WorldWideScience

Sample records for surface receptor notch

  1. In vivo analysis of the Notch receptor S1 cleavage.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2009-08-01

    Full Text Available A ligand-independent cleavage (S1 in the extracellular domain of the mammalian Notch receptor results in what is considered to be the canonical heterodimeric form of Notch on the cell surface. The in vivo consequences and significance of this cleavage on Drosophila Notch signaling remain unclear and contradictory. We determined the cleavage site in Drosophila and examined its in vivo function by a transgenic analysis of receptors that cannot be cleaved. Our results demonstrate a correlation between loss of cleavage and loss of in vivo function of the Notch receptor, supporting the notion that S1 cleavage is an in vivo mechanism of Notch signal control.

  2. Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling

    NARCIS (Netherlands)

    Li, Haiying; Koo, Yeon; Mao, Xicheng; Sifuentes-Dominguez, Luis; Morris, Lindsey L.; Jia, Da; Miyata, Naoteru; Faulkner, Rebecca A.; van Deursen, Jan M.; Vooijs, Marc; Billadeau, Daniel D.; van de Sluis, Bart; Cleaver, Orane; Burstein, Ezra

    2015-01-01

    Notch family members are transmembrane receptors that mediate essential developmental programs. Upon ligand binding, a proteolytic event releases the intracellular domain of Notch, which translocates to the nucleus to regulate gene transcription. In addition, Notch trafficking across the

  3. Proteolytic regulation of Notch1 receptor activity in cancer

    NARCIS (Netherlands)

    van Tetering, Geert

    2011-01-01

    The Notch receptor is part of a highly conserved signaling pathway essential in development and disease in embryos and adults. Notch proteins coordinate cell-cell communication through receptor-ligand interactions between adjacent cells. First Notch is cleaved in the Golgi by furin at Site-1 (S1)

  4. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner

    NARCIS (Netherlands)

    Sjöqvist, M.; Antfolk, D.; Ferraris, S.; Rraklli, V.; Haga, C.; Antila, C.; Mutvei, A.; Imanishi, S.Y.; Holmberg, J.; Jin, S.; Eriksson, J.E.; Lendahl, U.; Sahlgren, C.M.

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick

  5. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors.

    Directory of Open Access Journals (Sweden)

    Miguel Aste-Amézaga

    2010-02-01

    Full Text Available Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD, and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR. The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC(50 values as low as 5+/-3 nM and 0.13+/-0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR "class I" point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL. In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare "class II" or "class III" mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell

  6. Notch receptor expression in neurogenic regions of the adult zebrafish brain.

    Directory of Open Access Journals (Sweden)

    Vanessa de Oliveira-Carlos

    Full Text Available The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.

  7. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning.

    Directory of Open Access Journals (Sweden)

    David Sprinzak

    2011-06-01

    Full Text Available Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction generates mutually exclusive sending and receiving states in individual cells. It generally remains unclear, however, how this mutual inactivation and the resulting switching behavior can impact developmental patterning circuits. Here we address this question using mathematical modeling in the context of two canonical pattern formation processes: boundary formation and lateral inhibition. For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that mutual inactivation allows sharp boundary formation across a broader range of parameters than models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and expands the range of parameter values that permit pattern formation, compared to canonical models. Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which requires only a single downstream regulatory step. Both model systems show how mutual inactivation can facilitate robust fine-grained patterning processes that would be difficult to implement without it, by encoding a difference-promoting feedback within the signaling system itself. Together, these results provide a framework for analysis of more complex Notch-dependent developmental systems.

  8. Altered epidermal growth factor-like sequences provide evidence for a role of Notch as a receptor in cell fate decisions.

    Science.gov (United States)

    Heitzler, P; Simpson, P

    1993-03-01

    In Drosophila each neural precursor is chosen from a group of cells through cell interactions mediated by Notch and Delta which may function as receptor and ligand (signal), respectively, in a lateral signalling pathway. The cells of a group are equipotential and express both Notch and Delta. Hyperactive mutant Notch molecules, (Abruptex), probably have an enhanced affinity for the ligand. When adjacent to wild-type cells, cells bearing the Abruptex proteins are unable to produce the signal. It is suggested that in addition to the binding of Notch molecules on one cell to the Delta molecules of opposing cells, the Notch and Delta proteins on the surface of the same cell may interact. Binding between a cell's own Notch and Delta molecules would alter the availability of these proteins to interact with their counterparts on adjacent cells.

  9. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    International Nuclear Information System (INIS)

    Chan, Kwai S.

    2015-01-01

    Rectangular plates of Ti–6Al–4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti–6Al–4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%–75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm. (paper)

  10. Characterization and analysis of surface notches on Ti-alloy plates fabricated by additive manufacturing techniques

    Science.gov (United States)

    Chan, Kwai S.

    2015-12-01

    Rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) were fabricated by layer-by-layer deposition techniques that included electron beam melting (EBM) and laser beam melting (LBM). The surface conditions of these plates were characterized using x-ray micro-computed tomography. The depth and radius of surface notch-like features on the LBM and EBM plates were measured from sectional images of individual virtual slices of the rectangular plates. The stress concentration factors of individual surface notches were computed and analyzed statistically to determine the appropriate distributions for the notch depth, notch radius, and stress concentration factor. These results were correlated with the fatigue life of the Ti-6Al-4V ELI alloys from an earlier investigation. A surface notch analysis was performed to assess the debit in the fatigue strength due to the surface notches. The assessment revealed that the fatigue lives of the additively manufactured plates with rough surface topographies and notch-like features are dominated by the fatigue crack growth of large cracks for both the LBM and EBM materials. The fatigue strength reduction due to the surface notches can be as large as 60%-75%. It is concluded that for better fatigue performance, the surface notches on EBM and LBM materials need to be removed by machining and the surface roughness be improved to a surface finish of about 1 μm.

  11. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  12. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel...... and satellite communication signals. Due to planar structures proposed here, it is easy to integrate in the microwave integrated systems, which can play an important role in the microwave communication circuit and system.......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  13. An Angiotensin II Type 1 Receptor Blocker Prevents Renal Injury via Inhibition of the Notch Pathway in Ins2 Akita Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Masaya Koshizaka

    2012-01-01

    Full Text Available Recently, it has been reported that the Notch pathway is involved in the pathogenesis of diabetic nephropathy. In this study, we investigated the activation of the Notch pathway in Ins2 Akita diabetic mouse (Akita mouse and the effects of telmisartan, an angiotensin II type1 receptor blocker, on the Notch pathway. The intracellular domain of Notch1 (ICN1 is proteolytically cleaved from the cell plasma membrane in the course of Notch activation. The expression of ICN1 and its ligand, Jagged1, were increased in the glomeruli of Akita mice, especially in the podocytes. Administration of telmisartan significantly ameliorated the expression of ICN1 and Jagged1. Telmisartan inhibited the angiotensin II-induced increased expression of transforming growth factor β and vascular endothelial growth factor A which could directly activate the Notch signaling pathway in cultured podocytes. Our results indicate that the telmisartan prevents diabetic nephropathy through the inhibition of the Notch pathway.

  14. Notch Inhibits Osteoblast Differentiation and Causes Osteopenia

    Science.gov (United States)

    Zanotti, Stefano; Smerdel-Ramoya, Anna; Stadmeyer, Lisa; Durant, Deena; Radtke, Freddy; Canalis, Ernesto

    2008-01-01

    Notch receptors are determinants of cell fate decisions. To define the role of Notch in the adult skeleton, we created transgenic mice overexpressing the Notch intracellular domain (NICD) under the control of the type I collagen promoter. First-generation transgenics were small and osteopenic. Bone histomorphometry revealed that NICD caused a decrease in bone volume, secondary to a reduction in trabecular number; osteoblast and osteoclast number were decreased. Low fertility of founder mice and lethality of young pups did not allow the complete establishment of transgenic lines. To characterize the effect of Notch overexpression in vitro, NICD was induced in osteoblasts and stromal cells from Rosanotch mice, in which a STOP cassette flanked by loxP sites is upstream of NICD, by transduction with an adenoviral vector expressing Cre recombinase (Cre) under the control of the cytomegalovirus (CMV) promoter (Ad-CMV-Cre). NICD impaired osteoblastogenesis and inhibited Wnt/β-catenin signaling. To determine the effects of notch1 deletion in vivo, mice in which notch1 was flanked by loxP sequences (notch1loxP/loxP) were mated with mice expressing Cre recombinase under the control of the osteocalcin promoter. Conditional null notch1 mice had no obvious skeletal phenotype, possibly because of rescue by notch2; however, 1-month-old females exhibited a modest increase in osteoclast surface and eroded surface. Osteoblasts from notch1loxP/loxP mice, transduced with Ad-CMV-Cre and transfected with Notch2 small interfering RNA, displayed increased alkaline phosphatase activity. In conclusion, Notch signaling in osteoblasts causes osteopenia and impairs osteo-blastogenesis by inhibiting the Wnt/β-catenin pathway. PMID:18420737

  15. Notch 1 Receptor, Delta 1 Ligand and HES 1 Transcription Factor are Expressed in the Lining Epithelium of Periapical Cysts (Preliminary Study).

    Science.gov (United States)

    Meliou, E; Kerezoudis, Np; Tosios, Ki; Kiaris, H

    2010-07-27

    Periapical cyst is a chronic inflammatory disorder of periradicular tissues. The precise pathological mechanisms involved in periapical cyst enlargement remain unclear. Notch signaling is an evolutionarily conserved pathway with a regulatory role in cell fate decisions during development and in carcinogenesis. To date, there are no published data available on the expression of Notch signaling components in periapical cysts or any other jaw cyst. In this immunohistochemical study we have examined the expression of the receptor Notch 1, the ligand Delta 1 and the transcription factor HES 1 in the epithelium of well defined periapical cysts. Immunostaining reaction of Notch 1, Delta 1 and HES 1 was observed in the cytoplasm and/or the cytoplasmic membrane and occasionally in the nucleus in the majority of epithelial cells of all periapical cysts. The present observations indicate that Notch pathway is active in the epithelium of periapical cysts. It can be speculated that activation of epithelial cells of periapical cysts is associated with activation of Notch pathway and imply involvement of this pathway in periapical cyst growth and expansion.

  16. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines.

    Science.gov (United States)

    Gelsomino, L; Panza, S; Giordano, C; Barone, I; Gu, G; Spina, E; Catalano, S; Fuqua, S; Andò, S

    2018-04-24

    The detection of recurrent mutations affecting the hormone binding domain (HBD) of estrogen receptor alpha (ERα/ESR1) in endocrine therapy-resistant and metastatic breast cancers has prompted interest in functional characterization of these genetic alterations. Here, we explored the role of HBD-ESR1 mutations in influencing the behavior of breast cancer stem cells (BCSCs), using various BC cell lines stably expressing wild-type or mutant (Y537 N, Y537S, D538G) ERα. Compared to WT-ERα clones, mutant cells showed increased CD44 + /CD24 - ratio, mRNA levels of stemness genes, Mammosphere Forming Efficiency (MFE), Self-Renewal and migratory capabilities. Mutant clones exhibited high expression of NOTCH receptors/ligands/target genes and blockade of NOTCH signaling reduced MFE and migratory potential. Mutant BCSC activity was dependent on ERα phosphorylation at serine 118, since its inhibition decreased MFE and NOTCH4 activation only in mutant cells. Collectively, we demonstrate that the expression of HBD-ESR1 mutations may drive BC cells to acquire stem cell traits through ER/NOTCH4 interplay. We propose the early detection of HBD-ESR1 mutations as a challenge in precision medicine strategy, suggesting the development of tailored-approaches (i.e. NOTCH inhibitors) to prevent disease development and metastatic spread in BC mutant-positive patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The EGF receptor and notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development.

    Science.gov (United States)

    Kumar, J P; Moses, K

    2001-07-01

    The onset of pattern formation in the developing Drosophila retina begins with the initiation of the morphogenetic furrow, the leading edge of a wave of retinal development that transforms a uniform epithelium, the eye imaginal disc into a near crystalline array of ommatidial elements. The initiation of this wave of morphogenesis is under the control of the secreted morphogens Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg). We show that the Epidermal Growth Factor Receptor and Notch signaling cascades are crucial components that are also required to initiate retinal development. We also show that the initiation of the morphogenetic furrow is the sum of two genetically separable processes: (1) the 'birth' of pattern formation at the posterior margin of the eye imaginal disc; and (2) the subsequent 'reincarnation' of retinal development across the epithelium.

  18. Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells

    NARCIS (Netherlands)

    Jin, S.; Hansson, E.M.; Tikka, S.; Lanner, F.; Sahlgren, C.; Farnebo, F.; Baumann, M.; Kalimo, H.; Lendahl, U.

    2008-01-01

    Notch signaling is critically important for proper architecture of the vascular system, and mutations in NOTCH3 are associated with CADASIL, a stroke and dementia syndrome with vascular smooth muscle cell (VSMC) dysfunction. In this report, we link Notch signaling to platelet-derived growth factor

  19. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  20. hCLP46 regulates U937 cell proliferation via Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenzhan; Du, Jie; Chu, Qiaoyun [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Youxin [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Liu, Lixin [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Song, Manshu [School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China); Wang, Wei, E-mail: wei6014@yahoo.com [College of Life Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); School of Public Health and Family Medicine, Capital Medical University, Beijing 100069 (China)

    2011-04-29

    Highlights: {yields} Knock down of hCLP46 by RNAi impairs mammalian Notch signaling. {yields} hCLP46 affects neither cell surface Notch1 expression nor ligand-receptor binding. {yields} Knock down of hCLP46 inhibits U937 cell-growth by up-regulation of CDKN1B. -- Abstract: Human CAP10-like protein 46 kDa (hCLP46) is the homolog of Rumi, which is the first identified protein O-glucosyltransferase that modifies Notch receptor in Drosophila. Dysregulation of hCLP46 occurs in many hematologic diseases, but the role of hCLP46 remains unclear. Knockdown of hCLP46 by RNA interference resulted in decreased protein levels of endogenous Notch1, Notch intracellular domain (NICD) and Notch target gene Hes-1, suggesting the impairment of the Notch signaling. However, neither cell surface Notch expression nor ligand binding activities were affected. In addition, down-regulated expression of hCLP46 inhibited the proliferation of U937 cells, which was correlated with increased cyclin-dependent kinase inhibitor (CDKI) CDKN1B (p27) and decreased phosphorylation of retinoblastoma (RB) protein. We showed that lack of hCLP46 results in impaired ligand induced Notch activation in mammalian cell, and hCLP46 regulates the proliferation of U937 cell through CDKI-RB signaling pathway, which may be important for the pathogenesis of leukemia.

  1. The adhesion force of Notch with Delta and the rate of Notch signaling.

    Science.gov (United States)

    Ahimou, Francois; Mok, Lee-Peng; Bardot, Boris; Wesley, Cedric

    2004-12-20

    Notch signaling is repeatedly used during animal development to specify cell fates. Using atomic force microscopy on live cells, chemical inhibitors, and conventional analyses, we show that the rate of Notch signaling is linked to the adhesion force between cells expressing Notch receptors and Delta ligand. Both the Notch extracellular and intracellular domains are required for the high adhesion force with Delta. This high adhesion force is lost within minutes, primarily due to the action of Presenilin on Notch. Reduced turnover or Delta pulling accelerate this loss. These data suggest that strong adhesion between Notch and Delta might serve as a booster for initiating Notch signaling at a high rate.

  2. The adhesion force of Notch with Delta and the rate of Notch signaling

    OpenAIRE

    Ahimou, Francois; Mok, Lee-Peng; Bardot, Boris; Wesley, Cedric

    2004-01-01

    Notch signaling is repeatedly used during animal development to specify cell fates. Using atomic force microscopy on live cells, chemical inhibitors, and conventional analyses, we show that the rate of Notch signaling is linked to the adhesion force between cells expressing Notch receptors and Delta ligand. Both the Notch extracellular and intracellular domains are required for the high adhesion force with Delta. This high adhesion force is lost within minutes, primarily due to the action of ...

  3. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice.

    Science.gov (United States)

    Al Jaam, Bilal; Heu, Katy; Pennarubia, Florian; Segelle, Alexandre; Magnol, Laetitia; Germot, Agnès; Legardinier, Sébastien; Blanquet, Véronique; Maftah, Abderrahman

    2016-09-01

    Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1(cax/cax) (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1(cax/cax) mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1(cax/cax) SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7(+)/MYOD(-) progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice. © 2016 The Authors.

  4. Opposing regulation of PROX1 by interleukin-3 receptor and NOTCH directs differential host cell fate reprogramming by Kaposi sarcoma herpes virus.

    Directory of Open Access Journals (Sweden)

    Jaehyuk Yoo

    Full Text Available Lymphatic endothelial cells (LECs are differentiated from blood vascular endothelial cells (BECs during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming, but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming. Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV.

  5. PI3K/AKT signaling inhibits NOTCH1 lysosome-mediated degradation.

    Science.gov (United States)

    Platonova, Natalia; Manzo, Teresa; Mirandola, Leonardo; Colombo, Michela; Calzavara, Elisabetta; Vigolo, Emilia; Cermisoni, Greta Chiara; De Simone, Daria; Garavelli, Silvia; Cecchinato, Valentina; Lazzari, Elisa; Neri, Antonino; Chiaramonte, Raffaella

    2015-06-06

    The pathways of NOTCH and PI3K/AKT are dysregulated in about 60% and 48% of T-cell acute lymphoblastic leukemia (T-ALL) patients, respectively. In this context, they interact and cooperate in controlling tumor cell biology. Here, we propose a novel mechanism by which the PI3K/AKT pathway regulates NOTCH1 in T-ALL, starting from the evidence that the inhibition of PI3K/AKT signaling induced by treatment with LY294002 or transient transfection with a dominant negative AKT mutant downregulates NOTCH1 protein levels and activity, without affecting NOTCH1 transcription. We showed that the withdrawal of PI3K/AKT signaling was associated to NOTCH1 phosphorylation in tyrosine residues and monoubiquitination of NOTCH1 detected by Ubiquitin capture assay. Co-immunoprecipitation assay and colocalization analysis further showed that the E3 ubiquitin ligase c-Cbl interacts and monoubiquitinates NOTCH1, activating its lysosomal degradation. These results suggest that the degradation of NOTCH1 could represent a mechanism of control by which NOTCH1 receptors are actively removed from the cell surface. This mechanism is finely regulated by the PI3K/AKT pathway in physiological conditions. In pathological conditions characterized by PI3K/AKT hyperactivation, such as T-ALL, the excessive AKT signaling could lead to NOTCH1 signaling dysregulation. Therefore, a therapeutic strategy directed to PI3K/AKT in T-ALL could contemporaneously inhibit the dysregulated NOTCH1 signaling. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Notching on cancer’s door: Notch signaling in brain tumors

    Directory of Open Access Journals (Sweden)

    Marcin eTeodorczyk

    2015-01-01

    Full Text Available Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4, which are activated by three Delta-like (Dll1/3/4 and two Serrate-like (Jagged1/2 ligands. Further, non-canonical Notch ligands such as EGFL7 have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.

  7. Failure Surface Analysis of Polyimide/Titanium Notched Coating Adhesion Specimens

    Energy Technology Data Exchange (ETDEWEB)

    GIUNTA,RACHEL K.; KANDER,RONALD G.

