WorldWideScience

Sample records for surface redox process

  1. Characterization of the surface redox process of adsorbed morin at glassy carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tesio, Alvaro Yamil, E-mail: atesio@exa.unrc.edu.a [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3, (5800) Rio Cuarto (Argentina); Granero, Adrian Marcelo, E-mail: agranero@exa.unrc.edu.a [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3, (5800) Rio Cuarto (Argentina); Fernandez, Hector, E-mail: hfernandez@exa.unrc.edu.a [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3, (5800) Rio Cuarto (Argentina); Zon, Maria Alicia, E-mail: azon@exa.unrc.edu.a [Departamento de Quimica, Facultad de Ciencias Exactas, Fisico-Quimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3, (5800) Rio Cuarto (Argentina)

    2011-02-01

    The thermodynamic and kinetics of the adsorption of morin (MOR) on glassy carbon (GC) electrodes in 0.2 mol dm{sup -3} phosphate buffer solutions (PBS, pH 7.00) was studied by both cyclic (CV) and square wave (SWV) voltammetries. The Frumkin adsorption isotherm was the best to describe the specific interaction of MOR with GC electrodes. The SWV allowed to characterize the thermodynamic and kinetics of surface quasi-reversible redox couple of MOR, using the combination of the 'quasi-reversible maximum' and the 'splitting of SW net peaks' methods. Average values obtained for the formal potential and the anodic transfer coefficient were (0.27 {+-} 0.02) V and (0.59 {+-} 0.09), respectively. Moreover, a value of formal rate constant (k{sub s}) of 87 s{sup -1} for the overall two-electron redox process was calculated. The SWV was also employed to generate calibration curves, which were linear in the range MOR bulk concentration (c{sub MOR}*) from 1.27 x 10{sup -7} to 2.50 x 10{sup -5} mol dm{sup -3}. The lowest concentration experimentally measured for a signal to noise ratio of 3:1 was 1.25 x 10{sup -8} mol dm{sup -3} (3 ppb).

  2. Modification of the glass surface induced by redox reactions and internal diffusion processes

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng

    In this paper we report a novel way to modify the glass surface in favor of some physical performances. The main step is to perform iso-thermal treatments on the selected silicate glasses containing transition metal at temperatures near the glass transition temperature for various durations under...... different gases. As a result, we have observed a striking phenomenon, i.e., the outward diffusion of divalent cations occurs not only under an oxidizing atmosphere of heat-treatment, but also under nitrogen, even under reducing atmospheres like H2/N2 (10/90). The extent of the cationic diffusion depends...... on temperature and duration of heat-treatments. The mechanism of the diffusion depends on the type of the gases used for the heat-treatments. In this paper we propose several possible models describing mechanisms of the cationic diffusion, and hence, of the formation of the nano-layer. We also report the effect...

  3. Biogeochemical redox processes and their impact on contaminant dynamics

    Science.gov (United States)

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Van Cappellen, Philippe; Ginder-Vogel, Matthew; Campbell, Kate M.

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  4. Information processing through a bio-based redox capacitor: signatures for redox-cycling.

    Science.gov (United States)

    Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-08-01

    Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling). Published by Elsevier B.V.

  5. Tracing iron-carbon redox from surface to core

    Science.gov (United States)

    McCammon, C. A.; Cerantola, V.; Bykova, E.; Kupenko, I.; Bykov, M.; Chumakov, A. I.; Rüffer, R.; Dubrovinsky, L. S.

    2017-12-01

    Numerous redox reactions separate the Earth's oxidised surface from its reduced core. Many involve iron, the Earth's most abundant element and the mantle's most abundant transition element. Most iron redox reactions (although not all) also involve other elements, including carbon, where iron-carbon interactions drive a number of important processes within the Earth, for example diamond formation. Many of the Earth's redox boundaries are sharp, much like the seismic properties that define them, for example between the lower mantle and the core. Other regions that appear seismically homogeneous, for example the lower mantle, harbour a wealth of reactions between oxidised and reduced phases of iron and carbon. We have undertaken many experiments at high pressure and high temperature on phases containing iron and carbon using synchrotron-based X-rays to probe structures and iron oxidation states. Results demonstrate the dominant role that crystal structures play in determining the stable oxidation states of iron and carbon, even when oxygen fugacity (and common sense) would suggest otherwise. Iron in bridgmanite, for example, occurs predominantly in its oxidised form (ferric iron) throughout the lower mantle, despite the inferred reducing conditions. Newly discovered structures of iron carbonate also stabilise ferric iron, while simultaneously reducing some carbon to diamond to balance charge. Other high-pressure iron carbonates appear to be associated with the emerging zoo of iron oxide phases, involving transitions between ferrous and ferric iron through the exchange of oxygen. The presentation will trace redox relations between iron and carbon from the Earth's surface to its core, with an emphasis on recent experimental results.

  6. Applying the redox process to arsenical concentrates

    Science.gov (United States)

    Beattie, M. J. V.; Ismay, Arnaldo

    1990-01-01

    Extensive batch and continuous testing has been completed using a high-temperature, nitric acid pressure leach (Redox) process for oxidizing the refractory gold-containing arsenopyrite tailings presently stockpiled at Snow Lake, Manitoba. This process has achieved up to 99% oxidation of the arsenopyrite compound and precipitated more than 90% arsenic into a stable iron-arsenic compound (resembling ferric arsenate) in less than eight minutes of overall retention time at temperatures of 195-210°C and an oxygen overpressure of 345 kPa. The oxidation step then exposes the contained gold, allowing a recovery of 91.5% in a standard carbon-in-leach circuit. The main advantages of this process are fast reaction rates, the high proportion of arsenic precipitated, and the stability of the precipitate.

  7. Disentangling interfacial redox processes of proteins by SERR spectroscopy.

    Science.gov (United States)

    Murgida, Daniel H; Hildebrandt, Peter

    2008-05-01

    Surface-enhanced resonance-Raman spectroelectrochemistry represents a powerful approach for studying the structure and reaction dynamics of redox proteins immobilized on biocompatible electrodes in fundamental and applied sciences. Using this approach it has been recently shown that electric fields of biologically relevant magnitude are able to influence crucial parameters for the functioning of a variety of soluble and membrane bound heme proteins. Electric field effects discussed in this tutorial review include modulation of redox potentials, reorganization energies, protein dynamics and redox-linked structural changes.

  8. Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces

    Directory of Open Access Journals (Sweden)

    Krishnamoorthy Arumugam

    2014-04-01

    Full Text Available Applications of redox processes range over a number of scientific fields. This review article summarizes the theory behind the calculation of redox potentials in solution for species such as organic compounds, inorganic complexes, actinides, battery materials, and mineral surface-bound-species. Different computational approaches to predict and determine redox potentials of electron transitions are discussed along with their respective pros and cons for the prediction of redox potentials. Subsequently, recommendations are made for certain necessary computational settings required for accurate calculation of redox potentials. This article reviews the importance of computational parameters, such as basis sets, density functional theory (DFT functionals, and relativistic approaches and the role that physicochemical processes play on the shift of redox potentials, such as hydration or spin orbit coupling, and will aid in finding suitable combinations of approaches for different chemical and geochemical applications. Identifying cost-effective and credible computational approaches is essential to benchmark redox potential calculations against experiments. Once a good theoretical approach is found to model the chemistry and thermodynamics of the redox and electron transfer process, this knowledge can be incorporated into models of more complex reaction mechanisms that include diffusion in the solute, surface diffusion, and dehydration, to name a few. This knowledge is important to fully understand the nature of redox processes be it a geochemical process that dictates natural redox reactions or one that is being used for the optimization of a chemical process in industry. In addition, it will help identify materials that will be useful to design catalytic redox agents, to come up with materials to be used for batteries and photovoltaic processes, and to identify new and improved remediation strategies in environmental engineering, for example the

  9. An Excel Workbook for Identifying Redox Processes in Ground Water

    Science.gov (United States)

    Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.

    2009-01-01

    The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed

  10. Surface Redox Chemistry of Immobilized Nanodiamond: Effects of Particle Size and Electrochemical Environment

    Science.gov (United States)

    Gupta, S.; McDonald, B.; Carrizosa, S. B.

    2017-07-01

    The size of the diamond particle is tailored to nanoscale (nanodiamond, ND), and the ND surface is engineered targeting specific (electrochemical and biological) applications. In this work, we investigated the complex surface redox chemistry of immobilized ND layer on conductive boron-doped diamond electrode with a broad experimental parameter space such as particle size (nano versus micron), scan rate, pH (cationic/acidic versus anionic/basic), electrolyte KCl concentration (four orders of magnitude), and redox agents (neutral and ionic). We reported on the significant enhancement of ionic currents while recording reversible oxidation of neutral ferrocene methanol (FcMeOH) by almost one order of magnitude than traditional potassium ferricyanide (K3Fe(CN)6) redox agent. The current enhancement is inversely related to ND particle diameter in the following order: 1 μm << 1000 nm < 100 nm < 10 nm ≤ 5 nm < 2 nm. We attribute the current enhancement to concurrent electrocatalytic processes, i.e. the electron transfer between redox probes and electroactive surface functional (e.g. hydroxyl, carboxyl, epoxy) moieties and the electron transfer mediated by adsorbed FcMeOH+ (or Fe(CN) 6 3+ ) ions onto ND surface. The first process is pH dependent since it depends upon ND surface functionalities for which the electron transfer is coupled to proton transfer. The adsorption mediated process is observed most apparently at slower scan rates owing to self-exchange between adsorbed FcMeOH+ ions and FcMeOH redox agent molecules in diffusion-limited bulk electrolyte solution. Alternatively, it is hypothesized that the surface functionality and defect sites ( sp 2-bonded C shell and unsaturated bonds) give rise to surface electronic states with energies within the band gap (midgap states) in undoped ND. These surface states serve as electron donors (and acceptors) depending upon their bonding (and antibonding) character and, therefore, they can support electrocatalytic redox

  11. Redox-triggered mixing and demixing of surfactants within assemblies formed in solution and at surfaces.

    Science.gov (United States)

    Smith, Timothy J; Wang, Chenxuan; Abbott, Nicholas L

    2017-09-15

    We report experiments that test the hypothesis that redox-triggered changes in the architectures of surfactants permit control of mixing of surfactants within assemblies. Specifically, we describe surface tension, light scattering, atomic force microscopy, and quartz crystal microbalance measurements that characterize the redox-dependent behaviors of cationic surfactants with a ferrocene group located either at the surfactant terminus (11-ferrocenylundecyl-trimethylammonium bromide; FTMA) or head (N,N-dimethylferrocenylmethyldecylammonium bromide; DMFA). In bulk solution, we find that reduced and oxidized FTMA do not mix within micellar assemblies but that reduced and oxidized DMFA do form mixed micelles. Because oxidized FTMA has the architecture of a bolaform surfactant whereas oxidized DMFA has a conventional surfactant architecture with a divalent head group, these results suggest that redox-triggered changes in molecular architecture permit control of the extent of mixing of surfactants in micellar assemblies in bulk solution. This conclusion receives further support from measurements performed with mixtures of dodecyltrimethylammonium bromide and FTMA, with FTMA in either reduced or oxidized states, and was found to extend to hemimicellar assemblies formed at hydrophobic solid surfaces but not to mixed monolayers formed at the surface of water. The latter is attributed to differences in the conformations of surfactants within monolayers and micellar assemblies. Overall, these results provide insight into the design of surfactant assemblies within which mixing can be controlled reversibly using redox processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Redox-Tag Processes: Intramolecular Electron Transfer and Its Broad Relationship to Redox Reactions in General.

    Science.gov (United States)

    Okada, Yohei; Chiba, Kazuhiro

    2017-12-08

    Explosive growth in the use of open shell reactivity, including neutral radicals and radical ions, in the field of synthetic organic chemistry has been observed in the past decade, particularly since the advent of ruthenium complexes in 2008. These complexes generally induce single-electron transfer (SET) processes via visible-light absorption. Additionally, recent significant advancements in organic electrochemistry involving SET processes to provide open shell reactivity offer a complementary method to traditional polarity-driven reactions described by two-electron transfer processes. In this Review, we highlight the importance of intramolecular SET processes in the field of synthetic organic chemistry, which seem to be more elusive than the intermolecular versions, since they are net redox-neutral and thus cannot simply be regarded as oxidations or reductions. Such intramolecular SET processes can rationally be understood in combination with concomitant bond formations and/or cleavages, and are regulated by a structural motif that we call a "redox tag." In order to describe modern radical-driven reactions involving SET processes, we focus on a classical formalism in which electrons are treated as particles rather than waves, which offers a practical yet powerful approach to explain and/or predict synthetic outcomes.

  13. Impact of Redox on Glass Durability: The Glass Selection Process

    International Nuclear Information System (INIS)

    PEELER, DAVID

    2004-01-01

    Recent glass formulation activities have focused on developing alternative frit compositions for use with specific sludge batches to maximize melt rate and/or waste throughput. The general trend has been to increase the total alkali content in the glass through the use of a high alkali based frit, a less washed sludge, or a combination of the two. As a result, predictions of durability have become a limiting factor in defining the projected operating windows for the Defense Waste Processing Facility (DWPF) for certain systems. An additional issue for these high alkali glasses has been the effect of REDuction/OXidation (REDOX) on the durability of the glass. Recent analyses have indicated that the application of the durability model's value without consideration of the overall glass composition may lead to a more significant shift (larger magnitude) than needed. Therefore, activation of the REDOX term in the Product Composition Control System (PCCS) may have a significant impact on the predicted operational windows based on model predictions, but may not represent the realistic impact on the measured durability. In this report, two specific issues are addressed. First, a review of the data used to develop PCCS (in particular the durability model) showed the potential for a REDOX interaction that is not accounted for. More specifically, three terms were added to the current model and were found to be statistically significant at a confidence level of 95 per cent. These results suggest a possible interaction between REDOX and glass composition that is not accurately captured leading to potentially conservative decisions regarding the durability of reduced glasses. The second issue addressed in this report is the development of a 45 glass test matrix to assess the effect of REDOX on durability as well as to provide insight into specific interactive compositional effects on durability. The glasses were selected to support the assessment of the following specific

  14. Electro-deposition of Pd on Carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction: Presentation

    CSIR Research Space (South Africa)

    Modibedi, M

    2013-03-01

    Full Text Available during the catalyst preparation process, Pd nanosturctures are grown directly on fuel cell gas diffusion layers and evaluated for the ORR. Pd nanostructures were synthesized via surface-limited redox replacement (SLRR) reaction employing...

  15. Nucleation of metals by redox processes in glass molten media

    International Nuclear Information System (INIS)

    Laurent, Y.; Turmel, J.M.; Verdier, P.

    1997-01-01

    Nitrogen incorporation into an aluminosilicate glass network changes greatly its physico-chemical properties. M-Si-Al-O-N (M = Li, Mg, Ca, Ln) oxynitride glasses are chemically inert. However, the presence of N 3- ions in molten glass gives to the glass medium a reducing character. This work concerns the study of redox reactions in molten glass between nitrogen and oxides of the first transition series of the periodic table, cadmium and lead. In situ precipitation of metallic particles from the corresponding oxides is demonstrated by X-ray diffraction and EDS data. However, the reduction of pure TiO 2 and V 2 O 5 gives rise to the corresponding nitrides, i.e. TiN and VN. The redox reaction occurs with nitrogen release. The low solubility of metals in the molten glass media forces metal migration out off the glass and consequently favors metal recovery. This oxidation-reduction process in molten media can be envisaged as industrially useful for recovering metals in industrial wastes. (authors)

  16. Polypropylene non-woven fabric membrane via surface modification with biomimetic phosphorylcholine in Ce(IV)/HNO3 redox system

    International Nuclear Information System (INIS)

    Zhao Jie; Shi Qiang; Luan Shifang; Song Lingjie; Yang Huawei; Stagnaro, Paola; Yin Jinghua

    2012-01-01

    Surface modification of polypropylene non-woven fabric membrane (NWF) for improving its hemocompatibility was developed by grafting a biomimic monomer, 2-methacryloyloxyethyl phosphorycholine (MPC). The NWF membrane surface was first activated by potassium peroxydisulfate to form hydroxyl groups, and then grafted with MPC using ceric (IV) ammonium nitrate as the redox initiator. The surface chemical changes before and after modification were confirmed by Fourier transform infrared spectroscopy with an ATR unit (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS); the water contact angle results showed the gradual changes in wettability from hydrophobic to hydrophilic surface. Meanwhile, the hemocompatibility of these samples was also evaluated by protein adsorption and platelet adhesion. These experimental results exhibited that the introduction of poly(MPC) onto the NWF membrane surfaces substantially improved their hemocompatibility. The feasibility and simplicity of this procedure may lead to potential applications of NWF membranes in biomedical separation and blood purification. - Graphical abstract: 2-methacryloyloxyethyl phosphorycholine (MPC), was grafted onto non-woven fabric (NWF) membrane surface by Ce(IV)/HNO 3 redox system. The protein adsorption and platelet adhesion were substantially suppressed by the introduction of poly(MPC). Highlights: ► MPC was successfully grafted onto NWF PP membrane surface. ► Obviously enhanced hemocompatibility was acquired by the modified samples. ► A facile redox grafting was adopted in the whole process.

  17. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes

    International Nuclear Information System (INIS)

    Qin, Lang; Cheng, Zhuo; Guo, Mengqing; Fan, Jonathan A.; Fan, Liang-Shih

    2017-01-01

    Transition metal are heavily used in chemical looping technologies because of their high oxygen carrying capacity and high thermal reactivity. These oxygen activities result in the oxide formation and oxygen vacancy formation that affect the nanoscale crystal phase and morphology within these materials and their subsequent bulk chemical behavior. In this study, two selected earlier transition metals manganese and cobalt as well as two selected later transition metals copper and nickel that are important to chemical looping reactions are investigated when they undergo cyclic redox reactions. We found Co microparticles exhibited increased CoO impurity presence when oxidized to Co 3 O 4 upon cyclic oxidation; CuO redox cycles prefer to be limited to a reduced form of Cu 2 O and an oxidized form of CuO; Mn microparticles were oxidized to a mixed phases of MnO and Mn 3 O 4 , which causes delamination during oxidation. For Ni microparticles, a dense surface were observed during the redox reaction. The atomistic thermodynamics methods and density functional theory (DFT) calculations are carried out to elucidate the effect of oxygen dissociation and migration on the morphological evolution of nanostructures during the redox processes. Our results indicate that the earlier transition metals (Mn and Co) tend to have stronger interaction with O 2 than the later transition metals (Ni and Cu). Also, our modified Brønsted−Evans−Polanyi (BEP) relationship for reaction energies and total reaction barriers reveals that reactions of earlier transition metals are more exergonic and have lower oxygen dissociation barriers than those of later transition metals. In addition, it was found that for these transition metal oxides the oxygen vacancy formation energies increase with the depth. The oxide in the higher oxidation state of transition metal has lower vacancy formation energy, which can facilitate forming the defective nanostructures. The fundamental understanding of these

  18. Rab7-a novel redox target that modulates inflammatory pain processing.

    Science.gov (United States)

    Kallenborn-Gerhardt, Wiebke; Möser, Christine V; Lorenz, Jana E; Steger, Mirco; Heidler, Juliana; Scheving, Reynir; Petersen, Jonas; Kennel, Lea; Flauaus, Cathrin; Lu, Ruirui; Edinger, Aimee L; Tegeder, Irmgard; Geisslinger, Gerd; Heide, Heinrich; Wittig, Ilka; Schmidtko, Achim

    2017-07-01

    Chronic pain is accompanied by production of reactive oxygen species (ROS) in various cells that are important for nociceptive processing. Recent data indicate that ROS can trigger specific redox-dependent signaling processes, but the molecular targets of ROS signaling in the nociceptive system remain largely elusive. Here, we performed a proteome screen for pain-dependent redox regulation using an OxICAT approach, thereby identifying the small GTPase Rab7 as a redox-modified target during inflammatory pain in mice. Prevention of Rab7 oxidation by replacement of the redox-sensing thiols modulates its GTPase activity. Immunofluorescence studies revealed Rab7 expression to be enriched in central terminals of sensory neurons. Knockout mice lacking Rab7 in sensory neurons showed normal responses to noxious thermal and mechanical stimuli; however, their pain behavior during inflammatory pain and in response to ROS donors was reduced. The data suggest that redox-dependent changes in Rab7 activity modulate inflammatory pain sensitivity.

  19. Geomicrobial and Geochemical Redox Processes in a Landfill-Polluted Aquifer

    DEFF Research Database (Denmark)

    Ludvigsen, Liselotte; Heron, Gorm; Albrechtsen, Hans-Jørgen

    1995-01-01

    The distribution of different dominant microbial-mediated redox processes in a landfill leachate-polluted aquifer (Grindsted, Denmark) was investigated. The most probable number method was utilized for detecting bacteria able to use each of the electron acceptors, and unamended incubations were...... utilized to detect the activity of the redox processes using the investigated electron acceptors. The redox processes investigated were methane production and reduction of sulfate, Fe(III), Mn(IV), and nitrate. The presence of methanogenic bacteria and methanogenic activity were observed close...

  20. Subseafloor nitrogen redox processes at Loihi Seamount, Hawai

    Science.gov (United States)

    Wankel, S. D.; Sylvan, J. B.; LaRowe, D.; Huber, J. A.; Moyer, C. L.; Edwards, K. J.

    2014-12-01

    archaeal methanogens in the genera Methanococcus and Methanothermococcus. Members of the NO2- oxidizing phylum Nitrispirae are present in all four samples, and are very abundant in two of them. All this data together reveals that N redox processes are significant sources of energy in subsurface Loihi fluids, and possibly at diffuse flow hydrothermal sites elsewhere

  1. Chemical surface tuning electrocatalysis of redox-active nanoparticles

    DEFF Research Database (Denmark)

    Zhu, Nan; Ulstrup, Jens; Chi, Qijin

    This work focuses on electron transfer (ET) and electrocatalysis of inorganic hybrid Prussian blue nanoparticles (PBNPs, 6 nm) immobilized on different chemical surfaces. Through surface self-assembly chemistry, we have enabled to tune chemical properties of the electrode surface. Stable immobili......This work focuses on electron transfer (ET) and electrocatalysis of inorganic hybrid Prussian blue nanoparticles (PBNPs, 6 nm) immobilized on different chemical surfaces. Through surface self-assembly chemistry, we have enabled to tune chemical properties of the electrode surface. Stable...... PBNPs are characterized by atomic force microscopy (AFM). Reversible electron transfer (ET) was detected by cyclic voltammetry (CV) of the PBNPs on all the surfaces. ET kinetics can be controlled by adjusting the chain length of the SAMs. The rate constants are found to depend exponentially on the ET...... distance, with a decay factor (β) of ca. 0.9, 1.1, 1.3 per CH2, respectively. This feature suggests a tunneling mechanism adopted by the nanoparticles, resembling that for metalloproteins in a similar assembly. High-efficient electrocatalysis towards the reduction of H2O2 is observed, and possible...

  2. Recyclable surfaces for amine conjugation chemistry via redox reaction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Inseong; Yeo, Woon Seok [Dept. of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul (Korea, Republic of); Bae, Se Won [Green Materials and Process Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)

    2017-02-15

    In this study, we extended this strategy to present a switchable surface that allows surface functionalization and removal of functional groups repeatedly. The substrate presenting a benzoquinone acid group is first used to immobilize with an amine-containing (bio)molecule using well-known conjugation chemistry. The benzoquinone group is then converted to the corresponding hydroquinone by treating with a reducing agent. We have described a strategy for the dynamic control of surface properties with recyclability via a simple reduction/ oxidation reaction. A stimuli-responsive quinone derivative was harnessed for the repeated immobilization and release of (bio)molecules, and thus, for the repeated dynamic change of the surface properties according to the characteristics of the immobilized (bio)molecules.

  3. Reaction kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers

    International Nuclear Information System (INIS)

    Gokcen, Dincer; Bae, Sang-Eun; Brankovic, Stanko R.

    2011-01-01

    The study of the kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers is presented. The model system was Pt submonolayer deposition on Au(1 1 1) via red-ox replacement of Pb and Cu UPD monolayers on Au(1 1 1). The kinetics of a single replacement reaction was studied using the formalism of the comprehensive analytical model developed to fit the open circuit potential transients from deposition experiments. The practical reaction kinetics parameters like reaction half life, reaction order and reaction rate constant are determined and discussed with their relevance to design and control of deposition experiments. The effects of transport limitation and the role of the anions/electrolyte on deposition kinetics are investigated and their significance to design of effective deposition process is discussed.

  4. Redox Cycling Realized in Paper-Based Biochemical Sensor for Selective Detection of Reversible Redox Molecules Without Micro/Nano Fabrication Process.

    Science.gov (United States)

    Yamamoto, So; Uno, Shigeyasu

    2018-02-28

    This paper describes a paper-based biochemical sensor that realizes redox cycling with close interelectrode distance. Two electrodes, the generator and collector electrodes, can detect steady-state oxidation and reduction currents when suitable potential is held at each electrode. The sensor has two gold plates on both sides of a piece of chromatography paper and defines the interelectrode distance by the thickness of the paper (180 μm) without any micro-fabrication processes. Our proposed sensor geometry has successfully exhibited signatures of redox cycling. As a result, the concentration of ferrocyanide as reversible redox molecules was successfully quantified under the interference by ascorbic acid as a strong irreversible reducing agent. This was possible because the ascorbic acids are completely consumed by the irreversible reaction, while maintaining redox cycling of reversible ferrocyanide. This suggests that a sensor based on the redox cycling method will be suitable for detecting target molecules at low concentration.

  5. Single-molecule conductivity of non-redox and redox molecules at pure and gold-mined Au(111)-electrode surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Ulstrup, Jens

    media supported by comprehensive theoretical frames, have emerged as core approaches in these exciting areas. Single-molecule redox electrochemistry is rooted in two major areas. One is the preparation of well-defined (atomically planar) electrode surfaces modified by molecular monolayers (SAMs). High...... to surface-mined Au-atoms. In addition the SAMs ensure protein/enzyme immobilization gentle enough that the proteins retain electron transfer or enzyme activity in a variety of local environments. The second area is the mapping and control of the immobilized redox molecules and metalloproteins themselves...

  6. pH and redox responsive polymer for antifouling surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Seok [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); In, Insik, E-mail: in1@ut.ac.kr [Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of)

    2014-09-15

    Graphical abstract: Dual responsive surface with highly fouling resistance with the formation of a pH-dependent benzoic imine and redox-sensitive disulfide bond has been developed using a catechol/benzoic acid conjugated polymer and disulfide containing amine end-capped Pluronic. - Highlights: • Stimuli-responsive antifouling surface was prepared by layer-by-layer method. • The surface contact angle showed responsive behavior via pH and redox environments. • Simply coated polymer completely prevented cell adhesion onto surfaces. - Abstract: A dual environmentally responsive polymer with a highly fouling-resistant surface has been developed using poly[(hydroxyethyl methacrylate-g-benzoic acid)-co-(dimethylaminoethyl methacrylate-g-2-chloro-3′, 4′-dihydroxyacetophenone)] [poly[(HEMA-BA)-co-(DMAEMA-CCDP)], P1] as a coating material. The redox-sensitive disulfide containing amine end-capped Pluronic [(Plu-S-S-NH{sub 2}), P2] was then introduced over the P1 surface via the formation of a pH-dependent benzoic imine bond, where the polyethylene glycol (PEG) acts as an antifouling agent. The successful adhesion of P1 and the deposition of P2 onto the P1-coated substrate were ascertained with X-ray photoelectron spectroscopy (XPS). In vitro cell adhesion followed by scanning electron microscopy (SEM) indicated an excellent antifouling nature of the P2 layer. Consequently, the reattachment of Hela cells was strongly observed when P2 layered on P1-coated substrates (P1–P2) was pretreated at lower pH and high redox conditions. The P1–P2 bilayer-coated substrate has exhibited a great advantage in its effective antifouling behaviors with well-tuned cell attachment and detachment.

  7. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Kim, Ki Jae; Kim, Young-Jun; Kim, Jae-Hun; Park, Min-Sik

    2011-01-01

    Highlights: ► We observed the physical and chemical changes on the surface of carbon felts after various surface modifications. ► The surface area and chemistry of functional groups formed on the surface of carbon felt are critical to determine the kinetics of the redox reactions of vanadium ions. ► By incorporation of the surface modifications into the electrode preparation, the electrochemical activity of carbon felts could be notably enhanced. - Abstract: The surface of carbon felt electrodes has been modified for improving energy efficiency of vanadium redox flow batteries. For comparative purposes, the effects of various surface modifications such as mild oxidation, plasma treatment, and gamma-ray irradiation on the electrochemical properties of carbon felt electrodes were investigated at optimized conditions. The cell energy efficiency was improved from 68 to 75% after the mild oxidation of the carbon felt at 500 °C for 5 h. This efficiency improvement could be attributed to the increased surface area of the carbon felt electrode and the formation of functional groups on its surface as a result of the modification. On the basis of various structural and electrochemical characterizations, a relationship between the surface nature and electrochemical activity of the carbon felt electrodes is discussed.

  8. The importance of kinetics and redox in the biogeochemical cycling of iron in the surface ocean.

    Directory of Open Access Journals (Sweden)

    Peter L. Croot

    2012-06-01

    Full Text Available It is now well established that Iron (Fe is a limiting element in many regions of the open ocean. Our current understanding of the key processes which control iron distribution in the open ocean have been largely based on thermodynamic measurements performed under the assumption of equilibrium conditions. Using this equilibrium approach, researchers have been able to detect and quantify organic complexing ligands in seawater and examine their role in increasing the overall solubility of iron. Our current knowledge about iron bioavailability to phytoplankton and bacteria is also based heavily on carefully controlled laboratory studies where it is assumed the chemical species are in equilibrium in line with the free ion association model (FIAM and/or its successor the biotic ligand model (BLM. Similarly most field work on Fe biogeochemistry generally consists of a single profile which is in essence a ‘snap-shot’ in time of the system under investigation. However it is well known that the surface ocean is an extremely dynamic environment and it is unlikely if thermodynamic equilibrium between all the iron species present is ever truly achieved. In sunlit waters this is mostly due to the daily passage of the sun across the sky leading to photoredox processes which alter Fe speciation by cycling between redox states and between inorganic and organic species. Episodic deposition events, are also important perturbations to iron cycling as they bring new iron to the system altering the equilibrium between species and phases. Over the last 20 years the mesoscale iron enrichment experiments (e.g. IronEx I /II, SOIREE, EisenEx, SOFeX, EIFeX, SAGE, SEEDS and SERIES I /II and the FeCycle (I/II experiments have provided the first insights into processes altering iron speciation and distribution which occur over temporal scales of days to weeks. Here we utilize new field data collected in the open ocean on the redox and complexation kinetics of iron in the

  9. The Electrochemical Properties of Biochars and How They Affect Soil Redox Properties and Processes

    Directory of Open Access Journals (Sweden)

    Stephen Joseph

    2015-07-01

    Full Text Available Biochars are complex heterogeneous materials that consist of mineral phases, amorphous C, graphitic C, and labile organic molecules, many of which can be either electron donors or acceptors when placed in soil. Biochar is a reductant, but its electrical and electrochemical properties are a function of both the temperature of production and the concentration and composition of the various redox active mineral and organic phases present. When biochars are added to soils, they interact with plant roots and root hairs, micro-organisms, soil organic matter, proteins and the nutrient-rich water to form complex organo-mineral-biochar complexes Redox reactions can play an important role in the development of these complexes, and can also result in significant changes in the original C matrix. This paper reviews the redox processes that take place in soil and how they may be affected by the addition of biochar. It reviews the available literature on the redox properties of different biochars. It also reviews how biochar redox properties have been measured and presents new methods and data for determining redox properties of fresh biochars and for biochar/soil systems.

  10. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    Directory of Open Access Journals (Sweden)

    Himansu Sekhar Nanda

    2016-11-01

    Full Text Available The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium-doped cerium oxide nanoparticles (SmCNPs as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy-ethoxy]-ethoxy}-hexyl triethoxysilane (MEEETES were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  11. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-03

    The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  12. Cu/ZnO nanocatalysts in response to environmental conditions: surface morphology, electronic structure, redox state and CO2 activation.

    Science.gov (United States)

    Martínez-Suárez, Luis; Frenzel, Johannes; Marx, Dominik

    2014-12-21

    Methanol synthesis is one of the landmarks of heterogeneous catalysis due to the great industrial significance of methanol as a clean liquid fuel and as a raw material for industry. Understanding in atomistic detail the properties of the underlying metal/oxide catalyst materials as a function of temperature and composition of the reactive gas phase is of utmost importance in order to eventually improve the production process. By performing extensive density functional theory based slab calculations in combination with a thermodynamic formalism we establish an atomistic understanding of gas phase-induced changes of surface morphology, redox properties and reactivity of ZnO supported Cu nanocatalysts. Extending our recent insights [Phys. Rev. Lett., 2013, 110, 086108], we explore surface stabilization mechanisms and site-dependent redox states of both catalyst components as well as the pronounced electronic charge transfer processes across the metal-support interface. Moreover, ab initio molecular dynamics simulations unveil the vital role played by dynamical shape fluctuations of the deposited Cu8 cluster. The pronounced structural flexibility of the metal nanoparticle is found to enhance CO2 activation over Cu8 at the elevated temperature conditions of the industrial methanol synthesis process, in addition to activation of CO2via electronic charge transfer from the ZnO support.

  13. The synthesis of PdPt/carbon paper via surface limited redox replacement reactions for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Motsoeneng, RG

    2015-09-01

    Full Text Available Surface-limited redox replacement reactions using the electrochemical atomic layer deposition (EC-ALD) technique were used to synthesize PdPt bimetallic electrocatalysts on carbon paper substrate. Electrocatalysts having different Pd:Pt ratio were...

  14. Surface and redox properties of cobalt–ceria binary oxides: On the effect of Co content and pretreatment conditions

    Energy Technology Data Exchange (ETDEWEB)

    Konsolakis, Michalis, E-mail: mkonsol@science.tuc.gr [School of Production Engineering and Management, Technical University of Crete, GR-73100, Chania, Crete (Greece); Sgourakis, Michalis [School of Production Engineering and Management, Technical University of Crete, GR-73100, Chania, Crete (Greece); Carabineiro, Sónia A.C. [Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto (Portugal)

    2015-06-30

    Graphical abstract: - Highlights: • Impact of Co content and pretreatment conditions on Co/CeO{sub 2} surface chemistry. • The improved reducibility of Co/CeO{sub 2} compared to single oxides is disclosed. • A synergistic effect between Co and Ce toward more oxygen vacancies is revealed. • Calcination procedure leads to the impoverishment of catalyst surface on cobalt. • Reduction results in a uniform distribution of Co and Ce on the catalyst surface. - Abstract: Ceria-based transition metal catalysts have recently received considerable attention both in heterogeneous catalysis and electro-catalysis fields, due to their unique physicochemical characteristics. Their catalytic performance is greatly affected by the surface local chemistry and oxygen vacancies. The present study aims at investigating the impact of Co/Ce ratio and pretreatment conditions on the surface and redox properties of cobalt–ceria binary oxides. Co–ceria mixed oxides with different Co content (0, 20, 30, 60, 100 wt.%) were prepared by impregnation method and characterized by means of N{sub 2} adsorption at −196 °C, X-ray diffraction (XRD), H{sub 2} temperature-programmed reduction (H{sub 2}-TPR) and X-ray photoelectron spectroscopy (XPS). The results shown the improved reducibility of Co/CeO{sub 2} mixed oxides compared to single oxides, due to a synergistic interaction between cobalt and cerium. Oxidation pretreatment results in a preferential localization of cerium species on the outer surface. In contrast, a uniform distribution of cobalt and cerium species over the entire catalyst surface is obtained by the reduction process, which facilitates the formation of oxygen vacancies though Co{sup 3+}/Co{sup 2+} and Ce{sup 3+}/Ce{sup 4+} redox cycles. Fundamental insights toward tuning the surface chemistry of cobalt–ceria binary oxides are provided, paving the way for real-life industrial applications.

  15. Certain aspects of the reactivity of carotenoids. Redox processes and complexation

    International Nuclear Information System (INIS)

    Polyakov, Nikolay E; Leshina, Tatyana V

    2006-01-01

    The published data on the redox reactions of carotenoids, their supramolecular inclusion complexes and the composition, properties and practical application of these complexes are generalised. Special attention is given to the effect of complexation on radical processes involving carotenoids and on the antioxidant activity of carotenoids.

  16. Effects of non-dissolved redox mediators on a hexavalent chromium bioreduction process

    Directory of Open Access Journals (Sweden)

    Jing Lian

    2016-03-01

    Full Text Available The effects of six non-dissolved redox mediators (RM immobilized in cellulose acetate beads on enhancing Cr(VI reduction by Mangrovibacter plantisponsor CR1 were investigated. In addition, the voltammetric behaviours and electron transfer capacities of the redox mediators were examined using electrochemical methods. Compared to the control beads, the Cr(VI bioreduction rate with 1-chloroanthraquinone cellulose acetate beads (1-CAQ/CA beads was increased up to 4.5-fold, which was mainly attributed to enhanced electron transfer by 1-CAQ. The redox mediators also improved the oxidation–reduction potential values of the Cr(VI bioreduction processes, which might assist in Cr(VI bioreduction. The role of the redox mediators was discussed based on the cyclic voltammetric characteristics (E0' of the redox mediators and the electrochemical impedance spectroscopy characteristics (Rct of the RM/CA beads. A linear correlation was found for the reaction constant k and the 1-CAQ concentration (C1-CAQ, which was k = 1.5674 C1-CAQ + 4.8506 (R2 = 0.9683. The Cr(VI bioreduction was affected by temperature, and the optimum pH for the Cr(VI bioreduction was 6.5. The results of repeated-batch operations showed that 1-CAQ/CA beads exhibited good stability and persistence. This study contributes to a better understanding of the effects of the redox mediator on Cr(VI bioreduction process and demonstrates its promising potential for environmental bioremediation applications.

  17. Polypropylene non-woven fabric membrane via surface modification with biomimetic phosphorylcholine in Ce(IV)/HNO{sub 3} redox system

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jie; Shi Qiang; Luan Shifang; Song Lingjie; Yang Huawei [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Stagnaro, Paola [Istituto per Io Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova (Italy); Yin Jinghua, E-mail: yinjh@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-10-01

    Surface modification of polypropylene non-woven fabric membrane (NWF) for improving its hemocompatibility was developed by grafting a biomimic monomer, 2-methacryloyloxyethyl phosphorycholine (MPC). The NWF membrane surface was first activated by potassium peroxydisulfate to form hydroxyl groups, and then grafted with MPC using ceric (IV) ammonium nitrate as the redox initiator. The surface chemical changes before and after modification were confirmed by Fourier transform infrared spectroscopy with an ATR unit (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS); the water contact angle results showed the gradual changes in wettability from hydrophobic to hydrophilic surface. Meanwhile, the hemocompatibility of these samples was also evaluated by protein adsorption and platelet adhesion. These experimental results exhibited that the introduction of poly(MPC) onto the NWF membrane surfaces substantially improved their hemocompatibility. The feasibility and simplicity of this procedure may lead to potential applications of NWF membranes in biomedical separation and blood purification. - Graphical abstract: 2-methacryloyloxyethyl phosphorycholine (MPC), was grafted onto non-woven fabric (NWF) membrane surface by Ce(IV)/HNO{sub 3} redox system. The protein adsorption and platelet adhesion were substantially suppressed by the introduction of poly(MPC). Highlights: Black-Right-Pointing-Pointer MPC was successfully grafted onto NWF PP membrane surface. Black-Right-Pointing-Pointer Obviously enhanced hemocompatibility was acquired by the modified samples. Black-Right-Pointing-Pointer A facile redox grafting was adopted in the whole process.

  18. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Vincent; Boye, Kristin; Kukkadapu, Ravi K.; Bone, Sharon; Lezama Pacheco, Juan S.; Cardarelli, Emily; Janot, Noémie; Fendorf, Scott; Williams, Kenneth H.; Bargar, John R.

    2017-12-15

    River floodplains, heavily used for water supplies, housing, agriculture, mining, and industry, may have water quality jeopardized by native or exogenous metals. Redox processes mediate the accumulation and release of these species in groundwater. Understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability and variability of redox conditions is therefore critical to developing conceptual and numerical models of contaminants transport within floodplains. The distribution and intensity of redox activity at the Rifle, CO, site within the Upper Colorado River Basin (UCRB), are believed to be controlled by textural and compositional heterogeneities. Regionally, the UCRB is impacted by former uranium and vanadium ore processing, resulting in contaminations by U, Mo, V, As, Se, and Mn. Floodplains throughout the UCRB share sediment and groundwater characteristics, making redox activity regionally important to metal and radionuclide mobility. In this study, Fe and S speciation were used to track the distribution and stability of redox processes in sediment cores from three floodplain sites covering a 250 km range in the central portion of the UCRB. The results of the present study support the hypothesis that Fe(III) and sulfate reducing sediments are regionally important in the UCRB. The presence of organic carbon together with pore saturation were the key requirements for reducing conditions, dominated by sulfate-reduction. Sediment texture moderated the response of the system to external forcing, such as oxidant infusion, making fine-grain sediments resistant to change in comparison to coarser-grained sediments. Exposure to O2 and NO3- mediates the reactivity and longevity of freshly precipitated sulfides creating the potential for release of sequestered radionuclides and metals. The physical and chemical parameters of reducing zones evidenced in this study are thus thought to be key parameters on the dynamic exchange

  19. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulenova, Alena [Principal Investigator; Vandegrift, III, George F. [Collaborator

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  20. Behaviour of radionuclides in sedimentation processes under varying redox conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ilus, E.; Ikaeheimonen, T.K.; Mattila, J.; Klemola, S. [STUK Radiation and Nuclear Safety Authority (Finland)

    2001-04-01

    Determination of sedimentation rates plays an important role in material balance and model calculations of seas and other bodies of water. The Baltic Sea offers an exceptionally good opportunity to study processes in sediments and sedimentation rates with radioecological methods, because the concentration peaks of {sup 137}Cs and {sup 239,240}Pu are easily detectable in its sediments. In 1995-1996 sediment profiles were taken at 51 sampling stations situated in the Baltic Proper, Bothnian Bay, Bothnian Sea and Gulf of Finland. The aim was to estimate sedimentation rates in different parts of the Baltic Sea by using alternative methods and to consider reasons for eventual differences in results. The {sup 210}Pb, {sup 137}Cs, {sup 239,240}Pu and th sediment trap methods were used in estimations. The results show that the accumulation rates of dry matter may vary between 0.006 and 0.90 g cm{sup -2}y{sup -1} at different sampling stations of the Baltic Sea and the sedimentation rates between 0.2 and 29 mm y{sup -1} depending on the sedimentation itself and the method used in calculation. This is a considerable range in results, considering that all of the sampling stations were located in areas of soft sediment bottoms. In general, the sedimentation rates were highest at the Bothnian Sea sampling stations. In the Gulf of Finland the sedimentation rates were highest in the eastern part, while in the Bothnian Bay and in the Baltic Proper the rates were in general lower than in the 2 areas first mentioned. The differences among the results obtained with various methods varied unsystematically; thus it was not possible to predict that anyone of the methods would always give higher results than any of the others or vice versa. The results show that in the Baltic Sea the use of more than 1 parallel methods in estimation of sedimentation rate is highly recommended. None of the methods is necessarily suitable for routine use in the Baltic Sea. In those cases where the {sup 137

  1. Examination and Mitigation of Electron Interception Processes in Dye-sensitized Solar Cells through Redox Shuttle and Photoelectrode Modification

    Science.gov (United States)

    Hoffeditz, William Lawrence

    With the dual challenges of meeting global energy demand and mitigating anthropogenic climate change, significant effort is being applied to generating power from renewable sources. The dye-sensitized solar cell (DSC) is a photovoltaic technology capable of generating electricity from sunlight, but suffers losses in efficiency due to deleterious electron transfer processes. Controlling these processes is essential if DSCs are to continue to advance, and this dissertation focuses on isolation, interrogation, and mitigation of these processes via controllable inorganic redox/coordination chemistry and atomic layer deposition (ALD). The redox shuttle is often the subject of innovation in DSCs, the goal being to increase obtainable photovoltage without sacrificing photocurrent. A copper redox shuttle with a favorable (II/I) redox potential for DSC use and intriguing inner-sphere reorganization energy was investigated. The shuttle completely replaces its tetradentate coordinating ligand upon oxidation with multiple pyridine molecules. This new species displays markedly slower electron interception, necessitating fabrication of a new counter electrode in order for the shuttle to function. Upon reduction, the tetradentate ligand re-coordinates, creating a dual-species shuttle that outperforms either species as a Cu(II/I) shuttle in isolation. Photoelectrode modification is also the subject of innovation in DSCs. ALD is ideally suited for this type of innovation as it can coat high aspect surfaces with metal-oxide films of uniform thickness. The ALD post-treatment technique is described and used to deposit Al2O3 around a TiO2 adsorbed zinc-porphyrin dye. This technique is shown to prevent dye degradation from ambient air and/or light. Additionally, the architecture allows the study of dye-influenced electron interception processes. It was found that the presence of dye increased interception, which was attributed to dye-mediated electron hopping and/or superexchange

  2. From Au to Pt via surface limited redox replacement of Pb UPD in one-cell configuration.

    Science.gov (United States)

    Fayette, M; Liu, Y; Bertrand, D; Nutariya, J; Vasiljevic, N; Dimitrov, N

    2011-05-03

    This work is aimed at developing a protocol based on surface limited redox replacement (SLRR) of underpotentially deposited (UPD) Pb layers for the growth of epitaxial and continuous Pt thin films on polycrystalline and single crystalline Au surfaces. Different from previously reported papers using SLRR in multiple immersion or flow cell setups, this work explores the one-cell configuration setup as an alternative to improve the efficiency and quality of the growth. Open circuit chronopotentiometry and quartz-crystal microbalance experiments demonstrate steady displacement kinetics and a yield that is higher than the stoichiometric Pt(II)-Pb exchange ratio (1:1). This high yield is attributed to oxidative adsorption of OH(ad) taking place on Pt along with the displacement process. Also, ex situ scanning tunneling microscopy surface characterization reveals after the first replacement event the formation of a dense Pt cluster network that homogenously covers the Au surface. The Pt films grow homogenously with no significant changes in the cluster distribution and surface roughness observed up to 10 successive replacement events. X-ray diffraction analysis shows distinct (111) crystallographic orientation of thicker Pt films deposited on (111) textured Au thin films. Coarse energy dispersive spectroscopy measurements and finer X-ray photoelectron spectroscopy suggest at least 4 atom % Pb incorporating into the Pt layer compared to 13 atom % alloyed Cu when the growth is carried out by SLRR of Cu UPD.

  3. Composition and redox control of waste glasses: Recommendation for process control limit

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Plodinec, M.J.

    1986-01-01

    An electrochemical series of redox couples, originally developed for Savannah River Laboratory glass frit 131 (SRL-131) as a reference composition, has been extended to two other alkali borosilicate compositions that are candidate glasses for nuclear waste immobilization. Since no dramatic differences were ascertained in the redox chemistry of selected multivalent elements in SRL-131 versus that in Savannah River Laboratory glass frit 165 (SRL-165) and in West Valley glass number-sign 205 (WV-205), the comprehensive electrochemical series can readily be applied to a range of nuclear waste glass compositions. In order to alleviate potential problems with foaming and precipitation of insolubles during the processing of the nuclear waste in these glass melts, the [Fe 2+ ]/[Fe 3+ ] ratio of the melt should be between 0.1 and 0.5. 27 refs., 4 figs., 2 tabs

  4. Electrodeposition of Pd based binary catalysts on Carbon paper via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available attention as it is more abundant and also cheaper than Pt. In this presentation, Electrochemical Atomic Layer Deposition (ECALD) was used in the preparation of binary ORR catalysts. The binary nanoclusters were synthesised via surface-limited redox-replacement...

  5. Redox processes in the safety case of deep geological repositories of radioactive wastes. Contribution of the European RECOSY Collaborative Project

    International Nuclear Information System (INIS)

    Duro, L.; Bruno, J.; Grivé, M.; Montoya, V.; Kienzler, B.; Altmaier, M.; Buckau, G.

    2014-01-01

    Highlights: • The RECOSY project produced results relevant for the Safety Case of nuclear disposal. • We classify the safety related features where RECOSY has contributed. • Redox processes effect the retention of radionuclides in all repository subsystems. - Abstract: Redox processes influence key geochemical characteristics controlling radionuclide behaviour in the near and far field of a nuclear waste repository. A sound understanding of redox related processes is therefore of high importance for developing a Safety Case, the collection of scientific, technical, administrative and managerial arguments and evidence in support of the safety of a disposal facility. This manuscript presents the contribution of the specific research on redox processes achieved within the EURATOM Collaborative Project RECOSY (REdox phenomena COntrolling SYstems) to the Safety Case of nuclear waste disposal facilities. Main objectives of RECOSY were related to the improved understanding of redox phenomena controlling the long-term release or retention of radionuclides in nuclear waste disposal and providing tools to apply the results to Performance Assessment and the Safety Case. The research developed during the project covered aspects of the near-field and the far-field aspects of the repository, including studies relevant for the rock formations considered in Europe as suitable for hosting an underground repository for radioactive wastes. It is the intention of this paper to highlight in which way the results obtained from RECOSY can feed the scientific process understanding needed for the stepwise development of the Safety Case associated with deep geological disposal of radioactive wastes

  6. Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Coman, Vasile; Kostesha, Natalie

    2013-01-01

    a significant improvement of bioelectrochemical monitoring in a microfluidic environment and functions as an effective immobilization matrix for cells that are not strongly adherent. The function of the developed microfluidic platform is demonstrated using two strains of S. cerevisiae, ENY.WA and its deletion...... that microfluidic bioelectrochemical assays employing the menadione–PVI-Os double mediator system provides an effective means to conduct automated microbial assays. FigureMicrofluidic platform for bioelectrochemical assays using osmium redox polymer “wired” living yeast cells...

  7. Reversible redox reaction and water configuration on a positively charged platinum surface: first principles molecular dynamics simulation.

    Science.gov (United States)

    Ikeshoji, Tamio; Otani, Minoru; Hamada, Ikutaro; Okamoto, Yasuharu

    2011-12-07

    The water dissociation reaction and water molecule configuration on a positively charged platinum (111) surface were investigated by means of first principles molecular dynamics under periodic boundary conditions. Water molecules on the Pt surface were mostly in the O-down orientation but some H-down structures were also found. OH(-) ion, generated by removing H from H(2)O in the bulk region, moved to the Pt surface, on which a positive charge is induced, by a Grotthuss-like proton-relay mechanism and adsorbed on it as OH(Pt). Hydrogen atom exchange between OH(Pt) and a near-by water molecule frequently occurred on the Pt surface and had a low activation energy of the same order as room temperature energy. When a positive charge (7 μC cm(-2)) was added to the Pt surface, H(3)O(+) and OH(Pt) were generated from 2H(2)O on the Pt. This may be coupled with an electron transfer to the Pt electrode [2H(2)O → H(3)O(+) + OH(Pt) + e(-)]. The opposite reaction was also observed on the same charged surface during a simulation of duration about 10 ps; it is a reversible redox reaction. When further positive charge (14 μC cm(-2)) was added, the reaction shifted to the right hand side completely. Thus, this one-electron transfer reaction, which is a part of the oxygen electrode reaction in fuel cells and water electrolysis, was confirmed to be a low activation energy process.

  8. The influence of operational and design parameters on vertical redox profiles in sub-surface flow constructed wetlands: surveying the optimal scenario for microbial fuel cell implementation

    OpenAIRE

    Garfi, Marianna; Corbella Vidal, Clara; Puigagut Juárez, Jaume

    2013-01-01

    The objective of the present work was to determine the optimal redox gradient that can be obtained in sub-surface flow constructed wetlands (SSF CWs) to maximize the energy production with microbial fuel cells (MFCs). To this aim, a pilot plant based on SSF CW was evaluated for vertical redox profiles. Key operational and design parameters surveyed that influences redox conditions in SSF CW were the presence of plants (Phragmites australis) and the flow regime (continuous and discontinuous fl...

  9. Impact of pH on hydrogen oxidizing redox processes in aquifers due to gas intrusions

    Science.gov (United States)

    Metzgen, Adrian; Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2017-04-01

    Hydrogen production from excess energy and its storage can help increasing the efficiency of solar and wind in the energy mix. Therefore, hydrogen needs large-scale intermediate storage independent of the intended later use as hydrogen gas or as reactant to produce methane in the Sabatier process. A possible storage solution is using the geological subsurface such as caverns built in salt deposits or aquifers that are not used for drinking water production. However, underground storage of hydrogen gas potentially leads to accidental gas leakages into near-surface potable aquifers triggering subsequent geochemical processes. These leakages pose potential risks that are currently not sufficiently understood. To close this gap in knowledge, a high-pressure laboratory column system was used to simulate a hydrogen gas intrusion into a shallow aquifer. Water and sediment were gained from a sandy Pleistocene aquifer near Neumünster, Germany. In the first stage of the experiment, 100% hydrogen gas was used to simulate dissolved hydrogen concentrations between 800 and 4000 µM by varying pH2 between 2 and 15 bars. pH values rose to between 7.9 and 10.4, partly due to stripping CO2 from the groundwater used during H2 gas addition. In a second stage, the pH was regulated in a range of 6.7 to 7.9 by using a gas mixture of 99% H2 and 1% CO2 at 5 bars of total gas pressure. Observed processes included hydrogen oxidation, sulfate reduction, acetogenesis, formate production, and methanogenesis, which were independent of the hydrogen concentration. Hydrogen oxidation and sulfate reduction showed zeroth order reaction rates and rate constants (106 to 412 µM/h and 12 to 33 µM/h, respectively) in the pH range between 8 and 10. At pH levels between 7 and 8, both reactions started out faster near the column's inflow but then seemed limited towards the columns outflow, suggesting the dependence of sulfate reduction on the pH-value. Acetogenesis dominated the pH range between 8 and 10

  10. Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries.

    Science.gov (United States)

    Al Salem, Hesham; Babu, Ganguli; Rao, Chitturi V; Arava, Leela Mohana Reddy

    2015-09-16

    Stabilizing the polysulfide shuttle while ensuring high sulfur loading holds the key to realizing high theoretical energy of lithium-sulfur (Li-S) batteries. Herein, we present an electrocatalysis approach to demonstrate preferential adsorption of a soluble polysulfide species, formed during discharge process, toward the catalyst anchored sites of graphene and their efficient transformation to long-chain polysulfides in the subsequent redox process. Uniform dispersion of catalyst nanoparticles on graphene layers has shown a 40% enhancement in the specific capacity over pristine graphene and stability over 100 cycles with a Coulombic efficiency of 99.3% at a current rate of 0.2 C. Interaction between electrocatalyst and polysulfides has been evaluated by conducting X-ray photoelectron spectroscopy and electron microscopy studies at various electrochemical conditions.

