during the 2016 run. In this paper we report on these results as well as the detailed experiments carried out on samples—such as the SEY and topography studies—which led to an optimized treatment in view of the SPS test and future possible use in the HL-LHC.

  9. The testing of sanitizers efficacy to enterococci adhered on glass surfaces

    Directory of Open Access Journals (Sweden)

    Margita Čanigová

    2015-08-01

    Full Text Available The aim of this work was to test the ability of 6 strains of enterococci to adhere on glass surfaces in environment with different content of milk residues and then to evaluate efficacy of 2 commercial sanitizers (alkaline and acidic used in milk production. Tested enterococci were isolated from milk, dairy products and from rinse water after sanitation milking machine. Suspension of enterococci (8 log CFU.ml-1 was prepared in phosphate buffered saline (PBS, PBS with content 0.1% and 1% of skimmed reconstituted milk. Glass plates were immersed into bacterial suspension for 1 h at 37 °C. The number of enterococci adhered on glass surface in PBS achieved an average value 3.47 log CFU.mm-2, in PBS with 0.1% of milk 2.90 CFU.mm-2, in PBS with 1% of milk 2.63 CFU.mm-2. Differences between the tested files were not statistically significant (p >0.05. In the second part of work the glass plates with adhered enterococci were exposed to the effect of alkaline sanitizer (on basis of NaOH and NaClO, respectively acidic sanitizer (on basis of H3PO4. Sanitation solutions were prepared and tested according to manufacturer recommendations (concentration 0.25%, contact time 20 min, temperature   20 °C. Alkaline sanitation solution was 100% effective against all tested enterococci regardless to content of milk residues in environment. Acidic sanitation solution was 100% effective only against E. faecalisD (isolated from rinse water after sanitation. Average value of reduction of enterococci with acidic sanitation solution, which were on glass plates in environment PBS was 2.84 CFU.mm-2, in PBS with 0.1% of milk was 2.45 CFU.mm-2 and in PBS with 1% of milk was 2.16 CFU.mm-2. It can be concluded, that increase of milk residues in environment decrease the adhesion of enterococci on glass surface, but also effectiveness of acidic sanitation solution.

  10. Plant regeneration of indica rice (Oryza sativa) cultivars from mature embryo-derived calli.

    Science.gov (United States)

    Valdez, M; Muñoz, M; Vega, J R; Espinoza, A M

    1997-03-01

    Plant regeneration from seven-week-old callus cultures derived from mature embryos of several indica rice cultivars was achieved with frequencies of morphogenic calli from 10 to 47%. Three media were tested both for callogenesis and plant regeneration. For 3 of the 7 genotypes examined, the best combination of media for plant regeneration was Murashige & Skoog basal medium: MSC (callogenesis) and MSR (regeneration). The rates of callogenesis were not related to the capacity for plant regeneration. Two genotypes CR-1113 and CR-5272 produced the highest number of regenerated green plants. The results of this study suggest that genetic differences could be directly linked to the ability to regenerate in these plant cultivars.

  11. Synthesis and characterization of polycaprolactone for anterior cruciate ligament regeneration

    International Nuclear Information System (INIS)

    Gurlek, Ayse Cansu; Sevinc, Burcu; Bayrak, Ece; Erisken, Cevat

    2017-01-01

    Anterior cruciate ligament (ACL) is the most frequently torn ligament in the knee, and complete healing is unlikely due to lack of vascularization. Current approaches for the treatment of ACL injuries include surgical interventions and grafting, however recent reports show that surgeries have 94% recurrency, and that repaired tissues are biomechanically inferior to the native tissue. These necessitate the need for new strategies for scar-free repair/regeneration of ACL injuries. Polycaprolactone (PCL) is a biodegradable and biocompatible synthetic polymer, which has been widely used in the connective tissue repair/regeneration attempts. Here, we report on the synthesis of PCL via ring opening polymerization using ε-caprolactone as the monomer, and ammonium heptamolybdate as a catalyst. The synthesized PCL was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. It was then processed using electrospinning to form nanofiber-based scaffolds. These scaffolds were characterized in terms of surface as well as mechanical properties, and compared to the properties of commercially available PCL, and of native ACL tissue harvested from sheep. In addition, scaffolds fabricated with synthesized PCL were evaluated regarding their cell attachment capacity using human bone marrow mesenchymal stem cells (hBMSCs). Our findings demonstrated that the synthesized PCL is similar to its commercially available counterpart in terms of surface morphology and mechanical properties. In addition, fibrous scaffolds generated with electrospinning showed weaker mechanical properties visa vis native ACL tissue in terms of ultimate stress, and elastic modulus. Also, the synthesized PCL can accommodate cell attachment when tested with hBMSCs. Putting together, these observations reveal that the PCL synthesized in this study could be a good candidate as a biomaterial for ligament repair or regeneration. - Highlights: • Synthesis of

  12. Manipulations to regenerate aspen ecosystems

    Science.gov (United States)

    Wayne D. Shepperd

    2001-01-01

    Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...

  13. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  14. An experimental study on the performance of the moving regenerator for a γ-type twin power piston Stirling engine

    International Nuclear Information System (INIS)

    Chen, Wen-Lih; Wong, King-Leung; Chen, Hung-En

    2014-01-01

    Highlights: • Stacked-woven metal screens have been used as regenerator matrix materials. • Copper has been found as a superior regenerator matrix material than stainless steel. • Working gas flow direction has to be normal to screen surface to produce good engine performance. • Pressure drop through the regenerator plays a very important role on performance. • There exists an optimal fill factor. - Abstract: In this paper, a helium charge γ-type twin power piston Stirling engine has been studied experimentally to understand the effects of several regenerator parameters on the overall performance of the engine. The regenerator incorporated in this engine is a moving regenerator which is housed inside the displacer of the engine, and the parameters investigated include regenerator matrix material, matrices arrangement, matrix wire diameter, and fill factor. Stacked-woven metal screens have been used as regenerator matrix materials. The results include engine shaft torque, power, and efficiency versus engine speed at several engine’s hot-end temperatures. It is found that all parameters pose significant impact on engine performance. Copper is a superior regenerator material than stainless steel for the current engine; regenerator matrix screens have to be installed in a manner that the working-gas-flow direction is normal to the surface of matrix screens; very small wire diameter results in large pressure drop and reduce regenerator effectiveness; and there exists an optimal fill factor. The study offers some important information for the design of moving regenerator in a γ-type Stirling engine

  15. A new design of the LAPS land surface scheme for use over and through heterogeneous and non-heterogeneous surfaces: Numerical simulations and tests

    Science.gov (United States)

    Mihailovic, Dragutin T.; Lazic, Jelena; Leśny, Jacek; Olejnik, Janusz; Lalic, Branislava; Kapor, Darko; Cirisan, Ana

    2010-05-01

    Numerical simulations and tests with the recently redesigned land-air parameterization scheme (LAPS) are presented. In all experiments, supported either by one-point micrometeorological, 1D or 3D simulations, the attention has been directed to: (1) comparison of simulation outputs, expressing the energy transfer over and through heterogeneous and non-heterogeneous surfaces, versus observations and (2) analysis of uncertainties occurring in the solution of the energy balance equation at the land-air interface. To check the proposed method for aggregation of albedo, "propagating hole" sensitivity tests with LAPS over a sandstone rock grid cell have been performed with the forcing meteorological data for July 17, 1999 in Baxter site, Philadelphia (USA). Micrometeorological and biophysical measurements from the surface experiments conducted over crops and apple orchard in Serbia, Poland, Austria and France were used to test the operation of LAPS in calculating surface fluxes and canopy environment temperatures within and above plant covers of different densities. In addition, sensitivity tests with single canopy covers over the Central Europe region and comparison against the observations taken from SYNOP data using 3D simulations were made. Validation of LAPS performances over a solid surface has been done by comparison of 2 m air temperature observations against 5-day simulations over the Sahara Desert rocky ground using 3D model. To examine how realistically the LAPS simulates surface processes over a heterogeneous surface, we compared the air temperature measured at 2 m and that predicted by the 1D model with the LAPS as the surface scheme. Finally, the scheme behaviour over urban surface was tested by runs over different parts of a hypothetical urban area. The corresponding 1D simulations were carried out with an imposed meteorological dataset collected during HAPEX-MOBILHY experiment at Caumont (France). The quantities predicted by the LAPS compare well with the

  16. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    Science.gov (United States)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  17. Test-retest reliability of trunk motor variability measured by large-array surface electromyography.

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Loranger, Michel; Descarreaux, Martin

    2015-01-01

    The objective of this study was to evaluate the test-retest reliability of the trunk muscle activity distribution in asymptomatic participants during muscle fatigue using large-array surface electromyography (EMG). Trunk muscle activity distribution was evaluated twice, with 3 to 4 days between them, in 27 asymptomatic volunteers using large-array surface EMG. Motor variability, assessed with 2 different variables (the centroid coordinates of the root mean square map and the dispersion variable), was evaluated during a low back muscle fatigue task. Test-retest reliability of muscle activity distribution was obtained using Pearson correlation coefficients. A shift in the distribution of EMG amplitude toward the lateral-caudal region of the lumbar erector spinae induced by muscle fatigue was observed. Moderate to very strong correlations were found between both sessions in the last 3 phases of the fatigue task for both motor variability variables, whereas weak to moderate correlations were found in the first phases of the fatigue task only for the dispersion variable. These findings show that, in asymptomatic participants, patterns of EMG activity are less reliable in initial stages of muscle fatigue, whereas later stages are characterized by highly reliable patterns of EMG activity. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  18. Laboratory coupling tests for optimum land streamer design over sand dunes surface

    KAUST Repository

    Almalki, Hashim

    2012-02-26

    The cost of data acquisition in land is becoming a major issue as we strive to cover larger areas with seismic surveys at high resolution. Over sand dunes the problem is compounded by the week coupling obtain using geophones, which often forces us to bury the phone. A major challenge is designing such a land streamer system that combines durability, mobility and the required coupling. We share a couple of such designs and discuss the merits behind such designs and test their capability. The testing includes, the level of coupling, mobility and drag over sand surfaces. For specific designs loose sand can accumulate inside the steamer reducing its mobility. On the other hand, poor coupling will attenuate the high frequencies and cause an effective delay in the signal. The weight of the streamer is also an important factor in both mobility and coupling as it adds to the coupling it reduces the mobility of the streamer. We study the impact of weight and base plate surface area on the seismic signal quality, as well as the friction factor of different designs.

  19. The Basis of Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    Antonio Musarò

    2014-01-01

    Full Text Available Muscle regeneration recapitulates many aspects of embryonic myogenesis and is an important homeostatic process of the adult skeletal muscle, which, after development, retains the capacity to regenerate in response to appropriate stimuli, activating the muscle compartment of stem cells, namely, satellite cells, as well as other precursor cells. Moreover, significant evidence suggests that while stem cells represent an important determinant for tissue regeneration, a “qualified” environment is necessary to guarantee and achieve functional results. It is therefore plausible that the loss of control over these cell fate decisions could lead to a pathological transdifferentiation, leading to pathologic defects in the regenerative process. This review provides an overview about the general aspects of muscle development and discusses the cellular and molecular aspects that characterize the five interrelated and time-dependent phases of muscle regeneration, namely, degeneration, inflammation, regeneration, remodeling, and maturation/functional repair.

  20. Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology.

    Science.gov (United States)

    Urbanová, Petra; Hejna, Petr; Jurda, Mikoláš

    2015-05-01

    Three-dimensional surface technologies particularly close range photogrammetry and optical surface scanning have recently advanced into affordable, flexible and accurate techniques. Forensic postmortem investigation as performed on a daily basis, however, has not yet fully benefited from their potentials. In the present paper, we tested two approaches to 3D external body documentation - digital camera-based photogrammetry combined with commercial Agisoft PhotoScan(®) software and stereophotogrammetry-based Vectra H1(®), a portable handheld surface scanner. In order to conduct the study three human subjects were selected, a living person, a 25-year-old female, and two forensic cases admitted for postmortem examination at the Department of Forensic Medicine, Hradec Králové, Czech Republic (both 63-year-old males), one dead to traumatic, self-inflicted, injuries (suicide by hanging), the other diagnosed with the heart failure. All three cases were photographed in 360° manner with a Nikon 7000 digital camera and simultaneously documented with the handheld scanner. In addition to having recorded the pre-autopsy phase of the forensic cases, both techniques were employed in various stages of autopsy. The sets of collected digital images (approximately 100 per case) were further processed to generate point clouds and 3D meshes. Final 3D models (a pair per individual) were counted for numbers of points and polygons, then assessed visually and compared quantitatively using ICP alignment algorithm and a cloud point comparison technique based on closest point to point distances. Both techniques were proven to be easy to handle and equally laborious. While collecting the images at autopsy took around 20min, the post-processing was much more time-demanding and required up to 10h of computation time. Moreover, for the full-body scanning the post-processing of the handheld scanner required rather time-consuming manual image alignment. In all instances the applied approaches

  1. IASI's sensitivity to near-surface carbon monoxide (CO): Theoretical analyses and retrievals on test cases

    Science.gov (United States)

    Bauduin, Sophie; Clarisse, Lieven; Theunissen, Michael; George, Maya; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François

    2017-03-01

    Separating concentrations of carbon monoxide (CO) in the boundary layer from the rest of the atmosphere with nadir satellite measurements is of particular importance to differentiate emission from transport. Although thermal infrared (TIR) satellite sounders are considered to have limited sensitivity to the composition of the near-surface atmosphere, previous studies show that they can provide information on CO close to the ground in case of high thermal contrast. In this work we investigate the capability of IASI (Infrared Atmospheric Sounding Interferometer) to retrieve near-surface CO concentrations, and we quantitatively assess the influence of thermal contrast on such retrievals. We present a 3-part analysis, which relies on both theoretical forward simulations and retrievals on real data, performed for a large range of negative and positive thermal contrast situations. First, we derive theoretically the IASI detection threshold of CO enhancement in the boundary layer, and we assess its dependence on thermal contrast. Then, using the optimal estimation formalism, we quantify the role of thermal contrast on the error budget and information content of near-surface CO retrievals. We demonstrate that, contrary to what is usually accepted, large negative thermal contrast values (ground cooler than air) lead to a better decorrelation between CO concentrations in the low and the high troposphere than large positive thermal contrast (ground warmer than the air). In the last part of the paper we use Mexico City and Barrow as test cases to contrast our theoretical predictions with real retrievals, and to assess the accuracy of IASI surface CO retrievals through comparisons to ground-based in-situ measurements.

  2. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J., E-mail: icorreia@ubi.pt

    2015-10-01

    Recently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure. - Highlights: • Production of 3D scaffolds composed by chitosan/gelatin/β-TCP by freeze-drying for bone regeneration • Physicochemical characterization of the bone substitutes by SEM, FTIR, XRD and EDS • Evaluation of the cytotoxic profile and antibacterial activity of the 3D structures through in vitro assays.

  3. Impact of FCC regenerator design in the NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Hugo Borges; Sandes, Emanuel Freire; Gilbert, William Richard; Roncolatto, Rodolfo Eugenio; Gobbo, Rodrigo; Casavechia, Luiz Carlos; Candido, William Victor Carlos [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Bridi, Patricia Elaine [Possebon Engenharia, Sao Mateus do Sul, PR (Brazil)

    2012-07-01

    Fluid Catalytic Cracking (FCC) is the main point source of NOx in the refinery and it is responsible for at least 20% of the total NOx emissions from the refineries. The thermal NOx formation in the FCC regenerator is negligible. However, half of the feed nitrogen is converted to coke, and is burned in the regenerator. The majority of coke nitrogen is reduced to N2 and less than 10% is converted to NOx. This number may vary significantly with the oxygen excess in the flue gas and other operational conditions. With the purpose of evaluating the impact of different regenerator designs in NOx formation, several tests were carried out in the PETROBRAS FCC prototype unit. The test unit is equipped with adiabatic insulation and a CO boiler, allowing it to reproduce the heat balance of a commercial FCC and to operate either in full combustion or partial combustion. Two different designs of FCC regenerators were evaluated: single stage regenerator (the existing configuration) and two stage regenerator, with the catalyst bed divided into two sections by a structured packing baffle. It was observed in the tests that the combustion regime had a very strong effect on NOx formation. In full combustion, the effect of the FCC operating variables: excess oxygen, combustion promoter content in catalyst and regenerator design could be identified. The two stage configuration was capable of decreasing NOx emissions by 30%. In partial combustion, the effect of the CO-boiler variables on NOx emissions was overwhelming, but the use of the structured packing baffle was able to improve the catalyst regeneration.(author)

  4. False-positive result when a diphenylcarbazide spot test is used on trivalent chromium-passivated zinc surfaces

    DEFF Research Database (Denmark)

    Reveko, Valeriia; Lampert, Felix; Din, Rameez Ud

    2018-01-01

    A colorimetric 1,5-diphenylcarbazide (DPC)-based spot test can be used to identify hexavalent chromium on various metallic and leather surfaces. DPC testing on trivalent chromium-passivated zinc surfaces has unexpectedly given positive results in some cases, apparently indicating the presence...... was used for the initial detection of hexavalent chromium on new and 1-year-aged trivalent chromium-passivated zinc surfaces. Then, X-ray photoelectron spectroscopy (XPS) was performed for all samples. Results The DPC spot test indicated the presence of hexavalent chromium in aged, but not new, trivalent...

  5. Design and Testing of a Prototype Lunar or Planetary Surface Landing Research Vehicle (LPSLRV)

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    This handbook describes a two-semester senior design course sponsored by the NASA Office of Education, the Exploration Systems Mission Directorate (ESMD), and the NASA Space Grant Consortium. The course was developed and implemented by the Mechanical and Aerospace Engineering Department (MAE) at Utah State University. The course final outcome is a packaged senior design course that can be readily incorporated into the instructional curriculum at universities across the country. The course materials adhere to the standards of the Accreditation Board for Engineering and Technology (ABET), and is constructed to be relevant to key research areas identified by ESMD. The design project challenged students to apply systems engineering concepts to define research and training requirements for a terrestrial-based lunar landing simulator. This project developed a flying prototype for a Lunar or Planetary Surface Landing Research Vehicle (LPSRV). Per NASA specifications the concept accounts for reduced lunar gravity, and allows the terminal stage of lunar descent to be flown either by remote pilot or autonomously. This free-flying platform was designed to be sufficiently-flexible to allow both sensor evaluation and pilot training. This handbook outlines the course materials, describes the systems engineering processes developed to facilitate design fabrication, integration, and testing. This handbook presents sufficient details of the final design configuration to allow an independent group to reproduce the design. The design evolution and details regarding the verification testing used to characterize the system are presented in a separate project final design report. Details of the experimental apparatus used for system characterization may be found in Appendix F, G, and I of that report. A brief summary of the ground testing and systems verification is also included in Appendix A of this report. Details of the flight tests will be documented in a separate flight test

  6. Bone regeneration in dentistry

    Science.gov (United States)

    Tonelli, Paolo; Duvina, Marco; Barbato, Luigi; Biondi, Eleonora; Nuti, Niccolò; Brancato, Leila; Rose, Giovanna Delle

    2011-01-01

    Summary The edentulism of the jaws and the periodontal disease represent conditions that frequently leads to disruption of the alveolar bone. The loss of the tooth and of its bone of support lead to the creation of crestal defects or situation of maxillary atrophy. The restoration of a functional condition involves the use of endosseous implants who require adequate bone volume, to deal with the masticatory load. In such situations the bone need to be regenerated, taking advantage of the biological principles of osteogenesis, osteoinduction and osteoconduction. Several techniques combine these principles with different results, due to the condition of the bone base on which we operate changes, the surgical technique that we use, and finally for the bone metabolic conditions of the patient who can be in a state of systemic osteopenia or osteoporosis; these can also affect the result of jaw bone reconstruction. PMID:22461825

  7. Results from neutral kaon regeneration at high energies

    International Nuclear Information System (INIS)

    Hladky, J.

    1976-01-01

    Experimental neutral kaon regeneration results at Serpukhov energies up to 50 GeV are presented, including the coherent regeneration on hydrogen, deuterium and carbon regenerators and elastic regeneration on deuterium and carbon regenerators. (author)

  8. Microporous dermal-like electrospun scaffolds promote accelerated skin regeneration.

    Science.gov (United States)

    Bonvallet, Paul P; Culpepper, Bonnie K; Bain, Jennifer L; Schultz, Matthew J; Thomas, Steven J; Bellis, Susan L

    2014-09-01

    The goal of this study was to synthesize skin substitutes that blend native extracellular matrix (ECM) molecules with synthetic polymers which have favorable mechanical properties. To this end, scaffolds were electrospun from collagen I (col) and poly(ɛ-caprolactone) (PCL), and then pores were introduced mechanically to promote fibroblast infiltration, and subsequent filling of the pores with ECM. A 70:30 col/PCL ratio was determined to provide optimal support for dermal fibroblast growth, and a pore diameter, 160 μm, was identified that enabled fibroblasts to infiltrate and fill pores with native matrix molecules, including fibronectin and collagen I. Mechanical testing of 70:30 col/PCL scaffolds with 160 μm pores revealed a tensile strength of 1.4 MPa, and the scaffolds also exhibited a low rate of contraction (pores. Keratinocytes formed a stratified layer on the surface of fibroblast-remodeled scaffolds, and staining for cytokeratin 10 revealed terminally differentiated keratinocytes at the apical surface. When implanted, 70:30 col/PCL scaffolds degraded within 3-4 weeks, an optimal time frame for degradation in vivo. Finally, 70:30 col/PCL scaffolds with or without 160 μm pores were implanted into full-thickness critical-sized skin defects. Relative to nonporous scaffolds or sham wounds, scaffolds with 160 μm pores induced accelerated wound closure, and stimulated regeneration of healthy dermal tissue, evidenced by a more normal-appearing matrix architecture, blood vessel in-growth, and hair follicle development. Collectively, these results suggest that microporous electrospun scaffolds are effective substrates for skin regeneration.

  9. Failure Analysis and Regeneration Performances Evaluation on Engine Lubricating Oil

    Science.gov (United States)

    Wang, X. L.; Zhang, G. N.; Zhang, J. Y.; Yin, Y. L.; Xu, Y.

    To investigate the behavior of failure and recycling of lubricating oils, three sorts of typical 10w-40 lubricating oils used in heavy-load vehicle including the new oil, waste oil and regeneration oil regenerated by self-researched green regeneration technology were selected. The tribology properties were tested by four-ball friction wear tester as well. The results indicated that the performance of anti-extreme pressure of regeneration oil increase by 34.1% compared with the waste one and its load- carrying ability is close to the new oil; the feature of wear spot are better than those of the waste oil and frictional coefficient almost reach the level of the new oil's. As a result, the performance of anti-wear and friction reducing are getting better obviously.

  10. Regenerating the English coalfields

    Energy Technology Data Exchange (ETDEWEB)

    Morse, A. [National Audit Office, London (United Kingdom)

    2009-12-17

    In England 124 coalfield pits out of 130 have closed since 1981, resulting in 193,000 job losses from an industry of 200,000. This report by Amyas Morse, the Comptroller and Auditor General, examines the progress and impact of the Department for Communities and Local Government's (the Department) three specific initiatives to tackle coalfields' regeneration in England: the National Coalfields Programme, to decontaminate and find uses for former coalfield sites; the Coalfield Regeneration Trust, to provide grants to community projects; and the Enterprise fund, to support businesses. The cost for these three schemes is 630 million pounds to date and spending is set to reach almost 1.1 billion pounds. The National Coalfields Programme has brought into new use 54 of 107 former coalfield sites, making them suitable for private development or recreational use; and work is underway on a further 22 sites. Private developers have built housing and employment space on 44 sites. The Programme expects to have treated 90 per cent of land by its target completion date of 2012 and it will take twice the ten-year timescale of the original Programme to achieve its aims for housing and employment space. While the Trust has helped to fund over 3,000 community projects and exceeded most of its targets, including building or enhancing over 2,300 community centres, because of strict funding cycles for departments it can currently offer support only up to 2011 and so the future of many projects is at risk. The Department for Communities and Location Government took five years to put the Enterprise Fund in place because of delays in meeting state aid requirements and protracted and unsuccessful negotiations with a private bank. The Fund has invested 6.5 million in 23 companies employing a total of 312 people. 12 figs., 2 apps.

  11. Peripheral nerve regeneration through a silicone chamber implanted with negative carbon ions: Possibility to clinical application

    Science.gov (United States)

    Ikeguchi, Ryosuke; Kakinoki, Ryosuke; Tsuji, Hiroshi; Yasuda, Tadashi; Matsuda, Shuichi

    2014-08-01

    We investigated whether a tube with its inner surface implanted with negative-charged carbon ions (C- ions) would enable axons to extend over a distance greater than 10 mm. The tube was found to support nerves regenerating across a 15-mm-long inter-stump gap. We also investigated whether a C- ion-implanted tube pretreated with basic fibroblast growth factor (bFGF) promotes peripheral nerve regeneration. The C- ion implanted tube accelerated nerve regeneration, and this effect was enhanced by bFGF. Silicone treated with C- ions showed increased hydrophilic properties and cellular affinity, and axon regeneration was promoted with this increased biocompatibility.