    2000-12-18

    Adhesively bonded joints of LaRC{trademark} PETI-5, a phenylethynyl-terminated polyimide, with chromic acid anodized titanium were fabricated and debonded interfacially. The adhesive-substrate failure surfaces were investigated using several surface analysis techniques. From Auger spectroscopy, field emission scanning electron microscopy, and atomic force microscopy studies, polymer appears to be penetrating the pores of the anodized substrate to a depth of approximately 100 nm. From x-ray photoelectron spectroscopy data, the polymer penetrating the pores appears to be in electrical contact with the titanium substrate, leading to differential charging. These analyses confirm that the polymer is becoming mechanically interlocked within the substrate surface.

  8. Oncogenic Notch signaling in T-cell and B-cell lymphoproliferative disorders.

    Science.gov (United States)

    Chiang, Mark Y; Radojcic, Vedran; Maillard, Ivan

    2016-07-01

    This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.

  9. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1

    Energy Technology Data Exchange (ETDEWEB)

    Sakaidani, Yuta [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Ichiyanagi, Naoki [Department of Applied Molecular Biosciences, Nagoya University Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Saito, Chika; Nomura, Tomoko [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Ito, Makiko [Department of Applied Molecular Biosciences, Nagoya University Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Nishio, Yosuke [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Nadano, Daita; Matsuda, Tsukasa [Department of Applied Molecular Biosciences, Nagoya University Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Furukawa, Koichi [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Okajima, Tetsuya, E-mail: tokajima@med.nagoya-u.ac.jp [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Department of Applied Molecular Biosciences, Nagoya University Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer We characterized A130022J15Rik (Eogt1)-a mouse gene homologous to Drosophila Eogt. Black-Right-Pointing-Pointer Eogt1 encodes EGF domain O-GlcNAc transferase. Black-Right-Pointing-Pointer Expression of Eogt1 in Drosophila rescued the cell-adhesion defect in the Eogt mutant. Black-Right-Pointing-Pointer O-GlcNAcylation reaction in the secretory pathway is conserved through evolution. -- Abstract: O-linked-{beta}-N-acetylglucosamine (O-GlcNAc) modification is a unique cytoplasmic and nuclear protein modification that is common in nearly all eukaryotes, including filamentous fungi, plants, and animals. We had recently reported that epidermal growth factor (EGF) repeats of Notch and Dumpy are O-GlcNAcylated by an atypical O-GlcNAc transferase, EOGT, in Drosophila. However, no study has yet shown whether O-GlcNAcylation of extracellular proteins is limited to insects such as Drosophila or whether it occurs in other organisms, including mammals. Here, we report the characterization of A130022J15Rik, a mouse gene homolog of Drosophila Eogt (Eogt 1). Enzymatic analysis revealed that Eogt1 has a substrate specificity similar to that of Drosophila EOGT, wherein the Thr residue located between the fifth and sixth conserved cysteines of the folded EGF-like domains is modified. This observation is supported by the fact that the expression of Eogt1 in Drosophila rescued the cell-adhesion defect caused by Eogt downregulation. In HEK293T cells, Eogt1 expression promoted modification of Notch1 EGF repeats by O-GlcNAc, which was further modified, at least in part, by galactose to generate a novel O-linked-N-acetyllactosamine structure. These results suggest that Eogt1 encodes EGF domain O-GlcNAc transferase and that O-GlcNAcylation reaction in the secretory pathway is a fundamental biochemical process conserved through evolution.

  10. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1

    International Nuclear Information System (INIS)

    Sakaidani, Yuta; Ichiyanagi, Naoki; Saito, Chika; Nomura, Tomoko; Ito, Makiko; Nishio, Yosuke; Nadano, Daita; Matsuda, Tsukasa; Furukawa, Koichi; Okajima, Tetsuya

    2012-01-01

    Highlights: ► We characterized A130022J15Rik (Eogt1)—a mouse gene homologous to Drosophila Eogt. ► Eogt1 encodes EGF domain O-GlcNAc transferase. ► Expression of Eogt1 in Drosophila rescued the cell-adhesion defect in the Eogt mutant. ► O-GlcNAcylation reaction in the secretory pathway is conserved through evolution. -- Abstract: O-linked-β-N-acetylglucosamine (O-GlcNAc) modification is a unique cytoplasmic and nuclear protein modification that is common in nearly all eukaryotes, including filamentous fungi, plants, and animals. We had recently reported that epidermal growth factor (EGF) repeats of Notch and Dumpy are O-GlcNAcylated by an atypical O-GlcNAc transferase, EOGT, in Drosophila. However, no study has yet shown whether O-GlcNAcylation of extracellular proteins is limited to insects such as Drosophila or whether it occurs in other organisms, including mammals. Here, we report the characterization of A130022J15Rik, a mouse gene homolog of Drosophila Eogt (Eogt 1). Enzymatic analysis revealed that Eogt1 has a substrate specificity similar to that of Drosophila EOGT, wherein the Thr residue located between the fifth and sixth conserved cysteines of the folded EGF-like domains is modified. This observation is supported by the fact that the expression of Eogt1 in Drosophila rescued the cell-adhesion defect caused by Eogt downregulation. In HEK293T cells, Eogt1 expression promoted modification of Notch1 EGF repeats by O-GlcNAc, which was further modified, at least in part, by galactose to generate a novel O-linked-N-acetyllactosamine structure. These results suggest that Eogt1 encodes EGF domain O-GlcNAc transferase and that O-GlcNAcylation reaction in the secretory pathway is a fundamental biochemical process conserved through evolution.

  11. Eddy current standards - Cracks versus notches

    Science.gov (United States)

    Hagemaier, D. J.; Collingwood, M. R.; Nguyen, K. H.

    1992-10-01

    Eddy current tests aimed at evaluating cracks and electron-discharge machined (EDM) notches in 7075-T6 aluminum specimens are described. A comparison of the shape and amplitude of recordings made from both transverse and longitudinal scans of small EDM notches and fatigue cracks showd almost identical results. The signal amplitude and phase angle increased with an increase of EDM notch and crak size. It is concluded that equivalent eddy current results obtained from similar-size surface cracks and notches in aluminum can be used to establish a desired sensitivity level for inspection.

  12. Notch and PKC are involved in formation of the lateral region of the dorso-ventral axis in Drosophila embryos.

    Science.gov (United States)

    Tremmel, Daniel M; Resad, Sedat; Little, Christopher J; Wesley, Cedric S

    2013-01-01

    The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD), an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.

  13. Notch and PKC are involved in formation of the lateral region of the dorso-ventral axis in Drosophila embryos.

    Directory of Open Access Journals (Sweden)

    Daniel M Tremmel

    Full Text Available The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenotype could be linked to excess canonical Notch signaling. The other phenotypes were linked to high levels of Notch protein expression at the surface of cells in the lateral regions indicating that a non-canonical Notch signaling activity normally functions in these regions. Results of our studies reported here provide evidence. They show that Notch activities are inextricably linked to that of Pkc98E, the homolog of mammalian PKCδ. Notch and Pkc98E up-regulate the levels of the phosphorylated form of IκBCactus, a negative regulator of Toll signaling, and Mothers against dpp (MAD, an effector of Dpp signaling. Our data suggest that in the lateral regions of the Drosophila embryos Notch activity, in conjunction with Pkc98E activity, is used to form the slopes of the opposing gradients of Toll and Dpp signaling that specify cell fates along the dorso-ventral axis.

  14. Notch and the awesome power of genetics.

    Science.gov (United States)

    Greenwald, Iva

    2012-07-01

    Notch is a receptor that mediates cell-cell interactions in animal development, and aberrations in Notch signal transduction can cause cancer and other human diseases. Here, I describe the major advances in the Notch field from the identification of the first mutant in Drosophila almost a century ago through the elucidation of the unusual mechanism of signal transduction a little over a decade ago. As an essay for the GENETICS Perspectives series, it is my personal and critical commentary as well as an historical account of discovery.

  15. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies.

    Science.gov (United States)

    Bernasconi-Elias, P; Hu, T; Jenkins, D; Firestone, B; Gans, S; Kurth, E; Capodieci, P; Deplazes-Lauber, J; Petropoulos, K; Thiel, P; Ponsel, D; Hee Choi, S; LeMotte, P; London, A; Goetcshkes, M; Nolin, E; Jones, M D; Slocum, K; Kluk, M J; Weinstock, D M; Christodoulou, A; Weinberg, O; Jaehrling, J; Ettenberg, S A; Buckler, A; Blacklow, S C; Aster, J C; Fryer, C J

    2016-11-24

    Notch receptors have been implicated as oncogenic drivers in several cancers, the most notable example being NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). To characterize the role of activated NOTCH3 in cancer, we generated an antibody that detects the neo-epitope created upon gamma-secretase cleavage of NOTCH3 to release its intracellular domain (ICD3), and sequenced the negative regulatory region (NRR) and PEST (proline, glutamate, serine, threonine) domain coding regions of NOTCH3 in a panel of cell lines. We also characterize NOTCH3 tumor-associated mutations that result in activation of signaling and report new inhibitory antibodies. We determined the structural basis for receptor inhibition by obtaining the first co-crystal structure of a NOTCH3 antibody with the NRR protein and defined two distinct epitopes for NRR antibodies. The antibodies exhibit potent anti-leukemic activity in cell lines and tumor xenografts harboring NOTCH3 activating mutations. Screening of primary T-ALL samples reveals that 2 of 40 tumors examined show active NOTCH3 signaling. We also identified evidence of NOTCH3 activation in 12 of 24 patient-derived orthotopic xenograft models, 2 of which exhibit activation of NOTCH3 without activation of NOTCH1. Our studies provide additional insights into NOTCH3 activation and offer a path forward for identification of cancers that are likely to respond to therapy with NOTCH3 selective inhibitory antibodies.

  16. Notch 1 Receptor, Delta 1 Ligand and HES 1 Transcription Factor are Expressed in the Lining Epithelium of Periapical Cysts (Preliminary Study)

    OpenAIRE

    Meliou, E; Kerezoudis, NP; Tosios, KI; Kiaris, H

    2010-01-01

    Periapical cyst is a chronic inflammatory disorder of periradicular tissues. The precise pathological mechanisms involved in periapical cyst enlargement remain unclear. Notch signaling is an evolutionarily conserved pathway with a regulatory role in cell fate decisions during development and in carcinogenesis. To date, there are no published data available on the expression of Notch signaling components in periapical cysts or any other jaw cyst. In this immunohistochemical study we have exami...

  17. Role of Notch Signaling in Human Breast Cancer Pathogenesis

    Science.gov (United States)

    2006-11-01

    transform HMLE cells. Similarly, overexpression of ErbB2, a receptor tyrosine kinase upstream of Ras normally found overexpressed in many breast cancers ...Assess Notch-Ras cooperation in breast cancers in vivo: Since the major observation in this project has been the cooperation of Notch and Ras in HMLE ...metastasis. The in vitro cooperation between Notch and Ras in HMLE cells is mimicked in naturally arising breast cancers in vivo. Further dissection of the

  18. Frequency and distribution of Notch mutations in tumor cell lines

    International Nuclear Information System (INIS)

    Mutvei, Anders Peter; Fredlund, Erik; Lendahl, Urban

    2015-01-01

    Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context. The online version of this article (doi:10.1186/s12885-015-1278-x) contains supplementary material, which is available to authorized users

  19. Notch3 signalling promotes tumour growth in colorectal cancer.

    Science.gov (United States)

    Serafin, Valentina; Persano, Luca; Moserle, Lidia; Esposito, Giovanni; Ghisi, Margherita; Curtarello, Matteo; Bonanno, Laura; Masiero, Massimo; Ribatti, Domenico; Stürzl, Michael; Naschberger, Elisabeth; Croner, Roland S; Jubb, Adrian M; Harris, Adrian L; Koeppen, Hartmut; Amadori, Alberto; Indraccolo, Stefano

    2011-08-01

    Increased Notch1 activity has been observed in intestinal tumours, partially accomplished by β-catenin-mediated up-regulation of the Notch ligand Jagged-1. Whether further mechanisms of Notch activation exist and other Notch receptors might be involved is unclear. Microarray data indicated that Notch3 transcript levels are significantly up-regulated in primary and metastatic CRC samples compared to normal mucosa. Moreover, Notch3 protein was expressed at strong/moderate levels by 19.7% of 158 CRC samples analysed, and at weak levels by 51.2% of the samples. Intrigued by these findings, we sought to investigate whether Notch3 modulates oncogenic features of CRC cells. By exploiting xenografts of CRC cells with different tumourigenic properties in mice, we found that the aggressive phenotype was associated with altered expression of components of the Notch pathway, including Notch3, Delta-like 4 (DLL4), and Jagged-1 ligands. Stimulation with immobilized recombinant DLL4 or transduction with DLL4-expressing vectors dramatically increased Notch3 expression in CRC cells, associated with accelerated tumour growth. Forced expression of an active form of Notch3 mirrored the effects of DLL4 stimulation and increased tumour formation. Conversely, attenuation of Notch3 levels by shRNA resulted in perturbation of the cell cycle followed by reduction in cell proliferation, clonogenic capacity, and inhibition of tumour growth. Altogether, these findings indicate that Notch3 can modulate the tumourigenic properties of CRC cells and contributes to sustained Notch activity in DLL4-expressing tumours. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. NOTCH2 signaling confers immature morphology and aggressiveness in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Hayashi, Yoshihiro; Osanai, Makoto; Lee, Gang-Hong

    2015-10-01

    The NOTCH family of membranous receptors plays key roles during development and carcinogenesis. Since NOTCH2, yet not NOTCH1 has been shown essential for murine hepatogenesis, NOTCH2 rather than NOTCH1 may be more relevant to human hepatocarcinogenesis; however, no previous studies have supported this hypothesis. We therefore assessed the role of NOTCH2 in human hepatocellular carcinoma (HCC) by immunohistochemistry and cell culture. Immunohistochemically, 19% of primary HCCs showed nuclear staining for NOTCH2, indicating activated NOTCH2 signaling. NOTCH2-positive HCCs were on average in more advanced clinical stages, and exhibited more immature cellular morphology, i.e. higher nuclear-cytoplasmic ratios and nuclear densities. Such features were not evident in NOTCH1‑positive HCCs. In human HCC cell lines, abundant NOTCH2 expression was associated with anaplasia, represented by loss of E-cadherin. When NOTCH2 signaling was stably downregulated in HLF cells, an anaplastic HCC cell line, the cells were attenuated in potential for in vitro invasiveness and migration, as well as in vivo tumorigenicity accompanied by histological maturation. Generally, inverse results were obtained for a differentiated HCC cell line, Huh7, manipulated to overexpress activated NOTCH2. These findings suggested that the NOTCH2 signaling may confer aggressive behavior and immature morphology in human HCC cells.

  1. Inhibitors for Androgen Receptor Activation Surfaces

    Science.gov (United States)

    2007-09-01

    times and the electron-rich iodine groups of Triac representing particularly good markers. Control soaks with solvent ( DMSO ) reveal no similar...electron-rich iodine groups of Triac represent particu- larly good markers. Control soaks with solvent ( DMSO ) reveal no similar effects on coregulator...3-(dibutylamino)-1-(4-hexylphenyl)propan-1-one DMSO , dimethylsulfoxide DTT, dithiothreitol ER, estrogen receptor GST, glutathione S-transferase

  2. The effect of residual stresses induced by prestraining on fatigue life of notched specimens

    Science.gov (United States)

    Sadeler, R.; Ozel, A.; Kaymaz, I.; Totik, Y.

    2005-06-01

    The effect of tensile prestraining-induced residual stress on the fatigue life of notched steel parts was investigated. The study was performed on AISI 4140 steel. Rotating bending fatigue tests were carried out on semicircular notched specimens with different notch radii in the as-quenched and tempered conditions. Metallography of the specimens was performed by means of light optical microscopy. The finite-element method was used to evaluate the residual stress distribution near the notch region. Fatigue tests revealed fatigue life improvement for notched specimens, which changes depending on the notch radii and applied stress. Scanning electron microscopy was used to examine the fracture surfaces of the specimens.

  3. Hepatitis B virus X protein promotes interleukin-7 receptor expression via NF-κB and Notch1 pathway to facilitate proliferation and migration of hepatitis B virus-related hepatoma cells

    Directory of Open Access Journals (Sweden)

    Fanyun Kong

    2016-11-01

    Full Text Available Abstract Background Interleukin-7 receptor (IL-7R is involved in the abnormal function of solid tumors, but the role and regulatory mechanisms of IL-7R in HBV-related hepatocellular carcinoma (HCC are still unclear. Methods Gene and protein expression levels of IL-7R were examined in hepatoma cells transfected with hepatitis B virus (HBV plasmids and in hepatoma cells transfected with the multifunctional nonstructural protein X (HBX. The expression of HBX and IL-7R was measured by immunohistochemical analysis in HBV-related HCC tissues. The role of NF-κB and Notch1 pathways in HBX-mediated expression of IL-7R in hepatoma cells was examined. Activation of IL-7R downstream of intracellular signaling proteins AKT, JNK, STAT5, and the associated molecules CyclinD1 and matrix metalloproteinase-9 (MMP-9, was assessed in HBX-positive cells with or without treatment with IL-7R short hairpin RNA (shRNA. Additionally, the role of IL-7R in HBX-mediated proliferation and migration of hepatoma cells was investigated. Results The expression of IL-7R was increased in hepatoma cells transfected with HBV plasmids; HBX was responsible for the HBV-mediated upregulation of IL-7R. Compared to adjacent tissues, the expression of HBX and IL-7R was increased in HBV-related HCC tissues. Additionally, the relative expression levels of HBX were associated with IL-7R in HBV-related HCC tissues. The activation of NF-κB pathways and expression of Notch1 were increased in hepatoma cells transfected with HBX, and inhibition of NF-κB and Notch1 pathways significantly decreased HBX-mediated expression of IL-7R. The activation of AKT and JNK and the expression of CyclinD1 and MMP-9 were increased in HBX-positive cells. When cells were treated with IL-7R shRNA, the activation of AKT and JNK, as well as the expression of CyclinD1 and MMP-9, were significantly inhibited. Additionally, IL-7R was responsible for HBX-induced proliferation and migration ability of hepatoma cells

  4. Notch signaling and progenitor/ductular reaction in steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Carola M Morell

    Full Text Available Persistent hepatic progenitor cells (HPC activation resulting in ductular reaction (DR is responsible for pathologic liver repair in cholangiopathies. Also, HPC/DR expansion correlates with fibrosis in several chronic liver diseases, including steatohepatitis. Increasing evidence indicates Notch signaling as a key regulator of HPC/DR response in biliary and more in general liver injuries. Therefore, we aimed to investigate the role of Notch during HPC/DR activation in a mouse model of steatohepatitis.Steatohepatitis was generated using methionine-choline deficient (MCD diet. For hepatocyte lineage tracing, R26R-YFP mice were infected with AAV8-TBG-Cre.MCD diet promoted a strong HPC/DR response that progressively diffused in the lobule, and correlated with increased fibrosis and TGF-β1 expression. Notch signaling was unchanged in laser-capture microdissected HPC/DR, whereas Notch receptors were down regulated in hepatocytes. However, in-vivo lineage tracing experiments identified discrete hepatocytes showing Notch-1 activation and expressing (the Notch-dependent Sox9. Stimulation of AML-12 hepatocyte-cell line with immobilized Jag1 induced Sox9 and down-regulated albumin and BSEP expression. TGF-β1 treatment in primary hepatic stellate cells (HSC induced Jag1 expression. In MCD diet-fed mice, αSMA-positive HSC were localized around Sox9 expressing hepatocytes, suggesting that Notch activation in hepatocytes was promoted by TGF-β1 stimulated HSC. In-vivo Notch inhibition reduced HPC response and fibrosis progression.Our data suggest that Notch signaling is an important regulator of DR and that in steatohepatitis, hepatocytes exposed to Jag1-positive HSC, contribute to pathologic DR by undergoing Notch-mediated differentiation towards an HPC-like phenotype. Given the roles of Notch in fibrosis and liver cancer, these data suggest mesenchymal expression of Jag1 as an alternative therapeutic target.