  11. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-08

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc4+ state, 104Ru in the melt as reduced Ru+4 state as insoluble RuO2, and hazardous volatile Cr6+ in the less soluble and less volatile Cr+3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.

  12. Implant surfaces and interface processes.

    Science.gov (United States)

    Kasemo, B; Gold, J

    1999-06-01

    The past decades and current R&D of biomaterials and medical implants show some general trends. One major trend is an increased degree of functionalization of the material surface, better to meet the demands of the biological host system. While the biomaterials of the past and those in current use are essentially bulk materials (metals, ceramics, polymers) or special compounds (bioglasses), possibly with some additional coating (e.g., hydroxyapatite), the current R&D on surface modifications points toward much more complex and multifunctional surfaces for the future. Such surface modifications can be divided into three classes, one aiming toward an optimized three-dimensional physical microarchitecture of the surface (pore size distributions, "roughness", etc.), the second one focusing on the (bio) chemical properties of surface coatings and impregnations (ion release, multi-layer coatings, coatings with biomolecules, controlled drug release, etc.), and the third one dealing with the viscoelastic properties (or more generally the micromechanical properties) of material surfaces. These properties are expected to affect the interfacial processes cooperatively, i.e., there are likely synergistic effects between and among them: The surface is "recognized" by the biological system through the combined chemical and topographic pattern of the surface, and the viscoelastic properties. In this presentation, the development indicated above is discussed briefly, and current R&D in this area is illustrated with a number of examples from our own research. The latter include micro- and nanofabrication of surface patterns and topographies by the use of laser machining, photolithographic techniques, and electron beam and colloidal lithographies to produce controlled structures on implant surfaces in the size range 10 nm to 100 microns. Examples of biochemical modifications include mono- or lipid membranes and protein coatings on different surfaces. A new method to evaluate, e

  13. Plastidic type I signal peptidase 1 is a redox-dependent thylakoidal processing peptidase.

    Science.gov (United States)

    Midorikawa, Takafumi; Endow, Joshua K; Dufour, Jeremy; Zhu, Jieping; Inoue, Kentaro

    2014-11-01

    Thylakoids are the photosynthetic membranes in chloroplasts and cyanobacteria. The aqueous phase inside the thylakoid known as the thylakoid lumen plays an essential role in the photosynthetic electron transport. The presence and significance of thiol-disulfide exchange in this compartment have been recognized but remain poorly understood. All proteins found free in the thylakoid lumen and some proteins associated to the thylakoid membrane require an N-terminal targeting signal, which is removed in the lumen by a membrane-bound serine protease called thylakoidal processing peptidase (TPP). TPP is homologous to Escherichia coli type I signal peptidase (SPI) called LepB. Genetic data indicate that plastidic SPI 1 (Plsp1) is the main TPP in Arabidopsis thaliana (Arabidopsis) although biochemical evidence had been lacking. Here we demonstrate catalytic activity of bacterially produced Arabidopsis Plsp1. Recombinant Plsp1 showed processing activity against various TPP substrates at a level comparable to that of LepB. Plsp1 and LepB were also similar in the pH optima, sensitivity to arylomycin variants and a preference for the residue at -3 to the cleavage site within a substrate. Plsp1 orthologs found in angiosperms contain two unique Cys residues located in the lumen. Results of processing assays suggested that these residues were redox active and formation of a disulfide bond between them was necessary for the activity of recombinant Arabidopsis Plsp1. Furthermore, Plsp1 in Arabidopsis and pea thylakoids migrated faster under non-reducing conditions than under reducing conditions on SDS-PAGE. These results underpin the notion that Plsp1 is a redox-dependent signal peptidase in the thylakoid lumen. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  14. Electrochemical evaluation of electron transfer kinetics of high and low redox potential laccases on gold electrode surface

    International Nuclear Information System (INIS)

    Frasconi, Marco; Boer, Harry; Koivula, Anu; Mazzei, Franco

    2010-01-01

    Laccases and other multicopper oxidases are reported to be able to carry out direct electron transfer reactions when immobilized onto electrode surface. This allows detailed research of their electron transfer mechanisms. We have recently characterized the kinetic properties of four laccases in homogenous solution and immobilized onto an electrode surface with respect to a set of different redox mediators. In this paper we report the direct electron transfer of four purified laccases from Trametes hirsuta (ThL), Trametes versicolor (TvL), Melanocarpus albomyces (r-MaL) and Rhus vernicifera (RvL), by trapping the proteins within an electrochemically inert polymer of tributylmethyl phosphonium chloride coating a gold electrode surface. In particular, we have characterized the steps involved in the laccases electron transfer mechanism as well as the factors limiting each step. During the voltammetric experiments, non-turnover Faradic signals with midpoint potential of about 790 and 400 mV were observed for high potential laccases, ThL and TvL, corresponding to redox transformations of the T1 site and the T2/T3 cluster of the enzyme, respectively, whereas low redox potential laccases r-MaL and RvL shown a redox couple with a midpoint potential around 400 mV. The electrocatalytic properties of these laccase modified electrodes for the reduction of oxygen have been evaluated demonstrating significative direct electron transfer kinetics. The biocatalytic activity of laccases was also monitored in the presence of a well known inhibitor, sodium azide. On the basis of the experimental results, a hypothesis about the electronic pathway for intramolecular electron transfer characterizing laccases has been proposed.

  15. Electrochemical evaluation of electron transfer kinetics of high and low redox potential laccases on gold electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Frasconi, Marco [Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5 00185 Rome (Italy); Boer, Harry; Koivula, Anu [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Mazzei, Franco, E-mail: franco.mazzei@uniroma1.i [Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5 00185 Rome (Italy)

    2010-12-30

    Laccases and other multicopper oxidases are reported to be able to carry out direct electron transfer reactions when immobilized onto electrode surface. This allows detailed research of their electron transfer mechanisms. We have recently characterized the kinetic properties of four laccases in homogenous solution and immobilized onto an electrode surface with respect to a set of different redox mediators. In this paper we report the direct electron transfer of four purified laccases from Trametes hirsuta (ThL), Trametes versicolor (TvL), Melanocarpus albomyces (r-MaL) and Rhus vernicifera (RvL), by trapping the proteins within an electrochemically inert polymer of tributylmethyl phosphonium chloride coating a gold electrode surface. In particular, we have characterized the steps involved in the laccases electron transfer mechanism as well as the factors limiting each step. During the voltammetric experiments, non-turnover Faradic signals with midpoint potential of about 790 and 400 mV were observed for high potential laccases, ThL and TvL, corresponding to redox transformations of the T1 site and the T2/T3 cluster of the enzyme, respectively, whereas low redox potential laccases r-MaL and RvL shown a redox couple with a midpoint potential around 400 mV. The electrocatalytic properties of these laccase modified electrodes for the reduction of oxygen have been evaluated demonstrating significative direct electron transfer kinetics. The biocatalytic activity of laccases was also monitored in the presence of a well known inhibitor, sodium azide. On the basis of the experimental results, a hypothesis about the electronic pathway for intramolecular electron transfer characterizing laccases has been proposed.

  16. Time resolved XANES illustrates a substrate-mediated redox process in Prussian blue cultural heritage materials

    International Nuclear Information System (INIS)

    Gervais, Claire; Moretti, Giulia; Lanquille, Marie-Angélique; Réguer, Solenn

    2016-01-01

    The pigment Prussian blue is studied in heritage science because of its capricious fading behavior under light exposure. We show here that XANES can be used to study the photosensitivity of Prussian blue heritage materials despite X-ray radiation damage. We used an original approach based on X-ray photochemistry to investigate in depth the redox process of Prussian blue when it is associated with a cellulosic substrate, as in cyanotypes and watercolors. By modifying cation and proton contents of the paper substrate, we could tune both rate and extent of Prussian blue reduction. These results demonstrate that the photoreduction and fading of Prussian blue is principally mediated by the substrate and its interaction with the oxygen of the environment. (paper)

  17. Nitric-glycolic flowsheet reduction/oxidation (redox) model for the defense waste processing facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Trivelpiece, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ramsey, W. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-14

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, retains radionuclides in the melt and thus the final glass. Specifically, long-lived radioactive 99Tc species are less volatile in the reduced Tc4+ state as TcO2 than as NaTcO4 or Tc2O7, and ruthenium radionuclides in the reduced Ru4+ state are insoluble RuO2 in the melt which are not as volatile as NaRuO4 where the Ru is in the +7 oxidation state. Similarly, hazardous volatile Cr6+ occurs in oxidized melt pools as Na2CrO4 or Na2Cr2O7, while the Cr+3 state is less volatile and remains in the melt as NaCrO2 or precipitates as chrome rich spinels. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam.

  18. Evidence for microbial mediation of subseafloor nitrogen redox processes at Loihi Seamount, Hawaii

    Science.gov (United States)

    Sylvan, Jason B.; Wankel, Scott D.; LaRowe, Douglas E.; Charoenpong, Chawalit N.; Huber, Julie A.; Moyer, Craig L.; Edwards, Katrina J.

    2017-02-01

    The role of nitrogen cycling in submarine hydrothermal systems is far less studied than that of other biologically reactive elements such as sulfur and iron. In order to address this knowledge gap, we investigated nitrogen redox processes at Loihi Seamount, Hawaii, using a combination of biogeochemical and isotopic measurements, bioenergetic calculations and analysis of the prokaryotic community composition in venting fluids sampled during four cruises in 2006, 2008, 2009 and 2013. Concentrations of NH4+ were positively correlated to dissolved Si and negatively correlated to NO3- + NO2-, while NO2- was not correlated to NO3- + NO2-, dissolved Si or NH4+. This is indicative of hydrothermal input of NH4+ and biological mediation influencing NO2- concentrations. The stable isotope ratios of NO3- (δ15N and δ18O) was elevated with respect to background seawater, with δ18O values exhibiting larger changes than corresponding δ15N values, reflecting the occurrence of both production and reduction of NO3- by an active microbial community. δ15N-NH4+ values ranged from 0‰ to +16.7‰, suggesting fractionation during consumption and potentially N-fixation as well. Bioenergetic calculations reveal that several catabolic strategies involving the reduction of NO3- and NO2- coupled to sulfide and iron oxidation could provide energy to microbes in Loihi fluids, while 16S rRNA gene sequencing of Archaea and Bacteria in the fluids reveals groups known to participate in denitrification and N-fixation. Taken together, our data support the hypothesis that microbes are mediating N-based redox processes in venting hydrothermal fluids at Loihi Seamount.

  19. Electro-deposition of Pd on carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions usingthe electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substratesfor the electrodeposition of the metal...

  20. Nanoscale processes on insulating surfaces

    National Research Council Canada - National Science Library

    Gnecco, Enrico; Szymoński, Marek

    2009-01-01

    ... the group of Prof. Ernst Meyer in Basel, where he investigated friction processes on alkali halide surfaces in ultra high vacuum (UHV). The main result was the observation of a logarithmic velocity dependence of atomic friction, which was interpreted within a combination of the classical Tomlinson and Eyring models. After his Ph.D. he joined the ...

  1. In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes.

    Science.gov (United States)

    Crozier, Peter A; Wang, Ruigang; Sharma, Renu

    2008-10-01

    We apply in situ environmental transmission electron microscopy (ETEM) to study the dynamic changes taking place during redox reactions in ceria and ceria-zirconia nanoparticles in a hydrogen atmosphere. For pure ceria, we find that a reversible phase transformation takes place at 730 degrees C in which oxygen vacancies introduced during reduction order to give a cubic superstructure with a periodicity of roughly twice the basic fluorite lattice. We also observe the structural transformations taking place on the surface during reduction in hydrogen. The (110) ceria surface is initially constructed with a series of low-energy (111) nanofacets. Under strong reduction, the surface slowly transforms to a smooth (110) surface which was not observed to change upon re-oxidation. The surface transformation allows the reduced surface to accommodate a high concentration of oxygen vacancies without creating a strong perpendicular dipole moment. In the ceria-zirconia system, we are able to use ETEM to follow the redox activity of individual nanoparticles and correlate this property with structure and composition. We find considerable variation in the redox activity and interpret this in terms of structural differences between the nanoparticles.

  2. Investigation of potential analytical methods for redox control of the vitrification process

    International Nuclear Information System (INIS)

    Goldman, D.S.

    1985-11-01

    An investigation was conducted to evaluate several analytical techniques to measure ferrous/ferric ratios in simulated and radioactive nuclear waste glasses for eventual redox control of the vitrification process. Redox control will minimize the melt foaming that occurs under highly oxidizing conditions and the metal precipitation that occurs under highly reducing conditions. The analytical method selected must have a rapid response for production problems with minimal complexity and analyst involvement. The wet-chemistry, Moessbauer spectroscopy, glass color analysis, and ion chromatography techniques were explored, with particular emphasis being placed on the Moessbauer technique. In general, all of these methods can be used for nonradioactive samples. The Moessbauer method can readily analyze glasses containing uranium and thorium. A shielded container was designed and built to analyze fully radioactive glasses with the Moessbauer spectrometer in a hot cell environment. However, analyses conducted with radioactive waste glasses containing 90 Sr and 137 Cs were unsuccessful, presumably due to background radiation problems caused by the samples. The color of glass powder can be used to analyze the ferrous/ferric ratio for low chromium glasses, but this method may not be as precise as the others. Ion chromatography was only tested on nonradioactive glasses, but this technique appears to have the required precision due to its analysis of both Fe +2 and Fe +3 and its anticipated adaptability for radioactivity samples. This development would be similar to procedures already in use for shielded inductively coupled plasma emission (ICP) spectrometry. Development of the ion chromatography method is therefore recommended; conventional wet-chemistry is recommended as a backup procedure

  3. Pt deposition on carbon paper and Ti mesh substrates by surface limited redox replacement

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-12-01

    Full Text Available , the material used as gas diffusion layer for proton exchange membrane fuel cells (PEMFCs) and Ti-mesh. The deposition uses multiple redox replacement of underpotentially deposited Cu used as a sacrificial metal. The morphology and particle size of the deposited...

  4. Investigation of iodine liberation process in redox titration of potassium iodate with sodium thiosulfate

    International Nuclear Information System (INIS)

    Asakai, Toshiaki; Hioki, Akiharu

    2011-01-01

    Potassium iodate is often used as a reference material to standardize a sodium thiosulfate solution which is a familiar titrant for redox titrations. In the standardization, iodine (triiodide) liberated by potassium iodate in an acidic potassium iodide solution is titrated with a sodium thiosulfate solution. The iodine liberation process is significantly affected by the amount of acid, that of potassium iodide added, the waiting time for the liberation, and light; therefore, the process plays a key role for the accuracy of the titration results. Constant-voltage biamperometry with a modified dual platinum-chip electrode was utilized to monitor the amount of liberated iodine under several liberation conditions. Coulometric titration was utilized to determine the concentration of a sodium thiosulfate solution on an absolute basis. Potassium iodate was assayed by gravimetric titration with the sodium thiosulfate solution under several iodine liberation conditions. The liberation process was discussed from the changes in the apparent assay of potassium iodate. The information of the appropriate titration procedure obtained in the present study is useful for any analysts utilizing potassium iodate to standardize a thiosulfate solution.

  5. Impacts of shallow geothermal energy production on redox processes and microbial communities.

    Science.gov (United States)

    Bonte, Matthijs; Röling, Wilfred F M; Zaura, Egija; van der Wielen, Paul W J J; Stuyfzand, Pieter J; van Breukelen, Boris M

    2013-12-17

    Shallow geothermal systems are increasingly being used to store or harvest thermal energy for heating or cooling purposes. This technology causes temperature perturbations exceeding the natural variations in aquifers, which may impact groundwater quality. Here, we report the results of laboratory experiments on the effect of temperature variations (5-80 °C) on redox processes and associated microbial communities in anoxic unconsolidated subsurface sediments. Both hydrochemical and microbiological data showed that a temperature increase from 11 °C (in situ) to 25 °C caused a shift from iron-reducing to sulfate-reducing and methanogenic conditions. Bioenergetic calculations could explain this shift. A further temperature increase (>45 °C) resulted in the emergence of a thermophilic microbial community specialized in fermentation and sulfate reduction. Two distinct maxima in sulfate reduction rates, of similar orders of magnitude (5 × 10(-10) M s(-1)), were observed at 40 and 70 °C. Thermophilic sulfate reduction, however, had a higher activation energy (100-160 kJ mol(-1)) than mesophilic sulfate reduction (30-60 kJ mol(-1)), which might be due to a trade-off between enzyme stability and activity with thermostable enzymes being less efficient catalysts that require higher activation energies. These results reveal that while sulfate-reducing functionality can withstand a substantial temperature rise, other key biochemical processes appear more temperature sensitive.

  6. Plant redox proteomics

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Finnie, Christine; Svensson, Birte

    2011-01-01

    In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox...... PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs....... To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly...

  7. The behaviour of long-lived redox sensitive radionuclides in soil-plant system during the process of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Semioshkina, N.; Staudt, C.; Kaiser, C. [Helmhotz Zetrum Muenchen (Germany); Proehl, G. [International Atomic Energy Agency - IAEA (International Atomic Energy Agency (IAEA)); Noseck, U.; Fahrenholz, C. [Gesellschaft fuer Anlagen- und Reaktorsicherheit - GRS (Germany)

    2014-07-01

    One important aspect of climate changes for the long-term safety assessment of radioactive waste repositories is its impact on exposure pathways for humans in the future, which are dependent on the environmental characteristics mentioned. It is conceivable that effects or processes occurring during climate changes lead to an increased accumulation and/or release of radionuclides in the biosphere resulting in higher doses compared to that calculated for discrete climate states. In order to shed light on this question key processes are identified which might lead to such an increased accumulation and/or release of radionuclides. The transition from one climate to another can cause changes in the physicochemical composition of radionuclides: some of them may become more available for plant uptake and due to this, their activity concentration in the plants increases. Other radionuclides maybe stronger bound to soil and their activity concentration in plants decreases. Such changes might also cause remobilization of radionuclides from localised areas with contaminated sediments, their re-suspension and transfer to the surrounding areas. A suitable illustration of the processes related to the changes of the redox potential is the examination of a dry lake or fen bed for agricultural purposes as pasture or ameliorated pasture. In these cases the accumulation of radionuclides in the lake or fen sediment is followed by their release and increasing mobility after agricultural processing of the dry bed of lake or fen. Ploughing of the soil leads to increased supply of oxygen to previous anoxic soil layers causing an increase in redox potential. The presented model describes a scenario, where the land is initially very humid and very low Eh-values cause high sorption and accumulation of radionuclides in soil particles. Then this land is dried out, the redox potential increases and redox sensitive radionuclides change their speciation and their behaviour. Such processes might

  8. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Hernández-Burgos, Kenneth [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Silberstein, Katharine E. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Rodríguez-Calero, Gabriel G. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Bisbey, Ryan P. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Dichtel, William R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States

    2015-02-17

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  9. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.; Rodríguez-Calero, Gabriel G.; Bisbey, Ryan P.; Abruña, Héctor D.; Dichtel, William R.

    2015-03-24

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  10. Redox-active on-surface polymerization of single-site divalent cations from pure metals by a ketone-functionalized phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Skomski, Daniel; Tempas, Christopher D.; Bukowski, Gregory S.; Smith, Kevin A.; Tait, Steven L., E-mail: tait@indiana.edu [Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405 (United States)

    2015-03-14

    Metallic iron, chromium, or platinum mixing with a ketone-functionalized phenanthroline ligand on a single crystal gold surface demonstrates redox activity to a well-defined oxidation state and assembly into thermally stable, one dimensional, polymeric chains. The diverging ligand geometry incorporates redox-active sub-units and bi-dentate binding sites. The gold surface provides a stable adsorption environment and directs growth of the polymeric chains, but is inert with regard to the redox chemistry. These systems are characterized by scanning tunnelling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy under ultra-high vacuum conditions. The relative propensity of the metals to interact with the ketone group is examined, and it is found that Fe and Cr more readily complex the ligand than Pt. The formation and stabilization of well-defined transition metal single-sites at surfaces may open new routes to achieve higher selectivity in heterogeneous catalysts.

  11. Engineered Proteins: Redox Properties and Their Applications

    Science.gov (United States)

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  12. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams

    Science.gov (United States)

    Briggs, Martin A.; Lautz, Laura; Hare, Danielle K.

    2013-01-01

    Abstract. Small dams enhance the development of patchy microenvironments along stream corridors by trapping sediment and creating complex streambed morphologies. This patchiness drives intricate hyporheic flux patterns that govern the exchange of O2 and redox-sensitive solutes between the water column and the stream bed. We used multiple tracer techniques, naturally occurring and injected, to evaluate hyporheic flow dynamics and associated biogeochemical cycling and microbial reactivity around 2 beaver dams in Wyoming (USA). High-resolution fiber-optic distributed temperature sensing was used to collect temperature data over 9 vertical streambed profiles and to generate comprehensive vertical flux maps using 1-dimensional (1-D) heat-transport modeling. Coincident with these locations, vertical profiles of hyporheic water were collected every week and analyzed for dissolved O2, pH, dissolved organic C, and several conservative and redox-sensitive solutes. In addition, hyporheic and net stream aerobic microbial reactivity were analyzed with a constant-rate injection of the biologically sensitive resazurin (Raz) smart tracer. The combined results revealed a heterogeneous system with rates of downwelling hyporheic flow organized by morphologic unit and tightly coupled to the redox conditions of the subsurface. Principal component analysis was used to summarize the variability of all redox-sensitive species, and results indicated that hyporheic water varied from oxic-stream-like to anoxic-reduced in direct response to the hydrodynamic conditions and associated residence times. The anaerobic transition threshold predicted by the mean O2 Damko

  13. Nicotinamide-NAD sequence: redox process and related behavior, behavior and properties of intermediate and final products

    International Nuclear Information System (INIS)

    Elving, P.J.; Schmakel, C.O.; Santhanam, K.S.V.

    1976-01-01

    Illustrations of the application of analytical chemical techniques to the study of chemical phenomena are given. In particular, electrochemical techniques and methodology and, to a lesser extent, spectrophotometry were used to investigate the solution behavior, adsorption, redox processes including coupled chemical reactions, and allied aspects of biologically significant compounds and of their intermediate and final redox products, e.g., the behavior of the free radicals produced by initial one-electron processes. This approach is illustrated by the consideration of the behavior in aqueous and nonaqueous media of a sequence of compounds ranging from nicotinamide (3-carbamoylpyridine) to NAD + and NADP + ; the latter compounds function as coenzymes for the pyridinoproteins which are principal components in the Krebs citric acid cycle and in the electron transport chain in biological redox reactions. The discussion is presented under the following section headings: interpretation of electrochemical behavior; mechanistic patterns; kinetic aspects of charge-transfer and chemical reactions; correlation with theoretically calculated parameters; and, mechanisms of biological oxidation-reduction reactions. The use of pulse radiolysis, chronopotentiometric, and cyclic voltammetric methods in studies on free radical dimerization rates is reviewed in the discussion of the kinetic aspects of charge-transfer and chemical reactions. (188 references)

  14. Pt/Ru-functionalized magnetic spheres for a magnetic-field stimulated methanol and oxygen redox processes. Towards on-demand activation of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joseph; Musameh, Mustafa; Laocharoensuk, Rawiwan; Gonzalez-Garcia, Olga; Oni, Joshua; Gervasio, Don [Departments of Chemical and Materials Engineering and Chemistry and Biochemistry, Ira A. Fulton School of Engineering, The Biodesign Institute, Arizona State University, P.O. Box 876006, Tempe, AZ 85287-5801 (United States)

    2006-07-15

    Pt/Ru-functionalized magnetic spheres were used for a magnetic-field stimulated methanol oxidation and oxygen reduction processes. The electrocatalytic alloy magnetic particles were prepared by a galvanostatic co-deposition of platinum and ruthenium onto nickel spheres. The electrocatalytic oxidation of methanol and reduction of oxygen could be triggered by switching the position of an external magnet below the surface of the carbon electrode to confine the Pt/Ru-coated particles. The magnetic stimulation of the redox processes of methanol and oxygen allowed the reversible activation and deactivation of the operation of direct-methanol fuel cells. Such switching of fuel cells would enable on-demand power generation, for meeting the specific needs of power consuming units. (author)

  15. Exploring the entrance of proton pathways in cytochrome c oxidase from Paracoccus denitrificans: surface charge, buffer capacity and redox-dependent polarity changes at the internal surface.

    Science.gov (United States)

    Kirchberg, Kristina; Michel, Hartmut; Alexiev, Ulrike

    2013-03-01

    Cytochrome c oxidase (CcO), the terminal oxidase of cellular respiration, reduces molecular oxygen to water. The mechanism of proton pumping as well as the coupling of proton and electron transfer is still not understood in this redox-linked proton pump. Eleven residues at the aqueous-exposed surfaces of CcO from Paracoccus denitrificans have been exchanged to cysteines in a two-subunit base variant to yield single reactive cysteine variants. These variants are designed to provide unique labeling sites for probes to be used in spectroscopic experiments investigating the mechanism of proton pumping in CcO. To this end we have shown that all cysteine variants are enzymatically active. Cysteine positions at the negative (N-) side of the membrane are located close to the entrance of the D- and K-proton transfer pathways that connect the N-side with the catalytic oxygen reduction site. Labeling of the pH-indicator dye fluorescein to these sites allowed us to determine the surface potential at the cytoplasmic CcO surface, which corresponds to a surface charge density of -0.5 elementary charge/1000Å(2). In addition, acid-base titrations revealed values of CcO buffer capacity. Polarity measurements of the label environment at the N-side provided (i) site-specific values indicative of a hydrophilic and a more hydrophobic environment dependent on the label position, and (ii) information on a global change to a more apolar environment upon reduction of the enzyme. Thus, the redox state of the copper and heme centers inside the hydrophobic interior of CcO affect the properties at the cytoplasmic surface. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Coupling microbial catabolic actions with abiotic redox processes: a new recipe for persistent organic pollutant (POP) removal.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Nam, In-Hyun; Chang, Yoon-Seok

    2013-01-01

    The continuous release of toxic persistent organic pollutants (POPs) into the environment has raised a need for effective cleanup methods. The tremendous natural diversity of microbial catabolic mechanisms suggests that catabolic routes may be applied to the remediation of POP-contaminated fields. A large number of the recalcitrant xenobiotics have been shown to be removable via the natural catabolic mechanisms of microbes, and detailed biochemical studies of the catabolic methods, together with the development of sophisticated genetic engineering, have led to the use of synthetic microbes for the bioremediation of POPs. However, the steric effects of substituted halogen moieties, microbe toxicity, and the low bioavailability of POPs still deteriorate the efficiency of removal strategies based on natural and synthetic catabolic mechanisms. Recently, abiotic redox processes that induce rapid reductive dehalogenation, hydroxyl radical-based oxidation, or electron shuttling have been reasonably coupled with microbial catabolic actions, thereby compensating for the drawbacks of biotic processes in POP removal. In this review, we first compare the pros and cons of individual methodologies (i.e., the natural and synthetic catabolism of microbes and the abiotic processes involving zero-valent irons, advanced oxidation processes, and small organic stimulants) for POP removal. We then highlight recent trends in coupling the biotic-abiotic methodologies and discuss how the processes are both feasible and superior to individual methodologies for POP cleanup. Cost-effective and environmentally sustainable abiotic redox actions could enhance the microbial bioremediation potential for POPs. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  18. Erosion and lateral surface processes

    Science.gov (United States)

    : Erosion can cause serious agricultural and environmental hazards. It can generate severe damage to the landscape, lead to significant loss of agricultural land and consequently to reduction in agricultural productivity, induce surface water pollution due to the transport of sediments and suspende...

  19. Surface studies of plasma processed Nb samples

    International Nuclear Information System (INIS)

    Tyagi, Puneet V.; Doleans, Marc; Hannah, Brian S.; Afanador, Ralph; Stewart, Stephen; Mammosser, John; Howell, Matthew P; Saunders, Jeffrey W; Degraff, Brian D; Kim, Sang-Ho

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma-processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO 2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  20. Surface studies of plasma processed Nb samples

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Puneet V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Doleans, Marc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Hannah, Brian S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Afanador, Ralph [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Stewart, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Mammosser, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Howell, Matthew P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Saunders, Jeffrey W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Degraff, Brian D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)

    2015-01-01

    Contaminants present at top surface of superconducting radio frequency (SRF) cavities can act as field emitters and restrict the cavity accelerating gradient. A room temperature in-situ plasma processing technology for SRF cavities aiming to clean hydrocarbons from inner surface of cavities has been recently developed at the Spallation Neutron Source (SNS). Surface studies of the plasma-processed Nb samples by Secondary ion mass spectrometry (SIMS) and Scanning Kelvin Probe (SKP) showed that the NeO2 plasma processing is very effective to remove carbonaceous contaminants from top surface and improves the surface work function by 0.5 to 1.0 eV.

  1. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    International Nuclear Information System (INIS)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  2. Redox zone II. Coupled modeling of groundwater flow, solute transport, chemical reactions and microbial processes in the Aespoe island

    Energy Technology Data Exchange (ETDEWEB)

    Samper, Javier; Molinero, Jorge; Changbing Yang; Guoxiang Zhang [Univ. Da Coruna (Spain)

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behaviour and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by Banwart et al. Later, Banwart presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by Molinero who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulphate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of Molinero and extends the preliminary microbial model of Zhang by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfaphe concentration, thus adding additional evidence for the possibility

  3. Description of two-process surface topography

    International Nuclear Information System (INIS)

    Grabon, W; Pawlus, P

    2014-01-01

    After two machining processes, a large number of surface topography measurements were made using Talyscan 150 stylus measuring equipment. The measured samples were divided into two groups. The first group contained two-process surfaces of random nature, while the second group used random-deterministic textures of random plateau parts and portions of deterministic valleys. For comparison, one-process surfaces were also analysed. Correlation and regression analysis was used to study the dependencies among surface texture parameters in 2D and 3D systems. As the result of this study, sets of parameters describing multi-process surface topography were obtained for two-process surfaces of random and of random-deterministic types. (papers)

  4. Global redox cycle of biospheric carbon: Interaction of photosynthesis and earth crust processes.

    Science.gov (United States)

    Ivlev, Alexander A

    2015-11-01

    A model of the natural global redox cycle of biospheric carbon is introduced. According to this model, carbon transfer between biosphere and geospheres is accompanied by a conversion of the oxidative forms, presented by CO2, bicarbonate and carbonate ions, into the reduced forms, produced in photosynthesis. The mechanism of carbon transfer is associated with two phases of movement of lithospheric plates. In the short-term orogenic phase, CO2 from the subduction (plates' collisions) zones fills the "atmosphere-hydrosphere" system, resulting in climate warming. In the long-term quiet (geosynclynal) phase, weathering and photosynthesis become dominant depleting the oxidative forms of carbon. The above asymmetric periodicity exerts an impact on climate, biodiversity, distribution of organic matter in sedimentary deposits, etc. Along with photosynthesis expansion, the redox carbon cycle undergoes its development until it reaches the ecological compensation point, at which CO2 is depleted to the level critical to support the growth and reproduction of plants. This occurred in the Permo-Carboniferous time and in the Neogene. Shorter-term perturbations of the global carbon cycle in the form of glacial-interglacial oscillations appear near the ecological compensation point. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale

  6. Quantitative analysis of solid oxide fuel cell anode microstructure change during redox cycles

    Science.gov (United States)

    Shimura, Takaaki; Jiao, Zhenjun; Hara, Shotaro; Shikazono, Naoki

    2014-12-01

    In the present study, correlation between solid oxide fuel cell anode microstructure and electrochemical performance during redox cycles was investigated. Electrolyte-support cell with nickel/yttria stabilized zirconia composite anode was prepared and tested under discharge process with redox cycles. Redox treatment was basically conducted every 20 h during discharge process. Polarization resistance decreased just after redox treatment and increased during discharge process. Enhancement of cell performance after every redox cycles and faster degradation in the following discharge process were observed. Polarization resistance gradually increased as redox cycles were repeated. Focused ion beam-scanning electron microscopy (FIB-SEM) observation was conducted for reconstructing the three dimensional microstructures of the tested samples. From the three dimensional microstructure reconstruction, it is found that the shape of nickel particle got thinner and complicated after redox cycles. Triple phase boundary (TPB) length increased after redox treatment and decreased after discharge process. This TPB change was highly associated with Ni connectivity and Ni specific surface area. These microstructure changes are consistent with the change of cell performance enhancement after redox treatment and degradation after discharge process. However, TPB length density kept on increasing as redox cycles are repeated, which is inconsistent with the gradual degradation of anode performance.

  7. The dynamic response of hyporheic zone redox zonation after surface flow perturbation

    Science.gov (United States)

    Kaufman, M.; Zheng, L.; Cardenas, M. B.

    2015-12-01

    As water in a stream or river flows over ripples and other bedforms, differential surface pressures create bedform-induced hyporheic exchange. The oxygen, carbon, and nutrients carried into the bed by the surface water as well as those already existing in the bed material form the basis for microbial communities in the sediment.The resulting dissolved oxygen conditions are a critical control on the ecological function of the hyporheic zone (HZ), from both micro- and macro-biological habitat perspectives. Because hyporheic exchange rates are controlled by surface flow velocity, variations in surface flow have significant impact on the subsurface oxygen conditions. Most rivers are subject to flow velocity variations due to natural forcing including precipitation and variations in evapotranspiration as well as anthropogenic forces like dam releases. We use a large (10m x 0.7m x 0.3m) programmable flume instrumented with a bedform-scale high-resolution planar optode dissolved oxygen imaging system to observe the distribution of oxygenated sediment within the HZ over time. Using this system we characterize the rate at which hyporheic oxygen conditions reconfigure in response to changes in the surface flow velocity, particularly the time it takes for conditions to recover after a pulse of increased flow velocity. In addition, we make use of numerical models to further identify critical response time drivers. With these tools, we develop equations to describe the post-disturbance recovery time as a function of relative pulse magnitude and duration. Using these equations we can predict the time scale over which the hyporheic zone will recover following both natural and anthropogenic flow regime disturbances. Being able to predict the magnitude and duration of dissolved oxygen changes in the wake of flow perturbing events allows us to better understand the impact these disturbances have on the ecology of the hyporheic zone.

  8. Control of magnetism by electrical charge doping or redox reactions in a surface-oxidized Co thin film with a solid-state capacitor structure

    Science.gov (United States)

    Hirai, T.; Koyama, T.; Chiba, D.

    2018-03-01

    We have investigated the electric field (EF) effect on magnetism in a Co thin film with a naturally oxidized surface. The EF was applied to the oxidized Co surface through a gate insulator layer made of HfO2, which was formed using atomic layer deposition (ALD). The efficiency of the EF effect on the magnetic anisotropy in the sample with the HfO2 layer deposited at the appropriate temperature for the ALD process was relatively large compared to the previously reported values with an unoxidized Co film. The coercivity promptly and reversibly followed the variation in gate voltage. The modulation of the channel resistance was at most ˜0.02%. In contrast, a dramatic change in the magnetic properties including the large change in the saturation magnetic moment and a much larger EF-induced modulation of the channel resistance (˜10%) were observed in the sample with a HfO2 layer deposited at a temperature far below the appropriate temperature range. The response of these properties to the gate voltage was very slow, suggesting that a redox reaction dominated the EF effect on the magnetism in this sample. The frequency response for the capacitive properties was examined to discuss the difference in the mechanism of the EF effect observed here.

  9. Water surface capturing by image processing

    Science.gov (United States)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  10. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, Cynthia B.; Molaro, Jamie; Hand, Kevin P.

    2017-10-01

    The surface of Jupiter’s moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa’s leading-trailing hemisphere brightness asymmetry.Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted “chaos-type” terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features.In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa’s surface area.Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age (~50myr) of Europa. Quantifying the

  11. Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery

    Science.gov (United States)

    grosse Austing, Jan; Nunes Kirchner, Carolina; Komsiyska, Lidiya; Wittstock, Gunther

    2016-02-01

    In this paper the losses in coulombic efficiency are investigated for a vanadium/air redox flow battery (VARFB) comprising a two-layered positive electrode. Ultraviolet/visible (UV/Vis) spectroscopy is used to monitor the concentrations cV2+ and cV3+ during operation. The most likely cause for the largest part of the coulombic losses is the permeation of oxygen from the positive to the negative electrode followed by an oxidation of V2+ to V3+. The total vanadium crossover is followed by inductively coupled plasma mass spectroscopy (ICP-MS) analysis of the positive electrolyte after one VARFB cycle. During one cycle 6% of the vanadium species initially present in the negative electrolyte are transferred to the positive electrolyte, which can account at most for 20% of the coulombic losses. The diffusion coefficients of V2+ and V3+ through Nafion® 117 are determined as DV2+ ,N 117 = 9.05 ·10-6 cm2 min-1 and DV3+ ,N 117 = 4.35 ·10-6 cm2 min-1 and are used to calculate vanadium crossover due to diffusion which allows differentiation between vanadium crossover due to diffusion and migration/electroosmotic convection. In order to optimize coulombic efficiency of VARFB, membranes need to be designed with reduced oxygen permeation and vanadium crossover.

  12. Surface Energy and Setting Process of Contacting Surfaces

    Directory of Open Access Journals (Sweden)

    M. V. Musokhranov

    2014-01-01

    Full Text Available The paper deals with a challenge in terms of ensuring an accuracy of the relative position of the conjugated surfaces that is to determine a coefficient of friction. To solve it, there is a proposal to use the surface energy, as a tool that influences the contacting parts nature. Presently, energy of the surface layers at best is only stated, but not used in practice.Analysis of the conditions of interaction between two contacting surfaces, such as seizing and setting cannot be explained only from the position of the roughness parameters. It is found that these phenomena are explained by the appearing gripe (setting bridges, which result from the energy of interaction between two or more adjacent surfaces. The emerging phenomenon such as micro welding, i.e. occurring bonds, is caused by the overflow of energy, according to the theory of physics, from the surface with a high level of energy to the surface with the smaller one to balance the system as a whole.The paper shows that through the use of process, controlling the depth of the surface layer and creating a certain structure, the energy level of the material as a whole can be specified. And this will allow us to provide the necessary performance and mechanical properties. It means to create as many gripe bridges as possible to ensure continuous positioning i.e. a fixed connection of the contacting surfaces.It was determined that to increase a value of the friction coefficient, the physical and mechanical properties of the surface layer of the parts material must be taken into account, namely, in the part body accumulate the energy to be consumed for forming the surface.The paper gives recommendations for including the parts of the surface energy in the qualitative indicators of characteristics. This will make a technologist, when routing a process, to choose such operations and modes to provide the designer-specified parameters not only of the accuracy and surface finish, but also of the

  13. Redox regulation of protein damage in plasma

    Directory of Open Access Journals (Sweden)

    Helen R. Griffiths

    2014-01-01

    In this review, we focus on redox regulatory control of those enzymes and processes which control protein maturation during synthesis, produce reactive species, repair and remove damaged plasma proteins. We have highlighted the potential for alterations in the extracellular redox compartment to regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory molecules, changes in redox state may be transmitted to distant sites.

  14. Radon transport processes below the earth's surface

    International Nuclear Information System (INIS)

    Wilkening, M.

    1980-01-01

    Processes by which 222 Rn is transported from the soil to the earth's surface are reviewed. The mechanisms effective in transporting 222 Rn to the surface are related to the size and configuration of the spaces occupied by the soil gas which may vary from molecular interstices to large underground caverns. The near-surface transport processes are divided into two categories: (1) a microscopic process that includes molecular diffusion and viscous flow in fine capillaries and (2) macroscopic flow in fissures and channels. Underground air rich in 222 Rn can also reach the surface through cracks, fissures, and underground channels. This type of transport is shown for (1) a horizontal tunnel penetrating a fractured hillside, (2) a large underground cave, and (3) volcanic activity. Pressure differentials having various natural origins and thermal gradients are responsible for the transport in these examples. 222 Rn transport by ordinary molecular diffusion appears to be the dominant process

  15. The effect of picosecond laser pulses on redox-dependent processes in mice red blood cells studied in vivo

    Science.gov (United States)

    Voronova, Olga; Gening, Tatyana; Abakumova, Tatyana; Sysolyatin, Aleksey; Zolotovskiy, Igor; Antoneeva, Inna; Ostatochnikov, Vladimir; Gening, Snezhanna

    2014-02-01

    The study highlights the effect of different modes of in vivo laser irradiation of mice using a PFL8LA laser with λ = 1560 nm, pulse duration of 1,4•10-12 s, peak power of 3,72•103 W and average output power of 20•10-3 W on the lipid peroxidation parameters: conjugated dienes, ketodienes and conjugated trienes, malondialdehyde, Schiff bases and the activity of antioxidant enzymes - catalase, glutathione -S-transferase and superoxide dismutase in erythrocytes and plasma of mice. Two groups of mice received a total dose of 3.8 J/cm2 per group, but the 1st group was irradiated only once, while the 2nd - four times. Significant differences in the parameters of the 1st and 2nd groups indicate different effects of the irradiation modes on redox-dependent processes in red blood cells of mice.

  16. Redox-capacitor to connect electrochemistry to redox-biology.

    Science.gov (United States)

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-01-07

    It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.

  17. Surface transport processes in charged porous media.

    Science.gov (United States)

    Gabitto, Jorge; Tsouris, Costas

    2017-07-15

    Surface transport processes are very important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations in the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Integrated mold/surface-micromachining process

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S.; Sniegowski, J.J.; Hetherington, D.L.

    1996-03-01

    We detail a new monolithically integrated silicon mold/surface-micromachining process which makes possible the fabrication of stiff, high-aspect-ratio micromachined structures integrated with finely detailed, compliant structures. An important example, which we use here as our process demonstration vehicle, is that of an accelerometer with a large proof mass and compliant suspension. The proof mass is formed by etching a mold into the silicon substrate, lining the mold with oxide, filling it with mechanical polysilicon, and then planarizing back to the level of the substrate. The resulting molded structure is recessed into the substrate, forming a planar surface ideal for subsequent processing. We then add surface-micromachined springs and sense contacts. The principal advantage of this new monolithically integrated mold/surface-micromachining process is that it decouples the design of the different sections of the device: In the case of a sensitive accelerometer, it allows us to optimize independently the proof mass, which needs to be as large, stiff, and heavy as possible, and the suspension, which needs to be as delicate and compliant as possible. The fact that the high-aspect-ratio section of the device is embedded in the substrate enables the monolithic integration of high-aspect-ratio parts with surface-micromachined mechanical parts, and, in the future, also electronics. We anticipate that such an integrated mold/surface micromachining/electronics process will offer versatile high-aspect-ratio micromachined structures that can be batch-fabricated and monolithically integrated into complex microelectromechanical systems.

  19. Redox process at solid-liquid interfaces: studies with thin layers of green rusts electrodeposited on inert substrates

    International Nuclear Information System (INIS)

    Peulon, S.; Taghdai, Y.; Mercier, F.; Barre, N.; Legrand, L.; Chauss, A.

    2005-01-01

    Full text of publication follows: The redox reactions which can occur between radioelements and natural phases in the environment are taken still little into account although their importance is established on natural sites; the consequences are significant since they can modify radically the behaviour of the species by increasing or decreasing their migration. The iron compounds are very implicated in these redox processes because iron is one of the most abundant element on earth; moreover, it is also present in the containers used for the storage of the nuclear waste. We exhibited in previous works that electrochemistry is a convenient way to generate the main iron oxidation compounds as thin layers on different inert substrates. The electrochemical behaviour of these deposits that are adherent, homogeneous and well crystallized [1-3], was investigated with the principle advantage that iron metal and its reactivity is eliminate. Moreover, they could be analysed directly by techniques like IRRAS, XRD, SEM, EDS and XPS without any preparation. In the present study, we develop an original way to investigate redox processes at solid-liquid interfaces based on the utilisation of these thin layers; the samples are more commonly powders and/or pieces of corroded steel in the literature. Results obtained with two different systems, chromate and uranyl ions, in interaction with thin layers of sulfated green rusts are presented. Green rusts is chosen because it is a mixed Fe(II-III) compound which could be formed in anoxic conditions like in the case of the storage of the nuclear waste. After various contact times with the solutions containing the reactive species, the thin layers are characterised by different ex-situ methods. The results show clearly the oxidation of the green rust into a Fe(III) compound and the formation of a new solid phase on the electrode due to the reduction and the precipitation of the reactive species present initially in solution. Because thin

  20. Monitoring the chemical nature of the carbon pool of Louisiana wetland soils undergoing erosion: carbon speciation and redox processes

    Science.gov (United States)

    Haywood, B.; Cook, R. L.; Hayes, M. P.; White, J. R.

    2017-12-01

    Wetlands account for approximately one third of all the soil carbon on the planet; however, due to erosion caused by a range of factors, including sea level rising, they are also some of the most vulnerable carbon pools. Small changes within this sequestered carbon pool can have a large impact on atmospheric CO2 levels. Thus, it is essential to understand how this sequestered carbon reacts to wetland loss in order to gain deeper insight into the global carbon cycle. In the study to be presented, Barataria Bay, Louisiana, USA is used as a model system for wetland loss. A sampling site and sampling grid has been established, and consists of three transects on and from an individual island. Each transect has five different distances ranging from 2 m inland to 8 m outland (into the water). At each of these different distances, depth profiles from 0 to 100 cm for inland samples, and 0-70 cm for submerged samples, were collected in order to identify spatial trends not only from inland to submerged, but also through the depth of the soil profile. Three types of samples were collected, namely water, pore water, and soil samples, with the latter being obtained from the combined collection of water and core samples. Samples have undergone spectroscopic characterizing including UV/Vis, fluorescence (excitation emission matrices, EEMs, and parallel factor, PARAFAC, analysis of the EEMs), nuclear magnetic resonance (NMR, solid state 13C), and electron pair resonance (EPR) spectroscopy in concert with inductively coupled plasma atomic emission spectroscopy to monitor the initial state of carbon speciation as well as redox processes. The data are used to establish a starting point on which to monitor changes within the carbon pool as the sampling site experience erosion over the next few years. The discussion will focus on the lability of different carbon pools and the potential lability-inducing mechanisms as well as the initial carbon speciation and redox state of the sampling

  1. Surface quality in rapid prototype MMD process

    Directory of Open Access Journals (Sweden)

    Lisandro Vargas Henríquez

    2004-09-01

    Full Text Available This article summarises a Manufacturing Materials and Processes MSc thesis written for the Mechanical and Electrical Engineering Department. The paper shows the interaction of process, gap (deposition distance and extursion terminal velocity modelled process parameters for CEIF's (Centro de Equipos Interfacultades rapid prototype molten material deposit (MMD Titan SH-1 machine by analysing prototupes improved surface quality and resistence to tension and characterising material. The project applies experimental design criteria for orientating the selection of experimental process parameters. Acrylonitrile-buttadin-styrene (ABS had alredy been mechanically and physicochemically characterised (i.e the material used in the MMD process.

  2. Invertebrate footprints on detritus processing, bacterial community structure, and spatiotemporal redox profiles

    NARCIS (Netherlands)

    Hunting, E.R.; Whatley, M.H.; van der Geest, H.G.; Mulder, C.; Kraak, M.H.S.; Breure, A.M.; Admiraal, W.

    2012-01-01

    Detritus processing is driven by a complex interplay between macroinvertebrate and microbial activities. Bioturbation/feeding activities of invertebrates in sediments are known to influence decomposition rates. However, direct effects of invertebrates on bacterial communities and detritus processing

  3. THE PRODUCT DESIGN PROCESS USING STYLISTIC SURFACES

    Directory of Open Access Journals (Sweden)

    Arkadiusz Gita

    2017-06-01

    Full Text Available The increasing consumer requirements for the way what everyday use products look like, forces manufacturers to put more emphasis on product design. Constructors, apart from the functional aspects of the parts created, are forced to pay attention to the aesthetic aspects. Software for designing A-class surfaces is very helpful in this case. Extensive quality analysis modules facilitate the work and allow getting models with specific visual features. The authors present a design process of the product using stylistic surfaces based on the front panel of the moped casing. In addition, methods of analysis of the design surface and product technology are presented.

  4. Surface-Assisted Dynamic Search Processes.

    Science.gov (United States)

    Shin, Jaeoh; Kolomeisky, Anatoly B

    2018-03-01

    Many chemical and biological systems exhibit intermittent search phenomena when participating particles alternate between dynamic regimes with different dimensionalities. Here we investigate theoretically a dynamic search process of finding a small target on a two-dimensional surface starting from a bulk solution, which is an example of such an intermittent search process. Both continuum and discrete-state stochastic descriptions are developed. It is found that depending on the scanning length λ, which describes the area visited by the reacting molecule during one search cycle, the system can exhibit three different search regimes: (i) For small λ values, the reactant finds the target mostly via three-dimensional bulk diffusion; (ii) for large λ values, the reactant molecule associates to the target mostly via surface diffusion; and (iii) for intermediate λ values, the reactant reaches the target via a combination of three-dimensional and two-dimensional search cycles. Our analysis also shows that the mean search times have different scalings as a function of the size of the surface segment depending on the nature of the dynamic search regime. Search dynamics are also sensitive to the position of the target for large scanning lengths. In addition, it is argued that the continuum description underestimates mean search times and does not always correctly describe the most optimal conditions for the surface-assisted dynamic processes. The importance of our findings for real natural systems is discussed.

  5. Electrochemistry and current control in surface films based on silica-azure redox nanoparticles, carbon nanotubes, enzymes, and polyelectrolytes.

    Science.gov (United States)

    Karra, Sushma; Zhang, Maogen; Gorski, Waldemar

    2013-01-15

    The redox active nanoparticles were developed by covalently attaching redox dye Azure C (AZU) to commercial silica nanoparticles (SN) via the silylated amine and glutaric dialdehyde links. The SN-AZU nanoparticles were studied as redox mediators for the oxidation of reduced β-nicotinamide adenine dinucleotide (NADH) in two polymeric films. The first film (F1) was composed of SN-AZU, carbon nanotubes, and cationic polyelectrolyte chitosan. The second film (F2) contained also added enzyme glucose dehydrogenase and its cofactor β-nicotinamide adenine dinucleotide (NAD(+)). The films F1 and F2 were cast on the glassy carbon electrodes, covered with an anionic polyelectrolyte Nafion, and their electrochemical properties were probed with NADH and glucose, respectively, using voltammetry, amperometry, and potentiometry. The Nafion overcoat reduced the sensitivity of F1/Nafion film electrodes to NADH by >98%. In contrast, depending on the concentration of Nafion, the sensitivity of the F2/Nafion film electrodes (reagentless biosensors) to glucose increased by up to 340%. The amplification of glucose signal was ascribed to the Donnan exclusion and ensuing Nafion-gated ionic fluxes, which enhanced enzyme activity in films F2. The proposed model predicts that such signal amplification should be also feasible in the case of other enzyme-based biosensors.

  6. Destruction of commercial pesticides by cerium redox couple mediated electrochemical oxidation process in continuous feed mode

    International Nuclear Information System (INIS)

    Balaji, Subramanian; Chung, Sang Joon; Ryu, Jae-Yong; Moon, Il Shik

    2009-01-01

    Mediated electrochemical oxidation was carried out for the destruction of commercial pesticide formulations using cerium(IV) in nitric acid as the mediator electrolyte solution in a bench scale set up. The mediator oxidant was regenerated in situ using an electrochemical cell. The real application of this sustainable process for toxic organic pollutant destruction lies in its ability for long term continuous operation with continuous organic feeding and oxidant regeneration with feed water removal. In this report we present the results of fully integrated MEO system. The task of operating the continuous feed MEO system for a long time was made possible by continuously removing the feed water using an evaporator set up. The rate of Ce(IV) regeneration in the electrochemical cell and the consumption for the pesticide destruction was matched based on carbon content of the pesticides. It was found that under the optimized experimental conditions for Ce(III) oxidation, organic addition and water removal destruction efficiency of ca. 99% was obtained for all pesticides studied. It was observed that the Ce(IV) concentration was maintained nearly the same throughout the experiment. The stable operation for 6 h proved that the process can be used for real applications and for possible scale up for the destruction of larger volumes of toxic organic wastes.

  7. Array processing for seismic surface waves

    International Nuclear Information System (INIS)

    Marano, S.

    2013-01-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries

  8. Redox process catalysed by growing crystal-strengite, FePO4,2H2O, crystallizing from solution with iron(II) and hydroxylamine

    Science.gov (United States)

    Lundager Madsen, Hans Erik

    2014-09-01

    In an attempt to grow pure crystals of the iron(II) phosphate vivianite, Fe3(PO4)2,8H2O, from a solution of Mohr's salt, Fe(NH4)2(SO4)2,6H2O, added to a solution of ammonium phosphate, hydroxylammonium chloride, NH3OHCl, was added to the iron(II) stock solution to eliminate oxidation of iron(II) by oxygen from the air. However, the effect turned out to be the opposite of the expected: whereas hydroxylamine reduces iron(III) in bulk solution, it acted as a strong oxidant in the presence of growing iron phosphate crystals, causing the crystallization of the iron(III) phosphate strengite, FePO4,2H2O, as the only solid phase. Evidently the crystal surface catalyses oxidation of iron(II) by hydroxylamine. The usual composite kinetics of spiral growth and surface nucleation was found. The surface-nucleation part yielded edge free energy λ in the range 12-45 pJ/m, virtually independent of temperature and in the range typical for phosphates of divalent metals. The scatter of values for λ presumably arises from contributions from different crystal forms to the overall growth rate. The low mean value points to strong adsorption of iron(II), which is subsequently oxidized at the crystal surface, forming strengite. The state of the system did not tend to thermodynamic equilibrium, but to a metastable state, presumably controlled by the iron(II) rich surface layer of the crystal. In addition to crystal growth, it was possible to measure nucleation kinetics by light scattering (turbidimetry). A point of transition from heterogeneous to homogeneous nucleation was found, and from the results for the homogeneous domain a rather precise value of crystal surface free energy γ=55 mJ/m2 was found. This is a relatively low value as well, indicating that the redox process plays a role already at the nucleation stage.