  12. Staphylococcus aureus biofilm formation and antibiotic susceptibility tests on polystyrene and metal surfaces.

    Science.gov (United States)

    Coraça-Huber, D C; Fille, M; Hausdorfer, J; Pfaller, K; Nogler, M

    2012-06-01

    We compared the MBEC™-HTP assay plates made of polystyrene with metal discs composed of TMZF(®) and CrCo as substrates for biofilm formation. Staphylococcus aureus was grown on polystyrene and on metal discs made of titanium and chrome-cobalt. Antibiotic susceptibility was assessed by examining the recovery of cells after antibiotic exposure and by measuring the biofilm inhibitory concentration (BIC). The minimal inhibitory concentration (MIC) was assessed with planktonic cells. Bacterial growth was examined by scanning electron microscopy. The antibiotic concentration for biofilm inhibition (BIC) was higher than the MIC for all antibiotics. Microscopic images showed the biofilm structure characterized by groups of cells covered by a film. All models allowed biofilm formation and testing with several antibiotics in vitro. Gentamicin and rifampicin are the most effective inhibitors of Staph. aureus biofilm-related infections. We recommend MBEC™-HTP assay for rapid testing of multiple substances and TMZF(®) and CrCo discs for low-throughput testing of antibiotic susceptibility and for microscopic analysis. In vitro assays can improve the understanding of biofilms and help developing methods to eliminate biofilms from implant surfaces. One advantage of the TMZF(®) and CrCo discs as biofilm in vitro assay is that these metals are commonly used for orthopaedic implants. These models are usable for future periprosthetic joint infection studies. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  13. Standard Test Method for Effects of Cleaning and Chemical Maintenance Materials on Painted Aircraft Surfaces

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers determination of the effects of cleaning solutions and liquid cleaner concentrates on painted aircraft surfaces (Note 1). Streaking, discoloration, and blistering may be determined visually. Softening is determined with a series of specially prepared pencils wherein determination of the softest pencil to rupture the paint film is made. Note 1—This test method is applicable to any paint film that is exposed to cleaning materials. MIL-PRF-85285 has been selected as a basic example. When other paint finishes are used, refer to the applicable material specification for panel preparation and system curing prior to testing. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user ...

  14. Effect of the Enveloppe Linguale Nocturne on atypical swallowing: surface electromyography and computerised postural test evaluation.

    Science.gov (United States)

    Ciavarella, D; Mastrovincenzo, M; Sabatucci, A; Parziale, V; Chimenti, C

    2010-09-01

    Swallowing is a neuromuscular mechanism regulated by many nervous reflex arcs. Persistence of child swallowing at the end of dental eruption is called atypical swallowing (AS). This condition is related to a dysfunction of vertical maxillary growth called open bite. The authors treated this malocclusion with the Enveloppe Linguale Nocturne (ELN), or tongue positioner, created by Dr. Bonnet. The aim of this work is to evaluate the effect of ELN on swallowing and the postural variation obtained by its use. Seven patients affected by AS were evaluated. Surface Electromyography (sEMG) testing was performed on each patient with different tongue positions, and swallowing was evaluated with and without the ELN. A surface Electromyograph (Biopack) with 8 channels was used (4 channels for the right muscles and 4 for the left) on 4 groups of muscles: temporals, masseters (MM), submental (SUB) and sternocleidmastoids. On each patient a postural test using a computerised Postural test (Lizard) was also performed. Statistical analysis was done using the Graph pad Instat 3 both for sEMG activity and for computerised postural analysis. All seven subjects had different results in the sEMG and footrest tests. The sEMG test results indicated that muscle activation and swallowing duration varied greatly with the use of ELN, with a reduction of time of swallow act (p = 0.002) and variation in contraction of muscles. Mean MM activation was higher without ELN than in tests performed with the appliance (p = 0.002). Mean SUB activation was higher with than without ELN (p = 0.0033). ELN has a therapeutic effect on posture too. Computerised postural test without device showed in all patients an alteration of barycentre as well as an elevated oscillatory record (A mmq; V mms). With ELN footrest kilogram difference (p = 0.0110), Oscillatory Area (P = 0.0102) and velocity of oscillation (P = 0.0102) presented a great reduction in respect to patients record without ELN. With ELN the tongue

  15. Carbon-Based Regenerable Sorbents for the Combined Carbon Dioxide and Ammonia Removal for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Manthina, Venkata; Singh, Prabhakar; Chullen, Cinda

    2014-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs). Since ammonia is the most important TC to be captured, data on TC sorption presented in this paper are limited to ammonia, with results relevant to other TCs to be reported at a later time. The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. The objective of this study was to demonstrate the feasibility of using carbon sorbents for the reversible, concurrent sorption of carbon dioxide and ammonia. Several carbon sorbents were fabricated and tested, and multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also a carbon surface conditioning technique that enhances the combined carbon dioxide and ammonia sorption without impairing sorbent regeneration.

  16. Cardiac Regeneration and Stem Cells.

    Science.gov (United States)

    Zhang, Yiqiang; Mignone, John; MacLellan, W Robb

    2015-10-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world. Copyright © 2015 the American Physiological Society.

  17. Biomaterial Selection for Tooth Regeneration

    Science.gov (United States)

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433

  18. Investigation on deactivation and regeneration of a commercial Ni/Al{sub 2}O{sub 3} catalyst in coal volatile decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.; Ozaki, J.; Morishita, K.; Ida, C.; Takei, M.; Takarada, T. [Gunma Industrial Support Organization, Gumma (Japan)

    2008-09-15

    The deactivation mechanism of a commercial Ni/Al{sub 2}O{sub 3} catalyst used during coal volatile decomposition was investigated by transmission electron microscopy-energy dispersive X-ray spectroscopy (TEMEDS), X-ray diffraction (XRD) and nitrogen adsorption. The existence of carbonous species in the reaction system promoted nickel particle growth during coal volatile decomposition, and subsequent coking from volatile cracking. Throughout the catalyst deactivation tests, coke deposits were observed as encapsulating carbon in the spent catalyst, and nickel particles doubled in size from around 10 to 20 mm. The spent catalyst was regenerated in oxygen at relatively moderate conditions by removing the coke deposits. As a result, the catalyst activity was restored remarkably; 1.7 times the surface area and double pore volume were present in the regenerated catalyst compared to the spent catalyst. Also, the regenerated catalyst showed high activity for coal volatile decomposition. Under catalysis of the regenerated Ni/Al{sub 2}O{sub 3} the tarry material in coal volatile matter could transform much more completely, gaining both high gas yields and high carbon balance. We also found that methanation is structure sensitive to nickel particles. Under the action of the regenerated catalyst, CO formed during coal volatile decomposition could not be further converted into methane, and the product gases provided a higher CO concentration. Noticeably, tar decomposition was confirmed to be less structure sensitive to the nickel particles than CO-methanation.

  19. Stability mechanism of O/W Pickering emulsions stabilized with regenerated cellulose.

    Science.gov (United States)

    Li, Zhe; Wu, Hairong; Yang, Meng; Xu, Derong; Chen, Jun; Feng, Haishun; Lu, Yao; Zhang, Liming; Yu, Yang; Kang, Wanli

    2018-02-01

    The stability and mechanism of O/W Pickering emulsions stabilized with regenerated cellulose were investigated. The Turbiscan Lab Expert Stabilizer, Particle Size Analyser, and Physica MCR301 Rheometer were used. When the concentration of regenerated cellulose increases, the aggregation of regenerated cellulose, emulsion stability and bulk and interfacial viscoelasticity increase as the diameter of the oil droplets decreases. In addition, the emulsions display a typical gel-like characteristic, and the oil-water interfacial shear rheological behaviour slightly differs from that of the O/W Pickering emulsions. This difference can be attributed to the aggregation of regenerated cellulose in the droplet surface under the shear condition. The emulsions exhibit excellent salt resistance at high salt concentrations. Moreover, the regenerated cellulose displays a better temperature resistance than amphiphilic polymer (AP), which is commonly used in oilfields. Hence, commercially available regenerated cellulose can be used as an ideal candidate for enhanced oil recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Regeneration of Exhausted Arsenic Adsorptive media of a Full Scale Treatment System

    Science.gov (United States)

    This presentation will describe the method and results of laboratory tests showing the feasibility of regenerating exhausted, iron-based, adsorptive media and the results of a follow up regeneration test at a full scale system in Twentynine Palms CA. The laboratory studies on se...

  1. Testing of a conceptualisation of catchment scale surface soil moisture in a hydrologic model

    Science.gov (United States)

    Komma, J.; Parajka, J.; Naeimi, V.; Blöschl, G.; Wagner, W.

    2009-04-01

    In this study the simulated surface soil moisture of a dual layer conceptual hydrologic model is tested against ERS scatterometer top soil moisture observations. The study catchment at the Kamp river with a size of 1550 km² is located in north-eastern Austria. The hydrologic simulations in this study are based on a well calibrated hydrologic model. The model consists of a spatially distributed soil moisture accounting scheme and a flood routing component. The spatial and temporal resolutions of the model are 1 x 1 km² and 15 minutes. The soil moisture accounting scheme simulates the mean moisture state over the entire vertical soil column. To get additional information about moisture states in a thin surface soil layer from the continuous rainfall-runoff model, the soil moisture accounting scheme is extended by a thin skin soil storage sitting at the top of the main soil reservoir. The skin soil storage is filled by rain and snow melt. The skin soil reservoir and the main soil reservoir are connected by a bidirectional moisture flux which is assumed to be a linear function of the vertical soil moisture gradient. The calibration of the additional dual layer component is based on hydrologic reasoning and the incorporation of measured soil water contents close to the study catchment. The comparison of the simulated surface soil moisture with the ERS scatterometer top soil moisture observations is performed in the period 1993-2005. On average, about 3 scatterometer images per month with a mean spatial coverage of about 82% are available at the Kamp catchment. The correlation between the catchment mean values of the two top soil moisture estimates changes with the season. The differences tend to be smaller due the summer month from July to October. The results indicate a good agreement between the modelled and remote sensed spatial moisture patterns in the study area.

  2. Investigation of graded strengthened hyper-deformed surfaces by impact treatment: micro-percussion testing

    Science.gov (United States)

    Tumbajoy-Spinel, David; Descartes, Sylvie; Bergheau, Jean-Michel; Al-Baida, Halim; Langlade, Cécile; Kermouche, Guillaume

    2017-05-01

    In the industry, mechanical surface treatments could improve the mechanical behaviour of materials by the means of local hyper-deformation and graded strengthening. Micro-percussion test represents an interesting case scenario to emulate these kinds of conventional treatments (shot-peening, SMAT, roller-burnishing, etc) and go further on microstructural and mechanical characterization at local and global scales. For this technique, every impact is made at the same position by a rigid conical indenter, controlling the number, angle and velocity of impacts. The main issue of this work is to establish a complete description of the transformed microstructures; to understand the mechanisms involved on the formation and growth of refined structures; to make a parametric sensitivity analysis of different impact conditions.

  3. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers

    Science.gov (United States)

    Liu, Chia-Ying; Han, Yin-Yi; Shih, Po-Han; Lian, Wei-Nan; Wang, Huai-Hsien; Lin, Chi-Hung; Hsueh, Po-Ren; Wang, Juen-Kai; Wang, Yuh-Lin

    2016-03-01

    Rapid bacterial antibiotic susceptibility test (AST) and minimum inhibitory concentration (MIC) measurement are important to help reduce the widespread misuse of antibiotics and alleviate the growing drug-resistance problem. We discovered that, when a susceptible strain of Staphylococcus aureus or Escherichia coli is exposed to an antibiotic, the intensity of specific biomarkers in its surface-enhanced Raman scattering (SERS) spectra drops evidently in two hours. The discovery has been exploited for rapid AST and MIC determination of methicillin-susceptible S. aureus and wild-type E. coli as well as clinical isolates. The results obtained by this SERS-AST method were consistent with that by the standard incubation-based method, indicating its high potential to supplement or replace existing time-consuming methods and help mitigate the challenge of drug resistance in clinical microbiology.

  4. Closure Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    International Nuclear Information System (INIS)

    Campbell, K.B.

    2001-11-01

    This Closure Report provides the documentation for closure of the Central Nevada Test Area (CNTA) surface Corrective Action Unit (CAU) 417. The CNTA is located in Hot Creek Valley in Nye County, Nevada, approximately 22.5 kilometers (14 miles) west of U.S. State Highway 6 near the Moores Station historical site, and approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. A nuclear device for Project Faultless was detonated approximately 975 meters (3,200 feet) below ground surface on January 19, 1968, in emplacement boring UC-1 (Department of Energy, Nevada Operation Office [DOE/NV], 1997). CAU 417 consists of 34 Corrective Action Sites (CASs). Site closure was completed using a Nevada Department of Environmental Protection (NDEP) approved Corrective Action Plan (CAP) (DOE/NV, 2000) which was based on the recommendations presented in the NDEP-approved Corrective Action Decision Document (DOE/NV, 1999). Closure of CAU 417 was completed in two phases. Phase I field activities were completed with NDEP concurrence during 1999 as outlined in the Phase I Work Plan, Appendix A of the CAP (DOE/NV, 2000), and as summarized in Section 2.1.2 of this document

  5. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  6. Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2010-01-01

    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.

  7. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  8. Anisotropic steady-flow hydrodynamic parameters of microporous media applied to pulse tube and Stirling cryocooler regenerators

    Science.gov (United States)

    Clearman, W. M.; Cha, J. S.; Ghiaasiaan, S. M.; Kirkconnell, C. S.

    2008-03-01

    The hydrodynamic parameters associated with steady longitudinal and lateral (radial) flow of helium in several widely-used pulse tube and Stirling cryocooler regenerator fillers were measured and correlated in this investigation. Pressure drops in test sections packed with regenerator fillers were experimentally measured. Computational fluid dynamics (CFD) models of the regenerator test sections and their vicinities were developed and simulations were performed in which the regenerator test sections were modeled as porous media. By iterative repetition of the simulations, the longitudinal and radial permeability and Forchheimer inertial coefficients were determined such that they would lead to agreement between experimental measurements and the simulations. The regenerator fillers included 325 and 400 mesh stainless steel screens, stainless steel metal foam, sintered 400 mesh stainless steel screens, and a stack of micromachined perforated plates. The hydrodynamic response of the regenerator fillers were also correlated as friction factors. The results confirm that the aforementioned regenerator fillers are anisotropic.

  9. Development and Testing of Tailored Tool Surfaces for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Sulaiman, Mohd Hafis Bin

    This thesis describes measures taken to minimize or substitute environmentally hazardous lubricants applied in sheet metal forming processes by less harmful lubricants or not applying lubricant at all. The breakdown of lubricant film often leads to galling, and therefore application of the hazard......This thesis describes measures taken to minimize or substitute environmentally hazardous lubricants applied in sheet metal forming processes by less harmful lubricants or not applying lubricant at all. The breakdown of lubricant film often leads to galling, and therefore application......; compressibility of lubricants, application of structured tool surfaces and application of anti-seizure tool coatings. In order to analyze the mechanisms of lubricant entrapment and escape, knowledge of the lubricant bulk modulus characterizing the compressibility of lubricant is required. Two methods were studied...... ironing production of deep drawn, stainless steel cans, Diamond-Like Carbon (DLC) coating were deposited on SRT tools. The DLC coated tools with multi-, double- and single-layer coating structures were tested under severe tribological conditions, i.e, high normal pressure and temperature. A screening test...

  10. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care

    Science.gov (United States)

    Marks, Haley; Schechinger, Monika; Garza, Javier; Locke, Andrea; Coté, Gerard

    2017-06-01

    Point-of-care (POC) device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere - from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS) is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable) criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  11. Definition of the linearity loss of the surface temperature in static tensile tests

    Directory of Open Access Journals (Sweden)

    A. Risitano

    2014-10-01

    Full Text Available Static tensile tests on material for mechanical constructions have pointed out the linearity loss of the surface temperature with the application of load. This phenomenon is due to the heat generation caused by the local microplasticizations which carry the material to deviate from its completely thermoelastic behavior,. The identification of the static load which determines the loss of linearity of the temperature under stress, becomes extremely important to define a first dynamic characterization of the material. The temperature variations that can be recorded during the static test are often very limited (a few tenths of degree for every 100 MPa in steels and they require the use of special sensors able to measure very low temperature variations. The experience acquired in such analysis highlighted that, dealing with highly accurate sensors or with particular materials, the identification of the first linearity loss (often by eye in the temperature curves, can be influenced by the sensibility of the investigator himself and can lead to incorrect estimates. The aim of this work is to validate the above mentioned observations on different steels, by applying the autocorrelation function to the data collected during the application of a static load. This, in order to make the results of the thermal analysis free from the sensitivity of the operator and to make the results as objective as possible, for defining the closest time of the linearity loss in the temperature-time function.

  12. Surface enhanced Raman spectroscopy (SERS for in vitro diagnostic testing at the point of care

    Directory of Open Access Journals (Sweden)

    Marks Haley

    2017-06-01

    Full Text Available Point-of-care (POC device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere – from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted “ASSURED” (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  13. Regenerable Carbon Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Regenerable Carbon Filter (RCF) is proposed for the removal of carbonaceous particulate matter produced in Environmental Control and Life Support (ECLS) processes....

  14. DECOLORIZATION AND CHEMICAL REGENERATION OF ...

    African Journals Online (AJOL)

    GAC) was studied and an improved chemical regeneration method of the exhausted GAC by the color of CAF liquor was investigated. The effects of the GAC dosage, time and temperature on the decoloring efficiency (DE %) were studied.

  15. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed

  16. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO(sub 2) capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO(sub 2) and H(sub 2)O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport

  17. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    Science.gov (United States)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  18. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2011-01-03

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

  19. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    Science.gov (United States)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  20. A novel method for preventing surface film entrapment of water fleas and its application for toxicity testing with heavy metals.

    Science.gov (United States)

    Cui, Rongxue; Kwak, Jin Il; An, Youn-Joo

    2017-02-01

    Some water fleas such as Daphnia galeata and Bosmina longirostris are difficult to culture and use in ecotoxicity testing since they can easily become entrapped at the surface film. Cetyl alcohol was the most prevalent chemical used to prevent the entrapment of water fleas in previous studies. However, cetyl alcohol possesses a number of disadvantages including its toxicity and water insolubility. This study presents a novel method for preventing surface film entrapment of the water flea D. galeata and B. longirostris acute testing. We examined the applicability of saponin extracts from Quillaja saponaria, natural surfactants commonly extracted from plants. Its application of saponin extracts was tested by ecotoxicity testing of heavy metals. Based on the acute test results for heavy metals, a concentration of 1.0 mg/L of saponins was determined as suitable for preventing surface film entrapment of D. galeata and B. longirostris with negligible adverse effects. This study proposes a novel method for preventing surface film entrapment of D. galeata and B. longirostris through the application saponins and could be valuable to make them suitable test species in ecotoxicity testing.

  1. Cellular pattern formation during retinal regeneration: a role for homotypic control of cell fate acquisition.

    Science.gov (United States)

    Tyler, Melinda J; Cameron, David A

    2007-02-01

    A dominant mechanism of cellular patterning in the growing fish retina is control of cell fate acquisition by negative feedback signals arising from differentiated cells. We tested the ability of a computational model of this pattern formation mechanism to simulate cellular patterns in regenerated goldfish retina. The model successfully simulated quantitative features of in vivo regenerated patterns, indicating that regenerating retina has access to and utilizes patterning mechanisms that are operational during normal growth. The atypical patterns of regenerated retina could arise in part from regenerative progenitors that, compared to normal growth progenitors, are less responsive to the feedback patterning signals.

  2. Performance Study of a Novel Solar Solid Dehumidification/Regeneration Bed for Use in Buildings Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Wansheng Yang

    2017-09-01

    Full Text Available In this paper, a novel solar solid dehumidification/regeneration bed has been proposed, and its three regeneration methods, i.e., simulated solar radiation regeneration, microwave regeneration, and combined regeneration of the microwave and simulated solar radiation, were experimentally investigated and compared, as well as the dehumidification performance. The degree of regeneration of the proposed system under the regeneration method combining both microwave irradiation and simulated solar radiation could reach 77.7%, which was 3.77 times higher than that of the system under the simulated solar regeneration method and 1.05 times higher than that of the system under the microwave regeneration. The maximum energy efficiency of the proposed system under the combined regeneration method was 21.7%, while it was only 19.4% for the system under microwave regeneration. All these proved that the combined regeneration method of the simulated solar and microwave radiation not only improved the regeneration efficiency of the system, but also enhanced the energy efficiency. For the dehumidification performance, the maximum transient moisture removal was 14.1 g/kg, the maximum dehumidification efficiency was 68.0% and the maximum speed of dehumidification was 0.294 g/(kg·s when the inlet air temperature was at 26.09 °C and the air relative humidity was at 89.23%. By comparing the testing results with the semi-empirical results from the Page model, it was indicated that the Page model can predict the regeneration characteristics of the novel solar solid dehumidification/regeneration bed under the combined method of microwave and simulated solar regeneration. The results of this research should prove useful to researchers and engineers to exploit the potential of solar technologies in buildings worldwide.

  3. Combining periodic hydraulic tests and surface tilt measurements to explore in situ fracture hydromechanics

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Guihéneuf, Nicolas; Becker, Matthew W.; Cole, Matthew; Burbey, Thomas J.; Lavenant, Nicolas; Boudin, Frédéric

    2017-08-01

    Fractured bedrock reservoirs are of socio-economical importance, as they may be used for storage or retrieval of fluids and energy. In particular, the hydromechanical behavior of fractures needs to be understood as it has implications on flow and governs stability issues (e.g., microseismicity). Laboratory, numerical, or field experiments have brought considerable insights to this topic. Nevertheless, in situ hydromechanical experiments are relatively uncommon, mainly because of technical and instrumental limitations. Here we present the early stage development and validation of a novel approach aiming at capturing the integrated hydromechanical behavior of natural fractures. It combines the use of surface tiltmeters to monitor the deformation associated with the periodic pressurization of fractures at depth in crystalline rocks. Periodic injection and withdrawal advantageously avoids mobilizing or extracting significant amounts of fluid, and it hinders any risk of reservoir failure. The oscillatory perturbation is intended to (1) facilitate the recognition of its signature in tilt measurements and (2) vary the hydraulic penetration depth in order to sample different volumes of the fractured bedrock around the inlet and thereby assess scale effects typical of fractured systems. By stacking tilt signals, we managed to recover small tilt amplitudes associated with pressure-derived fracture deformation. Therewith, we distinguish differences in mechanical properties between the three tested fractures, but we show that tilt amplitudes are weakly dependent on pressure penetration depth. Using an elastic model, we obtain fracture stiffness estimates that are consistent with published data. Our results should encourage further improvement of the method.

  4. Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.

    2017-07-01

    Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.

  5. Reconstructing solar magnetic fields from historical observations: Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, Iiro; Virtanen, Ilpo; Pevtsov, Alexei; Yeates, Anthony; Mursula, Kalevi

    2017-04-01

    We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. We test the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and study how the flux distribution inside active regions and the initial magnetic field affect the simulation. We compare the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion and input data. We also compare the simulated magnetic field with observations. We find that there is generally good agreement between simulations and observations. While the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, that often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are rather minor or temporary, lasting typically one solar cycle.

  6. Efficient Regeneration of Physical and Chemical Solvents for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Tande, Brian [Univ. of North Dakota, Grand Forks, ND (United States); Seames, Wayne [Univ. of North Dakota, Grand Forks, ND (United States); Benson, Steve [Univ. of North Dakota, Grand Forks, ND (United States)

    2013-12-01

    The objective of this project was to evaluate the use of composite polymer membranes and porous membrane contactors to regenerate physical and chemical solvents for capture of carbon dioxide (CO2) from synthesis gas or flue gas, with the goal of improving the energy efficiency of carbon capture. Both a chemical solvent (typical for a post-combustion capture of CO2 from flue gas) and a physical solvent (typical for pre- combustion capture of CO2 from syngas) were evaluated using two bench-scale test systems constructed for this project. For chemical solvents, polytetrafluoroethylene and polypropylene membranes were found to be able to strip CO2 from a monoethanolamine (MEA) solution with high selectivity without significant degradation of the material. As expected, the regeneration temperature was the most significant parameter affecting the CO2 flux through the membrane. Pore size was also found to be important, as pores larger than 5 microns lead to excessive pore wetting. For physical solvents, polydimethyl-siloxane (PDMS)-based membranes were found to have a higher CO2 permeability than polyvinylalcohol (PVOH) based membranes, while also minimizing solvent loss. Overall, however, the recovery of CO2 in these systems is low – less than 2% for both chemical and physical solvents – primarily due to the small surface area of the membrane test apparatus. To obtain the higher regeneration rates needed for this application, a much larger surface area would be needed. Further experiments using, for example, a hollow fiber membrane module could determine if this process could be commercially viable.

  7. The dynamics of molecular interactions and chemical reactions at metal surfaces: testing the foundations of theory.

    Science.gov (United States)

    Golibrzuch, Kai; Bartels, Nils; Auerbach, Daniel J; Wodtke, Alec M

    2015-04-01

    We review studies of molecular interactions and chemical reactions at metal surfaces, emphasizing progress toward a predictive theory of surface chemistry and catalysis. For chemistry at metal surfaces, a small number of central approximations are typically made: (a) the Born-Oppenheimer approximation of electronic adiabaticity, (b) the use of density functional theory at the generalized gradient approximation level, (c) the classical approximation for nuclear motion, and (d) various reduced-dimensionality approximations. Together, these approximations constitute a provisional model for surface chemical reactivity. We review work on some carefully studied examples of molecules interacting at metal surfaces that probe the validity of various aspects of the provisional model.

  8. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  9. Regenerable antimicrobial N-halamine/silica hybrid nanoparticles

    Science.gov (United States)

    Zhao, Lianhong; Yan, Xiufang; Jie, Zhiqiang; Yang, Hong; Yang, Shiping; Liang, Jie

    2014-07-01

    Regenerable antimicrobial N-halamine/silica hybrid nanoparticles (NPs) containing chlorinated 5,5-dimethylhydantoinyl (Cl-DMH) groups, Cl-DMH/SiO2 hybrid NPs, have been prepared by a co-condensation reaction between N-(3-triethoxysilylpropyl)-5,5-dimethylhydantoin (TS-DMH) and tetraethoxysilane (TEOS) and then a chlorination reaction in NaClO solution. The as-synthesized Cl-DMH/SiO2 NPs were characterized by transmission electron microscopy, Scanning electron microscopy, X-ray photoelectron spectra, Specific surface area, Differential scanning calorimetry, and Fourier transform infrared. Experimental results showed that the size of the as-synthesized Cl-DMH/SiO2 NPs could be well adjusted by changing the mass ratio of TS-DMH/TEOS and the volume ratio of 28 % NH4OH/H2O. Antimicrobial tests showed that the as-prepared Cl-DMH/SiO2 hybrid NPs had excellent antimicrobial activities against both Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentration and minimum bactericidal concentration values of the as-prepared Cl-DMH/SiO2 hybrid NPs are 15 and 20 μg/mL for S. aureus, 25 and 30 μg/mL for E. coli, respectively. Paper disk diffusion assay showed that smaller-sized Cl-DMH/SiO2 hybrid NPs have bigger inhibition zone diameters, indicating stronger antimicrobial efficacies. Also, the storage stability and regenerability of Cl-DMH/SiO2 hybrid NPs were investigated.