  5. Notch3 marks clonogenic mammary luminal progenitor cells in vivo.

    Science.gov (United States)

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis; Fre, Silvia

    2013-10-14

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive "triple negative" human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2(SAT) transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells.

  6. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice.

    Directory of Open Access Journals (Sweden)

    Silvia Fre

    Full Text Available The conserved role of Notch signaling in controlling intestinal cell fate specification and homeostasis has been extensively studied. Nevertheless, the precise identity of the cells in which Notch signaling is active and the role of different Notch receptor paralogues in the intestine remain ambiguous, due to the lack of reliable tools to investigate Notch expression and function in vivo. We generated a new series of transgenic mice that allowed us, by lineage analysis, to formally prove that Notch1 and Notch2 are specifically expressed in crypt stem cells. In addition, a novel Notch reporter mouse, Hes1-EmGFP(SAT, demonstrated exclusive Notch activity in crypt stem cells and absorptive progenitors. This roster of knock-in and reporter mice represents a valuable resource to functionally explore the Notch pathway in vivo in virtually all tissues.

  7. Notch and PKC Are Involved in Formation of the Lateral Region of the Dorso-Ventral Axis in Drosophila Embryos

    OpenAIRE

    Tremmel, Daniel M.; Resad, Sedat; Little, Christopher J.; Wesley, Cedric S.

    2013-01-01

    The Notch gene encodes an evolutionarily conserved cell surface receptor that generates regulatory signals based on interactions between neighboring cells. In Drosophila embryos it is normally expressed at a low level due to strong negative regulation. When this negative regulation is abrogated neurogenesis in the ventral region is suppressed, the development of lateral epidermis is severely disrupted, and the dorsal aminoserosa is expanded. Of these phenotypes only the anti-neurogenic phenot...

  8. Stress concentration at notches

    CERN Document Server

    Savruk, Mykhaylo P

    2017-01-01

    This book compiles solutions of linear theory of elasticity problems for isotropic and anisotropic bodies with sharp and rounded notches. It contains an overview of established and recent achievements, and presents the authors’ original solutions in the field considered with extensive discussion. The volume demonstrates through numerous, useful examples the effectiveness of singular integral equations for obtaining exact solutions of boundary problems of the theory of elasticity for bodies with cracks and notches. Incorporating analytical and numerical solutions of the problems of stress concentrations in solid bodies with crack-like defects, this volume is ideal for scientists and PhD students dealing with the problems of theory of elasticity and fracture mechanics. Stands as a modern and extensive compendium of solutions to the problems of linear theory of elasticity of isotropic and anisotropic bodies with sharp and rounded notches; Adopts a highly reader-friendly layout of tables, charts, approximation ...

  9. Manic fringe inhibits tumor growth by suppressing Notch3 degradation in lung cancer.

    Science.gov (United States)

    Yi, Fuming; Amarasinghe, Baru; Dang, Thao P

    2013-01-01

    Notch signaling plays an essential role in development as well as cancer. We have previously shown that Notch3 is important for lung cancer growth and survival. Notch receptors are activated through the interaction with their ligands, resulting in proteolytic cleavage of the receptors. This interaction is modulated by Fringe, a family of fucose-specific β1,3 N-acetylglucosaminyltransferases that modify the extracellular subunit of Notch receptors. Studies in developmental models showed that Fringe enhances Notch's response to Delta ligands at the expense of Jagged ligands. We observed that Manic Fringe expression is down-regulated in lung cancer. Since Jagged1, a known ligand for Notch3, is often over-expressed in lung cancer, we hypothesized that Fringe negatively regulates Notch3 activation. In this study, we show that re-expression of Manic Fringe down-regulates Notch3 target genes HES1 and HeyL and reduces tumor phenotype in vitro and in vivo. The mechanism for this phenomenon appears to be related to modulation of Notch3 protein stability. Proteasome inhibition reverses Manic Fringe-induced protein turnover. Taken together, our data provide the first evidence that Manic Fringe functions as a tumor suppressor in the lung and that the mechanism of its anti-tumor activity is mediated by inhibition of Notch3 activation.

  10. Molecular Characterization of Notch1 Positive Progenitor Cells in the Developing Retina.

    Directory of Open Access Journals (Sweden)

    Galina Dvoriantchikova

    Full Text Available The oscillatory expression of Notch signaling in neural progenitors suggests that both repressors and activators of neural fate specification are expressed in the same progenitors. Since Notch1 regulates photoreceptor differentiation and contributes (together with Notch3 to ganglion cell fate specification, we hypothesized that genes encoding photoreceptor and ganglion cell fate activators would be highly expressed in Notch1 receptor-bearing (Notch1+ progenitors, directing these cells to differentiate into photoreceptors or into ganglion cells when Notch1 activity is diminished. To identify these genes, we used microarray analysis to study expression profiles of whole retinas and isolated from them Notch1+ cells at embryonic day 14 (E14 and postnatal day 0 (P0. To isolate Notch1+ cells, we utilized immunomagnetic cell separation. We also used Notch3 knockout (Notch3KO animals to evaluate the contribution of Notch3 signaling in ganglion cell differentiation. Hierarchical clustering of 6,301 differentially expressed genes showed that Notch1+ cells grouped near the same developmental stage retina cluster. At E14, we found higher expression of repressors (Notch1, Hes5 and activators (Dll3, Atoh7, Otx2 of neuronal differentiation in Notch1+ cells compared to whole retinal cell populations. At P0, Notch1, Hes5, and Dll1 expression was significantly higher in Notch1+ cells than in whole retinas. Otx2 expression was more than thirty times higher than Atoh7 expression in Notch1+ cells at P0. We also observed that retinas of wild type animals had only 14% (P < 0.05 more ganglion cells compared to Notch3KO mice. Since this number is relatively small and Notch1 has been shown to contribute to ganglion cell fate specification, we suggested that Notch1 signaling may play a more significant role in RGC development than the Notch3 signaling cascade. Finally, our findings suggest that Notch1+ progenitors--since they heavily express both pro-ganglion cell (Atoh7

  11. Essential Role of Endothelial Notch1 in Angiogenesis

    Science.gov (United States)

    Limbourg, Florian P.; Takeshita, Kyosuke; Radtke, Freddy; Bronson, Roderick T.; Chin, Michael T.; Liao, James K.

    2009-01-01

    Background Notch signaling influences binary cell fate decisions in a variety of tissues. The Notch1 receptor is widely expressed during embryogenesis and is essential for embryonic development. Loss of global Notch1 function results in early embryonic lethality, but the cell type responsible for this defect is not known. Here, we identify the endothelium as the primary target tissue affected by Notch1 signaling. Methods and Results We generated an endothelium-specific deletion of Notch1 using Tie2Cre and conditional Notch1flox/flox mice. Mutant embryos lacking endothelial Notch1 died at approximately embryonic day 10.5 with profound vascular defects in placenta, yolk sac, and embryo proper, whereas heterozygous deletion had no effect. In yolk sacs of mutant embryos, endothelial cells formed a primary vascular plexus indicative of intact vasculogenesis but failed to induce the secondary vascular remodeling required to form a mature network of well-organized large and small blood vessels, which demonstrates a defect in angiogenesis. These vascular defects were also evident in the placenta, where blood vessels failed to invade the placental labyrinth, and in the embryo proper, where defective blood vessel maturation led to pericardial and intersomitic hemorrhage. Enhanced activation of caspase-3 was detected in endothelial and neural cells of mutant mice, which resulted in enhanced apoptotic degeneration of somites and the neural tube. Conclusions These findings recapitulate the vascular phenotype of global Notch1-/- mutants and indicate an essential cell-autonomous role of Notch1 signaling in the endothelium during vascular development. These results may have important clinical implications with regard to Notch1 signaling in adult angiogenesis. PMID:15809373

  12. The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality

    DEFF Research Database (Denmark)

    Boskovski, Marko T; Yuan, Shiaulou; Pedersen, Nis Borbye

    2013-01-01

    to such determination. We previously identified GALNT11 as a candidate disease gene in a patient with heterotaxy, and now demonstrate, in Xenopus tropicalis, that galnt11 activates Notch signalling. GALNT11 O-glycosylates human NOTCH1 peptides in vitro, thereby supporting a mechanism of Notch activation either...... by increasing ADAM17-mediated ectodomain shedding of the Notch receptor or by modification of specific EGF repeats. We further developed a quantitative live imaging technique for Xenopus left-right organizer cilia and show that Galnt11-mediated Notch1 signalling modulates the spatial distribution and ratio...... of motile and immotile cilia at the left-right organizer. galnt11 or notch1 depletion increases the ratio of motile cilia at the expense of immotile cilia and produces a laterality defect reminiscent of loss of the ciliary sensor Pkd2. By contrast, Notch overexpression decreases this ratio, mimicking...

  13. A substrate specificity-determining unit of three Lin12-Notch repeat modules is formed in trans within the pappalysin-1 dimer and requires a sequence stretch C-terminal to the third module

    DEFF Research Database (Denmark)

    Weyer, Kathrin; Boldt, Henning B; Poulsen, Christine B

    2007-01-01

    -A cleaves IGFBP-4 and IGFBP-5, whereas PAPP-A2 cleaves only IGFBP-5. The pappalysins contain three Lin12-Notch repeat (LNR1-3) modules, previously considered unique to the Notch receptor family in which they function to regulate receptor cleavage. In contrast to the Notch receptor where three LNR modules...

  14. Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine Kras(G12D-induced skin carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Pawel K Mazur

    Full Text Available BACKGROUND: The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic Kras(G12D mice with ablation of Notch1 and/or Notch2. METHODOLOGY/PRINCIPAL FINDINGS: Surprisingly, mice with activated Kras(G12D and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities. CONCLUSIONS/SIGNIFICANCE: Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors.

  15. Theory and simulations of adhesion receptor dimerization on membrane surfaces.

    Science.gov (United States)

    Wu, Yinghao; Honig, Barry; Ben-Shaul, Avinoam

    2013-03-19

    The equilibrium constants of trans and cis dimerization of membrane bound (2D) and freely moving (3D) adhesion receptors are expressed and compared using elementary statistical-thermodynamics. Both processes are mediated by the binding of extracellular subdomains whose range of motion in the 2D environment is reduced upon dimerization, defining a thin reaction shell where dimer formation and dissociation take place. We show that the ratio between the 2D and 3D equilibrium constants can be expressed as a product of individual factors describing, respectively, the spatial ranges of motions of the adhesive domains, and their rotational freedom within the reaction shell. The results predicted by the theory are compared to those obtained from a novel, to our knowledge, dynamical simulations methodology, whereby pairs of receptors perform realistic translational, internal, and rotational motions in 2D and 3D. We use cadherins as our model system. The theory and simulations explain how the strength of cis and trans interactions of adhesive receptors are affected both by their presence in the constrained intermembrane space and by the 2D environment of membrane surfaces. Our work provides fundamental insights as to the mechanism of lateral clustering of adhesion receptors after cell-cell contact and, more generally, to the formation of lateral microclusters of proteins on cell surfaces. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Notch signaling and ghost cell fate in the calcifying cystig odontogenic tumor

    Directory of Open Access Journals (Sweden)

    Siar CH

    2011-11-01

    Full Text Available Abstract Notch signaling is an evolutionarily conserved mechanism that enables adjacent cells to adopt different fates. Ghost cells (GCs are anucleate cells with homogeneous pale eosinophilic cytoplasm and very pale to clear central areas (previous nucleus sites. Although GCs are present in a variety of odontogenic lesions notably the calcifying cystic odontogenic tumor (GCOT, their nature and process of formation remains elusive. The aim of this study was to investigate the role of Notch signaling in the cell fate specification of GCs in CCOT. Immunohistochemical staining for four Notch receptors (Notch1, Notch2, Notch3 and Notch4 and three ligands (Jagged1, Jagged2 and Delta1 was performed on archival tissues of five CCOT cases. Level of positivity was quantified as negative (0, mild (+, moderate (2+ and strong (3+. Results revealed that GCs demonstrated overexpression for Notch1 and Jagged1 suggesting that Notch1Jagged1 signaling might serve as the main transduction mechanism in cell fate decision for GCs in CCOT. Protein localizations were largely membranous and/or cytoplasmic. Mineralized GCs also stained positive implicating that the calcification process might be associated with upregulation of these molecules. The other Notch receptors and ligands were weak to absent in GCs and tumoral epithelium. Stromal endothelium and fibroblasts were stained variably positive.

  17. The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals

    Science.gov (United States)

    Wu, Nan; Nguyen, Quy; Wan, Ying; Zhou, Tiaohao; Venter, Julie; Frampton, Gabriel A; DeMorrow, Sharon; Pan, Duojia; Meng, Fanyin; Glaser, Shannon; Alpini, Gianfranco; Bai, Haibo

    2018-01-01

    The Hippo signaling pathway and the Notch signaling pathway are evolutionary conserved signaling cascades that have important roles in embryonic development of many organs. In murine liver, disruption of either pathway impairs intrahepatic bile duct development. Recent studies suggested that the Notch signaling receptor Notch2 is a direct transcriptional target of the Hippo signaling pathway effector YAP, and the Notch signaling is a major mediator of the Hippo signaling in maintaining biliary cell characteristics in adult mice. However, it remains to be determined whether the Hippo signaling pathway functions through the Notch signaling in intrahepatic bile duct development. We found that loss of the Hippo signaling pathway tumor suppressor Nf2 resulted in increased expression levels of the Notch signaling pathway receptor Notch2 in cholangiocytes but not in hepatocytes. When knocking down Notch2 on the background of Nf2 deficiency in mouse livers, the excessive bile duct development induced by Nf2 deficiency was suppressed by heterozygous and homozygous deletion of Notch2 in a dose-dependent manner. These results implicated that Notch signaling is one of the downstream effectors of the Hippo signaling pathway in regulating intrahepatic bile duct development. PMID:28581486

  18. Reaction and Aggregation Dynamics of Cell Surface Receptors

    Science.gov (United States)

    Wang, Michelle Dong

    This dissertation is composed of both theoretical and experimental studies of cell surface receptor reaction and aggregation. Project I studies the reaction rate enhancement due to surface diffusion of a bulk dissolved ligand with its membrane embedded target, using numerical calculations. The results show that the reaction rate enhancement is determined by ligand surface adsorption and desorption kinetic rates, surface and bulk diffusion coefficients, and geometry. In particular, we demonstrate that the ligand surface adsorption and desorption kinetic rates, rather than their ratio (the equilibrium constant), are important in rate enhancement. The second and third projects are studies of acetylcholine receptor clusters on cultured rat myotubes using fluorescence techniques after labeling the receptors with tetramethylrhodamine -alpha-bungarotoxin. The second project studies when and where the clusters form by making time-lapse movies. The movies are made from overlay of the pseudocolored total internal reflection fluorescence (TIRF) images of the cluster, and the schlieren images of the cell cultures. These movies are the first movies made using TIRF, and they clearly show the cluster formation from the myoblast fusion, the first appearance of clusters, and the eventual disappearance of clusters. The third project studies the fine structural features of individual clusters observed under TIRF. The features were characterized with six parameters by developing a novel fluorescence technique: spatial fluorescence autocorrelation. These parameters were then used to study the feature variations with age, and with treatments of drugs (oligomycin and carbachol). The results show little variation with age. However, drug treatment induced significant changes in some parameters. These changes were different for oligomycin and carbachol, which indicates that the two drugs may eliminate clusters through different mechanisms.

  19. G-Protein Coupled Receptors: Surface Display and Biosensor Technology

    Science.gov (United States)

    McMurchie, Edward; Leifert, Wayne

    Signal transduction by G-protein coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to the activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. With growing interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high-throughput screening of drugs and biosensors, greater attention will focus on assay development to allow for miniaturization, ultrahigh-throughput and, eventually, microarray/biochip assay formats that will require nanotechnology-based approaches. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR/G-protein platforms, which should be able to be adapted to such applications as microarrays and biosensors. This chapter focuses on cell-free GPCR assay nanotechnologies and describes some molecular biological approaches for the construction of more sophisticated, surface-immobilized, homogeneous, functional GPCR sensors. The latter points should greatly extend the range of applications to which technologies based on GPCRs could be applied.

  20. A three-dimensional analysis of the sigmoid notch

    Directory of Open Access Journals (Sweden)

    Evan D. Collins

    2011-12-01

    Full Text Available Fractures of the distal radius are among the most common injuries of the upper extremity, though treatment has traditionally focused on restoration of the radiocarpal joint and late sequelae may persist. X-ray imaging underestimates sigmoid notch involvement following distal radius fractures. No classification system exists for disruption patterns of the sigmoid notch of the radius associated with distal radius fractures. This study quantifies the anatomy of the sigmoid notch and identifies the landmarks of the articular surface and proximal boundaries of the distal radioulnar joint (DRUJ capsule. Computed tomography scans of freshly frozen cadaveric hands were used - followed by dissection, and three-dimensional reconstruction of the distal radius and sigmoid notch. The sigmoid notch surface was divided into two surfaces and measured. The Anterior Posterior (AP and Proximal Distal (PD widths of the articulating surface were reviewed, along with the radius of curvature, version angle and depth. The study showed that the sigmoid notch is flatter than previously believed - and only the distal 69% of its surface is covered by cartilage. On average, it has about nine degrees of retroversion, and its average inclination is almost parallel to the anatomical axis of the radius. Clinical implications exist for evaluation of the DRUJ involvement in distal radius fractures or degenerative diseases and for future development and evaluation of hemiarthroplasty replacement of the distal radius.

  1. 5D-QSAR for spirocyclic sigma1 receptor ligands by Quasar receptor surface modeling.