  9. Redox behavior of a low-doped Pr-CeO{sub 2}(111) surface. A DFT+U study

    Energy Technology Data Exchange (ETDEWEB)

    Milberg, Brian [ITHES, UBA-CONICET, Departamento de Ingeniería Química, Pabellón de Industrias, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Juan, Alfredo [Departamento de Física & IFISUR, UNS-CONICET, Avda. Alem 1253, 8000 Bahía Blanca (Argentina); Irigoyen, Beatriz, E-mail: beatriz@di.fcen.uba.ar [ITHES, UBA-CONICET, Departamento de Ingeniería Química, Pabellón de Industrias, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2017-04-15

    Highlights: • Pr doping facilitates oxygen donation due to the easy formation of Pr{sup 3+}/Pr{sup 4+} and Ce{sup 3+}/Ce{sup 4+} redox couples. • Pr doping also favors the formation of superoxide (O{sub 2}{sup −}) radicals on surface O-holes. • CO can be oxidized by superoxide radical forming a CO{sub 2} molecule floating on the surface. • CO can also interact on the (O{sub 2}{sup −})/Pr{sup 3+} interphase and forms weakly adsorbed carbonate-type intermediates. - Abstract: In this work, we investigated the redox behavior (donation and replenishing of oxygen) of a low praseodymium (Pr)-doped CeO{sub 2}(111) surface. We considered a 3.7 at.% Pr doping and performed density functional calculations using the GGA formalism with the ‘U’ correction on Ce(4f) and Pr(4f) orbitals. Our results indicate that Pr doping promotes oxygen donation by lowering the energy necessary to form surface anionic vacancies. When the Ce{sub 0.963}Pr{sub 0.037}O{sub 2}(111) surface donates one oxygen, the two excess electrons locate on Pr and Ce cations and reduce them to Pr{sup 3+} and Ce{sup 3+} ones. Praseodymium doping also favors the activation of O{sub 2} molecule on surface O-holes, leading to formation of a superoxide (O{sub 2}{sup −}) radical as well as to reoxidation of the Ce{sup 3+} cation to Ce{sup 4+} one. Additionally, we used the CO molecular adsorption for testing the reactivity of those superoxide species. The calculations expose the ability of these radicals to oxidize CO forming a CO{sub 2} molecule floating on the surface. However, when the superoxide is in the immediate vicinity of Pr dopant a carbonate-type species is formed. Our theoretical results may help to gain insight into redox properties and improved catalytic performance of low-doped Pr-CeO{sub 2} solids.

  10. Atmospheric Processing of Volcanic Glass: Effects on Iron Solubility and Redox Speciation.

    Science.gov (United States)

    Maters, Elena C; Delmelle, Pierre; Bonneville, Steeve

    2016-05-17

    Volcanic ash from explosive eruptions can provide iron (Fe) to oceanic regions where this micronutrient limits primary production. Controls on the soluble Fe fraction in ash remain poorly understood but Fe solubility is likely influenced during atmospheric transport by condensation-evaporation cycles which induce large pH fluctuations. Using glass powder as surrogate for ash, we experimentally simulate its atmospheric processing via cycles of pH 2 and 5 exposure. Glass fractional Fe solubility (maximum 0.4%) is governed by the pH 2 exposure duration rather than by the pH fluctuations, however; pH 5 exposure induces precipitation of Fe-bearing nanoparticles which (re)dissolve at pH 2. Glass leaching/dissolution release Fe(II) and Fe(III) which are differentially affected by changes in pH; the average dissolved Fe(II)/Fetot ratio is ∼0.09 at pH 2 versus ∼0.18 at pH 5. Iron release at pH 2 from glass with a relatively high bulk Fe(II)/Fetot ratio (0.5), limited aqueous Fe(II) oxidation at pH 5, and possibly glass-mediated aqueous Fe(III) reduction may render atmospherically processed ash a significant source of Fe(II) for phytoplankton. By providing new insight into the form(s) of Fe associated with ash as wet aerosol versus cloud droplet, we improve knowledge of atmospheric controls on volcanogenic Fe delivery to the ocean.

  11. Scanning electrochemical microscopy: using the potentiometric mode of SECM to study the mixed potential arising from two independent redox processes.

    Science.gov (United States)

    Serrapede, Mara; Denuault, Guy; Sosna, Maciej; Pesce, Giovanni Luca; Ball, Richard J

    2013-09-03

    This study demonstrates how the potentiometric mode of the scanning electrochemical microscope (SECM) can be used to sensitively probe and alter the mixed potential due to two independent redox processes provided that the transport of one of the species involved is controlled by diffusion. This is illustrated with the discharge of hydrogen from nanostructured Pd hydride films deposited on the SECM tip. In deareated buffered solutions the open circuit potential of the PdH in equilibrium between its β and α phases (OCP(β→α)) does not depend on the tip-substrate distance while in aerated conditions it is found to be controlled by hindered diffusion of oxygen. Chronopotentiometric and amperometric measurements at several tip-substrate distances reveal how the flux of oxygen toward the Pd hydride film determines its potential. Linear sweep voltammetry shows that the polarization resistance increases when the tip approaches an inert substrate. The SECM methodology also demonstrates how dissolved oxygen affects the rate of hydrogen extraction from the Pd lattice. Over a wide potential window, the highly reactive nanostructure promotes the reduction of oxygen which rapidly discharges hydrogen from the PdH. The flux of oxygen toward the tip can be adjusted via hindered diffusion. Approaching the substrate decreases the flux of oxygen, lengthens the hydrogen discharge, and shifts OCP(β→α) negatively. The results are consistent with a mixed potential due to the rate of oxygen reduction balancing that of the hydride oxidation. The methodology is generic and applicable to other mixed potential processes in corrosion or catalysis.

  12. ENVISAT Land Surface Processes. Phase 2

    Science.gov (United States)

    vandenHurk, B. J. J. M.; Su, Z.; Verhoef, W.; Menenti, M.; Li, Z.-L.; Wan, Z.; Moene, A. F.; Roerink, G.; Jia, I.

    2002-01-01

    This is a progress report of the 2nd phase of the project ENVISAT- Land Surface Processes, which has a 3-year scope. In this project, preparative research is carried out aiming at the retrieval of land surface characteristics from the ENVISAT sensors MERIS and AATSR, for assimilation into a system for Numerical Weather Prediction (NWP). Where in the 1st phase a number of first shot experiments were carried out (aiming at gaining experience with the retrievals and data assimilation procedures), the current 2nd phase has put more emphasis on the assessment and improvement of the quality of the retrieved products. The forthcoming phase will be devoted mainly to the data assimilation experiments and the assessment of the added value of the future ENVISAT products for NWP forecast skill. Referring to the retrieval of albedo, leaf area index and atmospheric corrections, preliminary radiative transfer calculations have been carried out that should enable the retrieval of these parameters once AATSR and MERIS data become available. However, much of this work is still to be carried out. An essential part of work in this area is the design and implementation of software that enables an efficient use of MODTRAN(sub 4) radiative transfer code, and during the current project phase familiarization with these new components has been achieved. Significant progress has been made with the retrieval of component temperatures from directional ATSR-images, and the calculation of surface turbulent heat fluxes from these data. The impact of vegetation cover on the retrieved component temperatures appears manageable, and preliminary comparison of foliage temperature to air temperatures were encouraging. The calculation of surface fluxes using the SEBI concept,which includes a detailed model of the surface roughness ratio, appeared to give results that were in reasonable agreement with local measurements with scintillometer devices. The specification of the atmospheric boundary conditions

  13. Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China.

    Science.gov (United States)

    Zhang, Junwen; Ma, Teng; Yan, Yani; Xie, Xianjun; Abass, Olusegun K; Liu, Congqiang; Zhao, Zhiqi; Wang, Zhizhen

    2018-02-18

    High arsenic groundwater generally coexists with elevated Fe 2+ concentrations (mg L -1 levels) under reducing conditions, but an explanation for the extremely high arsenic (up to ∼2690) concentrations at very low Fe 2+ (i.e., μg L -1 levels) in groundwater of Datong Basin remains elusive. Field groundwater investigation and laboratory microcosm experiments were implemented in this study. The field groundwater was characterized by weakly alkaline (pH 7.69 to 8.34) and reducing conditions (Eh -221.7 to -31.9 mV) and arsenic concentration averages at 697 μg L -1 . Acinetobacter (5.9-51.3%), Desulfosporosinus (4.6-30.2%), Brevundimonas (3.9-19%) and Pseudomonas (3.2-14.6%) were identified as the dominant genera in the bacterial communities. Bacterially mediated arsenate reduction, Fe(III) reduction, and sulfate reduction are processes occurring (or having previously occurred) in the groundwater. Results from incubation experiment (27 d) revealed that nitrate, arsenate, and Fe(III)/sulfate reduced sequentially with time under anoxic conditions, while Fe(III) and sulfate reduction processes had no obvious differences, occurring almost simultaneously. Moreover, low Fe 2+ concentrations were attributed to initially high pH conditions, which relatively retarded Fe(III) reduction. In addition, arsenic behavior in relation to groundwater redox conditions, matrices, and solution chemistry were elaborated. Bacterial arsenate reduction process proceeded before Fe(III) and sulfate reduction in the incubation experiment, and the total arsenic concentration (dominated by arsenite) gradually increased from ∼7 to 115 μg L -1 as arsenate was reduced. Accordingly, bacterially mediated reductive desorption of arsenate is identified as the main process controlling arsenic mobility, while Fe(III) reduction coupled with sulfate reduction are secondary processes that have also contributed to arsenic enrichment in the study site. Overall, this study provide important

  14. The surface of Mars: Morphology and process

    Science.gov (United States)

    Aharonson, Oded

    The goal of this work is a quantitative description of the morphology of the surface of Mars, in order to constrain the nature of processes acting during the ancient past through today. Emphasis is placed on linking geometric properties to physical mechanisms. Surface smoothness on Mars is distinctive in the vast northern hemisphere plains. Amazonis Planitia is remarkable in its smoothness, exhibiting an rms variation in topography of building tectonics and volcanics. The shallower long-wavelength portion of the lowlands' topographic power spectrum relative to the highlands' can be accounted for by a simple model of sedimentation such as might be expected at an ocean's floor, but the addition of another process such as cratering is necessary to explain the spectral slope in short wavelengths. Large drainage systems on Mars have geomorphic characteristics that are inconsistent with prolonged erosion by surface runoff. We find the topography has not evolved to an expected equilibrium terrain form, even in areas where runoff incision has been previously interpreted. We demonstrate that features known as slope streaks form exclusively in regions of low thermal inertia, steep slopes, and incredibly, only where daily peak temperatures exceed 275 K during the martian year. The results suggest that at least small amounts of water may be currently present and undergo phase transitions. We detect subtle changes of the polar surface height during the course of seasonal cycles. Using altimetric crossover residuals, we show that while zonally averaged data captures the global behavior of CO 2 exchange, there is a strong dependence of the pattern on longitude. Decomposition of the signal into harmonics in time shows the amplitudes are correlated with the polar cap deposits. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  15. Surface processing by high power excimer laser

    International Nuclear Information System (INIS)

    Stehle, M.

    1995-01-01

    Surface processing with lasers is a promising field of research and applications because lasers bring substantial advantages : laser beams work at distance, laser treatments are clean in respect of environment consideration and they offer innovative capabilities for surface treatment which cannot be reached by other way. Excimer lasers are pulsed, gaseous lasers which emit in UV spectral range - the most common are XeCl (308 nm), KrF (248 nm), ArF (193 nm). From 1980 up to 1994, many of them have been used for research, medical and industrial applications such as spectroscopy, PRK (photo-refractive keratotomy) and micro-machining. In the last six years, from 1987 up to 1993, efforts have been done in order to jump from 100 W average power up to 1 kW for XeCl laser at λ = 308 nm. It was the aim of AMMTRA project in Japan as EU205 and EU213 Eureka projects in Europe. In this framework, SOPRA developed VEL (Very large Excimer Laser). In 1992, 1 kW (10 J x 100 Hz) millstone has been reached for the first time, this technology is based on X-Ray preionization and large laser medium (5 liters). Surface treatments based on this laser source are the main purpose of VEL Lasers. Some of them are given for instance : a) Turbine blades made with metallic substrate and ceramic coatings on the top, are glazed in order to increase corrosion resistance of ceramic and metal sandwich. b) Selective ablation of organic coatings deposited on fragile composite material is investigated in Aerospace industry. c) Chock hardening of bulk metallic materials or alloys are investigated for automotive industry in order to increase wear resistance. d) Ablation of thin surface oxides of polluted steels are under investigation in nuclear industry for decontamination. (J.P.N.)

  16. Impact of Urban Surfaces on Precipitation Processes

    Science.gov (United States)

    Shepherd, J. M.

    2004-01-01

    The Intergovernmental Panel on Climate Change (IPCC) was established in 1988 by two United Nations organizations, the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) to assess the "risk of human-induced climate change". Such reports are used by decision-makers around the world to assess how our climate is changing. Its reports are widely respected and cited and have been highly influential in forming national and international responses to climate change. The Fourth Assessment report includes a section on the effects of surface processes on climate. This sub-chapter provides an overview of recent developments related to the impact of cities on rainfall. It highlights the possible mechanisms that buildings, urban heat islands, urban aerosols or pollution, and other human factors in cities that can affect rainfall.

  17. Developing a Redox-Sensitive Red Fluorescent Protein Biosensor

    Science.gov (United States)

    Koon, N.; Yei, S.M.; Risenmay, A.J.; Kallio, K.; Remington, S.J.; Magpiong, I.

    2011-01-01

    Redox environments are of particular interest, especially in the mitochondria with its highly reducing environment and its role as the central processing unit of apoptosis. Monitoring of mitochondrial redox environments is crucial to the study of apoptotic disorders. Reporting of the thiol/disulfide status in live cells was made possible with the development of redox-sensitive green fluorescent protein (roGFP). We aim to develop a red version redox-sensitive fluorescent protein (roRFP). Expanding the array of redox-sensitive proteins with a red version will enable simultaneous visualization of multiple reducing intracellular compartments. mKeima is a monomeric red fluorescent protein that absorbs light maximally at 440nm and emits red light at 620nm. This large Stokes shift is dramatically decreased in acidic environments. By following protocol similar to that used in the development of roGFP, surface residues at key positions were changed to cysteines and random mutagenesis was performed on varying excitation species of mKeima. Mutants were screened and a ratiometric variant of mKeima was identified (roRFP2) which exhibits changes in its spectral properties as a result of changes in the thiol/disulfide equilibrium. Preliminary fluorescence spectroscopy measurements of roRFP2 indicate a highly reducing redox potential of −330mV indicating it may be a useful probe in reducing subcellular compartments such as mitochondria or in the cytoplasm. By employing vector recombination of shuttle vector PYX142, we successfully targeted roRFP2 in vivo to the mitochondria and cytoplasm of Saccharomyces cerevisiae. Expression of roRFP2 was visualized using fluorescence microscopy. Thus, through mutagenesis and residue substitution we successfully created a red version redox sensitive biosensor that tested effectively as a ratiometric indicator and expressed in the mitochondria and cytoplasm of S. cerevisiae. Moreover, the redox potential of roRFP2 is significantly more negative

  18. Uncovering deformation processes from surface displacements

    Science.gov (United States)

    Stramondo, Salvatore

    2013-04-01

    The aim of this talk is to provide an overview about the most recent outcomes in Earth Sciences, describe the role of satellite remote sensing, together with GPS, ground measurement and further data, for geophysical parameter retrieval in well known case studies where the combined approach dealing with the use of two or more techniques/datasets have demonstrated their effectiveness. The Earth Sciences have today a wide availability of instruments and sensors able to provide scientists with an unprecedented capability to study the physical processes driving earthquakes, volcanic eruptions, landslides, and other dynamic Earth systems. Indeed measurements from satellites allow systematic observation of the Earth surface covering large areas, over a long time period and characterized by growing sample intervals. Interferometric Synthetic Aperture Radar (InSAR) technique has demonstrated its effectiveness to investigate processes responsible for crustal faulting stemming from the detection of surface deformation patterns. Indeed using satellite data along ascending and descending orbits, as well as different incident angles, it is possible in principle to retrieve the full 3D character of the ground motion. To such aim the use of GPS stations providing 3D displacement components is a reliable complementary instrument. Finally, offset tracking techniques and Multiple Aperture Interferometry (MAI) may provide a contribution to the analysis of horizontal and NS deformation vectors. The estimation of geophysical parameters using InSAR has been widely discussed in seismology and volcanology, and also applied to deformation associated with groundwater and other subsurface fluids. These applications often involve the solution of an inverse problem, which means the retrieval of optimal source parameters at depth for volcanoes and earthquakes, from the knowledge of surface deformation from InSAR. In recent years, InSAR measurements combined with traditional seismological and

  19. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery

    International Nuclear Information System (INIS)

    Xue Fangqin; Wang Yongliang; Wang Wenhong; Wang Xindong

    2008-01-01

    The Mn(II)/Mn(III) couple has been recognized as a potential anode for redox flow batteries to take the place of the V(IV)/V(V) in all-vanadium redox battery (VRB) and the Br 2 /Br - in sodium polysulfide/bromine (PSB) because it has higher standard electrode potential. In this study, the electrochemical behavior of the Mn(II)/Mn(III) couple on carbon felt and spectral pure graphite were investigated by cyclic voltammetry, steady polarization curve, electrochemical impedance spectroscopy, transient potential-step experiment, X-ray diffraction and charge-discharge experiments. Results show that the Mn(III) disproportionation reaction phenomena is obvious on the carbon felt electrode while it is weak on the graphite electrode owing to its fewer active sites. The reaction mechanism on carbon felt was discussed in detail. The reversibility of Mn(II)/Mn(III) is best when the sulfuric acid concentration is 5 M on the graphite electrode. Performance of a RFB employing Mn(II)/Mn(III) couple as anolyte active species and V(III)/V(II) as catholyte ones was evaluated with constant-current charge-discharge tests. The average columbic efficiency is 69.4% and the voltage efficiency is 90.4% at a current density of 20 mA cm -2 . The whole energy efficiency is 62.7% close to that of the all-vanadium battery and the average discharge voltage is about 14% higher than that of an all-vanadium battery. The preliminary exploration shows that the Mn(II)/Mn(III) couple is electrochemically promising for redox flow battery

  20. Ediacaran Redox Fluctuations

    Science.gov (United States)

    Sahoo, S. K.; Jiang, G.; Planavsky, N. J.; Kendall, B.; Owens, J. D.; Anbar, A. D.; Lyons, T. W.

    2013-12-01

    Evidence for pervasive oxic conditions, and likely even deep ocean oxygenation has been documented at three intervals in the lower (ca. 632 Ma), middle (ca. 580 Ma) and upper (ca. 551 Ma) Ediacaran. The Doushantuo Formation in South China hosts large enrichments of redox-sensitive trace element (e.g., molybdenum, vanadium and uranium) in anoxic shales, which are indicative of a globally oxic ocean-atmosphere system. However, ocean redox conditions between these periods continue to be a topic of debate and remain elusive. We have found evidence for widespread anoxic conditions through much of the Ediacaran in the deep-water Wuhe section in South China. During most of the Ediacaran-early Cambrian in basinal sections is characterized by Fe speciation data and pyrite morphologies that indicate deposition under euxinic conditions with near-crustal enrichments of redox-sensitive element and positive pyrite-sulfur isotope values, which suggest low levels of marine sulfate and widespread euxinia. Our work reinforces an emerging view that the early Earth, including the Ediacaran, underwent numerous rises and falls in surface oxidation state, rather than a unidirectional rise as originally imagined. The Ediacaran ocean thus experienced repetitive expansion and contraction of marine chalcophilic trace-metal levels that may have had fundamental impact on the slow evolution of early animals and ecosystems. Further, this framework forces us to re-examine the relationship between Neoproterozoic oxygenation and metazoan diversification. Varying redox conditions through the Cryogenian and Ediacaran may help explain molecular clock and biomarker evidence for an early appearance and initial diversification of metazoans but with a delay in the appearance of most major metazoan crown groups until close to Ediacaran-Cambrian boundary.

  1. Photochemical Transformation Processes in Sunlit Surface Waters

    Science.gov (United States)

    Vione, D.

    2012-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  2. Excimer laser surface modification: Process and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hirvonen, J.P. [Technical Research Institute, Espoo (Finland). Metallurgy Lab.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  3. Redox reactions in food fermentations

    DEFF Research Database (Denmark)

    Hansen, Egon Bech

    2018-01-01

    Food fermentations are typically performed without actively supplying air. Except for possible surface microorganisms, oxygen will only be transiently available and the redox reactions during the fermentation need to be in balance. Production of ATP from fermentation of carbohydrates typically in...... of the redox properties of strains used to compose food cultures.......Food fermentations are typically performed without actively supplying air. Except for possible surface microorganisms, oxygen will only be transiently available and the redox reactions during the fermentation need to be in balance. Production of ATP from fermentation of carbohydrates typically...... involves oxidative steps in the early part of the pathways whereas a multitude of different reactions are used as compensating reductions. Much of the diversity seen between food fermentations arise from the different routes and the different electron acceptors used by microorganisms to counterbalance...

  4. Process control of laser surface alloying

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.; Olde Benneker, Jeroen

    1998-01-01

    In spite of the many advantages of laser surface treatment, such as high production rates and low induced thermal distortion, and its great potential for modifying the surface properties of a wide range of new and existing materials, industrial applications are still limited. This is not only

  5. Surface properties and graphitization of polyacrylonitrile based fiber electrodes affecting the negative half-cell reaction in vanadium redox flow batteries

    Science.gov (United States)

    Langner, J.; Bruns, M.; Dixon, D.; Nefedov, A.; Wöll, Ch.; Scheiba, F.; Ehrenberg, H.; Roth, C.; Melke, J.

    2016-07-01

    Carbon felt electrodes for vanadium redox flow batteries are obtained by the graphitization of polyacrylonitrile based felts at different temperatures. Subsequently, the surface of the felts is modified via thermal oxidation at various temperatures. A single-cell experiment shows that the voltage efficiency is increased by this treatment. Electrode potentials measured with reference electrode setup show that this voltage efficiency increase is caused mainly by a reduction of the overpotential of the negative half-cell reaction. Consequently, this reaction is investigated further by cyclic voltammetry and the electrode activity is correlated with structural and surface chemical properties of the carbon fibers. By Raman, X-ray photoelectron and near edge X-ray absorption fine structure spectroscopy the role of edge sites and oxygen containing functional groups (OCFs) for the electrochemical activity are elucidated. A significant activity increase is observed in correlation with these two characteristics. The amount of OCFs is correlated with structural defects (e.g. edge sites) of the carbon fibers and therefore decreases with an increasing graphitization degree. Thus, for the same thermal oxidation temperature carbon fibers graphitized at a lower temperature show higher activities than those graphitized at a higher temperature.

  6. Process of treating surfaces of metals

    International Nuclear Information System (INIS)

    Kimura, T.; Murao, A.; Kuwahara, T.

    1975-01-01

    Both higher corrosion resistance and paint adherence are given to films formed on the surfaces of metals by treating the surfaces with aqueous solutions of one or more materials selected from the group consisting of water soluble vinyl monomer or water soluble high polymer and then irradiating with ionizing radioactive rays on the nearly dried surface film. When a water soluble inorganic compound is mixed with the above mentioned aqueous solution, the film properties are greatly improved. The inorganic ionic material should contain a cation from the group consisting of Ca, Mg, Zn, Cr, Al, Fe, and Ni. Electron beams may be used. (U.S.)

  7. Isoprenoid quinones resolve the stratification of microbial redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the Black Sea.

    Science.gov (United States)

    Becker, Kevin W; Elling, Felix J; Schröder, Jan M; Lipp, Julius S; Goldhammer, Tobias; Zabel, Matthias; Elvert, Marcus; Overmann, Jörg; Hinrichs, Kai-Uwe

    2018-03-09

    The stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia-oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition. Importance Microorganisms play crucial roles in global biogeochemical cycles. Yet, we have only a fragmentary understanding of the diversity

  8. Modification of surfaces and surface layers by non equilibrium processes

    International Nuclear Information System (INIS)

    Beamson, G.; Brennan, W.J.; Clark, D.T.; Howard, J.

    1988-01-01

    Plasmas are examples of non-equilibrium phenomena which are being used increasingly for the synthesis and modification of materials impossible by conventional routes. This paper introduces methods available by describing the construction and characteristics of some equipment used for the production of different types of plasmas and other non-equilibrium phenomena. This includes high energy ion beams. The special features, advantages and disadvantages of the techniques will be described. There are a multitude of potential application relevant to electronic, metallic, ceramic, and polymeric materials. However, scale-up from the laboratory to production equipment depends on establishing a better understanding of both the physics and chemistry of plasma as well as plasma-solid interactions. Examples are given of how such an understanding can be gained. The chemical analysis of polymer surfaces undergoing modification by inert gas, hydrogen or oxygen plasmas is shown to give physical information regarding the relative roles of diffusion of active species, and direct and radiative energy transfer from the plasma. Surface modification by plasma depositing a new material onto an existing substrate is discussed with particular reference to the deposition of amorphous carbon films. Applications of the unique properties of these films are outlined together with our current understanding of these properties based on chemical and physical methods of analysis of both the films and the plasmas producing them. Finally, surface modification by ion beams is briefly illustrated using examples from the electronics and metals industries where the modification has had a largely physical rather than chemical effect on the starting material. (orig.)

  9. Paper spray mass spectrometry applied in the monitoring of a chemical system in dynamic chemical equilibrium: the redox process of methylene blue.

    Science.gov (United States)

    de Paula, Camila Cristina Almeida; Valadares, Alberto; Jurisch, Marina; Piccin, Evandro; Augusti, Rodinei

    2016-05-15

    The monitoring of chemical systems in dynamic equilibrium is not an easy task. This is due to the high rate at which the system returns to equilibrium after being perturbed, which hampers the possibility of following the aftereffects of the disturbance. In this context, it is necessary to use a fast analytical technique that requires no (or minimal) sample preparation, and which is capable of monitoring the species constituting the system in equilibrium. Paper spray ionization mass spectrometry (PS-MS), a recently introduced ambient ionization technique, has such characteristics and hence was chosen for monitoring a model system: the redox process of methylene blue. The model system evaluated herein was composed of three cationic species of methylene blue (MB), which coexist in a dynamic redox system: (1) [MB](+) of m/z 284 (cationic MB); (2) [MB + H + e](+•) of m/z 285 (the protonated form of a transient species resulting from the reduction of [MB](+) ); (3) [MB + 2H + 2e](+) or [leuco-MB + H](+) of m/z 286 (the protonated leuco form of MB). Aliquots of a MB solution were collected before and after the addition of a reducing agent (metallic zinc) and directly analyzed by PS-MS for identification of the predominant cationic species at different conditions. The mass spectra revealed that before the addition of the reducing agent the ion of m/z 284 (cationic MB) is the unique species. Upon the addition of the reducing agent and acid, however, the solution continuously undergo discoloration while reduced species derived directly from cationic MB (m/z 285 and 286) are detected in the mass spectra with increasing intensities. Fragmentation patterns obtained for each ionic species, i.e. [MB](+) , [MB + H + e](+•) and [leuco-MB + H](+) , shown to be consistent with the proposed structures. The PS-MS technique proved to be suitable for an in situ and 'near' real-time analysis of the dynamic equilibrium involving the redox of MB in aqueous medium. The data clearly

  10. Dissecting Redox Biology Using Fluorescent Protein Sensors.

    Science.gov (United States)

    Schwarzländer, Markus; Dick, Tobias P; Meyer, Andreas J; Morgan, Bruce

    2016-05-01

    Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.

  11. Reverse electrodialysis performed at pilot plant scale: Evaluation of redox processes and simultaneous generation of electric energy and treatment of wastewater.

    Science.gov (United States)

    D'Angelo, Adriana; Tedesco, Michele; Cipollina, Andrea; Galia, Alessandro; Micale, Giorgio; Scialdone, Onofrio

    2017-11-15

    This paper describes the experimental campaign carried out with a reverse electrodialysis (RED) demonstration plant (Marsala, Italy) with the main aims of: (i) evaluating the effect of various operating parameters, including the redox processes, on the system performances; (ii) using the plant for the simultaneous generation of electric energy and treatment of wastewater. The prototype (44 × 44 cm 2 , 500 cell pairs) was tested using both real (brackish water and brine) and artificial solutions. Tests with two different electrode rinse solutions (with or without iron redox couples) were performed. In agreement with the data obtained in the laboratory, the presence of iron ions contributes positively to the power production. The effect of flow rates in the electrode and saline compartments, as well as aging of the electrode rinse solution was also investigated. The possibility to remove an organic pollutant (the azoic dye Acid Orange 7) from the electrode solution was tested, obtaining a very fast and total removal of the pollutant. This experimental campaign represents the first demonstration in a real environment of the abilities of a RED plant to treat wastewater, thus giving useful indications for the spreading of RED technology in the near future. Copyright © 2017. Published by Elsevier Ltd.

  12. The Protein Disulfide Isomerase of Botrytis cinerea: An ER Protein Involved in Protein Folding and Redox Homeostasis Influences NADPH Oxidase Signaling Processes

    Directory of Open Access Journals (Sweden)

    Robert Marschall

    2017-05-01

    Full Text Available Botrytis cinerea is a filamentous plant pathogen, which infects hundreds of plant species; within its lifestyle, the production of reactive oxygen species (ROS and a balanced redox homeostasis are essential parameters. The pathogen is capable of coping with the plant’s oxidative burst and even produces its own ROS to enhance the plant’s oxidative burst. Highly conserved NADPH oxidase (Nox complexes produce the reactive molecules. The membrane-associated complexes regulate a large variety of vegetative and pathogenic processes. Besides their commonly accepted function at the plasma membrane, recent studies reveal that Nox complexes are also active at the membrane of the endoplasmic reticulum. In this study, we identified the essential ER protein BcPdi1 as new interaction partner of the NoxA complex in B. cinerea. Mutants that lack this ER chaperone display overlapping phenotypes to mutants of the NoxA signaling pathway. The protein appears to be involved in all major developmental processes, such as the formation of sclerotia, conidial anastomosis tubes and infection cushions (IC’s and is needed for full virulence. Moreover, expression analyses and reporter gene studies indicate that BcPdi1 affects the redox homeostasis and unfolded protein response (UPR-related genes. Besides the close association between BcPdi1 and BcNoxA, interaction studies provide evidence that the ER protein might likewise be involved in Ca2+ regulated processes. Finally, we were able to show that the potential key functions of the protein BcPdi1 might be affected by its phosphorylation state.

  13. Interplay between redox status and inflammasome activation

    NARCIS (Netherlands)

    Rubartelli, A.; Gattorno, M.; Netea, M.G.; Dinarello, C.A.

    2011-01-01

    Several inflammation-related processes, including inflammasome activation and interleukin (IL)-1beta secretion, are dependent on redox signaling. However, the type of redox response involved as well as the relevant role of pro-oxidant and antioxidant events are matters of intense debate. By

  14. Surface Electromyography Signal Processing and Classification Techniques

    Science.gov (United States)

    Chowdhury, Rubana H.; Reaz, Mamun B. I.; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A. A.; Chellappan, Kalaivani; Chang, Tae. G.

    2013-01-01

    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:24048337

  15. Redox regulation of plant development.

    Science.gov (United States)

    Considine, Michael J; Foyer, Christine H

    2014-09-20

    We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.

  16. A Novel Heat Treatment Process for Surface Hardening of Steel: Metal Melt Surface Hardening

    Science.gov (United States)

    Fu, Yong-sheng; Zhang, Wei; Xu, Xiaowei; Li, Jiehua; Li, Jun; Xia, Mingxu; Li, Jianguo

    2017-09-01

    A novel heat treatment process for surface hardening of steel has been demonstrated and named as "metal melt surface hardening (MMSH)." A surface layer with a thickness of about 400 μm and a hardness of about 700 HV has been achieved by ejecting AISI 304 stainless steel melt at a temperature of about 1783 K (1510 °C) onto the 40Cr steel surface. This proposed MMSH provides a very promising application for surface hardening of steel.

  17. Computer simulation of surface and film processes

    Science.gov (United States)

    Tiller, W. A.; Halicioglu, M. T.

    1984-01-01

    All the investigations which were performed employed in one way or another a computer simulation technique based on atomistic level considerations. In general, three types of simulation methods were used for modeling systems with discrete particles that interact via well defined potential functions: molecular dynamics (a general method for solving the classical equations of motion of a model system); Monte Carlo (the use of Markov chain ensemble averaging technique to model equilibrium properties of a system); and molecular statics (provides properties of a system at T = 0 K). The effects of three-body forces on the vibrational frequencies of triatomic cluster were investigated. The multilayer relaxation phenomena for low index planes of an fcc crystal was analyzed also as a function of the three-body interactions. Various surface properties for Si and SiC system were calculated. Results obtained from static simulation calculations for slip formation were presented. The more elaborate molecular dynamics calculations on the propagation of cracks in two-dimensional systems were outlined.

  18. Auger processes in ion-surface collisions

    International Nuclear Information System (INIS)

    Zampieri, Guillermo.

    1985-01-01

    Bombardment of solid targets with low-energy noble gas ions can produce Auger electron emission from the target atoms and/or from the projectiles. In the case of Auger emission from the projectile, Auger emission was observed during the bombardment of Na, Mg, Al and Si with Ne + ions. This emission was studied as a function of the energy, incidence angle and charge state of the projectile. From the analysis, it is concluded that the emission originates in the decay in vacuum of excited and reflected Ne atoms, moving outside the surface. Auger emission was not observed during the bombardment of K, V and Ni with Ar + ions; Zr and Cs with Kr + , and Xe + ions, respectively; and Li and Be with He + ions. In the case of Auger emission from the target, studies of certain aspects of the Na, Mg and Al Auger electron emission spectra were made. The results allow to identify two components in the Auger feature, coresponding to two kinds of Auger transition. The total spectra results from the superposition of both kinds of emission. Auger spectra from K obtained during Ar + and K + bombardment of K-implanted Be, Mg, Al and Cu were also analyzed. Similar to the Na, Mg and Al Auger spectra, the K Auger feature is composed of an atomic like peak superimposed on a bandlike structure. Both components correspond to Auger transitions in K atoms with a 3p vacancy, occuring in vacuum and inside the solid, respectively. (M.E.L.) [es

  19. TEMPOL increases NAD+ and improves redox imbalance in obese mice

    OpenAIRE

    Yamato, Mayumi; Kawano, Kimika; Yamanaka, Yuki; Saiga, Misako; Yamada, Ken-ichi

    2016-01-01

    Continuous energy conversion is controlled by reduction–oxidation (redox) processes. NAD+ and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS) and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD+ production in the ascorbic acid–glutathione redox cycle. We utilized the chemical properties of TEMPOL to invest...

  20. Redox-mediated quorum sensing in plants.

    Science.gov (United States)

    Fuller, Alexandra W; Young, Phoebe; Pierce, B Daniel; Kitson-Finuff, Jamie; Jain, Purvi; Schneider, Karl; Lazar, Stephen; Taran, Olga; Palmer, Andrew G; Lynn, David G

    2017-01-01

    The rhizosphere, the narrow zone of soil around plant roots, is a complex network of interactions between plants, bacteria, and a variety of other organisms. The absolute dependence on host-derived signals, or xenognosins, to regulate critical developmental checkpoints for host commitment in the obligate parasitic plants provides a window into the rhizosphere's chemical dynamics. These sessile intruders use H2O2 in a process known as semagenesis to chemically modify the mature root surfaces of proximal host plants and generate p-benzoquinones (BQs). The resulting redox-active signaling network regulates the spatial and temporal commitments necessary for host attachment. Recent evidence from non-parasites, including Arabidopsis thaliana, establishes that reactive oxygen species (ROS) production regulates similar redox circuits related to root recognition, broadening xenognosins' role beyond the parasites. Here we compare responses to the xenognosin dimethoxybenzoquinone (DMBQ) between the parasitic plant Striga asiatica and the non-parasitic A. thaliana. Exposure to DMBQ simulates the proximity of a mature root surface, stimulating an increase in cytoplasmic Ca2+ concentration in both plants, but leads to remarkably different phenotypic responses in the parasite and non-parasite. In S. asiatica, DMBQ induces development of the host attachment organ, the haustorium, and decreases ROS production at the root tip, while in A. thaliana, ROS production increases and further growth of the root tip is arrested. Obstruction of Ca2+ channels and the addition of antioxidants both lead to a decrease in the DMBQ response in both parasitic and non-parasitic plants. These results are consistent with Ca2+ regulating the activity of NADPH oxidases, which in turn sustain the autocatalytic production of ROS via an external quinone/hydroquinone redox cycle. Mechanistically, this chemistry is similar to black and white photography with the emerging dynamic reaction-diffusion network

  1. Redox-mediated quorum sensing in plants.

    Directory of Open Access Journals (Sweden)

    Alexandra W Fuller

    Full Text Available The rhizosphere, the narrow zone of soil around plant roots, is a complex network of interactions between plants, bacteria, and a variety of other organisms. The absolute dependence on host-derived signals, or xenognosins, to regulate critical developmental checkpoints for host commitment in the obligate parasitic plants provides a window into the rhizosphere's chemical dynamics. These sessile intruders use H2O2 in a process known as semagenesis to chemically modify the mature root surfaces of proximal host plants and generate p-benzoquinones (BQs. The resulting redox-active signaling network regulates the spatial and temporal commitments necessary for host attachment. Recent evidence from non-parasites, including Arabidopsis thaliana, establishes that reactive oxygen species (ROS production regulates similar redox circuits related to root recognition, broadening xenognosins' role beyond the parasites. Here we compare responses to the xenognosin dimethoxybenzoquinone (DMBQ between the parasitic plant Striga asiatica and the non-parasitic A. thaliana. Exposure to DMBQ simulates the proximity of a mature root surface, stimulating an increase in cytoplasmic Ca2+ concentration in both plants, but leads to remarkably different phenotypic responses in the parasite and non-parasite. In S. asiatica, DMBQ induces development of the host attachment organ, the haustorium, and decreases ROS production at the root tip, while in A. thaliana, ROS production increases and further growth of the root tip is arrested. Obstruction of Ca2+ channels and the addition of antioxidants both lead to a decrease in the DMBQ response in both parasitic and non-parasitic plants. These results are consistent with Ca2+ regulating the activity of NADPH oxidases, which in turn sustain the autocatalytic production of ROS via an external quinone/hydroquinone redox cycle. Mechanistically, this chemistry is similar to black and white photography with the emerging dynamic reaction

  2. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  3. SURFACE CAST IRON STRENGTHENING USING COMBINED LASER AND ULTRASONIC PROCESSING

    Directory of Open Access Journals (Sweden)

    O. G. Devojno

    2013-01-01

    Full Text Available The paper provides an analysis of ultrasonic surface plastic deformation and subsequent laser thermal strengthening of gray cast iron parts in the regime of hardening from a solid state with the purpose to obtain strengthened surface layers of bigger depth and less roughness of the processed surface. Program complex ANSYS 11.0 has been used for calculation of temperature fields induced by laser exposure.  The appropriate regime of laser processing without surface fusion has been selected on the basis of the applied complex. The possibility of displacement in the bottom boundary of α–γ-transformation temperature  for СЧ20 with 900 °С up to 800 °С is confirmed due to preliminary ultrasonic surface plastic deformation of the surface that allows to expand technological opportunities of laser quenching  of gray  cast iron from a solid state. 

  4. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)

  5. An integrated approach to friction surfacing process optimisation

    OpenAIRE

    Voutchkov, I.I.; Jaworski, B.; Vitanov, V.I.; Bedford, G.M.

    2001-01-01

    This paper discusses the procedures for data collection, management and optimisation of the friction surfacing process. Experimental set-up and characteristics of measuring equipment are found to match the requirements for accurate and unbiased data signals. The main friction surfacing parameters are identified and the first stage of the optimisation process is achieved by visually assessing the coatings and introducing the substrate speed vs. force map. The optimum values from this first sta...

  6. Effects of low-pressure igneous processes and subduction on Fe3+/ΣFe and redox state of mantle eclogites from Lace (Kaapvaal craton)

    Science.gov (United States)

    Aulbach, S.; Woodland, A. B.; Vasilyev, P.; Galvez, M. E.; Viljoen, K. S.

    2017-09-01

    Reconstructing the redox state of the mantle is critical in discussing the evolution of atmospheric composition through time. Kimberlite-borne mantle eclogite xenoliths, commonly interpreted as representing former oceanic crust, may record the chemical and physical state of Archaean and Proterozoic convecting mantle sources that generated their magmatic protoliths. However, their message is generally obscured by a range of primary (igneous differentiation) and secondary processes (seawater alteration, metamorphism, metasomatism). Here, we report the Fe3+/ΣFe ratio and δ18 O in garnet from in a suite of well-characterised mantle eclogite and pyroxenite xenoliths hosted in the Lace kimberlite (Kaapvaal craton), which originated as ca. 3 Ga-old ocean floor. Fe3+/ΣFe in garnet (0.01 to 0.063, median 0.02; n = 16) shows a negative correlation with jadeite content in clinopyroxene, suggesting increased partitioning of Fe3+ into clinopyroxene in the presence of monovalent cations with which it can form coupled substitutions. Jadeite-corrected Fe3+/ΣFe in garnet shows a broad negative trend with Eu*, consistent with incompatible behaviour of Fe3+ during olivine-plagioclase accumulation in the protoliths. This trend is partially obscured by increasing Fe3+ partitioning into garnet along a conductive cratonic geotherm. In contrast, NMORB-normalised Nd/Yb - a proxy of partial melt loss from subducting oceanic crust (1) - shows no obvious correlation with Fe3+/ΣFe, nor does garnet δ18OVSMOW (5.14 to 6.21‰) point to significant seawater alteration. Median bulk-rock Fe3+/ΣFe is roughly estimated at 0.025. This observation agrees with V/Sc systematics, which collectively point to a reduced Archaean convecting mantle source to the igneous protoliths of these eclogites compared to the modern MORB source. Oxygen fugacites (fO2) relative to the fayalite-magnetite-quartz buffer (FMQ) range from Δlog ⁡ fO2 = FMQ-1.3 to FMQ-4.6. At those reducing conditions, the solubility

  7. Chloroplast Redox Poise

    DEFF Research Database (Denmark)

    Steccanella, Verdiana

    The redox state of the chloroplast is maintained by a delicate balance between energy production and consumption and is affected by the need to avoid increased production of reactive oxygen species (ROS). Redox power and ROS generated in the chloroplast are essential for maintaining physiological...... the redox status of the plastoquinone pool and chlorophyll biosynthesis. Furthermore, in the plant cell, the equilibrium between redox reactions and ROS signals is also maintained by various balancing mechanisms among which the thioredoxin reductase-thioredoxin system (TR-Trx) stands out as a mediator...

  8. Monitoring local redox processes in LiNi0.5Mn1.5O4 battery cathode material by in operando EPR spectroscopy

    Science.gov (United States)

    Niemöller, Arvid; Jakes, Peter; Eurich, Svitlana; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-A.; Granwehr, Josef

    2018-01-01

    Despite the multitude of analytical methods available to characterize battery cathode materials, identifying the factors responsible for material aging is still challenging. We present the first investigation of transient redox processes in a spinel cathode during electrochemical cycling of a lithium ion battery by in operando electron paramagnetic resonance (EPR). The battery contains a LiNi0.5Mn1.5O4 (LNMO) spinel cathode, which is a material whose magnetic interactions are well understood. The evolution of the EPR signal in combination with electrochemical measurements shows the impact of Mn3+ on the Li+ motion inside the spinel. Moreover, state of charge dependent linewidth variations confirm the formation of a solid solution for slow cycling, which is taken over by mixed models of solid solution and two-phase formation for fast cycling due to kinetic restrictions and overpotentials. Long-term measurements for 480 h showed the stability of the investigated LNMO, but also small amounts of cathode degradation products became visible. The results point out how local, exchange mediated magnetic interactions in cathode materials are linked with battery performance and can be used for material characterization.

  9. Surface processing for bulk niobium superconducting radio frequency cavities

    Science.gov (United States)

    Kelly, M. P.; Reid, T.

    2017-04-01

    The majority of niobium cavities for superconducting particle accelerators continue to be fabricated from thin-walled (2-4 mm) polycrystalline niobium sheet and, as a final step, require material removal from the radio frequency (RF) surface in order to achieve performance needed for use as practical accelerator devices. More recently bulk niobium in the form of, single- or large-grain slices cut from an ingot has become a viable alternative for some cavity types. In both cases the so-called damaged layer must be chemically etched or electrochemically polished away. The methods for doing this date back at least four decades, however, vigorous empirical studies on real cavities and more fundamental studies on niobium samples at laboratories worldwide have led to seemingly modest improvements that, when taken together, constitute a substantial advance in the reproducibility for surface processing techniques and overall cavity performance. This article reviews the development of niobium cavity surface processing, and summarizes results of recent studies. We place some emphasis on practical details for real cavity processing systems which are difficult to find in the literature but are, nonetheless, crucial for achieving the good and reproducible cavity performance. New approaches for bulk niobium surface treatment which aim to reduce cost or increase performance, including alternate chemical recipes, barrel polishing and ‘nitrogen doping’ of the RF surface, continue to be pursued and are closely linked to the requirements for surface processing.

  10. Surface engineering of glazing materials and structures using plasma processes

    International Nuclear Information System (INIS)

    Anders, Andre; Monteiro, Othon R.

    2003-01-01

    A variety of coatings is commercially produced on a very large scale, including transparent conducting oxides and multi-layer silver-based low-emissivity and solar control coatings. A very brief review of materials and manufacturing process is presented and illustrated by ultrathin silver films and chevron copper films. Understanding the close relation between manufacturing processes and bulk and surface properties of materials is crucial for film growth and self-assembly processes

  11. Redox signaling in plants.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2013-06-01

    Our aim is to deliver an authoritative and challenging perspective of current concepts in plant redox signaling, focusing particularly on the complex interface between the redox and hormone-signaling pathways that allow precise control of plant growth and defense in response to metabolic triggers and environmental constraints and cues. Plants produce significant amounts of singlet oxygen and other reactive oxygen species (ROS) as a result of photosynthetic electron transport and metabolism. Such pathways contribute to the compartment-specific redox-regulated signaling systems in plant cells that convey information to the nucleus to regulate gene expression. Like the chloroplasts and mitochondria, the apoplast-cell wall compartment makes a significant contribution to the redox signaling network, but unlike these organelles, the apoplast has a low antioxidant-buffering capacity. The respective roles of ROS, low-molecular antioxidants, redox-active proteins, and antioxidant enzymes are considered in relation to the functions of plant hormones such as salicylic acid, jasmonic acid, and auxin, in the composite control of plant growth and defense. Regulation of redox gradients between key compartments in plant cells such as those across the plasma membrane facilitates flexible and multiple faceted opportunities for redox signaling that spans the intracellular and extracellular environments. In conclusion, plants are recognized as masters of the art of redox regulation that use oxidants and antioxidants as flexible integrators of signals from metabolism and the environment.

  12. Representing Global Reactive Potential Energy Surfaces Using Gaussian Processes.

    Science.gov (United States)

    Kolb, Brian; Marshall, Paul; Zhao, Bin; Jiang, Bin; Guo, Hua

    2017-04-06

    Representation of multidimensional global potential energy surfaces suitable for spectral and dynamical calculations from high-level ab initio calculations remains a challenge. Here, we present a detailed study on constructing potential energy surfaces using a machine learning method, namely, Gaussian process regression. Tests for the 3 A″ state of SH 2 , which facilitates the SH + H ↔ S( 3 P) + H 2 abstraction reaction and the SH + H' ↔ SH' + H exchange reaction, suggest that the Gaussian process is capable of providing a reasonable potential energy surface with a small number (∼1 × 10 2 ) of ab initio points, but it needs substantially more points (∼1 × 10 3 ) to converge reaction probabilities. The implications of these observations for construction of potential energy surfaces are discussed.

  13. Surface topography of parallel grinding process for nonaxisymmetric aspheric lens

    International Nuclear Information System (INIS)

    Zhang Ningning; Wang Zhenzhong; Pan Ri; Wang Chunjin; Guo Yinbiao

    2012-01-01

    Workpiece surface profile, texture and roughness can be predicted by modeling the topography of wheel surface and modeling kinematics of grinding process, which compose an important part of precision grinding process theory. Parallel grinding technology is an important method for nonaxisymmetric aspheric lens machining, but there is few report on relevant simulation. In this paper, a simulation method based on parallel grinding for precision machining of aspheric lens is proposed. The method combines modeling the random surface of wheel and modeling the single grain track based on arc wheel contact points. Then, a mathematical algorithm for surface topography is proposed and applied in conditions of different machining parameters. The consistence between the results of simulation and test proves that the algorithm is correct and efficient. (authors)

  14. Structure and redox properties of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20 adsorbed on a silica surface. M05 computational study

    Directory of Open Access Journals (Sweden)

    Liudmyla K. Sviatenko

    2016-03-01

    Full Text Available The cluster approximation was applied at M05/tzvp level to model adsorption of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20 on (001 surface of α-quartz. Structures of the obtained CL-20–silica complexes confirm close to parallel orientation of the nitrocompound toward surface. The binding between CL-20 and silica surface was analyzed and bond energies were calculated applying the atoms in molecules (AIM method. Hydrogen bonds were found to significantly contribute in adsorption energy. An attaching of electron leads to significant deviation from coplanarity in complexes and to strengthening of hydrogen bonding. Redox properties of adsorbed CL-20 were compared with those of gas-phase and hydrated species by calculation of electron affinity, ionization potential, reduction Gibbs free energy, oxidation Gibbs free energy, reduction and oxidation potentials. It was shown that adsorbed CL-20 has lower ability to redox transformation as compared with hydrated one.

  15. Measurement of surface crack length using image processing technology

    International Nuclear Information System (INIS)

    Nahm, Seung Hoon; Kim, Si Cheon; Kim, Yong Il; Ryu, Dae Hyun

    2001-01-01

    The development of a new experimental method is required to easily observe the growth behavior of fatigue cracks. To satisfy the requirement, an image processing technique was introduced to fatigue testing. The length of surface fatigue crack could be successfully measured by the image processing system. At first, the image data of cracks were stored into the computer while the cyclic loading was interrupted. After testing, crack length was determined using image processing software which was developed by ourselves. Block matching method was applied to the detection of surface fatigue cracks. By comparing the data measured by image processing system with the data measured by manual measurement with a microscope, the effectiveness of the image processing system was established. If the proposed method is used to monitor and observe the crack growth behavior automatically, the time and efforts for fatigue test could be dramatically reduced

  16. Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability

    Directory of Open Access Journals (Sweden)

    Veronica Satulu

    2016-12-01

    Full Text Available Using plasma in conjunction with fluorinated compounds is widely encountered in material processing. We discuss several plasma techniques for surface fluorination: deposition of fluorocarbon thin films either by magnetron sputtering of polytetrafluoroethylene targets, or by plasma-assisted chemical vapor deposition using tetrafluoroethane as a precursor, and modification of carbon nanowalls by plasma treatment in a sulphur hexafluoride environment. We showed that conformal fluorinated thin films can be obtained and, according to the initial surface properties, superhydrophobic surfaces can be achieved.

  17. Processing of high level waste: Spectroscopic characterization of redox reactions in supercritical water. 1998 annual progress report

    International Nuclear Information System (INIS)

    Arrington, C.A. Jr.

    1998-01-01

    'The author is engaged in a collaborative research effort with Los Alamos staff scientists Steven Buelow, Jeanne Robinson, and Bernie Foy all staff members in group CST-6. The work proposed by these LANL staff scientists is directed towards the destruction of complexants and oxidation of chromium and technetium by hydrothermal processing in near critical or supercritical aqueous solutions. The work addresses two areas of investigation related to ongoing efforts at LANL: (1) kinetic studies of oxidation-reduction reactions in supercritical water; (2) measurement of physical properties of ionic solutes in supercritical water. All of the work during this first year was carried out at Los Alamos National Lab. During the Summer program at LANL all equipment and supplies were provided through Dr. Buelow''s program at LANL. The author has now set up a Raman spectroscopy lab at Furman. Using departmental funds he purchased an optical bench, a laser, and a CCD detector, and a grant from the Dreyfus Foundation assisted in the purchase of a Raman spectrometer. He is now able to carry out experiments using the Raman system at Furman. The plan is to continue the Summer collaboration at LANL and carry out experiments at Furman during the academic year.'

  18. Regularities of selenium and chromium behavior in redox processes during hydrometallurgic treatment of solid phase products of rhenium extraction

    Directory of Open Access Journals (Sweden)

    Г. В. Петров

    2016-08-01

    Full Text Available The main source of selenium is copper anode slime. But during the pyrometallurgical treatment of sulphide polymetallic ores significant amount of selenium along with radiogenic osmium and rhenium is concentrated in the solid-phase products of acid wash extraction and cannot be extracted, as gets lost with discharged chromium-containing solutions of osmium stage. The paper presents results of research into selenium reduction in the chromium-containing sulfuric acid medium by sulfurous gas and sodium sulphite. The use of the above reducers in optimum conditions leads to almost complete recovery of selenium (VI while selenium (IV extraction rate is not exceeding 60 %. The chrome (III present in solutions has no impact on the selenium extraction rate. Chrome (VI is almost completely reduced to a trivalent state, thus its negative impact on subsequent rhenium sorption from solutions purified from selenium is excluded. In view of a high rate of selenium extraction from chromium-containing sulfuric acid solutions formed in the process of radiogenic osmium production using sulfurous gas and sodium sulphite, choice of a method for selenium reduction is to a great extent dependent on the company’s profile.

  19. Surfaces: processing, coating, decontamination, pollution, etc. Surface mastering to prevent component corrosion

    International Nuclear Information System (INIS)

    Foucault, M.

    2012-01-01

    In the primary and secondary circuits of nuclear Pressurized Water Reactors, AREVA uses several nickel-based alloys or austenitic stainless steels for the manufacture of safety components. The experience feedback of the last twenty years allows us to point out the major role hold by the component surface state in their life duration. In this paper, we present four examples of problem encountered and solved by a surface study and the definition and implementation of processes for the surface control of the repaired components. Then, we propose some ideas about the present needs in term of analysis means to improve the surface knowledge and control of the manufactured components. (author)

  20. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  1. Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective.

    Science.gov (United States)

    Bowyer, F; Wood, R A; Poulton, S W

    2017-07-01

    more equatorial positions stifled pervasive ventilation either through ineffective surface ocean mixing, Ekman-induced upwelling, elevated surface ocean productivity or a combination of these processes. © 2017 The Authors. Geobiology published by John Wiley & Sons Ltd.

  2. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film......The purpose of this study was to evaluate the change of surface roughness and the development of the film during the film coating process using laser profilometer roughness measurements, SEM imaging, and energy dispersive X-ray (EDX) analysis. Surface roughness and texture changes developing during...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...

  3. EXPERIMENTAL VALIDATION OF CUMULATIVE SURFACE LOCATION ERROR FOR TURNING PROCESSES

    Directory of Open Access Journals (Sweden)

    Adam K. Kiss

    2016-02-01

    Full Text Available The aim of this study is to create a mechanical model which is suitable to investigate the surface quality in turning processes, based on the Cumulative Surface Location Error (CSLE, which describes the series of the consecutive Surface Location Errors (SLE in roughing operations. In the established model, the investigated CSLE depends on the currently and the previously resulted SLE by means of the variation of the width of cut. The phenomenon of the system can be described as an implicit discrete map. The stationary Surface Location Error and its bifurcations were analysed and flip-type bifurcation was observed for CSLE. Experimental verification of the theoretical results was carried out.