  10. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol.

    Science.gov (United States)

    Alvarez, P M; Beltrán, F J; Gómez-Serrano, V; Jaramillo, J; Rodríguez, E M

    2004-04-01

    Thermal and ozone regenerations of granular activated carbons (GAC) used in the removal of phenol from aqueous solution have been studied. The phenol isotherms for virgin GAC could be well represented by the Langmuir equation. Direct ozonation of GAC introduced large amounts of acidic surface oxygen groups, which caused a decrease in the phenol uptake. Thermogravimetric methods were used to investigate the mechanism of phenol adsorption onto virgin and ozonated carbons. Thermal regeneration was carried out at 1123K using nitrogen (pyrolysis alone) or nitrogen and carbon dioxide (pyrolysis plus oxidation). Results showed that spent carbons do not recover their adsorption characteristics when heated under inert conditions whereas carbon dioxide regeneration was effective at about 15% wt burn-off. Regeneration of GAC was also carried out with ozone as oxidizing gas at room temperature. Ozone dose and the nature of GAC have much influence on the regeneration performance. For an individual GAC there exits an optimum ozone dose for which phenol is eliminated together with most of its oxidation by-products without incurring in carbon surface chemical alterations. However, if excessive ozone is applied some acidic surface groups are formed on the GAC, thereby decreasing the adsorption capacity for phenol. Results showed that spent carbons can recover most of their adsorption characteristics and specific surface areas when regenerated through a number of adsorption-ozone regeneration cycles.

  11. A tissue regeneration approach to bone and cartilage repair

    CERN Document Server

    Dunstan, Colin; Rosen, Vicki

    2015-01-01

    Reviewing exhaustively the current state of the art of tissue engineering strategies for regenerating bones and joints through the use of biomaterials, growth factors and stem cells, along with an investigation of the interactions between biomaterials, bone cells, growth factors and added stem cells and how together skeletal tissues can be optimised, this book serves to highlight the importance of biomaterials composition, surface topography, architectural and mechanical properties in providing support for tissue regeneration. Maximizing reader insights into the importance of the interplay of these attributes with bone cells (osteoblasts, osteocytes and osteoclasts) and cartilage cells (chondrocytes), this book also provides a detailed reference as to how key signalling pathways are activated. The contribution of growth factors to drive tissue regeneration and stem cell recruitment is discussed along with a review the potential and challenges of adult or embryonic mesenchymal stem cells to further enhance the...

  12. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Ghompson; Kyle C. Burch

    2005-01-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical isobutane. A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical isobutane over the catalyst bed at different reactivation conditions. Temperature, pressure and regeneration time were found to play important roles in the supercritical isobutane regeneration process when applied to a completely deactivated USY zeolite alkylation catalyst. Manipulation of the variables that influence solvent strength, diffusivity, surface desorption, hydride transfer rates, and coke aging, strongly influence regeneration effectiveness.

  13. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): {sm_bullet} CAS 23-21-03, Bldg 750 Surface Discharge {sm_bullet} CAS 23-25-02, Bldg 750 Outfall {sm_bullet} CAS 23-25-03, Bldg 751 Outfall {sm_bullet} CAS 25-60-01, Bldg 3113A Outfall {sm_bullet} CAS 25-60-02, Bldg 3901 Outfall {sm_bullet} CAS 25-62-01, Bldg 3124 Contaminated Soil {sm_bullet} CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH-DRO-, PCB

  14. Regeneration alternatives for upland white spruce after buring and logging in interior Alaska

    Science.gov (United States)

    R. V. Densmore; G. P. Juday; John C. Zasada

    1999-01-01

    Site-preparation and regeneration methods for white spruce (Picea glaucu (Meench) Voss) were tested near Fairbanks Alaska, on two upland sites which had been burned in a wildfire and salvage logged. After 5 and 10 years, white spruce regeneration did not differ among the four scarification methods but tended to be lower without scarification....

  15. Periodontal regeneration - intrabony defects: a consensus report from the AAP Regeneration Workshop.

    Science.gov (United States)

    Reynolds, Mark A; Kao, Richard T; Camargo, Paulo M; Caton, Jack G; Clem, Donald S; Fiorellini, Joseph P; Geisinger, Maria L; Mills, Michael P; Nares, Salvador; Nevins, Marc L

    2015-02-01

    is possible on previously diseased root surfaces, as evidenced by a gain in clinical attachment, decreased pocket probing depth, gain in radiographic bone height, and overall improvement in periodontal health. These clinical findings are consistent with available histologic evidence. Clinical improvements can be maintained over long periods (>10 years). Although bone replacement grafts have been the most commonly investigated modality, GTR, biologics, and combination therapies have also been shown to be effective. Future research should emphasize patient-reported outcomes, individual response differences, and emerging technologies to enhance treatment results. Early management of intrabony defects with regenerative therapies offers the greatest potential for successful periodontal regeneration. The clinical selection and application of a regenerative therapy or combination of therapies for periodontal regeneration should be based on the clinician's experiences and understanding of the regenerative biology and technology. This decision-making process should take into consideration the potential adverse influence of factors, such as smoking, poor oral hygiene, tooth mobility, and defect morphology, on regeneration. Management should be coupled with an effective maintenance program for long-term success.

  16. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo.

    Science.gov (United States)

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-05-07

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.

  17. Test and validation of methods to sample and detect human virus from environmental surfaces using norovirus as a model virus

    DEFF Research Database (Denmark)

    Ibfelt, T.; Frandsen, T.; Permin, Anders

    2016-01-01

    : To validate and test efficient and reliable procedures to detect multiple human pathogenic viruses on surfaces. Methods: The study was divided into two parts. In Part A, six combinations of three different swabs (consisting of cotton, foamed cotton, or polyester head) and two different elution methods (direct...... lysis or immersion in alkaline glycine buffer before lysis) were tested for efficient recovery of human norovirus GII.7 and mengovirus from artificially contaminated surfaces. In Part B we determined the detection limit for norovirus GI.1 and GII.3 using the best procedure found in Part A linked...

  18. Interim reclamation report, Basalt Waste Isolation Project Near Surface Test Facility 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.; Cadoret, N.A.

    1991-01-01

    This report describes the development of the reclamation project for the Hanford Site Near Surface Test Facility (NSTF), its implementation, and preliminary estimates of its success. The goal of the reclamation project is to return disturbed sites as nearly as practicable to their original conditions using native species. Gable Mountain is dominated by two plant communities: a big sagebrush (Artemisia tridentata) -- Sandberg's bluegrass (Poa sandbergii) community and a stiff sagebrush (Artemisia rigida) -- Sandberg's bluegrass community. Disassembly of the site installations began on March 15, 1988, and the site was returned to original contours by December 12, 1988. Two separate revegetation methods were employed at the NSTF to meet differing site constraints. Vegetative cover and density in the revegetation plots were assessed in April 1989 and again in June 1989 and 1990. It is extremely unlikely that the sand pit, borrow pit, box cuts, generator pad area, or ventilation fan area will reach the reclamation objectives set for these areas within the next 50 years without further intervention. These areas currently support few living plants. Vegetation on revegetated native soils appears to be growing as expected. Vegetation growth on the main waterline is well below the objective. To date, no shrubs have grown on the area, growth of native grasses is well below the objective, and much of the area has been covered with the pit run material, which may not support adequate growth. Without further treatments, the areas without the pit run material will likely revert to a nearly pure cheatgrass condition. 44 refs., 13 figs., 7 tabs.

  19. Detection of nuclear testing from surface concentration measurements: Analysis of radioxenon from the February 2013 underground test in North Korea

    Science.gov (United States)

    Kurzeja, R. J.; Buckley, R. L.; Werth, D. W.; Chiswell, S. R.

    2018-03-01

    A method is outlined and tested to detect low level nuclear or chemical sources from time series of concentration measurements. The method uses a mesoscale atmospheric model to simulate the concentration signature from a known or suspected source at a receptor which is then regressed successively against segments of the measurement series to create time series of metrics that measure the goodness of fit between the signatures and the measurement segments. The method was applied to radioxenon data from the Comprehensive Test Ban Treaty (CTBT) collection site in Ussuriysk, Russia (RN58) after the Democratic People's Republic of Korea (North Korea) underground nuclear test on February 12, 2013 near Punggye. The metrics were found to be a good screening tool to locate data segments with a strong likelihood of origin from Punggye, especially when multiplied together to a determine the joint probability. Metrics from RN58 were also used to find the probability that activity measured in February and April of 2013 originated from the Feb 12 test. A detailed analysis of an RN58 data segment from April 3/4, 2013 was also carried out for a grid of source locations around Punggye and identified Punggye as the most likely point of origin. Thus, the results support the strong possibility that radioxenon was emitted from the test site at various times in April and was detected intermittently at RN58, depending on the wind direction. The method does not locate unsuspected sources, but instead, evaluates the probability of a source at a specified location. However, it can be extended to include a set of suspected sources. Extension of the method to higher resolution data sets, arbitrary sampling, and time-varying sources is discussed along with a path to evaluate uncertainty in the calculated probabilities.

  20. A quantum-mechanical test for a LiHCl semi-empirical surface

    Science.gov (United States)

    Ciccarelli, L.; Garcia, E.; Laganà, A.

    1985-09-01

    A study of the Li+CIH collinear reaction has been carried out on a semi-empirical surface in order to assess the suitability of this potential energy surface for further quantum-mechanical calculations and to investigate the reactive dynamics of an asymmetric exchange of a heavy atom.

  1. Testing the dark matter hypothesis with low surface brightness galaxies and other evidence

    NARCIS (Netherlands)

    McGaugh, SS; de Blok, WJG

    1998-01-01

    The severity of the mass discrepancy in spiral galaxies is strongly correlated with the central surface brightness of their disks. Progressively lower surface brightness galaxies have ever larger mass discrepancies. No other parameter (luminosity, size, velocity, morphology) is so well correlated

  2. Interpretation of hole-to-surface resistivity measurements at Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Daniels, J.J.; Scott, J.H.

    1981-01-01

    Hole-to-surface resistivity measurements at Yucca Mountain indicate the presence of many near-surface geologic inhomogeneities, with no definite indication of deep structural features. A resistive anomaly near drill hole UE25a-6 is interpreted as a thin, vertical, resistive body that nearly intersects the surface, and may be caused by a silicified, or calcified, fracture zone. A resistive anomaly near hole UE25a-7 is probably caused by a near surface, horizontal, lens-shaped body that may represent a devitrified zone in the Tiva Canyon Member. Many conductive anomalies were detected to the southwest of hole UE25a-4. However, these anomalies are interpreted to be caused by variations in the thickness of the surface alluvium

  3. Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria x ananassa Duch.) using a range of explant types.

    Science.gov (United States)

    Passey, A J; Barrett, K J; James, D J

    2003-01-01

    The parameters for optimal regeneration of seven commercial strawberry cultivars were tested using a range of explants and culture conditions. Efficient levels of regeneration--those needed to carry out transformation experiments--with the cultivars Calypso, Pegasus, Bolero, Tango and Emily were achieved with leaf discs, petioles, roots and stipules. Regeneration from cv. Elsanta proved to be difficult from all explant material, although unpollinated ovaries proved to be a promising explant source, with 12% of the explants regenerating shoots. In cv. Eros, regeneration occurred only from root tissue. A comparison of the genetic background suggests that there is a strong genetic component amongst the different cultivars determining their regeneration capacity. The development of these regeneration systems provides a means to use almost the whole stock plant for the efficient genetic transformation of commercial strawberry varieties.

  4. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues.

    Science.gov (United States)

    Chen, Lei; Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Huang, Tao; Cai, Yu-Dong

    2017-10-02

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein-protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.

  5. Monitoring of surface chemical and underground nuclear explosions with help of ionospheric radio-sounding above test site

    International Nuclear Information System (INIS)

    Krasnov, V.M.; Drobzheva, Ya.V.

    2000-01-01

    We describe the basic principles, advantages and disadvantages of ionospheric method to monitor surface chemical and underground nuclear explosions. The ionosphere is 'an apparatus' for the infra-sound measurements immediately above the test site. Using remote radio sounding of the ionosphere you can obtain that information. So you carry out the inspection at the test site. The main disadvantage of the ionospheric method is the necessity to sound the ionosphere with radio waves. (author)

  6. In situ peeling tests for assessing the cohesion and consolidation characteristic of historic plaster and render surfaces

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana

    2015-01-01

    Roč. 60, č. 2 (2015), s. 121-130 ISSN 0039-3630 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0060; GA ČR(CZ) GA103/09/2067 Institutional support: RVO:68378297 Keywords : peeling test * historic render * surface consolidation * cohesion * non-destructive testing Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 0.323, year: 2015

  7. Skeletal muscle regeneration is modulated by inflammation

    Directory of Open Access Journals (Sweden)

    Wenjun Yang

    2018-04-01

    Full Text Available Skeletal muscle regeneration is a complex process orchestrated by multiple steps. Recent findings indicate that inflammatory responses could play central roles in bridging initial muscle injury responses and timely muscle injury reparation. The various types of immune cells and cytokines have crucial roles in muscle regeneration process. In this review, we briefly summarise the functions of acute inflammation in muscle regeneration. The translational potential of this article: Immune system is closely relevant to the muscle regeneration. Understanding the mechanisms of inflammation in muscle regeneration is therefore critical for the development of effective regenerative, and therapeutic strategies in muscular disorders. This review provides information for muscle regeneration research regarding the effects of inflammation on muscle regeneration. Keywords: Chronic muscle disorders, Cytokines, Immune cells, Inflammation, Muscle regeneration, Muscle stem cells

  8. Proceedings of the Shortleaf Pine Regeneration Workshop

    Science.gov (United States)

    John C. Brissette; James P. Barnett; [Compilers}

    1992-01-01

    This proceedings documents the results of a workshop to develop state-of-the-art information on the regeneration of shortleaf pine. Regeneration by both artificial and natural means is discussed in detail.

  9. Fingernails Yield Clues to Limb Regeneration

    Science.gov (United States)

    ... Spotlight on Research Fingernails Yield Clues to Limb Regeneration By Kirstie Saltsman, Ph.D. | January 5, 2014 ... Diseases has uncovered chemical signals that drive the regeneration of lost digit tips in mice. The findings, ...

  10. QPSK regeneration without active phase-locking

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Da Ros, Francesco; Røge, Kasper Meldgaard

    2016-01-01

    QPSK regeneration without active phase stabilization is investigated in numerical simulations. We propose an improved scheme for phase-locking free QPSK regeneration showing significant improvements in the error vector magnitude of the signal....

  11. Economics and policy environments for forest regeneration.

    Science.gov (United States)

    Donald F. Flora

    1970-01-01

    MOST OF YOUR DAILY CONCERNS IN FOREST REGENERATION are biologic, technologic, and mechanical. But periodically, perhaps once a year, many of you must consider regeneration in a context that includes alternative uses for the financial resources you have.

  12. Extracellular matrix surface network is associated with non-morphogenic calli of Helianthus tuberosus cv. Albik produced from various explants

    Directory of Open Access Journals (Sweden)

    Maria Pilarska

    2014-03-01

    Full Text Available Helianthus tuberosus is economically important species. To improve characters of this energetic plant via genetic modification, production of callus tissue and plant regeneration are the first steps. A new, potentially energetic cultivar Albik was used in this study to test callus induction and regeneration. Callus was produced on leaves, petioles, apical meristems and stems from field-harvested plants but was totally non-morphogenic. Its induction started in the cortex and vascular bundles as confirmed by histological analysis. The surface of heterogeneous callus was partially covered with a membranous extracellular matrix surface network visible in scanning and transmission electron microscopies. The results clearly indicate that: (i the morphogenic capacity of callus in topinambur is genotype dependent, (ii cv. Albik of H. tuberosus proved recalcitrant in in vitro regeneration, and (iii extracellular matrix surface network is not a morphogenic marker in this cultivar.

  13. Uniform Dust Distributor for Testing Radiative Emittance of Dust-Coated Surfaces

    Science.gov (United States)

    Hurlbert, Kathryn Miller; Witte, Larry C.; Hollingsworth, D. Keith

    2012-01-01

    This apparatus distributes dust (typical of the Martian surface) in a uniform fashion on the surface of multiple samples simultaneously. The primary innovation is that the amount of dust deposited on the multiple surfaces can be controlled by the time that the apparatus operates, and each sample will be subject to the same amount of dust deposition. The exact weight of dust that is added per unit of sample area is determined by the use of slides that can be removed sequentially after each dusting.

  14. Selection Criteria and Methods for Testing Different Surface Materials for Contact Frying Processes

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya

    these coatings are not mechanically stable, they do not tolerate high enough temperatures (above 260⁰ C) to give the right product quality, and the surfaces wear easily calling for regular service of the equipment. The present project concerns an investigation of the possibilities of replacing the widely used......Inner surfaces of industrial process equipment for food are often coated to give the surfaces particular properties with respect to adhesion and cleanability. Existing coating materials (PTFE (Teflon®) or silicone based polymers) suffer from drawbacks when used in contact frying, because...

  15. Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane; Lavenant, Nicolas

    2015-12-01

    Fractured aquifers which bear valuable water resources are often difficult to characterize with classical hydrogeological tools due to their intrinsic heterogeneities. Here we implement ground surface deformation tools (tiltmetry and optical leveling) to monitor groundwater pressure changes induced by a classical hydraulic test at the Ploemeur observatory. By jointly analyzing complementary time constraining data (tilt) and spatially constraining data (vertical displacement), our results strongly suggest that the use of these surface deformation observations allows for estimating storativity and structural properties (dip, root depth, and lateral extension) of a large hydraulically active fracture, in good agreement with previous studies. Hence, we demonstrate that ground surface deformation is a useful addition to traditional hydrogeological techniques and opens possibilities for characterizing important large-scale properties of fractured aquifers with short-term well tests as a controlled forcing.

  16. When to refrain from using likelihood surface methods for geographic offender profiling: An ex ante test of assumptions

    NARCIS (Netherlands)

    van Koppen, M.V.; Elffers, H.; Ruiter, S.

    2011-01-01

    Likelihood surface methods for geographic offender profiling rely on several assumptions regarding the underlying location choice mechanism of an offender. We propose an ex ante test for checking whether a given set of crime locations is compatible with two necessary assumptions: circular symmetry

  17. Evaluation of a bioluminescence method, contact angle measurements and topography for testing the cleanability of plastic surfaces under laboratory conditions

    Science.gov (United States)

    Redsven, I.; Kymäläinen, H.-R.; Pesonen-Leinonen, E.; Kuisma, R.; Ojala-Paloposki, T.; Hautala, M.; Sjöberg, A.-M.

    2007-04-01

    Detection of adenosine triphosphate (ATP) by bioluminescence is used, for instance, in the food industry and in hospitals to assess the hygiene status of surfaces. The aim of this laboratory study was to investigate the feasibility of the ATP method for estimating the cleanability of resilient floor coverings from biological soil. The surfaces were worn using a Soiling and Wearing Drum Tester, and soiled and cleaned with an Erichsen Washability and Scrubbing Resistance Tester. In the laboratory test carried out with the bioluminescence method, most of the new and worn floor coverings that were biologically soiled were cleaned efficiently. According to this study, the semiquantitative ATP screening method can be used for hygiene monitoring of flooring materials. No correlation was found between cleanability and contact angles or surface topography measured using a profilometer. However, by revealing local irregularities and damage on surfaces, scanning electron micrographs appeared useful in explaining differences in cleanability.

  18. Xerogel Interfaced Nanofibers Stimulate Bone Regeneration Through the Activation of Integrin and Bone Morphogenetic Protein Pathways.

    Science.gov (United States)

    Lee, Yoo-Mi; Yun, Hyung-Mun; Lee, Hye-Young; Lim, Hyun-Chang; Lee, Hae-Hyoung; Kim, Hae-Won; Kim, Eun-Cheol

    2017-02-01

    A xerogel was interfaced onto biopolymer nanofibers though a core–shell electrospinning design for bone regeneration. The xerogel-interfaced biopolymer nanofibrous matrix was bioactive and highly hydrophilic, with a significant decrease in the water contact angle. The matrix showed excellent in vitro responses of primary osteoblasts in terms of adhesion, proliferation, and migration. Furthermore, the osteoblastic differentiation of cells, including alkaline phosphatase activity, mineralization, and gene expression, was significantly upregulated by the xerogel interface. In vivo animal tests in a critical-sized calvarial defect confirmed the new bone formation ability of the xerogel-surfaced nanofiber matrices. The underlying signaling mechanisms of the stimulation were implied to be integrin and bone morphogenetic protein (BMP) pathways, as demonstrated by the activation of integrin (α2β1) and downstream signaling molecules (FAK, paxillin, RhoA, MAPK, and NF-κB), as well as the BMPs and the downstream transcription factor Smad1/5/8. Taking these findings together, the xerogel-surfaced biopolymer nanofibers are proposed to be a promising scaffold candidate for bone regeneration.

  19. Regulation of tissue repair and regeneration by electric fields.

    Science.gov (United States)

    Wang, En-tong; Zhao, Min

    2010-02-01

    Endogenous electric fields (EFs) have been detected at wounds and damaged tissues. The potential roles of EFs in tissue repair and regeneration have been an intriguing topic for centuries. Recent researches have provided significant insights into how naturally occurring EFs may participate in the control of tissue repair and regeneration. Applied EFs equivalent to the size of fields measured in vivo direct cell migration, cell proliferation and nerve sprouting at wounds. More remarkably, physiological EFs are a guidance cue that directs cell migration which overrides other well accepted directional signals including initial injury stimulation, wound void, contact inhibition release, population pressure and chemotaxis. EFs activate many intracellular signaling pathways in a directional manner. Modulation of endogenous wound EFs affects epithelial cell migration, cell proliferation, and nerve growth at cornea wounds in vivo. Electric stimulation is being tested clinically for the treatments of bone fracture, wound healing and spinal cord injury. EFs thus may represent a novel type of signaling paradigm in tissue repair and regeneration. Combination of the electric stimulation and other well understood biochemical regulatory mechanisms may offer powerful and effective therapies for tissue repair and regeneration. This review introduces experimental evidence for the existence of endogenous EFs and discusses their roles in tissue repair and regeneration.

  20. A novel facility for reduced-gravity testing: A setup for studying low-velocity collisions into granular surfaces

    Science.gov (United States)

    Sunday, C.; Murdoch, N.; Cherrier, O.; Morales Serrano, S.; Valeria Nardi, C.; Janin, T.; Avila Martinez, I.; Gourinat, Y.; Mimoun, D.

    2016-08-01

    This work presents an experimental design for studying low-velocity collisions into granular surfaces in low-gravity. In the experiment apparatus, reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use of an Atwood machine, or a system of pulleys and counterweights. The starting height of the surface container and the initial separation distance between the projectile and surface are variable and chosen to accommodate collision velocities up to 20 cm/s and effective accelerations of ˜0.1 to 1.0 m/s2. Accelerometers, placed on the surface container and inside the projectile, provide acceleration data, while high-speed cameras capture the collision and act as secondary data sources. The experiment is built into an existing 5.5 m drop tower frame and requires the custom design of all components, including the projectile, surface sample container, release mechanism, and deceleration system. Data from calibration tests verify the efficiency of the experiment's deceleration system and provide a quantitative understanding of the performance of the Atwood system.

  1. A novel facility for reduced-gravity testing: A setup for studying low-velocity collisions into granular surfaces.

    Science.gov (United States)

    Sunday, C; Murdoch, N; Cherrier, O; Morales Serrano, S; Valeria Nardi, C; Janin, T; Avila Martinez, I; Gourinat, Y; Mimoun, D

    2016-08-01

    This work presents an experimental design for studying low-velocity collisions into granular surfaces in low-gravity. In the experiment apparatus, reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use of an Atwood machine, or a system of pulleys and counterweights. The starting height of the surface container and the initial separation distance between the projectile and surface are variable and chosen to accommodate collision velocities up to 20 cm/s and effective accelerations of ∼0.1 to 1.0 m/s(2). Accelerometers, placed on the surface container and inside the projectile, provide acceleration data, while high-speed cameras capture the collision and act as secondary data sources. The experiment is built into an existing 5.5 m drop tower frame and requires the custom design of all components, including the projectile, surface sample container, release mechanism, and deceleration system. Data from calibration tests verify the efficiency of the experiment's deceleration system and provide a quantitative understanding of the performance of the Atwood system.

  2. Double Lap Shear Testing of Coating-Modified Ice Adhesion to Specific Shuttle Component Surfaces

    National Research Council Canada - National Science Library

    Ferrick, M. G; Mulherin, Nathan D; Coutermarsh, Barry A; Durell, Glenn D; Curtis, Leslie A; St. Clair, Terry L; Weiser, Erik S; Cano, Roberto J; Smith, Trent M; Stevenson, Charles G; Martinez, Eloy C

    2006-01-01

    The goals of this experimental program were to optimize the effectiveness of an icephobic coating for use on several Space Shuttle surfaces, to evaluate the effects of adding an ultraviolet light absorber (UVA...

  3. Optimization of callus induction and plant regeneration from ...

    African Journals Online (AJOL)

    An efficient regeneration system was developed using germinating seeds of two cultivars of sweet sorghum, Sorghum bicolor 'Yuantian No.1' and 'M81E', as explants. We tested different media supplements effects on callus induction. The effects of combinations of 2,4-D, KT, sucrose, agar and proline at different ...