    Science.gov (United States)

    Oberdorf, Christoph; Schmidt, Thomas J; Wünsch, Bernhard

    2010-07-01

    Based on a contiguous and structurally as well as biologically diverse set of 87 sigma(1) ligands, a 5D-QSAR study was conducted in which a quasi-atomistic receptor surface modeling approach (program package Quasar) was applied. The superposition of the ligands was performed with the tool Pharmacophore Elucidation (MOE-package), which takes all conformations of the ligands into account. This procedure led to four pharmacophoric structural elements with aromatic, hydrophobic, cationic and H-bond acceptor properties. Using the aligned structures a 3D-model of the ligand binding site of the sigma(1) receptor was obtained, whose general features are in good agreement with previous assumptions on the receptor structure, but revealed some novel insights since it represents the receptor surface in more detail. Thus, e.g., our model indicates the presence of an H-bond acceptor moiety in the binding site as counterpart to the ligands' cationic ammonium center, rather than a negatively charged carboxylate group. The presented QSAR model is statistically valid and represents the biological data of all tested compounds, including a test set of 21 ligands not used in the modeling process, with very good to excellent accuracy [q(2) (training set, n=66; leave 1/3 out) = 0.84, p(2) (test set, n=21)=0.64]. Moreover, the binding affinities of 13 further spirocyclic sigma(1) ligands were predicted with reasonable accuracy (mean deviation in pK(i) approximately 0.8). Thus, in addition to novel insights into the requirements for binding of spirocyclic piperidines to the sigma(1) receptor, the presented model can be used successfully in the rational design of new sigma(1) ligands. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  2. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  3. Loss of PTB or negative regulation of Notch mRNA reveals distinct zones of Notch and actin protein accumulation in Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Cedric S Wesley

    Full Text Available Polypyrimidine Tract Binding (PTB protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1 the Notch mRNA is a potential target of PTB, (2 PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3 the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions.

  4. Loss of PTB or Negative Regulation of Notch mRNA Reveals Distinct Zones of Notch and Actin Protein Accumulation in Drosophila Embryo

    Science.gov (United States)

    Wesley, Cedric S.; Guo, Heng; Chaudhry, Kanita A.; Thali, Markus J.; Yin, Jerry C.; Clason, Todd; Wesley, Umadevi V.

    2011-01-01

    Polypyrimidine Tract Binding (PTB) protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1) the Notch mRNA is a potential target of PTB, (2) PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3) the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions. PMID:21750738

  5. Notch1 and 4 Signaling Responds to an Increasing Vascular Wall Shear Stress in a Rat Model of Arteriovenous Malformations

    Directory of Open Access Journals (Sweden)

    Jian Tu

    2014-01-01

    Full Text Available Notch signaling is suggested to promote the development and maintenance of cerebral arteriovenous malformations (AVMs, and an increasing wall shear stress (WSS contributes to AVM rupture. Little is known about whether WSS impacts Notch signaling, which is important for understanding the angiogenesis of AVMs. WSS was measured in arteriovenous fistulas (AVF surgically created in 96 rats at different time points over a period of 84 days. The expression of Notch receptors 1 and 4 and their ligands, Delta1 and 4, Jagged1, and Notch downstream gene target Hes1 was quantified in “nidus” vessels. The interaction events between Notch receptors and their ligands were quantified using proximity ligation assay. There was a positive correlation between WSS and time (r=0.97; P<0.001. The expression of Notch receptors and their ligands was upregulated following AVF formation. There was a positive correlation between time and the number of interactions between Notch receptors and their ligands aftre AVF formation (r=0.62, P<0.05 and a positive correlation between WSS and the number of interactions between Notch receptors and their ligands (r=0.87, P<0.005. In conclusion, an increasing WSS may contribute to the angiogenesis of AVMs by activation of Notch signaling.

  6. The Notch Signaling Pathway Is Balancing Type 1 Innate Lymphoid Cell Immune Functions

    Directory of Open Access Journals (Sweden)

    Thibaut Perchet

    2018-06-01

    Full Text Available The Notch pathway is one of the canonical signaling pathways implicated in the development of various solid tumors. During carcinogenesis, the Notch pathway dysregulation induces tumor expression of Notch receptor ligands participating to escape the immune surveillance. The Notch pathway conditions both the development and the functional regulation of lymphoid subsets. Its importance on T cell subset polarization has been documented contrary to its action on innate lymphoid cells (ILC. We aim to analyze the effect of the Notch pathway on type 1 ILC polarization and functions after disruption of the RBPJk-dependent Notch signaling cascade. Indeed, type 1 ILC comprises conventional NK (cNK cells and type 1 helper innate lymphoid cells (ILC1 that share Notch-related functional characteristics such as the IFNg secretion downstream of T-bet expression. cNK cells have strong antitumor properties. However, data are controversial concerning ILC1 functions during carcinogenesis with models showing antitumoral capacities and others reporting ILC1 inability to control tumor growth. Using various mouse models of Notch signaling pathway depletion, we analyze the effects of its absence on type 1 ILC differentiation and cytotoxic functions. We also provide clues into its role in the maintenance of immune homeostasis in tissues. We show that modulating the Notch pathway is not only acting on tumor-specific T cell activity but also on ILC immune subset functions. Hence, our study uncovers the intrinsic Notch signaling pathway in ILC1/cNK populations and their response in case of abnormal Notch ligand expression. This study help evaluating the possible side effects mediated by immune cells different from T cells, in case of multivalent forms of the Notch receptor ligand delta 1 treatments. In definitive, it should help determining the best novel combination of therapeutic strategies in case of solid tumors.

  7. Minocycline attenuates the development of diabetic neuropathy by inhibiting spinal cord Notch signaling in rat.

    Science.gov (United States)

    Yang, Cheng; Gao, Jie; Wu, Banglin; Yan, Nuo; Li, Hui; Ren, Yiqing; Kan, Yufei; Liang, Jiamin; Jiao, Yang; Yu, Yonghao

    2017-10-01

    We studied the effects of minocycline (an inhibitor of microglial activation) on the expression and activity of Notch-1 receptor, and explored the therapeutic efficacy of minocycline combined with Notch inhibitor DAPT in the treatment of diabetic neuropathic pain (DNP). Diabetic rat model was established by intraperitoneal injection (ip) of Streptozotocin (STZ). Expression and activity of Notch-1 and expression of macrophage/microglia marker Iba-1 were detected by WB. Diabetes induction significantly attenuated sciatic nerve conduction velocity, and dramatically augmented the expression and the activity of Notch-1 in the lumbar enlargement of the spinal cord. Minocycline treatment, however, accelerated the decreased conduction velocity of sciatic nerve and suppressed Notch-1expression and activity in diabetic rats. Similar to DAPT treatment, minocycline administration also prolonged thermal withdrawal latency (TWL) and increase mechanical withdrawal threshold (MWT) in diabetic rats in response to heat or mechanical stimulation via inhibition the expression and the activity of Notch-1 in spinal cord. Combination of DAPT and minocycline further inhibited Notch-1 receptor signaling and reduce neuropathic pain exhibited as improved TWL and MWT. Our study revealed a novel mechanism of Notch-1 receptor inhibition in spinal cord induced by minocycline administration, and suggested that the combination of minocycline and DAPT has the potential to treat DNP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Heterogeneity of breast cancer stem cells as evidenced with Notch-dependent and Notch-independent populations

    International Nuclear Information System (INIS)

    Wong, Nelson K Y; Fuller, Megan; Sung, Sandy; Wong, Fred; Karsan, Aly

    2012-01-01

    Studies have suggested the potential importance of Notch signaling to the cancer stem cell population in some tumors, but it is not known whether all cells in the cancer stem cell fraction require Notch activity. To address this issue, we blocked Notch activity in MCF-7 cells by expressing a dominant-negative MAML-GFP (dnMAML) construct, which inhibits signaling through all Notch receptors, and quantified the effect on tumor-initiating activity. Inhibition of Notch signaling reduced primary tumor sphere formation and side population. Functional quantification of tumor-initiating cell numbers in vivo showed a significant decrease, but not a complete abrogation, of these cells in dnMAML-expressing cells. Interestingly, when assessed in secondary assays in vitro or in vivo, there was no difference in tumor-initiating activity between the dnMAML-expressing cells and control cells. The fact that a subpopulation of dnMAML-expressing cells was capable of forming primary and secondary tumors indicates that there are Notch-independent tumor-initiating cells in the breast cancer cell line MCF-7. Our findings thus provide direct evidence for a heterogeneous cancer stem cell pool, which will require combination therapies against multiple oncogenic pathways to eliminate the tumor-initiating cell population

  9. Regulated internalization of NMDA receptors drives PKD1-mediated suppression of the activity of residual cell-surface NMDA receptors.

    Science.gov (United States)

    Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min

    2015-11-19

    Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor

  10. Complete Absence of Suprascapular Notch: A Case Report

    Directory of Open Access Journals (Sweden)

    Rohini Mohan Pawar

    2015-10-01

    Full Text Available Suprascapular Nerve Entrapment (SSNE is an acquired neuropathy secondary to compression of suprascapular nerve in the Suprascapular Notch (SSN. Complete ossification of superior transverse scapular ligament may be a cause for suprascapular nerve entrapment. The absence of suprascapular notch is not very common condition, though its prevalence was quoted by Indian authors to be varying from 1.36% to 32.46% in different parts of the country. It is considered to be a predisposing factor for suprascapular nerve entrapment neuropathy. We noticed a male scapula without suprascapular notch in osteology section of Forensic Medicine department. In this case we observed costal and dorsal surfaces of the left scapula of a male without suprascapular notch at its superior border. The details of the said scapula are discussed in this report.

  11. Notch1 regulates hippocampal plasticity through interaction with the Reelin pathway, glutamatergic transmission and CREB signaling

    Directory of Open Access Journals (Sweden)

    Emanuele eBrai

    2015-11-01

    Full Text Available Notch signaling plays a crucial role in adult brain function such as synaptic plasticity, memory and olfaction. Several reports suggest an involvement of this pathway in neurodegenerative dementia. Yet, to date, the mechanism underlying Notch activity in mature neurons remains unresolved. In this work, we investigate how Notch regulates synaptic potentiation and contributes to the establishment of memory in mice. We observe that Notch1 is a postsynaptic receptor with functional interactions with the Reelin receptor, ApoER2, and the ionotropic receptor, NMDAR. Targeted loss of Notch1 in the hippocampal CA fields affects Reelin signaling by influencing Dab1 expression and impairs the synaptic potentiation achieved through Reelin stimulation. Further analysis indicates that loss of Notch1 affects the expression and composition of the NMDAR but not AMPAR. Glutamatergic signaling is further compromised through downregulation of CamKII and its secondary and tertiary messengers resulting in reduced CREB signaling. Our results identify Notch1 as an important regulator of mechanisms involved in synaptic plasticity and memory formation. These findings emphasize the possible involvement of this signaling receptor in dementia.

  12. Human Diversity in a Cell Surface Receptor that Inhibits Autophagy.

    Science.gov (United States)

    Chaudhary, Anu; Leite, Mara; Kulasekara, Bridget R; Altura, Melissa A; Ogahara, Cassandra; Weiss, Eli; Fu, Wenqing; Blanc, Marie-Pierre; O'Keeffe, Michael; Terhorst, Cox; Akey, Joshua M; Miller, Samuel I

    2016-07-25

    Mutations in genes encoding autophagy proteins have been associated with human autoimmune diseases, suggesting that diversity in autophagy responses could be associated with disease susceptibility or severity. A cellular genome-wide association study (GWAS) screen was performed to explore normal human diversity in responses to rapamycin, a microbial product that induces autophagy. Cells from several human populations demonstrated variability in expression of a cell surface receptor, CD244 (SlamF4, 2B4), that correlated with changes in rapamycin-induced autophagy. High expression of CD244 and receptor activation with its endogenous ligand CD48 inhibited starvation- and rapamycin-induced autophagy by promoting association of CD244 with the autophagy complex proteins Vps34 and Beclin-1. The association of CD244 with this complex reduced Vps34 lipid kinase activity. Lack of CD244 is associated with auto-antibody production in mice, and lower expression of human CD244 has previously been implicated in severity of human rheumatoid arthritis and systemic lupus erythematosus, indicating that increased autophagy as a result of low levels of CD244 may alter disease outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    Directory of Open Access Journals (Sweden)

    Taslima T. Lina

    2016-07-01

    Full Text Available Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey. Significant differences in canonical Notch signaling gene expression levels (>40% were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2 and p38 mitogen-activated protein kinase (MAPK pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4 expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival.

  14. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway

    International Nuclear Information System (INIS)

    Ma, Lijie; Dong, Pingping; Liu, Longzi; Gao, Qiang; Duan, Meng; Zhang, Si; Chen, She; Xue, Ruyi; Wang, Xiaoying

    2016-01-01

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.

  15. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lijie [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China); Dong, Pingping [Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai (China); Liu, Longzi; Gao, Qiang; Duan, Meng [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China); Zhang, Si; Chen, She [Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Xue, Ruyi, E-mail: xue.ruyi@zs-hospital.sh.cn [Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai (China); Wang, Xiaoying, E-mail: xiaoyingwang@fudan.edu.cn [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China)

    2016-04-29

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.

  16. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    International Nuclear Information System (INIS)

    Dontu, Gabriela; Jackson, Kyle W; McNicholas, Erin; Kawamura, Mari J; Abdallah, Wissam M; Wicha, Max S

    2004-01-01

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  17. Inhibition of Notch1 promotes hedgehog signalling in a HES1-dependent manner in chondrocytes and exacerbates experimental osteoarthritis.

    Science.gov (United States)

    Lin, Neng-Yu; Distler, Alfiya; Beyer, Christian; Philipi-Schöbinger, Ariella; Breda, Silvia; Dees, Clara; Stock, Michael; Tomcik, Michal; Niemeier, Andreas; Dell'Accio, Francesco; Gelse, Kolja; Mattson, Mark P; Schett, Georg; Distler, Jörg Hw

    2016-11-01

    Notch ligands and receptors have recently been shown to be differentially expressed in osteoarthritis (OA). We aim to further elucidate the functional role of Notch signalling in OA using Notch1 antisense transgenic (Notch1 AS) mice. Notch and hedgehog signalling were analysed by real-time PCR and immunohistochemistry. Notch-1 AS mice were employed as a model of impaired Notch signalling in vivo. Experimental OA was induced by destabilisation of the medial meniscus (DMM). The extent of cartilage destruction and osteophyte formation was analysed by safranin-O staining with subsequent assessment of the Osteoarthritis Research Society International (OARSI) and Mankin scores and µCT scanning. Collagen X staining was used as a marker of chondrocyte hypertrophy. The role of hairy/enhancer of split 1 (Hes-1) was investigated with knockdown and overexpression experiments. Notch signalling was activated in human and murine OA with increased expression of Jagged1, Notch-1, accumulation of the Notch intracellular domain 1 and increased transcription of Hes-1. Notch1 AS mice showed exacerbated OA with increases in OARSI scores, osteophyte formation, increased subchondral bone plate density, collagen X and osteocalcin expression and elevated levels of Epas1 and ADAM-TS5 mRNA. Inhibition of the Notch pathway induced activation of hedgehog signalling with induction of Gli-1 and Gli-2 and increased transcription of hedgehog target genes. The regulatory effects of Notch signalling on Gli-expression were mimicked by Hes-1. Inhibition of Notch signalling activates hedgehog signalling, enhances chondrocyte hypertrophy and exacerbates experimental OA including osteophyte formation. These data suggest that the activation of the Notch pathway may limit aberrant hedgehog signalling in OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Perivascular delivery of Notch 1 siRNA inhibits injury-induced arterial remodeling.

    Directory of Open Access Journals (Sweden)

    Eileen M Redmond

    Full Text Available To determine the efficacy of perivascular delivery of Notch 1 siRNA in preventing injury-induced arterial remodeling.Carotid artery ligation was performed to induce arterial remodeling. After 14 days, morphometric analysis confirmed increased vSMC growth and subsequent media thickening and neointimal formation. Laser capture microdissection, quantitative qRT-PCR and immunoblot analysis of medial tissue revealed a significant increase in Notch1 receptor and notch target gene, Hrt 1 and 2 expression in the injured vessels. Perivascular delivery of Notch 1 siRNA by pluronic gel inhibited the injury-induced increase in Notch 1 receptor and target gene expression when compared to scrambled siRNA controls while concomitantly reducing media thickening and neointimal formation to pre-injury, sham-operated levels. Selective Notch 1 knockdown also reversed the injury-induced inhibition of pro-apoptotic Bax expression while decreasing injury-induced anti-apoptotic Bcl-XL expression to sham-operated control levels. In parallel experiments, proliferative cyclin levels, as measured by PCNA expression, were reversed to sham-operated control levels following selective Notch 1 knockdown.These results suggest that injury-induced arterial remodeling can be successfully inhibited by localized perivascular delivery of Notch 1 siRNA.

  19. Notch sensitivity of aliphatic polyketone terpolymers

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Huetink, Han; Gaymans, R.J.

    2004-01-01

    The notch sensitivity of aliphatic polyketone (PK) terpolymers was investigated in this article. The notch-tip radius was varied between the size of an actual propagating crack tip of 1-2 m and the largest notch tip of 1000 m radius. The larger notch-tip radii (1000-15 m) were milled into the

  20. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Peng-Yeh [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China); Tsai, Chong-Bin [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China); Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC (China); Tseng, Min-Jen, E-mail: biomjt@ccu.edu.tw [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China)

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  1. Immunolocalization of notch signaling protein molecules in a maxillary chondrosarcoma and its recurrent tumor

    Directory of Open Access Journals (Sweden)

    Siar CH

    2010-10-01

    Full Text Available Abstract Background Notch receptors are critical determinants of cell fate in a variety of organisms. Notch signaling is involved in the chondrogenic specification of neural crest cells. Aberrant Notch activity has been implicated in numerous human diseases including cancers; however its role in chondrogenic tumors has not been clarified. Method Tissue samples from a case of primary chondrosarcoma of the maxilla and its recurrent tumor were examined immunohistochemically for Notch1-4 and their ligands (Jagged1, Jagged2 and Delta1 expression. Results Both primary and recurrent tumors were histopathologically diagnosed as conventional hyaline chondrosarcoma (WHO Grade I. Hypercellular tumor areas strongly expressed Notch3 and Jagged1 in spindle and pleomorphic cells suggesting up-regulation of these protein molecules at sites of tumor proliferation. Expression patterns were distinct with some overlap. Differentiated malignant and atypical chondrocytes demonstrated variable expression levels of Jagged1, and weak to absent staining for Notch1, 4 and Delta1. Protein immunolocalization was largely membranous and cytoplasmic, sometimes outlining the lacunae of malignant chondrocytes. Hyaline cartilage demonstrated a diffuse or granular precipitation of Jagged1 suggesting presence of soluble Jagged1 activity at sites of abnormal chondrogenesis. No immunoreactivity for the other Notch members was observed. Calcified cartilage was consistently Notch-negative indicating down-regulation of Notch with cartilage maturation. Stromal components namely endothelial cells and fibroblasts variably expressed Notch1, 3 and Jagged1 but were mildly or non-reactive for the other members. Conclusions Results indicate that Notch signaling pathway may participate in cellular differentiation and proliferation in chondrosarcoma. Findings implicate Notch3 and Jagged1 as key molecules that influence the differentiation and maturation of cells of chondrogenic lineage.