  4. Regionalization and parameterization of hydrological processes at the land surface

    NARCIS (Netherlands)

    Dolman, A.J.; Kabat, P.; Elbers, J.A.; Bastiaanssen, W.G.M.; Ogink-Hendriks, M.J.

    1995-01-01

    Hydrological processes on the land surface play a critical role in physically based hydrological and atmospheric modelling. A series of experiments have been initiated to test and develop parametrizations of spatial heterogeneity on the full range of spatial and temporal scales considered relevant.

  5. Sunspot Groups as Tracers of Sub-Surface Processes

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Data on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun's surface. I present here a report on such studies carried out at Indian Institute of Astrophysics during the last ...

  6. Sunspot Groups as Tracers of Sub Surface Processes .

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Data on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun's surface. I present here a report on such studies carried out at Indian Institute of. Astrophysics during the last decade or ...

  7. Redox meets protein trafficking.

    Science.gov (United States)

    Bölter, Bettina; Soll, Jürgen; Schwenkert, Serena

    2015-09-01

    After the engulfment of two prokaryotic organisms, the thus emerged eukaryotic cell needed to establish means of communication and signaling to properly integrate the acquired organelles into its metabolism. Regulatory mechanisms had to evolve to ensure that chloroplasts and mitochondria smoothly function in accordance with all other cellular processes. One essential process is the post-translational import of nuclear encoded organellar proteins, which needs to be adapted according to the requirements of the plant. The demand for protein import is constantly changing depending on varying environmental conditions, as well as external and internal stimuli or different developmental stages. Apart from long-term regulatory mechanisms such as transcriptional/translation control, possibilities for short-term acclimation are mandatory. To this end, protein import is integrated into the cellular redox network, utilizing the recognition of signals from within the organelles and modifying the efficiency of the translocon complexes. Thereby, cellular requirements can be communicated throughout the whole organism. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Acupuncture Mechanism and Redox Equilibrium

    Directory of Open Access Journals (Sweden)

    Xiang-Hong Zeng

    2014-01-01

    Full Text Available Oxidative stress participates in the pathological process of various diseases. Acupuncture is a component of the health care system in China that can be traced back for at least 3000 years. Recently, increased evidences indicate that acupuncture stimulation could reduce oxidative damage in organisms under pathological state, but the exact mechanism remains unclear. This review focuses on the emerging links between acupuncture and redox modulation in various disorders, such as vascular dementia, Parkinson’s disease, and hypertension, ranging from redox system, antioxidant system, anti-inflammatory system, and nervous system to signaling pathway. Although the molecular and cellular pathways studies of acupuncture effect on oxidative stress are preliminary, they represent an important step forward in the research of acupuncture antioxidative effect.

  9. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Beyenal, Haluk [WSU; McLEan, Jeff [JCVI; Majors, Paul [PNNL; Fredrickson, Jim [PNNL

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  10. Redox processes in the rhizosphere of restored peatlands - The impact of vascular plant species on electrochemical properties of dissolved organic matter

    Science.gov (United States)

    Agethen, Svenja; Wolff, Franziska; Knorr, Klaus-Holger

    2016-04-01

    Restoration of cut over peatlands in Central Europe is challenging in a landscape overused for agriculture. Excess nutrient availability by excess fertilization triggers uncharacteristic vegetation that is one key driver for carbon cycling. Those nutrient rich systems are often dominated by graminoids, and were often found to emit substantial amounts of methane. Plants grown under nutrient rich conditions provide more labile carbon in rhizodeposition and litter that fuels methanogenesis. Such species often have aerenchyma that facilitates direct CH4 emissions to the atmosphere and therefore impair the climate cooling function of bogs. On the other hand, aerenchymatic tissue supplies oxygen to the rhizosphere, which may reduce methanogenesis or stimulate methane oxidation, as methanogenesis is a strictly anaerobic process. Which of the effects prevail is often unclear. Therefore, the aim of this study was to test the impact of different vegetation on rhizospheric redox conditions and methanogenesis, including aerenchymatic vascular plants that are dominant in restored cut over peatlands. As ombrotrophic peat is poor in inorganic electron acceptors (EAs) to suppress methanogenesis, we analyzed the electron acceptor (EACs) and electron donor capacities (EDCs) of dissolved organic matter (DOM) in the rhizosphere to understand the impact of vegetation on anaerobic organic matter degradation. We planted Juncus effusus, Eriophorum vaginatum, Eriophorum angustifolium, Sphagnum (mixture of S. magellanicum, S. papillosum, S. sec. acutifolia, 1/3 each) plus non-vegetated controls; six replicates per batch; in containers with untreated homogenized peat. The plants grow under constant conditions (20° C, 12h diurnal light cycles and 80% RH). Anoxic conditions were achieved by keeping the water table at +10 cm. For monitoring, the rhizosphere is equipped with suction and gas samplers. We measure dissolved CO2 and CH4 concentrations, inorganic EAs (NO3-, Fe(III), and SO42-) and

  11. The esa earth explorer land surface processes and interactions mission

    Science.gov (United States)

    Labandibar, Jean-Yves; Jubineau, Franck; Silvestrin, Pierluigi; Del Bello, Umberto

    2017-11-01

    The European Space Agency (ESA) is defining candidate missions for Earth Observation. In the class of the Earth Explorer missions, dedicated to research and pre-operational demonstration, the Land Surface Processes and Interactions Mission (LSPIM) will acquire the accurate quantitative measurements needed to improve our understanding of the nature and evolution of biosphere-atmosphere interactions and to contribute significantly to a solution of the scaling problems for energy, water and carbon fluxes at the Earth's surface. The mission is intended to provide detailed observations of the surface of the Earth and to collect data related to ecosystem processes and radiation balance. It is also intended to address a range of issues important for environmental monitoring, renewable resources assessment and climate models. The mission involves a dedicated maneuvering satellite which provides multi-directional observations for systematic measurement of Land Surface BRDF (BiDirectional Reflectance Distribution Function) of selected sites on Earth. The satellite carries an optical payload : PRISM (Processes Research by an Imaging Space Mission), a multispectral imager providing reasonably high spatial resolution images (50 m over 50 km swath) in the whole optical spectral domain (from 450 nm to 2.35 μm with a resolution close to 10 nm, and two thermal bands from 8.1 to 9.1 μm). This paper presents the results of the Phase A study awarded by ESA, led by ALCATEL Space Industries and concerning the design of LSPIM.

  12. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Shengjie [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining 810008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Lijuan, E-mail: lilj@isl.ac.cn [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining 810008 (China); Xu, Defang; Zhu, Donghai; Liu, Zhiqi; Nie, Feng [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining 810008 (China)

    2016-09-30

    Highlights: • A modification mechanism for magnesium hydroxide using silane by dry process was proposed. • Si−O−Mg bonds were formed directly by the reaction between Si-OC{sub 2}H{sub 5} and hydroxyl groups of magnesium hydroxide. • Dispersibility and compatibility of modified magnesium hydroxide improved in organic phase. - Abstract: In order to improve the compatibility between magnesium hydroxide (MH) and polymer matrix, the surface of MH was modified using vinyltriethoxysilane (VTES) by dry process and the interfacial interaction between MH and VTES was also studied. Zeta potential measurements implied that the MH particles had better dispersion and less aggregation after modification. Sedimentation tests showed that the surface of MH was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MH particles significantly improved in the organic phase. Scanning electronic microscopy (SEM), Transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that a thin layer had formed on the surface of the modified MH, but did not alter the material’s crystalline phase. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and Thermogravimetric analysis (TGA) showed that the VTES molecules bound strongly to the surface of MH after modification. Chemical bonds (Si−O−Mg) formed by the reaction between Si-OC{sub 2}H{sub 5} and hydroxyl group of MH, also there have physical adsorption effect in the interface simultaneously. A modification mechanism of VTES on the MH surface by dry process was proposed, which different from the modification mechanism by wet process.

  13. DETECTING GLASS SURFACE CORROSION WITH IMAGE PROCESSING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Rafet AKDENİZ

    2012-12-01

    Full Text Available Glass is a kind of amorphous materials that exhibits a transition from rigid to viscous state and finally liquid state when heated. For daily usage, it is desirable to have different forms and differenttransparencies for different purposes. Most widely used one is the one with high transparency and flat surface.One of the detrimental effects that glass is undergone during the storage or usage periods is corrosion. In this work, a way for detecting corrosion on the glass surface by image processing methodis presented.

  14. Electronic dissipation processes during chemical reactions on surfaces

    CERN Document Server

    Stella, Kevin

    2012-01-01

    Hauptbeschreibung Every day in our life is larded with a huge number of chemical reactions on surfaces. Some reactions occur immediately, for others an activation energy has to be supplied. Thus it happens that though a reaction should thermodynamically run off, it is kinetically hindered. Meaning the partners react only to the thermodynamically more stable product state within a mentionable time if the activation energy of the reaction is supplied. With the help of catalysts the activation energy of a reaction can be lowered. Such catalytic processes on surfaces are widely used in industry. A

  15. Development of sustainable paper coatings using nanoscale industrial surface processing

    DEFF Research Database (Denmark)

    Markert, Frank; Breedveld, Leo; Lahti, Johanna

    to inform the public about the processes and benefits of the prototype products, and partly to give feedback to the project partners on the environmental and safety aspects of the different material, processing, use and waste stages. By that being a link between the industrial project partners developing...... products, and the process and material developers providing new coatings with specific properties. The combination of RA and LCA/LCC within the early stages of product development provide a more holistic approach, It is commonly believed to be also economical beneficial as changes are easier to implement...... developers, production industries, consumers and authorities. Part of the consideration is the public perception of the new product and the processes to manufacture it, which is an important aspect for products being developed using nanoscale surface processing. Such considerations are integrated...

  16. Redox signaling in acute pancreatitis

    Science.gov (United States)

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-01-01

    Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis. PMID:25778551

  17. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhi, E-mail: c2002z@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China); Li Feng [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China); Hao Limei [Department of Applied Physics, Xi' an University of Science and Technology, Xi' an 710054 (China); Chen Anqi; Kong Youchao [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China)

    2011-12-01

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl{sub 2}{center_dot}4H{sub 2}O), myristic acid (CH{sub 3}(CH{sub 2}){sub 12}COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163 Degree-Sign and rolling angle is less than 3 Degree-Sign . Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  18. First principles studies on the redox ability of (Ga(1-x)Zn(x))N(1-x)O(x) solid solutions and thermal reactions for H2 and O2 production on their surfaces.

    Science.gov (United States)

    Du, Yaojun A; Chen, Yun-Wen; Kuo, Jer-Lai

    2013-12-07

    The (Ga1-xZnx)N1-xOx solid solution has been emerging as an effective photocatalyst for water splitting utilizing the visible solar spectrum, regarded as a host GaN bulk doped with ZnO impurities. H2 and O2 production occur simultaneously and stoichiometrically on the surface of (Ga1-xZnx)N1-xOx particles. In this work, we characterize the redox ability of (Ga1-xZnx)N1-xOx and find that a solid solution with a ZnO concentration of 0.125 macron]0) surface. The computed activation barriers allow us to gain some clues on the efficiency of water splitting on a specific photocatalyst surface. Our results suggest that the non-polar (101[combining macron]0) and polar (0001) surfaces may play different roles in water splitting, i.e., the (101[combining macron]0) surface is responsible for O2 production, while hydroxyl groups could dissociate on the (0001) surface.

  19. Redox Species of Redox Flow Batteries: A Review.

    Science.gov (United States)

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  20. Mechanical and tribological properties of ion beam-processed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, Padma [Univ. of Maryland, College Park, MD (United States)

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  1. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  2. Application of Anodization Process for Cast Aluminium Surface Properties Enhancement

    Directory of Open Access Journals (Sweden)

    Włodarczyk-Fligier A.

    2016-09-01

    Full Text Available An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.

  3. Publications of the Western Earth Surface Processes Team 2006

    Science.gov (United States)

    Powell, Charles L.; Stone, Paul

    2007-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping, earth-surface process investigations, and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2006 included southern California, the San Francisco Bay region, the Mojave Desert, the Colorado Plateau region of northern Arizona, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. This compilation gives the bibliographical citations for 123 new publications, most of which are available online using the hyperlinks provided.

  4. Surface processes during purification of InP quantum dots

    Directory of Open Access Journals (Sweden)

    Natalia Mordvinova

    2014-08-01

    Full Text Available Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.

  5. Wright Valley Sediments as Potential Analogs for Martian Surface Processes

    Science.gov (United States)

    Englert, P. A. J.; Bishop, J. L.; Patel, S.; Gibson, E. K.; Koeberl, C.

    2015-12-01

    The Antarctic Dry Valleys (ADV) may provide a unique terrestrial analog for current Martian surface processes. The Wright Valley located in the ADV contains streams, lakes and ponds that host highly saline, sedimentary environments. This project highlights comparisons of formation and salt accumulation processes at the Don Juan Pond (DJP) and Don Quixote Pond (DQP). These are located in the north and south forks of the Wright Valley, which are unique areas where unusual terrestrial processes can be studied. DQP is located in the western part of the north fork about 100 m above mean seawater level. The DQP Valley walls are up to 2500 m high and the brine is seasonally frozen. DJP from the south fork is located ~9 km west of Lake Vanda. The basin floor is 117 m above mean seawater level with activity to the north and south rising above 1000 m. The DJP brine does not freeze and may be a model environment for Ca and Cl weathering and distribution on Mars. Our findings indicate that DJP and DQP have formed in similar climatic and geological environments, but likely experienced different formation conditions. Samples were collected from surface, soil pits and depth profiles during the 1979/1980, the 1990/1991 and the 2005/2006 field seasons. Elemental abundances and mineralogy were evaluated for several sets of sediments. The DJP basin shows low surface abundances of halite and relatively high abundances of sulfates throughout with gypsum or anhydrite dominating at different locations. The DQP area has high surface abundances of halite with gypsum present as the major sulfate. Two models have been proposed to explain these differences: DQP may have formed through a combination of shallow and some deep groundwater influx, while deep groundwater upwelling likely played the dominant role of salt formation at DJP. Our study seeks to understand the formation of DQP and DJP as unique terrestrial processes and as models for Ca, Cl, and S weathering and distribution on Mars.

  6. Free surface BCP self-assembly process characterization with CDSEM

    Science.gov (United States)

    Levi, Shimon; Weinberg, Yakov; Adan, Ofer; Klinov, Michael; Argoud, Maxime; Claveau, Guillaume; Tiron, Raluca

    2016-03-01

    A simple and common practice to evaluate Block copolymers (BCP) self-assembly performances, is on a free surface wafer. With no guiding pattern the BCP designed to form line space pattern for example, spontaneously rearranges to form a random fingerprint type of a pattern. The nature of the rearrangement is dictated by the physical properties of the BCP moieties, wafer surface treatment and the self-assembly process parameters. Traditional CDSEM metrology algorithms are designed to measure pattern with predefined structure, like linespace or oval via holes. Measurement of pattern with expected geometry can reduce measurement uncertainty. Fingerprint type of structure explored in this dissertation, poses a challenge for CD-SEM measurement uncertainty and offers an opportunity to explore 2D metrology capabilities. To measure this fingerprints we developed a new metrology approach that combines image segmentation and edge detection to measure 2D pattern with arbitrary rearrangement. The segmentation approach enabled to quantify the quality of the BCP material and process, detecting 2D attributes such as: CD and CDU at one axis, and number of intersections, length and number of PS fragments, etched PMMA spaces and donut shapes numbers on the second axis. In this paper we propose a 2D metrology to measure arbitrary BCP pattern on a free surface wafer. We demonstrate experimental results demonstrating precision data, and characterization of PS-b-PMMA BCP, intrinsic period L0 = 38nm (Arkema), processed at different bake time and temperatures.

  7. Surface encapsulation process for managing low-level radioactive wastes

    International Nuclear Information System (INIS)

    Unger, S.L.; Telles, R.W.

    1986-01-01

    Current processes for low-level radioactive waste (LLRW) stabilization involve mixing contaminants with a fixative such as cement, asphalt, polyethylene, or vinyl monomers, and subsequently curing the mixtures in containers. These methods give rise to processing difficulties and yield products lacking performance to assure long-term LLRW immobilization. Mixing of LLRW into fixatives is impeded by viscous media and the curing reaction is inhibited by LLRW constituents. Product performance is affected by corrosion of the containers which ultimately expose the cured mixtures to environmental stresses. This process, termed the ''Surface Encapsulation Process,'' circumvents these problems. A thermosetting fixative is employed that mixes readily with LLRW and is highly insensitive to inhibition in curing. The agglomerated mixtures are further stabilized by encapsulation with seamless jackets of corrosion resistant plastic, such as polyethylene. In laboratory-scale investigations, feasibility of the technique was demonstrated for managing a broad spectrum of LLRW simulants including ion-exchange resins, beads, and glasses, and sodium salts. Products tested to date meet all relevant NRC and DOT regulations governing waste fixation. The high waste loadings of the products, use of commodity resins, and processing simplicity indicated our process would provide high performance LLRW stabilization at costs that are competitive to those for processes employing state-of-the-art fixatives. An economic analysis based on managing LLRW generated by commercial power plants (≅1,000 MeW) substantiates the competitive process costs advantages

  8. Electrochemical impedance spectroscopy study of a surface confined redox reaction: The reduction of azobenzene on mercury in the absence of diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Francisco, E-mail: dapena@us.es [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain); Rueda, Manuela; Hidalgo, Jose; Martinez, Elisa; Navarro, Inmaculada [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain)

    2011-09-30

    The kinetics of azobenzene reduction on mercury electrodes in the absence of diffussional mass transport is studied by electrochemical impedance spectroscopy (EIS) in acetic acid/acetate buffered solutions at different pH values. Cyclic voltammetry experiments confirm the absence of diffusion effects and provide the values of the surface equilibrium potential. The analysis of the impedance frequency spectrums at every potential within the faradaic region conforms well the model and provides the global rate constant of the process, k{sub f}. The potential dependence of k{sub f} suggests the existence of an EE mechanism, with two electron transfers controlling the overall rate. The kinetic parameters of every step are obtained and their pH dependences clarify the role played by the protonation steps.

  9. Redox interplay between mitochondria and peroxisomes

    Directory of Open Access Journals (Sweden)

    Celien eLismont

    2015-05-01

    Full Text Available Reduction-oxidation or ‘redox’ reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from ‘omics’ technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of

  10. Exposing earth surface process model simulations to a large audience

    Science.gov (United States)

    Overeem, I.; Kettner, A. J.; Borkowski, L.; Russell, E. L.; Peddicord, H.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) represents a diverse group of >1300 scientists who develop and apply numerical models to better understand the Earth's surface. CSDMS has a mandate to make the public more aware of model capabilities and therefore started sharing state-of-the-art surface process modeling results with large audiences. One platform to reach audiences outside the science community is through museum displays on 'Science on a Sphere' (SOS). Developed by NOAA, SOS is a giant globe, linked with computers and multiple projectors and can display data and animations on a sphere. CSDMS has developed and contributed model simulation datasets for the SOS system since 2014, including hydrological processes, coastal processes, and human interactions with the environment. Model simulations of a hydrological and sediment transport model (WBM-SED) illustrate global river discharge patterns. WAVEWATCH III simulations have been specifically processed to show the impacts of hurricanes on ocean waves, with focus on hurricane Katrina and super storm Sandy. A large world dataset of dams built over the last two centuries gives an impression of the profound influence of humans on water management. Given the exposure of SOS, CSDMS aims to contribute at least 2 model datasets a year, and will soon provide displays of global river sediment fluxes and changes of the sea ice free season along the Arctic coast. Over 100 facilities worldwide show these numerical model displays to an estimated 33 million people every year. Datasets storyboards, and teacher follow-up materials associated with the simulations, are developed to address common core science K-12 standards. CSDMS dataset documentation aims to make people aware of the fact that they look at numerical model results, that underlying models have inherent assumptions and simplifications, and that limitations are known. CSDMS contributions aim to familiarize large audiences with the use of numerical

  11. Detection of cracks on concrete surfaces by hyperspectral image processing

    Science.gov (United States)

    Santos, Bruno O.; Valença, Jonatas; Júlio, Eduardo

    2017-06-01

    All large infrastructures worldwide must have a suitable monitoring and maintenance plan, aiming to evaluate their behaviour and predict timely interventions. In the particular case of concrete infrastructures, the detection and characterization of crack patterns is a major indicator of their structural response. In this scope, methods based on image processing have been applied and presented. Usually, methods focus on image binarization followed by applications of mathematical morphology to identify cracks on concrete surface. In most cases, publications are focused on restricted areas of concrete surfaces and in a single crack. On-site, the methods and algorithms have to deal with several factors that interfere with the results, namely dirt and biological colonization. Thus, the automation of a procedure for on-site characterization of crack patterns is of great interest. This advance may result in an effective tool to support maintenance strategies and interventions planning. This paper presents a research based on the analysis and processing of hyper-spectral images for detection and classification of cracks on concrete structures. The objective of the study is to evaluate the applicability of several wavelengths of the electromagnetic spectrum for classification of cracks in concrete surfaces. An image survey considering highly discretized wavelengths between 425 nm and 950 nm was performed on concrete specimens, with bandwidths of 25 nm. The concrete specimens were produced with a crack pattern induced by applying a load with displacement control. The tests were conducted to simulate usual on-site drawbacks. In this context, the surface of the specimen was subjected to biological colonization (leaves and moss). To evaluate the results and enhance crack patterns a clustering method, namely k-means algorithm, is being applied. The research conducted allows to define the suitability of using clustering k-means algorithm combined with hyper-spectral images highly

  12. Evidence of Space Weathering Processes Across the Surface of Vesta

    Science.gov (United States)

    Pieters, Carle M.; Blewett, David T.; Gaffey, Michael; Mittlefehldt, David W.; CristinaDeSanctis, Maria; Reddy, Vishnu; Coradini, Angioletta; Nathues, Andreas; Denevi, Brett W.; Li, Jian-Yang; hide

    2011-01-01

    As NASA s Dawn spacecraft explores the surface of Vesta, it has become abundantly clear that Vesta is like no other planetary body visited to date. Dawn is collecting global data at increasingly higher spatial resolution during its one-year orbital mission. The bulk properties of Vesta have previously been linked to the HED meteorites through remote mineral characterization of its surface from Earth-based spectroscopy. A principal puzzle has been why Vesta exhibits relatively unweathered diagnostic optical features compared to other large asteroids. Is this due to the composition of this proto-planet or the space environment at Vesta? Alteration or weathering of materials in space normally develops as the products of several processes accumulate on the surface or in an evolving particulate regolith, transforming the bedrock into fragmental material with properties that may be measurably different from the original. Data from Dawn reveal that the regolith of Vesta is exceptionally diverse. Regional surface units are observed that have not been erased by weathering with time. Several morphologically-fresh craters have excavated bright, mafic-rich materials and exhibit bright ray systems. Some of the larger craters have surrounding subdued regions (often asymmetric) that are lower in albedo and relatively red-sloped in the visible while exhibiting weaker mafic signatures. Several other prominent craters have rim exposures containing very dark material and/or display a system of prominent dark rays. Most, but not all, dark areas associated with craters exhibit significantly lower spectral contrast, suggesting that either a Vesta lithology with an opaque component has been exposed locally or that the surface has been contaminated by a relatively dark impactor. Similarly, most, but not all, bright areas associated with craters exhibit enhanced mafic signatures compared to surroundings. On a regional scale, the large south polar structure and surrounding terrain exhibit

  13. Novel CNC Grinding Process Control for Nanometric Surface Roughness for Aspheric Space Optical Surfaces

    Directory of Open Access Journals (Sweden)

    Jeong-Yeol Han

    2004-06-01

    Full Text Available Optics fabrication process for precision space optical parts includes bound abrasive grinding, loose abrasive lapping and polishing. The traditional bound abrasive grinding with bronze bond cupped diamond wheel leaves the machine marks of about 20 μm rms in height and the subsurface damage of about 1 μm rms in height to be removed by subsequent loose abrasive lapping. We explored an efficient quantitative control of precision CNC grinding. The machining parameters such as grain size, work-piece rotation speed and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis. The effectiveness of such grinding prediction models was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment achieved the predictability down to ±20 nm in height and the surface roughness down to 36 nm in height. This study contributed to improvement of the process efficiency reaching directly the polishing and figuring process without the need for the loose abrasive lapping stage.

  14. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Katja E. Menger

    2015-06-01

    Full Text Available Altering the redox state of cysteine residues on protein surfaces is an important response to environmental challenges. Although aging and fasting alter many redox processes, the role of cysteine residues is uncertain. To address this, we used a redox proteomic technique, oxidative isotope-coded affinity tags (OxICAT, to assess cysteine-residue redox changes in Drosophila melanogaster during aging and fasting. This approach enabled us to simultaneously identify and quantify the redox state of several hundred cysteine residues in vivo. Cysteine residues within young flies had a bimodal distribution with peaks at ∼10% and ∼85% reversibly oxidized. Surprisingly, these cysteine residues did not become more oxidized with age. In contrast, 24 hr of fasting dramatically oxidized cysteine residues that were reduced under fed conditions while also reducing cysteine residues that were initially oxidized. We conclude that fasting, but not aging, dramatically alters cysteine-residue redox status in D. melanogaster.

  15. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster

    Science.gov (United States)

    Menger, Katja E.; James, Andrew M.; Cochemé, Helena M.; Harbour, Michael E.; Chouchani, Edward T.; Ding, Shujing; Fearnley, Ian M.; Partridge, Linda; Murphy, Michael P.

    2015-01-01

    Summary Altering the redox state of cysteine residues on protein surfaces is an important response to environmental challenges. Although aging and fasting alter many redox processes, the role of cysteine residues is uncertain. To address this, we used a redox proteomic technique, oxidative isotope-coded affinity tags (OxICAT), to assess cysteine-residue redox changes in Drosophila melanogaster during aging and fasting. This approach enabled us to simultaneously identify and quantify the redox state of several hundred cysteine residues in vivo. Cysteine residues within young flies had a bimodal distribution with peaks at ∼10% and ∼85% reversibly oxidized. Surprisingly, these cysteine residues did not become more oxidized with age. In contrast, 24 hr of fasting dramatically oxidized cysteine residues that were reduced under fed conditions while also reducing cysteine residues that were initially oxidized. We conclude that fasting, but not aging, dramatically alters cysteine-residue redox status in D. melanogaster. PMID:26095360

  16. Using infrared thermography for understanding and quantifying soil surface processes

    Science.gov (United States)

    de Lima, João L. M. P.

    2017-04-01

    At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.

  17. UMTRA Surface Project management action process document: Final. Revision 2

    International Nuclear Information System (INIS)

    1996-06-01

    Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites

  18. Decontamination Efficiency of Fish Bacterial Flora from Processing Surfaces

    Directory of Open Access Journals (Sweden)

    Birna Guðbjörnsdóttir

    2009-01-01

    Full Text Available There are numerous parameters that can influence bacterial decontamination during washing of machinery and equipment in a food processing establishment. Incomplete decontamination of bacteria will increase the risk of biofilm formation and consequently increase the risk of pathogen contamination or prevalence of other undesirable microorganisms such as spoilage bacteria in the processing line. The efficiency of a typical washing protocol has been determined by testing three critical parameters and their effects on bacterial decontamination. Two surface materials (plastic and stainless steel, water temperatures (7 and 25 °C and detergent concentrations (2 and 4 % were used for this purpose in combination with two types of detergents. Biofilm was prepared on the surfaces with undefined bacterial flora obtained from minced cod fillets. The bacterial flora of the biofilm was characterised by cultivation and molecular analysis of 16S rRNA genes. All different combinations of washing protocols tested were able to remove more than 99.9 % of the bacteria in the biofilm and reduce the cell number from 7 to 0 or 2 log units of bacteria/cm2. The results show that it is possible to use less diluted detergents than recommended with comparable success, and it is easier to clean surface material made of stainless steel compared to polyethylene plastic.

  19. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo

    2013-01-01

    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  20. Redox Buffer Strength

    Science.gov (United States)

    de Levie, Robert

    1999-04-01

    The proper functioning of enzymes in bodily fluids requires that the pH be maintained within rather narrow limits. The first line of defense against large pH fluctuations in such fluids is the passive control provided by the presence of pH buffers. The ability of pH buffers to stabilize the pH is indicated by the buffer value b introduced in 1922 by van Slyke. It is equally important for many enzymes that the redox potential is kept within a narrow range. In that case, stability of the potential is most readily achieved with a redox buffer. In this communication we define the redox buffer strength by analogy with acid-base buffer strength.

  1. Organic chemical degradation by remote study of the redox conditions

    Science.gov (United States)

    Fernandez, P. M.; Revil, A.; Binley, A. M.; Bloem, E.; French, H. K.

    2014-12-01

    Monitoring the natural (and enhanced) degradation of organic contaminants is essential for managing groundwater quality in many parts of the world. Contaminated sites often have limited access, hence non-intrusive methods for studying redox processes, which drive the degradation of organic compounds, are required. One example is the degradation of de-icing chemicals (glycols and organic salts) released to the soil near airport runways during winter. This issue has been broadly studied at Oslo airport, Gardermoen, Norway using intrusive and non-intrusive methods. Here, we report on laboratory experiments that aim to study the potential of using a self-potential, DCresistivity, and time-domain induced polarization for geochemical characterization of the degradation of Propylene Glycol (PG). PG is completely miscible in water, does not adsorb to soil particles and does not contribute to the electrical conductivity of the soil water. When the contaminant is in the unsaturated zone near the water table, the oxygen is quickly consumed and the gas exchange with the surface is insufficient to ensure aerobic degradation, which is faster than anaerobic degradation. Since biodegradation of PG is highly oxygen demanding, anaerobic pockets can exist causing iron and manganese reduction. It is hypothesised that nitrate would boost the degradation rate under such conditions. In our experiment, we study PG degradation in a sand tank. We provide the system with an electron highway to bridge zones with different redox potential. This geo-battery system is characterized by self-potential, resistivity and induced polarization anomalies. An example of preliminary results with self-potential at two different times of the experiment can be seen in the illustration. These will be supplemented with more direct information on the redox chemistry: in-situ water sampling, pH, redox potential and electrical conductivity measurements. In parallel, a series of batch experiments have been

  2. Multi-scale surface-groundwater interactions: Processes and Implications

    Science.gov (United States)

    Packman, A. I.; Harvey, J. W.; Worman, A.; Cardenas, M. B.; Schumer, R.; Jerolmack, D. J.; Tank, J. L.; Stonedahl, S. H.

    2009-05-01

    Site-based investigations of stream-subsurface interactions normally focus on a limited range of spatial scales - typically either very shallow subsurface flows in the hyporheic zone, or much larger scale surface- groundwater interactions - but subsurface flows are linked across this entire continuum. Broad, multi-scale surface-groundwater interactions produce complex patterns in porewater flows, and interfacial fluxes do not average in a simple fashion because of the competitive effects of flows induced at different scales. For example, reach-scale stream-groundwater interactions produce sequences of gaining and losing reaches that can either suppress or enhance local-scale hyporheic exchange. Many individual topographic features also produce long power-law tails in surface residence time distributions, and the duration of these tails is greatly extended by interactions over a wide range of spatial scales. Simultaneous sediment transport and landscape evolution further complicates the analysis of porewater flow dynamics in rivers. Finally, inhomogeneity in important biogeochemical processes, particularly microbial processes that are stimulated near the sediment- water interface, leads to a great degree of non-linearity in chemical transformation rates in stream channels. This high degree of complexity in fluvial systems requires that careful approaches be used to extend local observations of hyporheic exchange and associated nutrient, carbon, and contaminant transformations to larger spatial scales. It is important to recognize that conventional advection-dispersion models are not expected to apply, and instead anomalous transport models must be used. Unfortunately, no generally applicable model is available for stream-groundwater interactions at the present time. Alternative approaches for modeling conservative and reactive transport will be discussed, and a strategy articulated for coping with the complexity of coupled surface-subsurface dynamics in fluvial

  3. Interdependencies of Arctic land surface processes: A uniquely sensitive environment

    Science.gov (United States)

    Bowling, L. C.

    2007-12-01

    The circumpolar arctic drainage basin is composed of several distinct ecoregions including steppe grassland and cropland, boreal forest and tundra. Land surface hydrology throughout this diverse region shares several unique features such as dramatic seasonal runoff differences controlled by snowmelt and ice break-up; the storage of significant portions of annual precipitation as snow and in lakes and wetlands; and the effects of ephemeral and permanently frozen soils. These arctic land processes are delicately balanced with the climate and are therefore important indicators of change. The litany of recently-detected changes in the Arctic includes changes in snow precipitation, trends and seasonal shifts in river discharge, increases and decreases in the extent of surface water, and warming soil temperatures. Although not unique to the arctic, increasing anthropogenic pressures represent an additional element of change in the form of resource extraction, fire threat and reservoir construction. The interdependence of the physical, biological and social systems mean that changes in primary indicators have large implications for land cover, animal populations and the regional carbon balance, all of which have the potential to feed back and induce further change. In fact, the complex relationships between the hydrological processes that make the Artic unique also render observed historical change difficult to interpret and predict, leading to conflicting explanations. For example, a decrease in snow accumulation may provide less insulation to the underlying soil resulting in greater frost development and increased spring runoff. Similarly, melting permafrost and ground ice may lead to ground subsidence and increased surface saturation and methane production, while more complete thaw may enhance drainage and result in drier soil conditions. The threshold nature of phase change around the freezing point makes the system especially sensitive to change. In addition, spatial

  4. Surface photo reaction processes using synchrotron radiation; Hoshako reiki ni yoru hyomenko hanno process

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, Y. [Tohoku University, Sendai (Japan). Institute for Materials Research; Yoshigoe, A. [Toyohashi University of Technology, Aichi (Japan); Urisu, T. [Toyohashi University of Technology, Aichi (Japan). Institute for Molecular Science

    1997-08-20

    This paper introduces the surface photo reaction processes using synchrotron radiation, and its application. A synchrotron radiation process using soft X-rays contained in electron synchrotron radiated light as an excited light source has a possibility of high-resolution processing because of its short wave length. The radiated light can excite efficiently the electronic state of a substance, and can induce a variety of photochemical reactions. In addition, it can excite inner shell electrons efficiently. In the aspect of its application, it has been found that, if radiated light is irradiated on surfaces of solids under fluorine-based reaction gas or Cl2, the surfaces can be etched. This technology is utilized practically. With regard to radiated light excited CVD process, it may be said that anything that can be deposited by the ordinary plasma CVD process can be deposited. Its application to epitaxial crystal growth may be said a nano processing application in thickness direction, such as forming an ultra-lattice structure, the application being subjected to expectation. In micromachine fabricating technologies, a possibility is searched on application of a photo reaction process of the radiated light. 5 refs., 6 figs.

  5. Biotransformation of gabapentin in surface water matrices under different redox conditions and the occurrence of one major TP in the aquatic environment.

    Science.gov (United States)

    Henning, Nina; Kunkel, Uwe; Wick, Arne; Ternes, Thomas A

    2018-06-15

    Laboratory-scale incubation experiments in water/sediment systems were conducted to test the transformation behavior of the anticonvulsant gabapentin (GBP) under different environmental conditions (aerobic, anaerobic, with abiotic controls). GBP was transformed by biological processes as it was eliminated quickly under aerobic conditions (dissipation time 50% of initial concentration (DT 50 ): 2-7 days) whereas no decrease was observed under anaerobic conditions. Measurements via high resolution mass spectrometry (LC-Orbitrap-MS) revealed eight biological transformation products (TPs). Three of them were identified with reference standards (GBP-Lactam, TP186, TP213), while for the other five TPs tentative structures were proposed from information by MS 2 /MS 3 experiments. Furthermore, the quantitatively most relevant TP GBP-Lactam was formed via intramolecular amidation (up to 18% of initial GBP concentration). Incubation experiments with GBP-Lactam revealed a higher stability against biotic degradation (DT 50 : 12 days) in contrast to GBP, while it was stable under anaerobic and abiotic conditions. Besides GBP, GBP-Lactam was detected in surface water in the μg L -1 range. Finally, GBP and GBP-Lactam were found in potable water with concentrations up to 0.64 and 0.07 μg L -1 , respectively. According to the elevated environmental persistence of GBP-Lactam compared to GBP and its presumed enhanced toxicity, we recommend to involve GBP-Lactam into monitoring programs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Experimental investigation of surface roughness in electrical discharge turning process

    Science.gov (United States)

    Gohil, Vikas; Puri, Y. M.

    2016-10-01

    In the present study the effects of machining parameters on the average surface roughness (Ra) in electrical discharge turning (EDT) is investigated. EDT is a new machining process in which a rotary spindle is added to a conventional die-sinking EDM machine in order to produce cylindrical components. In this method a new process parameter (spindle rotation) along with pulse on time and current is introduced to study its effect on Ra. This has been done by means of full factorial design (21 × 32) of experiments. A mathematical model has been developed for Ra by regression analysis and factor effects were analyzed using analysis of variance (ANOVA). Signal-to-noise ratio analysis is used to find the optimal condition.

  7. Surfaces: processing, coating, decontamination, pollution, etc. Surface mastering to prevent component corrosion; Surfaces: traitement, revetements, decontamination, pollution, etc. Maitrise de la surface pour prevenir la corrosion des composants

    Energy Technology Data Exchange (ETDEWEB)

    Foucault, M. [Departement Corrosion Chimie, AREVA Centre Technique, BP 181, 71205 Le Creusot (France)

    2012-07-01

    In the primary and secondary circuits of nuclear Pressurized Water Reactors, AREVA uses several nickel-based alloys or austenitic stainless steels for the manufacture of safety components. The experience feedback of the last twenty years allows us to point out the major role hold by the component surface state in their life duration. In this paper, we present four examples of problem encountered and solved by a surface study and the definition and implementation of processes for the surface control of the repaired components. Then, we propose some ideas about the present needs in term of analysis means to improve the surface knowledge and control of the manufactured components. (author)

  8. Dual Electrolytic Plasma Processing for Steel Surface Cleaning and Passivation

    Science.gov (United States)

    Yang, L.; Zhang, P.; Shi, J.; Liang, J.; Tian, W. B.; Zhang, Y. M.; Sun, Z. M.

    2017-10-01

    To remove the rust on rebars and passivate the fresh surfaces, electrodes reversing electrolytic plasma processing (EPP) was proposed and conducted in a 10 wt.% Na2CO3 aqueous solution. The morphology and the composition of the surface were investigated by SEM and XPS. Experimental results show that the rust on the surface was removed effectively by cathode EPP, and a passive film containing Cr2O3 was achieved by the succeeding anode EPP treatment, by a simple operation of reversing the bias. The corrosion resistance was evaluated in a 3.5 wt.% NaCl aqueous solution using an electrochemical workstation. In comparison, the corrosion resistance was improved by the succeeding anode EPP treatment, which is evidenced by a positive shift of the open-circuit potential, an increase in the electrochemical impedance representing the inner layer by 76.8% and the decrease in the corrosion current density by 49.6%. This is an effective and environment-friendly technique to clean and passivate rebars and similar steel materials.

  9. Surface Wave Simulation and Processing with MatSeis

    Energy Technology Data Exchange (ETDEWEB)

    THOMPSON,BEVERLY D.; CHAEL,ERIC P.; YOUNG,CHRISTOPHER J.; WALTER,WILLIAM R.; PASYANOS,MICHAEL E.

    2000-08-07

    In order to exploit the information on surface wave propagation that is stored in large seismic event datasets, Sandia and Lawrence Livermore National Laboratories have developed a MatSeis interface for performing phase-matched filtering of Rayleigh arrivals. MatSeis is a Matlab-based seismic processing toolkit which provides graphical tools for analyzing seismic data from a network of stations. Tools are available for spectral and polarization measurements, as well as beam forming and f-k analysis with array data, to name just a few. Additionally, one has full access to the Matlab environment and any functions available there. Previously the authors reported the development of new MatSeis tools for calculating regional discrimination measurements. The first of these performs Lg coda analysis as developed by Mayeda and coworkers at Lawrence Livermore National Laboratory. A second tool measures regional phase amplitude ratios for an event and compares the results to ratios from known earthquakes and explosions. Release 1.5 of MatSeis includes the new interface for the analysis of surface wave arrivals. This effort involves the use of regionalized dispersion models from a repository of surface wave data and the construction of phase-matched filters to improve surface wave identification, detection, and magnitude calculation. The tool works as follows. First, a ray is traced from source to receiver through a user-defined grid containing different group velocity versus period values to determine the composite group velocity curve for the path. This curve is shown along with the upper and lower group velocity bounds for reference. Next, the curve is used to create a phase-matched filter, apply the filter, and show the resultant waveform. The application of the filter allows obscured Rayleigh arrivals to be more easily identified. Finally, after screening information outside the range of the phase-matched filter, an inverse version of the filter is applied to obtain a

  10. Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco.

    Science.gov (United States)

    Pignocchi, Cristina; Kiddle, Guy; Hernández, Iker; Foster, Simon J; Asensi, Amparo; Taybi, Tahar; Barnes, Jeremy; Foyer, Christine H

    2006-06-01

    The role of the redox state of the apoplast in hormone responses, signaling cascades, and gene expression was studied in transgenic tobacco (Nicotiana tabacum) plants with modified cell wall-localized ascorbate oxidase (AO). High AO activity specifically decreased the ascorbic acid (AA) content of the apoplast and altered plant growth responses triggered by hormones. Auxin stimulated shoot growth only when the apoplastic AA pool was reduced in wild-type or AO antisense lines. Oxidation of apoplastic AA in AO sense lines was associated with loss of the auxin response, higher mitogen-activated protein kinase activities, and susceptibility to a virulent strain of the pathogen Pseudomonas syringae. The total leaf glutathione pool, the ratio of reduced glutathione to glutathione disulfide, and glutathione reductase activities were similar in the leaves of all lines. However, AO sense leaves exhibited significantly lower dehydroascorbate reductase and ascorbate peroxidase activities than wild-type and antisense leaves. The abundance of mRNAs encoding antioxidant enzymes was similar in all lines. However, the day/night rhythms in the abundance of transcripts encoding the three catalase isoforms were changed in response to the AA content of the apoplast. Other transcripts influenced by AO included photorespiratory genes and a plasma membrane Ca(2+) channel-associated gene. We conclude that the redox state of the apoplast modulates plant growth and defense responses by regulating signal transduction cascades and gene expression patterns. Hence, AO activity, which modulates the redox state of the apoplastic AA pool, strongly influences the responses of plant cells to external and internal stimuli.

  11. Parabolic flights as Earth analogue for surface processes on Mars

    Science.gov (United States)

    Kuhn, Nikolaus J.

    2017-04-01

    The interpretation of landforms and environmental archives on Mars with regards to habitability and preservation of traces of life requires a quantitative understanding of the processes that shaped them. Commonly, qualitative similarities in sedimentary rocks between Earth and Mars are used as an analogue to reconstruct the environments in which they formed on Mars. However, flow hydraulics and sedimentation differ between Earth and Mars, requiring a recalibration of models describing runoff, erosion, transport and deposition. Simulation of these processes on Earth is limited because gravity cannot be changed and the trade-off between adjusting e.g. fluid or particle density generates other mismatches, such as fluid viscosity. Computational Fluid Dynamics offer an alternative, but would also require a certain degree of calibration or testing. Parabolic flights offer a possibility to amend the shortcomings of these approaches. Parabolas with reduced gravity last up to 30 seconds, which allows the simulation of sedimentation processes and the measurement of flow hydraulics. This study summarizes the experience gathered during four campaigns of parabolic flights, aimed at identifying potential and limitations of their use as an Earth analogue for surface processes on Mars.

  12. MarsSI: Martian surface data processing information system

    Science.gov (United States)

    Quantin-Nataf, C.; Lozac'h, L.; Thollot, P.; Loizeau, D.; Bultel, B.; Fernando, J.; Allemand, P.; Dubuffet, F.; Poulet, F.; Ody, A.; Clenet, H.; Leyrat, C.; Harrisson, S.

    2018-01-01

    MarsSI (Acronym for Mars System of Information, https://emars.univ-lyon1.fr/MarsSI/, is a web Geographic Information System application which helps managing and processing martian orbital data. The MarsSI facility is part of the web portal called PSUP (Planetary SUrface Portal) developed by the Observatories of Paris Sud (OSUPS) and Lyon (OSUL) to provide users with efficient and easy access to data products dedicated to the martian surface. The portal proposes 1) the management and processing of data thanks to MarsSI and 2) the visualization and merging of high level (imagery, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu). The portal PSUP as well as the facility MarsVisu is detailed in a companion paper (Poulet et al., 2018). The purpose of this paper is to describe the facility MarsSI. From this application, users are able to easily and rapidly select observations, process raw data via automatic pipelines, and get back final products which can be visualized under Geographic Information Systems. Moreover, MarsSI also contains an automatic stereo-restitution pipeline in order to produce Digital Terrain Models (DTM) on demand from HiRISE (High Resolution Imaging Science Experiment) or CTX (Context Camera) pair-images. This application is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) (ERC project eMars, No. 280168) and has been developed in the scope of Mars, but the design is applicable to any other planetary body of the solar system.

  13. Compartmentation of redox metabolism in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Sebastian Kehr

    Full Text Available Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito - a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes--glutathione reductase and thioredoxin reductase--Plasmodium makes use of alternative-translation-initiation (ATI to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.

  14. The location of redox-sensitive groups in the carrier protein of proline at the outer and inner surface of the membrane in Escherichia coli

    NARCIS (Netherlands)

    Poolman, Bert; Konings, Wil N.; Robillard, George T.

    1983-01-01

    Evidence is presented in this report for the presence of two sets of dithiols associated with proline transport activity in Escherichia coli. One set is located at the outer surface, the other at the inner surface of the cytoplasmic membrane. Treatment of right-side-out membrane vesicles from E.

  15. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  16. Redox regulation in cancer stem cells

    Science.gov (United States)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  17. Formation and properties of electroactive fullerene based films with a covalently attached ferrocenyl redox probe

    International Nuclear Information System (INIS)

    Wysocka-Zolopa, Monika; Winkler, Krzysztof; Caballero, Ruben; Langa, Fernando

    2011-01-01

    Highlights: → Formation of redox active films of ferrocene derivatives of C 60 and palladium. → Fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. → Electrochemical activity at both positive and negative potentials. → Charge transfer processes accompanied by transport of supporting electrolyte to and from the polymer layers. - Abstract: Redox active films have been produced via electrochemical reduction in a solution containing palladium(II) acetate and ferrocene derivatives of C 60 (Fc-C 60 and bis-Fc-C 60 ). In these films, fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. Fc-C 60 /Pd and bis-Fc-C 60 /Pd films form uniform and relatively smooth layers on the electrode surface. These films are electrochemically active in both the positive and negative potential regions. At negative potentials, reduction of fullerene moiety takes place resulting in voltammetric behavior resembles typical of conducting polymers. In the positive potential range, oxidation of ferrocene is responsible for the formation of a sharp and symmetrical peak on the voltammograms. In this potential range, studied films behave as typical redox polymers. The charge associated with the oxidation process depends on the number of ferrocene units attached to the C 60 moiety. Oxidation and reduction of these redox active films are accompanied by transport of supporting electrolyte to and from the polymer layer. Films also show a higher permeability to anions than to cations.

  18. Use of Radiotracers to Study Surface Water Processes

    International Nuclear Information System (INIS)

    2015-03-01

    This publication represents a sound knowledge base for the conduct of radiotracer studies in the environment, with papers on radiotracer methodology, radiation protection and regulation, data analysis and modelling. Environmental case histories from five Member States - Australia, Brazil, France, the Republic of Korea and Sweden - provide information on conducting studies involving he use of radioactive tracers. These case histories are not meant as guidelines for preparing a field study but can rather serve as examples of the type, caution and extent of work involved in environmental studies using radiotracers. This publication can provide guidance for conducting potential future training events in the use of radioactive traces in the environment and can serve as a key reference to all concerned directly with surface water processes

  19. The Amazon River reversal explained by tectonic and surface processes

    Science.gov (United States)

    Sacek, V.

    2014-12-01

    The drainage pattern in Amazonia was expressively modified during the mountain building of central and northern Andes. In Early Miocene, the fluvial systems in western Amazonia flowed to the foreland basins and northward to the Caribbean. By Late Miocene the drainage reversal occurred and formed the transcontinental Amazon River, connecting the Andes and the equatorial Atlantic margin. This event is recorded in the stratigraphic evolution of the Foz do Amazonas Basin by the onset of Andean-derived sedimentation. Additionally, an abrupt increase in sedimentation rate after the reversal occurred in the Foz do Amazonas Basin. Based on three-dimensional numerical models that couple surface processes, flexural isostasy and crustal thickening due to orogeny, I concluded that the Miocene drainage reversal can be explained by the flexural and surface processes response to the Andes formation with no need to invoke dynamic topography induced by mantle convection, as previously proposed. I observed that the instant of drainage reversal is directly linked to the rate of crustal thickening in the orogeny, the rate of erosion and, mainly, the efficiency of sediment transport. Moreover, the numerical experiments were able to predict the increase in sedimentation rate in the Amazon fan after the drainage reversal of the Amazon River as observed in the Late Miocene-Pliocene sedimentary record. However, the present numerical model fails to fully reproduce the evolution of the Pebas system, a megawetland in western Amazonia that preceded the drainage reversal. Therefore, further investigation is necessary to evaluate the mechanisms that generated and sustained the Pebas system.

  20. 4{sup th} Annual workshop proceedings of the collaborative project ''Redox phenomena controlling systems'' (7{sup th} EC FP CP RECOSY)

    Energy Technology Data Exchange (ETDEWEB)

    Altmaier, Marcus; Kienzler, Bernhard; Duro, Lara; Grive, Mireia; Montoya, Vanessa (eds.)

    2012-07-01

    The EURATOM 7{sup th} EC Framework Program Collaborative Project REdox phenomena Controlling SYstems (RECOSY) started in April 2008 and extends over 4 years. Although redox is not a new geochemical issue, different questions are still not resolved. For this reason, main objectives of RECOSY project are a) the sound understanding of redox phenomena controlling the long-term release/retention of radionuclides in nuclear waste disposal, b) providing tools to apply the result to Performance Assessment/Safety Case, c) training of next generation and d) documentation and communication of the results. To this aim, the project set up a consortium of 32 Beneficiaries/Contractors and 6 Associated Groups. The consortium includes key European Research Institutes, Universities, National Waste Management Agencies and SMEs, from 13 EURATOM signatory states, Russia, Japan, Korea, USA and one European Joint Research Centre. The ReCosy concept is innovative in the scientific approach to the redox phenomena. It includes i) advanced analytical tools, ii) investigations of processes responsible for redox control (thermodynamically and kinetically controlled processes, surface reactions and microbial processes,..), iii) provision of required data on redox controlling processes, and iv) response to disturbances in disposal systems. The work program is structured along six RTD workpackages (WP1-6). They cover near-field and far field aspects as well as all relevant host-rocks considered in Europe. In WP1, the scientific state-of-the-art and its application to Performance Assessment/Safety Case is documented and regularly updated. WP2 focuses on development of redox determination methods. WP3 focuses on redox response of defined and near-natural systems. WP4 studies the redox reactions of radionuclides. WP5 focuses on Redox processes in radionuclide transport and WP6 deals with redox reactions affecting the spent fuel source-term. Specific workpackages on knowledge management, education

  1. 4th Annual workshop proceedings of the collaborative project ''Redox phenomena controlling systems'' (7th EC FP CP RECOSY)

    International Nuclear Information System (INIS)

    Altmaier, Marcus; Kienzler, Bernhard; Duro, Lara; Grive, Mireia; Montoya, Vanessa

    2012-01-01

    The EURATOM 7 th EC Framework Program Collaborative Project REdox phenomena Controlling SYstems (RECOSY) started in April 2008 and extends over 4 years. Although redox is not a new geochemical issue, different questions are still not resolved. For this reason, main objectives of RECOSY project are a) the sound understanding of redox phenomena controlling the long-term release/retention of radionuclides in nuclear waste disposal, b) providing tools to apply the result to Performance Assessment/Safety Case, c) training of next generation and d) documentation and communication of the results. To this aim, the project set up a consortium of 32 Beneficiaries/Contractors and 6 Associated Groups. The consortium includes key European Research Institutes, Universities, National Waste Management Agencies and SMEs, from 13 EURATOM signatory states, Russia, Japan, Korea, USA and one European Joint Research Centre. The ReCosy concept is innovative in the scientific approach to the redox phenomena. It includes i) advanced analytical tools, ii) investigations of processes responsible for redox control (thermodynamically and kinetically controlled processes, surface reactions and microbial processes,..), iii) provision of required data on redox controlling processes, and iv) response to disturbances in disposal systems. The work program is structured along six RTD workpackages (WP1-6). They cover near-field and far field aspects as well as all relevant host-rocks considered in Europe. In WP1, the scientific state-of-the-art and its application to Performance Assessment/Safety Case is documented and regularly updated. WP2 focuses on development of redox determination methods. WP3 focuses on redox response of defined and near-natural systems. WP4 studies the redox reactions of radionuclides. WP5 focuses on Redox processes in radionuclide transport and WP6 deals with redox reactions affecting the spent fuel source-term. Specific workpackages on knowledge management, education and

  2. New lab scale approaches for quantification of redox conditions

    Science.gov (United States)

    Fernandez, P. M.; Dathe, A.; Nadeem, S.; Bakken, L. R.; Bloem, E.; French, H. K.; Binley, A. M.

    2013-12-01

    Degradation of organic chemicals in the unsaturated zone is a process highly relevant for developing remediation techniques for protecting groundwater. Degradation causes changes in chemical composition of the water phase and gas releases. These changes can potentially be mapped with electrical resistivity measurements in the bulk soil and gas measurements at the soil surface. The redox potential combined with the local geological conditions determines the composition of available electron acceptors as well as microbial degradation pathways and how the soil system is affected in the long term. After oxygen and nitrate are depleted, manganese and iron should be reduced. However, in experiments conducted in the unsaturated zone at Gardermoen airport, Norway, it was found that for the degradation of the de-icing agent propylene glycol (PG), manganese and iron were preferred over nitrate as electron acceptor. A key hypothesis for the work presented is that for a designated soil, the redox potential affects gas releases and soil solution composition profoundly. As the redox potential decreases, the reactants of the degradation change and therefore the composition of the soil-water system changes. These changes can be quantified dynamically by gas measurements and changes in electrical conductivity of the pore water and electrical resistivity of the bulk soil. Batch experiments were conducted to examine whether nitrate is a preferred electron acceptor over iron and manganese oxides as described in classical redox reaction theory. Gas releases during PG and glutamate degradation were measured in a sandy pristine soil with and without nitrate under anaerobic condition during two weeks of incubation. Chemical reactions were quantified with the modelling tool ORCHESTRA. We are currently investigating whether dynamical measurements of electrical conductivity and bulk resistivity are suited to trace which electron acceptors (nitrate, manganese or iron) are being reduced. First

  3. 30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 912.764 Section 912.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal mining... coal mining and reclamation operations. ...