  4. Studies on plant regeneration and transformation efficiency of ...

    African Journals Online (AJOL)

    We have standardized the tissue culture media for the regeneration and transformation with the vector LBA 4404 (pCAMBIA 2301), so that in future, this system may be exploited for the expression of antibody fragment (single chain variable fragment) in plants (plantibody). The transformed green shoots tested positive for ...

  5. Regeneration and molecular analysis of date palm ( Phoenix ...

    African Journals Online (AJOL)

    Clonal plants of date palm (Poenix dactylifera L.) were regenerated from juvenile leaves on regimes consisting of the use of 2,4-D. Success depended on the concentrations of 2,4-D tested. The cultures produced adventitious shoot buds directly at the basal part of leaves as well as excessive calli. Somaclonal variation in ...

  6. Microscopic surface wettability electrochemical characterization of tight sandstone with infrared spectra testing

    Science.gov (United States)

    Song, L.; Ning, Z. F.; Li, N.; Zhang, B.; Ding, G. Y.

    2017-08-01

    The distribution of charge density on the surface of microscopic tight oil is studied by using Stern double electric layer theory, and the mathematical flow model of polar fluid with micro powers in tight oil reservoir is established. The Fourier transform infrared (FTIR) were used to investigate the interaction of rock surface functional groups with fluids. The results show that: (1) When the external fluid of the polar group passes through the dense micro-nano pore, it will form an electric double layer on the surface of the rock, there will be a certain thickness of the liquid membrane, the fluid migration has a certain Of the electrical viscosity effect, will have a certain flow resistance. (2) The Fourier transform infrared spectroscopy of the Chang 7 tight reservoir rock samples exists and distributes different kinds of peaks. The left peak trend determines the presence of hydroxyl groups. The four fronts and types of the right side can be used to obtain that calcium carbonate CO3 2- exists. (3) There are CO3 2- and hydroxyl functional minerals in the Chang 7 tight sandstone samples. It is consistent with the basic mineral analysis measured by X-ray diffraction. When the external fluid affects the rock surface, the surface will occur in the physical van der Waals force and chemical bond interaction, so it will affect the flow of water on the surface.

  7. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  8. Semiconductor devices for all-optical regeneration

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne

    2003-01-01

    We review different implementations of semiconductor devices for all-optical regeneration. A general model will be presented for all-optical regeneration in fiber links, taking into consideration the trade-off between non-linearity and noise. Furthermore we discuss a novel regenerator type, based...

  9. All optical regeneration using semiconductor devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Tromborg, Bjarne

    All-optical regeneration is a key functionality for implementing all-optical networks. We present a simple theory for the bit-error-rate in links employing all-optical regenerators, which elucidates the interplay between the noise and and nonlinearity of the regenerator. A novel device structure ...... is analyzed, emphasizing general aspects of active semiconductor waveguides....

  10. An experimental study of passive regenerator geometries

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Nielsen, Kaspar Kirstein; Pryds, Nini

    2011-01-01

    experimental uncertainty associated with magnetocaloric material properties, all regenerators are made of aluminum. The performance of corrugated plates and dimpled plates are compared to traditional flat plate regenerators for a range of cycle times and utilizations. Each regenerator is built using 18...

  11. Surface resistivity test evaluation as an indicator of the chloride permeability of concrete.

    Science.gov (United States)

    2012-12-01

    Many agencies have adopted the standard tests for electrical : indication of concretes ability to resist chloride ion penetration : (AASHTO T 277 and ASTM C1202), commonly known as the rapid : chloride permeability test (RCPT), in their specificat...

  12. Birch regeneration: a stochastic model

    Science.gov (United States)

    William B. Leak

    1968-01-01

    The regeneration of a clearcutting with paper or yellow birch is expressed as an elementary stochastic (probabalistic) model that is computationally similar to an absorbing Markov chain. In the general case, the model contains 29 states beginning with the development of a flower (ament) and terminating with the abortion of a flower or seed, or the development of an...

  13. Bone regeneration and stem cells

    DEFF Research Database (Denmark)

    Arvidson, K; Abdallah, B M; Applegate, L A

    2011-01-01

    cells, use of platelet rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed....

  14. Changing contexts in urban regeneration

    NARCIS (Netherlands)

    Stouten, P.L.M.

    2011-01-01

    The need to combat decay of obsolete housing and services in urban renewal areas has been recognized by every major country in Western Europe, including the Netherlands (Couch et al., 2003). Urban regeneration in general can be considered as developing an approach in a complex urban context that

  15. Stem cells and kidney regeneration

    Directory of Open Access Journals (Sweden)

    Yu-Hsiang Chou

    2014-04-01

    Full Text Available Kidney disease is an escalating burden all over the world. In addition to preventing kidney injury, regenerating damaged renal tissue is as important as to retard the progression of chronic kidney disease to end stage renal disease. Although the kidney is a delicate organ and has only limited regenerative capacity compared to the other organs, an increasing understanding of renal development and renal reprogramming has kindled the prospects of regenerative options for kidney disease. Here, we will review the advances in the kidney regeneration including the manipulation of renal tubular cells, fibroblasts, endothelial cells, and macrophages in renal disease. Several types of stem cells, such as bone marrow-derived cells, adipocyte-derived mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells are also applied for renal regeneration. Endogenous or lineage reprogrammed renal progenitor cells represent an attractive possibility for differentiation into multiple renal cell types. Angiogenesis can ameliorate hypoxia and renal fibrosis. Based on these studies and knowledge, we hope to innovate more reliable pharmacological or biotechnical methods for kidney regeneration medicine.

  16. Bone regeneration during distraction osteogenesis

    NARCIS (Netherlands)

    Amir, L.R.; Everts, V.; Bronckers, A.L.J.J.

    2009-01-01

    Bone has the capacity to regenerate in response to injury. During distraction osteogenesis, the renewal of bone is enhanced by gradual stretching of the soft connec- tive tissues in the gap area between two separated bone segments. This procedure has received much clinical atten- tion as a way to

  17. National regeneration of shortleaf pine

    Science.gov (United States)

    Edwin R. Lawson

    1986-01-01

    Natural regeneration with clearcutting, shelterwood, seed tree, and selection systems is a viable method for establishing and managing shortleaf pine stands. An adequate seed source, a suitable seedbed, control of competing vegetation, follow-up cultural treatments, and protection of reproduction are the primary prerequisites for establishing and maintaining natural...

  18. MECHANICAL REGENERATION OF SAND WASTE

    Directory of Open Access Journals (Sweden)

    D. I. Gnir

    2005-01-01

    Full Text Available The experimental activation of the sand regenerator of the firm SINTO is carried out at ОАО “MZOO". It is shown that sand grains are cleared from films of binding agents, that allows to use the treated sand for preparation of agglutinant and core sands.

  19. Mechanical device for tissue regeneration

    NARCIS (Netherlands)

    Herder, J.L.; Maij, E.

    2010-01-01

    The invention relates to a mechanical device for tissue- regeneration inside a patient, comprising means (2, 3) to place a scaffold for the tissue under mechanical stress. Said means comprise a first device-part (2) and a second device-part (3) which parts are arranged to be movable with respect to

  20. New model of kaon regeneration

    Science.gov (United States)

    Nazaruk, V. I.

    2018-01-01

    It is shown that in the standard model of {{{K}}}S0 regeneration a system of non-coupled equations of motion is used instead of the coupled ones. A model alternative to the standard one is proposed. A calculation performed by means of the diagram technique agrees with that based on exact solution of the equations of motion.

  1. Static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon.

    Science.gov (United States)

    Nagasawa, Koji; Noguchi, Masahiko; Ikoma, Kazuya; Kubo, Toshikazu

    2008-07-01

    Since tendons show viscoelastic behavior, dynamic viscoelastic properties should be assessed in addition to static biomechanical properties. We evaluated differences between static and dynamic biomechanical properties of the regenerating rabbit Achilles tendon following tenotomy. At 3, 6, or 12 weeks after right Achilles tenotomy, the right (regenerating) and left (control) tendons were collected with the calcaneus from 49 rabbits. A unidirectional failure test and a dynamic viscoelastic test were conducted. Tensile strength and Young's modulus (static biomechanical properties) in the regenerating group at Week 6 were significantly greater than at Week 3, while at Week 12, these were significantly greater than at Week 6. However, even at Week 12, both parameters were less than in the control group. The value of tan delta represents dynamic viscoelasticity, a smaller tan delta indicates greater elasticity. tan delta for the regenerating group was significantly greater than for the control group at Week 3, but regenerating and control groups did not significantly differ at Week 6. No marked change was seen from Weeks 6 to 12 in the regenerating group, and no significant difference in tan delta was evident between the regenerating and control groups at Week 12. Dynamic biomechanical properties of regenerating rabbit Achilles tendons may improve more rapidly than static biomechanical properties. Ability to tolerate dynamic movement in the healing Achilles tendon may improve more rapidly than ability to withstand static stresses.

  2. Biosensor Regeneration: A Review of Common Techniques and Outcomes.

    Science.gov (United States)

    Goode, J A; Rushworth, J V H; Millner, P A

    2015-06-16

    Biosensors are ideally portable, low-cost tools for the rapid detection of pathogens, proteins, and other analytes. The global biosensor market is currently worth over 10 billion dollars annually and is a burgeoning field of interdisciplinary research that is hailed as a potential revolution in consumer, healthcare, and industrial testing. A key barrier to the widespread adoption of biosensors, however, is their cost. Although many systems have been validated in the laboratory setting and biosensors for a range of analytes are proven at the concept level, many have yet to make a strong commercial case for their acceptance. Though it is true with the development of cheaper electrodes, circuits, and components that there is a downward pressure on costs, there is also an emerging trend toward the development of multianalyte biosensors that is pushing in the other direction. One way to reduce the cost that is suitable for certain systems is to enable their reuse, thus reducing the cost per test. Regenerating biosensors is a technique that can often be used in conjunction with existing systems in order to reduce costs and accelerate the commercialization process. This article discusses the merits and drawbacks of regeneration schemes that have been proven in various biosensor systems and indicates parameters for successful regeneration based on a systematic review of the literature. It also outlines some of the difficulties encountered when considering the role of regeneration at the point of use. A brief meta-analysis has been included in this review to develop a working definition for biosensor regeneration, and using this analysis only ∼60% of the reported studies analyzed were deemed a success. This highlights the variation within the field and the need to normalize regeneration as a standard process across the field by establishing a consensus term.

  3. Group C. Initiator paper. Periodontal regeneration--fact or fiction?

    Science.gov (United States)

    Bartold, P M

    2015-01-01

    Numerous techniques have been tried and tested to regenerate tissues lost to periodontal disease. While there has been some success to date, more work is required to move this to a reliable and clinically predictable procedure. Much of the future success for such treatments will rely largely on our understanding of the biology of both developmental and regenerative processes. Nonetheless, despite the noble goal of periodontal regeneration, the relevance of re-creation of a connective tissue attachment has been questioned. Since formation of a long junctional epithelial attachment to the tooth following a variety of periodontal treatment procedures has been shown to be no more susceptible to further breakdown than a non-diseased site, the question arises as to what purpose do we seek the ultimate outcome of periodontal regeneration? The answer lies in the "fact and fiction" of periodontal regeneration. There is no doubt that the regenerative procedures that have been developed can be shown to be biologically successful at the histological level. Furthermore, the results of periodontal regeneration (particularly guided tissue regeneration) have been stable over the long term (at least up to 10 years). However, the techniques currently under use which show the greatest promise (guided tissue regeneration and growth factors) are still clinically unpredictable because of their highly technique-sensitive nature. In addition, whether the slight clinical improvements offered by these procedures over routine open flap debridement procedures are of cost or patient benefit with regards to improved periodontal health and retention of teeth remains to be established. The next phase in regenerative technologies will undoubtedly involve a deeper understanding of the molecular signaling (both intra- and extra-cellular) and cellular differentiation processes involved in the regenerative processes. So in answer to the question of whether periodontal regeneration is fact or fiction

  4. The Effect of the Nature of Surfaces on Resistance as Tested on Struts

    Science.gov (United States)

    Wieselsberger, Ing C

    1921-01-01

    The chief concern was to measure the variations of resistance brought about by the nature of the surface of the struts. The struts were spanned with aviation linen, and then covered with one coat of varnish. The top surface was not perfectly smooth after this treatment, being slightly rough owing to the threads and raised fibers of the fabric. The results of the measurements of the surfaces are shown by the dotted lines of the curves plotted in several figures. The resistance is given in terms of the characteristic value. Next, the surface was altered by the removal of any roughness on it by means of filing with sandpaper. The measurements of surfaces thus treated gave values represented by extended lines. The increase of resistance with increasing characteristic value, more or less marked in the first series of measurements, was no longer observable. Resistance always decreases with the increase of characteristic value, excepting in the case of strut 7, which shows a slight tendency to rise again. The reasons for this phenomenon have not yet been fully explained.

  5. Polymers with tunable toxicity: a reference scale for cytotoxicity testing of biomaterial surfaces.

    Science.gov (United States)

    Knetsch, Menno L W; Olthof, Nadine; Koole, Leo H

    2007-09-15

    A series of copolymers, with varying ratio di-methylamino-ethylmethacrylate (DMAEMA) and methyl-methacrylate (MMA), was designed as a potential scale for cytotoxicity. These copolymers were characterized for toxicity of their surface. The surfaces of washed copolymers display increasing toxicity with increasing DMAEMA content. The toxicity was observed for three different cell-types, namely mouse fibroblasts, human endothelial cells and human osteoblast-like cells. With an increasing toxic surface, cell growth was inhibited as was indicated by the proliferation marker Ki-67. Staining for F-actin revealed that with increasing DMAEMA, cells adopted a more and more round morphology, resulting in decreased surface-contact area. Immuno-staining for phospho-tyrosine or vinculin demonstrated gradual loss of focal adhesions on increasingly toxic surfaces. Surprisingly loss of focal adhesions coincided with an increase in paxillin and vinculin protein, indicating cells try compensating for loss of adhesion. This series of copolymers may have potential as a cytotoxicity scale. They provoke cellular responses ranging from highly toxic to completely non-toxic, with some showing intermediate toxicity. Copyright 2007 Wiley Periodicals, Inc.

  6. Quantifying soil surface photolysis under conditions simulating water movement in the field: a new laboratory test design.

    Science.gov (United States)

    Hand, Laurence H; Nichols, Carol; Kuet, Sui F; Oliver, Robin G; Harbourt, Christopher M; El-Naggar, Essam M

    2015-10-01

    Soil surface photolysis can be a significant dissipation pathway for agrochemicals under field conditions, although it is assumed that such degradation ceases once the agrochemical is transported away from the surface following rainfall or irrigation and subsequent drainage of soil porewater. However, as both downward and upward water movements occur under field conditions, relatively mobile compounds may return to the surface, prolonging exposure to ultraviolet light and increasing the potential for degradation by photolysis. To test this hypothesis, a novel experimental system was used to quantify the contribution of photolysis to the overall dissipation of a new herbicide, bicyclopyrone, under conditions that mimicked field studies more closely than the standard laboratory test guidance. Soil cores were taken from 3 US field study sites, and the surfaces were treated with [(14) C]-bicyclopyrone. The radioactivity was redistributed throughout the cores using a simulated rainfall event, following which the cores were incubated under a xenon-arc lamp with continuous provision of moisture from below and a wind simulator to induce evaporation. After only 2 d, most of the test compound had returned to the soil surface. Significantly more degradation was observed in the irradiated samples than in a parallel dark control sample. Degradation rates were very similar to those observed in both the thin layer photolysis study and the field dissipation studies and significantly faster than in the soil metabolism studies conducted in the dark. Thus, for highly soluble, mobile agrochemicals, such as bicyclopyrone, photolysis is not terminated permanently by rainfall or irrigation but can resume following transport to the surface in evaporating water. © 2015 SETAC.

  7. Feasibility and kinetics study on the direct bio-regeneration of perchlorate laden anion-exchange resin.

    Science.gov (United States)

    Wang, Chao; Lippincott, Lee; Meng, Xiaoguang

    2008-11-01

    Anion exchange is one of the most promising treatment technologies for the removal of low levels of perchlorate. The spent anion-exchange resins, however, need to be disposed of or regenerated because they contain high contents of perchlorate. This study investigated the feasibility and kinetics of a direct bio-regeneration method. The method accomplished resin regeneration and biological perchlorate destruction concurrently, by directly contacting the spent resin with the perchlorate-reducing bacteria (PRB). The results indicated that the method was effective in regeneration of perchlorate and nitrate loaded resin and the resin could be repeatedly regenerated with the method. The regenerated resin was effective, stable, and durable in the filtration treatment of perchlorate in well water from the Saddle River area, NJ. Moreover, the method was also effective in regeneration of the spent A-530E resin, which had high perchlorate affinity and was yet very difficult for regeneration with the conventional brine desorption technique. Besides, the results further suggested that the perchlorate and nitrate desorption from the loaded resin coupling with their subsequent biological reduction could be the direct bio-regeneration mechanism. No biofilm was formed on the regenerated resin surface according to a scanning electron microscopy (SEM) analysis.

  8. Geomorphic Surface Maps of Northern Frenchman Flat, Nevada Test Site, Southern Nevada

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    Large-scale (1:6000) surficial geology maps of northern Frenchman Flat were developed in 1995 as part of comprehensive site characterization required to operate a low-level radioactive waste disposal facility in that area. Seven surficial geology maps provide fundamental data on natural processes and are the platform needed to reconstruct the Quaternary history of northern Frenchman Flat. Reconstruction of the Quaternary history provides an understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. Seven geomorphic surfaces (Units 1 through 7) are recognized, spanning from the early Quaternary to present time

  9. Spacecraft charging investigation for the CTS project. [electric insulator surface tests by electron bombardment for Communications Technology Satellite

    Science.gov (United States)

    Stevens, N. J.; Lovell, R. R.; Gore, V.

    1975-01-01

    Results to date are presented for a program of analytical and experimental investigations to assess the impact of discharge pulses from spacecraft surfaces in the joint Canadian-American Communications Technology Satellite (CTS). All insulator surfaces tested experienced visible discharges when subjected to an electron beam with energy greater than 10 keV. Discharge rate was found to be a function of current flux. The deployable solar array sample experienced discharges under bombardment from the cell or kapton side. There was no measurable cell performance degradation due to the discharges.

  10. Regeneration and genetic transformation of cowpea (Vigna unguiculata Walp.)

    International Nuclear Information System (INIS)

    Filippone, E.; Colucci, G.; Ciardi, F.; Monti, L.

    1997-01-01

    Regeneration of cowpea (Vigna unguiculata Walp.) was achieved through massive bud formation induced in apical and lateral meristems by the herbicide Thidiazuron (TDZ). The effect of TDZ (5, 10, or 20 μM) was tested in vitro on four different cowpea genotypes. Thidiazuron, even at the highest concentration, had no effect on seed germination. After one month of culture, multiple bud cluster formation was observed in all genotypes tested; about 80% of shoot apices regenerated multiple buds, whilst only 34% of cotyledonary nodes behaved in the same way. Histology of regenerating multiple bud clusters revealed that regeneration initiated from pre-existing meristems in the apex and cotyledonary node. Thidiazuron at 10 μM appeared to be the best concentration to produce clusters with high number of buds, ranging from 5 to 10. Shoot elongation occurred only on MS medium without TDZ. On the same medium, 75% of elongated shoots rooted. For genetic transformation of cowpea, a direct DNA transfer methods in plants under in vivo conditions was tested by electroporation of plasmid DNA into the nodal meristematic cells. Some transformed plants were obtained, and produced T 1 transformed progenies; their transgenic nature was confirmed by Southern analysis. (author). 21 refs, 2 figs, 3 tabs

  11. Optical Regeneration and Noise in Semiconductor Devices

    DEFF Research Database (Denmark)

    Öhman, Filip

    2005-01-01

    In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R-regenerator......In this report all-optical 2R-regeneration in optical communication systems is investigated. A simple regenerator device based on concatenated semiconductor optical amplifiers (SOAs) and electro absorbers (EAs) is introduced and examined. Experiments show that the monolithic SOA-EA 2R...

  12. Genetic variability in regenerated Metarhizium flavoviride protoplasts

    Directory of Open Access Journals (Sweden)

    Júlia Kuklinsky-Sobral

    2004-03-01

    Full Text Available Protoplast isolation and regeneration were evaluated in two wild-type and two colour mutant strains of Metarhizium flavoviride. Cultivation in liquid medium, followed by mycelium treatment with Novozym 234 in the presence of KCl 0.7M as osmotic stabilizer, produced 5.05 x 10(6 to 1.15 x 10(7x mL-1 protoplasts. The percentage of regeneration ranged from 6.65 to 27.92%. Following protoplast regeneration, one strain produced spontaneously stable morphological variant colonies. Although colonies with altered morphology have been reported in bacteria following protoplast regeneration, this is the first time that the same is described in a filamentous fungus. The original strain and one derived variant were tested for sensitivity to the fungicides benomyl and captan.A formação e regeneração de protoplastos foram avaliadas em duas linhagens selvagens e duas linhagens mutantes para coloração de conídios em Metarhizium flavoviride. O cultivo em meio líquido seguido do tratamento do micélio com Novozym 234 na presença de KCl 0,7 M como estabilizador osmótico, resultou na produção de 5,05´10(6 a 1,15´10(7 protoplastos´mL-1. A porcentagem de regeneração das diferentes linhagens variou de 6,65 a 27,92%. Após a regeneração, uma das linhagens selvagens produziu espontaneamente variantes estáveis, com morfologia alterada. Embora variantes morfológicos já tenham sido observados após regeneração de protoplastos em bactérias, esta parece ser a primeira vez que tal ocorrência é descrita em fungos filamentosos. Um desses variantes, além da linhagem selvagem da qual ele foi originado, foi testado para sensibilidade aos fungicidas benomil e captano.

  13. Extinction in the Galaxy from surface brightnesses of ESO-LV galaxies : Testing "standard" extinction maps

    NARCIS (Netherlands)

    Choloniewski, J.; Valentijn, E. A.

    A new method for the determination of the extinction in the Galaxy is proposed. The method uses surface brightnesses of external galaxies in the B and R-bands. The observational data have been taken from the ESO-LV galaxy catalog. As a first application of our model we derive the ratio of R-band to

  14. Small Punch Tests at Oxide Scales Surface of Structural Steel and Low Silicon Steel

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, J.; Dobeš, Ferdinand; Horský, J.

    2014-01-01

    Roč. 82, 3-4 (2014), s. 297-310 ISSN 0030-770X Institutional support: RVO:68081723 Keywords : Small punch * Oxide scales * X-ray diffraction * Mechanical properties Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.140, year: 2014

  15. Unconventional optimized surface wave acquisition and analysis: Comparative tests in a perilagoon area

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Ponta, R.; Mauro, R.

    2015-01-01

    Roč. 114, MAR (2015), s. 158-167 ISSN 0926-9851 Institutional support: RVO:67985891 Keywords : surface waves * Rayleigh waves * phase velocity * group velocity * dispersion * full velocity spectrum /FVS/ analysis Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.355, year: 2015

  16. Gene expression analysis of zebrafish heart regeneration.

    Directory of Open Access Journals (Sweden)

    Ching-Ling Lien

    2006-08-01

    Full Text Available Mammalian hearts cannot regenerate. In contrast, zebrafish hearts regenerate even when up to 20% of the ventricle is amputated. The mechanism of zebrafish heart regeneration is not understood. To systematically characterize this process at the molecular level, we generated transcriptional profiles of zebrafish cardiac regeneration by microarray analyses. Distinct gene clusters were identified based on temporal expression patterns. Genes coding for wound response/inflammatory factors, secreted molecules, and matrix metalloproteinases are expressed in regenerating heart in sequential patterns. Comparisons of gene expression profiles between heart and fin regeneration revealed a set of regeneration core molecules as well as tissue-specific factors. The expression patterns of several secreted molecules around the wound suggest that they play important roles in heart regeneration. We found that both platelet-derived growth factor-a and -b (pdgf-a and pdgf-b are upregulated in regenerating zebrafish hearts. PDGF-B homodimers induce DNA synthesis in adult zebrafish cardiomyocytes. In addition, we demonstrate that a chemical inhibitor of PDGF receptor decreases DNA synthesis of cardiomyocytes both in vitro and in vivo during regeneration. Our data indicate that zebrafish heart regeneration is associated with sequentially upregulated wound healing genes and growth factors and suggest that PDGF signaling is required.

  17. Limb Regeneration in Xenopus laevis Froglet

    Directory of Open Access Journals (Sweden)

    Makoto Suzuki

    2006-01-01

    Full Text Available Limb regeneration in amphibians is a representative process of epimorphosis. This type of organ regeneration, in which a mass of undifferentiated cells referred to as the “blastema” proliferate to restore the lost part of the amputated organ, is distinct from morphallaxis as observed, for instance, in Hydra, in which rearrangement of pre-existing cells and tissues mainly contribute to regeneration. In contrast to complete limb regeneration in urodele amphibians, limb regeneration in Xenopus, an anuran amphibian, is restricted. In this review of some aspects regarding adult limb regeneration in Xenopus laevis, we suggest that limb regeneration in adult Xenopus, which is pattern/tissue deficient, also represents epimorphosis.