  2. An Evolutionary-Conserved Function of Mammalian Notch Family Members as Cell Adhesion Molecules

    Science.gov (United States)

    Murata, Akihiko; Yoshino, Miya; Hikosaka, Mari; Okuyama, Kazuki; Zhou, Lan; Sakano, Seiji; Yagita, Hideo; Hayashi, Shin-Ichi

    2014-01-01

    Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion. PMID:25255288

  3. Downregulation of transferrin receptor surface expression by intracellular antibody

    International Nuclear Information System (INIS)

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin

    2007-01-01

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 ± 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors

  4. Interaction of lectins with membrane receptors on erythrocyte surfaces.

    Science.gov (United States)

    Sung, L A; Kabat, E A; Chien, S

    1985-08-01

    The interactions of human genotype AO erythrocytes (red blood cells) (RBCs) with N-acetylgalactosamine-reactive lectins isolated from Helix pomatia (HPA) and from Dolichos biflorus (DBA) were studied. Binding curves obtained with the use of tritium-labeled lectins showed that the maximal numbers of lectin molecules capable of binding to human genotype AO RBCs were 3.8 X 10(5) and 2.7 X 10(5) molecules/RBC for HPA and DBA, respectively. The binding of one type of lectin may influence the binding of another type. HPA was found to inhibit the binding of DBA, but not vice versa. The binding of HPA was weakly inhibited by a beta-D-galactose-reactive lectin isolated from Ricinus communis (designated RCA1). Limulus polyphemus lectin (LPA), with specificity for N-acetylneuraminic acid, did not influence the binding of HPA but enhanced the binding of DBA. About 80% of LPA receptors (N-acetylneuraminic acid) were removed from RBC surfaces by neuraminidase treatment. Neuraminidase treatment of RBCs resulted in increases of binding of both HPA and DBA, but through different mechanisms. An equal number (7.6 X 10(5) of new HPA sites were generated on genotypes AO and OO RBCs by neuraminidase treatment, and these new sites accounted for the enhancement (AO cells) and appearance (OO cells) of hemagglutinability by HPA. Neuraminidase treatment did not generate new DBA sites, but increased the DBA affinity for the existing receptors; as a result, genotype AO cells increased their hemagglutinability by DBA, while OO cells remained unagglutinable. The use of RBCs of different genotypes in binding assays with 3H-labeled lectins of known specificities provides an experimental system for studying cell-cell recognition and association.

  5. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma

    Science.gov (United States)

    Baglioni, Michele; Fornari, Francesca; Giannone, Ferdinando; Ravaioli, Matteo; Cescon, Matteo; Chieco, Pasquale; Bolondi, Luigi; Gramantieri, Laura

    2014-01-01

    To successfully target Notch receptors as part of a multidrug anticancer strategy, it will be essential to fully characterize the factors that are modulated by Notch signaling. We recently reported that Notch3 silencing in HCC results in p53 up-regulation in vitro and, therefore, we focused on the mechanisms that associate Notch3 to p53 protein expression. We explored the regulation of p53 by Notch3 signalling in three HCC cell lines HepG2, SNU398 and Hep3B.We found that Notch3 regulates p53 at post-transcriptional level controlling both Cyclin G1 expression and the feed-forward circuit involving p53, miR-221 and MDM2. Moreover, our results were validated in human HCCs and in a rat model of HCC treated with Notch3 siRNAs. Our findings are becoming an exciting area for further in-depth research toward targeted inactivation of Notch3 receptor as a novel therapeutic approach for increasing the drug-sensitivity, and thereby improving the treatment outcome of patients affected by HCC. Indeed, we proved that Notch3 silencing strongly increases the effects of Nutilin-3. With regard to therapeutic implications, Notch3-specific drugs could represent a valuable strategy to limit Notch signaling in the context of hepatocellular carcinoma over-expressing this receptor. PMID:25431954

  6. Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance.

    Science.gov (United States)

    Semerci, Fatih; Choi, William Tin-Shing; Bajic, Aleksandar; Thakkar, Aarohi; Encinas, Juan Manuel; Depreux, Frederic; Segil, Neil; Groves, Andrew K; Maletic-Savatic, Mirjana

    2017-07-12

    Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe ( Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the 'mother' cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.

  7. Notch signaling mediates granulocyte-macrophage colony-stimulating factor priming-induced transendothelial migration of human eosinophils.

    Science.gov (United States)

    Liu, L Y; Wang, H; Xenakis, J J; Spencer, L A

    2015-07-01

    Priming with cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances eosinophil migration and exacerbates the excessive accumulation of eosinophils within the bronchial mucosa of asthmatics. However, mechanisms that drive GM-CSF priming are incompletely understood. Notch signaling is an evolutionarily conserved pathway that regulates cellular processes, including migration, by integrating exogenous and cell-intrinsic cues. This study investigates the hypothesis that the priming-induced enhanced migration of human eosinophils requires the Notch signaling pathway. Using pan Notch inhibitors and newly developed human antibodies that specifically neutralize Notch receptor 1 activation, we investigated a role for Notch signaling in GM-CSF-primed transmigration of human blood eosinophils in vitro and in the airway accumulation of mouse eosinophils in vivo. Notch receptor 1 was constitutively active in freshly isolated human blood eosinophils, and inhibition of Notch signaling or specific blockade of Notch receptor 1 activation during GM-CSF priming impaired priming-enhanced eosinophil transendothelial migration in vitro. Inclusion of Notch signaling inhibitors during priming was associated with diminished ERK phosphorylation, and ERK-MAPK activation was required for GM-CSF priming-induced transmigration. In vivo in mice, eosinophil accumulation within allergic airways was impaired following systemic treatment with Notch inhibitor, or adoptive transfer of eosinophils treated ex vivo with Notch inhibitor. These data identify Notch signaling as an intrinsic pathway central to GM-CSF priming-induced eosinophil tissue migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Plant cell surface receptor-mediated signaling - a common theme amid diversity.

    Science.gov (United States)

    He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong

    2018-01-29

    Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.

  9. Redundant Notch1 and Notch2 signaling is necessary for IFNγ secretion by T helper 1 cells during infection with Leishmania major.

    Directory of Open Access Journals (Sweden)

    Floriane Auderset

    Full Text Available The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4(+ T helper (Th 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4(+ T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1 and Notch2 (N2 are expressed on activated CD4(+ T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2(ΔCD4Cre were infected with the protozoan parasite Leishmania major. N1N2(ΔCD4Cre mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4(+ T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4(+ T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection.

  10. Gonadal cell surface receptor for plasma retinol-binding protein

    International Nuclear Information System (INIS)

    Krishna Bhat, M.; Cama, H.R.

    1979-01-01

    A specific membrane receptor for plasma retinol-binding protein has been demonstrated in testicular cells. Prealbumin-2 did not show any specific binding to the membrane. The affinity of retinol-binding protein for receptor drastically decreases upon delivery of retinol and the retinol-binding protein does not enter the cell. The mechanism of delivery of retinol to the target cell by plasma retinol-binding protein has been investigated. The process involves two steps; direct binding of retinol-binding protein to the receptor and uptake of retinol by the target cell with a concomitant drastic reduction in the affinity of the retinol-binding protein to the receptor. Probably the second step of the process needs a cytosolic factor, possibly the cellular retinol-binding protein or an enzyme. The binding of retinol-binding protein to the receptor is saturable and reversible. The interaction shows a Ksub(d) value of 2.1x10 -10 . The specific binding of a retinol-binding protein with great affinity has been employed in the development of a method for radioassay of the receptor. The receptor level of the gonadal cell has been found to vary with the stage of differentiation. The receptor concentrations in 11-week-old birds and adult birds are comparable. Testosterone treatment of 11-week-old birds produced a substantial increase in the receptor concentration over control, while the protein content increased marginally, indicating that, probably, synthesis of the receptor is specifcally induced by testosterone during spermatogenesis, and the concentration of receptor is relatively higher before the formation of the acrosome. (Auth.)

  11. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states.

    Science.gov (United States)

    LeBon, Lauren; Lee, Tom V; Sprinzak, David; Jafar-Nejad, Hamed; Elowitz, Michael B

    2014-09-25

    The Notch signaling pathway consists of multiple types of receptors and ligands, whose interactions can be tuned by Fringe glycosyltransferases. A major challenge is to determine how these components control the specificity and directionality of Notch signaling in developmental contexts. Here, we analyzed same-cell (cis) Notch-ligand interactions for Notch1, Dll1, and Jag1, and their dependence on Fringe protein expression in mammalian cells. We found that Dll1 and Jag1 can cis-inhibit Notch1, and Fringe proteins modulate these interactions in a way that parallels their effects on trans interactions. Fringe similarly modulated Notch-ligand cis interactions during Drosophila development. Based on these and previously identified interactions, we show how the design of the Notch signaling pathway leads to a restricted repertoire of signaling states that promote heterotypic signaling between distinct cell types, providing insight into the design principles of the Notch signaling system, and the specific developmental process of Drosophila dorsal-ventral boundary formation.

  12. Identification of a Paralog-Specific Notch1 Intracellular Domain Degron

    OpenAIRE

    Broadus, Matthew R.; Chen, Tony W.; Neitzel, Leif R.; Ng, Victoria H.; Jodoin, Jeanne; Lee, Laura A.; Salic, Adrian; Robbins, David J.; Capobianco, Anthony J.; Patton, James G.; Huppert, Stacey S.; Lee, Ethan

    2016-01-01

    Upon Notch pathway activation, the receptor is cleaved to release the Notch intracellular domain (NICD), which translocates to the nucleus to activate gene transcription. Using Xenopus egg extracts, we have identified a Notch1-specific destruction signal (N1-Box). We show that mutations in the N1-Box inhibit NICD1 degradation and that the N1-Box is transferable for the promotion of degradation of heterologous proteins in Xenopus egg extracts and in cultured human cells. Mutation of the N1-Box...

  13. Cell surface receptors for signal transduction and ligand transport: a design principles study.

    Directory of Open Access Journals (Sweden)

    Harish Shankaran

    2007-06-01

    Full Text Available Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor-ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.

  14. Notch effects in uniaxial tension specimens

    International Nuclear Information System (INIS)

    Delph, T.J.

    1979-03-01

    Results of a literature survey on the effect of notches on the time-dependent failure of uniaxial tension specimens at elevated temperatures are presented. Particular attention is paid to the failure of notched specimens containing weldments

  15. Notch root strain measurement of WE43-T6 magnesium alloy using electronic speckle pattern interferometry

    International Nuclear Information System (INIS)

    Liew, H.L.; Ahmad, A.; Ramesh, S.; Purbolaksono, J.

    2013-01-01

    Highlights: • The use of ESPI for measuring total strains at the notch root of specimens. • Fine meshing in micron scale at the notch root regions. • The maximum elastic strain is shifted to be further away from the notch root tip. - Abstract: The notch root elasto-plastic strains of circumferentially grooved round specimen of cast magnesium WE43-T6 were experimentally measured using the electronic speckle pattern interferometry (ESPI) and numerically evaluated using the finite element analysis (FEA). The specimens have notch radii of 1.6 mm and 0.8 mm and an opening angle of 60°. The technique of ESPI showed its accuracy in measuring three-dimensional surface deformations on large negatively curved manifolds. The measured nominal stress for rupture is well beyond the ultimate strength, suggesting the existence of significant biaxial stress at the notch root region. The ESPI-based strains on the notch tips were shown to be in agreement with those evaluated by the FEA. The FEA also showed that the maximum elastic strain is shifted away from the notch root surface as the plastic strain is predominant

  16. Notch Signaling: Piercing a Harness of Simplicity

    NARCIS (Netherlands)

    Helbig, Christina; Amsen, Derk

    2015-01-01

    The Notch pathway is an attractive therapeutic target for treatment of cancer and T cell-mediated pathology, but Notch inhibition leads to many side effects. Pinnell et al. (2015) demonstrate that oncogenic functions can be separated biochemically from other functions of Notch, opening new options

  17. Notch filters for port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; van der Schaft, A.J.; Steinbuch, M.

    2012-01-01

    In this paper a standard notch filter is modeled in the port-Hamiltonian framework. By having such a port-Hamiltonian description it is proven that the notch filter is a passive system. The notch filter can then be interconnected with another (nonlinear) port-Hamiltonian system, while preserving the

  18. DOL behaviour of end-notched beams

    DEFF Research Database (Denmark)

    Gustafsson, P.J.; Hoffmeyer, Preben; Valentin, G.

    1998-01-01

    The long-term loading strength of end-notched beams made of glulam and LVL was tested. The beams were of various sizes, with and without a moisture sealing at the notch. Tests were conducted in open shelter climates, and at constant and cyclic relative humidity. The short-term strength was tested...... beams with a moisture sealing at the notch...

  19. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    Science.gov (United States)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  20. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...

  1. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, Gabriel; Coufal, Monique [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Li, Huang [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Ramirez, Jonathan [Digestive Disease Research Center, Scott and White Hospital, Temple, TX (United States); DeMorrow, Sharon, E-mail: demorrow@medicine.tamhsc.edu [Department of Internal Medicine, Texas A and M Health Science Center College of Medicine, Temple, TX (United States); Digestive Disease Research Center, Scott and White Hospital, Temple, TX (United States)

    2010-05-15

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the {gamma}-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-{gamma}-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the {gamma}-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

  2. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo.

    Directory of Open Access Journals (Sweden)

    Kristina Preuße

    2015-06-01

    Full Text Available Notch signalling is a fundamental pathway that shapes the developing embryo and sustains adult tissues by direct communication between ligand and receptor molecules on adjacent cells. Among the ligands are two Delta paralogues, DLL1 and DLL4, that are conserved in mammals and share a similar structure and sequence. They activate the Notch receptor partly in overlapping expression domains where they fulfil redundant functions in some processes (e.g. maintenance of the crypt cell progenitor pool. In other processes, however, they appear to act differently (e.g. maintenance of foetal arterial identity raising the questions of how similar DLL1 and DLL4 really are and which mechanism causes the apparent context-dependent divergence. By analysing mice that conditionally overexpress DLL1 or DLL4 from the same genomic locus (Hprt and mice that express DLL4 instead of DLL1 from the endogenous Dll1 locus (Dll1Dll4ki, we found functional differences that are tissue-specific: while DLL1 and DLL4 act redundantly during the maintenance of retinal progenitors, their function varies in the presomitic mesoderm (PSM where somites form in a Notch-dependent process. In the anterior PSM, every cell expresses both Notch receptors and ligands, and DLL1 is the only activator of Notch while DLL4 is not endogenously expressed. Transgenic DLL4 cannot replace DLL1 during somitogenesis and in heterozygous Dll1Dll4ki/+ mice, the Dll1Dll4ki allele causes a dominant segmentation phenotype. Testing several aspects of the complex Notch signalling system in vitro, we found that both ligands have a similar trans-activation potential but that only DLL4 is an efficient cis-inhibitor of Notch signalling, causing a reduced net activation of Notch. These differential cis-inhibitory properties are likely to contribute to the functional divergence of DLL1 and DLL4.

  3. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    International Nuclear Information System (INIS)

    Frampton, Gabriel; Coufal, Monique; Li, Huang; Ramirez, Jonathan; DeMorrow, Sharon

    2010-01-01

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the γ-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-γ-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the γ-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

  4. Vía de señalización Notch y nuevas estrategias para el tratamiento de cáncer Notch signaling pathway and new strategies in cancer treatment

    Directory of Open Access Journals (Sweden)

    Leticia Santos

    2006-04-01

    Full Text Available La vía de señalización Notch desempeña un papel fundamental en las diferentes etapas del desarrollo celular como la proliferación, crecimiento, diferenciación y apoptosis. Estudios recientes han demostrado que, dependiendo del nivel de expresión y del contexto celular, los receptores de membrana Notch contribuyen en la resistencia a apoptosis en células tumorales. Estos descubrimientos sugieren que componentes de la vía de señalización Notch son un blanco potencial para el desarrollo de terapias más efectivas contra el cáncer. Esta revisión describe la función de la vía Notch y nuevas estrategias utilizadas en la modulación de su señal.The Notch signaling pathway plays a crucial role at different stages of cell development, such as proliferation, growth, differentiation, and apoptosis. Recent studies demonstrate that depending on the expression level and cellular context, the Notch receptors play a role in apoptosis resistance in malignant cells. These findings suggest that Notch signaling components may be a potential target in the development of new cancer therapies. This review describes the function of the Notch pathway and new strategies in the modulation of its signal.

  5. Thermally induced high frequency random amplitude fatigue damage at sharp notches

    International Nuclear Information System (INIS)

    Lewis, M.W.J.

    1992-01-01

    Experiments have been performed using the SUPERSOMITE facility to investigate the initiation and growth of fatigue cracks at the tips of sharp surface notches subjected to random thermally-induced stress. The experimental situation is complex involving plasticity, random amplitude loading and heat transfer medium/surface coupling. Crack initiation and growth prediction have been considered using the Creager and Neuber methods to compute the strain ranges in the vicinity of the notch root. Good agreement has been obtained between the experimental results and theoretical predictions. The paper reports the results of the analysis of the notch behavior

  6. Effectoromics-based identification of cell surface receptors in potato

    NARCIS (Netherlands)

    Domazakis, Emmanouil; Lin, Xiao; Aguilera-Galvez, Carolina; Wouters, Doret; Bijsterbosch, Gerard; Wolters, Pieter J.; Vleeshouwers, Vivianne G.A.A.

    2017-01-01

    In modern resistance breeding, effectors have emerged as tools for accelerating and improving the identification of immune receptors. Effector-assisted breeding was pioneered for identifying resistance genes (R genes) against Phytophthora infestans in potato (Solanum tuberosum). Here we show that

  7. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N

    1997-01-01

    by a prior incubation of the cells with uPA inactivated by diisopropyl fluorophosphate, demonstrating a requirement for specific receptor binding of the active uPA to obtain the high-efficiency cleavage of cell-bound uPAR. Furthermore, amino-terminal sequence analysis revealed that uPAR(2+3), purified from U...

  8. Tracking Cell Surface GABAB Receptors Using an α-Bungarotoxin Tag*

    Science.gov (United States)

    Wilkins, Megan E.; Li, Xinyan; Smart, Trevor G.

    2008-01-01

    GABAB receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABAB receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABAB receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, α-bungarotoxin. By using the α-bungarotoxin binding site-tagged GABAB R1a subunit (R1aBBS), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, α-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABAB receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors. PMID:18812318

  9. Tracking cell surface GABAB receptors using an alpha-bungarotoxin tag.

    Science.gov (United States)

    Wilkins, Megan E; Li, Xinyan; Smart, Trevor G

    2008-12-12

    GABA(B) receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABA(B) receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABA(B) receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, alpha-bungarotoxin. By using the alpha-bungarotoxin binding site-tagged GABA(B) R1a subunit (R1a(BBS)), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, alpha-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABA(B) receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors.