  4. The electrochemical catalytic activity of single-walled carbon nanotubes towards VO2+/VO2+ and V3+/V2+ redox pairs for an all vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2012-01-01

    Highlights: ► SWCNT shows excellent electrochemical catalytic activity towards VO 2 + /VO 2+ and V 3+ /V 2+ redox couples. ► The anodic reactions are more sensitive to the surface oxygen atom content change compared with the cathodic reactions. ► The enhanced battery performance clearly demonstrated that the SWCNT is suitable to be used as an electrode catalyst for VRFB. - Abstract: Single-walled carbon nanotube (SWCNT) was used as an electrode catalyst for an all vanadium redox flow battery (VRFB). The electrochemical property of SWCNT towards VO 2 + /VO 2+ and V 3+ /V 2+ was carefully characterized by cyclic voltammetric (CV) and electrochemical impedance spectroscopy (EIS) measurements. The peak current values for these redox pairs were significantly higher on the modified glassy carbon electrode compared with those obtained on the bare electrode, suggesting the excellent electrochemical activity of the SWCNT. Moreover, it was proved that the anodic process was more dependent on the surface oxygen of the SWCNT than the cathodic process through changing its surface oxygen content. Detailed EIS analysis of different modified electrodes revealed that the charge and mass transfer processes were accelerated at the modified electrode–electrolyte interface, which could be ascribed to the large specific surface area, the surface defects and the oxygen functional groups of the SWCNT. The enhanced battery performance effectively demonstrated that the SWCNT was suitable to serve as an electrode catalyst for the VRFB.

  5. Electrochemistry and in situ scanning tunnelling microscopy of pure and redox-marked DNA- and UNA-based oligonucleotides on Au(111)-electrode surfaces

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Salvatore, Princia; Karlsen, K.

    2013-01-01

    We have studied adsorption and electrochemical electron transfer of several 13- and 15-base DNA and UNA (unlocked nucleic acids) oligonucleotides (ONs) linked to Au(111)-electrode surfaces via a 50-C6-SH group using cyclic voltammetry (CV) and scanning tunnelling microscopy in aqueous buffer under...

  6. Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery

    Science.gov (United States)

    Lee, Wonmi; Jo, Changshin; Youk, Sol; Shin, Hun Yong; Lee, Jinwoo; Chung, Yongjin; Kwon, Yongchai

    2018-01-01

    For enhancing the performance of vanadium redox flow battery (VRFB), a sluggish reaction rate issue of V2+/V3+ redox couple evaluated as the rate determining reaction should be addressed. For doing that, mesoporous tungsten oxide (m-WO3) and oxyniride (m-WON) structures are proposed as the novel catalysts, while m-WON is gained by NH3 heat treatment of m-WO3. Their specific surface area, crystal structure, surface morphology and component analysis are measured using BET, XRD, TEM and XPS, while their catalytic activity for V2+/V3+ redox reaction is electrochemically examined. As a result, the m-WON shows higher peak current, smaller peak potential difference, higher electron transfer rate constant and lower charge transfer resistance than other catalysts, like the m-WO3, WO3 nanoparticle and mesoporous carbon, proving that it is superior catalyst. Regarding the charge-discharge curve tests, the VRFB single cell employing the m-WON demonstrates high voltage and energy efficiencies, high specific capacity and low capacity loss rate. The excellent results of m-WON are due to the reasons like (i) reduced energy band gap, (ii) reaction familiar surface functional groups and (ii) greater electronegativity.

  7. Publications of the Western Earth Surfaces Processes Team 2005

    Science.gov (United States)

    Powell, Charles; Stone, Paul

    2007-01-01

    Introduction The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping, earth-surface process investigations, and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2005 included southern California, the San Francisco Bay region, the Mojave Desert, the Colorado Plateau region of northern Arizona, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2005 as well as additional 2002, 2003, and 2004 publications that were not included in the previous lists (USGS Open-File Reports 03-363, 2004- 1267, 2005-1362). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS Open-File reports that contain large digital databases of geologic map and related information. Information on ordering USGS publications can be found on the World Wide Web at http://www.usgs.gov/pubprod/, or by calling 1-888-ASK-USGS. The U.S. Geological Survey's web

  8. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  9. Visualizing atomic-scale redox dynamics in vanadium oxide-based catalysts.

    Science.gov (United States)

    Ek, Martin; Ramasse, Quentin M; Arnarson, Logi; Georg Moses, Poul; Helveg, Stig

    2017-08-21

    Surface redox processes involving oxygen atom exchange are fundamental in catalytic reactions mediated by metal oxides. These processes are often difficult to uncover due to changes in the surface stoichiometry and atomic arrangement. Here we employ high-resolution transmission electron microscopy to study vanadium oxide supported on titanium dioxide, which is of relevance as a catalyst in, e.g., nitrogen oxide emission abatement for environmental protection. The observations reveal a reversible transformation of the vanadium oxide surface between an ordered and disordered state, concomitant with a reversible change in the vanadium oxidation state, when alternating between oxidizing and reducing conditions. The transformation depends on the anatase titanium dioxide surface termination and the vanadium oxide layer thickness, suggesting that the properties of vanadium oxide are sensitive to the supporting oxide. These atomic-resolution observations offer a basis for rationalizing previous reports on shape-sensitive catalytic properties.Redox processes in metal oxide surfaces can exhibit structure sensitivities which are difficult to uncover. Here, the authors use atomic-resolution imaging to demonstrate facet dependent alterations in the surfaces of supported vanadium oxide upon reduction and oxidation.

  10. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).

    Science.gov (United States)

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-09-01

    Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest

  11. Photochemical Transformation Processes in Sunlit Surface Waters (Invited)

    Science.gov (United States)

    Vione, D.

    2013-12-01

    Photochemical reactions are major processes in the transformation of hardly biodegradable xenobiotics in surface waters. They are usually classified into direct photolysis and indirect or sensitised degradation. Direct photolysis requires xenobiotic compounds to absorb sunlight, and to get transformed as a consequence. Sensitised transformation involves reaction with transient species (e.g. °OH, CO3-°, 1O2 and triplet states of chromophoric dissolved organic matter, 3CDOM*), photogenerated by so-called photosensitisers (nitrate, nitrite and CDOM). CDOM is a major photosensitiser: is it on average the main source of °OH (and of CO3-° as a consequence, which is mainly produced upon oxidation by °OH of carbonate and bicarbonate) and the only important source of 1O2 and 3CDOM* [1, 2]. CDOM origin plays a key role in sensitised processes: allochthonous CDOM derived from soil runoff and rich in fulvic and humic substances is usually more photoactive than autochthonous CDOM (produced by in-water biological processes and mainly consisting of protein-like material) or of CDOM derived from atmospheric deposition. An interesting gradual evolution of CDOM origin and photochemistry can be found in mountain lakes across the treeline, which afford a gradual transition of allochthonous- autochtonous - atmopheric CDOM when passing from trees to alpine meadows to exposed rocks [3]. Another important issue is the sites of reactive species photoproduction in CDOM. While there is evidence that smaller molecular weight fractions are more photoactive, some studies have reported considerable 1O2 reactivity in CDOM hydrophobic sites and inside particles [4]. We have recently addressed the problem and found that dissolved species in standard humic acids (hydrodynamic diameter pollutants to be assessed and modelled. For instance, it is possible to predict pollutant half-life times by knowing absorption spectrum, direct photolysis quantum yield and reaction rate constants with °OH, CO3

  12. Redox biology response in germinating Phaseolus vulgaris seeds exposed to copper: Evidence for differential redox buffering in seedlings and cotyledon.

    Science.gov (United States)

    Karmous, Inès; Trevisan, Rafael; El Ferjani, Ezzeddine; Chaoui, Abdelilah; Sheehan, David

    2017-01-01

    In agriculture, heavy metal contamination of soil interferes with processes associated with plant growth, development and productivity. Here, we describe oxidative and redox changes, and deleterious injury within cotyledons and seedlings caused by exposure of germinating (Phaseolus vulgaris L. var. soisson nain hâtif) seeds to copper (Cu). Cu induced a marked delay in seedling growth, and was associated with biochemical disturbances in terms of intracellular oxidative status, redox regulation and energy metabolism. In response to these alterations, modulation of activities of antioxidant proteins (thioredoxin and glutathione reductase, peroxiredoxin) occurred, thus preventing oxidative damage. In addition, oxidative modification of proteins was detected in both cotyledons and seedlings by one- and two-dimensional electrophoresis. These modified proteins may play roles in redox buffering. The changes in activities of redox proteins underline their fundamental roles in controlling redox homeostasis. However, observed differential redox responses in cotyledon and seedling tissues showed a major capacity of the seedlings' redox systems to protect the reduced status of protein thiols, thus suggesting quantitatively greater antioxidant protection of proteins in seedlings compared to cotyledon. To our knowledge, this is the first comprehensive redox biology investigation of the effect of Cu on seed germination.

  13. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei

    2014-01-28

    Cellular redox status plays a key role in mediating various physiological and developmental processes often through modulating activities of redox-sensitive proteins. Various stresses trigger over-production of reactive oxygen/nitrogen species which lead to oxidative modifications of redox-sensitive proteins. Identification and characterization of redox-sensitive proteins are important steps toward understanding molecular mechanisms of stress responses. Here, we report a high-throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential labeling of reduced and oxidized thiols. The biotin-tagged peptides are affinity purified, labeled with iTRAQ reagents, and analyzed using a paralleled HCD-CID fragmentation mode in an LTQ-Orbitrap. With this approach, we identified 195 cysteine-containing peptides from 179 proteins whose thiols underwent oxidative modifications in Arabidopsis cells following the treatment with hydrogen peroxide. A majority of those redox-sensitive proteins, including several transcription factors, were not identified by previous redox proteomics studies. This approach allows identification of the specific redox-regulated cysteine residues, and offers an effective tool for elucidation of redox proteomes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting.

    Science.gov (United States)

    Gibbons, William T; Venstrom, Luke J; De Smith, Robert M; Davidson, Jane H; Jackson, Gregory S

    2014-07-21

    Zirconium-doped ceria (Ce(1-x)Zr(x)O2) was synthesized through a controlled electrospinning process as a promising approach to cost-effective, sinter-resistant material structures for high-temperature, solar-driven thermochemical redox cycles. To approximate a two-step redox cycle for solar fuel production, fibrous Ce(1-x)Zr(x)O2 with relatively low levels of Zr-doping (0 production. Cycle stability of the fibrous Ce(1-x)Zr(x)O2 (with x = 0.025) was assessed for a range of conditions by measuring rates of O2 release during reduction and CO production during reoxidation and by assessing post-cycling fiber crystallite sizes and surface areas. Sintering increases with reduction temperature but occurs primarily along the fiber axes. Even after 108 redox cycles with reduction at 1400 °C and oxidation with CO2 at 800 °C, the fibers maintain their structure with surface areas of ∼0.3 m(2) g(-1), higher than those observed in the literature for other ceria-based structures operating at similarly high temperature conditions. Total CO production and peak production rate stabilize above 3.0 mL g(-1) and 13.0 mL min(-1) g(-1), respectively. The results show the potential for electrospun oxides as sinter-resistant material structures with adequate surface area to support rapid CO2 splitting in solar thermochemical redox cycles.

  15. Effect of gold nanoparticles on the structure and electron-transfer characteristics of glucose oxidase redox polyelectrolyte-surfactant complexes.

    Science.gov (United States)

    Cortez, M Lorena; Marmisollé, Waldemar; Pallarola, Diego; Pietrasanta, Lía I; Murgida, Daniel H; Ceolín, Marcelo; Azzaroni, Omar; Battaglini, Fernando

    2014-10-06

    Efficient electrical communication between redox proteins and electrodes is a critical issue in the operation and development of amperometric biosensors. The present study explores the advantages of a nanostructured redox-active polyelectrolyte-surfactant complex containing [Os(bpy)2Clpy](2+) (bpy=2,2'-bipyridine, py= pyridine) as the redox centers and gold nanoparticles (AuNPs) as nanodomains for boosting the electron-transfer propagation throughout the assembled film in the presence of glucose oxidase (GOx). Film structure was characterized by grazing-incidence small-angle X-ray scattering (GISAXS) and atomic force microscopy (AFM), GOx incorporation was followed by surface plasmon resonance (SPR) and quartz-crystal microbalance with dissipation (QCM-D), whereas Raman spectroelectrochemistry and electrochemical studies confirmed the ability of the entrapped gold nanoparticles to enhance the electron-transfer processes between the enzyme and the electrode surface. Our results show that nanocomposite films exhibit five-fold increase in current response to glucose compared with analogous supramolecular AuNP-free films. The introduction of colloidal gold promotes drastic mesostructural changes in the film, which in turn leads to a rigid, amorphous interfacial architecture where nanoparticles, redox centers, and GOx remain in close proximity, thus improving the electron-transfer process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Chronoamperometry-Based Redox Cycling for Application to Immunoassays.

    Science.gov (United States)

    Lee, Ga-Yeon; Park, Jun-Hee; Chang, Young Wook; Cho, Sungbo; Kang, Min-Jung; Pyun, Jae-Chul

    2018-01-26

    In this work, the chronoamperometry-based redox cycling of 3,3',5,5'-tetramethylbenzidine (TMB) was performed by using interdigitated electrode (IDE). The signal was obtained from two sequential chronoamperometric profiles: (1) with the generator at the oxidative potential of TMB and the collector at the reductive potential of TMB, and (2) with the generator at the reductive potential of TMB and the collector at the oxidative potential of TMB. The chronoamperometry-based redox cycling (dual mode) showed a sensitivity of 1.49 μA/OD, and the redox cycling efficiency was estimated to be 94% (n = 10). The sensitivities of conventional redox cycling with the same interdigitated electrode and chronoamperometry using a single working electrode (single mode) were estimated to be 0.67 μA/OD and 0.18 μA/OD, respectively. These results showed that the chronoamperometry-based redox cycling (dual mode) could be more effectively used to quantify the oxidized TMB than other amperometric methods. The chronoamperometry-based redox cycling (dual mode) was applied to immunoassays using a commercial ELISA kit for medical diagnosis of the human hepatitis B virus surface antigen (hHBsAg). Finally, the chronoamperometry-based redox cycling (dual mode) provided more than a 10-fold higher sensitivity than conventional chronoamperometry using a single working electrode (single mode) when applied to a commercial ELISA kit for medical diagnosis of hHBsAg.

  17. Monolayer to MTS: using SEM, HIM, TEM and SERS to compare morphology, nanosensor uptake and redox potential in MCF7 cells

    Science.gov (United States)

    Jamieson, L. E.; Bell, A. P.; Harrison, D. J.; Campbell, C. J.

    2015-06-01

    Cellular redox potential is important for the control and regulation of a vast number of processes occurring in cells. When the fine redox potential balance within cells is disturbed it can have serious consequences such as the initiation or progression of disease. It is thought that a redox gradient develops in cancer tumours where the peripheral regions are well oxygenated and internal regions, further from vascular blood supply, become starved of oxygen and hypoxic. This makes treatment of these areas more challenging as, for example, radiotherapy relies on the presence of oxygen. Currently techniques for quantitative analysis of redox gradients are limited. Surface enhanced Raman scattering (SERS) nanosensors (NS) have been used to detect redox potential in a quantitative manner in monolayer cultured cells with many advantages over other techniques. This technique has considerable potential for use in multicellular tumour spheroids (MTS) - a three dimensional (3D) cell model which better mimics the tumour environment and gradients that develop. MTS are a more realistic model of the in vivo cellular morphology and environment and are becoming an increasingly popular in vitro model, replacing traditional monolayer culture. Imaging techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM) and helium ion microscopy (HIM) were used to investigate differences in morphology and NS uptake in monolayer culture compared to MTS. After confirming NS uptake, the first SERS measurements revealing quantitative information on redox potential in MTS were performed.

  18. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide.

    Science.gov (United States)

    Liao, Peng; Yuan, Songhu; Wang, Dengjun

    2016-10-18

    Transport of colloids in the subsurface is an important environmental process with most research interests centered on the transport in chemically stable conditions. While colloids can be formed under dynamic redox conditions, the impact of redox reactions on their transport is largely overlooked. Taking the redox reactions between ferrihydrite colloids and sulfide as an example, we investigated how and to what extent the redox reactions modulated the transport of ferrihydrite colloids in anoxic sand columns over a range of environmentally relevant conditions. Our results reveal that the presence of sulfide (7.8-46.9 μM) significantly decreased the breakthrough of ferrihydrite colloids in the sand column. The estimated travel distance of ferrihydrite colloids in the absence of sulfide was nearly 7-fold larger than that in the presence of 46.9 μM sulfide. The reduced breakthrough was primarily attributed to the reductive dissolution of ferrihydrite colloids by sulfide in parallel with formation of elemental sulfur (S(0)) particles from sulfide oxidation. Reductive dissolution decreased the total mass of ferrihydrite colloids, while the negatively charged S(0) decreased the overall zeta potential of ferrihydrite colloids by attaching onto their surfaces and thus enhanced their retention in the sand. Our findings provide novel insights into the critical role of redox reactions on the transport of redox-sensitive colloids in saturated porous media.

  19. Electron beam processed plasticized epoxy coatings for surface protection

    International Nuclear Information System (INIS)

    Ibrahim, Mervat S.; Mohamed, Heba A.; Kandile, Nadia G.; Said, Hossam M.; Mohamed, Issa M.

    2011-01-01

    Highlights: · Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass -1 irradiation dose showed the best adhesion and passed bending tests. · The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. · The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass -1 ) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass -1 irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion protection for carbon steel and compete the

  20. Publications of Western Earth Surface Processes Team 2001

    Science.gov (United States)

    Powell, II; Graymer, R.W.

    2002-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth-science studies in the Western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues, such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2001 included southern California, the San Francisco Bay region, the Pacific Northwest, and the Las Vegas urban corridor. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the Western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2001, as well as additional 1999 and 2000 publications that were not included in the previous list (USGS Open-File Report 00–215 and USGS Open-File Report 01–198). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS Open-File Reports that contain large digital databases of geologic map and related information.

  1. Publications of the Western Earth Surface Processes Team 2000

    Science.gov (United States)

    Powell, Charles L.; Stone, Paul

    2001-01-01

    The Western Earth Surface Processes Team (WESP) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2000 included southern California, the San Francisco Bay region, the Pacific Northwest, the Las Vegas urban corridor, and selected National Park lands. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2000 as well as additional 1999 publications that were not included in the previous list (USGS Open-file Report 00-215). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these Web publications are USGS open-file reports that contain large digital databases of geologic map and related information.

  2. The Redox Behaviour of Randomly Dispersed Single Walled Carbon Nanotubes both in the Absence and in the Presence of Adsorbed Glucose Oxidase

    Directory of Open Access Journals (Sweden)

    Gareth P. Keeley

    2006-12-01

    Full Text Available The electrochemical behaviour of SWCNTs randomly dispersed on gold and glassy carbon electrode surfaces was characterised via cyclic voltammetry and complex impedance spectroscopy, using the ferri/ferrocyanide couple as a redox active test probe . In subsequent investigations glucose oxidase (GOx was adsorbed onto the SWCNT ensemble without apparent denaturation of the enzyme. Cyclic voltammetry and potential step chronoamperometry were used to quantify and understand the process of electron transfer between the immobilised protein redox site and the working electrode. The effect of pH on the system was also investigated. In particular, we have shown that, for the calculation of electron transfer rate constants for surface-immobilised redox systems, chronoamperometry is preferable to voltammetry, which has been the technique of choice until now.

  3. Managing the cellular redox hub in photosynthetic organisms.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2012-02-01

    Light-driven redox chemistry is a powerful source of redox signals that has a decisive input into transcriptional control within the cell nucleus. Like photosynthetic electron transport pathways, the respiratory electron transport chain exerts a profound control over gene function, in order to balance energy (reductant and ATP) supply with demand, while preventing excessive over-reduction or over-oxidation that would be adversely affect metabolism. Photosynthetic and respiratory redox chemistries are not merely housekeeping processes but they exert a controlling influence over every aspect of plant biology, participating in the control of gene transcription and translation, post-translational modifications and the regulation of assimilatory reactions, assimilate partitioning and export. The number of processes influenced by redox controls and signals continues to increase as do the components that are recognized participants in the associated signalling pathways. A step change in our understanding of the overall importance of the cellular redox hub to plant cells has occurred in recent years as the complexity of the management of the cellular redox hub in relation to metabolic triggers and environmental cues has been elucidated. This special issue describes aspects of redox regulation and signalling at the cutting edge of current research in this dynamic and rapidly expanding field. © 2011 Blackwell Publishing Ltd.

  4. Focusing on the Interfaces, Estuaries and Redox Transition Zones, for Understanding the Microbial Processes and Biogeochemical Cycling of Carbon under the Looming Influence of Global Warming and Anthropogenic Perturbations

    Science.gov (United States)

    Dang, H.; Jiao, N.

    2013-12-01

    Estuaries are the natural interface between terrestrial and marine ecosystems. These are also the zones where human activities exert the strongest impact on the earth and ocean environments. Due to high pressure from the effects of global warming and anthropogenic activities, many estuaries are deteriorating and experiencing significant change of the ecological processes and environmental functions. Certain fundamental microbial processes, including carbon fixation and respiration, have been changing as responses to and consequences of the altered estuarine environment and geochemistry. Increased inputs of terrigenous and anthropogenic organic materials and nutrients and elevated temperature make estuaries easy to be subjected to harmful algal blooms and hypoxic and even anoxic events. The change of the redox status of the estuarine and coastal waters and the increased nutrient loads such as that from terrestrial nitrate stimulate anaerobic respiration processes, such as nitrate reduction and denitrification. This may have strong negative impact on the marine environment, ecosystem and even climate, such as those caused by greenhouse gas production (N2O, CH4) by anaerobic microbial processes. In addition, some nutrients may be consumed by anaerobically respiring heterotrophic microorganisms, instead of being utilized by phytoplankton for carbon fixation. In this regard, the ecological function of the estuarine ecosystem may be altered and the ecological efficiency may be lowered, as less energy is produced by the microbial respiration process and less carbon is fixed by phytoplankton. However, on the other side, in hypoxic and anoxic waters, inorganic carbon fixation by anaerobic microorganisms may happen, such as those via the chemolithoautotrophic denitrifying sulfur oxidizing process and the anaerobic ammonium oxidation (anammox) process. Global warming and anthropogenic perturbations may have lowered the diversity, complexity, stability and sustainability of

  5. Redox chemistry of americium in nitric acid media

    International Nuclear Information System (INIS)

    Picart, S.; Jobelin, I.; Armengol, G.; Adnet, JM.

    2004-01-01

    The redox properties of the actinides are very important parameters for speciation studies and spent nuclear fuel reprocessing based on liquid-liquid extraction of actinides at different oxidation states (as in the Purex or Sesame process). They are also very useful for developing analytical tools including coulometry and redox titration. This study addressed the americium(IV)/americium(III) and americium(VI)/americium(V) redox couples, focusing on exhaustive acquisition of the thermodynamic and kinetic parameters of americium oxidation at an electrode in a complexing nitric acid medium. (authors)

  6. Structure and redox properties of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX adsorbed on a silica surface. A DFT M05 computational study

    Directory of Open Access Journals (Sweden)

    Liudmyla K. Sviatenko

    2017-11-01

    Full Text Available Adsorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX on (001 surface of α-quartzwas studiedat the M05/tzvp level using cluster approximation. Hydrogen bonds between nitramines and silica surface were analyzed by atoms in molecules (AIM method. Electron attachment causes significant change in geometry of adsorbed complexes. Redox properties of adsorbed RDX and HMX were compared with those of gas-phase and hydrated species by calculation of the ionization potential, electron affinity, oxidation and reduction Gibbs free energies, oxidation and reduction potentials. Calculations show that adsorbed RDX and HMX have lower ability to undergo redox transformations than hydrated ones.

  7. Direct electrochemistry of redox proteins

    NARCIS (Netherlands)

    Heering, H.A.

    1995-01-01

    The goal of the project was to obtain more detailed insight in interactions between redox proteins and solid electrodes and the mechanisms of electron transfer. In addition to this, the influence of the protein environment on the redox properties of the active site and the possible

  8. Publications of the Western Earth Surface Processes Team 2002

    Science.gov (United States)

    Powell, Charles; Graymer, R.W.

    2003-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2001 included southern California, the San Francisco Bay region, the Pacific Northwest, and the Las Vegas urban corridor. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2002 as well as additional 1998 and 2001 publications that were not included in the previous list (USGS Open-File Report 00-215, USGS Open-File Report 01-198, and USGS Open-File Report 02-269). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS open-file reports that contain large digital databases of geologic map and related information. Information on ordering USGS publications can be found on the World Wide Web or by calling 1-888-ASK-USGS. The U.S. Geological Survey’s web server for geologic information in the western United States is located at http

  9. Electron beam processed plasticized epoxy coatings for surface protection

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Mervat S. [National Center for Radiation Research and Technology, Nasr City (Egypt); Mohamed, Heba A., E-mail: hebaamohamed@gmail.com [National Research Center, Dokki (Egypt); Kandile, Nadia G. [University College for Girls, Ain Shams University (Egypt); Said, Hossam M.; Mohamed, Issa M. [National Center for Radiation Research and Technology, Nasr City (Egypt)

    2011-10-17

    Highlights: {center_dot} Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass{sup -1} irradiation dose showed the best adhesion and passed bending tests. {center_dot} The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. {center_dot} The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass{sup -1}) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass{sup -1} irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion

  10. Triangle geometry processing for surface modeling and cartesian grid generation

    Science.gov (United States)

    Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY

    2002-09-03

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  11. Microstructural and hardness gradients in Cu processed by high pressure surface rolling

    DEFF Research Database (Denmark)

    He, Q. Y.; Zhu, X.-M.; Mei, Q. S.

    2017-01-01

    The surface of an annealed Cu plate was processed by a high pressure surface rolling (HPSR) process. It is found that the deformed surface layer in the Cu plate after HPSR can be as thick as 2 mm and is characterized by a gradient microstructure, with grain sizes varying from the nanoscale...

  12. Manufacture of functional surfaces through combined application of tool manufacturing processes and Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Solmer; Arentoft, Mogens; Grønbæk, J.

    2012-01-01

    The tool surface topography is often a key parameter in the tribological performance of modern metal forming tools. A new generation of multifunctional surfaces is achieved by combination of conventional tool manufacturing processes with a novel Robot Assisted Polishing process. This novel surface...

  13. 30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 910.764 Section 910.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal mining...

  14. 30 CFR 937.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 937.764 Section 937.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.764 Process for designating areas unsuitable for surface coal mining...

  15. 30 CFR 922.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 922.764 Section 922.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MICHIGAN § 922.764 Process for designating areas unsuitable for surface coal mining...

  16. 30 CFR 942.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 942.764 Section 942.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE TENNESSEE § 942.764 Process for designating areas unsuitable for surface coal mining... Mining Operations, shall apply to surface coal mining and reclamation operations. (b) The Secretary shall...

  17. 30 CFR 941.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 941.764 Section 941.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.764 Process for designating areas unsuitable for surface coal mining...

  18. 30 CFR 939.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 939.764 Section 939.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE RHODE ISLAND § 939.764 Process for designating areas unsuitable for surface coal mining...

  19. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    holes need different processing techniques. Conventional finishing methods used so far become almost impossible or cumbersome. In this paper, a nano material especially multi wall carbon nano tube is used in the machining process like ...

  20. Theory of water treatment by capacitive deionization with redox active porous electrodes.

    Science.gov (United States)

    He, Fan; Biesheuvel, P M; Bazant, Martin Z; Hatton, T Alan

    2018-04-01

    Capacitive deionization (CDI) for water treatment, which relies on the capture of charged species to sustain the electrical double layers (EDLs) established within porous electrodes under an applied electrical potential, can be enhanced by the chemical attachment of fixed charged groups to the porous electrode electrodes (ECDI). It has recently been demonstrated that further improvements in capacity and energy storage can be gained by functionalization of the electrode surfaces with redox polymers in which the charge on the electrodes can be modulated through Faradaic reactions under different cell voltages in a capacitive process that can be called "Faradaic CDI" (FaCDI). Here, we extend recent mathematical models developed for the characterization of CDI and ECDI systems to incorporate the redox mediated contributions by allowing for the variable chemical charges generated by reactions in FaCDI. The lumped model developed here assumes the spacer channel is well-mixed with uniform electrosorption in each electrode. We demonstrate that the salt adsorption performance characterization of the fixed chemical charge ECDI and variable chemical charge FaCDI materials can be unified within a common theoretical framework based on the point of zero charge (PZC) of the electrode material. In the latter case the PZC is determined by the equilibrium potentials of the redox couples immobilized on the porous electrodes. The new model is able to predict the experimentally observed enhanced and inverted performance of CDI cells, and illuminates the benefit of choosing redox active materials for water treatment applications. The deionization performance of FaCDI cells is shown to be superior to that of CDI and ECDI systems with equilibrium adsorption capacities 50-100% higher than attained with CDI systems, and at smaller cell voltages, depending on the redox potentials of the Faradaic moieties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Lunar rock surfaces as detectors of solar processes

    International Nuclear Information System (INIS)

    Hartung, J.B.; Hunter College, New York, NY)

    1980-01-01

    Lunar rock surfaces exposed at or just below the lunar surface are considered as detectors of the solar wind, solar flares and solar-derived magnetic fields through their interactions with galactic cosmic rays. The degradation of the solar detector capabilities of lunar surface rocks by meteoroid impact erosion, accreta deposition, loose dust, and sputtering, amorphous layer formation and accelerated diffusion due to solar particles and illumination is discussed, and it is noted that the complex interactions of factors affecting the outer micron of exposed surface material has so far prevented the development of a satisfactory model for a particle detector on the submicron scale. Methods for the determination of surface exposure ages based on the accumulation of light solar wind noble gases, Fe and Mg, impact craters, solar flare tracks, and cosmogenic Kr isotopes are examined, and the systematic variations in the ages determined by the various clocks are discussed. It is concluded that a means of obtaining satisfactory quantitative rate or flux data has not yet been established

  2. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2016-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate......-process determination of the process endpoint. This makes it possible to reliably determine the right time for changing the polishing media to finer abrasive when applying a given set of parameters is no longer effective to create a smoother surface, thus improving the efficiency of the process. The findings enabling...

  3. Process chain for fabrication of anisotropic optical functional surfaces on polymer components

    DEFF Research Database (Denmark)

    Li, Dongya; Zhang, Yang; Regi, Francesco

    2017-01-01

    This paper aims to introduce a process chain for fabrication of anisotropic optical functional surfaces on polymer products. Thesurface features under investigation are composed of micro serrated ridges. The scope was to maximize the visible contrast betweenhorizontally orthogonal textured surfaces...

  4. Redox Regulation in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Sonam Parakh

    2013-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS.

  5. Effect of finishing process on the surface quality of Co-Cr-Mo dental alloys

    Directory of Open Access Journals (Sweden)

    Dorota Klimecka -Tatar

    2016-09-01

    Full Text Available Preparatory procedures for the material have a significant influence on the surface stereometry of the material. This study investigated the effect of the electropolishing process on the surface quality of metallic prosthetic constructions based on Co-Cr-Mo alloys. It has been found that the process of electropolishing prevents to excessive development of the surface of a material and consequently improves surface quality.

  6. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    DEFF Research Database (Denmark)

    Bagge, Dorthe; Hjelm, M.; Johansen, C.

    2001-01-01

    of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4',6'-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria...

  7. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great ...

  8. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  9. Seventh BES [Basic Energy Sciences] catalysis and surface chemistry research conference

    International Nuclear Information System (INIS)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases

  10. Surface enhancement of cold work tool steels by friction stir processing with a pinless tool

    Science.gov (United States)

    Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.

    2014-03-01

    The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.

  11. Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Weinrich, Henning [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); RWTH Aachen Univ., Aachen (Germany). Inst. of Physical Chemistry; Come, Jérémy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Tempel, Hermann [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Kungl, Hans [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Eichel, Rüdiger-A. [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Balke, Nina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)

    2017-10-10

    Iron-air cells provide a promising and resource-efficient alternative battery concept with superior area specific power density characteristics compared to state-of-the-art Li-air batteries and potentially superior energy density characteristics compared to present Li-ion batteries. Understanding charge-transfer reactions at the anode-electrolyte interface is the key to develop high-performance cells. By employing in-situ electrochemical atomic force microscopy (in-situ EC-AFM), in-depth insight into the electrochemically induced surface reaction processes on iron in concentrated alkaline electrolyte is obtained. The results highlight the formation and growth of the redox-layer on iron over the course of several oxidation/reduction cycles. By this means, a direct correlation between topography changes and the corresponding electrochemical reactions at the nanoscale could unambiguously be established. Here in this paper, the twofold character of the nanoparticulate redox-layer in terms of its passivating character and its contribution to the electrochemical reactions is elucidated. Furthermore, the evolution of single nanoparticles on the iron electrode surface is evaluated in unprecedented and artifact-free detail. Based on the dedicated topography analysis, a detailed structural model for the evolution of the redox-layer which is likewise elementary for corrosion science and battery research is derived.

  12. Analysis and research on curved surface's prototyping error based on FDM process

    Science.gov (United States)

    Gong, Y. D.; Zhang, Y. C.; Yang, T. B.; Wang, W. S.

    2008-12-01

    Analysis and research methods on curved surface's prototyping error with FDM (Fused Deposition Modeling) process are introduced in this paper, then the experiment result of curved surface's prototyping error is analyzed, and the integrity of point cloud information and the fitting method of curved surface prototyping are discussed as well as the influence on curved surface's prototyping error with different software. Finally, the qualitative and quantitative conclusions on curved surface's prototyping error are acquired in this paper.

  13. Prospects of DLC coating as environment friendly surface treatment process.

    Science.gov (United States)

    Kim, S W; Kim, S G

    2011-06-01

    After first commercialization in 90's, the applications of diamond-like carbon (DLC) have been significantly expanded to tool, automobile parts, machineries and moulds to enhance wear and friction properties. Although DLC has many advantages like high hardness, low friction electrical insulating and chemical stability and has the possible market, its application in the field is still very limited due to the gaps of understanding between end-user and developer of its advantage of costing. Recently, one of the most popular issues in the surface modification is providing the long lasting super-hydrophilic or -hydrophobic properties on the material surface for the outdoor usage. A lot of material loss is caused due to water corrosion which has to do with the flow and contacts of water like fuel cell separator and air conditioner parts. The consequence of development of functional surface based on the hydrophilic or hydrophobic design for the important parts would be really helpful for materials to be cleaner and more energy effective. Here, we first reviewed the DLC technology and then examined the kind of surface modification as well as its merits and disadvantage. We also looked at how we can improve super-hydrophilic and super hydrophobic for the DLC coating layer as well as current status of technology and arts of DLC. In the end, we would like to suggest it as one of the environmental friendly industrial technology. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  14. Laser surface processing with controlled nitrogen-argon concentration levels for regulated surface life time

    Science.gov (United States)

    Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.

    2018-03-01

    Laser surface modification can be used to enhance the mechanical properties of a material, such as hardness, toughness, fatigue strength, and corrosion resistance. Surface nitriding is a widely used thermochemical method of surface modification, in which nitrogen is introduced into a metal or other material at an elevated temperature within a furnace. It is used on parts where there is a need for increased wear resistance, corrosion resistance, fatigue life, and hardness. Laser nitriding is a novel method of nitriding where the surface is heated locally by a laser, either in an atmosphere of nitrogen or with a jet of nitrogen delivered to the laser heated site. It combines the benefits of laser modification with those of nitriding. Recent work on high toughness tool steel samples has shown promising results due to the increased nitrogen gas impingement onto the laser heated region. Increased surface activity and nitrogen adsorption was achieved which resulted in a deeper and harder surface compared to conventional hardening methods. In this work, the effects of the laser power, pulse repetition frequency, and overlap percentage on laser surface treatment of 316 L SST steel samples with an argon-nitrogen jet will be presented. Resulting microstructure, phase type, microhardness, and wear resistance are presented.

  15. Thin film surface processing by ultrashort laser pulses (USLP)

    Science.gov (United States)

    Scorticati, D.; Skolski, J. Z. P.; Römer, G. R. B. E.; Huis in't Veld, A. J.; Workum, M.; Theelen, M.; Zeman, M.

    2012-06-01

    In this work, we studied the feasibility of surface texturing of thin molybdenum layers on a borosilicate glass substrate with Ultra-Short Laser Pulses (USLP). Large areas of regular diffraction gratings were produced consisting of Laserinduced periodic surface structures (LIPSS). A short pulsed laser source (230 fs-10 ps) was applied using a focused Gaussian beam profile (15-30 μm). Laser parameters such as fluence, overlap (OL) and Overscans (OS), repetition frequency (100-200 kHz), wavelength (1030 nm, 515 nm and 343 nm) and polarization were varied to study the effect on periodicity, height and especially regularity of LIPSS obtained in layers of different thicknesses (150-400 nm). The aim was to produce these structures without cracking the metal layer and with as little ablation as possible. It was found that USLP are suitable to reach high power densities at the surface of the thin layers, avoiding mechanical stresses, cracking and delamination. A possible photovoltaic (PV) application could be found in texturing of thin film cells to enhance light trapping mechanisms.

  16. Synthesis and characterization of redox-active ferric nontronite

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, A. G.; Kukkadapu, R. K.; Dunphy, D. R.; Artyushkova, K.; Cerrato, J. M.; Kruichak, J. N.; Janish, M. T.; Sun, C. J.; Argo, J. M.; Washington, R. E.

    2017-10-01

    Heterogeneous redox reactions on clay mineral surfaces control mobility and bioavailability of redox-sensitive nutrients and contaminants. Iron (Fe) residing in clay mineral structures can either catalyze or directly participate in redox reactions; however, chemical controls over its reactivity are not fully understood. In our previous work we demonstrated that converting a minor portion of Fe(III) to Fe(II) (partial reduction) in the octahedral sheet of natural Fe-rich clay mineral nontronite (NAu-1) activates its surface, making it redox-active. In this study we produced and characterized synthetic ferric nontronite (SIP), highlighting structural and chemical similarities and differences between this synthetic nontronite and its natural counterpart NAu-1, and probed whether mineral surface is redox-active by reacting it with arsenic As(III) under oxic and anoxic conditions. We demonstrate that synthetic nontronite SIP undergoes the same activation as natural nontronite NAu-1 following the partial reduction treatment. Similar to NAu-1, SIP oxidized As(III) to As(V) under both oxic (catalytic pathway) and anoxic (direct oxidation) conditions. The similar reactivity trends observed for synthetic nontronite and its natural counterpart make SIP an appropriate analog for laboratory studies. The development of chemically pure analogs for ubiquitous soil minerals will allow for systematic research of the fundamental properties of these minerals.

  17. Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes

    Science.gov (United States)

    Nakayama, Katsutoshi; Hiraga, Takuya; Zhu, Chunyu; Tsuji, Etsushi; Aoki, Yoshitaka; Habazaki, Hiroki

    2017-11-01

    Herein we report simple electrochemical processes to fabricate a self-healing superhydrophobic CeO2 coating on Type 304 stainless steel. The CeO2 surface anodically deposited on flat stainless steel surface is hydrophilic, although high temperature-sintered and sputter-deposited CeO2 surface was reported to be hydrophobic. The anodically deposited hydrophilic CeO2 surface is transformed to hydrophobic during air exposure. Specific accumulation of contaminant hydrocarbon on the CeO2 surface is responsible for the transformation to hydrophobic state. The deposition of CeO2 on hierarchically rough stainless steel surface produces superhydrophobic CeO2 surface, which also shows self-healing ability; the surface changes to superhydrophilic after oxygen plasma treatment but superhydrophobic state is recovered repeatedly by air exposure. This work provides a facile method for preparing a self-healing superhydrophobic surface using practical electrochemical processes.

  18. Improvement in Surface Characterisitcs of Polymers for Subsequent Electroless Plating Using Liquid Assisted Laser Processing

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    Metallization of polymers is a widely used process in the electronic industry that involves their surface modification as a pre-treatment step. Laser-based surface modification is one of the commonly used techniques for polymers due to its speed and precision. The process involves laser heating...... of the polymer surface to generate a rough or porous surface. Laser processing in liquid generates superior surface characteristics that result in better metal deposition. In this study, a comparison of the surface characteristics obtained by laser processing in water vis-à-vis air along with the deposition...... characteristics are presented. In addition, a numerical model based on the finite volume method is developed to predict the temperature profile during the process. Based on the model results, it is hypothesized that physical phenomena such as vapor bubble generation and plasma formation may occur in the presence...

  19. Hydrologic influence on redox dynamics in estuarine environments

    Science.gov (United States)

    Michael, H. A.; Kim, K. H.; Guimond, J. A.; Heiss, J.; Ullman, W. J.; Seyfferth, A.

    2017-12-01

    Redox conditions in coastal aquifers control reactions that impact nutrient cycling, contaminant release, and carbon budgets, with implications for water resources and ecosystem health. Hydrologic changes can shift redox boundaries and inputs of reactants, especially in dynamic coastal systems subject to fluctuations on tidal, lunar, and longer timescales. We present two examples of redox shifts in estuarine systems in Delaware, USA: a beach aquifer and a saltmarsh. Beach aquifers are biogeochemical hot spots due to mixing between fresh groundwater and infiltrating seawater. At Cape Henlopen, DE, geochemical measurements identified reactions in the intertidal aquifer that include cycling of carbon, nitrogen, iron, and sulfur. Measurements and modeling illustrate that redox potential as well as the locations of redox reactions shift on tidal to seasonal timescales and in response to changing beach and aquifer properties, impacting overall rates of reactions such as denitrification that reduces N loads to coastal waters. In the St. Jones National Estuarine Research Reserve, tidal fluctuations in channels cause periodic groundwater-surface water exchange, water table movement, and intermittent flooding that varies spatially across the saltmarsh. These changes create shifts in redox potential that are greatest near channels and in the top 20 cm of sediments. The magnitude of redox change depends on hydrologic setting (near channels or in marsh interior), hydrologic conditions (tidal stage, seasonal shifts), as well as prevalence of macropores created by crab burrows that change seasonally with crab activity. These shifts correspond to changes in porewater chemistry that have implications for nutrient cycling and carbon export to the ocean. Understanding hydrologic influence on redox geochemistry is critical for predicting how these systems and their ecosystem services may change in the future in response to anthropogenic and climate change.

  20. Surface gas-exchange processes of snow algae

    OpenAIRE

    Williams, William E.; Gorton, Holly L.; Vogelmann, Thomas C.

    2003-01-01

    The red-colored chlorophyte Chlamydomonas nivalis is commonly found in summer snowfields. We used a modified Li-Cor gas-exchange system to investigate surface gas-exchange characteristics of snow colonized by this alga, finding rates of CO2 uptake up to 0.3 μmol m−2⋅s−1 in dense algal blooms. Experiments varying the irradiance resulted in light curves that resembled those of the leaves of higher plants. Red light was more effective than white and much more effective than green or blue, becaus...

  1. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2007-01-01

    Three levels of modeling, microscopic, mesoscopic and macroscopic are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. It can......, such that in contrast to the microscopic model the spatial resolution is reduced. The derivation of deterministic limit equations is in correspondence with the successful description of experiments under low-pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena...

  2. Statistical and signal processing concepts in surface metrology

    International Nuclear Information System (INIS)

    Church, E.L.; Takacs, P.Z.

    1986-01-01

    This paper proposes the use of a simple two-scale model of surface roughness for testing and specifying the topographic figure and finish of synchrotron-radiation mirrors. In this approach the effects of figure and finish are described in terms of their slope distribution and power spectrum, respectively, which are then combined with the system point spread function to produce a composite image. The result can be used to predict mirror performance or to translate design requirements into manufacturing specifications. Pacing problems in this approach are the development of a practical long-trace slope-profiling instrument and realistic statistical models for figure and finish errors

  3. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    Science.gov (United States)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  4. Redox Properties of Free Radicals.

    Science.gov (United States)

    Neta, P.

    1981-01-01

    Describes pulse radiolysis as a useful means in studing one-electron redox potentials. This method allows the production of radicals and the determination of their concentration and rates of reaction. (CS)

  5. 30 CFR 905.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 905.764 Section 905.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE CALIFORNIA § 905.764 Process for designating areas unsuitable for surface coal mining... coal mining operations beginning one year after the effective date of this program. ...

  6. 30 CFR 921.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 921.764 Section 921.764 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions...

  7. 30 CFR 947.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 947.764 Section 947.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE WASHINGTON § 947.764 Process for designating areas unsuitable for surface coal mining... coal mining and reclamation operations. (b) The Secretary shall notify the Washington Department of...

  8. 30 CFR 933.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 933.764 Section 933.764 Mineral Resources OFFICE OF SURFACE MINING... Coal Mining Operations, pertaining to petitioning, initial processing, hearing requirements, decisions... surface coal mining and reclamation operations beginning one year after the effective date of this program. ...

  9. 30 CFR 903.764 - Process for designating areas unsuitable for surface coal mining operations.

    Science.gov (United States)

    2010-07-01

    ... surface coal mining operations. 903.764 Section 903.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.764 Process for designating areas unsuitable for surface coal mining... coal mining operations beginning June 24, 1996, one year after the effective date of this program. ...

  10. Gradient nanostructured surface of a Cu plate processed by incremental frictional sliding

    DEFF Research Database (Denmark)

    Hong, Chuanshi; Huang, Xiaoxu; Hansen, Niels

    2015-01-01

    The flat surface of a Cu plate was processed by incremental frictional sliding at liquid nitrogen temperature. The surface treatment results in a hardened gradient surface layer as thick as 1 mm in the Cu plate, which contains a nanostructured layer on the top with a boundary spacing of the order...

  11. Coronal Structures as Tracers of Sub-Surface Processes

    Indian Academy of Sciences (India)

    tribpo

    The corona - a tenuous portion of the solar upper atmosphere - was observed as early as 1063 ... is still open. Considering the possible processes that can affect the appearance of coronal structures, one can divide them into two categories: ones that take place above the ... The hemispheric helicity rule in the solar corona.

  12. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    cations of carbon nanotubes, with the aim of drawing attention to useful available information and to enhancing ... of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analysed by .... dimensions, the force loading mechanism, the probe-sample-position control system allow. Figure 3.

  13. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Energy Technology Data Exchange (ETDEWEB)

    Abuzairi, Tomy [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424 (Indonesia); Okada, Mitsuru [Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Nagatsu, Masaaki, E-mail: nagatsu.masaaki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2016-12-30

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10{sup 17} m{sup −3}. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  14. Tribological investigations of the applicability of surface functionalization for dry extrusion processes

    Science.gov (United States)

    Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard

    2017-10-01

    Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.

  15. Recycling and surface erosion processes in contemporary tokamaks

    International Nuclear Information System (INIS)

    McCracken, G.M.

    1979-03-01

    A number of global models have recently had considerable success in describing recycling. These are briefly reviewed. It is shown that large gas concentrations can build up in the walls and that these concentrations are seriously affected by erosion and deposition processes and by deliberate gettering with titanium. Finally, the measurement of the concentration of hydrogen in probes is discussed as a means of measuring plasma edge characteristics

  16. Influence of the surface layer characteristics on the regularities of the cutting process

    Directory of Open Access Journals (Sweden)

    Krainev Dmitriy V.

    2017-01-01

    Full Text Available The article considers the influence of the surface layer characteristics on the regularities of the cutting process and the formation of the quality of the surface machined. This effect has been confirmed by the study results of the combined cutting method with advanced plastic deformation (APD. The work estimates the impact of the change in the surface layer properties on the forces and temperature of cutting, stability of the chip formation and quality parameters of the surface machined.

  17. Effect of different machining processes on the tool surface integrity and fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chuan Liang [College of Mechanical and Electrical Engineering, Nanchang University, Nanchang (China); Zhang, Xianglin [School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-08-15

    Ultra-precision grinding, wire-cut electro discharge machining and lapping are often used to machine the tools in fine blanking industry. And the surface integrity from these machining processes causes great concerns in the research field. To study the effect of processing surface integrity on the fine blanking tool life, the surface integrity of different tool materials under different processing conditions and its influence on fatigue life were thoroughly analyzed in the present study. The result shows that the surface integrity of different materials was quite different on the same processing condition. For the same tool material, the surface integrity on varying processing conditions was quite different too and deeply influenced the fatigue life.

  18. Microscopic investigation of RF surfaces of 3 GHz niobium accelerator cavities following RF processing

    International Nuclear Information System (INIS)

    Graber, J.; Barnes, P.; Flynn, T.; Kirchgessner, J.; Knobloch, J.; Moffat, D.; Muller, H.; Padamsee, H.; Sears, J.

    1993-01-01

    RF processing of Superconducting accelerating cavities is achieved through a change in the electron field emission (FE) characteristics of the RF surface. The authors have examined the RF surfaces of several single-cell 3 GHz cavities, following RF processing, in a Scanning Electron Microscope (SEM). The RF processing sessions included both High Peak Power (P ≤ 50 kW) pulsed processing, and low power (≤ 20 W) continuous wave processing. The experimental apparatus also included a thermometer array on the cavity outer wall, allowing temperature maps to characterize the emission before and after RF processing gains. Multiple sites have been located in cavities which showed improvements in cavity behavior due to RF processing. Several SEM-located sites can be correlated with changes in thermometer signals, indicating a direct relationship between the surface site and emission reduction due to RF processing. Information gained from the SEM investigations and thermometry are used to enhance the theoretical model of RF processing

  19. Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone).

    Science.gov (United States)

    Chen, Aihua; Kamata, Kaori; Nakagawa, Masaru; Iyoda, Tomokazu; Haiqiao Wang, Haiqiao; Li, Xiaoyu

    2005-10-06

    We have recently demonstrated a one-step process to fabricate silver-polypyrrole (PPy) coaxial nanocables (Chen, A.; Wang, H.; Li, X. Chem. Commun. 2005, 14, 1863). The formation process of silver-PPy coaxial nanocables is discussed in this article. It was found from the results of TEM and SEM images that large numbers of silver atoms were formed when AgNO3 was added to a pyrrole solution. Then silver atoms transform to silver-PPy nanosheets with regular morphology, which will connect together to be more stable. Silver-PPy nanocables will be able to grow at the expense of the silver-PPy nanosheets. Poly(vinylpyrrolidone) (PVP) plays crucial roles in this process: as a capping agent to form silver nanowires, and as a dispersant of pyrrole monomers, which can influence the site at which pyrrole monomer exists. On the basis of experimental analysis, the possible mechanism was proposed. Because of the effect of PVP, silver ions and pyrrole monomers are apt to be adsorbed at the [111] and [100] facets of silver nanosheets, respectively. Obvious polymerization will take place on the boundary of the [111] and [100] facets. The PPy layer stays stable on the [100] facets. Meanwhile, newly formed silver atoms and silver nanosheets will further ripen and grow on the [111] facets. In a word, the morphology of final products and the formation process are determined by the reaction site between AgNO3 and the pyrrole monomer, which is influenced by PVP.

  20. Air/surface exchange processes of mercury and their linkage to atmospheric pools

    International Nuclear Information System (INIS)

    Bahlmann, Enno; Ebinghaus, Ralf

    2001-01-01

    The atmospheric mercury cycle is strongly linked to the terrestrial, aquatic and biologic cycle of mercury via air/surface exchange processes. In order to quantify mercury fluxes from and to the atmosphere to predict local and regional source contributions the methods for flux measurements as well as the physicochemical factors controlling air/surface exchange processes must be assessed. We will describe methods for the determination of mercury and mercury species in ambient air which are basic for investigation of air/surface exchange processes. Further on we will describe approaches for studying the physicochemical factors controlling this processes by using a new laboratory flux measurement system. (author)

  1. Improvement of Surface Properties of CP-Titanium by Thermo-Chemical Treatment (TCT) Process

    International Nuclear Information System (INIS)

    Jeong, Hyeon-Gyeong; Hur, Bo-Young; Lee, Dong-Geun; Lee, Yong-Tai; Yaskiv, O.

    2011-01-01

    The thermo-chemical treatment (TCT) process was applied to achieve surface hardening of CP titanium. The following three different surface modification conditions were tested so that the best surface hardening process could be selected:(a) PVD, (b) TCT+PVD, and (c) TCT+Aging+PVD. These specimens were tested and analyzed in terms of surface roughness, wear, friction coefficient, and the gradient of hardening from the surface of the matrix. The three test conditions were all beneficial to improve the surface hardness of CP titanium. Moreover, the TCT treated specimens, that is, (b) and (c), showed significantly improved surface hardness and low friction coefficients through the thickness up to 100um. This is due to the functionally gradient hardened surface improvement by the diffused interstitial elements. The hardened surface also showed improvement in bonding between the PVD and TCT surface, and this leads to improvement in wear resistance. However, TCT after aging treatment did not show much improvement in surface properties compared to TCT only. For the best surface hardening on CP titanium, TCT+PVD has advantages in surface durability and economics.

  2. Eco-friendly copper recovery process from waste printed circuit boards using Fe{sup 3+}/Fe{sup 2+} redox system

    Energy Technology Data Exchange (ETDEWEB)

    Fogarasi, Szabolcs [Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Imre-Lucaci, Florica [Babeş-Bolyai University, Interdisciplinary Research Institute on Bio-Nano-Sciences, 42 Treboniu Laurian Street, Cluj-Napoca RO-400271 (Romania); Egedy, Attila [University of Pannonia, Department of Process Engineering, Egyetem Str. 10, H-8200 Veszprém (Hungary); Imre-Lucaci, Árpád, E-mail: aimre@chem.ubbcluj.ro [Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Ilea, Petru [Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania)

    2015-06-15

    Highlights: • We developed an ecofriendly mediated electrochemical process for copper recovery. • The recovery of copper was achieved without mechanical pretreatment of the samples. • We identified the optimal flow rate for the leaching and electrowinning of copper. • The copper content of the obtained cathodic deposits was over 99.9%. - Abstract: The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe{sup 3+} combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%.

  3. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition Oxidation; Surface degradation

    CERN Document Server

    Simcock, M N

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an inte...

  4. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics.

    Science.gov (United States)

    Korkina, Liudmila

    2016-01-01

    Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.

  5. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Xu, Q.; Zhou, X.L.; Zhang, Z.H.