  18. Surface accuracy of a large-scale compact antenna test range considering mechanism, metrology and alignment

    International Nuclear Information System (INIS)

    Zhou, Guofeng; Li, Xiaoxing; Li, Dongsheng; Luan, Jingdong; Zhao, Jinze

    2014-01-01

    A large compact range (CR) having a width of 23 m and height of 16 m that will generate a Φ15 m quiet zone is presented. The antenna consists of 30 blocks and 76 serrated reflectors. Its mechanical accuracy is reflected in two aspects: surface precision and gap precision. In addition, the root-mean-square (RMS) surface accuracy should be less than or equal to 0.075 mm for achieving the highest operating frequency of 40 GHz, and the gaps between two segments should be controlled strictly to the tolerance of 0.4 ± 0.2 mm for avoiding gap diffraction and compensating for inter-block interference due to thermal deformation. The surface accuracy in terms of mechanical structure, metrology and alignment approach is very tight. First, a high-accuracy honeycomb sandwich panel, anisotropic back structure and spatial parallel adjustment mechanism are introduced, and the error contributions of these three mechanisms are 0.03 mm, 0.01 mm and 0.005 mm, respectively. Second, a measurement network based on laser tracker metrology was established, and the RMS error of the measurement system is controlled to 0.025 mm through the optimization of the measuring stations and weighted coordinate regression. Third, an original alignment approach that divides the entire assembly into three key phases by marked point edge-constrained surface is proposed. By performing a few iterations of onsite adjustment, the reflectors were aligned in the prescribed positions, and the gap quality was controlled effectively. Finally, the on-site alignment of the large CR is introduced. The final antenna surface RMS accuracy was up to 0.054 mm, and the gaps achieved the desired design index. (paper)

  19. Tensile-Creep Test Specimen Preparation Practices of Surface Support Liners

    Science.gov (United States)

    Guner, Dogukan; Ozturk, Hasan

    2017-12-01

    Ground support has always been considered as a challenging issue in all underground operations. Many forms of support systems and supporting techniques are available in the mining/tunnelling industry. In the last two decades, a new polymer based material, Thin Spray-on Liner (TSL), has attained a place in the market as an alternative to the current areal ground support systems. Although TSL provides numerous merits and has different application purposes, the knowledge on mechanical properties and performance of this material is still limited. In laboratory studies, since tensile rupture is the most commonly observed failure mechanism in field applications, researchers have generally studied the tensile testing of TSLs with modification of American Society for Testing and Materials (ASTM) D-638 standards. For tensile creep testing, specimen preparation process also follows the ASTM standards. Two different specimen dimension types (Type I, Type IV) are widely preferred in TSL tensile testing that conform to the related standards. Moreover, molding and die cutting are commonly used specimen preparation techniques. In literature, there is a great variability of test results due to the difference in specimen preparation techniques and practices. In this study, a ductile TSL product was tested in order to investigate the effect of both specimen preparation techniques and specimen dimensions under 7-day curing time. As a result, ultimate tensile strength, tensile yield strength, tensile modulus, and elongation at break values were obtained for 4 different test series. It is concluded that Type IV specimens have higher strength values compared to Type I specimens and moulded specimens have lower results than that of prepared by using die cutter. Moreover, specimens prepared by molding techniques have scattered test results. Type IV specimens prepared by die cutter technique are suggested for preparation of tensile test and Type I specimens prepared by die cutter technique

  20. Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering

    Science.gov (United States)

    Nau, Thomas; Teuschl, Andreas

    2015-01-01

    Recent advancements in the field of musculoskeletal tissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament (ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon. PMID:25621217

  1. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Science.gov (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  2. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration.

    Science.gov (United States)

    Patterson, Michaela; Barske, Lindsey; Van Handel, Ben; Rau, Christoph D; Gan, Peiheng; Sharma, Avneesh; Parikh, Shan; Denholtz, Matt; Huang, Ying; Yamaguchi, Yukiko; Shen, Hua; Allayee, Hooman; Crump, J Gage; Force, Thomas I; Lien, Ching-Ling; Makita, Takako; Lusis, Aldons J; Kumar, S Ram; Sucov, Henry M

    2017-09-01

    Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes.

  3. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  4. Experimental results for a magnetic refrigerator using three different types of magnetocaloric material regenerators

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Bahl, Christian Robert Haffenden; Nielsen, Kaspar Kirstein

    2011-01-01

    refrigeration device for near room temperature applications, and it is driven by the magnetocaloric effect in the regenerator material. Several magnetocaloric materials with potential magnetic refrigeration applications have recently been developed and characterized; however, few of them have been tested...

  5. The regeneration capacity of the flatworm Macrostomum lignano--on repeated regeneration, rejuvenation, and the minimal size needed for regeneration.

    Science.gov (United States)

    Egger, B; Ladurner, P; Nimeth, K; Gschwentner, R; Rieger, R

    2006-10-01

    The lion's share of studies on regeneration in Plathelminthes (flatworms) has been so far carried out on a derived taxon of rhabditophorans, the freshwater planarians (Tricladida), and has shown this group's outstanding regeneration capabilities in detail. Sharing a likely totipotent stem cell system, many other flatworm taxa are capable of regeneration as well. In this paper, we present the regeneration capacity of Macrostomum lignano, a representative of the Macrostomorpha, the basal-most taxon of rhabditophoran flatworms and one of the most basal extant bilaterian protostomes. Amputated or incised transversally, obliquely, and longitudinally at various cutting levels, M. lignano is able to regenerate the anterior-most body part (the rostrum) and any part posterior of the pharynx, but cannot regenerate a head. Repeated regeneration was observed for 29 successive amputations over a period of almost 12 months. Besides adults, also first-day hatchlings and older juveniles were shown to regenerate after transversal cutting. The minimum number of cells required for regeneration in adults (with a total of 25,000 cells) is 4,000, including 160 neoblasts. In hatchlings only 1,500 cells, including 50 neoblasts, are needed for regeneration. The life span of untreated M. lignano was determined to be about 10 months.

  6. The regeneration capacity of the flatworm Macrostomum lignano—on repeated regeneration, rejuvenation, and the minimal size needed for regeneration

    Science.gov (United States)

    Ladurner, P.; Nimeth, K.; Gschwentner, R.; Rieger, R.

    2006-01-01

    The lion’s share of studies on regeneration in Plathelminthes (flatworms) has been so far carried out on a derived taxon of rhabditophorans, the freshwater planarians (Tricladida), and has shown this group’s outstanding regeneration capabilities in detail. Sharing a likely totipotent stem cell system, many other flatworm taxa are capable of regeneration as well. In this paper, we present the regeneration capacity of Macrostomum lignano, a representative of the Macrostomorpha, the basal-most taxon of rhabditophoran flatworms and one of the most basal extant bilaterian protostomes. Amputated or incised transversally, obliquely, and longitudinally at various cutting levels, M. lignano is able to regenerate the anterior-most body part (the rostrum) and any part posterior of the pharynx, but cannot regenerate a head. Repeated regeneration was observed for 29 successive amputations over a period of almost 12 months. Besides adults, also first-day hatchlings and older juveniles were shown to regenerate after transversal cutting. The minimum number of cells required for regeneration in adults (with a total of 25,000 cells) is 4,000, including 160 neoblasts. In hatchlings only 1,500 cells, including 50 neoblasts, are needed for regeneration. The life span of untreated M. lignano was determined to be about 10 months. PMID:16604349

  7. Radiative cooling test facility and performance evaluation of 4-MIL aluminized polyvinyl fluoride and white-paint surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kruskopf, M.S.; Berdahl, P.; Martin, M.; Sakkal, F.; Sobolewski, M.

    1980-11-01

    A test facility designed to measure the amount of radiative cooling a specific material or assembly of materials will produce when exposed to the sky is described. Emphasis is placed upon assemblies which are specifically designed to produce radiative cooling and which therefore offer promise for the reduction of temperatures and/or humidities in occupied spaces. The hardware and software used to operate the facility are documented and the results of the first comprehensive experiments are presented. A microcomputer-based control/data acquisition system was employed to study the performance of two prototype radiator surfaces: 4-mil aluminized polyvinyl fluoride (PVF) and white painted surfaces set below polyethylene windscreens. The cooling rates for materials tested were determined and can be approximated by an equation (given). A computer model developed to simulate the cooling process is presented. (MCW)

  8. Test Plan to Assess Fire Effects on the Function of an Engineered Surface Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson L.; Berlin, Gregory T.; Cammann, Jerry W.; Leary, Kevin D.; Link, Steven O.

    2008-09-29

    Wildfire is a frequent perturbation in shrub steppe ecosystems, altering the flora, fauna, atmosphere, and soil of these systems. Research on the fire effects has focused mostly on natural ecosystems with essentially no attention on engineered systems like surface barriers. The scope of the project is to use a simulated wildfire to induce changes in an engineered surface barrier and document the effects on barrier performance. The main objective is to quantify the effects of burning and the resulting post-fire conditions on alterations in soil physical properties; hydrologic response, particularly the water balance; geochemical properties; and biological properties. A secondary objective is to use the lessons learned to maximize fire protection in the design of long-term monitoring systems based on electronic sensors. A simulated wildfire will be initiated, controlled and monitored at the 200-BP-1 barrier in collaboration with the Hanford Fire Department during the fall of 2008. The north half of the barrier will be divided into nine 12 x 12 m plots, each of which will be randomly assigned a fuel load of 2 kg m-2 or 4 kg m-2. Each plot will be ignited around the perimeter and flames allowed to carry to the centre. Any remaining unburned vegetation will be manually burned off using a drip torch. Progress of the fire and its effects will be monitored using point measurements of thermal, hydrologic, and biotic variables. Three measures of fire intensity will be used to characterize fire behavior: (1) flame height, (2) the maximum temperature at three vertical profile levels, and (3) total duration of elevated temperature at these levels. Pre-burn plant information, including species diversity, plant height, and canopy diameter will be measured on shrubs from the plots to be burned and from control plots at the McGee ranch. General assessments of shrub survival, recovery, and recruitment will be made after the fire. Near-surface soil samples will be collected pre- and

  9. Periodontal Regeneration Using Periodontal Ligament Stem Cell-Transferred Amnion

    Science.gov (United States)

    Iwasaki, Kengo; Yokoyama, Naoki; Tanaka, Yuichi; Taki, Atsuko; Honda, Izumi; Kimura, Yasuyuki; Takeda, Masaki; Akazawa, Keiko; Oda, Shigeru; Izumi, Yuichi; Morita, Ikuo

    2014-01-01

    Periodontal disease is characterized by the destruction of tooth supporting tissues. Regeneration of periodontal tissues using ex vivo expanded cells has been introduced and studied, although appropriate methodology has not yet been established. We developed a novel cell transplant method for periodontal regeneration using periodontal ligament stem cell (PDLSC)-transferred amniotic membrane (PDLSC-amnion). The aim of this study was to investigate the regenerative potential of PDLSC-amnion in a rat periodontal defect model. Cultured PDLSCs were transferred onto amniotic membranes using a glass substrate treated with polyethylene glycol and photolithography. The properties of PDLSCs were investigated by flow cytometry and in vitro differentiation. PDLSC-amnion was transplanted into surgically created periodontal defects in rat maxillary molars. Periodontal regeneration was evaluated by microcomputed tomography (micro-CT) and histological analysis. PDLSCs showed mesenchymal stem cell-like characteristics such as cell surface marker expression (CD90, CD44, CD73, CD105, CD146, and STRO-1) and trilineage differentiation ability (i.e., into osteoblasts, adipocytes, and chondrocytes). PDLSC-amnion exhibited a single layer of PDLSCs on the amniotic membrane and stability of the sheet even with movement and deformation caused by surgical instruments. We observed that the PDLSC-amnion enhanced periodontal tissue regeneration as determined by micro-CT and histology by 4 weeks after transplantation. These data suggest that PDLSC-amnion has therapeutic potential as a novel cell-based regenerative periodontal therapy. PMID:24032400

  10. Nano-odontology: nanostructured assemblies for endodontic regeneration.

    Science.gov (United States)

    Fioretti, F; Mendoza-Palomares, C; Avoaka-Boni, M C; Ramaroson, J; Bahi, S; Richert, L; Granier, F; Benkirane-Jessel, N; Haikel, Y

    2011-06-01

    The vitality of the pulp is so fundamental to the functional life of the tooth that new strategies are required to avoid the removal of the whole pulp following irreversible pulpitis and to regenerate the lost endodontic tissues. Nano-odontology would provide suitable solutions for pulp tissue conservative and regenerative approaches. In our group, we have shown that when covalently coupled to Poly-Glutamic Acid (PGA) the incorporation of an anti-inflammatory hormone (melanocortin, a-MSH) into the multilayered films Poly-L-Lysine (PLL)/PGA increases the anti-inflammatory reaction of pulp fibroblasts and macrophages stimulated by LPS (Lipo-Polysaccharides). Recently, usual linear PLL polymers have been chemically grafted for making new Dendrigraft polymers (DGLG4) whose higher branching ratios can give useful properties. The objective is to use nanostructured assemblies containing DGLG4 and PGA-alpha-MSH to design a new nanomaterial. These nanostructured assemblies (DGLG4-PGA-alpha-MSH)n constitute a thick reservoir of the anti-inflammatory peptide and promote adhesion and proliferation of pulp fibroblast on the biomaterial surface. These nanostructured films could be adapted for an endodontic regeneration application to target pulp connective tissue regeneration. Firstly, the crucial reduction of inflammation could be helpful by using PGA-alpha-MSH and secondly the initiation of the regeneration of the connective tissue will be promoted by the whole nanostructured film of which allows pulp cells colonisation.

  11. Deposition of Aerosol Particles on Rough Surfaces Inside a Test Chamber

    Czech Academy of Sciences Publication Activity Database

    Hussein, T.; Kubincová, L.; Ondráčková, Lucie; Hruška, A.; Dohányosová, Pavla; Hemerka, J.; Smolík, Jiří

    2009-01-01

    Roč. 44, č. 10 (2009), s. 2056-2063 ISSN 0360-1323 R&D Projects: GA ČR GA101/04/1190; GA ČR GA101/07/1361 Institutional research plan: CEZ:AV0Z40720504 Keywords : deposition rate * hydraulically smooth * surface roughness Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.797, year: 2009

  12. Quality assurance in ceramic materials and components. High-resolution non-destructive testing especially of ceramic surfaces

    International Nuclear Information System (INIS)

    Reiter, H.; Hoffmann, B.; Morsch, A.; Arnold, W.; Schneider, E.

    1988-01-01

    This report discusses the influence of defects on the failure behavior of ceramic materials under four-point bending stress. In this connection various Si 3 N 4 and SiC materials with and without artificially introduced defect particles (Fe, WC, Si, pores) were examined by the following non-destructive test methods: photoacoustic microscopy, scanning laser acoustic microscopy, microfocus roentgenoscopy and ultrasound transit-time measurements. Finally, a four-point bending test and a fracture-mechanical evaluation of the fracture-incuding defects were carried out at the Institute for reliability and failure studies in mechanical engineering of the University of Karlsruhe. According to the type of stress the samples predominantly failed in the case of defects in the surface zone of the side in tension. Among the ndt methods applied the photoacoustic microscopy as a typical surface testing method could predict most of the fracture-inducing defects (30-50 %) without causing destruction. In this connection a different detection sensitivity which corresponds to the thermal reflection factors became apparent according to the type of defect. Furthermore the reports describes the results of some preliminary tests on ndt of green ceramics. In these investigations both the microfocus roentgenoscopy test and the roentgen computed tomography showed a high potential of detecting inhomogeneities and defects in green Si 3 N 4 and SiC components. (orig.) [de

  13. Evaporation over sump surface in containment studies: code validation on TOSQAN tests

    International Nuclear Information System (INIS)

    Malet, J.; Gelain, T.; Degrees du Lou, O.; Daru, V.

    2011-01-01

    During the course of a severe accident in a Nuclear Power Plant, water can be collected in the sump containment through steam condensation on walls and spray systems activation. The objective of this paper is to present code validation on evaporative sump tests performed on the TOSQAN facility. The ASTEC-CPA code is used as a lumped-parameter code and specific user-defined-functions are developed for the TONUS-CFD code. The tests are air-steam tests, as well as tests with other non-condensable gases (He, CO 2 and SF 6 ) under steady and transient conditions. The results show a good agreement between codes and experiments, indicating a good behaviour of the sump models in both codes. (author)

  14. Evaluation of the FORETELL consortium operational test : weather information for surface transportation, evaluation strategy

    Science.gov (United States)

    1998-07-01

    The purpose of the independent evaluation is to assess the effectiveness of the FORETELL Program in achieving certain ARTS goals and objectives. Independent evaluations of ITS Operational Tests require a well documented structured approach to ensure ...

  15. A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines. Phase III Final Report for the Radioisotope Power Conversion Technology NRA

    Science.gov (United States)

    Ibrahim, Mounir B.; Gedeon, David; Wood, Gary; McLean, Jeffrey

    2009-01-01

    Under Phase III of NASA Research Announcement contract NAS3-03124, a prototype nickel segmented-involute-foil regenerator was microfabricated and tested in a Sunpower Frequency-Test-Bed (FTB) Stirling convertor. The team for this effort consisted of Cleveland State University, Gedeon Associates, Sunpower Inc. and International Mezzo Technologies. Testing in the FTB convertor produced about the same efficiency as testing with the original random-fiber regenerator. But the high thermal conductivity of the prototype nickel regenerator was responsible for a significant performance degradation. An efficiency improvement (by a 1.04 factor, according to computer predictions) could have been achieved if the regenerator was made from a low-conductivity material. Also, the FTB convertor was not reoptimized to take full advantage of the microfabricated regenerator s low flow resistance; thus, the efficiency would likely have been even higher had the FTB been completely reoptimized. This report discusses the regenerator microfabrication process, testing of the regenerator in the Stirling FTB convertor, and the supporting analysis. Results of the pre-test computational fluid dynamics (CFD) modeling of the effects of the regenerator-test-configuration diffusers (located at each end of the regenerator) are included. The report also includes recommendations for further development of involute-foil regenerators from a higher-temperature material than nickel.

  16. Regeneration of injured renal tubules.

    Science.gov (United States)

    Yoshida, Makoto; Honma, Shigeyoshi

    2014-01-01

    Acute kidney injury (AKI), clinically defined by high serum creatinine and low urine flow, has many complicated pathophysiological features including tubular and glomerular injury. Although renal tubules are thought to be constituted by highly differentiated epithelial cells, it is possible to repair injured nephrons by the healing process. Several studies have revealed that AKI, especially AKI caused by ischemia/reperfusion injury or nephrotoxic medication, depends on a number of factors, including activation of transcriptional factors, endothelial injury of peritubular small vessels, immune responses, and inflammatory processes associated with necrosis and apoptosis of renal tubular epithelium. For regeneration of injured tubules, partly dedifferentiated progenitor-like cells fill the injured site and constitute the tubular structure and function, although the source of these cells is still under debate. It is essential to understand the molecular, cellular, and genetic mechanisms of AKI and tubular regeneration for the development of therapies to prevent and treat kidney injury.

  17. Materializing Heart Regeneration: Biomimicry of Key Observations in Cell Transplantation Therapies and Natural Cardiac Regeneration

    Science.gov (United States)

    Kong, Yen P.; Jongpaiboonkit, Leena

    2016-07-01

    New regenerative paradigms are needed to address the growing global problem of heart failure as existing interventions are unsatisfactory. Outcomes from the current paradigm of cell transplantation have not been stellar but the mechanistic knowledge learned from them is instructive in the development of future paradigms. An emerging biomaterial-based approach incorporating key mechanisms and additional ones scrutinized from the process of natural heart regeneration in zebrafish may become the next evolution in cardiac repair. We highlight, with examples, tested key concepts and pivotal ones that may be integrated into a successful therapy.

  18. Insulin, glucagon, and liver regeneration

    International Nuclear Information System (INIS)

    Kirsch, R.E.; Frith, L.O'C.; Vinik, A.; Terblanche, J.

    1980-01-01

    Partially hepatectomized rats receiving intragastric amino acids synthesize less DNA than similar rats receiving intragastric water alone. In the present study insulin and glucagon levels were measured in rats receiving amino acids or water alone. In both groups of rats insulin levels were depressed and glucagon levels elevated. These findings suggest that insulin and glucagon do not play a major role in the regulation of liver regeneration after partial hepatectomy in the rat

  19. Adsorption of Xyloglucan onto Cellulose Surfaces of Different Morphologies: An Entropy-Driven Process.

    Science.gov (United States)

    Benselfelt, Tobias; Cranston, Emily D; Ondaral, Sedat; Johansson, Erik; Brumer, Harry; Rutland, Mark W; Wågberg, Lars

    2016-09-12

    The temperature-dependence of xyloglucan (XG) adsorption onto smooth cellulose model films regenerated from N-methylmorpholine N-oxide (NMMO) was investigated using surface plasmon resonance spectroscopy, and it was found that the adsorbed amount increased with increasing temperature. This implies that the adsorption of XG to NMMO-regenerated cellulose is endothermic and supports the hypothesis that the adsorption of XG onto cellulose is an entropy-driven process. We suggest that XG adsorption is mainly driven by the release of water molecules from the highly hydrated cellulose surfaces and from the XG molecules, rather than through hydrogen bonding and van der Waals forces as previously suggested. To test this hypothesis, the adsorption of XG onto cellulose was studied using cellulose films with different morphologies prepared from cellulose nanocrystals (CNC), semicrystalline NMMO-regenerated cellulose, and amorphous cellulose regenerated from lithium chloride/dimethylacetamide. The total amount of high molecular weight xyloglucan (XGHMW) adsorbed was studied by quartz crystal microbalance and reflectometry measurements, and it was found that the adsorption was greatest on the amorphous cellulose followed by the CNC and NMMO-regenerated cellulose films. There was a significant correlation between the cellulose dry film thickness and the adsorbed XG amount, indicating that XG penetrated into the films. There was also a correlation between the swelling of the films and the adsorbed amounts and conformation of XG, which further strengthened the conclusion that the water content and the subsequent release of the water upon adsorption are important components of the adsorption process.

  20. Cell migration during heart regeneration in zebrafish.

    Science.gov (United States)

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. PDGF-metronidazole-encapsulated nanofibrous functional layers on collagen membrane promote alveolar ridge regeneration

    Directory of Open Access Journals (Sweden)

    Ho MH

    2017-08-01

    Full Text Available Ming-Hua Ho,1 Hao-Chieh Chang,2,3 Yu-Chia Chang,3 Jeiannete Claudia,1 Tzu-Chiao Lin,2 Po-Chun Chang2,3 1Department of Chemical Engineering, College of Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; 2Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; 3Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan Abstract: This study aimed to develop a functionally graded membrane (FGM to prevent infection and promote tissue regeneration. Poly(L-lactide-co-D,L-lactide encapsulating platelet-derived growth factor (PDLLA-PDGF or metronidazole (PDLLA-MTZ was electrospun to form a nanofibrous layer on the inner or outer surface of a clinically available collagen membrane, respectively. The membrane was characterized for the morphology, molecule release profile, in vitro and in vivo biocompatibility, and preclinical efficiency for alveolar ridge regeneration. The PDLLA-MTZ and PDLLA-PDGF nanofibers were 800–900 nm in diameter, and the thicknesses of the functional layers were 20–30 µm, with sustained molecule release over 28 days. All of the membranes tested were compatible with cell survival in vitro and showed good tissue integration with minimal fibrous capsule formation or inflammation. Cell proliferation was especially prominent on the PDLLA-PDGF layer in vivo. On the alveolar ridge, all FGMs reduced wound dehiscence compared with the control collagen membrane, and the FGM with PDLLA-PDGF promoted osteogenesis significantly. In conclusion, the FGMs with PDLLA-PDGF and PDLLA-MTZ showed high biocompatibility and facilitated wound healing compared with conventional membrane, and the FGM with PDLLA-PDGF enhanced alveolar ridge regeneration in vivo. The design represents a beneficial modification, which may be easily adapted for future clinical use. Keywords: tissue engineering, platelet-derived growth factor, metronidazole, alveolar process

  2. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-01-30

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater

  3. Some principles of regeneration in mammalian systems.

    Science.gov (United States)

    Carlson, Bruce M

    2005-11-01

    This article presents some general principles underlying regenerative phenomena in vertebrates, starting with the epimorphic regeneration of the amphibian limb and continuing with tissue and organ regeneration in mammals. Epimorphic regeneration following limb amputation involves wound healing, followed shortly by a phase of dedifferentiation that leads to the formation of a regeneration blastema. Up to the point of blastema formation, dedifferentiation is guided by unique regenerative pathways, but the overall developmental controls underlying limb formation from the blastema generally recapitulate those of embryonic limb development. Damaged mammalian tissues do not form a blastema. At the cellular level, differentiation follows a pattern close to that seen in the embryo, but at the level of the tissue and organ, regeneration is strongly influenced by conditions inherent in the local environment. In some mammalian systems, such as the liver, parenchymal cells contribute progeny to the regenerate. In others, e.g., skeletal muscle and bone, tissue-specific progenitor cells constitute the main source of regenerating cells. The substrate on which regeneration occurs plays a very important role in determining the course of regeneration. Epimorphic regeneration usually produces an exact replica of the structure that was lost, but in mammalian tissue regeneration the form of the regenerate is largely determined by the mechanical environment acting on the regenerating tissue, and it is normally an imperfect replica of the original. In organ hypertophy, such as that occurring after hepatic resection, the remaining liver mass enlarges, but there is no attempt to restore the original form. (c) 2005 Wiley-Liss, Inc.

  4. Conceptual design plan near-surface test facility: Phase II, Project B-300b

    International Nuclear Information System (INIS)

    Heneveld, W.H.; Mack, R.J.

    1979-01-01

    Activities are reported in programs devoted to demonstration and development of techniques for the safe placement and retrieval of the spent fuel canisters in a near-surface flow of the Columbia River Basalt. Other programs are reported designed to determine whether there are any unacceptable effects resulting from the interaction of the nuclear waste and basalt and to provide information to be used for near-term validation of the current numerical design models of the repository. Work is also reported on development of a data base for the design, construction, and licensing of a permanent large-scale basalt repository

  5. Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II

    Science.gov (United States)

    2017-08-11

    zero in deep mixed layers below the influence of the surface waves. When the SDC is zero, the GV and GS functions ((29) and (30)) will be zero, and...current and do not include the SDC. With the inclusion of the SDC in the Coriolis term in the momentum equations, the net transport of u is not zero, but...balances the net transport of the SDC us, so that the combined net downwind transport of the Eulerian current plus the SDC is zero. Hence, since the

  6. Installation and Preliminary Test of the Ion Accelerator for the Surface Analysis at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Il; Ahn, Tae Sung; Seo, Dong Hyuk; Kwon, Hyeok Jung; Kim, Cho Rong; Park, Jun Kue; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    An electrostatic tandem accelerator, which had been operating over 25 years at KIGAM (Korea Institute of Geoscience and Mineral Resources), is moved to KOMAC (Korea Multi-purpose Accelerator Complex) last year. For the purpose of supplying the qualified and quantified data from the irradiated species as part of the user service of KOMAC. The accelerator is a pelletron with tandem type. The ion accelerator for surface analysis was moved at KOMAC last year. The installation with alignment was done. The conditioning of high voltage was operated up to 1.7 MV. The beam transmission to PIXE beam line was achieved as 51%.