  10. Human papillomavirus 16E6 and NFX1-123 potentiate notch signaling and differentiation without activating cellular arrest

    Energy Technology Data Exchange (ETDEWEB)

    Vliet-Gregg, Portia A.; Hamilton, Jennifer R. [Center for Global Infectious Disease Research, Seattle Children' s Research Institute, 1900 Ninth Ave., Seattle, WA 98101 (United States); Katzenellenbogen, Rachel A., E-mail: rkatzen@uw.edu [Center for Global Infectious Disease Research, Seattle Children' s Research Institute, 1900 Ninth Ave., Seattle, WA 98101 (United States); Department of Pediatrics, Division of Adolescent Medicine, University of Washington, Seattle WA (United States)

    2015-04-15

    High-risk human papillomavirus (HR HPV) oncoproteins bind host cell proteins to dysregulate and uncouple apoptosis, senescence, differentiation, and growth. These pathways are important for both the viral life cycle and cancer development. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and they collaboratively increase the growth and differentiation master regulator, Notch1. In 16E6 expressing keratinocytes (16E6 HFKs), the Notch canonical pathway genes Hes1 and Hes5 were increased with overexpression of NFX1-123, and their expression was directly linked to the activation or blockade of the Notch1 receptor. Keratinocyte differentiation genes Keratin 1 and Keratin 10 were also increased, but in contrast their upregulation was only indirectly associated with Notch1 receptor stimulation and was fully unlinked to growth arrest, increased p21{sup Waf1/CIP1}, or decreased proliferative factor Ki67. This leads to a model of 16E6, NFX1-123, and Notch1 differently regulating canonical and differentiation pathways and entirely uncoupling cellular arrest from increased differentiation. - Highlights: • 16E6 and NFX1-123 increased the Notch canonical pathway through Notch1. • 16E6 and NFX1-123 increased the differentiation pathway indirectly through Notch1. • 16E6 and NFX1-123 increased differentiation gene expression without growth arrest. • Increased NFX1-123 with 16E6 may create an ideal cellular phenotype for HPV.

  11. Fringe Controls Naïve CD4+T Cells Differentiation through Modulating Notch Signaling in Asthmatic Rat Models

    Science.gov (United States)

    Gu, Wen; Xu, Weiguo; Ding, Tao; Guo, Xuejun

    2012-01-01

    The ability of Notch signaling to regulate T helper cell development and differentiation has been widely accepted. Fringe, O-fucose-β1,3-N-acetylglucosaminyltransferases modulate Notch receptor expression and promote the Notch signaling pathway through receptor-ligand binding. In this study, we assayed the expression levels of three Fringe homologs in naive CD4+T cells in asthmatic rats. We found that Radical Fringe (Rfng) was highly expressed, whereas both Lunatic Fringe (Lfng) and Manic Fringe (Mfng) were expressed at low levels. Down-regulation of Rfng using siRNA, and overexpression of Lfng or Mfng enhanced Th1 subset lineages and diminished Th2 subset lineages. Notch signaling was more activated in asthmatic naïve CD4+T cells than in control cells, and Lfng, but not Mfng or Rfng, partly inhibited Notch signaling in asthmatic naïve CD4+T lymphocytes. Lfng overexpression resulted in significantly decreased Th2 cytokine production in asthma, which was the same effect as the GSI (γ-secretase inhibitor) treatment alone, but had an increased effect on Th1 cytokines than GSI treatment. Collectively, these data identify the essential role of Fringe modulating naïve CD4+T cells differentiation through Notch signaling. Lfng regulated Th2 cells differentiation via a Notch-dependent manner and Th1 cells differentiation via a Notch-independent manner. Fringe could be a therapeutic strategy for the management and prevention of allergic asthma. PMID:23071776

  12. Fringe controls naïve CD4(+)T cells differentiation through modulating notch signaling in asthmatic rat models.

    Science.gov (United States)

    Gu, Wen; Xu, Weiguo; Ding, Tao; Guo, Xuejun

    2012-01-01

    The ability of Notch signaling to regulate T helper cell development and differentiation has been widely accepted. Fringe, O-fucose-β1,3-N-acetylglucosaminyltransferases modulate Notch receptor expression and promote the Notch signaling pathway through receptor-ligand binding. In this study, we assayed the expression levels of three Fringe homologs in naive CD4(+)T cells in asthmatic rats. We found that Radical Fringe (Rfng) was highly expressed, whereas both Lunatic Fringe (Lfng) and Manic Fringe (Mfng) were expressed at low levels. Down-regulation of Rfng using siRNA, and overexpression of Lfng or Mfng enhanced Th1 subset lineages and diminished Th2 subset lineages. Notch signaling was more activated in asthmatic naïve CD4(+)T cells than in control cells, and Lfng, but not Mfng or Rfng, partly inhibited Notch signaling in asthmatic naïve CD4(+)T lymphocytes. Lfng overexpression resulted in significantly decreased Th2 cytokine production in asthma, which was the same effect as the GSI (γ-secretase inhibitor) treatment alone, but had an increased effect on Th1 cytokines than GSI treatment. Collectively, these data identify the essential role of Fringe modulating naïve CD4(+)T cells differentiation through Notch signaling. Lfng regulated Th2 cells differentiation via a Notch-dependent manner and Th1 cells differentiation via a Notch-independent manner. Fringe could be a therapeutic strategy for the management and prevention of allergic asthma.

  13. Identification of a Paralog-Specific Notch1 Intracellular Domain Degron

    Directory of Open Access Journals (Sweden)

    Matthew R. Broadus

    2016-05-01

    Full Text Available Upon Notch pathway activation, the receptor is cleaved to release the Notch intracellular domain (NICD, which translocates to the nucleus to activate gene transcription. Using Xenopus egg extracts, we have identified a Notch1-specific destruction signal (N1-Box. We show that mutations in the N1-Box inhibit NICD1 degradation and that the N1-Box is transferable for the promotion of degradation of heterologous proteins in Xenopus egg extracts and in cultured human cells. Mutation of the N1-Box enhances Notch1 activity in cultured human cells and zebrafish embryos. Human cancer mutations within the N1-Box enhance Notch1 signaling in transgenic zebrafish, highlighting the physiological relevance of this destruction signal. We find that binding of the Notch nuclear factor, CSL, to the N1-Box blocks NICD1 turnover. Our studies reveal a mechanism by which degradation of NICD1 is regulated by the N1-Box to minimize stochastic flux and to establish a threshold for Notch1 pathway activation.

  14. Notch Signaling Pathway Is Activated in Motoneurons of Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Gabriel Olmos

    2013-05-01

    Full Text Available Spinal muscular atrophy (SMA is a neurodegenerative disease produced by low levels of Survival Motor Neuron (SMN protein that affects alpha motoneurons in the spinal cord. Notch signaling is a cell-cell communication system well known as a master regulator of neural development, but also with important roles in the adult central nervous system. Aberrant Notch function is associated with several developmental neurological disorders; however, the potential implication of the Notch pathway in SMA pathogenesis has not been studied yet. We report here that SMN deficiency, induced in the astroglioma cell line U87MG after lentiviral transduction with a shSMN construct, was associated with an increase in the expression of the main components of Notch signaling pathway, namely its ligands, Jagged1 and Delta1, the Notch receptor and its active intracellular form (NICD. In the SMNΔ7 mouse model of SMA we also found increased astrocyte processes positive for Jagged1 and Delta1 in intimate contact with lumbar spinal cord motoneurons. In these motoneurons an increased Notch signaling was found, as denoted by increased NICD levels and reduced expression of the proneural gene neurogenin 3, whose transcription is negatively regulated by Notch. Together, these findings may be relevant to understand some pathologic attributes of SMA motoneurons.

  15. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway.

    Science.gov (United States)

    Larrivée, Bruno; Prahst, Claudia; Gordon, Emma; del Toro, Raquel; Mathivet, Thomas; Duarte, Antonio; Simons, Michael; Eichmann, Anne

    2012-03-13

    Activin receptor-like kinase 1 (ALK1) is an endothelial-specific member of the TGF-β/BMP receptor family that is inactivated in patients with hereditary hemorrhagic telangiectasia (HHT). How ALK1 signaling regulates angiogenesis remains incompletely understood. Here we show that ALK1 inhibits angiogenesis by cooperating with the Notch pathway. Blocking Alk1 signaling during postnatal development in mice leads to retinal hypervascularization and the appearance of arteriovenous malformations (AVMs). Combined blockade of Alk1 and Notch signaling further exacerbates hypervascularization, whereas activation of Alk1 by its high-affinity ligand BMP9 rescues hypersprouting induced by Notch inhibition. Mechanistically, ALK1-dependent SMAD signaling synergizes with activated Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2, thereby repressing VEGF signaling, tip cell formation, and endothelial sprouting. Taken together, these results uncover a direct link between ALK1 and Notch signaling during vascular morphogenesis that may be relevant to the pathogenesis of HHT vascular lesions. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Targeting Homologous Recombination in Notch-Driven C. elegans Stem Cell and Human Tumors.

    Directory of Open Access Journals (Sweden)

    Xinzhu Deng

    Full Text Available Mammalian NOTCH1-4 receptors are all associated with human malignancy, although exact roles remain enigmatic. Here we employ glp-1(ar202, a temperature-sensitive gain-of-function C. elegans NOTCH mutant, to delineate NOTCH-driven tumor responses to radiotherapy. At ≤20°C, glp-1(ar202 is wild-type, whereas at 25°C it forms a germline stem cell⁄progenitor cell tumor reminiscent of human cancer. We identify a NOTCH tumor phenotype in which all tumor cells traffic rapidly to G2⁄M post-irradiation, attempt to repair DNA strand breaks exclusively via homology-driven repair, and when this fails die by mitotic death. Homology-driven repair inactivation is dramatically radiosensitizing. We show that these concepts translate directly to human cancer models.

  17. Second generation γ-secretase modulators exhibit different modulation of Notch β and Aβ production.

    Science.gov (United States)

    Wanngren, Johanna; Ottervald, Jan; Parpal, Santiago; Portelius, Erik; Strömberg, Kia; Borgegård, Tomas; Klintenberg, Rebecka; Juréus, Anders; Blomqvist, Jenny; Blennow, Kaj; Zetterberg, Henrik; Lundkvist, Johan; Rosqvist, Susanne; Karlström, Helena

    2012-09-21

    The γ-secretase complex is an appealing drug target when the therapeutic strategy is to alter amyloid-β peptide (Aβ) aggregation in Alzheimer disease. γ-Secretase is directly involved in Aβ formation and determines the pathogenic potential of Aβ by generating the aggregation-prone Aβ42 peptide. Because γ-secretase mediates cleavage of many substrates involved in cell signaling, such as the Notch receptor, it is crucial to sustain these pathways while altering the Aβ secretion. A way of avoiding interference with the physiological function of γ-secretase is to use γ-secretase modulators (GSMs) instead of inhibitors of the enzyme. GSMs modify the Aβ formation from producing the amyloid-prone Aβ42 variant to shorter and less amyloidogenic Aβ species. The modes of action of GSMs are not fully understood, and even though the pharmacology of GSMs has been thoroughly studied regarding Aβ generation, knowledge is lacking about their effects on other substrates, such as Notch. Here, using immunoprecipitation followed by MALDI-TOF MS analysis, we found that two novel, second generation GSMs modulate both Notch β and Aβ production. Moreover, by correlating S3-specific Val-1744 cleavage of Notch intracellular domain (Notch intracellular domain) to total Notch intracellular domain levels using immunocytochemistry, we also demonstrated that Notch intracellular domain is not modulated by the compounds. Interestingly, two well characterized, nonsteroidal anti-inflammatory drugs (nonsteroidal anti-inflammatory drug), R-flurbiprofen and sulindac sulfide, affect only Aβ and not Notch β formation, indicating that second generation GSMs and nonsteroidal anti-inflammatory drug-based GSMs have different modes of action regarding Notch processing.

  18. Immunohistochemical expression of Notch signaling in the lining epithelium of periapical cysts.

    Science.gov (United States)

    Meliou, Eleni; Kerezoudis, Nikolaos; Tosios, Konstantinos; Lafkas, Daniel; Kiaris, Hippokratis

    2011-02-01

    In this study we evaluated the immunohistochemical expression of the receptors Notch 1 and Notch 2, the ligand Delta 1, and the transcription factors HES 1 and HES 5 in the epithelium of well-defined periapical cysts. Immunohistochemistry was carried out on 55 formalin-fixed and paraffin-embedded, well-defined periapical cysts with minimum inflammation, obtained from the archival tissue database of the Department of Oral Pathology and Surgery. Western blotting was performed to evaluate the specificity of the anti-Notch antibody and the expression of Notch signaling in 5 fresh-frozen periapical cysts. The levels of staining intensity were estimated by the performance of a semiautomated image analysis system. Descriptive statistic of mean values obtained by computerized image analysis method was performed. Immunostaining reaction of all Notch signaling components was observed in the cytoplasm and/or the cytoplasmic membrane in the majority of epithelial cells of periapical cysts. Nuclear staining was observed occasionally in all cases. Notch 2 showed strong staining in 52.83% of the cases, followed by Notch 1 (35.85%), HES 1 and HES 5 moderate staining in 72.73% and 57.69% of the cases, respectively, and Delta 1 weak staining in 58.33% of the cases. No statistical correlation was found between the antibodies and the sex or the age of the study group. Notch is an evolutionarily conserved signaling mechanism that regulates cell fate decisions during development and postnatal life in organisms as diverse as worms, flies, and humans. The present observations indicate that Notch pathway is active downstream in the lining epithelium of periapical cysts, suggesting an involvement of this pathway in periapical cyst growth and expansion. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Inhibition of Notch signaling alters the phenotype of orthotopic tumors formed from glioblastoma multiforme neurosphere cells but does not hamper intracranial tumor growth regardless of endogene Notch pathway signature

    DEFF Research Database (Denmark)

    Kristoffersen, Karina; Nedergaard, Mette Kjølhede; Villingshøj, Mette

    2014-01-01

    BACKGROUND: Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in the devastating brain tumor glioblastoma multiforme (GBM). bCSC are proposed a central role in tumor initiation, progression, treatment resistance and relapse and as such present...... a promising target in GBM research. The Notch signaling pathway is often deregulated in GBM and we have previously characterized GBM-derived bCSC cultures based on their expression of the Notch-1 receptor and found that it could be used as predictive marker for the effect of Notch inhibition. The aim...... of the present project was therefore to further elucidate the significance of Notch pathway activity for the tumorigenic properties of GBM-derived bCSC. METHODS: Human-derived GBM xenograft cells previously established as NSC-like neurosphere cultures were used. Notch inhibition was accomplished by exposing...

  20. Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.

    Science.gov (United States)

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David

    2017-03-13

    During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. O-Fucose Monosaccharide of Drosophila Notch Has a Temperature-sensitive Function and Cooperates with O-Glucose Glycan in Notch Transport and Notch Signaling Activation*

    Science.gov (United States)

    Ishio, Akira; Sasamura, Takeshi; Ayukawa, Tomonori; Kuroda, Junpei; Ishikawa, Hiroyuki O.; Aoyama, Naoki; Matsumoto, Kenjiroo; Gushiken, Takuma; Okajima, Tetsuya; Yamakawa, Tomoko; Matsuno, Kenji

    2015-01-01

    Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1R245A knock-in), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1R245A knock-in and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein's functions. PMID:25378397

  2. Trastuzumab Resistance: Role for Notch Signaling

    Directory of Open Access Journals (Sweden)

    Kinnari Mehta

    2009-01-01

    Full Text Available Epidermal growth factor receptor-2 (ErbB-2/HER2 is a potent breast oncogene that has been shown to be amplified in 20% of breast cancers. Overexpression of ErbB-2 predicts for aggressive tumor behavior, resistance to some cytotoxic and antihormonal therapies, and poor overall survival. Trastuzumab, the humanized, monoclonal antibody directed against ErbB-2 has shown tremendous efficacy and improved overall survival for women when combined with a taxane-based chemotherapy. However, resistance to trastuzumab remains a major concern, most notably in women with metastatic breast cancer. Numerous mechanisms that include overexpression of alternate receptor tyrosine kinases and/or loss of critical tumor suppressors have been proposed in the last several years to elucidate trastuzumab resistance. Here we review the many possible mechanisms of action that could contribute to resistance, and novel therapies to prevent or reverse the resistant phenotype. Moreover, we provide a critical role for Notch signaling cross-talk with overlapping or new signaling networks in trastuzumab-resistant breast.

  3. Potential involvement of Notch1 signalling in the pathogenesis of primary cutaneous CD30-positive lymphoproliferative disorders

    DEFF Research Database (Denmark)

    Kamstrup, M.R.; Ralfkiaer, E.; Skovgaard, G.L.

    2008-01-01

    Background The central role of Notch signalling in T-cell development and oncogenesis raises the question of the importance of this pathway in cutaneous T-cell lymphomas. Objectives To investigate the pattern of expression of Notch and its ligands, Jagged and Delta, in skin samples of primary...... obtained from three patients with LyP and two patients with primary cutaneous ALCL. Results We identified single Notch1-positive cells or small clusters of atypical cells in LyP. Similarly, strongly positive Jagged1 cells tended to be localized in clusters. Primary cutaneous ALCL had higher expression...... of Notch1 and Jagged1 compared with LyP. Cells expressing Notch1 and Jagged1 were colocalized and a subset of cells expressed both the receptor and the ligand. The expression of the ligand Delta1 was low to undetectable in both types of lymphoproliferations. A subpopulation of lymphoma cells was found...

  4. Effects of Notch Introduction on 3-Point Bending Cutting Characteristics of Frozen Fish

    OpenAIRE

    Hagura, Yoshio; Suzuki, Kanichi

    2002-01-01

    We have proposed a freeze cutting method in which a three point bending load is applied on a frozen fish body to cut in round slices. Lowering the three-point bending load can facilitate the freeze cutting processing. Based on the idea that a notch in the fish body may lower the cutting load, the effect of introducing a notch was examined with respect to cutting stress and smoothness of cut surface in model fish meat and in saury. It was found that the introduced notch effectively lowered the...

  5. The role of uric acid in the pathogenesis of diabetic retinopathy based on notch pathway.

    Science.gov (United States)

    Zhu, Dan-Dan; Wang, Yun-Zhi; Zou, Chen; She, Xin-Ping; Zheng, Zhi

    2018-06-19

    Uric acid has been proposed as an independent risk factor of diabetic retinopathy. Although Notch signaling was reported to be affected in the presence of high concentrations of uric acid or glucose, the underlying mechanisms of hyperuricemia through the Notch signaling pathway to promote the development of diabetic retinopathy remain unknown. We incubated human retinal endothelial cells (HRECs) with high glucose, high uric acid and high glucose plus high glucose respectively and evaluated the apoptosis rate in different treated cells by Tunel staining. We induced diabetic model by intraperitoneally streptozotocin. Then healthy rats and diabetic rats were given with adenine and oteracil potassium by gavage. Using automatic biochemical analyzer to detect blood glucose, uric acid, urea nitrogen, creatinine levels, to verify the success of modeling. The expression and mRNA levels of ICAM-1, IL-6, MCP-1, TNF-a, receptors Notch 1, ligands Dll 1, Dll 4, Jagged 1, Jagged 2 were detected by RT-PCR and Western-Blot. Notch1 siRNA was used to interfere Notch signaling pathway, the expression and mRNA levels of ICAM-1, IL-6, MCP-1 and TNF-α was detected by RT-PCR and Western blot respectively. In vitro models, the apoptosis of HRECs cells in high uric acid plus high glucose group was the most significant. In vitro and vivo models, detection of inflammatory cytokines revealed that the expression of inflammatory cytokines increased most significantly in high uric acid plus high glucose group. Notch signaling pathway activity was also increased most significantly in high uric acid plus high glucose group. After Notch 1 siRNA transfection in high glucose and high glucose plus uric acid group, the activity of Notch signaling pathway was successfully down-regulated. We found that the apoptosis of HRECs was significantly decreased in cells transfected with Notch 1 siRNA compared to the blank vector group, and the expression of inflammatory cytokines in cells was also significantly

  6. Assessment of correlation between knee notch width index and the three-dimensional notch volume

    NARCIS (Netherlands)

    van Eck, C.F.; Martins, C.A.Q.; Lorenz, S.G.F.; Fu, F.H.; Smolinski, P.