    2017-01-01

    Highlights: • An in-situ method to investigate hydrogen evolution in VRFBs is developed. • The rate of hydrogen evolution during battery operation is quantified. • The gas evolution behaviors in the charge process of VRFBs are observed. - Abstract: In this work, we conceived and fabricated a three-electrode electrochemical cell and transparent vanadium redox flow battery to in-situ investigate the hydrogen evolution reaction during battery operation. Experimental results show that operating temperature has a strong influence on the HER rate. In particular, compared with V 3+ reduction reaction, HER is more sensitive to temperature variation. It is also found that, contrary to the conventional wisdom that side reactions occur at the late stage of the charge process, H 2 evolves at a relatively low SOC. About 0.26 and 1.94 mL H 2 were collected at an early (SOC lower than 20%) and end of the charge process, respectively, suggesting that attention to the hydrogen formation at the negative electrode in the early charge process should also be paid to during long-term battery operations. Moreover, the produced hydrogen gas at the negative side prefers to form macroscopically observable bubbles onto the electrode surface, covering the active sites for vanadium redox reactions, while oxygen evolution (including CO 2 production) at the positive side corrodes electrode surface and introduces certain oxygen-containing functional groups.

  6. Diverse redox-active molecules bearing O-, S-, or Se-terminated tethers for attachment to silicon in studies of molecular information storage.

    Science.gov (United States)

    Balakumar, Arumugham; Lysenko, Andrey B; Carcel, Carole; Malinovskii, Vladimir L; Gryko, Daniel T; Schweikart, Karl-Heinz; Loewe, Robert S; Yasseri, Amir A; Liu, Zhiming; Bocian, David F; Lindsey, Jonathan S

    2004-03-05

    A molecular approach to information storage employs redox-active molecules tethered to an electroactive surface. Attachment of the molecules to electroactive surfaces requires control over the nature of the tether (linker and surface attachment group). We have synthesized a collection of redox-active molecules bearing different linkers and surface anchor groups in free or protected form (hydroxy, mercapto, S-acetylthio, and Se-acetylseleno) for attachment to surfaces such as silicon, germanium, and gold. The molecules exhibit a number of cationic oxidation states, including one (ferrocene), two [zinc(II)porphyrin], three [cobalt(II)porphyrin], or four (lanthanide triple-decker sandwich compound). Electrochemical studies of monolayers of a variety of the redox-active molecules attached to Si(100) electrodes indicate that molecules exhibit a regular mode of attachment (via a Si-X bond, X = O, S, or Se), relatively homogeneous surface organization, and robust reversible electrochemical behavior. The acetyl protecting group undergoes cleavage during the surface deposition process, enabling attachment to silicon via thio or seleno groups without handling free thiols or selenols.

  7. The theory of development of surface morphology by sputter erosion processes

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.

    1984-01-01

    When a surface is bombarded by an energetic ion flux a rich variety of surface structures are observed to develop at the atomic, microscopic and macroscopic scales. Such structures include elevated, with respect to the surrounding surface, features such as mesas or plateaux, ridges, cones and pyramids and depressed features such as etch pits and cavities. These elementary features may be isolated or in profusion and frequently repetitive patterns of coordinated pyramidal structures, etch pits, surface ledges or facets and ripple or wave-like structures occur. The majority of the features arise rather directly from the erosion action of the sputtering process, particularly from differential erosion processes at different surface localities. The authors outline a general approach to sputter erosion induced surface morphology development based on the concept of the surface as an advancing wave. (Auth.)

  8. Study of the processes of adsorption of amine-containing surface-active substance on the surface of Aluminum powder

    Directory of Open Access Journals (Sweden)

    Antonina Dyuryagina

    2012-03-01

    Full Text Available Equilibrium characteristics of adsorption on a surface of a pigment depending on concentration factors and temperature of the dispersive environment are defined. Kinetic laws of superficial activity of binary, threefold homogeneous and heterogeneous modeling systems are studied. The estimation of mechanisms of process of adsorption is carried out.

  9. Continuous plutonium(IV) oxalate precipitation, filtration, and calcination process. [From product streams from Redox, Purex, or Recuplex solvent extraction plants

    Energy Technology Data Exchange (ETDEWEB)

    Beede, R L

    1956-09-27

    A continuous plutonium (IV) oxalate precipitation, filtration, and calcination process has been developed. Continuous and batch decomposition of the oxalate in the filtrates has been demonstrated. The processes have been demonstrated in prototype equipment. Plutonium (IV) oxalate was precipitated continuously at room temperature by the concurrent addition of plutonium (IV) nitrate feed and oxalic acid into the pan of a modified rotary drum filter. The plutonium (IV) oxalate was calcined to plutonium dioxide, which could be readily hydrofluorinated. Continuous decomposition of the oxalate in synthetic plutonium (IV) oxalate filtrates containing plutonium (IV) oxalate solids was demonstrated using co-current flow in a U-shaped reactor. Feeds containing from 10 to 100 g/1 Pu, as plutonium (IV) nitrate, and 1.0 to 6.5 M HNO/sub 3/, respectively, can be processed. One molar oxalic acid is used as the precipitant. Temperatures of 20 to 35/sup 0/C for the precipitation and filtration are satisfactory. Plutonium (IV) oxalate can be calcined at 300 to 400/sup 0/C in a screw-type drier-calciner to plutonium dioxide and hydrofluorinated at 450 to 550/sup 0/C. Plutonium dioxide exceeding purity requirements has been produced in the prototype equipment. Advantages of continuous precipitation and filtration are: uniform plutonium (IV) oxalate, improved filtration characteristics, elimination of heating and cooling facilities, and higher capacities through a single unit. Advantages of the screw-type drier-calciner are the continuous production of an oxide satisfactory for feed for the proposed plant vibrating tube hydrofluorinator, and ease of coupling continuous precipitation and filtration to this proposed hydrofluorinator. Continuous decomposition of oxalate in filtrates offers advantages in decreasing filtrate storage requirements when coupled to a filtrate concentrator. (JGB)

  10. Phosphate-dependent modulation of antibacterial strategy: a redox ...

    Indian Academy of Sciences (India)

    The redox sensitivity of cerium oxide nanoparticles (CeNPs) was used to irreversibly scavenge phosphate ions fromthe microbial growth media resulting in nutrient starvation in microbes. Cerium oxide nanoparticles surface was engineeredwith different ratios of (Ce ( + 3)/Ce ( + 4)) cerium oxidation states and the effect of ...

  11. Earth Surface Processes and Environmental Changes in Lake-catchment Systems(Earth Surface Processes, Natural Disasters and Historical Environmental Changes)

    OpenAIRE

    Kenji, KASHIWAYA; Institute of Nature and Environmental Technology, Kanazawa University

    2012-01-01

    Lake-catchment systems including continuous records of various climatic regimes are discussed for combining earth surface processes with temporal environmental changes. Three types of external forces (climatic, tectonic and anthropogenic), which are printed in lacustrine sediments and drainage landforms, are significant for understanding processes and changes. Present observations on small lake-catchment systems in Japan and past information on large lake-catchment systems in east Eurasia sho...

  12. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    Science.gov (United States)

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.

  13. Fabricating Super-hydrophobic Polydimethylsiloxane Surfaces by a Simple Filler-Dissolved Process

    Science.gov (United States)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2010-12-01

    The self-cleaning effect of super-hydrophobic surfaces has attracted the attention of researchers. Typical ways of manufacturing super-hydrophobic surfaces include the use of either dedicated equipment or a complex chemical process. In this study, a simple innovative filler-dissolved method is developed using mainly powder salt and rinsing to form hydrophobic surfaces. This method can produce large super-hydrophobic surfaces with porous and micro rib surface structures. It can also be applied to curved surfaces, including flexible membranes. The contact angle of the manufactured artificial hydrophobic surface is about 160°. Furthermore, water droplets roll off the surface readily at a sliding angle of less than 5°, resembling the nonwetting lotus like effect.

  14. Pattern recognition of concrete surface cracks and defects using integrated image processing algorithms

    Science.gov (United States)

    Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie

    2017-06-01

    Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.

  15. Competing for phosphors under changing redox conditions: biological versus geochemical sinks

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Competing for phosphorus under changing redox conditions: biological versus geochemical sinksAvner Gross1, Jennifer Pett-Ridge2 and Whendee L Silver1 University of California Berkeley, Department of Environmental Science, Policy, & Management, Berkeley, CA, USA. Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA. The cycling of phosphorous (P) in highly weathered, humid tropical forest soils is tightly regulated by P sorption dynamics to the surfaces of Fe(III) (hydr)oxides and root and microbial demands for P. Periods of anoxic soil conditions, which are common in humid environments, induce the reduction of Fe (III) to Fe (II) and may release sorbed P into the soil solution. The microbial demand for P is influenced by the C and nutrient composition of their available substrates. Therefore, we hypothesize that soil redox conditions and substrate quality and availability will control the partitioning of P between microbial biomass and the soil mineral phase. The aim of this study was to examine how fluctuations in soil redox conditions and changes in microbial P demand affect the fate of new P that enters the soil solution. To achieve this aim we conducted a series of soil incubation experiments using a wet tropical soil from Puerto Rico (where redox conditions and P availability naturally oscillate) with a single pulse of phosphate (PO4), altering both the microbial activity and redox conditions. To follow the fate the added P, the added phosphate was labeled with 18O. As the exchange of oxygen between phosphate and water only occurs during biological processes, P-18O labeling can be used as an indicator of microbial use. To quantify sizes of the microbial and mineral P pools we used traditional chemical extractions in the bulk scale. We used NanoSIMS isotopic imaging to map the distribution of P-16O and P-18O and co-localization with Fe minerals at the nano scale. Our results show that the amount of the added P fixed

  16. Preparation of SrCoOx thin films on LaAlO3 substrate and their reversible redox process at moderate temperatures

    Science.gov (United States)

    Hao, L.; Zhang, Z. F.; Xie, X. N.; Wang, H. R.; Yu, Q. X.; Zhu, H.

    2015-10-01

    Using magnetron sputtering and annealing techniques, we have prepared SrCoOx films on LaAlO3 and SrTiO3 substrates. Distinctly different structures of the films have been found on the two substrates. It is suggested that positive lattice mismatch between film and substrate promotes SrCoO2.5 films with an orthorhombic structure grown on SrTiO3 substrate, whereas negative lattice mismatch from LaAlO3 substrate is in favor of increasing the valence state of Co and thus the growth of oxygen-rich SrCoOx with a tetragonal structure. In addition to the structural characterization, magnetic and electrical measurements confirm that the oxygen content x is between 2.75 and 2.88 for the latter. Reversibility of the topotactic phase transformation between SrCoO2.5 and the oxygen-rich SrCoOx films has also been studied by changing the oxygen pressure during annealing process. Even in the presence of a negative lattice mismatch, the results reveal that the tetragonal SrCoOx films on LaAlO3 substrate retain high oxygen mobility identified before in cubic SrCoOx films.

  17. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area.

    Science.gov (United States)

    Burkhardt, Eva-Maria; Akob, Denise M; Bischoff, Sebastian; Sitte, Jana; Kostka, Joel E; Banerjee, Dipanjan; Scheinost, Andreas C; Küsel, Kirsten

    2010-01-01

    Understanding the dynamics of metals and radionuclides in soil environments is necessary for evaluating risks to pristine sites. An iron-rich creek soil of a former uranium-mining district (Ronneburg, Germany) showed high porewater concentrations of heavy metals and radionuclides. Thus, this study aims to (i) evaluate metal dynamics during terminal electron accepting processes (TEAPs) and (ii) characterize active microbial populations in biostimulated soil microcosms using a stable isotope probing (SIP) approach. In biostimulated soil slurries, concentrations of soluble Co, Ni, Zn, As, and unexpectedly U increased during Fe(III)-reduction. This suggests that there was a release of sorbed metals and As during reductive dissolution of Fe(III)-oxides. Subsequent sulfate-reduction was concurrent with a decrease of U, Co, Ni, and Zn concentrations. The relative contribution of U(IV) in the solid phase changed from 18.5 to 88.7% after incubation. The active Fe(III)-reducing population was dominated by delta-Proteobacteria (Geobacter) in (13)C-ethanol amended microcosms. A more diverse community was present in (13)C-lactate amended microcosms including taxa related to Acidobacteria, Firmicutes, delta-Proteobacteria, and beta-Proteobacteria. Our results suggested that biostimulated Fe(III)-reducing communities facilitated the release of metals including U to groundwater which is in contrast to other studies.

  18. Sedimentary cobalt concentrations track marine redox evolution

    Science.gov (United States)

    Swanner, Elizabeth; Planavsky, Noah; Lalonde, Stefan; Robbins, Jamie; Bekker, Andrey; Rouxel, Olivier; Konhauser, Kurt O.; Mojzsis, Stephen J.

    2013-04-01

    Oxygen production by photosynthesis drove the redox evolution of the atmosphere and ocean. Primary productivity by oxygenic photosynthesizers in the modern surface ocean is limited by trace nutrients such as iron, but previous studies have also observed high Co uptake associated with natural cyanobacterial populations. Constraining the size and variation of the oceanic reservoir of Co through time will help to understand the regulation of primary productivity and hence oxygenation through time. In this study, Co concentrations from iron formations (IF), shales and marine pyrites deposited over nearly 4 billion years of Earth's history are utilized to reconstruct secular changes in the mechanisms of Co removal from the oceanic reservoir. The Co reservoir prior to ~2 Ga was dominated by hydrothermal inputs and Fe(III)oxyhydroxides were likely involved in the removal of Co from the water column. Fe(II) oxidation in the water column resulted in the deposition of IF in the Archean and Paleoproterozoic, and the Co inventory of IF records a large oceanic reservoir of Co during this time. Lower Co concentrations in sediments during the Middle Proterozoic signify a decrease in the oceanic reservoir due to the expansion euxinic environments, corresponding to the results of previous studies. A transition to an oxidized deep ocean in the Phanerozoic is evidenced by correlation between Co and manganese (Mn) concentrations in hydrothermal and exhalative deposits, and in marine pyrites. This relationship between Co and Mn, signifying deposition of Co in association with Mn(IV)oxides, does not occur in the Precambrian. Mn(II) oxidation occurs at higher redox potentials than that required for Fe(II) oxidation, and the extent of Mn redox cycling prior to full ventilation of the oceans at the end of the Neoproterozoic was likely limited to spatially restricted oxic surface waters. In this regard, Co is another valuable redox proxy for tracking the growth and decline in oxygenated

  19. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    2017-01-01

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein, we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.

  20. Redox Pioneer: Professor Joseph Loscalzo

    OpenAIRE

    Leopold, Jane A.

    2010-01-01

    Dr. Joseph Loscalzo (M.D., 1978; Ph.D., 1977) is recognized here as a Redox Pioneer because he has published two articles in the field of antioxidant/redox biology that have been cited more than 1,000 times and 22 articles that have been cited more than 100 times. Dr. Loscalzo is known for his seminal contributions to our understanding of the vascular biology of nitric oxide. His initial discovery that the antiplatelet effects of organic nitrates are potentiated by thiols through a mechanism ...

  1. Non destructive evaluation of residual stresses in welding and hard-surfacing processes

    International Nuclear Information System (INIS)

    Suarez, J.C.; Fernandez, L.M.; Cruz, C.; Aragon, B.; Merino, F.

    1995-01-01

    In this paper transversal and longitudinal stress profiles in welding and hard-surfacing by welding processes are presented. The stresses were measured by RMS of Barkhausen signal. In this work it is shown that in each case the level of stresses is strongly dependent on the number of weld beads of surfacing layers deposited. The subsequent deposition of new weld beads or surfacing layers produces a stress-relieving effect

  2. Development of Statistical Process Control Methodology for an Environmentally Compliant Surface Cleaning Process in a Bonding Laboratory

    Science.gov (United States)

    Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.

    1997-01-01

    Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor

  3. Redox-switched amphiphilic ionic liquid behavior in aqueous solution.

    Science.gov (United States)

    Chamiot, Bénédicte; Rizzi, Cécile; Gaillon, Laurent; Sirieix-Plénet, Juliette; Lelièvre, Joël

    2009-02-03

    A new redox amphiphilic ionic liquid (AIL) containing ferrocene as a redox-active group was synthesized, 1-(11-ferrocenylundecyl)-3-methylimidazolium bromide (Fc11MIm+). Adsorption and aggregation of both reduced and oxidized forms of this ferrocenated AIL in aqueous solution were studied by surface tension measurements. The micellization was favored for the reduced ferrocenated AIL (Fc11MIm+) as compared with the oxidized ferrocenated AIL (Fc+11MIm+). Minimum areas at the air/aqueous solution interface were identical whereas limiting surface tensions were slightly different. This corroborated the formation of an expanded monolayer of redox active AIL at the interface. The electrochemical behavior of redox active AIL was investigated. The electrochemical responses of Fc11MIm+ aqueous solution interestingly differed, depending on its concentration. Below the cmc, the electrochemical reaction was dominated by ferrocenated AIL adsorbed onto the electrode surface; then above the cmc, it was controlled by the Fc11MIm+ diffusing to the electrode. For the latter, the electrochemical mechanism was suggested to couple with the disruption reaction of the reduced form micelles.

  4. Redox potential - field measurements - meassured vs. expected values

    Science.gov (United States)

    Stavělová, Monika; Kovář, Martin

    2016-04-01

    Oxidation and reduction (redox) potential is an important and theoretically very well defined parameter and can be calculated accurately. Its value is determinative for management of many electrochemical processes, chemical redox technologies as well as biotechnologies. To measure the redox value that would correspond with the accuracy level of theoretical calculations in field or operational conditions is however nearly impossible. Redox is in practice measured using combined argentochloride electrode with subsequent value conversion to standard hydrogen electrode (EH). Argentochloride electrode does not allow for precise calibration. Prior to the measurement the accuracy of measurement of particular electrode can only be verified in comparative/control solution with value corresponding with oxic conditions (25°C: +220 mV argentochloride electrode, i.e.. +427 mV after conversion to EH). A commercial product of stabile comparative solution for anoxic conditions is not available and therefore not used in every day practice - accuracy of negative redox is not verified. In this presentation results of two tests will be presented: a) monitoring during dynamic groundwater sampling from eight monitoring wells at a site contaminated by chlorinated ethenes (i.e. post-oxic to anoxic conditions) and b) laboratory test of groundwater contaminated by arsenic from two sites during reaction with highly oxidized compounds of iron (ferrates) - i.e. strongly oxic conditions. In both tests a simultaneous measurement by four argentochloride electrodes was implemented - all four electrodes were prior to the test maintained expertly. The redox values of testing electrodes in a comparative solution varied by max. 6 mV. The redox values measured by four electrodes in both anoxic and oxic variant varied by tens to a hundred mV, while with growing time of test the variance of measured redox values increased in both oxic and anoxic variant. Therefore the interpretation of measured redox

  5. Characterization of surface processes on mineral surfaces in aqueous solutions. Annual report for fiscal year 1993

    International Nuclear Information System (INIS)

    Leckie, J.O.

    1993-11-01

    Performance assessments by Los Alamos National Laboratory for the DOE's Yucca Mountain Site Characterization Project (YMP) are being done investigating the environmental risk related to long-term disposal of hazardous wastes resulting from the use of radioactive materials that must subsequently be isolated from the environment. The YMP site, located in southwestern Nevada, is intended for the storage of high-level wastes generated by nuclear energy-related activities, including spent fuel and waste from reprocessed fuel rods. The work covered by this contract is necessary for producing a defensible model and dataset, and may be critical for evaluation of repository compliance. This work, performed by the Environmental Engineering and Science research group at Stanford University, will quantify the adsorption of uranyl on various minerals. The project's principle objective is to provide sorption coefficients for uranyl and other ions of interest to predict radionuclide movements form the repository to accessible environments. This adsorption data is essential for the unambiguous interpretation of field experiments and observations. In this report, details of the activity and progress made with respect to the study of uranyl adsorption on mineral surfaces is presented and discussed

  6. Experimental determination of void fraction in surface aeration using image processing technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpur, Amir; Akhavan-Behabadi, Mohammad Ali; Ebrahimzaedh, Masoud; Hanafizadeh, Pedram; Raisee, Mehrdad [University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-06-15

    In this paper, a new method for determination of void fraction in surface aeration process is presented and discussed. The proposed method is based on the image processing technique. The experimental setup has been designed to create various surface aeration conditions in the water. Void fraction has been calculated for the wide range of water height, impeller immersion depth and rotational speed. Experiments have been performed in an open cubic tank with side length of 60 cm, equipped with one Rushton disk turbine. Moreover, the void fraction has been measured with level gauge method. The results showed that the image processing technique provides more accurate results than the level gauge measurements for void fraction calculation in surface aeration especially in low void fraction aeration. In addition, the experimental data revealed that increase in impeller immersion depth and rotational speed increase void fraction and oxygen transfer rate in surface aeration process.

  7. Scaling up ecohydrological processes: role of surface water flow in water-limited landscapes

    CSIR Research Space (South Africa)

    Popp, A

    2009-11-01

    Full Text Available microscale processes like ecohydrological feedback mechanisms and spatial exchange like surface water flow, the authors derive transition probabilities from a fine-scale simulation model. They applied two versions of the landscape model, one that includes...

  8. Effects of process parameters on surface roughness in abrasive waterjet cutting of aluminium

    Science.gov (United States)

    Chithirai Pon Selvan, M.; Mohana Sundara Raju, N.; Sachidananda, H. K.

    2012-12-01

    Abrasive waterjet cutting is a novel machining process capable of processing wide range of hard-to-cut materials. Surface roughness of machined parts is one of the major machining characteristics that play an important role in determining the quality of engineering components. This paper shows the influence of process parameters on surface roughness ( R a) which is an important cutting performance measure in abrasive waterjet cutting of aluminium. Taguchi's design of experiments was carried out in order to collect surface roughness values. Experiments were conducted in varying water pressure, nozzle traverse speed, abrasive mass flow rate and standoff distance for cutting aluminium using abrasive waterjet cutting process. The effects of these parameters on surface roughness have been studied based on the experimental results.

  9. Theoretical and experimental approach to the texturization process of bioreactive surfaces by high-power laser

    Science.gov (United States)

    Conde, J. C.; Riveiro, A.; Comesana, R.; Pou, J.

    2011-11-01

    The properties of orthopaedic/dental implants can be tuned through the laser surface modifications that take place during a laser ablation process. Processing assisted by a laser is adequate to produce macro- and micro-structures on metallic alloys and polymer surfaces in order to improve their biological response. The evaluation of the minimum energy density that causes an optimum ablation process on different kinds of surfaces was theoretically established by numerical simulation of the thermal process and some experiments have been systematically carried out to produce a periodic pattern in the surface. The selection of the laser power has been predicted from numerical analysis solving of the heat conduction differential equation using commercial software, ANSYS (11.0). This analysis has allowed us to predict the extent and the depth of the holes. The theoretical results agree with the experimental measurements that were carried out by profilometry.

  10. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical...

  11. A facile two-step dipping process based on two silica systems for a superhydrophobic surface.

    Science.gov (United States)

    Li, Xiaoguang; Shen, Jun

    2011-10-14

    A silica microsphere suspension and a silica sol are employed in a two-step dipping process for the preparation of a superhydrophobic surface. It's not only a facile way to achieve the lotus effect, but can also create a multi-functional surface with different wetabilities, adhesive forces and transparencies. This journal is © The Royal Society of Chemistry 2011

  12. Coupled Deep Earth and surface processes and their impact on geohazards

    NARCIS (Netherlands)

    Cloetingh, S.; Tibaldi, A.; Burov, E.

    2012-01-01

    Better understanding of coupled Deep Earth and surface processes is the key for resolving the evolution of the continental lithosphere and its surface topography. The thermo-mechanical structure of the lithosphere exerts a prime control on the interaction of mantle instabilities and tectonic forces

  13. Fabrication of superhydrophobic wood surfaces via a solution-immersion process

    Science.gov (United States)

    Liu, Changyu; Wang, Shuliang; Shi, Junyou; Wang, Chengyu

    2011-11-01

    Superhydrophobic wood surfaces were fabricated from potassium methyl siliconate (PMS) through a convenient solution-immersion method. The reaction involves a hydrogen bond assembly and a polycondensation process. The silanol was formed by reacting PMS aqueous solution with CO2, which was assembled on the wood surface via hydrogen bonds with the wood surface -OH groups. The polymethylsilsesquioxane coating was obtained through the polycondensation reaction of the hydroxyl between wood and silanol. The morphology of products were characterized using a scanning electron microscope (SEM), the surface chemical composition was determined using energy dispersive X-ray analysis (EDXA), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA) and contact angle measurement. Analytical results revealed that rough protuberances uniformly covered the wood surface, thus transforming the wood surface from hydrophilic to superhydrophobic. The water contact angle of the superhydrophobic wood surface was about 153° and a sliding angle was 4.6°.

  14. Modeling and simulation of the deformation process of PTFE flexiblestamps for nanoimprint lithography on curved surfaces

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Smistrup, K.; Hannibal, Morten

    2015-01-01

    In the presented work, simulations of the deformation process of flexible stamps used for nanoimprint lithographron curved surfaces are presented. The material used for the flexible stamps was polytetrafluoroethylene (PTFE) whose material behavior was found to be viscoelastic-viscoplastic. This b......In the presented work, simulations of the deformation process of flexible stamps used for nanoimprint lithographron curved surfaces are presented. The material used for the flexible stamps was polytetrafluoroethylene (PTFE) whose material behavior was found to be viscoelastic...

  15. Linear and nonlinear characterization of surfaces from a laser beam melt ablation process

    Energy Technology Data Exchange (ETDEWEB)

    Bube, Kevin [Institut fuer Chemie und Biologie des Meeres, Carl-von-Ossietzky Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Neto, Camilo Rodrigues [Institut fuer Chemie und Biologie des Meeres, Carl-von-Ossietzky Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); University of Sao Paulo, Av. Arlindo Bettio 1000, EACH, 03828-000 Sao Paulo (Brazil); Donner, Reik [Department of Physics, University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam (Germany); Schwarz, Udo [Department of Physics, University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam (Germany); Feudel, Ulrike [Institut fuer Chemie und Biologie des Meeres, Carl-von-Ossietzky Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany)

    2006-04-07

    We apply linear and nonlinear methods to study the properties of surfaces generated by a laser beam melt ablation process. As a result we present a characterization and ordering of the surfaces depending on the adjusted process parameters. Our findings give some insight into the performance of two widely applied multifractal analysis methods-the detrended fluctuation analysis and the wavelet transform modulus maxima method-on short real world data.

  16. Redox regulation of photosynthetic gene expression.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine H

    2012-12-19

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability.

  17. The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films

    International Nuclear Information System (INIS)

    Csete, M.; Hild, S.; Plettl, A.; Ziemann, P.; Bor, Zs.; Marti, O.

    2004-01-01

    Poly-carbonate films containing different types of original surface roughness were illuminated by a polarized ArF excimer laser beam having a fluence of 4 mJ/cm 2 . Atomic force microscopy was applied to study the laser-induced periodic surface structure formation process at 0 deg. , 30 deg. and 45 deg. angles of incidence. The effect of initial surface structures on the intensity distribution was investigated in cases of: (a) grains on oriented and amorphous thick films; (b) holes on thin spin-coated films; and (c) nanoparticles arranged along micrometer long sides of hexagons below the spin-coated films. The presence of the scattering objects caused symmetry breaking, if the samples were illuminated by oblique incident 's' polarized beam. The Fourier analysis of the AFM pictures has shown the competition of structures having different periods. The characteristic of the permanent surface patterns proved that the interference of the incoming beam and the beams scattered on previously existing structures is the LIPSS generating feedback process. Ring-shaped structures having 228 nm diameter were produced

  18. Chromium stable isotope systematic – implications for the redox evolution of the earth

    DEFF Research Database (Denmark)

    Døssing, Lasse Nørbye

    and thus indicate the presence of oxidizing redox species. To track paleo-redox processes deep in the Earth’s history, a number of ancient soil horizons (e.g. the Drakenstein and Nsuze paleosols) formed ~2.2 and ~3.0 billion years ago have been analyzed. These horizons document similar behavior of Cr...

  19. Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haibo [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@mail.tsinghua.edu.cn [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The present work integrates 3D digital optical microscopy (OM), nano-indentation, X-ray diffraction (XRD), scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) to systematically investigate the effect of electropulsing on the surface mechanical properties and microstructure of AISI 304 stainless steel during the ultrasonic surface rolling process (USRP). Compared with the original USRP, the introduction of electropulsing with optimal parameters can effectively facilitate surface crack healing and improve surface hardness and wear resistance dramatically, and the residual compressive stress is further enhanced. Meanwhile, more martensite phase and fewer deformation twins can be found in the strengthened layer. Rapid improvement of the surface mechanical properties should be attributed to the ultra-refined grains, accelerated martensitic phase transformation and suppressed deformation twining induced by the coupling effect of USRP and electropulsing. The high strain rate given by USRP, increased stacking fault energy and accelerated dislocation mobility caused by electropulsing are likely the primary intrinsic reasons for the observed phenomena.

  20. Electrochemical behavior of two and one electron redox systems adsorbed on to micro- and mesoporous silicate materials: Influence of the channels and the cationic environment of the host materials

    International Nuclear Information System (INIS)

    Senthil Kumar, K.; Natarajan, P.

    2009-01-01

    Electrochemical behavior of two electron redox system, phenosafranine (PS + ) adsorbed on to micro- and mesoporous materials is investigated by cyclic voltammetry and differential pulse voltammetry using modified micro- and mesoporous host electrodes. Two redox peaks were observed when phenosafranine is adsorbed on the surface of microporous materials zeolite-Y and ZSM-5. However, only a single redox peak was observed in the modified electrode with phenosafranine encapsulated into the mesoporous material MCM-41 and when adsorbed on the external surface of silica. The observed redox peaks for the modified electrodes with zeolite-Y and ZSM-5 host are suggested to be primarily due to consecutive two electron processes. The peak separation ΔE and peak potential of phenosafranine adsorbed on zeolite-Y and ZSM-5 were found to be influenced by the pH of the electrolyte solution. The variation of the peak current in the cyclic voltammogram and differential pulse voltammetry with scan rate shows that electrodic processes are controlled by the nature of the surface of the host material. The heterogeneous electron transfer rate constants for phenosafranine adsorbed on to micro- and mesoporous materials were calculated using the Laviron model. Higher rate constant observed for the dye encapsulated into the MCM-41 indicates that the one-dimensional channel of the mesoporous material provides a more facile micro-environment for phenosafranine for the electron transfer reaction as compared to the microporous silicate materials. The stability of the modified electrode surface was investigated by multisweep cyclic voltammetry.

  1. Processing method and processing device for liquid waste containing surface active agent and radioactive material

    International Nuclear Information System (INIS)

    Nishi, Takashi; Matsuda, Masami; Baba, Tsutomu; Yoshikawa, Ryozo; Yukita, Atsushi.

    1998-01-01

    Washing liquid wastes containing surface active agents and radioactive materials are sent to a deaerating vessel. Ozone is blown into the deaerating vessel. The washing liquid wastes dissolved with ozone are introduced to a UV ray irradiation vessel. UV rays are irradiated to the washing liquid wastes, and hydroxy radicals generated by photodecomposition of dissolved ozone oxidatively decompose surface active agents contained in the washing liquid wastes. The washing liquid wastes discharged from the UV ray irradiation vessel are sent to an activated carbon mixing vessel and mixed with powdery activated carbon. The surface active agents not decomposed in the UV ray irradiation vessel are adsorbed to the activated carbon. Then, the activated carbon and washing liquid wastes are separated by an activated carbon separating/drying device. Radioactive materials (iron oxide and the like) contained in the washing liquid wastes are mostly granular, and they are separated and removed from the washing liquid wastes in the activated carbon separating/drying device. (I.N.)

  2. Friction stir processed Al - Metal oxide surface composites: Anodization and optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Canulescu, Stela

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate metal oxide (TiO2, Y2O3 and CeO2) particles into the surface of an Aluminium alloy. The surface composites were then anodized in a sulphuric acid electrolyte. The effect of anodizing parameters on the resulting optical...... appearance was studied. Microstructural and morphological characterization was performed using transmission electron microscopy (TEM). The surface appearance was analysed using an integrating sphere-spectrometer setup. Increasing the anodizing voltage changed the surface appearance of the composites from...

  3. The mechanism of mediated oxidation of carboxylates with ferrocene as redox catalyst in absence of grafting effects. An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Hernández-Muñoz, Lindsay S.; Galano, Annia; Astudillo-Sánchez, Pablo D.; Abu-Omar, Mahdi M.; González, Felipe J.

    2014-01-01

    Graphical abstract: - Highlights: • The mechanism of mediated oxidation of carboxylates. • Thermodynamics of the mediated Kolbe and Non-Kolbe mechanisms. • The oxidation of acetate and diphenylacetate ions by using ferrocene as redox catalyst. • Simulation and DFT calculations of the mediated oxidation of carboxylates. • Radical and carbocationic pathways in the carboxylate oxidation in acetonitrile. - Abstract: The oxidation of tetrabutylammonium carboxylates by using ferrocene derivatives as redox mediators has been recently used to perform the covalent grafting of carbon surfaces with organic and organometallic groups. Due to the intervention of this surface process, a partial description of the reaction mechanism has only been stated. Therefore, this article concerns about two features of the oxidation of carboxylates mediated by ferrocene. In the first part, it is discussed that in the oxidation of acetate ions by using ferrocene as redox catalyst, the gap between both oxidation potentials is very high, which means that the homogeneous electron transfer between the acetate ion and the electrochemically generated ferrocenium ion is energetically unfavorable. However, by using density functional theory calculations, it has been shown that the whole set of coupled chemical reactions involved either in a Kolbe or Non-Kolbe pathway drive the overall mechanisms towards a thermodynamically favorable situation. In order to avoid the strong covalent grafting process that occurs during the mediated oxidation of acetate ions, the second part of this work deals with the oxidation of tetrabutylammonium diphenylacetate by using ferrocene as a redox mediator in acetonitrile on glassy carbon electrodes. With this carboxylate, no electrode inhibition process occurs and, therefore cyclic voltammetry simulation was done to propose the electrochemical and chemical steps that are present when a carboxylate oxidation is performed in the presence of ferrocene derivatives

  4. Redox polymer mediation for enzymatic biofuel cells

    Science.gov (United States)

    Gallaway, Joshua

    Mediated biocatalytic cathodes prepared from the oxygen-reducing enzyme laccase and redox-conducting osmium hydrogels were characterized for use as cathodes in enzymatic biofuel cells. A series of osmium-based redox polymers was synthesized with redox potentials spanning the range from 0.11 V to 0.85 V (SHE), and the resulting biocatalytic electrodes were modeled to determine reaction kinetic constants using the current response, measured osmium concentration, and measured apparent electron diffusion. As in solution-phase systems, the bimolecular rate constant for mediation was found to vary greatly with mediator potential---from 250 s-1M-1 when mediator and enzyme were close in potential to 9.4 x 10 4 s-1M-1 when this overpotential was large. Optimum mediator potential for a cell operating with a non-limiting platinum anode and having no mass transport limitation from bulk solution was found to be 0.66 V (SHE). Redox polymers were synthesized under different concentrations, producing osmium variation. An increase from 6.6% to 7.2% osmium increased current response from 1.2 to 2.1 mA/cm2 for a planar film in 40°C oxygen-saturated pH 4 buffer, rotating at 900 rpm. These results translated to high surface area electrodes, nearly doubling current density to 13 mA/cm2, the highest to date for such an electrode. The typical fungal laccase from Trametes versicolor was replaced by a bacterially-expressed small laccase from Streptomyces coelicolor, resulting in biocatalytic films that reduced oxygen at increased pH, with full functionality at pH 7, producing 1.5 mA/cm 2 in planar configuration. Current response was biphasic with pH, matching the activity profile of the free enzyme in solution. The mediated enzyme electrode system was modeled with respect to apparent electron diffusion, mediator concentration, and transport of oxygen from bulk solution, all of which are to some extent controlled by design. Each factor was found to limit performance in certain circumstances

  5. Assessment of surface contamination level in an operating uranium ore processing facility of Jaduguda, India

    International Nuclear Information System (INIS)

    Meena, J.S.; Patnaik, R.L.; Jha, V.N.; Sahoo, S.K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Radiological concern of the occupational workers and the area is given priority over other safety issue in confirmation with the stipulated guideline of national regulatory agency (AERB/FEFCF/SG-2, 2007). The key concern from the radiological hazard evaluation point of view is air activity, external gamma level and surface contamination. Present investigations was carried out to ascertain the surface contamination level of uranium ore processing facility at Jaduguda, Jharkhand. For a low grade uranium ore processing industry surface contamination is a major concern in product precipitation and recovery section. In view of this, the ore processing plant can broadly be classified into three areas i.e. ion exchange area, precipitation and product recovery section and other areas. The monitoring results incorporate the level of surface contamination of the plant during the last five years. The geometric mean activity of surface contamination level was 31.1, 34.5 and 9.8 Bq dm -2 in ion exchange, product precipitation and recovery and other areas with GSD of 2, 2.5 and 1.9. In most of the cases the surface contamination level was well within the recommended limit of 100 Bq dm -2 for M class uranium compound. Occasional cases of surface contamination levels exceeding the recommended limit were addressed and areas were decontaminated. Based on the study, modification in the design feature of the surface of the finished product section was also suggested so that the decontamination procedure can be more effectively implemented

  6. Non-adiabatic effects in elementary reaction processes at metal surfaces

    Science.gov (United States)

    Alducin, M.; Díez Muiño, R.; Juaristi, J. I.

    2017-12-01

    Great success has been achieved in the modeling of gas-surface elementary processes by the use of the Born-Oppenheimer approximation. However, in metal surfaces low energy electronic excitations are generated even by thermal and hyperthermal molecules due to the absence of band gaps in the electronic structure. This shows the importance of performing dynamical simulations that incorporate non-adiabatic effects to analyze in which way they affect most common gas-surface reactions. Here we review recent theoretical developments in this problem and their application to the study of the effect of electronic excitations in the adsorption and relaxation of atoms and molecules in metal surfaces, in scattering processes, and also in recombinative processes between impinging atoms and adsorbates at the surface. All these studies serve us to establish what properties of the gas-surface interaction favor the excitation of low-energy electron-hole pairs. A general observation is that the nature of these excitations usually requires long lasting interactions at the surface in order to observe deviations from the adiabatic behaviour. We also provide the basis of the local density friction approximation (LDFA) that have been used in all these studies, and show how it has been employed to perform ab initio molecular dynamics with electronic friction (AIMDEF). As a final remark, we will shortly review on recent applications of the LDFA to successfully simulate desorption processes induced by intense femtosecond laser pulses.

  7. Auto-recognition of surfaces and auto-generation of material removal volume for finishing process

    Science.gov (United States)

    Kataraki, Pramod S.; Salman Abu Mansor, Mohd

    2018-03-01

    Auto-recognition of a surface and auto-generation of material removal volumes for the so recognised surfaces has become a need to achieve successful downstream manufacturing activities like automated process planning and scheduling. Few researchers have contributed to generation of material removal volume for a product but resulted in material removal volume discontinuity between two adjacent material removal volumes generated from two adjacent faces that form convex geometry. The need for limitation free material removal volume generation was attempted and an algorithm that automatically recognises computer aided design (CAD) model’s surface and also auto-generate material removal volume for finishing process of the recognised surfaces was developed. The surfaces of CAD model are successfully recognised by the developed algorithm and required material removal volume is obtained. The material removal volume discontinuity limitation that occurred in fewer studies is eliminated.

  8. Analysis of WEDM Process Parameters on Surface Roughness and Kerf using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Asfana Banu

    2017-12-01

    Full Text Available In obtaining the best quality of engineering parts, the quality of machined surface plays an essential role. The fatigue strength, wear resistance, and corrosion of workpiece are some of the aspects of the qualities that can be improved. This paper investigates the effect of wire electrical discharge machining (WEDM process parameters on surface roughness and kerf on stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The selected process parameters are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical models using Taguchi method were developed for the estimation of surface roughness and kerf. The analysis revealed that off time has major influence on surface roughness and kerf. The optimum machining parameters for minimum surface roughness and kerf were found to be 10 V open voltage, 2.84 µs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  9. Specifics of adsorption and chemical processes on the surface of gamma-irradiated vanadium dioxide

    International Nuclear Information System (INIS)

    Kaurkovskaya, V.N.; Dzyubenko, L.S.; Doroshenko, V.N.; Chujko, A.A.; Shakhov, A.P.

    2006-01-01

    Effect of γ-irradiation on electrophysical properties and processes of thermal desorption of water from the surface of vanadium oxides V 2 O 3 -VO 2-δ -VO 2+δ -V 2 O 5 was investigated by derivatography and electric conductivity. Content of adsorbed water at the surface and phase composition of the surface was demonstrated to change under the action of low radiation doses. Surface electric conductivity of the irradiated samples VO 2-δ in the process of chemical reactions of adsorbed following irradiation benzoic acid and ethanol was established to be much above than in irradiated-free ones. It is presumed that metal-semiconductor phase transition at the surface of VO 2-δ during chemical reaction is intensified by irradiation [ru

  10. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts...... for subsequent polymer replication by injection moulding was analyzed. New tooling solutions to produce nano structured mould surfaces were investigated. Experiments based on three different chemical-based-batch techniques to establish surface nano (i.e. sub-μm) structures on large areas were performed. Three...... approaches were selected: (1) using Ø500 nm nano beads deposition for direct patterning of a 4” silicon wafer; (2) using Ø500 nm nano beads deposition as mask for 4” silicon wafer etching and subsequent nickel electroplating; (3) using the anodizing process to produce Ø500 nm structures on a 30x80 mm2...

  11. Effect of conditioner load on the polishing pad surface during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Cheol Min; Qin, Hong Yi; Hong, Seok Jun; Jeon, Sang Hyuk; Kulkarni, Atul; Kim, Tae Sun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    During the Chemical mechanical planarization (CMP), the pad conditioning process can affect the pad surface characteristics. Among many CMP process parameters, the improper applied load on the conditioner arm may have adverse effects on the polyurethane pad. In this work, we evaluated the pad surface properties under the various conditioner arm applied during pad conditioning process. The conditioning pads were evaluated for surface topography, surface roughness parameters such as Rt and Rvk and Material removal rate (MRR) and within-wafer non-uniformity after wafer polishing. We observed that, the pad asperities were collapsed in the direction of conditioner rotation and blocks the pad pores applied conditioner load. The Rvk value and MRR were founded to be in relation with 4 > 1 > 7 kgF conditioner load. Hence, this study shows that, 4 kgF applied load by conditioner is most suitable for the pad conditioning during CMP.

  12. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    Science.gov (United States)

    Ding, Wenfeng; Huang, Chihua

    2017-10-01

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address this issue, a rainfall-simulation experiment was conducted with treatments that included two different initial soil surface roughnesses and two rainfall intensities. Soil surface roughness was determined by using photogrammetric method. For each simulated event, runoff and sediment samples were collected at different experimental times. The effective (undispersed) PSD of each sediment sample and the ultimate (after dispersion) PSD were used to investigate the detachment and transport mechanisms involved in sediment movement. The results show that soil surface roughness significantly delayed runoff initiation, but had no significant effect on the steady runoff rate. However, a significant difference in the soil loss rate was observed between the smooth and rough soil surfaces. Sediments from smooth soil surfaces were more depleted in clay-size particles, but more enriched in sand-size particles than those from rough soil surfaces, suggesting that erosion was less selective on smooth than on rough soil surfaces. The ratio of different sizes of transported sediment to the soil matrix indicates that most of the clay was eroded in the form of aggregates, silt-size particles were transported mainly as primary particles, and sand-size particles were predominantly aggregates of finer particles. Soil surface roughness has a crucial effect on the sediment size distribution and erosion processes. Significant differences of the enrichment ratios for the effective PSD and the ultimate PSD were observed under the two soil surface roughness treatments. These findings demonstrate that we should consider each particle size separately rather than use only the total sediment discharge in

  13. The Redox Potentials of n-type Colloidal Semiconductor Nanocrystals

    Science.gov (United States)

    Carroll, Gerard Michael

    This thesis presents investigations for two related fields of semiconductor electrochemistry: redox potential determination of colloidal semiconductor nanocrystals, and mechanistic analysis of photoelectrochemical water oxidation with electrocatalyst modified mesostructured hematite photoanodes. Adapting electrochemical techniques to colloidal semiconductor nanocrystals (SC NC) is a long-standing challenge for this class of materials. Subject to a variety of complications, standard voltammetric techniques are not as straight forward for SC NCs as they are for small molecules. As a result, researchers have developed creative ways to side step these complications by coupling electrochemistry with NC spectroscopy. Chapter 1 discusses the fundamental electronic and spectroscopic properties of SC NCs at different redox states. We present a brief review of some of the notable studies employing SC NC spectroelectrochemistry that provide the theoretical and experimental context for the following chapters. Chapter 2 presents an investigation on NC redox potentials of photochemically reduced colloidal ZnO NCs using a solvated redox-indicator method. In the one electron limit, conduction band electrons show evidence of quantum confinement, but at higher electron concentrations, the NC Fermi-level becomes dependent on the electron density across all NC sizes. Chapter 3 outlines a poteniometric method for monitoring the NC redox potentials in situ. NC redox potentials for ZnO and CdSe are measured, and as predicted from these measurements, spontaneous electron transfer from CdSe to ZnO is demonstrated. Chapter 4 details the impact of the surface of CdSe NCs on the NC redox potentials. We find that the ratio of Cd2+:Se2- on the surface of CdSe NCs changes both the NC band edge potentials, as well as the maximum electron density achievable by photochemical reduction. These changes are proposed to arise from interfacial dipoles when CdSe has a Se2-rich surface. Chapters 5 and 6

  14. Scanning tunneling microscopy, Fourier transform infrared spectroscopy, and electrochemical characterization of 2-naphthalenethiol self-assembled monolayers on the Au surface: a study of bridge-mediated electron transfer in Ru(NH3)6(2+)/Ru(NH3)6(3+) redox reactions.

    Science.gov (United States)

    Ganesh, V; Lakshminarayanan, V

    2005-09-01

    We have studied the structure, adsorption kinetics, and barrier properties of self-assembled monolayers of 2-naphthalenethiol on Au using electrochemical techniques, grazing-angle Fourier transform infrared (FTIR) spectroscopy, and scanning tunneling microscopy (STM). The results of cyclic voltammetric and impedance measurements using redox probes show that 2-naphthalenethiol on Au forms a stable and reproducible, but moderately blocking, monolayer. Annealing of the self-assembled monolayer (SAM)-modified surface at 72 +/- 2 degrees C remarkably improves the blocking property of the monolayer of 2-naphthalenethiol on Au. From the study of kinetics of SAM formation, we find that the self-assembly follows Langmuir adsorption isotherm. Our STM and FTIR results show that the molecules are adsorbed with the naphthalene ring tilted from the surface normal by forming a square root 3 x 3 R30 degrees overlayer structure. From our studies, we conclude that the electron-transfer reaction of ferro/ferricyanide in the freshly formed monolayer occurs predominantly through the pinholes and defects present in the monolayer. However, in the case of thermally annealed specimen, although the ferro/ferricyanide reaction is almost completely blocked, the electron-transfer reaction of hexaammineruthenium(III) chloride is not significantly inhibited. It is proposed that the electron-transfer reaction in the case of the ruthenium redox couple takes place by a tunneling mechanism through the high-electron-density aromatic naphthalene ring acting as a bridge between the monolayer-modified electrode and the ruthenium complex.

  15. Redox characterization of functioning skeletal muscle

    Directory of Open Access Journals (Sweden)

    Li eZuo

    2015-11-01

    Full Text Available Skeletal muscle physiology is influenced by the presence of chemically reactive molecules such as reactive oxygen species (ROS. These molecules regulate multiple redox-sensitive signaling pathways that play a critical role in cellular processes including gene expression and protein modification. While ROS have gained much attention for their harmful effects in muscle fatigue and dysfunction, research has also shown ROS to facilitate muscle adaptation after stressors such as physical exercise. This manuscript aims to provide a comprehensive review of the current understanding of redox signaling in skeletal muscle. ROS-induced oxidative stress and its role in the aging process are discussed. Mitochondria have been shown to generate large amounts of ROS during muscular contractions, and thus are susceptible to oxidative stress. ROS can modify proteins located in the mitochondrial membrane leading to cell death and osmotic swelling. ROS also contribute to the necrosis and inflammation of muscle fibers that is associated with muscular diseases including Duchenne muscular dystrophy (DMD. It is imperative that future research continues to investigate the exact role of ROS in normal skeletal muscle function as well as muscular dysfunction and disease.

  16. Retinal Redox Stress and Remodeling in Cardiometabolic Syndrome and Diabetes

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2010-01-01

    Full Text Available Diabetic retinopathy (DR is a significant cause of global blindness; a major cause of blindness in the United States in people aged between 20–74. There is emerging evidence that retinopathy is initiated and propagated by multiple metabolic toxicities associated with excess production of reactive oxygen species (ROS. The four traditional metabolic pathways involved in the development of DR include: increased polyol pathway flux, advanced glycation end-product formation, activation of protein kinase Cisoforms and hexosamine pathway flux. These pathways individually and synergisticallycontribute to redox stress with excess ROS resulting in retinal tissue injury resulting in significant microvascular blood retinal barrier remodeling. The toxicity of hyperinsulinemia, hyperglycemia, hypertension, dyslipidemia, increased cytokines and growth factors, in conjunction with redox stress, contribute to the development and progression of DR. Redox stress contributes to the development and progression of abnormalities of endothelial cells and pericytes in DR. This review focuses on the ultrastructural observations of the blood retinal barrier including the relationship between the endothelial cell and pericyte remodeling in young nine week old Zucker obese (fa/ fa rat model of obesity; cardiometabolic syndrome, and the 20 week old alloxan induced diabetic porcine model. Preventing or delaying the blindness associated with these intersecting abnormal metabolic pathways may be approached through strategies targeted to reduction of tissue inflammation and oxidative—redox stress. Understanding these abnormal metabolic pathways and the accompanying redox stress and remodeling mayprovide both the clinician and researcher a new concept of approaching this complicated disease process

  17. TEMPOL increases NAD+ and improves redox imbalance in obese mice

    Science.gov (United States)

    Yamato, Mayumi; Kawano, Kimika; Yamanaka, Yuki; Saiga, Misako; Yamada, Ken-ichi

    2016-01-01

    Continuous energy conversion is controlled by reduction–oxidation (redox) processes. NAD+ and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS) and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD+ production in the ascorbic acid–glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD+/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD+/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity. PMID:26942863

  18. TEMPOL increases NAD+ and improves redox imbalance in obese mice

    Directory of Open Access Journals (Sweden)

    Mayumi Yamato

    2016-08-01

    Full Text Available Continuous energy conversion is controlled by reduction–oxidation (redox processes. NAD+ and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD+ production in the ascorbic acid–glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD+/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD+/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity.

  19. TEMPOL increases NAD(+) and improves redox imbalance in obese mice.

    Science.gov (United States)

    Yamato, Mayumi; Kawano, Kimika; Yamanaka, Yuki; Saiga, Misako; Yamada, Ken-Ichi

    2016-08-01

    Continuous energy conversion is controlled by reduction-oxidation (redox) processes. NAD(+) and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS) and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD(+) production in the ascorbic acid-glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD(+)/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD(+)/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity. Copyright © 2016. Published by Elsevier B.V.

  20. Molecular Controls of the Oxygenation and Redox Reactions of Hemoglobin

    Science.gov (United States)

    Henkens, Robert; Alayash, Abdu I.; Banerjee, Sambuddha; Crumbliss, Alvin L.

    2013-01-01

    Abstract Significance: The broad classes of O2-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O2-binding functions. Recent Advances: The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. Critical Issues: An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. Future Directions: This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes. Antioxid. Redox Signal. 18, 2298–2313. PMID:23198874

  1. Surface preparation process of a uranium titanium alloy, in particular for chemical nickel plating

    International Nuclear Information System (INIS)

    Henri, A.; Lefevre, D.; Massicot, P.

    1987-01-01

    In this process the uranium alloy surface is attacked with a solution of lithium chloride and hydrochloric acid. Dissolved uranium can be recovered from the solution by an ion exchange resin. Treated alloy can be nickel plated by a chemical process [fr

  2. Some recent results on the correlation of nano-structural and redox properties in ceria-zirconia mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, S. [Departamento de Ciencia de los Materiales, Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz) (Spain)], E-mail: serafin.bernal@uca.es; Blanco, G.; Calvino, J.J.; Hernandez, J.C.; Perez-Omil, J.A.; Pintado, J.M.; Yeste, M.P. [Departamento de Ciencia de los Materiales, Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz) (Spain)

    2008-02-28

    Some recent results on the redox behaviour of thermally aged ceria-zirconia mixed oxides with Ce/Zr molar ratios typically ranging from 50/50 to 70/30 are briefly reviewed. In accordance with them, a tentative model allowing us to correlate ageing conditions, surface and bulk nano-structural properties of the oxides, and changes occurred in their redox behaviour is proposed. As revealed by the analysis of appropriate chemical studies and the nano-structural information provided with High Resolution Transmission (HREM) and High Angle Annular Dark Field-Scanning Transmission (HAADF-STEM) electron microscopies, the presence/absence of a pyrochlore-related {kappa}-phase in the aged oxides plays a key role in determining their redox response. In the low-temperature region (T{sub red} {<=} 773 K), the enhanced reducibility exhibited by the oxide resulting from a high-temperature reduction/mild re-oxidation ageing cycle (SR-MO sample) is interpreted as due to kinetic reasons, the occurrence of the {kappa}-like phase in its surface being responsible for a faster H{sub 2} chemisorption, the rate controlling step of the overall reduction process. By contrast, in the high-temperature range (T{sub red} {>=} 973 K), the observed differences of reducibility would have a thermodynamic origin, which may be correlated with the total amount of {kappa}-like phase present in the aged sample.

  3. Biocompatibility enhancement of rare earth magnesium alloy by laser surface processing

    Science.gov (United States)

    Nie, Shilin; Wang, Yuqing; Liu, Haifeng; Guan, Yingchun

    2018-01-01

    Although magnesium and magnesium alloys are considered biocompatible and biodegradable, insufficient biocompatibility in body fluid environment is still the major drawback of magnesium alloys for their successful applications as biodegradable orthopaedic implants. In this work, magnesium alloy surface with both enhanced corrosion resistance and better cell adhesion property was directly fabricated by laser surface processing. Laser surface melting was used to improve corrosion resistance of Mg-6Gd-0.6Ca alloy. After laser surface melting, laser surface texturing was utilized on melted surface for better cell adhesion property. The corrosion resistance of laser-treated and as-received samples were evaluated using electrochemical technique. The effect of laser surface treatment on phase and microstructure evolution was evaluated using scanning electron microscopy, optical microscopy and X-ray diffraction. This work investigated the effect of laser treatment on cell distribution across the surface of magnesium alloy substrates. Osteoblast was cultured on the laser-treated surface and as-received surface. Cell morphology was observed with a scanning electron microscopy, and cell viability was evaluated by optical density measurement.

  4. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling.