  7. Homogenisation algorithm skill testing with synthetic global benchmarks for the International Surface Temperature Initiative

    Science.gov (United States)

    Willet, Katherine; Venema, Victor; Williams, Claude; Aguilar, Enric; joliffe, Ian; Alexander, Lisa; Vincent, Lucie; Lund, Robert; Menne, Matt; Thorne, Peter; Auchmann, Renate; Warren, Rachel; Bronniman, Stefan; Thorarinsdotir, Thordis; Easterbrook, Steve; Gallagher, Colin; Lopardo, Giuseppina; Hausfather, Zeke; Berry, David

    2015-04-01

    Our surface temperature data are good enough to give us confidence that the world has warmed since 1880. However, they are not perfect - we cannot be precise in the amount of warming for the globe and especially for small regions or specific locations. Inhomogeneity (non-climate changes to the station record) is a major problem. While progress in detection of, and adjustment for inhomogeneities is continually advancing, monitoring effectiveness on large networks and gauging respective improvements in climate data quality is non-trivial. There is currently no internationally recognised means of robustly assessing the effectiveness of homogenisation methods on real data - and thus, the inhomogeneity uncertainty in those data. Here I present the work of the International Surface Temperature Initiative (ISTI; www.surfacetemperatures.org) Benchmarking working group. The aim is to quantify homogenisation algorithm skill on the global scale against realistic benchmarks. This involves the creation of synthetic worlds of surface temperature data, deliberate contamination of these with known errors and then assessment of the ability of homogenisation algorithms to detect and remove these errors. The ultimate aim is threefold: quantifying uncertainties in surface temperature data; enabling more meaningful product intercomparison; and improving homogenisation methods. There are five components work: 1. Create 30000 synthetic benchmark stations that look and feel like the real global temperature network, but do not contain any inhomogeneities: analog clean-worlds. 2. Design a set of error models which mimic the main types of inhomogeneities found in practice, and combined them with the analog clean-worlds to give analog error-worlds. 3. Engage with dataset creators to run their homogenisation algorithms blind on the analog error-world stations as they have done with the real data. 4. Design an assessment framework to gauge the degree to which analog error-worlds are returned to

  8. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, S K; Pawloski, G A; Raschke, K

    2007-04-26

    This report describes evaluation of collapse evolution for selected LLNL underground nuclear tests at the Nevada Test Site (NTS). The work is being done at the request of NSTec and supports the Department of Energy National Nuclear Security Association Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year NSTec establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program and the Chemical Sciences Division who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. The following unclassified summary

  9. Co-Adsorption of Ammonia and Formaldehyde on Regenerable Carbon Sorbents for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique S.

    2016-01-01

    Results are presented on the development of a reversible carbon sorbent for trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is deemed non-regenerable, while the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on concurrent sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, are presented in this paper. A carbon sorbent was fabricated by dry impregnation of a reticulated carbon-foam support with polyvinylidene chloride, followed by carbonization and thermal oxidation in air. Sorbent performance was tested for ammonia and formaldehyde sorption and vacuum regeneration, with and without water present in the gas stream. It was found that humidity in the gas phase enhanced ammonia-sorption capacity by a factor larger than two. Co-adsorption of ammonia and formaldehyde in the presence of water resulted in strong formaldehyde sorption (to the point that it was difficult to saturate the sorbent on the time scales used in this study). In the absence of humidity, adsorption of formaldehyde on the carbon surface was found to impair ammonia sorption in subsequent runs; in the presence of water, however, both ammonia and formaldehyde could be efficiently removed from the gas phase by the sorbent. The efficiency of vacuum regeneration could be enhanced by gentle heating to temperatures below 60 deg.

  10. A means to estimate thermal and kinetic parameters of coal dust layer from hot surface ignition tests.

    Science.gov (United States)

    Park, Haejun; Rangwala, Ali S; Dembsey, Nicholas A

    2009-08-30

    A method to estimate thermal and kinetic parameters of Pittsburgh seam coal subject to thermal runaway is presented using the standard ASTM E 2021 hot surface ignition test apparatus. Parameters include thermal conductivity (k), activation energy (E), coupled term (QA) of heat of reaction (Q) and pre-exponential factor (A) which are required, but rarely known input values to determine the thermal runaway propensity of a dust material. Four different dust layer thicknesses: 6.4, 12.7, 19.1 and 25.4mm, are tested, and among them, a single steady state dust layer temperature profile of 12.7 mm thick dust layer is used to estimate k, E and QA. k is calculated by equating heat flux from the hot surface layer and heat loss rate on the boundary assuming negligible heat generation in the coal dust layer at a low hot surface temperature. E and QA are calculated by optimizing a numerically estimated steady state dust layer temperature distribution to the experimentally obtained temperature profile of a 12.7 mm thick dust layer. Two unknowns, E and QA, are reduced to one from the correlation of E and QA obtained at criticality of thermal runaway. The estimated k is 0.1 W/mK matching the previously reported value. E ranges from 61.7 to 83.1 kJ/mol, and the corresponding QA ranges from 1.7 x 10(9) to 4.8 x 10(11)J/kg s. The mean values of E (72.4 kJ/mol) and QA (2.8 x 10(10)J/kg s) are used to predict the critical hot surface temperatures for other thicknesses, and good agreement is observed between measured and experimental values. Also, the estimated E and QA ranges match the corresponding ranges calculated from the multiple tests method and values reported in previous research.

  11. Investigations into the Degradation of PTFE Surface Properties by Accelerated Aging Tests

    Directory of Open Access Journals (Sweden)

    C. Fragassa

    2016-06-01

    Full Text Available This paper describes an accelerate aging procedure used for investigating the surface alteration of PTFE gaskets commercialized by two alternative producers. These gaskets are installed in modern process plants where tires moulds are cleaned inside a multistage ultrasonic process. The surface of gaskets degrades inexplicably under ordinary operative conditions after a relatively short period. Even if these gaskets are exposed to a combination of ultrasonic waves, temperature, humidity and acid attack, the PTFE properties of resistance nominally exclude the possibility of severe erosion phenomena as highlighted during the real utilization. A possible explanation could be represented by the presence of unexpected chemical compounds emerging from the disaggregation of highly reacting elements from the tire composition. In particular, it is believed that the unpredicted combination of fluorides and chlorides could explain the violent chemical attack highlighted on steel tanks and on their gaskets. But no evidence exists. Thus, the experimental characterization of PTFE properties has to follow an appropriate accelerated aging, aiming at actuating the specific mechanics of wearing as in industrial use.

  12. Air/Surface Channel Isolation in the AN/SPQ-9B Radar: Diplexer Test Results

    National Research Council Canada - National Science Library

    Tavik, Gregory

    1997-01-01

    .... Results of this method tested with NRiJs ANISPQ-9B advanced development model (ADM) radar show a 10 to 30 dB reduction of cross-talk generated on receive due to strong clutter echoes at close range.

  13. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Meng Yao [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Liu Man [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Stomatology Health Care Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518048 (China); Wang Shaoan [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Mo Anchun [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China)], E-mail: moanchun@163.com; Huang, Cui [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Zuo Yi; Li Jidong [Research Center for Nano-biomaterials, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membra0008.

  14. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    Science.gov (United States)

    Meng, Yao; Liu, Man; Wang, Shao-An; Mo, An-Chun; Huang, Cui; Zuo, Yi; Li, Ji-Dong

    2008-11-01

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membrane.

  15. Protective structures on the surface of zirconium components of light water reactor cores: Formation, testing, and prototype equipment

    Energy Technology Data Exchange (ETDEWEB)

    Begrambekov, L. B.; Gordeev, A. A.; Evsin, A. E., E-mail: evsin@plasma.mephi.ru; Ivanova, S. V.; Kaplevsky, A. S.; Sadovskiy, Ya. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    The results of tests of plasma treatment of zirconium and deposition of protective yttrium coatings used as the methods of protection of zirconium components of light water reactor cores against hydrogenation are detailed. The amount of hydrogen in the treated sample exposed to superheated steam for 2500 h at temperature T = 400°C and pressure p = 1 atm was five times lower than the corresponding value for the untreated one. The amount of hydrogen in the sample coated with yttrium remained almost unchanged in 4000 h of exposure. A plasma method for rapid testing for hydrogen resistance is proposed. The hydrogenation rate provided by this method is 700 times higher than that in tests with superheated steam. The results of preliminary experiments confirm the possibility of constructing a unit for batch processing of the surfaces of fuel rod claddings.

  16. Protective structures on the surface of zirconium components of light water reactor cores: Formation, testing, and prototype equipment

    Science.gov (United States)

    Begrambekov, L. B.; Gordeev, A. A.; Evsin, A. E.; Ivanova, S. V.; Kaplevsky, A. S.; Sadovskiy, Ya. A.

    2015-12-01

    The results of tests of plasma treatment of zirconium and deposition of protective yttrium coatings used as the methods of protection of zirconium components of light water reactor cores against hydrogenation are detailed. The amount of hydrogen in the treated sample exposed to superheated steam for 2500 h at temperature T = 400°C and pressure p = 1 atm was five times lower than the corresponding value for the untreated one. The amount of hydrogen in the sample coated with yttrium remained almost unchanged in 4000 h of exposure. A plasma method for rapid testing for hydrogen resistance is proposed. The hydrogenation rate provided by this method is 700 times higher than that in tests with superheated steam. The results of preliminary experiments confirm the possibility of constructing a unit for batch processing of the surfaces of fuel rod claddings.

  17. Recent Developments in the Design, Capabilities and Autonomous Operations of a Lightweight Surface Manipulation System and Test-bed

    Science.gov (United States)

    Dorsey, John T.; Jones, Thomas C.; Doggett, W. R.; Brady, Jeffrey S.; Berry, Felecia C.; Ganoe, George G.; Anderson, Eric; King, Bruce D.; Mercer, David C.

    2011-01-01

    The first generation of a versatile high performance device for performing payload handling and assembly operations on planetary surfaces, the Lightweight Surface Manipulation System (LSMS), has been designed and built. Over the course of its development, conventional crane type payload handling configurations and operations have been successfully demonstrated and the range of motion, types of operations and the versatility greatly expanded. This enhanced set of 1st generation LSMS hardware is now serving as a laboratory test-bed allowing the continuing development of end effectors, operational techniques and remotely controlled and automated operations. This paper describes the most recent LSMS and test-bed development activities, that have focused on two major efforts. The first effort was to complete a preliminary design of the 2nd generation LSMS that has the capability for limited mobility and can reposition itself between lander decks, mobility chassis, and fixed base locations. A major portion of this effort involved conducting a study to establish the feasibility of, and define, the specifications for a lightweight cable-drive waist joint. The second effort was to continue expanding the versatility and autonomy of large planetary surface manipulators using the 1st generation LSMS as a test-bed. This has been accomplished by increasing manipulator capabilities and efficiencies through both design changes and tool and end effector development. A software development effort has expanded the operational capabilities of the LSMS test-bed to include; autonomous operations based on stored paths, use of a vision system for target acquisition and tracking, and remote command and control over a communications bridge.

  18. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yurong; Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kundu, Subhas C. [Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, West Bengal 721302 (India); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-15

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  19. Experimental test of proximity effect theories by surface impedance measurements on the Pb-Sn system

    International Nuclear Information System (INIS)

    Hook, J.R.; Battilana, J.A.

    1976-01-01

    The proximity effect in the Pb-Sn system in zero magnetic field has been studied by measuring the surface impedance at 3 GHz of a thin film of tin evaporated on to a bulk lead substrate. The results are compared with the predictions of theories of the proximity effect. It is found that good agreement can be obtained by using a theory due to Hook and Waldram of the spatial variation of the superconducting order parameter Δ inside each metal together with suitable boundary conditions on Δ at the interface between the metals. The required boundary conditions are a generalization to the case of non-zero electron reflection at the interface of the boundary conditions given by Zaitsev for the Ginsburg-Landau equation. (author)

  20. Biocompatibility of surface treated pure titanium and titanium alloy by in vivo and in vitro test

    Science.gov (United States)

    Lee, Min-Ho; Yoon, Dong-Joo; Won, Dae-Hee; Bae, Tae-Sung; Watari, Fumio

    2003-02-01

    In the present study, commercial pure Ti and Ti-6Al-4V alloy specimens with and without alkali and heat treatments were implanted in the abdominal connective tissue of mice. Conventional stainless steel 316L was also implanted for comparison. After three months, their biocompatibility was evaluated by in vitro and in vivo experiments. Surface structural changes of specimens due to the alkali treatment and soaking in Hank's solution were analyzed by XRD, SEM, XPS and AES. An apatite layer, which accelerates the connection with bone, was formed more easily on the alkali treated specimens than the non-treated specimens. The number of macrophages, which is known to increase as the inflammatory reaction proceeds, was much lower for the alkali and heat treated specimens than for the others. The average thickness of the fibrous capsule formed around the implant was much thinner for the alkali and heat treated specimens than for the others.

  1. A New Instrument for Testing Wind Erosion by Soil Surface Shape Change

    Directory of Open Access Journals (Sweden)

    Chun-xing Hai

    2009-01-01

    Full Text Available Wind erosion, a primary cause of soil degeneration, is a problem in arid and semiarid areas throughout the world. Many methods are available to study soil erosion, but there is no an effective method for making quantitative measurements in the field. To solve this problem, we have developed a new instrument that can measure the change in the shape of the soil surface, allowing quick quantification of wind erosion. In this paper, the construction and principle of the new instrument are described. Field experiments are carried out using the instrument, and the data are analyzed. The erosion depth is found to vary by 11% compared to the average for measurement areas ranging from 30×30 cm2 to 10×10 cm2. The results show that the instrument is convenient and reliable for quantitatively measuring wind erosion in the field.

  2. Platelet-Derived Serotonin Mediates Liver Regeneration

    Science.gov (United States)

    Lesurtel, Mickael; Graf, Rolf; Aleil, Boris; Walther, Diego J.; Tian, Yinghua; Jochum, Wolfram; Gachet, Christian; Bader, Michael; Clavien, Pierre-Alain

    2006-04-01

    The liver can regenerate its volume after major tissue loss. In a mouse model of liver regeneration, thrombocytopenia, or impaired platelet activity resulted in the failure to initiate cellular proliferation in the liver. Platelets are major carriers of serotonin in the blood. In thrombocytopenic mice, a serotonin agonist reconstituted liver proliferation. The expression of 5-HT2A and 2B subtype serotonin receptors in the liver increased after hepatectomy. Antagonists of 5-HT2A and 2B receptors inhibited liver regeneration. Liver regeneration was also blunted in mice lacking tryptophan hydroxylase 1, which is the rate-limiting enzyme for the synthesis of peripheral serotonin. This failure of regeneration was rescued by reloading serotonin-free platelets with a serotonin precursor molecule. These results suggest that platelet-derived serotonin is involved in the initiation of liver regeneration.

  3. Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site

    Science.gov (United States)

    Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong

    2013-01-01

    To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01–0.07 and relative RMSE of approximately 5%–12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0). PMID:23785513

  4. Project test plan for runoff and erosion on fine-soil barrier surfaces and rock-covered side slopes

    Energy Technology Data Exchange (ETDEWEB)

    Walters, W.H.; Hoover, K.A.; Cadwell, L.L.

    1990-06-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company are working together to develop protective barriers to isolate near-surface radioactive waste. The purpose of the barriers is to protect defense wastes at the US Department of Energy's (DOE) Hanford Site from infiltration of precipitation, biointrusion, and surficial erosion for up to 10,000 years without the need for long-term monitoring, maintenance, or institutional control. The barriers will be constructed of layered earth and rock material designed to direct surface and groundwater pathways away from the buried waste. To address soil erosion as it applies to barrier design and long-term stability, a task designed to study this problem has been included in the Protective Barriers Program at PNL. The barrier soil-erosion task will investigate the ability of the soil cover and side slopes to resist the erosional and destabilizing processes from externally applied water. The study will include identification and field testing of the dominant processes contributing to erosion and barrier failure. The effects of rock mulches, vegetation cover on the top fine-grained soil surface, as well as the stability of rock armoring on the side slopes, will be evaluated. Some of the testing will include the effects of animal intrusion on barrier erosion, and these will be coordinated with other animal intrusion studies. 6 refs., 4 figs., 1 tab.

  5. Land surface reflectance retrieval from hyperspectral data collected by an unmanned aerial vehicle over the Baotou test site.

    Science.gov (United States)

    Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong

    2013-01-01

    To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01-0.07 and relative RMSE of approximately 5%-12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0).

  6. Laser-induced surface wave testing: a new method for measuring the depth of cracks

    International Nuclear Information System (INIS)

    Miura, T.; Ochiai, M.; Kuroda, H.; Kanemoto, S.; Soramoto, S.

    2001-01-01

    A new inspection method for nuclear reactor internal components is proposed for which laser ultrasonic testing is employed, laser beams being used for both generation and detection of ultrasonic waves. It is difficult to detect cracks on reactor internals' welded bead due to complex geometry and curvature. Use of the features of the ultrasonic technique - that is, non-contacting inspection and high resolution - enables reactor internals to be inspected. To confirm the performance, feasibility tests using artificial slits on the welded bead were performed. Reflected echoes from the silts having the depth of from 1 mm to 5 mm were detected and visualized by 2-dimensional contour plots. Moreover, to estimate the depth of artificial slits, frequency analysis that uses response function to transmitted waves is performed. The results show that the performance of estimating depth is from 0.2 mm to 1.5 mm. (authors)

  7. Measurement of PCB emissions from building surfaces using a novel portable emission test cell

    DEFF Research Database (Denmark)

    Lyng, Nadja; Gunnarsen, Lars Bo; Andersen, Helle Vibeke

    2016-01-01

    Polychlorinated biphenyls (PCBs) were used in building materials like caulks and paints from 1930 e1970s and in some cases that caused elevated PCB concentrations in the indoor air at levels considered harmful to occupant health. PCBs are semivolatile organic compounds and capable of spreading from...... and there is a need to prioritise remediation measures on different materials. An inexpensive and portable emission test cell was developed to resemble indoor conditions in relation to the area specific ventilation rate. Emissions were measured using the test cell in the laboratory on freshly made PCB paint. Further......, the chamber was used for determining emissions from PCB-containing building materials in the field as well as remediated walls. The measurements showed that sorption of PCBs to chamber walls was insignificant after 2-4 days of exposure to the source. Over a period of two weeks emission rates did not change...

  8. Safety and Suitability for Service Assessment Testing for Surface and Underwater Launched Munitions

    Science.gov (United States)

    2014-12-05

    resistance of materiel to the effects of a warm humid atmosphere. Materiel may be exposed to this environment year-round in tropical areas and...salt fog test (MIL-STD-810, Method 509) provides a set of repeatable conditions to determine the relative resistance of the munition to the effects...B/ 61 ( 24 ) > 152 ( 60 ) B/ 61 ( 24 ) Greater than 450 ( 1000 ) No limit C/ 46 ( 18 ) Drop on each bottom edge and bottom face or skids

  9. Standardization of peeling tests for assessing the cohesion and consolidation characteristics of historic stone surfaces

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Lesák, Jaroslav; Rescic, S.; Slížková, Zuzana; Tiano, P.; Valach, Jaroslav

    2012-01-01

    Roč. 45, č. 4 (2012), s. 505-520 ISSN 1359-5997 R&D Projects: GA ČR(CZ) GA103/09/2067; GA MŠk(CZ) 7E08083 Grant - others:evropská komise(XE) FP-NMP-2007- SME -1-2136 Institutional support: RVO:68378297 Keywords : peeling test * historic stone * cohesion Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.184, year: 2012

  10. The Cellular Basis for Animal Regeneration

    OpenAIRE

    Tanaka, Elly M.; Reddien, Peter W.

    2011-01-01

    The ability of animals to regenerate missing parts is a dramatic and poorly understood aspect of biology. The sources of new cells for these regenerative phenomena have been sought for decades. Recent advances involving cell fate tracking in complex tissues have shed new light on the cellular underpinnings of regeneration in Hydra, planarians, zebrafish, Xenopus, and Axolotl. Planarians accomplish regeneration with use of adult pluripotent stem cells, whereas several vertebrates utilize a col...

  11. Fanning the flames to regenerate the heart

    OpenAIRE

    Riley, Paul R.

    2014-01-01

    Damage to the adult mammalian heart is irreversible, and lost cells are not replaced through regeneration. In neonatal mice, prior to P7, heart tissue can be regenerated after injury; however, the factors that facilitate cardiac regeneration in the neonatal heart are not known. In this issue of the JCI, Aurora and colleagues evaluated the immune response following myocardial infarction in P1 mice compared with that in P14 mice, which have lost their regenerative capacity, and identified a pop...

  12. Analysis of angular heat conduction in rotary heat regenerators

    Energy Technology Data Exchange (ETDEWEB)

    Reis, M.C.; Sphaier, L.A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Mecanica Teorica e Aplicada], Emails: lasphaier@mec.uff.br, marcelloreis@vm.uff.br

    2010-07-01

    Heat regenerators can be found in a considerable number of engineering applications, and are either used as pair of fixed matrices or as single rotary matrix. The thermal design of these devices is usually done considering models that rely on well-established simplifying assumptions. While most of these assumptions comprise reasonable considerations, some of them could lead to noticeable errors on some occasions. One such assumption is that there is no heat transfer between adjacent channels within the regenerator matrix. While this is quite reasonable for fixed-bed exchangers, this might not be a good choice for rotary exchangers on some occasions. Since rotary matrices can operate between two process streams presenting a large temperature difference between them, a large temperature gradient may develop within the plane normal to the flow direction, especially in the angular direction. This paper proposes a new model for simulating rotary heat regenerators, taking into account this previously unconsidered matrix heat conduction effect. A numerical solution of a test case with angular heat conduction is carried-out. With this solution, a parametric analysis is performed, showing how the effects that gradually increasing the angular heat conduction can affect the temperature distributions within the matrix and regenerator outlet. (author)

  13. Vegetative Regeneration Capacities of Five Ornamental Plant Invaders After Shredding

    Science.gov (United States)

    Monty, Arnaud; Eugène, Marie; Mahy, Grégory

    2015-02-01

    Vegetation management often involves shredding to dispose of cut plant material or to destroy the vegetation itself. In the case of invasive plants, this can represent an environmental risk if the shredded material exhibits vegetative regeneration capacities. We tested the effect of shredding on aboveground and below-ground vegetative material of five ornamental widespread invaders in Western Europe that are likely to be managed by cutting and shredding techniques: Buddleja davidii (butterfly bush, Scrophulariaceae), Fallopia japonica (Japanese knotweed, Polygonaceae), Spiraea × billardii Hérincq (Billard's bridewort, Rosaceae), Solidago gigantea (giant goldenrod, Asteraceae), and Rhus typhina L. (staghorn sumac, Anacardiaceae). We looked at signs of vegetative regeneration and biomass production, and analyzed the data with respect to the season of plant cutting (spring vs summer), the type of plant material (aboveground vs below-ground), and the shredding treatment (shredded vs control). All species were capable of vegetative regeneration, especially the below-ground material. We found differences among species, but the regeneration potential was generally still present after shredding despite a reduction of growth rates. Although it should not be excluded in all cases (e.g., destruction of giant goldenrod and staghorn sumac aboveground material), the use of a shredder to destroy woody alien plant material cannot be considered as a general management option without significant environmental risk.

  14. A nonventing cooling system for space environment extravehicular activity, using radiation and regenerable thermal storage

    Science.gov (United States)

    Bayes, Stephen A.; Trevino, Luis A.; Dinsmore, Craig E.

    1988-01-01

    This paper outlines the selection, design, and testing of a prototype nonventing regenerable astronaut cooling system for extravehicular activity space suit applications, for mission durations of four hours or greater. The selected system consists of the following key elements: a radiator assembly which serves as the exterior shell of the portable life support subsystem backpack; a layer of phase change thermal storage material, n-hexadecane paraffin, which acts as a regenerable thermal capacitor; a thermoelectric heat pump; and an automatic temperature control system. The capability for regeneration of thermal storage capacity with and without the aid of electric power is provided.

  15. Early regulation of axolotl limb regeneration.

    Science.gov (United States)

    Makanae, Aki; Satoh, Akira

    2012-10-01

    Amphibian limb regeneration has been studied for a long time. In amphibian limb regeneration, an undifferentiated blastema is formed around the region damaged by amputation. The induction process of blastema formation has remained largely unknown because it is difficult to study the induction of limb regeneration. The recently developed accessory limb model (ALM) allows the investigation of limb induction and reveals early events of amphibian limb regeneration. The interaction between nerves and wound epidermis/epithelium is an important aspect of limb regeneration. During early limb regeneration, neurotrophic factors act on wound epithelium, leading to development of a functional epidermis/epithelium called the apical epithelial cap (AEC). AEC and nerves create a specific environment that inhibits wound healing and induces regeneration through blastema formation. It is suggested that FGF-signaling and MMP activities participate in creating a regenerative environment. To understand why urodele amphibians can create such a regenerative environment and humans cannot, it is necessary to identify the similarities and differences between regenerative and nonregenerative animals. Here we focus on ALM to consider limb regeneration from a new perspective and we also reported that focal adhesion kinase (FAK)-Src signaling controlled fibroblasts migration in axolotl limb regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  16. Cellular plasticity during vertebrate appendage regeneration.