    2010-01-01

    This study was done to determine whether there is a correlation between the notch volume and the notch width index (NWI) as measured on the three most frequently used radiographic views: the Holmblad 45A degrees, Holmblad 70A degrees, and Rosenberg view. The notch volume of 20 cadaveric knees was

  7. Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure.

    Science.gov (United States)

    Aujla, Paven K; Bogdanovic, Vedran; Naratadam, George T; Raetzman, Lori T

    2015-08-01

    As the pituitary gland develops, signals from the hypothalamus are necessary for pituitary induction and expansion. Little is known about the control of cues that regulate early signaling between the two structures. Ligands and receptors of the Notch signaling pathway are found in both the hypothalamus and Rathke's pouch. The downstream Notch effector gene Hes1 is required for proper pituitary formation; however, these effects could be due to the action of Hes1 in the hypothalamus, Rathke's pouch, or both. To determine the contribution of hypothalamic Notch signaling to pituitary organogenesis, we used mice with loss and gain of Notch function within the developing hypothalamus. We demonstrate that loss of Notch signaling by conditional deletion of Rbpj in the hypothalamus does not affect expression of Hes1 within the posterior hypothalamus or expression of Hes5. In contrast, expression of activated Notch within the hypothalamus results in ectopic Hes5 expression and increased Hes1 expression, which is sufficient to disrupt pituitary development and postnatal expansion. Taken together, our results indicate that Rbpj-dependent Notch signaling within the developing hypothalamus is not necessary for pituitary development, but persistent Notch signaling and ectopic Hes5 expression in hypothalamic progenitors affects pituitary induction and expansion. © 2015 Wiley Periodicals, Inc.

  8. dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats

    International Nuclear Information System (INIS)

    Baladron, Victoriano; Ruiz-Hidalgo, Maria Jose; Nueda, Maria Luisa; Diaz-Guerra, Maria Jose M.; Garcia-Ramirez, Jose Javier; Bonvini, Ezio; Gubina, Elena; Laborda, Jorge

    2005-01-01

    The protein dlk, encoded by the Dlk1 gene, belongs to the Notch epidermal growth factor (EGF)-like family of receptors and ligands, which participate in cell fate decisions during development. The molecular mechanisms by which dlk regulates cell differentiation remain unknown. By using the yeast two-hybrid system, we found that dlk interacts with Notch1 in a specific manner. Moreover, by using luciferase as a reporter gene under the control of a CSL/RBP-Jk/CBF-1-dependent promoter in the dlk-negative, Notch1-positive Balb/c 14 cell line, we found that addition of synthetic dlk EGF-like peptides to the culture medium or forced expression of dlk decreases endogenous Notch activity. Furthermore, the expression of the gene Hes-1, a target for Notch1 activation, diminishes in confluent Balb/c14 cells transfected with an expression construct encoding for the extracellular EGF-like region of dlk. The expression of Dlk1 and Notch1 increases in 3T3-L1 cells maintained in a confluent state for several days, which is associated with a concomitant decrease in Hes-1 expression. On the other hand, the decrease of Dlk1 expression in 3T3-L1 cells by antisense cDNA transfection is associated with an increase in Hes-1 expression. These results suggest that dlk functionally interacts in vivo with Notch1, which may lead to the regulation of differentiation processes modulated by Notch1 activation and signaling, including adipogenesis

  9. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    International Nuclear Information System (INIS)

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-01-01

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism

  10. Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity

    Directory of Open Access Journals (Sweden)

    Bruno M. Simões

    2015-09-01

    Full Text Available Breast cancers (BCs typically express estrogen receptors (ERs but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers.

  11. Notch activation is dispensable for D, L-sulforaphane-mediated inhibition of human prostate cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Eun-Ryeong Hahm

    Full Text Available D, L-Sulforaphane (SFN, a synthetic racemic analog of broccoli constituent L-sulforaphane, is a highly promising cancer chemopreventive agent with in vivo efficacy against chemically-induced as well as oncogene-driven cancer in preclinical rodent models. Cancer chemopreventive effect of SFN is characterized by G(2/M phase cell cycle arrest, apoptosis induction, and inhibition of cell migration and invasion. Moreover, SFN inhibits multiple oncogenic signaling pathways often hyperactive in human cancers, including nuclear factor-κB, Akt, signal transducer and activator of transcription 3, and androgen receptor. The present study was designed to determine the role of Notch signaling, which is constitutively active in many human cancers, in anticancer effects of SFN using prostate cancer cells as a model. Exposure of human prostate cancer cells (PC-3, LNCaP, and/or LNCaP-C4-2B to SFN as well as its naturally-occurring thio-, sulfinyl-, and sulfonyl-analogs resulted in cleavage (activation of Notch1, Notch2, and Notch4, which was accompanied by a decrease in levels of full-length Notch forms especially at the 16- and 24-hour time points. The SFN-mediated cleavage of Notch isoforms was associated with its transcriptional activation as evidenced by RBP-Jk-, HES-1A/B- and HEY-1 luciferase reporter assays. Migration of PC-3 and LNCaP cells was decreased significantly by RNA interference of Notch1 and Notch2, but not Notch4. Furthermore, SFN-mediated inhibition of PC-3 and LNCaP cell migration was only marginally affected by knockdown of Notch1 and Notch2. Strikingly, SFN administration to Transgenic Adenocarcinoma of Mouse Prostate transgenic mice failed to increase levels of cleaved Notch1, cleaved Notch2, and HES-1 proteins in vivo in prostatic intraepithelial neoplasia, well-differentiated carcinoma or poorly-differentiated prostate cancer lesions. These results indicate that Notch activation is largely dispensable for SFN-mediated inhibition of cell

  12. Identifying plant cell-surface receptors: combining 'classical' techniques with novel methods.

    Science.gov (United States)

    Uebler, Susanne; Dresselhaus, Thomas

    2014-04-01

    Cell-cell communication during development and reproduction in plants depends largely on a few phytohormones and many diverse classes of polymorphic secreted peptides. The peptide ligands are bound at the cell surface of target cells by their membranous interaction partners representing, in most cases, either receptor-like kinases or ion channels. Although knowledge of both the extracellular ligand and its corresponding receptor(s) is necessary to describe the downstream signalling pathway(s), to date only a few ligand-receptor pairs have been identified. Several methods, such as affinity purification and yeast two-hybrid screens, have been used very successfully to elucidate interactions between soluble proteins, but most of these methods cannot be applied to membranous proteins. Experimental obstacles such as low concentration and poor solubility of membrane receptors, as well as instable transient interactions, often hamper the use of these 'classical' approaches. However, over the last few years, a lot of progress has been made to overcome these problems by combining classical techniques with new methodologies. In the present article, we review the most promising recent methods in identifying cell-surface receptor interactions, with an emphasis on success stories outside the field of plant research.

  13. Characterization of cell-surface receptors for monoclonal-nonspecific suppressor factor (MNSF)

    International Nuclear Information System (INIS)

    Nakamura, M.; Ogawa, H.; Tsunematsu, T.

    1990-01-01

    Monoclonal-nonspecific suppressor factor (MNSF) is a lymphokine derived from murine T cell hybridoma. The target tissues are both LPS-stimulated B cells and Con A-stimulated T cells. Since the action of MNSF may be mediated by its binding to specific cell surface receptors, we characterized the mode of this binding. The purified MNSF was labeled with 125 I, using the Bolton-Hunter reagent. The labeled MNSF bound specifically to a single class of receptor (300 receptors per cell) on mitogen-stimulated murine B cells or T cells with an affinity of 16 pM at 24 degrees C, in the presence of sodium azide. Competitive experiments showed that MNSF bound to the specific receptor and that the binding was not shared with IL2, IFN-gamma, and TNF. Various cell types were surveyed for the capacity to specifically bind 125 I-MNSF. 125 I-MNSF bound to MOPC-31C (a murine plasmacytoma line) and to EL4 (a murine T lymphoma line). The presence of specific binding correlates with the capacity of the cells to respond to MNSF. These data support the view that like other polypeptide hormones, the action of MNSF is mediated by specific cell surface membrane receptor protein. Identification of these receptors will provide insight into the apparently diverse activities of MNSF

  14. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang, E-mail: md_wzx7189@163.com

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.

  15. RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J.

    Science.gov (United States)

    Wacker, Stephan Armin; Alvarado, Cristobal; von Wichert, Götz; Knippschild, Uwe; Wiedenmann, Jörg; Clauss, Karen; Nienhaus, Gerd Ulrich; Hameister, Horst; Baumann, Bernd; Borggrefe, Tilman; Knöchel, Walter; Oswald, Franz

    2011-01-05

    The evolutionarily conserved Notch signal transduction pathway regulates fundamental cellular processes during embryonic development and in the adult. Ligand binding induces presenilin-dependent cleavage of the receptor and a subsequent nuclear translocation of the Notch intracellular domain (NICD). In the nucleus, NICD binds to the recombination signal sequence-binding protein J (RBP-J)/CBF-1 transcription factor to induce expression of Notch target genes. Here, we report the identification and functional characterization of RBP-J interacting and tubulin associated (RITA) (C12ORF52) as a novel RBP-J/CBF-1-interacting protein. RITA is a highly conserved 36 kDa protein that, most interestingly, binds to tubulin in the cytoplasm and shuttles rapidly between cytoplasm and nucleus. This shuttling RITA exports RBP-J/CBF-1 from the nucleus. Functionally, we show that RITA can reverse a Notch-induced loss of primary neurogenesis in Xenopus laevis. Furthermore, RITA is able to downregulate Notch-mediated transcription. Thus, we propose that RITA acts as a negative modulator of the Notch signalling pathway, controlling the level of nuclear RBP-J/CBF-1, where its amounts are limiting.

  16. The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Sung Hee Choi

    Full Text Available Notch is a major oncogenic driver in T cell acute lymphoblastic leukemia (T-ALL, in part because it binds to an enhancer that increases expression of MYC. Here, we exploit the capacity of activated NOTCH1 and NOTCH3 to induce T-ALL, despite substantial divergence in their intracellular regions, as a means to elucidate a broad, common Notch-dependent oncogenomic program through systematic comparison of the transcriptomes and Notch-bound genomic regulatory elements of NOTCH1- and NOTCH3-dependent T-ALL cells. ChIP-seq studies show a high concordance of functional NOTCH1 and NOTCH3 genomic binding sites that are enriched in binding motifs for RBPJ, the transcription factor that recruits activated Notch to DNA. The interchangeability of NOTCH1 and NOTCH3 was confirmed by rescue of NOTCH1-dependent T-ALL cells with activated NOTCH3 and vice versa. Despite remarkable overall similarity, there are nuanced differences in chromatin landscapes near critical common Notch target genes, most notably at a Notch-dependent enhancer that regulates MYC, which correlates with responsiveness to Notch pathway inhibitors. Overall, a common oncogenomic program driven by binding of either Notch is sufficient to maintain T-ALL cell growth, whereas cell-context specific differences appear to influence the response of T-ALL cells to Notch inhibition.

  17. Albumin receptor effect may be due to a surface-induced conformational change in albumin

    International Nuclear Information System (INIS)

    Reed, R.G.; Burrington, C.M.

    1989-01-01

    To determine whether equilibrium binding between albumin and hepatocytes involves a cell surface receptor for albumin, we incubated freshly isolated rat hepatocytes with 125 I-albumin and determined the amount of albumin associated with the cells as a function of the total albumin concentration. The resulting two-phase binding curve showed the rat albumin-hepatocyte interaction to consist of a saturable binding interaction with a dissociation constant of 1.1 microM and 2 X 10(6) sites/cell in addition to a weak, nonsaturable binding interaction. However, the saturable binding of albumin to hepatocytes did not appear to result from the presence of an albumin receptor on the cell surface; the interaction was the same for different species of albumin, for chemically modified albumins, and for fragments of albumin representing mutually exclusive domains of the molecule. The saturable binding was, instead, found to involve a subpopulation of albumin with an enhanced affinity for the cell surface. We show that this subpopulation of albumin is generated upon contact with either solid surfaces or cell surfaces and can be transferred from one surface to another. We propose that the two-phase Scatchard binding curve and the ''albumin receptor effect'' reflect two populations of albumin that bind to the cell surface with different affinities rather than one population of albumin that binds to two classes of binding sites

  18. Localization of Estrogen Receptors α and β in the Articular Surface of the Rat Femur

    International Nuclear Information System (INIS)

    Oshima, Yasushi; Matsuda, Ken-ichi; Yoshida, Atsuhiko; Watanabe, Nobuyoshi; Kawata, Mitsuhiro; Kubo, Toshikazu

    2007-01-01

    It has been suggested that the degradation of the articular cartilage and osteoarthritis (OA) are associated with gender and the estrogen hormone. Although many investigators have reported the presence of the estrogen receptors (ERs) α and β in the articular cartilage, the localization of these receptors and the difference in their in vivo expression have not yet been clearly demonstrated. We performed immunofluorescence staining of ERα and ERβ to elucidate the localization of the ERs and to note the effects of gender and the aging process on these receptors. The results revealed that ERα and ERβ were expressed in the articular cartilage and subchondral bone layers of adult rats of both sexes. We also observed the high expression of these receptors in immature rats. In contrast, their expression levels decreased in an ovariectomised model, as a simulation of postmenopause, and in aged female rats. Therefore, this study suggests the direct effects of estrogen and ER expression on articular surface metabolism

  19. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  20. Notch signaling regulates expression of Mcl-1 and apoptosis in PPD-treated macrophages.

    Science.gov (United States)

    Palaga, Tanapat; Ratanabunyong, Siriluk; Pattarakankul, Thitiporn; Sangphech, Naunpun; Wongchana, Wipawee; Hadae, Yukihiro; Kueanjinda, Patipark

    2013-09-01

    Macrophages are cellular targets for infection by bacteria and viruses. The fate of infected macrophages plays a key role in determining the outcome of the host immune response. Apoptotic cell death of macrophages is considered to be a protective host defense that eliminates pathogens and infected cells. In this study, we investigated the involvement of Notch signaling in regulating apoptosis in macrophages treated with tuberculin purified protein derivative (PPD). Murine bone marrow-derived macrophages (BMMs) treated with PPD or infected with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) induced upregulation of Notch1. This upregulation correlated well with the upregulation of the anti-apoptotic gene mcl-1 both at the transcriptional and translational levels. Decreased levels of Notch1 and Mcl-1 were observed in BMM treated with PPD when a gamma secretase inhibitor (GSI), which inhibits the processing of Notch receptors, was used. Moreover, silencing Notch1 in the macrophage-like cell line RAW264.7 decreased Mcl-1 protein expression, suggesting that Notch1 is critical for Mcl-1 expression in macrophages. A significant increase in apoptotic cells was observed upon treatment of BMM with PPD in the presence of GSI compared to the vehicle-control treated cells. Finally, analysis of the mcl-1 promoter in humans and mice revealed a conserved potential CSL/RBP-Jκ binding site. The association of Notch1 with the mcl-1 promoter was confirmed by chromatin immunoprecipitation. Taken together, these results indicate that Notch1 inhibits apoptosis of macrophages stimulated with PPD by directly controlling the mcl-1 promoter.

  1. Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium.

    Science.gov (United States)

    Elmadhun, Nassrene Y; Sabe, Ashraf A; Lassaletta, Antonio D; Chu, Louis M; Kondra, Katelyn; Sturek, Michael; Sellke, Frank W

    2014-09-01

    Impaired angiogenesis is a known consequence of metabolic syndrome (MetS); however, the mechanism is not fully understood. Recent studies have shown that the notch signaling pathway is an integral component of cardiac angiogenesis. We tested, in a clinically relevant swine model, the effects of MetS on notch and apoptosis signaling in chronically ischemic myocardium. Ossabaw swine were fed either a regular diet (control [CTL], n = 8) or a high-cholesterol diet (MetS, n = 8) to induce MetS. An ameroid constrictor was placed to induce chronic myocardial ischemia. Eleven weeks later, the wine underwent cardiac harvest of the ischemic myocardium. Downregulation of pro-angiogenesis proteins notch2, notch4, jagged2, angiopoietin 1, and endothelial nitric oxide synthase were found in the MetS group compared with the CTL group. Also, upregulation of pro-apoptosis protein caspase 8 and downregulation of anti-angiogenesis protein phosphorylated forkhead box transcription factor 03 and pro-survival proteins phosphorylated P38 and heat shock protein 90 were present in the MetS group. Cell death was increased in the MetS group compared with the CTL group. Both CTL and MetS groups had a similar arteriolar count and capillary density, and notch3 and jagged1 were both similarly concentrated in the smooth muscle wall. MetS in chronic myocardial ischemia significantly impairs notch signaling by downregulating notch receptors, ligands, and pro-angiogenesis proteins. MetS also increases apoptosis signaling, decreases survival signaling, and increases cell death in chronically ischemic myocardium. Although short-term angiogenesis appears unaffected in this model of early MetS, the molecular signals for angiogenesis are impaired, suggesting that inhibition of notch signaling might underlie the decreased angiogenesis in later stages of MetS. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  2. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  3. Surface expression of NMDA receptor changes during memory consolidation in the crab Neohelice granulata

    Science.gov (United States)

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin

    2016-01-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata. Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation. PMID:27421895

  4. Mapping Sites of O-Glycosylation and Fringe Elongation on Drosophila Notch*

    Science.gov (United States)

    Harvey, Beth M.; Rana, Nadia A.; Moss, Hillary; Leonardi, Jessica; Jafar-Nejad, Hamed; Haltiwanger, Robert S.

    2016-01-01

    Glycosylation of the Notch receptor is essential for its activity and serves as an important modulator of signaling. Three major forms of O-glycosylation are predicted to occur at consensus sites within the epidermal growth factor-like repeats in the extracellular domain of the receptor: O-fucosylation, O-glucosylation, and O-GlcNAcylation. We have performed comprehensive mass spectral analyses of these three types of O-glycosylation on Drosophila Notch produced in S2 cells and identified peptides containing all 22 predicted O-fucose sites, all 18 predicted O-glucose sites, and all 18 putative O-GlcNAc sites. Using semiquantitative mass spectral methods, we have evaluated the occupancy and relative amounts of glycans at each site. The majority of the O-fucose sites were modified to high stoichiometries. Upon expression of the β3-N-acetylglucosaminyltransferase Fringe with Notch, we observed varying degrees of elongation beyond O-fucose monosaccharide, indicating that Fringe preferentially modifies certain sites more than others. Rumi modified O-glucose sites to high stoichiometries, although elongation of the O-glucose was site-specific. Although the current putative consensus sequence for O-GlcNAcylation predicts 18 O-GlcNAc sites on Notch, we only observed apparent O-GlcNAc modification at five sites. In addition, we performed mass spectral analysis on endogenous Notch purified from Drosophila embryos and found that the glycosylation states were similar to those found on Notch from S2 cells. These data provide foundational information for future studies investigating the mechanisms of how O-glycosylation regulates Notch activity. PMID:27268051

  5. Evidence of non-canonical NOTCH signaling

    DEFF Research Database (Denmark)

    Traustadóttir, Gunnhildur Ásta; Jensen, Charlotte H; Thomassen, Mads

    2016-01-01

    Dlk1(+/+) and Dlk1(-/-) mouse tissues at E16.5, we demonstrated that several NOTCH signaling pathways indeed are affected by DLK1 during tissue development, and this was supported by a lower activation of NOTCH1 protein in Dlk1(+/+) embryos. Likewise, but using a distinct Dlk1-manipulated (si...