    Science.gov (United States)

    Rohrbach, Arno; Schmidt, Max W

    2011-04-14

    Very low seismic velocity anomalies in the Earth's mantle may reflect small amounts of melt present in the peridotite matrix, and the onset of melting in the Earth's upper mantle is likely to be triggered by the presence of small amounts of carbonate. Such carbonates stem from subducted oceanic lithosphere in part buried to depths below the 660-kilometre discontinuity and remixed into the mantle. Here we demonstrate that carbonate-induced melting may occur in deeply subducted lithosphere at near-adiabatic temperatures in the Earth's transition zone and lower mantle. We show experimentally that these carbonatite melts are unstable when infiltrating ambient mantle and are reduced to immobile diamond when recycled at depths greater than ∼250 kilometres, where mantle redox conditions are determined by the presence of an (Fe,Ni) metal phase. This 'redox freezing' process leads to diamond-enriched mantle domains in which the Fe(0), resulting from Fe(2+) disproportionation in perovskites and garnet, is consumed but the Fe(3+) preserved. When such carbon-enriched mantle heterogeneities become part of the upwelling mantle, diamond will inevitably react with the Fe(3+) leading to true carbonatite redox melting at ∼660 and ∼250 kilometres depth to form deep-seated melts in the Earth's mantle.

  5. Surface modification on a glass surface with a combination technique of sol–gel and air brushing processes

    KAUST Repository

    Tsai, Meng-Yu

    2011-08-01

    This study fabricated the large area and optically transparent superhydrophobic silica based films on glass surface with optimized hardness. A silane coupling agent, tetraethoxysilane (TEOS), effectively bonds silica particles onto the glass substrate. Desired surface roughness was obtained by adjusting nano silica particles concentration of the precursors prepared by the sol-gel process. Silica suspension was coated onto the glass substrate by the air brushing methods. This method can deposit a uniform, transparent coating on the glass substrate efficiently. Diluting the precursor by adding ethanol or a mixture of D.I. water and ethanol further improved the transmittance and superhydrophobicity efficiency. The results showed that as the silica particle concentration and the thickness of the coating were increased, the surface roughness was enhanced. Rougher surface displayed a higher superhydrophobicity and lower transmittance. Therefore, the concentration of silica particle, volume of coatings, and the ratio of ethanol and D.I. water are of great importance to deposit a transparent, superhydrophobic coating on glass. © 2011 Elsevier B.V. All rights reserved.

  6. Effects of Micromachining Processes on Electro-Osmotic Flow Mobility of Glass Surfaces

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-03-01

    Full Text Available Silica glass is frequently used as a device material for micro/nano fluidic devices due to its excellent properties, such as transparency and chemical resistance. Wet etching by hydrofluoric acid and dry etching by neutral loop discharge (NLD plasma etching are currently used to micromachine glass to form micro/nano fluidic channels. Electro-osmotic flow (EOF is one of the most effective methods to drive liquids into the channels. EOF mobility is affected by a property of the micromachined glass surfaces, which includes surface roughness that is determined by the manufacturing processes. In this paper, we investigate the effect of micromaching processes on the glass surface topography and the EOF mobility. We prepared glass surfaces by either wet etching or by NLD plasma etching, investigated the surface topography using atomic force microscopy, and attempted to correlate it with EOF generated in the micro-channels of the machined glass. Experiments revealed that the EOF mobility strongly depends on the surface roughness, and therefore upon the fabrication process used. A particularly strong dependency was observed when the surface roughness was on the order of the electric double layer thickness or below. We believe that the correlation described in this paper can be of great help in the design of micro/nano fluidic devices.

  7. Effect of processing parameters of rotary ultrasonic machining on surface integrity of potassium dihydrogen phosphate crystals

    Directory of Open Access Journals (Sweden)

    Jianfu Zhang

    2015-09-01

    Full Text Available Potassium dihydrogen phosphate is an important optical crystal. However, high-precision processing of large potassium dihydrogen phosphate crystal workpieces is difficult. In this article, surface roughness and subsurface damage characteristics of a (001 potassium dihydrogen phosphate crystal surface produced by traditional and rotary ultrasonic machining are studied. The influence of process parameters, including spindle speed, feed speed, type and size of sintered diamond wheel, ultrasonic power, and selection of cutting fluid on potassium dihydrogen phosphate crystal surface integrity, was analyzed. The surface integrity, especially the subsurface damage depth, was affected significantly by the ultrasonic power. Metal-sintered diamond tools with high granularity were most suitable for machining potassium dihydrogen phosphate crystal. Cutting fluid played a key role in potassium dihydrogen phosphate crystal machining. A more precise surface can be obtained in machining with a higher spindle speed, lower feed speed, and using kerosene as cutting fluid. Based on the provided optimized process parameters for machining potassium dihydrogen phosphate crystal, a processed surface quality with Ra value of 33 nm and subsurface damage depth value of 6.38 μm was achieved.

  8. The synthesis of flexible zeolite nanofibers by a polymer surface thermal etching process

    Science.gov (United States)

    Ji, Sang Hyun; Cho, Jeong Ho; Jeong, Young Hun; Yun, Jon Do; Yun, Ji Sun

    2017-09-01

    Flexible zeolite nanofibers with high surface area were synthesized by an electrospinning method and a thermal surface partial etching process. The thermal surface partial etching temperature range for maintaining flexibility of zeolite nanofibers was investigated based on thermogravimetric analysis (TGA), and the as-spun zeolite nanofibers were thermal etched at a temperature range from 250 °C to 450 °C. Field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM) images clearly showed that the polymer surface of the nanofibers was partially etched, and zeolite particles were exposed on the surface of the nanofibers. X-ray diffraction (XRD) results confirmed that a phase change did not occur in the zeolite nanofibers with a thermal etching process. The specific surface area characteristics were analyzed by N2 adsorption/desorption isotherms, and the thermal surface etched zeolite nanofibers at 400 °C had a specific surface area of 816 m2/g similar to the value of zeolite powders.

  9. Elucidation of the Mechanism of Redox Grafting of Diazotated Anthraquinone

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Bousquet, Antoine; Torbensen, Kristian

    2012-01-01

    in detail, 1-anthraquinone (AQ) redox units were immobilized on these substrates by electroreduction of 9,10-dioxo-9,10-dihydroanthracene-1-diazo-nium tetrafluoroborate. Electrochemical quartz crystal microbalance was employed to follow the grafting process during a cyclic voltammetric sweep by recording...

  10. Electrochemical studies of redox probes in self-organized lyotropic ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Lyotropic liquid crystalline phases formed by surfactants are of special importance due to their close resemblance to biological systems. The redox reactions in such ordered media are of funda- mental interest in understanding several complex processes occurring in the biological media, where the former can act ...

  11. Electrochemical studies of redox probes in self-organized lyotropic ...

    Indian Academy of Sciences (India)

    Lyotropic liquid crystalline phases formed by surfactants are of special importance due to their close resemblance to biological systems. The redox reactions in such ordered media are of fundamental interest in understanding several complex processes occurring in the biological media, where the former can act as model ...

  12. Impact of overall and particle surface heat transfer coefficients on thermal process optimization in rotary retorts.

    Science.gov (United States)

    Simpson, R; Abakarov, A; Almonacid, S; Teixeira, A

    2008-10-01

    This study attempts to examine the significance of recent research that has focused on efforts to estimate values for global and surface heat transfer coefficients under forced convection heating induced by end-over-end rotation in retorting of canned peas in brine. The study confirms the accuracy of regression analysis used to predict values for heat transfer coefficients as a function of rotating speed and headspace, and uses them to predict values over a range of process conditions, which make up the search domain for process optimization. These coefficients were used in a convective heat transfer model to establish a range of lethality-equivalent retort temperature-time processes for various conditions of retort temperature, rotating speed, and headspace. Then, they were coupled with quality factor kinetics to predict the final volume average and surface quality retention resulting from each process and to find the optimal thermal process conditions for canned fresh green peas. Results showed that maximum quality retention (surface and volume average retention) was achieved with the shortest possible process time (made possible with highest retort temperature), and reached the similar level in all cases with small difference between surface and volume average quality retention. The highest heat transfer coefficients (associated with maximum rotating speed and headspace) showed a 10% reduction in process time over that required with minimum rotating speed and headspace. The study concludes with a discussion of the significance of these findings and degree to which they were expected.

  13. A Coupled Groundwater-Surface Water Modeling Framework for Simulating Transition Zone Processes.

    Science.gov (United States)

    Mugunthan, Pradeep; Russell, Kevin T; Gong, Binglei; Riley, Michael J; Chin, Arthur; McDonald, Blair G; Eastcott, Linda J

    2017-05-01

    There is an identified need for fully representing groundwater-surface water transition zone (i.e., the sediment zone that connects groundwater and surface water) processes in modeling fate and transport of contaminants to assist with management of contaminated sediments. Most existing groundwater and surface water fate and transport models are not dynamically linked and do not consider transition zone processes such as bioturbation and deposition and erosion of sediments. An interface module is developed herein to holistically simulate the fate and transport by coupling two commonly used models, Environmental Fluid Dynamics Code (EFDC) and SEAWAT, to simulate surface water and groundwater hydrodynamics, while providing an enhanced representation of the processes in the transition zone. Transition zone and surface water contaminant processes were represented through an enhanced version of the EFDC model, AQFATE. AQFATE also includes SEDZLJ, a state-of-the-science surface water sediment transport model. The modeling framework was tested on a published test problem and applied to evaluate field-scale two- and three-dimensional contaminant transport. The model accurately simulated concentrations of salinity from a published test case. For the field-scale applications, the model showed excellent mass balance closure for the transition zone and provided accurate simulations of all transition zone processes represented in the modeling framework. The model predictions for the two-dimensional field case were consistent with site-specific observations of contaminant migration. This modeling framework represents advancement in the simulation of transition zone processes and can help inform risk assessment at sites where contaminant sources from upland areas have the potential to impact sediments and surface water. © 2016, National Ground Water Association.

  14. Distribution and Characteristics of Boulder Halos at High Latitudes on Mars: Ground Ice and Surface Processes Drive Surface Reworking

    Science.gov (United States)

    Levy, J. S.; Fassett, C. I.; Rader, L. X.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.; Russell, A. T.; Dyar, M. D.

    2018-02-01

    Boulder halos are circular arrangements of clasts present at Martian middle to high latitudes. Boulder halos are thought to result from impacts into a boulder-poor surficial unit that is rich in ground ice and/or sediments and that is underlain by a competent substrate. In this model, boulders are excavated by impacts and remain at the surface as the crater degrades. To determine the distribution of boulder halos and to evaluate mechanisms for their formation, we searched for boulder halos over 4,188 High Resolution Imaging Science Experiment images located between 50-80° north and 50-80° south latitude. We evaluate geological and climatological parameters at halo sites. Boulder halos are about three times more common in the northern hemisphere than in the southern hemisphere (19% versus 6% of images) and have size-frequency distributions suggesting recent Amazonian formation (tens to hundreds of millions of years). In the north, boulder halo sites are characterized by abundant shallow subsurface ice and high thermal inertia. Spatial patterns of halo distribution indicate that excavation of boulders from beneath nonboulder-bearing substrates is necessary for the formation of boulder halos, but that alone is not sufficient. Rather, surface processes either promote boulder halo preservation in the north or destroy boulder halos in the south. Notably, boulder halos predate the most recent period of near-surface ice emplacement on Mars and persist at the surface atop mobile regolith. The lifetime of observed boulders at the Martian surface is greater than the lifetime of the craters that excavated them. Finally, larger minimum boulder halo sizes in the north indicate thicker icy soil layers on average throughout climate variations driven by spin/orbit changes during the last tens to hundreds of millions of years.

  15. Salt-Assisted Ultrasonicated De-Aggregation and Advanced Redox Electrochemistry of Detonation Nanodiamond.

    Science.gov (United States)

    Gupta, Sanju; Evans, Brendan; Henson, Alex; Carrizosa, Sara B

    2017-11-10

    Nanodiamond particles form agglomerates in the dry powder state and this poses limitation to the accessibility of their diamond-like core thus dramatically impacting their technological advancement. In this work, we report de-agglomeration of nanodiamond (ND) by using a facile technique namely, salt-assisted ultrasonic de-agglomeration (SAUD). Utilizing ultrasound energy and ionic salts (sodium chloride and sodium acetate), SAUD is expected to break apart thermally treated nanodiamond aggregates (~50-100 nm) and produce an aqueous slurry of de-aggregated stable colloidal nanodiamond dispersions by virtue of ionic interactions and electrostatic stabilization. Moreover, the SAUD technique neither has toxic chemicals nor is it difficult to remove impurities and therefore the isolated nanodiamonds produced are exceptionally suited for engineered nanocarbon for mechanical (composites, lubricants) and biomedical (bio-labeling, biosensing, bioimaging, theranostic) applications. We characterized the microscopic structure using complementary techniques including transmission electron microscopy combined with selected-area electron diffraction, optical and vibrational spectroscopy. We immobilized SAUD produced NDs on boron-doped diamond electrodes to investigate fundamental electrochemical properties. They included surface potential (or Fermi energy level), carrier density and mapping electrochemical (re)activity using advanced scanning electrochemical microscopy in the presence of a redox-active probe, with the aim of understanding the surface redox chemistry and the interfacial process of isolated nanodiamond particles as opposed to aggregated and untreated nanoparticles. The experimental findings are discussed in terms of stable colloids, quantum confinement and predominantly surface effects, defect sites (sp²-bonded C and unsaturated bonds), inner core (sp³-bonded C)/outer shell (sp²-bonded C) structure, and surface functionality. Moreover, the surface electronic

  16. Salt-Assisted Ultrasonicated De-Aggregation and Advanced Redox Electrochemistry of Detonation Nanodiamond

    Directory of Open Access Journals (Sweden)

    Sanju Gupta

    2017-11-01

    Full Text Available Nanodiamond particles form agglomerates in the dry powder state and this poses limitation to the accessibility of their diamond-like core thus dramatically impacting their technological advancement. In this work, we report de-agglomeration of nanodiamond (ND by using a facile technique namely, salt-assisted ultrasonic de-agglomeration (SAUD. Utilizing ultrasound energy and ionic salts (sodium chloride and sodium acetate, SAUD is expected to break apart thermally treated nanodiamond aggregates (~50–100 nm and produce an aqueous slurry of de-aggregated stable colloidal nanodiamond dispersions by virtue of ionic interactions and electrostatic stabilization. Moreover, the SAUD technique neither has toxic chemicals nor is it difficult to remove impurities and therefore the isolated nanodiamonds produced are exceptionally suited for engineered nanocarbon for mechanical (composites, lubricants and biomedical (bio-labeling, biosensing, bioimaging, theranostic applications. We characterized the microscopic structure using complementary techniques including transmission electron microscopy combined with selected-area electron diffraction, optical and vibrational spectroscopy. We immobilized SAUD produced NDs on boron-doped diamond electrodes to investigate fundamental electrochemical properties. They included surface potential (or Fermi energy level, carrier density and mapping electrochemical (reactivity using advanced scanning electrochemical microscopy in the presence of a redox-active probe, with the aim of understanding the surface redox chemistry and the interfacial process of isolated nanodiamond particles as opposed to aggregated and untreated nanoparticles. The experimental findings are discussed in terms of stable colloids, quantum confinement and predominantly surface effects, defect sites (sp2–bonded C and unsaturated bonds, inner core (sp3–bonded C/outer shell (sp2–bonded C structure, and surface functionality. Moreover, the surface

  17. Method for atmospheric pressure reactive atom plasma processing for surface modification

    Science.gov (United States)

    Carr, Jeffrey W [Livermore, CA

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  18. Modelling Periglacial Processes on Low-Relief High-Elevation Surfaces

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Knudsen, Mads Faurschou; Egholm, D.L.

    Are low-relief high-elevation surfaces generally a result of uplift of flat surfaces formed close to sea-level or can they be formed "in situ" by climate dependent surface processes such as those associated with glaciation? This question is important to resolve in order to understand the geological...... as a function of mean annual air temperature and sediment thickness. This allows us to incorporate periglacial processes into a long-term landscape evolution model where surface elevation, sediment thickness, and climate evolve over time. With this model we are able to explore the slow feedbacks between...... periglacial erosion, sediment transport, and the evolving topography. We show that smooth peaks, convex hillslopes, and a few meters thick regolith cover at high elevation are emergent properties of the landscape evolution model. By varying climate and other model parameters, we discuss how the landscape...

  19. Reducing capacities and redox potentials of humic substances extracted from sewage sludge.

    Science.gov (United States)

    Yang, Zhen; Du, Mengchan; Jiang, Jie

    2016-02-01

    Humic substances (HS) are redox active organic materials that can be extracted from sewage sludge generated in wastewater treatment processes. Due to the poor understanding of reducing capacity, redox potentials and redox active functional groups of HS in sewage sludge, the potential contribution of sludge HS in transformation of wastewater contaminants is unclear. In the present study, the number of electrons donated or accepted by sewage sludge HS were quantified before and after reduction by iron compounds that possess different redox potentials and defined as the reducing capacity of the sewage sludge. In contrast to previous studies of soil and commercial humic acids (HA), reduced sludge HA showed a lower reducing capacity than that of native HA, which implies formation of semiquinone radicals since the semiquinone radical/hydroquinone pair has a much higher redox potential than the quinone/hydroquinone pair. It is novel that reducing capacities of sludge HA were determined in the redox potential range from -314 to 430 mV. The formation of semiquinone radicals formed during the reduction of quinone moieties in sludge HA is shown by three-dimensional excitation/emission matrix fluorescence spectroscopies information, increasing fluorescence intensities and blue-shifting of the excitation/emission peak of reduced sludge HA. Knowledge of sludge HS redox potentials and corresponding reducing capacities makes it possible to predict the transformation of redox active pollutants and facilitate manipulation and optimization of sludge loading wastewater treatment processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The study of sub-surface damage distributions during grinding process on different abrasion materials

    Science.gov (United States)

    Kuo, Ching-Hsiang; Huang, Chien-Yao; Yu, Zong-Ru; Shu, Shyu-Cheng; Chang, Keng-Shou; Hsu, Wei-Yao

    2017-10-01

    The grinding process is the primary technology for curvature generation (CG) on glass optics. The higher material removal rate (MRR) leads to deeper sub-surface damage (SSD) on lens surface. The SSD must be removed by following lapping and polishing processes to ensure the lens quality. However, these are not an easy and an efficient process to remove the SSD from ground surface directly for aspheric surfaces with tens or hundreds microns departure from bestfit- sphere (BFS). An efficient fabrication procedure for large aspheric departure on glass materials must be considered. We propose 3-step fabrication procedures for aspheric surface with larger departure. 1st step is to generate a specific aspheric surface with depth less than 10 μm of SSD residual. 2nd step is to remove SSD and keep the aspheric form by using Zeeko polisher with higher MRR pad. Final step is to figure and finish the aspheric surface by using QED MRF machine. In this study, we focus on the 1st step to investigate the residual depth of SSD after grinding process on different abrasion materials. The materials of tested part are fused silica, S-NPH2, and S-PHM52. The cross grinding would be configured and depth of SSD/surface roughness would be evaluated in this study. The characteristic of SSD could be observed after etching by confocal microscope. The experimental results show the depth of SSD below 31.1 μm with #400 grinding wheel. And the near 10 μm depth of SSD would be achieved with #1,000 grinding wheel. It means the aspherization polishing on large parts with large departure from best fit sphere would be replaced. The fabrication of large aspheric part would be efficient.

  1. Surface Processing and Modification of Polymers by Water Cluster Ion Beam

    Science.gov (United States)

    Ryuto, H.; Takeuchi, M.; Ichihashi, G.; Sommani, P.; Takaoka, G. H.

    2011-01-01

    A water cluster ion beam was irradiated on a poly(methyl methacrylate) (PMMA) surface to examine the possibility of applying the water cluster ion beam technique to the surface processing and modification of polymers. The sputtering yields of PMMA substrates irradiated with water cluster ion beams increased with acceleration voltage and dose of the water cluster ion beam. The threshold acceleration voltage of sputtering was approximately 3 kV. The X-ray photoelectron spectroscopy (XPS) analysis of the PMMA surface irradiated with the water cluster ion beam suggested the degradation of the PMMA side chains. The XPS spectrum of the surface of the sputtered particle catcher at 45° backward direction showed approximately the same shape as the XPS spectrum of the PMMA surface irradiated with the water cluster ion beam.

  2. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2017-12-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  3. Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness

    Science.gov (United States)

    Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah

    2018-01-01

    In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  4. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2018-03-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  5. Prevention of redox shuttle using electropolymerized polypyrrole film in a lithium-oxygen battery

    Science.gov (United States)

    Togasaki, Norihiro; Shibamura, Ryuji; Naruse, Takuya; Momma, Toshiyuki; Osaka, Tetsuya

    2018-04-01

    Among the recent advancements in lithium-oxygen (Li-O2) chemistries, redox mediators (RMs) have been revealed to play a significant role in decreasing overpotential on charging and in improving cycling performance. However, an intrinsic problem is redox shuttle of RMs, which leads to degraded RM utilization and induces the accumulation of discharge products on the cathode surface; this remains a significant issue in the current battery cell configuration (Li anode/separator/cathode). To address this detrimental problem, herein we propose a novel Li-O2 cell incorporating a freestanding electropolymerized polypyrrole (PPy) film for the restriction of the redox-shuttle phenomenon of lithium iodide (Li anode/separator/PPy film/cathode). In this study, a PPy film, which is prepared through oxidative electropolymerization using an ionic liquid of 1-methyl-1-butylpyrrolidinium mixed with pyrrole and lithium bis(trifluoromethanesulfonyl)imide, is introduced between the cathode and the separator. From the charge-discharge voltage profile, it is confirmed that the PPy film suppresses the diffusion of the oxidized I3- to the Li anode, while allowing Li ion transport. Secondary scanning electron microscope measurements confirm that the chemical reactions between I3- and Li2O2 are facilitated by the presence of the PPy film because I3- remains near the cathode surface during the charging process. As a result, the cycling performance in the Li-O2 cells with PPy film exhibits a cycling life four times as long as that of the Li-O2 cells without PPy film.

  6. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces

    Science.gov (United States)

    Chiang, Cheng-Kun; Lu, Yen-Wen

    2011-07-01

    Evaporation phenomena are a critical and frequently seen phase change process in many heat transfer applications. In this paper, we study the evaporation process of a sessile droplet on two topologically different surfaces, including smooth and nanostructured surfaces. The nanostructured surface has an array of high-aspect-ratio nanowires (height/diameter ~ 125) and is implemented by using a simple template-based nanofabrication method. It possesses superhydrophobicity (>140°) and low contact angle hysteresis (1.2-2.1°), allowing the liquid droplets to remain in the 'fakir' state throughout the evaporation processes. Sessile droplets of deionized (DI) water and water/methanol binary mixture test liquids with their contact angles and base diameters are monitored. The results show that the nanostructures play a critical role in the droplet dynamics during evaporation.

  7. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces

    International Nuclear Information System (INIS)

    Chiang, Cheng-Kun; Lu, Yen-Wen

    2011-01-01

    Evaporation phenomena are a critical and frequently seen phase change process in many heat transfer applications. In this paper, we study the evaporation process of a sessile droplet on two topologically different surfaces, including smooth and nanostructured surfaces. The nanostructured surface has an array of high-aspect-ratio nanowires (height/diameter ∼ 125) and is implemented by using a simple template-based nanofabrication method. It possesses superhydrophobicity (>140°) and low contact angle hysteresis (1.2–2.1°), allowing the liquid droplets to remain in the 'fakir' state throughout the evaporation processes. Sessile droplets of deionized (DI) water and water/methanol binary mixture test liquids with their contact angles and base diameters are monitored. The results show that the nanostructures play a critical role in the droplet dynamics during evaporation

  8. Modeling and optimization of surface roughness in single point incremental forming process

    Directory of Open Access Journals (Sweden)

    Suresh Kurra

    2015-07-01

    Full Text Available Single point incremental forming (SPIF is a novel and potential process for sheet metal prototyping and low volume production applications. This article is focuses on the development of predictive models for surface roughness estimation in SPIF process. Surface roughness in SPIF has been modeled using three different techniques namely, Artificial Neural Networks (ANN, Support Vector Regression (SVR and Genetic Programming (GP. In the development of these predictive models, tool diameter, step depth, wall angle, feed rate and lubricant type have been considered as model variables. Arithmetic mean surface roughness (Ra and maximum peak to valley height (Rz are used as response variables to assess the surface roughness of incrementally formed parts. The data required to generate, compare and evaluate the proposed models have been obtained from SPIF experiments performed on Computer Numerical Control (CNC milling machine using Box–Behnken design. The developed models are having satisfactory goodness of fit in predicting the surface roughness. Further, the GP model has been used for optimization of Ra and Rz using genetic algorithm. The optimum process parameters for minimum surface roughness in SPIF have been obtained and validated with the experiments and found highly satisfactory results within 10% error.

  9. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing

    Science.gov (United States)

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R.; Han, Intaek; Yun, Dong-Jin

    2015-10-01

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.

  10. Selection Criteria and Methods for Testing Different Surface Materials for Contact Frying Processes

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya

    these coatings are not mechanically stable, they do not tolerate high enough temperatures (above 260⁰ C) to give the right product quality, and the surfaces wear easily calling for regular service of the equipment. The present project concerns an investigation of the possibilities of replacing the widely used......Inner surfaces of industrial process equipment for food are often coated to give the surfaces particular properties with respect to adhesion and cleanability. Existing coating materials (PTFE (Teflon®) or silicone based polymers) suffer from drawbacks when used in contact frying, because...

  11. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing.

    Science.gov (United States)

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R; Han, InTaek; Yun, Dong-Jin

    2015-10-22

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.

  12. Gliding arc surface modification of carrot nanofibre coating - perspective for composite processing

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Berglund, L; Aitomäki, Y

    2016-01-01

    Surfaces of carrot nanofibre coatings were modified by a gliding arc in atmospheric pressure air. The treatment strengthened wetting of deionized water and glycerol, increased an oxygen content, C-O and C=O, and moderately roughened the surfaces. In the perspective of composite materials......, these changes to the nanofibres can potentially improve their processability when they are to be impregnated with a polymeric matrix. However, longer exposure to the gliding arc reduced oxidation and roughness of the surface, and thus there exists an optimum condition to achieve good wetting to solvents....

  13. Planarization of the diamond film surface by using the hydrogen plasma etching with carbon diffusion process

    International Nuclear Information System (INIS)

    Kim, Sung Hoon

    2001-01-01

    Planarization of the free-standing diamond film surface as smooth as possible could be obtained by using the hydrogen plasma etching with the diffusion of the carbon species into the metal alloy (Fe, Cr, Ni). For this process, we placed the free-standing diamond film between the metal alloy and the Mo substrate like a metal-diamond-molybdenum (MDM) sandwich. We set the sandwich-type MDM in a microwave-plasma-enhanced chemical vapor deposition (MPECVD) system. The sandwich-type MDM was heated over ca. 1000 .deg. C by using the hydrogen plasma. We call this process as the hydrogen plasma etching with carbon diffusion process. After etching the free-standing diamond film surface, we investigated surface roughness, morphologies, and the incorporated impurities on the etched diamond film surface. Finally, we suggest that the hydrogen plasma etching with carbon diffusion process is an adequate etching technique for the fabrication of the diamond film surface applicable to electronic devices

  14. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate Ti, Y and Ce oxide powders into the surface of an Aluminium alloy. The FSP processed surface composite was subsequently anodized with an aim to develop optical effects in the anodized layer owing to the presence of incorporated...... oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...

  15. Turning process monitoring of internal combustion engine piston’s cylindrical surface

    Directory of Open Access Journals (Sweden)

    Twardowski Pawel

    2017-01-01

    Full Text Available In this paper the monitoring method of turning process of combustion engine piston’s cylindrical surface is proposed. During this process, the PCD diamond tool cuts the piston’s cylindrical surface with the 3 grooves. The first groove is made in the cast iron insert. In case, when the machining allowances are selected inappropriately, the tool cuts the cast iron insert and consequently generates the reject. The proposed monitoring system based on vibration signals analysis enables the detection of these critical situations and react, in order to maintain the production quality.

  16. Analysis of the Forming Process of Conical-Like Helical Surfaces with Roller Tools

    Directory of Open Access Journals (Sweden)

    Kacalak W.

    2017-02-01

    Full Text Available The article presents a methodology of an analysis and modeling of technological systems and the grinding process of conical-like helical surfaces with the use of modern CAD/CAE systems and calculations in the Matlab system. The methodology developed allows one to carry out simulation tests for the accuracy of the grinding process of helical surfaces taking into consideration the deviations of the location and shape of the system’s elements, axial and radial striking the spindle of the workpiece machined and the grinding wheel as well as the tool’s geometrical features.

  17. Uniformity analysis of dielectric barrier discharge (DBD) processed polyethylene terephthalate (PET) surface

    Science.gov (United States)

    Liu, Chaozong; Brown, Norman M. D.; Meenan, Brian J.

    2006-01-01

    A dielectric barrier discharge (DBD) plasma, operating in air at atmospheric pressure, has been used to induce changes in the surface properties of polyethylene terephthalate (PET) films. The effects that the key DBD operating parameters: discharge power, processing speed, processing duration, and electrode configurations, have on producing wettability changes in the PET surface region have been investigated. The approach taken involves the application of an Taguchi experimental design and robust analysis methodology. The various data sets obtained from these analyses have been used to studies the effect of the operating parameters on the surface uniformity and efficiency of the said treatment. In general, the results obtained indicate that DBD plasma processing is an effective method for the controlled surface modification of PET. Relatively short exposures to the atmospheric pressure discharge produces significant wettability changes at the polymer film surface, as indicted by pronounced reductions in the water contact angle measured. It was observed that the wettability of the resultant surface shows no significant differences in respect to orientation parallel (L-direction) or perpendicular (T-direction) to the electrode long axis. However, there was significant differences between the data obtained from these two orientations. Analysis of the role of each of the operating parameters concerned shows that they have a selective effectiveness with respect to resultant surface modification in terms of uniformity of modification and wettability. The number of treatment cycles and the electrode configuration used were found to have the most significant effects on the homogeneity of the resultant PET surface changes in L- and T-orientation, respectively. On the other hand, the applied power showed no significant role in this regard. The number of treatment cycles was found to be the dominant factor (at significance level of 0.05) in respect of water contact angle

  18. Melt expulsion during ultrasonic vibration-assisted laser surface processing of austenitic stainless steel.

    Science.gov (United States)

    Alavi, S Habib; Harimkar, Sandip P

    2015-05-01

    Simultaneous application of ultrasonic vibrations during conventional materials processing (casting, welding) and material removal processes (machining) has recently been gaining widespread attention due to improvement in metallurgical quality and efficient material removal, respectively. In this paper, ultrasonic vibration-assisted laser surface melting of austenitic stainless steel (AISI 316) is reported. While the application of ultrasonic vibrations during laser processing delays the laser interaction with material due to enhancement of surface convection, it resulted in expulsion of melt from the irradiated region (forming craters) and transition from columnar to equiaxed dendritic grain structure in the resolidified melt films. Systematic investigations on the effect of ultrasonic vibrations (with vibrations frequency of 20 kHz and power output in the range of 20-40%) on the development of microstructure during laser surface melting (with laser power of 900 W and irradiation time in the range of 0.30-0.45 s) are reported. The results indicate that the proposed ultrasonic vibration-assisted laser processing can be designed for efficient material removal (laser machining) and improved equiaxed microstructure (laser surface modifications) during materials processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Investigation of electrical characteristics of no-insulation coil wound with surface-processed HTS tape

    Science.gov (United States)

    Jeon, Haeryong; Lee, Woo Seung; Kim, Jinsub; Baek, Geonwoo; Jeon, Sangsu; Yoon, Yong Soo; Ko, Tae Kuk

    2017-08-01

    This paper deals with the electrical characteristics of no-insulation coil wound with surface-processed HTS tape. The bypassing current path through turn-to-turn contacts within a coil is formed in the no-insulation coil, and this bypassing current path determines two characteristics: 1) self-protection and 2) charge-discharge delay. The amplitude of bypassing current is determined by contact resistance between the turn-to-turn contacts of the no-insulation coil. The surface roughness of the HTS tape is one of the parameters to change the contact resistance. The HTS tapes were processed to roughen by bead blast and abrasive paper, and the no-insulation coil is fabricated using processed HTS tape. We have studied the charge-discharge delay and self-protecting characteristic of each no-insulation coil by 1) sudden discharge tests and 2) overcurrent tests. The FEM simulations of contact resistance of no-insulation coil were carried out. The contact surface resistance of a case processed by abrasive paper has almost three times larger than that of reference no-insulation coil, and a case processed by bead blast presents almost same contact surface resistance with reference no-insulation coil.

  20. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  1. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes.

    Science.gov (United States)

    Doyle, Richard L; Godwin, Ian J; Brandon, Michael P; Lyons, Michael E G

    2013-09-07

    This paper presents a review of the redox and electrocatalytic properties of transition metal oxide electrodes, paying particular attention to the oxygen evolution reaction. Metal oxide materials may be prepared using a variety of methods, resulting in a diverse range of redox and electrocatalytic properties. Here we describe the most common synthetic routes and the important factors relevant to their preparation. The redox and electrocatalytic properties of the resulting oxide layers are ascribed to the presence of extended networks of hydrated surface bound oxymetal complexes termed surfaquo groups. This interpretation presents a possible unifying concept in water oxidation catalysis - bridging the fields of heterogeneous electrocatalysis and homogeneous molecular catalysis.

  2. Preservation of organic matter in nontronite against iron redox cycling.

    Science.gov (United States)

    Zeng, Q.

    2015-12-01

    It is generally believed that clay minerals can protect organic matter from degradation in redox active environments, but both biotic and abiotic factors can influence the redox process and thus potentially change the clay-organic associations. However, the specific mechanisms involved in this process remain poorly understood. In this study, a model organic compound, 12-Aminolauric acid (ALA) was selected to intercalate into the structural interlayer of nontronite (an iron-rich smectite, NAu-2) to form an ALA-intercalated NAu-2 composite (ALA-NAu-2). Shawanella putrefaciens CN32 and sodium dithionite were used to reduce structural Fe(III) to Fe(II) in NAu-2 and ALA-NAu-2. The bioreduced ALA-NAu-2 was subsequently re-oxidized by air. The rates and extents of bioreduction and air re-oxidation were determined with wet chemistry methods. ALA release from ALA-NAu-2 via redox process was monitored. Mineralogical changes after iron redox cycle were investigated with X-ray diffraction, infrared spectroscopy, and scanning and transmission electron microscopy. At the beginning stage of bioreduction, S. putrefaciens CN32 reduced Fe(III) from the edges of nontronite and preferentially reduced and dissolved small and poorly crystalline particles, and released ALA, resulting a positive correlation between ALA release and iron reduction extent (selectivity in reducing ALA-NAu-2 particles, and a considerable amount of reductive dissolution was responsible for a large amount of ALA release (>80%). Because bacteria are the principal agent for mediating redox process in natural environments, our results demonstrated that the structural interlayer of smectite can serve as a potential shelter to protect organic matter from oxidation.

  3. Practical and theoretical basis for performing redox-measurements in compacted bentonite. A literature survey

    International Nuclear Information System (INIS)

    Carlsson, T.; Muurinen, A.

    2008-12-01

    This report reviews the state-of-the-art with regard to redox measurements, especially in compacted water saturated bentonite, but also in natural systems like sediments and ground waters. Both theoretical and practical aspects of redox measurements are discussed, as well as some basic concepts like terminal electron-accepting processes (TEAPs) and oxidative capacity (OXC). The problems associated with the interpretation of measured electrode potentials are treated. Despite many practical and theoretical difficulties, redox measurements continue to be carried out by researchers all over the world. The over-all conclusion from the literature survey is that fruitful redox-measurements can be performed in compacted bentonite. Irrespective of whether the measured redox potentials are absolute or not, the use of electrodes provide a valuable tool for studying, e.g., long-term changes in the pore water of compacted bentonite and/or the diffusion of oxygen into a bentonite. (orig.)

  4. Radar signal pre-processing to suppress surface bounce and multipath

    Science.gov (United States)

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  5. The Investigations of Friction under Die Surface Vibration in Cold Forging Process

    DEFF Research Database (Denmark)

    Jinming, Sha

    of the application of ultrasonic vibration on drawing, rolling and other metal forming process show that the load and friction coefficient would be decreased with the presence of ultrasonic vibration. Investigations on forging processes and under low frequency, especially the quantitative analysis of friction......The objective of this thesis is to fundamentally study the influence of die surface vibration on friction under low frequency in metal forging processes. The research includes vibrating tool system design for metal forming, theoretical and experimental investigations, and finite element simulations...... on die surface vibration in forging process. After a general introduction to friction mechanisms and friction test techniques in metal forming, the application of ultrasonic vibration in metal forming, the influence of sliding velocity on friction is described. Some earlier investigations...

  6. Process optimization of rolling for zincked sheet technology using response surface methodology and genetic algorithm

    Science.gov (United States)

    Ji, Liang-Bo; Chen, Fang

    2017-07-01

    Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.

  7. Dual brush process for selective surface modification in graphoepitaxy directed self-assembly

    Science.gov (United States)

    Doise, Jan; Chan, Boon Teik; Hori, Masafumi; Gronheid, Roel

    2017-07-01

    Graphoepitaxy directed self-assembly is a potential low-cost solution for patterning via layers with pitches beyond the reach of a single optical lithographic exposure. In this process, selective control of the interfacial energy at the bottom and sidewall of the template is an important but challenging exercise. A dual brush process is implemented, in which two brushes with distinct end-groups are consecutively grafted to the prepattern to achieve fully independent modification of the bottom and sidewall surface of the template. A comprehensive study of hole pattern quality shows that using a dual brush process leads to a substantial improvement in terms of positional and dimensional variability across the process window. These findings will be useful to others who wish to manipulate polymer-surface interactions in directed self-assembly flows.

  8. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    Science.gov (United States)

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  9. Interactive Computing and Processing of NASA Land Surface Observations Using Google Earth Engine

    Science.gov (United States)

    Molthan, Andrew; Burks, Jason; Bell, Jordan

    2016-01-01

    Google's Earth Engine offers a "big data" approach to processing large volumes of NASA and other remote sensing products. h\\ps://earthengine.google.com/ Interfaces include a Javascript or Python-based API, useful for accessing and processing over large periods of record for Landsat and MODIS observations. Other data sets are frequently added, including weather and climate model data sets, etc. Demonstrations here focus on exploratory efforts to perform land surface change detection related to severe weather, and other disaster events.

  10. Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering

    International Nuclear Information System (INIS)

    Chan, W.L.; Chason, Eric

    2007-01-01

    When collimated beams of low energy ions are used to bombard materials, the surface often develops a periodic pattern or ''ripple'' structure. Different types of patterns are observed to develop under different conditions, with characteristic features that depend on the substrate material, the ion beam parameters, and the processing conditions. Because the patterns develop spontaneously, without applying any external mask or template, their formation is the expression of a dynamic balance among fundamental surface kinetic processes, e.g., erosion of material from the surface, ion-induced defect creation, and defect-mediated evolution of the surface morphology. In recent years, a comprehensive picture of the different kinetic mechanisms that control the different types of patterns that form has begun to emerge. In this article, we provide a review of different mechanisms that have been proposed and how they fit together in terms of the kinetic regimes in which they dominate. These are grouped into regions of behavior dominated by the directionality of the ion beam, the crystallinity of the surface, the barriers to surface roughening, and nonlinear effects. In sections devoted to each type of behavior, we relate experimental observations of patterning in these regimes to predictions of continuum models and to computer simulations. A comparison between theory and experiment is used to highlight strengths and weaknesses in our understanding. We also discuss the patterning behavior that falls outside the scope of the current understanding and opportunities for advancement

  11. Identification of soil erosion land surfaces by Landsat data analysis and processing

    International Nuclear Information System (INIS)

    Lo Curzio, S.

    2009-01-01

    In this paper, we outline the typical relationship between the spectral reflectance of aileron's on newly-formed land surfaces and the geo morphological features of the land surfaces at issue. These latter represent the products of superficial erosional processes due to the action of the gravity and/or water; thus, such land surfaces are highly representative of the strong soil degradation occurring in a wide area located on the boundary between Molise and Puglia regions (Southern Italy). The results of this study have been reported on thematic maps; on such maps, the detected erosional land surfaces have been mapped on the basis of their typical spectral signature. The study has been performed using Landsat satellite imagery data which have been then validated by means of field survey data. The satellite data have been processed using remote sensing techniques, such as: false colour composite, contrast stretching, principal component analysis and decorrelation stretching. The study has permitted to produce, in a relatively short time and at low expense, a map of the eroded land surfaces. Such a result represents a first and fundamental step in evaluating and monitoring the erosional processes in the study area [it

  12. Connecting Biology to Electronics: Molecular Communication via Redox Modality.

    Science.gov (United States)

    Liu, Yi; Li, Jinyang; Tschirhart, Tanya; Terrell, Jessica L; Kim, Eunkyoung; Tsao, Chen-Yu; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-01

    Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Subduction Zone Redox and the Deep Earth Cycles of Sulfur and Chalcophile Elements

    Science.gov (United States)

    Canil, D.

    2013-12-01

    Subduction at convergent plate margins is a return flux to the mantle of rocks influenced by weathering, hydrothermal activity, atmospheric exchange, or bio-mineralization in the exosphere. The latter exogenic processes modify the long-term abundance and behaviour of certain elements in the deeper earth that can be traced over time in the chemistry of mantle-derived magmas. The redox budget of subduction is controlled by the flux of oxidized versus reduced forms of Fe, S, H, or C, and impacts the long-term evolution of oxygen on the planet, critical for life in the exosphere. In particular, the sulfur cycle is specifically tied to the evolution of oxygen on Earth's surface over time and critical to biogeochemical cycles on the surface. The behaviour of sulfur in the exogenic system is well-studied and fairly well understood using sedimentary records. An originally sulfidic ocean on Earth gave way with time and oxygenation to one that is sulfate dominated over the last two billion years. In contrast, far less is known of the deep earth cycle of S, and more so its history. The record of the endogenic cycle can only be monitored via what comes out of the mantle (magmas and their gases), or what goes down via subduction (hydrothermally-altered or weathered subducted lithosphere). Interest in the endogenic cycle of S is not new but several outstanding conundrums remain for sulfur in arc magmas that point to the importance of the subduction process. A hitherto ignored component of the paradox of the sulfur cycle is the sedimentary veneer that sits atop the subducted oceanic basalt crust. Compilations show only 0.12 wt% S in altered ocean basalt crust, but up to 10 times that amount in oceanic sediments, tied to their Fe content (in pyrite). These abundances may seem trivial, but the behaviour of this small amount of S in subduction is not fully appreciated and its oxidation potential in the arc mantle is enormous. The conversion of subducted sulfide to sulfate is a 8

  14. Impact of nitinol stent surface processing on in-vivo nickel release and biological response.

    Science.gov (United States)

    Nagaraja, Srinidhi; Sullivan, Stacey J L; Stafford, Philip R; Lucas, Anne D; Malkin, Elon

    2018-03-27

    Although nitinol is widely used in percutaneous cardiovascular interventions, a causal relationship between nickel released from implanted cardiovascular devices and adverse systemic or local biological responses has not been established. The objective of this study was to investigate the relationship between nitinol surface processing, in-vivo nickel release, and biocompatibility. Nitinol stents manufactured using select surface treatments were implanted into the iliac arteries of minipigs for 6 months. Clinical chemistry profile, complete blood count, serum and urine nickel analyses were performed periodically during the implantation period. After explant, stented arteries were either digested and analyzed for local nickel concentration or fixed and sectioned for histopathological analysis of stenosis and inflammation within the artery. The results indicated that markers for liver and kidney function were not different than baseline values throughout 180 days of implantation regardless of surface finish. In addition, white blood cell, red blood cell, and platelet counts were similar to baseline values for all surface finishes. Systemic nickel concentrations in serum and urine were not significantly different between processing groups and comparable to baseline values during 180 days of implantation. However, stents with non-optimized surface finishing had significantly greater nickel levels in the surrounding artery compared to polished stents. These stents had increased stenosis with potential for local inflammation compared to polished stents. These findings demonstrate that proper polishing of nitinol surfaces can reduce in-vivo nickel release locally, which may aid in minimizing adverse inflammatory reactions and restenosis. Nitinol is a commonly used material in cardiovascular medical devices. However, relationships between nitinol surface finishing, in-vivo metal ion release, and adverse biological responses have yet to be established. We addressed

  15. Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach

    Directory of Open Access Journals (Sweden)

    J. G. Dyke

    2011-06-01

    Full Text Available Life has significantly altered the Earth's atmosphere, oceans and crust. To what extent has it also affected interior geological processes? To address this question, three models of geological processes are formulated: mantle convection, continental crust uplift and erosion and oceanic crust recycling. These processes are characterised as non-equilibrium thermodynamic systems. Their states of disequilibrium are maintained by the power generated from the dissipation of energy from the interior of the Earth. Altering the thickness of continental crust via weathering and erosion affects the upper mantle temperature which leads to changes in rates of oceanic crust recycling and consequently rates of outgassing of carbon dioxide into the atmosphere. Estimates for the power generated by various elements in the Earth system are shown. This includes, inter alia, surface life generation of 264 TW of power, much greater than those of geological processes such as mantle convection at 12 TW. This high power results from life's ability to harvest energy directly from the sun. Life need only utilise a small fraction of the generated free chemical energy for geochemical transformations at the surface, such as affecting rates of weathering and erosion of continental rocks, in order to affect interior, geological processes. Consequently when assessing the effects of life on Earth, and potentially any planet with a significant biosphere, dynamical models may be required that better capture the coupled nature of biologically-mediated surface and interior processes.

  16. Surface processing to improve the fatigue resistance of advanced bar steels for automotive applications

    Directory of Open Access Journals (Sweden)

    David K. Matlock

    2005-12-01

    Full Text Available With the development of new steels and processing techniques, there have been corresponding advances in the fatigue performance of automotive components. These advances have led to increased component life and smaller power transfer systems. New processing approaches to enhance the fatigue performance of steels are reviewed with an emphasis on carburizing and deep rolling. Selected examples are presented to illustrate the importance of the base steel properties on the final performance of surface modified materials. Results on carburized gear steels illustrate the dependence of the fatigue behavior on carburizing process control (gas and vacuum carburizing, alloy additions and microstructure. The importance of retained austenite content, case and core grain size as controlled by processing and microalloy additions, extent of intergranular oxidation, and the residual stress profile on fatigue performance is also illustrated. Specific recent results on the use of microalloying elements (e.g. Nb and process history control to limit austenite grain growth at the higher carburizing temperatures associated with vacuum carburizing are highlighted. For crankshaft applications, deep rolling is highlighted, a process to mechanically work fillet surfaces to improve fatigue resistance. The influence of the deformation behavior of the substrate, as characterized by standard tensile and compression tests, on the ability to create desired surface properties and residual stress profiles will be illustrated with data on several new steels of current and future interest for crankshaft applications.

  17. Redox cycling-based immunoassay for detection of carcinogenic embryonic antigen.

    Science.gov (United States)

    Lee, Ga-Yeon; Park, Jun-Hee; Chang, Young Wook; Cho, Sungbo; Kang, Min-Jung; Pyun, Jae-Chul

    2017-06-08

    Redox cycling based on an interdigitated electrode (IDE) was used as a highly sensitive immunoassay for carcinogenic embryonic antigen (CEA) through the quantification of 3,3',5,5'-tetramethylbenzidine (TMB). For the redox cycling process, one pair of interdigitated finger electrodes was used as the first working electrode (generator) for cyclic voltammetry of TMB, and another pair of interdigitated finger electrodes was used as the second working electrode (collector) for sequential application of potentials for reduction and oxidation of TMB. The reduction (and oxidation) products of TMB at the collector were supplied to the generator, and following sequential oxidization (and reduction) at the generator, again supplied to the collector. Such redox recycling processes between the generator and collector allowed signal amplification. In this work, the influences of the following factors on the redox cycling of TMB were analyzed: (1) the redox potential at the collector, (2) the gap between the interdigitated finger electrodes, and (3) the scan rate of the generator. The redox potential and electrode gap influences were simulated with COMSOL software and compared with empirical results. At the optimum redox potentials and electrode gap, redox cycling was estimated to be five-fold more sensitive for the quantification of TMB than conventional cyclic voltammetry using one pair of interdigitated finger electrodes as the working electrode. Finally, redox cycling was applied to a commercial immunoassay for CEA, and the sensitivity of redox cycling was three-fold higher than that of conventional cyclic voltammetry using a single set of interdigitated finger electrodes as the working electrode. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evaluation of Antibacterial Activity of Titanium Surface Modified by PVD/PACVD Process.

    Science.gov (United States)

    Ji, Min-Kyung; Lee, Min-Joo; Park, Sang-Won; Lee, Kwangmin; Yun, Kwi-Dug; Kim, Hyun-Seung; Oh, Gye-Jeong; Kim, Ji-Hyun; Lim, Hyun-Pil

    2016-02-01

    The aim of this study was to evaluate the response of Streptococcus mutans (S. mutans) via crystal violet staining assay on titanium surface modified by physical vapor deposition/plasma assisted chemical vapor deposition process. Specimens were divided into the following three groups: polished titanium (control group), titanium modified by DC magnetron sputtering (group TiN-Ti), and titanium modified by plasma nitriding (group N-Ti). Surface characteristics of specimens were observed by using nanosurface 3D optical profiler and field emission scanning electron microscope. Group TiN-Ti showed TiN layer of 1.2 microm in thickness. Group N-Ti was identified as plasma nitriding with X-ray photoelectron spectroscopy. Roughness average (Ra) of all specimens had values 0.05). Within the process condition of this study, modified titanium surfaces by DC magnetron sputtering and plasma nitriding did not influence the adhesion of S. mutans.

  19. Analysis of Surface Chemistry and Detector Performance of Chemically Process CdZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    HOSSAIN, A.; Yang, G.; Sutton, J.; Zergaw, T.; Babalola, O. S.; Bolotnikov, A. E.; Camarda. ZG. S.; Gul, R.; Roy, U. N., and James, R. B.

    2015-10-05

    The goal is to produce non-conductive smooth surfaces for fabricating low-noise and high-efficiency CdZnTe devices for gamma spectroscopy. Sample preparation and results are discussed. The researachers demonstrated various bulk defects (e.g., dislocations and sub-grain boundaries) and surface defects, and examined their effects on the performance of detectors. A comparison study was made between two chemical etchants to produce non-conductive smooth surfaces. A mixture of bromine and hydrogen peroxide proved more effective than conventional bromine etchant. Both energy resolution and detection efficiency of CZT planar detectors were noticeably increased after processing the detector crystals using improved chemical etchant and processing methods.

  20. Redox Active Polymers as Soluble Nanomaterials for Energy Storage.

    Science.gov (United States)

    Burgess, Mark; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-11-15

    RAPs conveniently translate the redox properties of small molecules into a nanostructure, they give rise to charge transfer mechanisms and electrolyte interactions that elicit distinct electrochemical responses. To understand how the electrochemical characteristics of RAPs depend on molecular features, including redox moiety, macromolecular size, and backbone structure, a range of techniques has been employed by our groups, including voltammetry at macro- and microelectrodes, rotating disk electrode voltammetry, bulk electrolysis, and scanning electrochemical microscopy. RAPs rely on three-dimensional charge transfer within their inner bulk, which is an efficient process and allows quantitative electrolysis of particles of up to ∼800 nm in radius. Interestingly, we find that interactions between neighboring pendants create unique opportunities for fine-tuning their electrochemical reactivity. Furthermore, RAP interrogation toward the single particle limit promises to shed light on fundamental charge storage mechanisms.

  1. Engineering redox balance through cofactor systems.

    Science.gov (United States)

    Chen, Xiulai; Li, Shubo; Liu, Liming

    2014-06-01

    Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The free radical process for the polymer surface treated by radio frequency plasma

    International Nuclear Information System (INIS)

    Ma Yuguang; Yang Meiling; Shen Jiacong; Zheng Yingguang

    1992-01-01

    The formation and translation of the free radicals on the polymer surface treated by plasmas were studied and observed by ESR measurement. The results show that C-C bond split was main reaction in the process of the polymer irradiated by plasma, by which a stable alkyl free radical was formed. When alkyl free radical contacted with air, they translate into peroxide radical instantaneously. The peroxide radical was not as stable as radical in vacuum, they can react each other to form some polar-groups on polymer surface. The interaction between the peroxide free radical and polymer chain was correlative not only to the structure of polymer but also to the molecular motion of the polymer chain. The nature of plasma treating polymer surface was that the peroxide radicals were led onto polymer surface

  3. Evaluating the performance of free-formed surface parts using an analytic network process

    Science.gov (United States)

    Qian, Xueming; Ma, Yanqiao; Liang, Dezhi

    2018-03-01

    To successfully design parts with a free-formed surface, the critical issue of how to evaluate and select a favourable evaluation strategy before design is raised. The evaluation of free-formed surface parts is a multiple criteria decision-making (MCDM) problem that requires the consideration of a large number of interdependent factors. The analytic network process (ANP) is a relatively new MCDM method that can systematically deal with all kinds of dependences. In this paper, the factors, which come from the life-cycle and influence the design of free-formed surface parts, are proposed. After analysing the interdependence among these factors, a Hybrid ANP (HANP) structure for evaluating the part’s curved surface is constructed. Then, a HANP evaluation of an impeller is presented to illustrate the application of the proposed method.

  4. Surface of Maximums of AR(2 Process Spectral Densities and its Application in Time Series Statistics

    Directory of Open Access Journals (Sweden)

    Alexander V. Ivanov

    2017-09-01

    Conclusions. The obtained formula of surface of maximums of noise spectral densities gives an opportunity to realize for which values of AR(2 process characteristic polynomial coefficients it is possible to look for greater rate of convergence to zero of the probabilities of large deviations of the considered estimates.

  5. Mathematical Modeling of Aerodynamic Space -to - Surface Flight with Trajectory for Avoid Intercepting Process

    OpenAIRE

    Gornev, Serge

    2006-01-01

    Modeling has been created for a Space-to-Surface system defined for an optimal trajectory for targeting in terminal phase with avoids an intercepting process. The modeling includes models for simulation atmosphere, speed of sound, aerodynamic flight and navigation by an infrared system. The modeling and simulation includes statistical analysis of the modeling results.

  6. Design Process Control for Improved Surface Finish of Metal Additive Manufactured Parts of Complex Build Geometry

    Directory of Open Access Journals (Sweden)

    Mikdam Jamal

    2017-12-01

    Full Text Available Metal additive manufacturing (AM is increasingly used to create complex 3D components at near net shape. However, the surface finish (SF of the metal AM part is uneven, with surface roughness being variable over the facets of the design. Standard post-processing methods such as grinding and linishing often meet with major challenges in finishing parts of complex shape. This paper reports on research that demonstrated that mass finishing (MF processes are able to deliver high-quality surface finishes (Ra and Sa on AM-generated parts of a relatively complex geometry (both internal features and external facets under select conditions. Four processes were studied in this work: stream finishing, high-energy (HE centrifuge, drag finishing and disc finishing. Optimisation of the drag finishing process was then studied using a structured design of experiments (DOE. The effects of a range of finishing parameters were evaluated and optimal parameters and conditions were determined. The study established that the proposed method can be successfully applied in drag finishing to optimise the surface roughness in an industrial application and that it is an economical way of obtaining the maximum amount of information in a short period of time with a small number of tests. The study has also provided an important step in helping understand the requirements of MF to deliver AM-generated parts to a target quality finish and cycle time.