    Science.gov (United States)

    Monaghan, James R; Maden, Malcolm

    2013-01-01

    Many vertebrates have the amazing ability to regenerate all or portions of appendages including limbs, tails, fins, and digits. Unfortunately, our understanding of the cellular and molecular basis of appendage regeneration is severely lacking. However, recent technological advances that facilitate the tracking of cell lineages in vivo through space and time are allowing us to address the unknowns of regeneration, such as characterizing the cells that contribute to regeneration and identifying the tissues these cells differentiate into during regeneration. Here, we describe the experiments and the surprisingly uniform results that have emerged across diverse vertebrate species when specific cell lineages have been tracked during vertebrate appendage regeneration. These investigations show that vertebrates, from zebrafish to salamanders to mammals, utilize a limited amount of cellular plasticity to regenerate missing appendages. The universal approach to appendage regeneration is not to generate pluripotent cells that then differentiate into the new organ, but instead to generate lineage-restricted cells that are propagated in a progenitor-like state. Lessons learned from these natural cases of complex tissue regeneration might inform regenerative medicine on the best approach for re-growing complex tissues.

  17. Plant regeneration: cellular origins and molecular mechanisms.

    Science.gov (United States)

    Ikeuchi, Momoko; Ogawa, Yoichi; Iwase, Akira; Sugimoto, Keiko

    2016-05-01

    Compared with animals, plants generally possess a high degree of developmental plasticity and display various types of tissue or organ regeneration. This regenerative capacity can be enhanced by exogenously supplied plant hormones in vitro, wherein the balance between auxin and cytokinin determines the developmental fate of regenerating organs. Accumulating evidence suggests that some forms of plant regeneration involve reprogramming of differentiated somatic cells, whereas others are induced through the activation of relatively undifferentiated cells in somatic tissues. We summarize the current understanding of how plants control various types of regeneration and discuss how developmental and environmental constraints influence these regulatory mechanisms. © 2016. Published by The Company of Biologists Ltd.

  18. The cellular basis for animal regeneration

    Science.gov (United States)

    Tanaka, Elly; Reddien, Peter W.

    2011-01-01

    The ability of animals to regenerate missing parts is a dramatic and poorly understood aspect of biology. The sources of new cells for these regenerative phenomena have been sought for decades. Recent advances involving cell fate tracking in complex tissues have shed new light on the cellular underpinnings of regeneration in Hydra, planarians, zebrafish, Xenopus, and Axolotl. Planarians accomplish regeneration with use of adult pluripotent stem cells, whereas several vertebrates utilize a collection of lineage-restricted progenitors from different tissues. Together, an array of cellular strategies—from pluripotent stem cells to tissue-specific stem cells and dedifferentiation—are utilized for regeneration. PMID:21763617

  19. Analysis of coatings appearance and durability testing induced surface defects using image capture/processing/analysis

    Directory of Open Access Journals (Sweden)

    Lee, F.

    2003-12-01

    Full Text Available There are no established and accepted techniques available for accurate characterization appearance changes brought about by scratch and mar damage. Scratch and mar resistance is related to the ability of a coating in resisting deformation. The appearance change is brought about by surface roughening which in turn leads to a reduction in gloss and reflectivity. This paper focuses on the measurement of the appearance of coating by image analysis and gloss measurement.

    No hay técnicas establecidas o aceptadas para una caracterización precisa de los cambios de apariencia dados por los rayones profundos y daños superficiales en los recubrimientos. La resistencia a estos eventos está relacionada con la habilidad del recubrimiento a resistir la deformación. El cambio de apariencia se presenta en la superficie como una aspereza que va llevando a la reducción del brillo y de la reflectancia. Este trabajo se centra en las mediciones de apariencia de un recubrimiento por análisis de imágenes y medición de brillo.

  20. Evaluation of a platelet lysate bilayered system for periodontal regeneration in a rat intrabony three-wall periodontal defect

    NARCIS (Netherlands)

    Babo, P.S.; Cai, X; Plachokova, A.S.; Reis, R.L.; Jansen, J.A.; Gomes, M.E.; Walboomers, X.F.

    2018-01-01

    With currently available therapies, full regeneration of lost periodontal tissues after periodontitis cannot be achieved. In this study, a combined compartmentalized system was tested, composed of (a) a platelet lysate (PL)-based construct, which was placed along the root aiming to regenerate the

  1. Bentonite engineered barrier building method for radioactive waste on sub-surface disposal test project

    International Nuclear Information System (INIS)

    Mori, Takuo; Takahashi, Shinichi; Takeuchi, Kunifumi; Namiki, Kazuto

    2008-01-01

    The engineering barriers such as clay and concrete materials are planned to use for covering radioactive waste in cavern-type disposal facility. The requirement to clay barrier is very low permeability, which could be satisfied by high density Bentonite, and such a compaction method will be needed. Two methods, compaction and air shot, were tested in engineering scale for constructing a high-density clay barrier. Two types of compaction equipments, 'Teasel plate' and 'Plate compacter', were developed and engineering scale experiments were performed for compacting Bentonite only and Bentonite-sand-aggregate mixture. As a result, the Teasel plate can reach higher density Bentonite in relatively short time in comparison to other equipments. While, regarding air shot method, an air-shot machine in a tunnel construction site was tested by different water adding methods (wet, dry, and half wet). It is concluded that the dry and half wet constructing methods will achieve reasonable workability. As a result, the best construction option can be chosen according to the locations of radioactive waste facility. (author)

  2. [Regeneration of planarians: experimental object].

    Science.gov (United States)

    Sheĭman, I M; Kreshchenko, I D

    2015-01-01

    We discuss the expediency of using invertebrates, such as flatworms and planarians, as experimental objects. Free-living planarian flatworms (phylum Platyhelminthes, class Turbellaria) are invertebrate animals in which a bilateral symmetry appears for the first time in evolution and organs and tissues form. As the highest ecological link of the food chain--predators--these animals are characterized by a set of behavioral reactions controlled by a differentiated central nervous system. Planarians have unsurpassed ability to regenerate lost or damaged body parts. Owing to the ease of their breeding and their convenience for manipulations, these animals are used to study the influence of chemical and physical factors on the processes of life, growth, and reproduction. Currently, planarians are recognized as a model for biological research in the field of regeneration, stem cell biology, study of their proliferation and differentiation, as well as the regulatory mechanisms of morphogenetic processes. The genome of the planarian Schmidtea mediterranea was fully sequenced, which opened up the opportunity to work with this object at the molecular biological level. Furthermore, planarians are used in neurobiological and toxicological studies, in studying the evolutionary aspects of centralization of the nervous system, mechanisms of muscle contraction, and in the development of new antiparasitic drugs. This review aims to demonstrate the relevance and diversity of research conducted on simple biological objects--planarians--to awider audience to show the historical continuity of these studies and their wide geographical distribution and to focus on the studies carried out in Russia, which, as a rule, are not included in the foreign reviews on planarian regeneration.

  3. New calculation method to solve moisture balance in the room with regenerator heat recovery and infiltration

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Drivsholm, Christian

    2017-01-01

    in air handling units (AHUs). In the case of regenerator heat exchanger, the higher the heat recovery efficiency obtained the higher risk that condensation might occur. This condensation might form small droplets on the surface of the regenerator that might not be possible to drain in the short switching......This paper investigates moisture related performance of a regenerator heat exchanger located in a decentralized ventilation unit for residential building application. The decentralized ventilation solutions have recently become a more and more popular alternative to centralized ventilation systems....... Due to the small space available and in order to avoid maintenance of these types of units, they are equipped with regenerator heat exchanger in some cases. In the recent past and also presently, Building Regulations (BR) and European directives have increased demands for heat recovery efficiency...

  4. Adsorption and desorption of Cd(II) onto titanate nanotubes and efficient regeneration of tubular structures

    International Nuclear Information System (INIS)

    Wang, Ting; Liu, Wen; Xu, Nan; Ni, Jinren

    2013-01-01

    Highlights: ► Satisfactory reuse of TNTs due to easy regeneration of tubular structures. ► TNTs regeneration using only 2% of NaOH needed for virgin TNTs preparation. ► Excellent regeneration attributed to steady TNTs skeleton and complex form of TNTs-OCd + OH − onto adsorbed TNTs. -- Abstract: Efficient regeneration of desorbed titanate nanotubes (TNTs) was investigated with cycled Cd(II) adsorption and desorption processes. After desorption of Cd (II) from TNTs using 0.1 M HNO 3 , regeneration could be simply achieved with only 0.2 M NaOH at ambient temperature, i.e. 2% of the NaOH needed for virgin TNTs preparation at 130 °C. The regenerated TNTs displayed similar adsorption capacity of Cd(II) even after six recycles, while significant reduction could be detected for desorbed TNTs without regeneration. The virgin TNTs, absorbed TNTs, desorbed TNTs and regenerated TNTs were systematically characterized. As results, the ion-exchange mechanism with Na + in TNTs was convinced with obvious change of -TiO(ONa) 2 by FTIR spectroscopy. The easy recovery of the damaged tubular structures proved by TEM and XRD was ascribed to asymmetric distribution of H + and Na + on the surface side and interlayer region of TNTs. More importantly, the cost-effective regeneration was found possibly related to complex form of TNTs-OCd + OH − onto the adsorbed TNTs, which was identified with help of X-ray photoelectron spectroscopy, and further indicated due to high relevance to an unexpected mole ratio of 1:1 between exchanged Na + and absorbed Cd(II)

  5. The influence of surface modified poly(L-lactic acid) films on the differentiation of human monocytes into macrophages

    OpenAIRE

    Correia, Clara R.; Gaifem, Joana; Oliveira, Mariana Braga; Silvestre, Ricardo Jorge Leal; Mano, J. F.

    2017-01-01

    Macrophages play a crucial role in the biological performance of biomaterials, as key factors in defining the optimal inflammation-healing balance towards tissue regeneration and implant integration. Here, we investigate how different surface modifications performed on poly(L-lactic acid) (PLLA) films would influence the differentiation of human monocytes into macrophages. We tested PLLA films without modification, surface-modified by plasma treatment (pPLLA) or by combining plasma treatment ...

  6. Fostering and Planning Urban Regeneration

    DEFF Research Database (Denmark)

    Lidegaard, Christina; Nuccio, Massimiliano; Bille, Trine

    2018-01-01

    in cultural planning and a mix of bottom-up and top-down approaches is more desirable than both a totally unregulated initiative and a real estate-driven development and a totally unregulated initiative, as it ensures that initiatives remain financially viable and that the creative workers and companies......Policy-makers and urban planners struggle to find the right formula to implement urban regeneration processes based on cultural assets, often focusing on the desired outcomes, but rarely questioning how the policy process can shape them. This paper examines different governance models...

  7. Analysis of a bending test on a full-scale PWR hot leg elbow containing a surface crack

    Energy Technology Data Exchange (ETDEWEB)

    Delliou, P. le [Electricite de France, EDF, 77 - Moret-sur-Loing (France). Dept. MTC; Julisch, P.; Hippelein, K. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Bezdikian, G. [Electricite de France, EDF, 92 - Paris la Defense (France). Direction Production Transport

    1998-11-01

    EDF, in co-operation with Framatome, has conducted a large research programme on the mechanical behaviour of thermally aged cast duplex stainless steel elbows, which are part of the main primary circuit of French PWR. One important task of this programme consisted of testing a full-scale PWR hot leg elbow. The elbow contained a semi-elliptical circumferential notch machined on the outer surface of the intrados as well as casting defects located on the flanks. To simulate the end-of-life condition of the component regarding material toughness, it had undergone a 2400 hours ageing heat treatment at 400 C. The test preparation and execution, as well as the material characterization programme, were committed to MPA. The test was conducted under constant internal pressure and in-plane bending (opening mode) at 200 C. For safety reasons, it took place on an open air-site: the Meppen military test ground. At the maximum applied moment (6000 kN.m), the notch did not initiate. This paper presents the experimental results and the fracture mechanics analysis of the test, based on finite element calculations. (orig.)

  8. Study of the Pierre Auger Observatory ground detectors: tests, simulation and calibration; Etude des detecteurs de surface de l'observatoire Pierre Auger: tests, simulation et etalonnage

    Energy Technology Data Exchange (ETDEWEB)

    Creusot, A

    2004-10-01

    The Pierre Auger Observatory is intended to the ultra high energy cosmic rays study. This study is realized through the particles showers coming from the interaction between the cosmic rays and the atmosphere. The ground detection of these showers requires a comprehensive understanding of the detectors. Several test tanks have been elaborated for this purpose, especially the Orsay one. The first chapter is dedicated to the presentation of the cosmic rays and of the Pierre Auger Observatory. The second one describes the detectors used for the Observatory surface array. The Orsay test tank is then presented and detailed. We study the results we have got with the Orsay test tank in the fourth chapter and compare these results with those of the Observatory detectors in the fifth chapter. The sixth chapter is dedicated to the validation of the results set through the simulation (GEANT4 software). Finally, the first detected particles showers are presented in the seventh chapter. The data acquisition has begun this year. The construction will be finished by end of 2005. From this moment, The Pierre Auger Observatory will allow us to contribute to solving the cosmic rays puzzle. (author)

  9. Preliminary thermal and thermomechanical modeling for the near surface test facility heater experiments at Hanford. Volume II: Appendix D

    International Nuclear Information System (INIS)

    Chan, T.; Remer, J.S.

    1978-12-01

    Appendix D is a complete set of figures illustrating the detailed calculations necessary for designing the heater experiments at the Near Surface Test Facility (NSTF) at Hanford, Washington. The discussion of the thermal and thermomechanical modeling that yielded these calculations is presented in Volume 1. A summary of the figures and the models they illustrate is given in table D1. The most important figures have also been included in the discussion in Volume 1, and Table D2 lists the figure numbers in this volume that correspond to figure numbers used there

  10. Evaluation of mechanical properties for spherical magnetic regenerator materials fabricated by rapid solidification process

    International Nuclear Information System (INIS)

    Okamura, M.; Sori, N.; Saito, A.

    1997-01-01

    Various magnetic regenerator materials, such as Er 3 Ni, Er 3 Co and ErNi, are fabricated in the form of a spherical particle by a rapid solidification process. 4 K level refrigeration has been obtained by a GM refrigerator using these materials. However, the magnetic regenerator materials are considered brittle, as they are intermetallic compounds. It is important to evaluate the mechanical properties of these materials to confirm reliability as a regenerator material. In this paper, experimental results of compression and vibration tests for magnetic regenerator materials are described. The technical point of this study is to use spherical particles as test samples. The compressive stress of 20 MPa was applied to these spherical particles and no fractured spheres were observed. Similarly, no fractured spheres were found after the vibration test, in which the maximum acceleration was 30 X 9.8 m/s 2 and the number of vibration times was 1 X 10 6 , insofar as there was no room to stir spherical particles in a regenerator. In practice, the reliability of magnetic regenerator materials has been confirmed by a long-run test of 7,000 h in a usual GM refrigerator

  11. Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test

    Science.gov (United States)

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; Knight, Kim B.; Isselhardt, Brett H.; Matzel, Jennifer E.

    2018-02-01

    Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K to 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ∼2200 K is inferred (1σ uncertainty of ∼200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.

  12. Poly(glycerol sebacate) elastomer: a novel material for mechanically loaded bone regeneration.

    Science.gov (United States)

    Zaky, Samer Helal; Lee, Kee-Won; Gao, Jin; Jensen, Adrianna; Close, John; Wang, Yadong; Almarza, Alejandro J; Sfeir, Charles

    2014-01-01

    The selection criteria for potential bone engineering scaffolds are based chiefly on their relative mechanical comparability to mature bone. In this study, we challenge this notion by obtaining full regeneration of a rabbit ulna critical size defect by employing the elastomeric polymer, poly(glycerol sebacate) (PGS). We tested the regeneration facilitated by PGS alone, PGS in combination with hydroxyapatite particles, or PGS seeded with bone marrow stromal cells. We investigated the quantity and quality of the regenerated bone histologically, by microcomputed tomography and by four-point bending flexural mechanical testing at 8 weeks postimplantation. We conclude that the relatively lower stiffness of this biocompatible elastomer allows a load-transducing milieu in which osteogenesis, matrix deposition, and eventual bone maturation can take place. This study's results suggest that PGS elastomer is an auspicious osteoconductive material for the regeneration of bony defects. These results call for an innovative reassessment of the current art of selection for novel bone scaffold materials.

  13. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first

  14. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC(number s ign)3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO(sub 2). Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO(sub 2)/20% H(sub 2)O, and lowest subsequent to calcination in pure CO(sub 2) at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO(sub 2) in the simulated flue gas. CO(sub 2) evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC(number s ign)3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO

  15. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  16. Adventitious shoot formation and plant regeneration from leaf ...

    African Journals Online (AJOL)

    ... the explants were cultured on medium with NAA only. Shoot regeneration was associated with callus formation. Regenerated shoots were rooted ex vitro, acclimatized and grown normally in the greenhouse. Keywords: Cytokinins, carnation, multiplication, regeneration, thidiazuron. African Journal of Biotechnology Vol.

  17. Tubulation repair mitigates misdirection of regenerating motor axons across a sciatic nerve gap in rats

    OpenAIRE

    Liu, Dan; Mi, Daguo; Zhang, Tuanjie; Zhang, Yanping; Yan, Junying; Wang, Yaxian; Tan, Xuefeng; Yuan, Ying; Yang, Yumin; Gu, Xiaosong; Hu, Wen

    2018-01-01

    The repair of peripheral nerve laceration injury to obtain optimal function recovery remains a big challenge in the clinic. Misdirection of regenerating axons to inappropriate target, as a result of forced mismatch of endoneurial sheaths in the case of end-to-end nerve anastomosis or nerve autografting, represents one major drawback that limits nerve function recovery. Here we tested whether tubulation repair of a nerve defect could be beneficial in terms of nerve regeneration accuracy and ne...

  18. Metal oxide regenerable carbon dioxide removal system for an advanced portable life support system

    Science.gov (United States)

    Nacheff, Maurena S.; Chang, Craig H.; Colombo, Gerald V.; Cusick, Robert J.

    1989-01-01

    The development of a CO2 removal system for an astronaut portable life support system to meet the EVA requirements for the Space Station is discussed, focusing on the factors important in the selection of the metal oxide absorbent for CO2 removal. Results from laboratory tests on metal oxide absorbent materials are given, including characterization studies and dynamic CO2 uptake and regeneration measurements. The preliminary design of the breadboard system to perform both the absorption and regeneration functions is presented.

  19. Testing the Runoff Tool in Sicilian vineyards: adopting best management practices to prevent agricultural surface runoff

    Science.gov (United States)

    Singh, Manpriet; Dyson, Jeremy; Capri, Ettore

    2016-04-01

    Over the last decades rainfall has become more intense in Sicily, making large proportions of steeply sloping agricultural land more vulnerable to soil erosion, mainly orchards and vineyards (Diodato and Bellocchi 2010). The prevention of soil degradation is indirectly addressed in the European Union's Water Framework Directive (2000/60/EC) and Sustainable Use Directive (2009/128/EC). As a consequence, new EU compliance conditions for food producers requires them to have tools and solutions for on-farm implementation of sustainable practices (Singh et al. 2014). The Agricultural Runoff and Best Management Practice Tool has been developed by Syngenta to help farm advisers and managers diagnose the runoff potential from fields with visible signs of soil erosion. The tool consists of 4 steps including the assessment of three key landscape factors (slope, topsoil permeability and depth to restrictive horizon) and 9 mainly soil and crop management factors influencing the runoff potential. Based on the runoff potential score (ranging from 0 to 10), which is linked to a runoff potential class, the Runoff Tool uses in-field and edge-of-the-field Best Management Practices (BMPs) to mitigate runoff (aligned with advice from ECPA's TOPPS-prowadis project). The Runoff tool needs testing in different regions and crops to create a number of use scenarios with regional/crop specific advice on BMPs. For this purpose the Tool has been tested in vineyards of the Tasca d'Almerita and Planeta wineries, which are large family-owned estates with long-standing tradition in viticulture in Sicily. In addition to runoff potential scores, Visual Soil Assessment (VSA) scores have been calculated to allow for a comparison between different diagnostic tools. VSA allows for immediate diagnosis of soil quality (a higher score means a better soil quality) including many indicators of runoff (Shepherd 2008). Runoff potentials were moderate to high in all tested fields. Slopes were classified as

  20. Improvement of hand function using different surfaces and identification of difficult movement post stroke in the Box and Block Test.

    Science.gov (United States)

    Slota, Gregory P; Enders, Leah R; Seo, Na Jin

    2014-07-01

    This study determined the impact of changing block surfaces on hand function, as well as identified particularly time-consuming movement components post stroke, measured by the Box and Block Test (BBT). Eight chronic stroke survivors and eight age- and gender-matched control subjects participated in this study. The BBT score (number of blocks moved) and time for seven movement components were compared for three different block surfaces (wood, paper, and rubber). The rubber blocks improved BBT scores 8% (compared to all other conditions) not only for control subjects but also for the paretic and non-paretic hands of stroke survivors, by reducing movement time for finger closing and contact-to-lift. Modifying daily objects' surfaces with rubber could help stroke survivors' hand function. The paretic hand displayed notably slower movement for contact-to-lift, transport-release, reach before barrier, and reach after barrier suggesting that therapies may focus on goal directed reaching and object grasping/releasing. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Developmental and adult-specific processes contribute to de novo neuromuscular regeneration in the lizard tail.

    Science.gov (United States)

    Tokuyama, Minami A; Xu, Cindy; Fisher, Rebecca E; Wilson-Rawls, Jeanne; Kusumi, Kenro; Newbern, Jason M

    2018-01-15

    Peripheral nerves exhibit robust regenerative capabilities in response to selective injury among amniotes, but the regeneration of entire muscle groups following volumetric muscle loss is limited in birds and mammals. In contrast, lizards possess the remarkable ability to regenerate extensive de novo muscle after tail loss. However, the mechanisms underlying reformation of the entire neuromuscular system in the regenerating lizard tail are not completely understood. We have tested whether the regeneration of the peripheral nerve and neuromuscular junctions (NMJs) recapitulate processes observed during normal neuromuscular development in the green anole, Anolis carolinensis. Our data confirm robust axonal outgrowth during early stages of tail regeneration and subsequent NMJ formation within weeks of autotomy. Interestingly, NMJs are overproduced as evidenced by a persistent increase in NMJ density 120 and 250 days post autotomy (DPA). Substantial Myelin Basic Protein (MBP) expression could also be detected along regenerating nerves indicating that the ability of Schwann cells to myelinate newly formed axons remained intact. Overall, our data suggest that the mechanism of de novo nerve and NMJ reformation parallel, in part, those observed during neuromuscular development. However, the prolonged increase in NMJ number and aberrant muscle differentiation hint at processes specific to the adult response. An examination of the coordinated exchange between peripheral nerves, Schwann cells, and newly synthesized muscle of the regenerating neuromuscular system may assist in the identification of candidate molecules that promote neuromuscular recovery in organisms incapable of a robust regenerative response. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Induction of shoot regeneration in cotyledon explants of the oilseed crop Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    Masochon Zimik

    2017-12-01

    Full Text Available Sesamum indicum is an ancient oilseed crop known for its high quality edible oil and its medicinally important lignans. The crop is said to be recalcitrant to plant tissue culture thus limiting the use of modern biotechnology for its genetic improvement. We present here a protocol describing plant regeneration through adventitious shoot formation from cotyledons dissected from sesame seeds soaked for four hours in water. Subculturing of the cotyledons after two weeks of culture on to a fresh Murashige and Skoog medium leads to differentiation of adventitious shoots from the proximal cut end of the explant. Culture of cotyledons on a medium containing 9% sucrose for a couple of weeks prior to transfer to MS medium supplemented with 3% sucrose induced a higher frequency of shoot regeneration. The highest frequency of 25% adventitious shoot regeneration was observed for S. indicum variety UMA. This variety also turned out to be the best among the ten genotypes tested for shoot regeneration through tissue culture. While addition of IAA marginally improved regeneration, silver nitrate was found essential for enhancing the frequency of shoot regeneration. The regenerated shoots formed roots on full strength MS medium supplemented with 1 mg/l IBA and the rooted plants were established in soil.

  3. Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others.

    Science.gov (United States)

    Norsworthy, Michael W; Bei, Fengfeng; Kawaguchi, Riki; Wang, Qing; Tran, Nicholas M; Li, Yi; Brommer, Benedikt; Zhang, Yiming; Wang, Chen; Sanes, Joshua R; Coppola, Giovanni; He, Zhigang

    2017-06-21

    At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in adult RGCs could reprogram them to a "youthful" growth-competent state and promote regeneration of other types. From a screen of transcription factors, we identified Sox11 as one that could induce substantial axon regeneration. Transcriptome profiling indicated that Sox11 activates genes involved in cytoskeletal remodeling and axon growth. Remarkably, α-RGCs, which preferentially regenerate following treatments such as Pten deletion, were killed by Sox11 overexpression. Thus, Sox11 promotes regeneration of non-α-RGCs, which are refractory to Pten deletion-induced regeneration. We conclude that Sox11 can reprogram adult RGCs to a growth-competent state, suggesting that different growth-promoting interventions promote regeneration in distinct neuronal types. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Regeneration of lithium aluminum hydride.

    Science.gov (United States)

    Graetz, Jason; Wegrzyn, James; Reilly, James J

    2008-12-31

    Lithium aluminum hydride (LiAlH(4)) is a promising compound for hydrogen storage, with a high gravimetric and volumetric hydrogen density and a low decomposition temperature. Similar to other metastable hydrides, LiAlH(4) does not form by direct hydrogenation at reasonable hydrogen pressures; therefore, there is considerable interest in developing new routes to regenerate the material from the dehydrogenated products LiH and Al. Here we demonstrate a low-energy route to regenerate LiAlH(4) from LiH and Ti-catalyzed Al. The initial hydrogenation occurs in a tetrahydrofuran slurry and forms the adduct LiAlH(4).4THF. The thermodynamics of this reversible reaction were investigated by measuring pressure-composition isotherms, and the free energy was found to be small and slightly negative (DeltaG = -1.1 kJ/mol H(2)), suggesting an equilibrium hydrogen pressure of just under 1 bar at 300 K. We also demonstrate that the adduct LiAlH(4).4THF can be desolvated at low temperature to yield crystalline LiAlH(4).