  7. Analysis of irradiation processes for laser-induced periodic surface structures

    NARCIS (Netherlands)

    Eichstädt, J.; Huis In 't Veld, A.J.

    2013-01-01

    The influence of errors on the irradiation process for laser-induced periodic surface structures (LIPSS) was studied theoretically with energy density simulations. Therefore an irradiation model has been extended by a selection of technical variations. The influence of errors has been found in a

  8. Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity

    NARCIS (Netherlands)

    Appels, W.M.; Bogaart, P.W.; Bogaart, P.W.; Zee, van der S.E.A.T.M.

    2016-01-01

    In flat lowland agricultural catchments in temperate climate zones with highly permeable sandy soils, surface runoff is a rare process with a large impact on the redistribution of sediments and solutes and stream water quality. We examine hydrological data obtained on two field sites in the

  9. Surface characterization and influence of anodizing process on fatigue life of Al 7050 alloy

    International Nuclear Information System (INIS)

    Shahzad, Majid; Chaussumier, Michel; Chieragatti, Remy; Mabru, Catherine; Rezai-Aria, Farhad

    2011-01-01

    Highlights: → We studied the effect of surface treatments on fatigue behaviour of 7050 alloy. → Dissolution of constituent particles in pickling solution result in pits formation. → Decrease is fatigue life caused by anodization is small. → Multi-site cracks initiation has been observed for pickled and anodized specimens. -- Abstract: The present study investigates the influence of anodizing process on fatigue life of aluminium alloy 7050-T7451 by performing axial fatigue tests at stress ratio 'R' of 0.1. Effects of pre-treatments like degreasing and pickling employed prior to anodizing on fatigue life were studied. The post-exposure surface observations were made by scanning electron microscope (SEM) to characterize the effect of each treatment before fatigue testing. The surface observations have revealed that degreasing did not change the surface topography while pickling solution resulted in the formation of pits at the surface. Energy dispersive spectroscopy (EDS) was used to identify those constituent particles which were responsible for the pits formation. These pits are of primary concern with respect to accelerated fatigue crack initiation and subsequent anodic coating formation. The fatigue test results have shown that pickling process was detrimental in reducing the fatigue life significantly while less decrease has been observed for anodized specimens. Analyses of fracture surfaces of pickled specimens have revealed that the process completely changed the crack initiation mechanisms as compared to non-treated specimens and the crack initiation started at the pits. For most of the anodized specimens, fatigue cracks still initiated at the pits with very few cracks initiated from anodic coating. The decrease in fatigue life for pickled and anodized specimens as compared to bare condition has been attributed to decrease in initiation period and multi-site crack initiations. Multi-site crack initiation has resulted in rougher fractured surfaces for

  10. Improvement in the surface quality of structural components produced by the RTM-process

    Energy Technology Data Exchange (ETDEWEB)

    Michaeli, W.; Dyckhoff, J. [Institute of Plastics Processing, Aachen (Germany)

    1993-12-31

    During the production of long or continuous fiber reinforced structural components in Resin Transfer Moulding (RTM), surface defects like voids, pinholes or unevenness frequently occur. These have to be repaired by manual labor before final painting. The conditions for the formation of voids in the laminate as well as surface defects are investigated by model experiments, making use of a window mould. Generally the resin is assumed to flow through the fiber reinforcement in a plug flow. The investigations indicate that advance either in the nonwovens of the surface or in the center of the laminate depends on the flow front velocity. This can be attributed to a superposition of capillary and flow effects. In order to obtain a high surface quality, the flow front velocity has to be kept within a material-related band width. Otherwise, areas of air enclosure in the laminate or surface defects like pinholes will result. With the aid of a steel mould with a large area, procedural variants are investigated to reduce surface faults and to decrease the air content in the laminate. The analysis indicates that the air content can be significantly reduced by injecting the resin into a cavity filled with gaseous acetone and increasing the cavity pressure during the time of curing. Furthermore the long and short-term waviness of the surface is improved by these process modifications.

  11. Automated electrodeposition of bimetallic noble-metal nanoclusters via redox-replacement reactions for electrocatalysis

    CSIR Research Space (South Africa)

    Mkwizu, TS

    2009-01-01

    Full Text Available of Bimetallic Noble-Metal Nanoclusters via Redox- Replacement Reactions for Electrocatalysis T. S. Mkwizua,b, M. K. Matheb, and I. Cukrowskia aDepartment of Chemistry, University of Pretoria, NW-1 Building, Pretoria, 0002, South Africa b... strategies have utilized surface-limited redox-replacement reactions involving spontaneous replacement of less noble, sacrificial elements, such as Cu or Pb, used as templating layers in controlled synthesis of multilayers composed of noble metals...

  12. Effects of surface processes on multilayer detachment folding: a numerical approach

    Science.gov (United States)

    Collignon, M.; May, D.; Kaus, B.; Fernandez, N.

    2013-12-01

    Over the past decades, the interaction between surface processes and development of mountain belts has been extensively studied. While syntectonic sedimentation appears to control the external development of the fold-and-thrust belts, erosion strongly influences the evolution of internal regions within mountain belts. The effects of surface processes on brittle deformation have been thoroughly studied using analogue and numerical models of accretionary wedges, however, most of the numerical studies used a 2D model of deformation and/or a simple formulation for the surface processes, where both sedimentation and erosion are rarely present together. Coupled analogue models of deformation and surface processes are challenging, due to material and scaling issues, and often only reproduce two end-member cases (no erosion vs very strong erosion, where all the material is removed), but fail to investigate the transitional cases. In contrast, interactions between surface processes and ductile deformation (e.g. multilayer detachment folding) have been poorly investigated. Thin-skinned fold and thrust belts are seen as the result of compressional deformation of a sediment pile over a weak layer acting as a décollement level. The resulting surface expression has often been interpreted, based on geometrical criteria in terms of fault bend folds, propagation folds and/or detachment folds. A few analogue studies have demonstrated that fold morphology can be influenced by erosion rates or preferential localization of sedimentation, and additionally, that the fold growth can be stopped by increasing the supply of sediments. Here we aim to numerically investigate the effects of surface processes and multilayer folding in three dimensions. For this purpose, we have developed a finite-element based landscape evolution model (both erosion and sedimentation) using PETSc, and coupled it to the 3D mechanical code LaMEM. The landscape evolution model uses a non-linear diffusion

  13. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Donghai, E-mail: zhudonghai-2001@163.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China); Nai, Xueying [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China); Lan, Shengjie; Bian, Shaoju [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Liu, Xin [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China); Li, Wu, E-mail: driverlaoli@163.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 (China); Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Chinese Academy of Sciences, Xining, 810008 (China)

    2016-12-30

    Highlights: • Dry process was adopted to modify the surface of MHSH whiskers using silane. • Si−O−Mg bonds were formed directly by the reaction between Si−OC{sub 2}H{sub 5} and −OH of MHSH. • Dispersibility and compatibility of modified whiskers greatly improved in organic phase. • Thermal stability of whiskers was enhanced after modified. - Abstract: In order to improve the compatibility of magnesium hydroxide sulfate hydrate (MHSH) whiskers with polymers, the surface of MHSH whiskers was modified using vinyltriethoxysilane (VTES) by dry process. The possible mechanism of the surface modification and the interfacial interactions between MHSH whiskers and VTES, as well as the effect of surface modification, were studied. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that the agglomerations were effectively separated and a thin layer was formed on the surface of the whiskers after modification. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses showed that the VTES molecules were bound to the surface of MHSH whiskers after modification. Chemical bonds (Si−O−Mg) were formed by the reaction between Si−OC{sub 2}H{sub 5} or Si−OH and the hydroxyl group of MHSH whiskers. The effect of surface modification was evaluated by sedimentation tests, contact angle measurements and thermogravimetric analysis (TGA). The results showed that the surface of MHSH whiskers was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MHSH whiskers were significantly improved in the organic phase. Additionally, the thermal stability of the VTES-modified MHSH whiskers was improved significantly.

  14. Proton transfer versus redox modulation in thiourea-phenanthrenequinone molecular and polymeric complexes.

    Science.gov (United States)

    Carroll, Joseph B; Gray, Mark; Cooke, Graeme; Rotello, Vincent M

    2004-02-21

    Phenanthrenequinone undergoes highly efficient proton transfer processes in the presence of a thiourea-functionalised polystyrene copolymer whereas interactions with a similar benzyl-thiourea monomer show strong redox modulation of the quinone without proton transfer.

  15. The Reactive Species Interactome : Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine

    NARCIS (Netherlands)

    Cortese-Krott, Miriam M.; Koning, Anne; Kuhnle, Gunter G. C.; Nagy, Peter; Bianco, Christopher L.; Pasch, Andreas; Wink, David A.; Fukuto, Jon M.; Jackson, Alan A.; van Goor, Harry; Olson, Kenneth R.; Feelisch, Martin

    2017-01-01

    Significance: Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent

  16. A Multistep Equilibria-Redox-Complexation Demonstration to Illustrate Le Chatelier's Principle.

    Science.gov (United States)

    Berger, Tomas G.; Mellon, Edward K.

    1996-01-01

    Describes a process that can be used to illustrate a number of chemical principles including Le Chatelier's principle, redox chemistry, equilibria versus steady state situations, and solubility of species. (JRH)

  17. Iron Hydroxide Minerals Drive Organic and Phosphorus Chemistry in Subsurface Redox / pH Gradients

    Science.gov (United States)

    Flores, E.; Barge, L. M.; VanderVelde, D.; Baum, M.

    2017-12-01

    Iron minerals, particularly iron oxides and oxyhydroxides, are prevalent on Mars and may exist in mixed valence or even reduced states beneath the oxidized surface. Iron (II,III) hydroxides, including green rust, are reactive and potentially catalytic minerals that can absorb and concentrate charged species, while also driving chemical reactions. These minerals are highly redox-sensitive and the presence of organics and/or phosphorus species could affect their mineralogy and/or stability. Conversely, the minerals might be able to drive chemical processes such as amino acid formation, phosphorus oxyanion reactions, or could simply selectively preserve organic species via surface adsorption. In an open aqueous sediment column, soluble products of mineral-driven reactions could also diffuse to sites of different chemical conditions to react even further. We synthesized Fe-hydroxide minerals under various conditions relevant to early Earth and ancient Mars (>3.0 Gyr), anoxically and in the presence of salts likely to have been present in surface or ground waters. Using these minerals we conducted experiments to test whether iron hydroxides could promote amino acid formation, and how the reaction is affected by subsurface gradients of redox, pH, and temperature. We also tested the adsorption of organic and phosphorus species onto Fe-hydroxide minerals at different conditions within the gradients. The suite of organic or phosphorus signatures that may be found in a particular mineral system is a combination of what is synthesized there, what is preferentially concentrated / retained there, and what is preserved against degradation. Further work is needed to determine how these processes could have proceeded on Mars and what mineral-organic signatures, abiotic or otherwise, would be produced from such processes.

  18. Characterization of redox proteins using electrochemical methods

    OpenAIRE

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain information about the kinetics of electron transfer between proteins and about the dynamic behaviour of redox cofactors in proteins. This thesis describes the results of a study, initiated to get a ...

  19. Radii of Redox Components from Absolute Redox Potentials Compared with Covalent and Aqueous Ionic Radii

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2010-01-01

    Roč. 22, č. 9 (2010), s. 903-907 ISSN 1040-0397 Institutional support: RVO:68081707 Keywords : Electrochemistry * Absolute redox potentials * Radii of redox components Subject RIV: BO - Biophysics Impact factor: 2.721, year: 2010

  20. Redox reaction and foaming in nuclear waste glass melting

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.L.

    1995-08-01

    This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

  1. GeoComplexity and scale: surface processes and remote sensing of geosystems. GeoComplexity and scale: surface processes and remote sensing of geosystems

    Science.gov (United States)

    Muller, Jan-Peter

    2015-04-01

    Understanding the role of scaling in different planetary surface processes within our Solar System is one of the fundamental goals of planetary and solid earth scientific research. There has been a revolution in planetary surface observations over the past decade for the Earth, Mars and the Moon, especially in 3D imaging of surface shape (from the planetary scale down to resolutions of 75cm). I will examine three areas that I have been active in over the last 25 years giving examples of newly processed global datasets ripe for scaling analysis: topography, BRDF/albedo and imaging. For understanding scaling in terrestrial land surface topography we now have global 30m digital elevation models (DEMs) from different types of sensors (InSAR and stereo-optical) along with laser altimeter data to provide global reference models (to better than 1m in cross-over areas) and airborne laser altimeter data over small areas at resolutions better than 1m and height accuracies better than 10-15cm. We also have an increasing number of sub-surface observations from long wavelength SAR in arid regions, which will allow us to look at the true surface rather than the one buried by sand. We also still have a major limitation of these DEMs in that they represent an unknown observable surface with C-band InSAR DEMs representing being somewhere near the top of the canopy and X-band InSAR and stereo near the top of the canopy but only P-band representing the true understorey surface. I will present some of the recent highlights of topography on Mars including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m digital terrain models (as there is no land cover on Mars) DTMs from MRO stereo-HiRISE [3]. Comparable DTMs now exist for the Moon from 100m up to 1m. I will show examples of these DEM/DTM datasets

  2. Machining of bone: Analysis of cutting force and surface roughness by turning process.

    Science.gov (United States)

    Noordin, M Y; Jiawkok, N; Ndaruhadi, P Y M W; Kurniawan, D

    2015-11-01

    There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting. © IMechE 2015.

  3. FPGA based image processing for optical surface inspection with real time constraints

    Science.gov (United States)

    Hasani, Ylber; Bodenstorfer, Ernst; Brodersen, Jörg; Mayer, Konrad J.

    2015-02-01

    Today, high-quality printing products like banknotes, stamps, or vouchers, are automatically checked by optical surface inspection systems. In a typical optical surface inspection system, several digital cameras acquire the printing products with fine resolution from different viewing angles and at multiple wavelengths of the visible and also near infrared spectrum of light. The cameras deliver data streams with a huge amount of image data that have to be processed by an image processing system in real time. Due to the printing industry's demand for higher throughput together with the necessity to check finer details of the print and its security features, the data rates to be processed tend to explode. In this contribution, a solution is proposed, where the image processing load is distributed between FPGAs and digital signal processors (DSPs) in such a way that the strengths of both technologies can be exploited. The focus lies upon the implementation of image processing algorithms in an FPGA and its advantages. In the presented application, FPGAbased image-preprocessing enables real-time implementation of an optical color surface inspection system with a spatial resolution of 100 μm and for object speeds over 10 m/s. For the implementation of image processing algorithms in the FPGA, pipeline parallelism with clock frequencies up to 150 MHz together with spatial parallelism based on multiple instantiations of modules for parallel processing of multiple data streams are exploited for the processing of image data of two cameras and three color channels. Due to their flexibility and their fast response times, it is shown that FPGAs are ideally suited for realizing a configurable all-digital PLL for the processing of camera line-trigger signals with frequencies about 100 kHz, using pure synchronous digital circuit design.

  4. Effect of Humic Acid on As Redox Transformation and Kinetic Adsorption onto Iron Oxide Based Adsorbent (IBA

    Directory of Open Access Journals (Sweden)

    Hoda Fakour

    2014-10-01

    Full Text Available Due to the importance of adsorption kinetics and redox transformation of arsenic (As during the adsorption process, the present study elucidated natural organic matter (NOM effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA, as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions.

  5. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  6. Wavelet theory and belt finishing process, influence of wavelet shape on the surface roughness parameter values

    International Nuclear Information System (INIS)

    Khawaja, Z; Mazeran, P-E; Bigerelle, M; Guillemot, G; Mansori, M El

    2011-01-01

    This article presents a multi-scale theory based on wavelet decomposition to characterize the evolution of roughness in relation with a finishing process or an observed surface property. To verify this approach in production conditions, analyses were developed for the finishing process of the hardened steel by abrasive belts. These conditions are described by seven parameters considered in the Tagushi experimental design. The main objective of this work is to identify the most relevant roughness parameter and characteristic length allowing to assess the influence of finishing process, and to test the relevance of the measurement scale. Results show that wavelet approach allows finding this scale.

  7. Modelling interstellar physics and chemistry: implications for surface and solid-state processes.

    Science.gov (United States)

    Williams, David; Viti, Serena

    2013-07-13

    We discuss several types of regions in the interstellar medium of the Milky Way and other galaxies in which the chemistry appears to be influenced or dominated by surface and solid-state processes occurring on or in interstellar dust grains. For some of these processes, for example, the formation of H₂ molecules, detailed experimental and theoretical approaches have provided excellent fundamental data for incorporation into astrochemical models. In other cases, there is an astrochemical requirement for much more laboratory and computational study, and we highlight these needs in our description. Nevertheless, in spite of the limitations of the data, it is possible to infer from astrochemical modelling that surface and solid-state processes play a crucial role in astronomical chemistry from early epochs of the Universe up to the present day.

  8. Comparison of different types of plasma in radioactive surface decontamination process

    International Nuclear Information System (INIS)

    Suzuki, M.; Kadowaki, M.; Windarto, F.H.; Mori, S.

    2005-01-01

    A highly effective decontamination technique is required for the recycling of material from decommissioned reactors and the decontamination of the spent fuel clad in future reprocessing. The plasma technique, based on the plasma etching process for producing semiconductors, is one of the candidates for an advanced alternative to the aqueous process using oxalic-acid solution. In this paper, we compare and discuss various plasma decontamination processes, the low-pressure and the atmospheric-pressure processes, also bringing into the discussion the processes, which we have developed. Consequently, we conclude the following. The low-pressure process is suitable for basic experiments and may be used in the decontamination process for alpha-ray emitters because of its advantage of confinement. The atmospheric-pressure process has an etching rate one or two orders higher than the low-pressure process. Therefore, the atmospheric-pressure process is superior for decontaminating wide areas such as the inner surfaces of reactor vessels. In particular, the non-equilibrium plasma process has the peculiar characteristic of being able to supply a great number of active atoms to the fluorination reaction without extra heat generation, and so it can be useful for this purpose. (orig.)

  9. Influence of milling process in the surface energy of glass tile frits

    International Nuclear Information System (INIS)

    Tamayo, A.; Rubio, F.; Otero, J. L.; Rubio, J.

    2013-01-01

    In this work has been studied the influence of the milling process of two ceramic frits used in the ceramic tile industry. Both glass frits were of similar chemical composition changing SiO 2 by 5% of B 2 O 3 and both of them were water or dry milled. Glass frit surfaces were characterized by FT-IR, Karl-Fischer (K-F) titration and Inverse Gas Chromatography at Infinite Dilution (IGC-ID). By K-F titration it was observed that water milled frits presented 28 and 26 OH groups for 100 A 2 if they do not contain or contain boron, respectively. These surface changes are also observed by IGC-ID. Thus, the glass frit without boron and dry milled presented the highest dispersive surface energy (44 mJ.m - 2) and the less acidic constant (0.13 kJ.mol - 1). Both glass frits are amphoteric with acidic and base surface active sites, and that frit without boron presents the higher basicity. Milling process influences in the acid-base surface characteristics of both frits by increasing the basicity for the one without boron and increasing for the other one. This has been assigned to the different location of hydroxyl groups where the higher interaction is the one that does not contain boron and dry milled as K-F results. (Author)

  10. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes

    Science.gov (United States)

    Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh

    2018-03-01

    A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.

  11. Thermo-mechanical processing of austenitic steel to mitigate surface related degradation

    Science.gov (United States)

    Idell, Yaakov Jonathan

    Thermo-mechanical processing plays an important role in materials property optimization through microstructure modification, required by demanding modern materials applications. Due to the critical role of austenitic stainless steels, such as 316L, as structural components in harsh environments, e.g. in nuclear power plants, improved degradation resistance is desirable. A novel two-dimensional plane strain machining process has shown promise achieving significant grain size refinement through severe plastic deformation (SPD) and imparting large strains in the surface and subsurface regions of the substrate in various metals and alloys. The deformation process creates a heavily deformed 20 -- 30 micron thick nanocrystalline surface layer with increased hardness and minimal martensite formation. Post-deformation processing annealing treatments have been applied to assess stability of the refined scale microstructures and the potential for obtaining grain boundary engineered microstructures with increased fraction of low-energy grain boundaries and altered grain boundary network structure. Varying the deformation and heat treatment process parameters, allows for development of a full understanding of the nanocrystalline layer and cross-section of the surface substrate created. Micro-characterization was performed using hardness measurements, magnetometry, x-ray diffraction, scanning and transmission electron microscopy to assess property and microstructural changes. This study provides a fundamental understanding of two-dimensional plane strain machining as a thermo-mechanical processing technique, which may in the future deliver capabilities for creating grain boundary engineered surface modified components, typified by a combination of grain refinement with improved grain boundary network interconnectivity attributes suitable for use in harsh environments, such as those in commercial nuclear power plants where improved resistance to irradiation stress corrosion

  12. Sorption and redox reactions of As(III) and As(V) within secondary mineral coatings on aquifer sediment grains.

    Science.gov (United States)

    Singer, David M; Fox, Patricia M; Guo, Hua; Marcus, Matthew A; Davis, James A

    2013-10-15

    Important reactive phenomena that affect the transport and fate of many elements occur at the mineral-water interface (MWI), including sorption and redox reactions. Fundamental knowledge of these phenomena are often based on observations of ideal mineral-water systems, for example, studies of molecular scale reactions on single crystal faces or the surfaces of pure mineral powders. Much less is understood about MWI in natural environments, which typically have nanometer to micrometer scale secondary mineral coatings on the surfaces of primary mineral grains. We examined sediment grain coatings from a well-characterized field site to determine the causes of rate limitations for arsenic (As) sorption and redox processes within the coatings. Sediments were obtained from the USGS field research site on Cape Cod, MA, and exposed to synthetic contaminated groundwater solutions. Uptake of As(III) and As(V) into the coatings was studied with a combination of electron microscopy and synchrotron techniques to assess concentration gradients and reactive processes, including electron transfer reactions. Transmission electron microscopy (TEM) and X-ray microprobe (XMP) analyses indicated that As was primarily associated with micrometer- to submicrometer aggregates of Mn-bearing nanoparticulate goethite. As(III) oxidation by this phase was observed but limited by the extent of exposed surface area of the goethite grains to the exterior of the mineral coatings. Secondary mineral coatings are potentially both sinks and sources of contaminants depending on the history of a contaminated site, and may need to be included explicitly in reactive transport models.

  13. Mathematical Heat Transfer Model of Surface Quenching Process for Hot Charging

    Science.gov (United States)

    Zhong, Jing; Wang, Qian; Li, Yugang; Zhang, Shaoda; Yan, Chen

    Online surface quenching technology has been developed for the hot charging process to prevent the surface cracks in high strength low-alloy steel slabs. In this paper, a two-dimensional heat transfer model of surface quenching process was presented. This finite element model includes nonlinear thermodynamic properties, by which the slab temperature distributions were computed. The model predicted temperatures show reasonable agreement with the measurements. The effects of the water flow rate and slab movement velocity on temperature variation during the quenching and subsequent tempering process were investigated. The result shows that the temperature drop increases but the tempering temperature changes slightly with increasing water flow rate and decreasing slab velocity. Keeping the slab movement velocity at 1.2-2.1m/min and the water flow rate at 55-70m3/h, the slab surface experiences a temperature drop of 400-600°C firstly, then recovers above 650°C, the quenching and energy-saving effect are remarkable.

  14. The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface

    Science.gov (United States)

    Hu, Jianlin; Xu, Ke; Wu, Yao; Lan, Binhuan; Jiang, Xingliang; Shu, Lichun

    2014-10-01

    This study conducted experiments on freezing process of water droplets on glass slides covered with superhydrophobic coatings under the continuous water spray condition in the artificial climatic chamber which could simulate low temperature and high humidity environments. The freezing mechanism and freezing time of water droplets under the condition of continuous spray were observed by the microscope and were compared with those of the single static droplet. Then, differences of freezing process between continuously sprayed droplets and single static droplet were analyzed. Furthermore, the effects of static contact angle (CA), contact angle hysteresis (CAH) and roughness of the superhydrophobic coating surface on the freezing time of continuously sprayed droplets were explored. Results show that the freezing process of the continuously sprayed droplets on the superhydrophobic coating started with the homogeneous nucleation at gas-liquid interfaces. In addition, the temperature difference between the location near the solid-liquid interface and the location near the gas-liquid interface was the key factor that influenced the ice crystallization mechanism of water droplets. Moreover, with the larger CA, the smaller CAH and the greater roughness of the surface, droplets were more likely to roll down the surface and the freezing duration on the surface was delayed. Based on the findings, continuous water spray is suggested in the anti-icing superhydrophobic coatings research.

  15. Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate

    Directory of Open Access Journals (Sweden)

    E. L. Davin

    2012-05-01

    Full Text Available The influence of land processes and in particular of diffuse/direct radiation partitioning on surface fluxes and associated regional-scale climate feedbacks is investigated using ERA-40 driven simulations over Europe performed with the COSMO-CLM2 Regional Climate Model (RCM. Two alternative Land Surface Models (LSMs, a 2nd generation LSM (TERRA_ML and a more advanced 3rd generation LSM (Community Land Model version 3.5, and two versions of the atmospheric component are tested, as well as a revised coupling procedure allowing for variations in diffuse/direct light partitioning at the surface, and their accounting by the land surface component.

    Overall, the RCM performance for various variables (e.g., surface fluxes, temperature and precipitation is improved when using the more advanced 3rd generation LSM. These improvements are of the same order of magnitude as those arising from a new version of the atmospheric component, demonstrating the benefit of using a realistic representation of land surface processes for regional climate simulations. Taking into account the variability in diffuse/direct light partitioning at the surface further improves the model performance in terms of summer temperature variability at the monthly and daily time scales. Comparisons with observations show that the RCM realistically captures temporal variations in diffuse/direct light partitioning as well as the evapotranspiration sensitivity to these variations. Our results suggest that a modest but consistent fraction (up to 3 % of the overall variability in summer temperature can be explained by variations in the diffuse to direct ratio.

  16. A process-based decomposition of decadal-scale surface temperature evolutions over East Asia

    Science.gov (United States)

    Chen, Junwen; Deng, Yi; Lin, Wenshi; Yang, Song

    2017-08-01

    This study partitions the observed decadal evolution of surface temperature and surface temperature differences between two decades (early 2000s and early 1980s) over the East Asian continent into components associated with individual radiative and non-radiative (dynamical) processes in the context of the coupled atmosphere-surface climate feedback-response analysis method (CFRAM). Rapid warming in this region occurred in late 1980s and early 2000s with a transient pause of warming between the two periods. The rising CO2 concentration provides a sustained, region-wide warming contribution and surface albedo effect, largely related to snow cover change, is important for warming/cooling over high-latitude and high-elevation regions. Sensible hear flux and surface dynamics dominates the evolution of surface temperature, with latent heat flux and atmospheric dynamics working against them mostly through large-scale and convective/turbulent heat transport. Cloud via its shortwave effect provides positive contributions to warming over southern Siberia and South China. The longwave effect associated with water vapor change contributes significant warming over northern India, Tibetan Plateau, and central Siberia. Impacts of solar irradiance and ozone changes are relatively small. The strongest year-to-year temperature fluctuation occurred at a rapid warming (1987-1988) and a rapid cooling (1995-1996) period. The pattern of the rapid warming receives major positive contributions from sensible heat flux with changes in atmospheric dynamics, water vapor, clouds, and albedo providing secondary positive contributions, while surface dynamics and latent heat flux providing negative contributions. The signs of the contributions from individual processes to the rapid cooling are almost opposite to those to the rapid warming.

  17. Modeling Surface Processes Occurring on Moons of the Outer Solar System

    Science.gov (United States)

    Umurhan, O. M.; White, O. L.; Moore, J. M.; Howard, A. D.; Schenk, P.

    2016-12-01

    A variety of processes, some with familiar terrestrial analogs, are known to take place on moon surfaces in the outer solar system. In this talk, we discuss the observed features of mass wasting and surface transport seen on both Jupiter's moon Calisto and one of Saturn's Trojan moons Helene. We provide a number of numerical models using upgraded version of MARSSIM in support of several hypotheses suggested on behalf of the observations made regarding these objects. Calisto exhibits rolling plains of low albedo materials surrounding relatively high jutting peaks harboring high albedo deposits. Our modeling supports the interpretation that Calisto's surface is a record of erosion driven by the sublimation of CO2 and H2O contained in the bedrock. Both solar insolation and surface re-radiation drives the sublimation leaving behind debris which we interpret to be the observed darkened regolith and, further, the high albedo peaks are water ice deposits on surface cold traps. On the other hand, the 45 km scale Helene, being a milligravity environment, exhibits mysterious looking streaks and grooves of very high albedo materials extending for several kilometers with a down-sloping grade of 7o-9o. Helene's cratered terrain also shows evidence of narrowed septa. The observed surface features suggest some type of advective processes are at play in this system. Our modeling lends support to the suggestion that Helene's surface materials behave as a Bingham plastic material - our flow modeling with such rheologies can reproduce the observed pattern of streakiness depending upon the smoothness of the underlying bedrock; the overall gradients observed; and the narrowed septa of inter-crater regions.

  18. Understanding the creation of & reducing surface microroughness during polishing & post-processing of glass optics

    Energy Technology Data Exchange (ETDEWEB)

    Suratwala, Tayyab [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-22

    In the follow study, we have developed a detailed understanding of the chemical and mechanical microscopic interactions that occur during polishing affecting the resulting surface microroughness of the workpiece. Through targeted experiments and modeling, the quantitative relationships of many important polishing parameters & characteristics affecting surface microroughness have been determined. These behaviors and phenomena have been described by a number of models including: (a) the Ensemble Hertzian Multi Gap (EHMG) model used to predict the removal rate and roughness at atomic force microscope (AFM) scale lengths as a function of various polishing parameters, (b) the Island Distribution Gap (IDG) model used to predict the roughness at larger scale lengths, (c) the Deraguin-Verwey-Landau-Overbeek (DLVO) 3-body electrostatic colloidal model used to predict the interaction of slurry particles at the interface and roughness behavior as a function of pH, and (d) a diffusion/chemical reaction rate model of the incorporation of impurities species into the polishing surface layer (called the Bielby layer). Based on this improved understanding, novel strategies to polish the workpiece have been developed simultaneously leading to both ultrasmooth surfaces and high material removal rates. Some of these strategies include: (a) use of narrow PSD slurries, (b) a novel diamond conditioning recipe of the lap to increase the active contact area between the workpiece and lap without destroying its surface figure, (c) proper control of pH for a given glass type to allow for a uniform distribution of slurry particles at the interface, and (d) increase in applied load just up to the transition between molecular to plastic removal regime for a single slurry particle. These techniques have been incorporated into a previously developed finishing process called Convergent Polishing leading to not just economical finishing process with improved surface figure control, but also

  19. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process

    Science.gov (United States)

    Kang, Dong Hee; Kang, Hyun Wook

    2016-11-01

    Electrospinning is a nano-scale fiber production method with various polymer materials. This technique allows simple fiber diameters control by changing the physical conditions such as applied voltage and polymer solution viscosity during the fabrication process. The electrospun polymer fibers form a thin porous film with high surface area to volume ratio. Due to these unique characteristics, it is widely used for many application fields such as photocatalyst, electric sensor, and antibacterial scaffold for tissue engineering. Filtration is one of the main applications of electrospun polymer fibers for specific application of filtering out dust particles and dehumidification. Most polymers which are commonly used in electrospinning are hard to perform the filtering and dehumidification simultaneously because of their low hygroscopic property. To overcome this obstacle, the desiccant polymers are developed such as polyacrylic acid and polysulfobetaine methacrylate. However, the desiccant polymers are generally expensive and need special solvent for electrospinning. An alternating way to solve these problems is mixing desiccant material like zeolite in polymer solution during an electrospinning process. In this study, the free surface energy characteristics of electrospun polyvinylidene fluoride (PVDF) film with various zeolite concentrations are investigated to control the hygroscopic property of general polymers. Fundamental physical property of wettability with PVDF shows hydrophobicity. The electrospun PVDF film with small weight ratio with higher than 0.1% of zeolite powder shows diminished contact angles that certifying the wettability of PVDF can be controlled using desiccant material in electrospinning process. To quantify the surface energy of electrospun PVDF films, sessile water droplets are introduced on the electrospun PVDF film surface and the contact angles are measured. The contact angles of PVDF film are 140° for without zeolite and 80° for with 5

  20. Surface modification of food contact materials for processing and packaging applications

    Science.gov (United States)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further

  1. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira

    2016-08-26

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  2. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method

    Science.gov (United States)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-01

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  3. Redox control of senescence and age-related disease

    Directory of Open Access Journals (Sweden)

    Akshaya Chandrasekaran

    2017-04-01

    Full Text Available The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology.

  4. Redox control of senescence and age-related disease.

    Science.gov (United States)

    Chandrasekaran, Akshaya; Idelchik, Maria Del Pilar Sosa; Melendez, J Andrés

    2017-04-01

    The signaling networks that drive the aging process, associated functional deterioration, and pathologies has captured the scientific community's attention for decades. While many theories exist to explain the aging process, the production of reactive oxygen species (ROS) provides a signaling link between engagement of cellular senescence and several age-associated pathologies. Cellular senescence has evolved to restrict tumor progression but the accompanying senescence-associated secretory phenotype (SASP) promotes pathogenic pathways. Here, we review known biological theories of aging and how ROS mechanistically control senescence and the aging process. We also describe the redox-regulated signaling networks controlling the SASP and its important role in driving age-related diseases. Finally, we discuss progress in designing therapeutic strategies that manipulate the cellular redox environment to restrict age-associated pathology. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Role of Redox Status in Development of Glioblastoma

    Science.gov (United States)

    Salazar-Ramiro, Aleli; Ramírez-Ortega, Daniela; Pérez de la Cruz, Verónica; Hérnandez-Pedro, Norma Y.; González-Esquivel, Dinora Fabiola; Sotelo, Julio; Pineda, Benjamín

    2016-01-01

    Glioblastoma multiforme (GBM) is a highly aggressive neoplasia, prognosis remains dismal, and current therapy is mostly palliative. There are no known risk factors associated with gliomagenesis; however, it is well established that chronic inflammation in brain tissue induces oxidative stress in astrocytes and microglia. High quantities of reactive species of oxygen into the cells can react with several macromolecules, including chromosomal and mitochondrial DNA, leading to damage and malfunction of DNA repair enzymes. These changes bring genetic instability and abnormal metabolic processes, favoring oxidative environment and increase rate of cell proliferation. In GBM, a high metabolic rate and increased basal levels of reactive oxygen species play an important role as chemical mediators in the regulation of signal transduction, protecting malignant cells from apoptosis, thus creating an immunosuppressive environment. New redox therapeutics could reduce oxidative stress preventing cellular damage and high mutation rate accompanied by chromosomal instability, reducing the immunosuppressive environment. In addition, therapies directed to modulate redox rate reduce resistance and moderate the high rate of cell proliferation, favoring apoptosis of tumoral cells. This review describes the redox status in GBM, and how this imbalance could promote gliomagenesis through genomic and mitochondrial DNA damage, inducing the pro-oxidant and proinflammatory environment involved in tumor cell proliferation, resistance, and immune escape. In addition, some therapeutic agents that modulate redox status and might be advantageous in therapy against GBM are described. PMID:27199982

  6. Role of redox status in development of glioblastoma

    Directory of Open Access Journals (Sweden)

    Aleli eSalazar-Ramiro

    2016-04-01

    Full Text Available Glioblastoma (GBM is a highly aggressive neoplasia, prognosis remains dismal and current therapy is mostly palliative. There are no known risk factors associated with gliomagenesis; however, it is well established that chronic inflammation in brain tissue induces oxidative stress in astrocytes and microglia. High quantities of reactive species of oxygen into the cells can react with several macromolecules, including chromosomal and mitochondrial DNA, leading to damage and malfunction of DNA repair enzymes. These changes bring genetic instability and abnormal metabolic processes favoring oxidative environment and increase rate of cell proliferation. In GBM, a high metabolic rate and increased basal levels of ROS play an important role as chemical mediators in the regulation of signal transduction, protecting malignant cells from apoptosis, thus creating an immunosuppressive environment. New redox therapeutics could reduce oxidative stress preventing cellular damage and high mutation rate accompanied by chromosomal instability, reducing the immunosuppressive environment. In addition, therapies directed to modulate redox rate reduce resistance and moderate the high rate of cell proliferation, favoring apoptosis of tumoral cells. This review describes the redox status in GBM and how this imbalance could promote gliomagenesis through genomic and mitochondrial DNA damage, inducing the pro-oxidant and pro-inflammatory environment involved in tumor cell proliferation, resistance and immune scape. In addition, are described some therapeutic agents that modulate redox status and might be advantageous in therapy against GBM.

  7. Vanadium and Chromium Redox Behavior in borosilicate Nuclear Waste Glasses

    International Nuclear Information System (INIS)

    McKeown, D.; Muller, I.; Gan, H.; Feng, Z.; Viragh, C.; Pegg, I.

    2011-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize vanadium (V) and chromium (Cr) environments in low activity nuclear waste (LAW) glasses synthesized under a variety of redox conditions. V 2 O 5 was added to the melt to improve sulfur incorporation from the waste; however, at sufficiently high concentrations, V increased melt foaming, which lowered melt processing rates. Foaming may be reduced by varying the redox conditions of the melt, while small amounts of Cr are added to reduce melter refractory corrosion. Three parent glasses were studied, where CO-CO 2 mixtures were bubbled through the corresponding melt for increasing time intervals so that a series of redox-adjusted-glasses was synthesized from each parent glass. XAS data indicated that V and Cr behaviors are significantly different in these glasses with respect to the cumulative gas bubbling times: V 4+ /V total ranges from 8 to 35%, while Cr 3+ /Cr total can range from 15 to 100% and even to population distributions including Cr 2+ . As Na-content decreased, V, and especially, Cr became more reduced, when comparing equivalent glasses within a series. The Na-poor glass series show possible redox coupling between V and Cr, where V 4+ populations increase after initial bubbling, but as bubbling time increases, V 4+ populations drop to near the level of the parent glass, while Cr becomes more reduced to the point of having increasing Cr 2+ populations.

  8. Exchange processes from the deep interior to the surface of icy moons

    Science.gov (United States)

    Grasset, O.

    Space exploration provides outstanding images of planetary surfaces. Galileo space- craft around Jupiter, and now Cassini in the saturnian system have revealed to us the variety of icy surfaces in the solar system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billions years. Composition of ices is also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. Water ice can be mixed with salts (Europa?), with hydrocarbons (Titan?) or with silicates (Callisto). The present surfaces of icy moons are the results of both internal (tectonic; volcanism; mantle composition; magnetic field; . . . ) and external processes (radiations, atmospheres, impacts, . . . ). Internal activity (past or present) is almost unknown. While the surfaces indicate clearly that an important activity existed (Ganymede, Europa, Titan, . . . ) or still exists (Enceladus, Titan?, . . . ), volcanic and tectonic processes within icy mantles are still very poorly understood. This project proposes some key studies for improving our knowledge of exchange processes within icy moons, which are: 1) Surface compositions: Interpretation of mapping spectrometer data. It addresses the interpretation of remote sensing data. These data are difficult to understand and a debate between people involved in Galileo and those who are now trying to interpret Cassini data might be fruitful. As an example, interpretation of Galileo data on Europa are still controversial. It is impossible to affirm that the "non-icy" material which does not present the classic infrared signature of pure ice is due to the presence of magnesium hydrates, sodium hydrates, magnesium sulfurs, "clays", or even altered water ice. Discussion on the subject are still needed. On Titan, the presence of the atmosphere impedes to link IR data from Cassini to the composition of the surface. 2) Past and

  9. Redox pioneer: professor Barry Halliwell.

    Science.gov (United States)

    Pervaiz, Shazib

    2011-05-01

    Professor Barry Halliwell is recognized as a Redox Pioneer because he has published eight articles on redox biology that have been each cited more than 1000 times, and 158 articles that have been each cited more than 100 times. His contributions go back as far as 1976, when he was involved in elucidation of the Foyer-Halliwell-Asada cycle, an efficient mechanism for preventing oxidative damage to chloroplasts. His subsequent work established the important role of iron and zinc in free radical reactions and their relevance to human pathologies. Professor Halliwell is also a leader in developing novel methodology for detecting free radical intermediates in vivo, and his contributions to our knowledge of reactive nitrogen species are highly significant. His sustained excellence won him the top-cited scientist award in the United Kingdom in biomedical sciences in 1999, and in 2003 he was recognized as a highly cited scientist by Institute of Scientific Information (ISI) for work on plant antioxidants, and the same year ranked 28 out of 5494 biochemists/biologists for scientific impact. Two pieces of his scholarly work have been listed as Citation Classics by ISI, and in 2007 his laboratory was ranked number 1 worldwide based on highest citation score in research on free radicals.

  10. Tool for assessment of process importance at the groundwater/surface water interface.

    Science.gov (United States)

    Palakodeti, Ravi C; LeBoeuf, Eugene J; Clarke, James H

    2009-10-01

    The groundwater/surface water interface (GWSWI) represents an important transition zone between groundwater and surface water environments that potentially changes the nature and flux of contaminants exchanged between the two systems. Identifying dominant and rate-limiting contaminant transformation processes is critically important for estimating contaminant fluxes and compositional changes across the GWSWI. A new, user-friendly, spreadsheet- and Visual Basic-based analytical screening tool that assists in evaluating the dominance of controlling kinetic processes across the GWSWI is presented. Based on contaminant properties, first-order processes that may play a significant role in solute transport/transformation are evaluated in terms of a ratio of process importance (P(i)) that relates the process rate to the rate of fluid transfer. Besides possessing several useful compilations of contaminant and process data, the screening tool also includes 1-D analytical models that assist users in evaluating contaminant transport across the GWSWI. The tool currently applies to 29 organics and 10 inorganics of interest within the context of the GWSWI. Application of the new screening tool is demonstrated through an evaluation of natural attenuation at a site with trichloroethylene and 1,1,2,2-tetrachloroethane contaminated groundwater discharging into wetlands.

  11. Exploration, Sampling, And Reconstruction of Free Energy Surfaces with Gaussian Process Regression.

    Science.gov (United States)

    Mones, Letif; Bernstein, Noam; Csányi, Gábor

    2016-10-11

    Practical free energy reconstruction algorithms involve three separate tasks: biasing, measuring some observable, and finally reconstructing the free energy surface from those measurements. In more than one dimension, adaptive schemes make it possible to explore only relatively low lying regions of the landscape by progressively building up the bias toward the negative of the free energy surface so that free energy barriers are eliminated. Most schemes use the final bias as their best estimate of the free energy surface. We show that large gains in computational efficiency, as measured by the reduction of time to solution, can be obtained by separating the bias used for dynamics from the final free energy reconstruction itself. We find that biasing with metadynamics, measuring a free energy gradient estimator, and reconstructing using Gaussian process regression can give an order of magnitude reduction in computational cost.

  12. Machining process influence on the chip form and surface roughness by neuro-fuzzy technique

    Science.gov (United States)

    Anicic, Obrad; Jović, Srđan; Aksić, Danilo; Skulić, Aleksandar; Nedić, Bogdan

    2017-04-01

    The main aim of the study was to analyze the influence of six machining parameters on the chip shape formation and surface roughness as well during turning of Steel 30CrNiMo8. Three components of cutting forces were used as inputs together with cutting speed, feed rate, and depth of cut. It is crucial for the engineers to use optimal machining parameters to get the best results or to high control of the machining process. Therefore, there is need to find the machining parameters for the optimal procedure of the machining process. Adaptive neuro-fuzzy inference system (ANFIS) was used to estimate the inputs influence on the chip shape formation and surface roughness. According to the results, the cutting force in direction of the depth of cut has the highest influence on the chip form. The testing error for the cutting force in direction of the depth of cut has testing error 0.2562. This cutting force determines the depth of cut. According to the results, the depth of cut has the highest influence on the surface roughness. Also the depth of cut has the highest influence on the surface roughness. The testing error for the cutting force in direction of the depth of cut has testing error 5.2753. Generally the depth of cut and the cutting force which provides the depth of cut are the most dominant factors for chip forms and surface roughness. Any small changes in depth of cut or in cutting force which provide the depth of cut could drastically affect the chip form or surface roughness of the working material.

  13. PROCESSES PROCEEDING ON CONCRETE COATING SURFACES IN CASE OF THEIR CHEMICAL PROTECTION AGAINST WINTER SLIPPERINESS

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available Concrete coatings of road traffic highways along with operational loadings caused by flow of traffic are subjected to weather and climate impacts. These are the following impacts: changes in temperature and air humidity, solar radiation,surface wind speed which is participating in formation of active heat-and-mass transfer in a surface layer of the concrete coating. One of the most complicated and important periods in the road traffic highway operation is so called transitional nature period (from Summer to Autumn and from Winter to Spring. These periods are accompanied by intensive rain and snow fall and possible formation of ice loading on the surface of cement and concrete coatings. These impacts significantly deteriorate friction properties of road pavement (friction factor φ is decreased up to 0.4 and less that can be a prerequisite to creation of various accident situations due to sharp increase in braking distance. For example, while having dry pavement the friction factor φ is equal to 0.80–0.85, and during icy condition of the road the factor φ constitutes 0.08–0.15 that consequently entails an increase in braking distance from 7.5 up to 20.0 m and more. It is quite possible that ice layer appears on the surface of concrete coatings when road traffic highways are used in winter season. Various methods are applicable to remove ice from the surface they can include also ice-melting chemicals and sodium chloride NaCl in particular. The chemical decreases freezing temperature of the formed brine and causes ice melting at negative temperature. Processes of NaCl dissolution and ice melting have an endothermic character, in other words these processes are accompanied by heat ingress and due to it temperature is sharply decreasing in the surface layer of the concrete coating which is under the melting ice and in this case phenomenon of thermal shock is observed.

  14. Activity of processes on the visible surface of planets of Solar system

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-05-01

    According to modern concepts bodies of the solar system formed from a single cloud of gas and dust. Calculations show that in the protoplanetary nebula where the temperature is lowered to 1600 K - appeared the first type of metal (aluminum and titanium) and metal oxides in the form of dust particles. With further decreasing temperature of the nebula to 1400 K - appeared also dust of iron and iron-nikel alloy; at 1300 K - appear solid silicates; magnesium minerals formed at T 1200 K. These components are material for the formation of basaltic rocks. At temperatures T 300 K begins to form water molecules. At 100-200 K in a remote part of the nebula - ammonia, methane and their ice are formed. In the outer part of Solar system this ices are now preserved in comet nuclei and in the icy satellites of giant planets. During T 400 million years after the formation of the Sun, at first - from dust component of the protoplanetary cloud was formed many intermediate bodies with the size of hundreds kilometers. Their gravitational interaction was reinforced in process of their grow. The bodies, which were growing fastest, they became the embryos of the future planets. All bodies of the solar system in different degrees show manifestations of different types of activity processes on the surface or at the level of the visible clouds. This activity depends on the distance of a particular body from the Sun, surface chemical composition, physical conditions at the surface and so on. The farther away from the Sun is the object, the temperature of its visible surface is lower, and by that more interesting is the set of processes, of chemical and physical transformations that there is possible to register. The surface of each planets of Solar system is very active in a variety of set temperature and chemical composition

  15. Characterization of redox proteins using electrochemical methods

    NARCIS (Netherlands)

    Verhagen, M.

    1995-01-01

    The use of electrochemical techniques in combination with proteins started approximately a decade ago and has since then developed into a powerfull technique for the study of small redox proteins. In addition to the determination of redox potentials, electrochemistry can be used to obtain

  16. Characterization of redox conditions in pollution plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bjerg, Poul Løgstrup; Banwart, Steven A.

    2000-01-01

    Evalution of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few...

  17. Experimental investigation of surface determination process on multi-material components for dimensional computed tomography

    DEFF Research Database (Denmark)

    Borges de Oliveira, Fabrício; Stolfi, Alessandro; Bartscher, Markus

    2016-01-01

    and suitable surface determination settings, limits a better acceptance of CT as a CMS. Moreover, standard CT users are subject to the algorithms and boundary conditions implied by the use of commercial analysis software. In this context, this paper is concerned with the experimental evaluation...... of the influence of surface determination process on multi-material measurements, using functions available in the commercial CT data analysis software Volume Graphics VGStudio Max 2.2.6. Calibrated step gauges made of different materials, i.e. PEEK, PPS, and Al were used as reference standards. The step gauges...... were assembled in such a way as to have different multi-material X-ray absorption ratios. Comparative measurements of mono-material assemblies were performed as well. Different segmentation processes were considered (e.g. ISO-50%, local threshold, region growing, etc.), patch-based bidirectional length...

  18. Signal Processing for Determining Water Height in Steam Pipes with Dynamic Surface Conditions

    Science.gov (United States)

    Lih, Shyh-Shiuh; Lee, Hyeong Jae; Bar-Cohen, Yoseph

    2015-01-01

    An enhanced signal processing method based on the filtered Hilbert envelope of the auto-correlation function of the wave signal has been developed to monitor the height of condensed water through the steel wall of steam pipes with dynamic surface conditions. The developed signal processing algorithm can also be used to estimate the thickness of the pipe to determine the cut-off frequency for the low pass filter frequency of the Hilbert Envelope. Testing and analysis results by using the developed technique for dynamic surface conditions are presented. A multiple array of transducers setup and methodology are proposed for both the pulse-echo and pitch-catch signals to monitor the fluctuation of the water height due to disturbance, water flow, and other anomaly conditions.

  19. Linear and nonlinear post-processing of numerically forecasted surface temperature

    Directory of Open Access Journals (Sweden)

    M. Casaioli

    2003-01-01

    Full Text Available In this paper we test different approaches to the statistical post-processing of gridded numerical surface air temperatures (provided by the European Centre for Medium-Range Weather Forecasts onto the temperature measured at surface weather stations located in the Italian region of Puglia. We consider simple post-processing techniques, like correction for altitude, linear regression from different input parameters and Kalman filtering, as well as a neural network training procedure, stabilised (i.e. driven into the absolute minimum of the error function over the learning set by means of a Simulated Annealing method. A comparative analysis of the results shows that the performance with neural networks is the best. It is encouraging for systematic use in meteorological forecast-analysis service operations.

  20. Effects of a dry-ice process on surface and carcase decontamination in the poultry industry.

    Science.gov (United States)

    Uyarcan, M; Kayaardı, S

    2018-04-01

    1. The objective of this study was to evaluate the effects of dry-ice decontamination on equipment and carcase surfaces in a poultry slaughterhouse and to present an effective alternative method to the conventional decontamination processes. 2. Appreciable reductions occurred in total aerobic mesophilic bacterial counts of surface swab samples treated with dry ice (maximum difference 3.92 log cfu/100 cm 2 ). 3. After dry-ice treatment, Listeria spp. were detected on surfaces of pluckers and chiller cylinders, whereas Salmonella spp. were totally inhibited. 4. A dry-ice spraying application was more effective than a dry-ice immersing application on total aerobic mesophilic bacteria and yeast and mould counts on poultry carcases. 5. Dry-ice treatment has advantages over conventional processes. Unlike other decontamination techniques, there are no residues, so no need to wash off chemical residues from surfaces as it removes contaminants effortlessly and is environmentally friendly. 6. Dry-ice blasting of production equipment can reduce the microbial load and has potential for use in the poultry industry.

  1. Olivine-hosted melt inclusions as an archive of redox heterogeneity in magmatic systems

    Science.gov (United States)

    Hartley, Margaret E.; Shorttle, Oliver; Maclennan, John; Moussallam, Yves; Edmonds, Marie

    2017-12-01

    -equilibration of fO2 between inclusions and carrier melts occurs on timescales of hours to days, causing a drop in the sulfur content at sulfide saturation (SCSS) and driving the exsolution of immiscible sulfide globules in the inclusions. Our data demonstrate the roles of magma mixing, progressive re-equilibration, and degassing in redox evolution within magmatic systems, and the open-system nature of melt inclusions to fO2 during these processes. Redox heterogeneity present at the time of inclusion trapping may be overprinted by rapid re-equilibration of melt inclusion fO2 with the external environment, both in the magma chamber and during slow cooling in lava at the surface. This can decouple the melt inclusion archives of fO2, major and trace element chemistry, and mask associations between fO2, magmatic differentiation and mantle source heterogeneity unless the assembly of diverse magmas is rapidly followed by eruption. Our tools for understanding the redox conditions of magmas are thus limited; however, careful reconstruction of pre- and post-eruptive magmatic history has enabled us to confirm the relatively oxidised nature of ocean island-type mantle compared to that of mid-ocean ridge mantle.

  2. Bibliographic data on surface processes in particle-material interactions published in Japan, 1986-1987

    International Nuclear Information System (INIS)

    Gesi, Kazuo; Nagai, Siro; Ozawa, Kunio.

    1989-01-01

    Data on surface processes in particle-material interactions for fusion technology have been surveyed and collected over 24 publications which have been published during January, 1986 - December, 1987 in Japan. The bibliographic data in the form of data sheets were sent to the International Data Center in IAEA. This report presents 97 selected data sheets arranged in the order of codes of relevant phenomena. A list of literature is given. (author) 159 refs

  3. Processes setting the characteristics of sea surface cooling induced by tropical cyclones

    OpenAIRE

    Vincent, E.M.; Lengaigne, Matthieu; Madec, G.; Vialard, Jérôme; Samson, G.; Jourdain, N.C.; Menkès, Christophe; Jullien, S.

    2012-01-01

    A 1/2 degrees resolution global ocean general circulation model is used to investigate the processes controlling sea surface cooling in the wake of tropical cyclones (TCs). Wind forcing related to more than 3000 TCs occurring during the 1978-2007 period is blended with the CORE II interannual forcing, using an idealized TC wind pattern with observed magnitude and track. The amplitude and spatial characteristics of the TC-induced cooling are consistent with satellite observations, with an aver...

  4. Surface characterization of activated chalcopyrite particles via the FLSmidth ROL process. Part 1: Electron microscope investigations

    DEFF Research Database (Denmark)

    Karcz, Adam Paul; Damø, Anne Juul; Illerup, Jytte Boll

    of copper(II) to dope the semiconductor lattice and thereby "activate" the chalcopyrite, thereby reducing leach times below 2 hours (>98% recovery). Because the activation plays a major role in accelerating the leaching step, it is critical to understand the nature of this intermediate and its part...... in the ROL process. The current work presents results from electron microscope investigations of surface-activated particles....