  5. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik, E-mail: niknizam@fbb.utm.my

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550 °C, 5 h) and this material has excellent performance as an antibacterial agent after silver ions loading. - Highlights: • Thermal treatment was used to regenerate surfactant modified zeolite. • The regenerated NaY zeolite formed was added with different silver loadings. • Regenerated AgY zeolite was tested for antibacterial activity on E. coli and S. aureus. • The antibacterial activity increased with increased of the amount of silver loadings. • The zeolite structure did not change with thermal and modification

  6. Surface and Downhole Prospecting Tools for Planetary Exploration: Tests of Neutron and Gamma Ray Probes - Research Paper

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Elphic; P. Chu; S. Hahn; M. R. James; D. J. Lawrence; T. H. Prettyman; J. B. Johnson; R. K. Podgorney

    2008-06-01

    The ability to locate and characterize icy deposits and other hydrogenous materials on the Moon and Mars will help us understand the distribution of water and, therefore, possible habitats at Mars, and may help us locate primitive prebiotic compounds at the Moon’s poles. We have developed a rover-borne neutron probe that localizes a near-surface icy deposit and provides information about its burial depth and abundance. We have also developed a borehole neutron probe to determine the stratigraphy of hydrogenous subsurface layers while operating within a drill string segment. In our field tests, we have used a neutron source to “illuminate” surrounding materials and gauge the instruments’ efficacy, and we can simulate accurately the observed instrument responses using a Monte Carlo nuclear transport code (MCNPX). An active neutron source would not be needed for lunar or martian near-surface exploration: cosmic-ray interactions provide sufficient neutron flux to depths of several meters and yield better depth and abundance sensitivity than an active source. However, for deep drilling (>10 m depth), a source is required. We also present initial tests of a borehole gamma ray lithodensity tool and demonstrate its utility in determining soil or rock densities and composition.

  7. Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. Campbell

    2000-04-01

    This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

  8. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-03-14

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  9. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: Expanding the application range

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2010-07-26

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010]. Here we report on a significant expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  10. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-01-01

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays (Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)) has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer (Nucl. Instr. and Meth. A616, 172 (2010)). Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  11. Plant regeneration in wheat mature embryo culture

    African Journals Online (AJOL)

    Kamil Haliloğlu

    2011-11-09

    Nov 9, 2011 ... medium and same amount (8 mg/l) of 2,4-D and dicamba, respectively except for non-endosperm sup- ported mature embryos and hormones, there was no plant regeneration in method #12 in which dicamba was used as auxine. Filippov et al. (2006) obtained the best plant regeneration in 10 mg/l doses of ...

  12. Efficient plant regeneration through somatic embryogenesis in ...

    African Journals Online (AJOL)

    enoh

    2012-02-21

    Feb 21, 2012 ... sugarcane is decreasing due to a number of external environmental factors. Today, innovative cellular and molecular approaches like genetic transformation are based on efficient plant regeneration through somatic embryogenesis from calluses. In this regard, in vitro plant regeneration of sugarcane is the ...

  13. Investigation of vanadium catalyst regeneration stages

    International Nuclear Information System (INIS)

    Tsarev, Yu.V.; Il'in, A.P.; Shirokov, Yu.G.

    1995-01-01

    Regeneration stages of vanadium catalyst: dissolution of spent catalyst in alkaline solution of potassium vanadate, precipitation and aging of hydrosilica gel, which passed to solution, have been studied experimentally. The influence of the stages on final activity and thermal stability of regenerated contact masses has been considered. 10 refs., 4 figs., 2 tabs

  14. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  15. Adventitious shoots induction and plant regeneration from ...

    African Journals Online (AJOL)

    A highly efficient regeneration system is a prerequisite step for successful genetic transformation of watermelon cultivars (Citrullus lanatus L.). The objective of this study was to establish efficient in vitro plant regeneration for three watermelon cultivars. To achieve optimal conditions for adventitious shoot induction, the ...

  16. Enhancing wildlife habitat when regenerating stands

    Science.gov (United States)

    Frank R., III Thompson

    1989-01-01

    Forest regeneration cuttings affect wildlife habitat more drastically than most forest management practices because a mature forest stand is replaced by a young sapling stand. Regeneration cuttings quickly provide habitat for many wildlife species but they also influence wildlife use of the new stand and adjacent areas throughout the rotation. Retaining snags, cavity...

  17. Beta secretase activity in peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Carolyn Tallon

    2017-01-01

    Full Text Available While the peripheral nervous system has the capacity to regenerate following a nerve injury, it is often at a slow rate and results in unsatisfactory recovery, leaving patients with reduced function. Many regeneration associated genes have been identified over the years, which may shed some insight into how we can manipulate this intrinsic regenerative ability to enhance repair following peripheral nerve injuries. Our lab has identified the membrane bound protease beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1, or beta secretase, as a potential negative regulator of peripheral nerve regeneration. When beta secretase activity levels are abolished via a null mutation in mice, peripheral regeneration is enhanced following a sciatic nerve crush injury. Conversely, when activity levels are greatly increased by overexpressing beta secretase in mice, nerve regeneration and functional recovery are impaired after a sciatic nerve crush injury. In addition to our work, many substrates of beta secretase have been found to be involved in regulating neurite outgrowth and some have even been identified as regeneration associated genes. In this review, we set out to discuss BACE1 and its substrates with respect to axonal regeneration and speculate on the possibility of utilizing BACE1 inhibitors to enhance regeneration following acute nerve injury and potential uses in peripheral neuropathies.

  18. Adventitious shoots induction and plant regeneration from ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-08

    Jul 8, 2015 ... A highly efficient regeneration system is a prerequisite step for successful genetic transformation of watermelon cultivars (Citrullus lanatus L.). The objective of this study was to establish efficient in vitro plant regeneration for three watermelon cultivars. To achieve optimal conditions for adventitious.

  19. PLANT REGENERATION THROUGH TISSUE CULTURE OF PEAR ...

    African Journals Online (AJOL)

    AISA

    culture media, calli embryogenic potential and fertile plants regeneration were conserved for more than 12 months. Characteristics of regenerated plants were similar to control. It appears that dissected shoot apex was a new appropriate tool in tissue culture. Key words: Tissue culture, culture medium, callus induction, shoot ...

  20. Clinical implications of advances in liver regeneration

    Directory of Open Access Journals (Sweden)

    Yong Jin Kwon

    2015-03-01

    Full Text Available Remarkable advances have been made recently in the area of liver regeneration. Even though liver regeneration after liver resection has been widely researched, new clinical applications have provided a better understanding of the process. Hepatic damage induces a process of regeneration that rarely occurs in normal undamaged liver. Many studies have concentrated on the mechanism of hepatocyte regeneration following liver damage. High mortality is usual in patients with terminal liver failure. Patients die when the regenerative process is unable to balance loss due to liver damage. During disease progression, cellular adaptations take place and the organ microenvironment changes. Portal vein embolization and the associating liver partition and portal vein ligation for staged hepatectomy are relatively recent techniques exploiting the remarkable progress in understanding liver regeneration. Living donor liver transplantation is one of the most significant clinical outcomes of research on liver regeneration. Another major clinical field involving liver regeneration is cell therapy using adult stem cells. The aim of this article is to provide an outline of the clinical approaches being undertaken to examine regeneration in liver diseases.

  1. Longleaf Pine: Natural Regeneration and Management

    Science.gov (United States)

    William D. Boyer

    1999-01-01

    Longleaf pine has long been recognized as a high-quality timber tree providing a number of valuable products. It is a versatile species with characteristics allowing the use of several silvicultural options. Both natural and artificial regeneration of longleaf pine are now practical management options. Natural regeneration is a lowcost alternative whenever sufficient...

  2. Regenerating Longleaf Pine with Natural Seeding

    Science.gov (United States)

    William D. Boyer

    1993-01-01

    Natural regeneration is a practical and inexpensive option for existing longleaf pine (Pinus palustris Mill.) forests if all requirements for regeneration can be met. These requirements include an adequate seed supply, a seedbed of exposed mineral soil, timely control of competition, and protection of the established seedling stand. The shelterwood...

  3. Plant regeneration through indirect organogenesis of chestnut ...

    African Journals Online (AJOL)

    To establish an effective protocol for plant regeneration through indirect organogenesis, effects of explants type, culture media and plant growth regulators on callus induction and shoot regeneration of chestnut (Castanea sativa Mill.) were investigated. Three different explants (root, nodal and internodal segment), two ...

  4. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada Appendix D - Corrective Action Investigation Report, Central Nevada Test Area, CAU 417

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations office

    1999-04-02

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  5. Keratoconus Progression in Patients With Allergy and Elevated Surface Matrix Metalloproteinase 9 Point-of-Care Test.

    Science.gov (United States)

    Mazzotta, Cosimo; Traversi, Claudio; Mellace, Pierfrancesco; Bagaglia, Simone A; Zuccarini, Silvio; Mencucci, Rita; Jacob, Soosan

    2017-10-04

    To assess keratoconus (KC) progression in patients with allergies who also tested positive to surface matrix metalloproteinase 9 (MMP-9) point-of-care test. Prospective comparative study including 100 stage I-II keratoconic patients, mean age 16.7±4.6 years. All patients underwent an anamnestic questionnaire for concomitant allergic diseases and were screened with the MMP-9 point-of-care test. Patients were divided into two groups: patients KC with allergies (KC AL) and patients KC without allergies (KC NAL). Severity of allergy was established by papillary subtarsal response grade and KC progression assessed by Scheimpflug corneal tomography, corrected distance visual acuity (CDVA) measurement in a 12-month follow-up. The KC AL group included 52 patients and the KC NAL group 48. In the KC AL group, 42/52 of patients (81%) were positive to MMP-9 point-of-care test versus two positive patients in the KC NAL group (4%). The KC AL group data showed a statistically significant decrease of average CDVA, from 0.155±0.11 to 0.301±0.2 logarithm of the minimum angle of resolution (Paverage. The KC NAL group revealed a slight KC progression without statistically significant changes. Pearson correlation test showed a high correlation between Kmax worsening and severity of PSR in the KC AL group. The study demonstrated a statistically significant progression of KC in patients with concomitant allergies, positive to MMP-9 point-of-care test versus negative. A high correlation between severity of allergy and KC progression was documented.

  6. Complement components of nerve regeneration conditioned fluid influence the microenvironment of nerve regeneration

    Directory of Open Access Journals (Sweden)

    Guang-shuai Li

    2016-01-01

    Full Text Available Nerve regeneration conditioned fluid is secreted by nerve stumps inside a nerve regeneration chamber. A better understanding of the proteinogram of nerve regeneration conditioned fluid can provide evidence for studying the role of the microenvironment in peripheral nerve regeneration. In this study, we used cylindrical silicone tubes as the nerve regeneration chamber model for the repair of injured rat sciatic nerve. Isobaric tags for relative and absolute quantitation proteomics technology and western blot analysis confirmed that there were more than 10 complement components (complement factor I, C1q-A, C1q-B, C2, C3, C4, C5, C7, C8ß and complement factor D in the nerve regeneration conditioned fluid and each varied at different time points. These findings suggest that all these complement components have a functional role in nerve regeneration.

  7. Current Bioengineering Methods for Whole Kidney Regeneration

    Directory of Open Access Journals (Sweden)

    Shuichiro Yamanaka

    2015-01-01

    Full Text Available Kidney regeneration is likely to provide an inexhaustible source of tissues and organs for immunosuppression-free transplantation. It is currently garnering considerable attention and might replace kidney dialysis as the ultimate therapeutic strategy for renal failure. However, anatomical complications make kidney regeneration difficult. Here, we review recent advances in the field of kidney regeneration, including (i the directed differentiation of induced pluripotent stem cells/embryonic stem cells into kidney cells; (ii blastocyst decomplementation; (iii use of a decellularized cadaveric scaffold; (iv embryonic organ transplantation; and (v use of a nephrogenic niche for growing xenoembryos for de novo kidney regeneration from stem cells. All these approaches represent potentially promising therapeutic strategies for the treatment of patients with chronic kidney disease. Although many obstacles to kidney regeneration remain, we hope that innovative strategies and reliable research will ultimately allow the restoration of renal function in patients with end-stage kidney disease.

  8. Efficient Regeneration of �Caralis� Alstroemeria Cultivar from Rhizome Explants

    Directory of Open Access Journals (Sweden)

    Amir Ghaffar SHAHRIARI

    2012-05-01

    Full Text Available In this paper, the effects of a number of growth regulators as well as supplements to the Murashige and Skoog (MS basal medium were evaluated on the regeneration of Alstroemeria rhizome explants. In the first experiment the effects of three cytokinins (BA, TDZ and 2IP each at 0.5, 1 and 2 mg/l in combination with NAA (0.2 mg/l, followed by another PGR combination of 2IP (at 0.5, 1 and 2 mg/l with NAA (0 and 0.2 mg/l, on regeneration of rhizome-derived explants, was investigated. Through the second experiment, the effects of a number of supplements, including glucose (30 g/l as the alternative for sucrose, casein hydrolysate (1 g/l, asparagine and glutamine, (each at 30 mg/l added to MS medium, containing 1 mg/l BA and 0.2 mg/l NAA, was examined on rhizome explants� regeneration. Among the tested cytokinins, BA induced better regeneration of rhizome explants, resulting in a higher number of shoots compared to the other cytokinins. A medium supplemented with 1 mg/l BA and 0.2 mg/l NAA proved to be the most effective, with an average of 4.16 regenerated shoots per explant. In the second PGR combination, addition of NAA at 0.2 mg/l improved regeneration, compared to NAA-free treatments. In the second experiment, glucose substitution for sucrose improved regeneration with an average of 5.10 regenerated shoots per explant, compared to 4.16 shoots in sucrose-containing medium; whereas glutamine and asparagine (with 2.66 shoots and casein hydrolysate (with 3.80 shoots showed a negative influence on rhizome explants� regeneration.

  9. SCR in biofuel combustion - stage 3. Regeneration at full-scale; SCR vid biobraensleeldning - etapp 3. Regenerering i full skala

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Kling, Aasa; Odenbrand, Ingemar; Khodayari, Raziyeh

    2002-04-01

    This is the third and last part of a project that started in 1996. The overall goal of the project was to increase the possibilities to use SCR at bio fuel combustion under reasonable technical and economical conditions. This part of the project has focused on full-scale applications of the reactivation methods that were developed during phase 1 and 2. There are quite large differences in deactivation rate between different types of catalysts. A high active Biocomb catalyst deactivates more slowly then a catalyst that contains less vanadium and is less active. A high active catalyst also catalysts the oxidation from SO{sub 2} to SO{sub 3}. Practical consequences of this for low sulphur fuels should be investigated. Two new reactivation methods, sulphation and sulphation in combination with water wash, give an activity increase of 80 and 90% relative activity respectively for the evaluated catalyst (Biocomb Type B). The water washed and sulphated samples deactivate with approximately the same deactivation rate as not regenerated samples regardless of flue gas exposure temperatures. The samples that were regenerated with sulphation deactivates less fast than not regenerated samples when they are exposed to flue gas temperatures lower then 340 deg C. At higher temperatures they deactivates relatively fast. The plate-type catalyst has been regenerated with water wash in combination with sulphation as well as water and sulphuric acid wash up to a relative activity of 80%. The deactivation has been faster for the water washed and sulphated samples compared to the water and sulphuric acid washed samples (which deactivates with the same rate as fresh samples). At full-scale sulphation tests at the Brista Kraft plant, the catalytic activity was raised with 23% by sulphation with 260 ppm SO{sub 2} during 25 hours (dosage of 3 tons of elementary sulphur with the fuel). The sulphation led to a reduction on the NO{sub x}, emissions by half. The catalyst, which works in a flue

  10. Test

    DEFF Research Database (Denmark)

    Bendixen, Carsten

    2014-01-01

    Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers.......Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers....

  11. Reactor Simulator Testing

    Science.gov (United States)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  12. A simple and inexpensive point-of-care test for hepatitis B surface antigen detection: serological and molecular evaluation.

    Science.gov (United States)

    Gish, R G; Gutierrez, J A; Navarro-Cazarez, N; Giang, K; Adler, D; Tran, B; Locarnini, S; Hammond, R; Bowden, S

    2014-12-01

    Early identification of chronic hepatitis B is important for optimal disease management and prevention of transmission. Cost and lack of access to commercial hepatitis B surface antigen (HBsAg) immunoassays can compromise the effectiveness of HBV screening in resource-limited settings and among marginalized populations. High-quality point-of-care (POC) testing may improve HBV diagnosis in these situations. Currently available POC HBsAg assays are often limited in sensitivity. We evaluated the NanoSign(®) HBs POC chromatographic immunoassay for its ability to detect HBsAg of different genotypes and with substitutions in the 'a' determinant. Thirty-seven serum samples from patients with HBV infection, covering HBV genotypes A-G, were assessed for HBsAg titre with the Roche Elecsys HBsAg II quantification assay and with the POC assay. The POC assay reliably detected HBsAg at a concentration of at least 50 IU/mL for all genotypes, and at lower concentrations for some genotypes. Eight samples with substitutions in the HBV 'a' determinant were reliably detected after a 1/100 dilution. The POC strips were used to screen serum samples from 297 individuals at risk for HBV in local clinical settings (health fairs and outreach events) in parallel with commercial laboratory HBsAg testing (Quest Diagnostics EIA). POC testing was 73.7% sensitive and 97.8% specific for detection of HBsAg. Although the POC test demonstrated high sensitivity over a range of genotypes, false negatives were frequent in a clinical setting. Nevertheless, the POC assay offers advantages for testing in both developed and resource-limited countries due to its low cost (0.50$) and immediately available results. © 2014 John Wiley & Sons Ltd.

  13. Optimization of the general acceptability though affective tests and response surface methodology of a dry cacao powder mixture based beverage

    Directory of Open Access Journals (Sweden)

    Elena Chau Loo Kung

    2013-09-01

    Full Text Available This research work had as main objective optimizing the general acceptability though affective tests and response surface methodology of a dry cacao powder mixture based beverage. We obtained formulations of mixtures of cacao powder with different concentrations of 15%, 17.5% and 20%, as well as lecithin concentrations of 0.1%; 0.3%; and 0.5% maintaining a constant content of sugar (25 %, Vanillin (1% that included cacao powder with different pH values: natural (pH 5 and alkalinized (pH 6.5 and pH 8 and water by difference to 100%, generating a total of fifteen treatments to be evaluated, according to the Box-Behnen design for three factors. The treatments underwent satisfaction level tests to establish the general acceptability. The treatment that included cacao powder with a concentration of 17.5 %, pH 6.5 and lecithin concentration of 0.3 % obtained the best levels of acceptability. The software Statgraphics Plus 5.1 was used to obtain the treatment with maximum acceptability that corresponded to cacao powder with pH 6.81, with a concentration of 18.24 % and soy lecithin in 0.28% with a tendency to what was obtained in the satisfaction levels tests. Finally we characterized in a physical-chemistry and microbiological way the optimum formulation as well as evaluated sensitively obtaining an acceptability of 6.17.

  14. Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-refined TWIP Steels

    Science.gov (United States)

    Barthelmie, J.; Schram, A.; Wesling, V.

    2016-03-01

    Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.

  15. Bomb-test 90Sr in Pacific and Indian Ocean surface water as recorded by banded corals

    International Nuclear Information System (INIS)

    Toggweiler, J.R.; Trumbore, S.

    1985-01-01

    We report here measurements of bomb-test 90 Sr activity in the CaCO 3 skeletons of banded head forming corals collected from nine locations in the tropical Pacific and Indian Oceans. Density variations in skeletal carbonate demarcate annual growth bands and allow one to section individual years. Measurements of 90 Sr activity in the annual bands reconstruct the activity of the water in which the coral grew. Our oldest records date to the early years of the nuclear era and record not only fallout deposition from the major U.S. and Soviet tests of 1958-1962, but also the huge, and largely unappreciated, localized inputs from the U.S. tests at Eniwetok and Bikini atolls during 1952-1958. In the 1960's the 90 Sr activity in Indian Ocean surface water was twice as high as activity levels in the South Pacific at comparable latitudes. We suggest that substantial amounts of northern hemisphere fallout moved west and south into the Indian Ocean via passages through the Indonesian archipelago. Equatorial Pacific 90 Sr levels have remained relatively constant from the mid 1960's through the end of 1970's in spite of 90 Sr decay, reflecting a large-scale transfer of water between the temperate and tropical North Pacific. Activity levels at Fanning Is. (4 0 N, 160 0 W) appear to vary in conjunction with the 3-4 year El Nino cycle. (orig.)

  16. In Vitro Cytotoxicity Test and Surface Characterization of CoCrW Alloy in Artificial Saliva Solution for Dental Applications.

    Science.gov (United States)

    Souza, Klester Santos; Jaimes, Ruth Flavia Vera Villamil; Rogero, Sizue Otta; Nascente, Pedro Augusto de Paula; Agostinho, Silvia Maria Leite

    2016-01-01

    In order to evaluate its application as a dental prosthesis material, a CoCrW alloy was subjected to in vitro cytotoxicity test, surface characterization and electrochemical studies performed in artificial saliva and 0.15 mol.L-1 NaCl medium. The used techniques were: anodic polarization curves, chronoamperometric measurements, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) analysis and X-ray photoelectron spectroscopy (XPS). Cytotoxicity test was also performed. The electrochemical behavior of CoCrW alloy was compared in both studied media, from corrosion potential (Ecorr) to a 600 mV anodic overvoltage. From the electrochemical measurements it was observed that the CoCrW alloy in both media presents only generalized corrosion. SEM and EDS analysis showed that the alloy presents carbide niobium and silicon and manganese oxides as nonmetallic inclusions. XPS results indicated that cobalt does not significantly contribute to the passivating film formation. Cytotoxicity test showed no cytotoxic character of CoCrW alloy. These results suggest that the CoCrW alloy can be used as biomaterial to be applied as prosthesis in dental implants.

  17. Emerging Regenerative Approaches for Periodontal Reconstruction: Practical Applications From the AAP Regeneration Workshop.

    Science.gov (United States)

    Rios, Hector F; Bashutski, Jill D; McAllister, Bradley S; Murakami, Shinya; Cobb, Charles M; Chun, Yong-Hee Patricia; Lin, Zhao; Mandelaris, George A; Cochran, David L

    2015-02-01

    Can emerging technologies for periodontal regeneration become clinical reality? Emerging technologies are presenting options to hopefully improve the outcomes of regeneration in challenging clinical scenarios. Cellular allografts represent a current technology in which cells and scaffolds are being delivered directly to the periodontal lesion. Recombinant human fibroblast growth factor 2 and teriparatide (parathyroid 1-34) have each been tested in controlled prospective human randomized clinical trials, and both have been shown to have potential for periodontal regeneration. These examples, as well as other emerging technologies, show promise for continued advancement in the field of periodontal regenerative therapy. At present, there are indications that emerging technologies can be used successfully for periodontal regeneration. Case reports and clinical trials are being conducted with a variety of emerging technologies. However, many are yet to be approved by a regulatory agency, or there is a lack of evidence-based literature to validate their expanded use.

  18. Effect of gamma irradiation on Callus formation and regeneration of wheat immature embryos

    International Nuclear Information System (INIS)

    Saleh, O.M.

    2007-01-01

    Four Egyptian bread wheat cultivars; G164, G168, SK61 and Sids1, were tested for their response to six gamma irradiation treatments; 1, 2, 3 Gy (as low doses) and 10, 20, 30 Gy (as high doses) in addition to 0 Gy (as a control) in terms of callus formation and regeneration of immature embryos. Low doses of gamma irradiations ( 1, 2 and 3 Gy) showed favourable effects on both traits; number of regenerated calli and number of shoots per callus comparing with the control (0 Gy), while high doses; 10, 20 and 30 Gy, had the worst effect comparing with the control (0 Gy). G164 cultivar was shown to get the best response in terms of callus formation and regeneration when exposed to low doses of gamma irradiation. In conclusion, gamma irradiation can serve in increasing regeneration efficiency of Egyptian bread wheat cells when used in low doses

  19. Persistent scarring and dilated cardiomyopathy suggest incomplete regeneration of the apex resected neonatal mouse myocardium

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Jensen, Charlotte Harken; Baun, Christina

    2016-01-01

    Heart damage in mammals is generally considered to result in scar formation, whereas zebrafish completely regenerate their hearts following an intermediate and reversible state of fibrosis after apex resection (AR). Recently, using the AR procedure, one-day-old mice were suggested to have full...... capacity for cardiac regeneration as well. In contrast, using the same mouse model others have shown that the regeneration process is incomplete and that scarring still remains 21days after AR. The present study tested the hypothesis that like in zebrafish, fibrosis in neonatal mammals could...... be an intermediate response before the onset of complete heart regeneration. Myocardial damage was performed by AR in postnatal day 1 C57BL/6 mice, and myocardial function and scarring assessed at day 180 using F-18-fluorodeoxyglucose positron emission tomography (FDG-PET) and histology, respectively. AR mice...

  20. Plant regeneration from petiole segments of some species in tissue culture

    Directory of Open Access Journals (Sweden)

    Krystyna Klimaszewska

    2013-12-01

    Full Text Available The regeneration ability of 21 plant species belonging to 14 families was tested. The method of tissue culture in vitro was applied, on basic MS medium with an addition of growth regulators from the auxin and cytokinin groups. From among the investigated plant groups Peperomia scandens and Caladium × hortulanum were capable of plant regeneration, Passiilora coerulea regenerated shoots, Hedera helix, Begonia glabra, Coleus blumei, Fuchsia hybrida, Passiflora suberosa and Peperomia eburnea formed callus and roots, Kalanchoe blossfeldiana, Pelargonium grandiflorum, P. peltatum, P. radula, Coleus shirensis and Magnolia soulangeana produced callus, Philodendron scandens, Rhododendron smirnovii, Hibiscus rosa-sinensis, Coprosma baueri, Cestrum purpureum and Solanum rantonnetii did not exhibit any regeneration reactions.