  6. Characterization of the formyl peptide chemotactic receptor appearing at the phagocytic cell surface after exposure to phorbol myristate acetate

    International Nuclear Information System (INIS)

    Gardner, J.P.; Melnick, D.A.; Malech, H.L.

    1986-01-01

    The biochemistry and subcellular source of new formyl peptide chemotactic receptor appearing at the human neutrophil and differentiated HL-60 (d-HL-60) cell surface after stimulation with phorbol myristate acetate (PMA) were examined. Formyl peptide receptor was analyzed by affinity labeling with formyl-norleu-leu-phe-norleu- [ 125 I]iodotyr-lys and ethylene glycol bis(succinimidyl succinate) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometric analysis of autoradiographs. PMA, a specific granule secretagogue, increases affinity labeling of formyl peptide receptors on the neutrophil surface by 100%, and on d-HL-60, which lack specific granule markers, by 20%. Papain treatment markedly reduces surface labeling of formyl peptide receptor in both neutrophils and d-HL-60, and results in the appearance of a lower m.w. membrane-bound receptor fragment. PMA stimulation of papain-treated cells increases uncleaved surface receptor on neutrophils by 400%, and on D-HL-60 by only 45%. This newly appearing receptor is the same apparent m.w. (55,000 to 75,000 for neutrophils; 62,000 to 80,000 for d-HL-60) and yields the same papain cleavage product as receptor on the surface of unstimulated cells. These observations suggest that specific granule membranes contain large amounts of formyl peptide receptor, which is biochemically identical to that found on the cell surface and can be mobilized to the cell surface with appropriate stimulation

  7. Scratching the surface: Regulation of cell surface receptors in cholesterol metabolism

    NARCIS (Netherlands)

    Nelson, J.K.

    2016-01-01

    Elevated plasma levels of low density lipoprotein cholesterol (LDL) are an established risk factor for the development of atherosclerosis and cardiovascular diseases. The LDL-Receptor is a key determinant in regulating LDL levels in plasma, and current lipid-lowering strategies aim to increase its

  8. Mechanism of Notch Pathway Activation and Its Role in the Regulation of Olfactory Plasticity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Simon Kidd

    Full Text Available The neural plasticity of sensory systems is being increasingly recognized as playing a role in learning and memory. We have previously shown that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila melanogaster olfactory receptor neurons (ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. In this paper we address how long-term exposure to odor activates Notch and how Notch in conjunction with chronic odor mediates olfactory plasticity. We show that upon chronic odor exposure a non-canonical Notch pathway mediates an increase in the volume of glomeruli by a mechanism that is autonomous to ORNs. In addition to activating a pathway that is autonomous to ORNs, chronic odor exposure also activates the Notch ligand Delta in second order projection neurons (PNs, but this does not appear to require acetylcholine receptor activation in PNs. Delta on PNs then feeds back to activate canonical Notch signaling in ORNs, which restricts the extent of the odor induced increase in glomerular volume. Surprisingly, even though the pathway that mediates the increase in glomerular volume is autonomous to ORNs, nonproductive transsynaptic Delta/Notch interactions that do not activate the canonical pathway can block the increase in volume. In conjunction with chronic odor, the canonical Notch pathway also enhances cholinergic activation of PNs. We present evidence suggesting that this is due to increased acetylcholine release from ORNs. In regulating physiological plasticity, Notch functions solely by the canonical pathway, suggesting that there is no direct connection between morphological and physiological plasticity.

  9. Ligand-independent Thrombopoietin Mutant Receptor Requires Cell Surface Localization for Endogenous Activity*

    Science.gov (United States)

    Marty, Caroline; Chaligné, Ronan; Lacout, Catherine; Constantinescu, Stefan N.; Vainchenker, William; Villeval, Jean-Luc

    2009-01-01

    The activating W515L mutation in the thrombopoietin receptor (MPL) has been identified in primary myelofibrosis and essential thrombocythemia. MPL belongs to a subset of the cytokine receptor superfamily that requires the JAK2 kinase for signaling. We examined whether the ligand-independent MPLW515L mutant could signal intracellularly. Addition of the endoplasmic reticulum (ER) retention KDEL sequence to the receptor C terminus efficiently locked MPLW515L within its natural ER/Golgi maturation pathway. In contrast to cells expressing the parental MPLW515L, MPLW515L-KDEL-expressing FDC-P1 cells were unable to grow autonomously and to produce tumors in nude mice. When observed, tumor nodules resulted from in vivo selection of cells leaking the receptor at their surface. JAK2 co-immunoprecipitated with MPLW515L-KDEL but was not phosphorylated. We generated disulfide-bonded MPLW515L homodimers by the S402C substitution, both in the normal and KDEL context. Unlike MPLW515L-KDEL, MPLW515L-S402C-KDEL signaled constitutively and exhibited cell surface localization. These data establish that MPLW515L with appended JAK2 matures through the ER/Golgi system in an inactive conformation and suggest that the MPLW515L/JAK2 complex requires membrane localization for JAK2 phosphorylation, resulting in autonomous receptor signaling. PMID:19261614

  10. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus.

    Science.gov (United States)

    Naylor, David E; Liu, Hantao; Niquet, Jerome; Wasterlain, Claude G

    2013-06-01

    After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin.

    Directory of Open Access Journals (Sweden)

    Alexis Dumortier

    2010-02-01

    Full Text Available The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. Moreover, skin specific loss of Notch signaling in the embryo results in skin barrier defects accompanied by a B-lymphoproliferative disease. However, much less is known about the consequences of loss of Notch signaling after birth.To study the function of Notch signaling in the skin of adult mice, we made use of a series of conditional gene targeted mice that allow inactivation of several components of the Notch signaling pathway specifically in the skin. We demonstrate that skin-specific inactivation of Notch1 and Notch2 simultaneously, or RBP-J, induces the development of a severe form of atopic dermatitis (AD, characterized by acanthosis, spongiosis and hyperkeratosis, as well as a massive dermal infiltration of eosinophils and mast cells. Likewise, patients suffering from AD, but not psoriasis or lichen planus, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes induces the production of thymic stromal lymphopoietin (TSLP, a cytokine deeply implicated in the pathogenesis of AD. The AD-like associated inflammation is accompanied by a myeloproliferative disorder (MPD characterized by an increase in immature myeloid populations in the bone marrow and spleen. Transplantation studies revealed that the MPD is cell non-autonomous and caused by dramatic microenvironmental alterations. Genetic studies demontrated that G-CSF mediates the MPD as well as changes in the bone marrow microenvironment leading to osteopenia.Our data demonstrate a critical role for Notch in repressing TSLP production in keratinocytes, thereby maintaining integrity of the skin and the hematopoietic system.

  12. Inhibitory effects of two G protein-coupled receptor kinases on the cell surface expression and signaling of the human adrenomedullin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kuwasako, Kenji, E-mail: kuwasako@med.miyazaki-u.ac.jp [Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692 (Japan); Sekiguchi, Toshio [Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa, 927-0553 (Japan); Nagata, Sayaka [Division of Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 (Japan); Jiang, Danfeng; Hayashi, Hidetaka [Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692 (Japan); Murakami, Manabu [Department of Pharmacology, Hirosaki University, Graduate School of Medicine, Hirosaki, 036-8562 (Japan); Hattori, Yuichi [Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 (Japan); Kitamura, Kazuo [Division of Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 (Japan); Kato, Johji [Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692 (Japan)

    2016-02-19

    Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM{sub 1} receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM{sub 1} receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM{sub 1} receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [{sup 125}I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β{sub 2}-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449–453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM{sub 1} receptor and further determined the region of the CLR C-tail responsible for this GRK function. - Highlights: • We discovered a novel function of GRKs in GPCR trafficking using human CLR/RAMP2. • GRKs 4 and 5 markedly inhibited the cell surface expression of human CLR/RAMP2. • Both GRKs exhibited highly significant receptor signaling inhibition. • Five residues of the C-terminal tail of CLR govern this function of GRKs.

  13. Inhibitory effects of two G protein-coupled receptor kinases on the cell surface expression and signaling of the human adrenomedullin receptor

    International Nuclear Information System (INIS)

    Kuwasako, Kenji; Sekiguchi, Toshio; Nagata, Sayaka; Jiang, Danfeng; Hayashi, Hidetaka; Murakami, Manabu; Hattori, Yuichi; Kitamura, Kazuo; Kato, Johji

    2016-01-01

    Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM_1 receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM_1 receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM_1 receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific ["1"2"5I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β_2-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449–453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM_1 receptor and further determined the region of the CLR C-tail responsible for this GRK function. - Highlights: • We discovered a novel function of GRKs in GPCR trafficking using human CLR/RAMP2. • GRKs 4 and 5 markedly inhibited the cell surface expression of human CLR/RAMP2. • Both GRKs exhibited highly significant receptor signaling inhibition. • Five residues of the C-terminal tail of CLR govern this function of GRKs.

  14. Three-dimensional vibrations of cylindrical elastic solids with V-notches and sharp radial cracks

    Science.gov (United States)

    McGee, O. G.; Kim, J. W.

    2010-02-01

    segmented plates and cylinders are also reported herein as interesting special cases. A generalization of the elasticity-based Ritz analysis and findings applicable here is an arbitrarily shaped V-notched cylindrical solid, being a surface traced out by a family of generatrix, which pass through the circumference of an arbitrarily shaped V-notched directrix curve, r( θ), several of which are described for future investigations and close extensions of this work.

  15. Morphological Specifications of the Bird Schistosome Cercariae and Surface Carbohydrates as Receptors for Lectins

    Directory of Open Access Journals (Sweden)

    I Moebedi

    2007-04-01

    Full Text Available Background: To determine the morphological specifications of the bird schistosomes cercaria from Lymnaea gedrosiana and to detect the surface carbohydrates as receptors for host lectins in the host-parasite relationship systems such as avian schistosomiasis and human cercarial dermatitis. Methods: One hundred ninety two snails collected from Dezful areas in Khuzestan Province, in the south west of Iran, during 2005-2006 were examined for cercariae using shedding and crushing methods. In addition, surface carbohydrates on the cercariae were detected by lentil (Lens culinaris lectins. Results: From the total number of Lymnaea gedrosiana, which examined for bird schistosomes cercaria, 9(4% snails were found to be infected with furcocercus cercaria of the bird schistosomes (probably Gigantobilharzia sp.. Mannose monosaccharide CH2OH (CHOH4CHO as surface carbohydrate was also detected on the cercariae. Conclusion: Mannose carbohydrate on these cercariae may be used as receptor by lectins.

  16. Myositis ossificans within the intercondylar notch treated arthroscopically

    International Nuclear Information System (INIS)

    Leung, Allen H.; Desai, Panna; Rybak, Leon D.; Rose, Donald J.

    2010-01-01

    We present a case of intraarticular myositis ossificans in the right knee of a child. Myositis ossificans (MO), though relatively rare in childhood and even more uncommon within a joint, should be included in the differential diagnosis of an intra-articular mass when indicated by the typical clinical, radiographic, and histologic findings. An 11-year-old male presented with a history of trauma to his right knee. Four weeks after the initial injury, an MRI demonstrated evidence of an ACL rupture with a ''cystic mass'' within the intercondylar notch along the anterior surface of the torn ligament. At subsequent arthroscopy, the mass noted on MRI was removed. The histology was consistent with MO. The authors believe this to be the first case of MO in the intercondylar notch detected by MRI, treated by arthroscopy, and confirmed by histology. (orig.)

  17. Myositis ossificans within the intercondylar notch treated arthroscopically

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Allen H.; Desai, Panna [Hospital for Joint Diseases/New York University, Department of Pathology, New York, NY (United States); Rybak, Leon D. [Hospital for Joint Diseases/New York University, Department of Radiology, New York, NY (United States); Rose, Donald J. [Hospital for Joint Diseases/New York University, Department of Orthopedic Surgery, New York, NY (United States)

    2010-09-15

    We present a case of intraarticular myositis ossificans in the right knee of a child. Myositis ossificans (MO), though relatively rare in childhood and even more uncommon within a joint, should be included in the differential diagnosis of an intra-articular mass when indicated by the typical clinical, radiographic, and histologic findings. An 11-year-old male presented with a history of trauma to his right knee. Four weeks after the initial injury, an MRI demonstrated evidence of an ACL rupture with a ''cystic mass'' within the intercondylar notch along the anterior surface of the torn ligament. At subsequent arthroscopy, the mass noted on MRI was removed. The histology was consistent with MO. The authors believe this to be the first case of MO in the intercondylar notch detected by MRI, treated by arthroscopy, and confirmed by histology. (orig.)

  18. Quantification of the number of EP3 receptors on a living CHO cell surface by the AFM

    International Nuclear Information System (INIS)

    Kim, Hyonchol; Arakawa, Hideo; Hatae, Noriyuki; Sugimoto, Yukihiko; Matsumoto, Osamu; Osada, Toshiya; Ichikawa, Atsushi; Ikai, Atsushi

    2006-01-01

    The distribution of EP3 receptors on a living cell surface was quantitatively studied by atomic force microscopy (AFM). Green fluorescent protein (GFP) was introduced to the extracellular region of the EP3 receptor on a CHO cell. A microbead was used as a probe to ensure certain contact area, whose surface was coated with anti-GFP antibody. The interactions between the antibodies and GFP molecules on the cell surface were recorded to observe the distribution of the receptors. The result indicated that EP3 receptors were distributed on the CHO cell surface not uniformly but in small patches coincident with immunohistochemical observation. Repeated measurements on the same area of cell surface gave confirmation that it was unlikely that the receptors were extracted from the cell membrane during the experiments. The measurement of single molecular interaction between GFP and the anti-GFP antibody was succeeded on the cell surface using compression-free force spectroscopy. The value of separation work required to break a single molecular pair was estimated to be about 1.5x10 -18 J. The number of EP3 receptor on the CHO cell surface was estimated using this value to be about 1x10 4 under the assumption that the area of the cell surface was about 5000 μm 2 . These results indicated that the number of receptors on a living cell surface could be quantified through the force measurement by the AFM

  19. A model for the biosynthesis and transport of plasma membrane-associated signaling receptors to the cell surface

    Directory of Open Access Journals (Sweden)

    Sorina Claudia Popescu

    2012-04-01

    Full Text Available Intracellular protein transport is emerging as critical in determining the outcome of receptor-activated signal transduction pathways. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating receptor synthesis and transport to the cell surface. Recent advances in this field indicate that signaling pathways and intracellular transport machinery converge and coordinate to render receptors competent for signaling at their plasma membrane activity sites. The biogenesis and transport to the cell surface of signaling receptors appears to require both general trafficking and receptor-specific factors. Several molecular determinants, residing or associated with compartments of the secretory pathway and known to influence aspects in receptor biogenesis, are discussed and integrated into a predictive cooperative model for the functional expression of signaling receptors at the plasma membrane.

  20. The putative Notch ligand HyJagged is a transmembrane protein present in all cell types of adult Hydra and upregulated at the boundary between bud and parent

    Directory of Open Access Journals (Sweden)

    Tischer Susanne

    2011-09-01

    Full Text Available Abstract Background The Notch signalling pathway is conserved in pre-bilaterian animals. In the Cnidarian Hydra it is involved in interstitial stem cell differentiation and in boundary formation during budding. Experimental evidence suggests that in Hydra Notch is activated by presenilin through proteolytic cleavage at the S3 site as in all animals. However, the endogenous ligand for HvNotch has not been described yet. Results We have cloned a cDNA from Hydra, which encodes a bona-fide Notch ligand with a conserved domain structure similar to that of Jagged-like Notch ligands from other animals. Hyjagged mRNA is undetectable in adult Hydra by in situ hybridisation but is strongly upregulated and easily visible at the border between bud and parent shortly before bud detachment. In contrast, HyJagged protein is found in all cell types of an adult hydra, where it localises to membranes and endosomes. Co-localisation experiments showed that it is present in the same cells as HvNotch, however not always in the same membrane structures. Conclusions The putative Notch ligand HyJagged is conserved in Cnidarians. Together with HvNotch it may be involved in the formation of the parent-bud boundary in Hydra. Moreover, protein distribution of both, HvNotch receptor and HyJagged indicate a more widespread function for these two transmembrane proteins in the adult hydra, which may be regulated by additional factors, possibly involving endocytic pathways.

  1. The truncate mutation of Notch2 enhances cell proliferation through activating the NF-κB signal pathway in the diffuse large B-cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Xinxia Zhang

    Full Text Available The Notch2 is a critical membrane receptor for B-cell functions, and also displays various biological roles in lymphoma pathogenesis. In this article, we reported that 3 of 69 (4.3% diffuse large B-cell lymphomas (DLBCLs exhibited a truncate NOTCH2 mutation at the nucleotide 7605 (G/A in the cDNA sequence, which led to partial deletion of the C-terminal of PEST (proline-, glutamic acid-, serine- and threonine-rich domain. The truncate Notch2 activated both the Notch2 and the NF-κB signals and promoted the proliferation of B-cell lymphoma cell lines, including DLBCL and Burkitt's lymphoma cell lines. Moreover, the ectopic proliferation was completely inhibited by ammonium pyrrolidinedithiocarbamate (PDTC, an NF-κB inhibitor. Simultaneously, PDTC also reduced the expression level of Notch2. Based on these results, we conclude that the Notch2 receptor with PEST domain truncation enhances cell proliferation which may be associated with the activation of the Notch2 and the NF-κB signaling. Our results are expected to provide a possible target for new DLBCL therapies by suppressing the Notch2 and the NF-κB signaling.

  2. Vitamin A Transport Mechanism of the Multitransmembrane Cell-Surface Receptor STRA6

    Directory of Open Access Journals (Sweden)

    Riki Kawaguchi

    2015-08-01

    Full Text Available Vitamin A has biological functions as diverse as sensing light for vision, regulating stem cell differentiation, maintaining epithelial integrity, promoting immune competency, regulating learning and memory, and acting as a key developmental morphogen. Vitamin A derivatives have also been used in treating human diseases. If vitamin A is considered a drug that everyone needs to take to survive, evolution has come up with a natural drug delivery system that combines sustained release with precise and controlled delivery to the cells or tissues that depend on it. This “drug delivery system” is mediated by plasma retinol binding protein (RBP, the principle and specific vitamin A carrier protein in the blood, and STRA6, the cell-surface receptor for RBP that mediates cellular vitamin A uptake. The mechanism by which the RBP receptor absorbs vitamin A from the blood is distinct from other known cellular uptake mechanisms. This review summarizes recent progress in elucidating the fundamental molecular mechanism mediated by the RBP receptor and multiple newly discovered catalytic activities of this receptor, and compares this transport system with retinoid transport independent of RBP/STRA6. How to target this new type of transmembrane receptor using small molecules in treating diseases is also discussed.

  3. Model for capping of membrane receptors based on boundary surface effects

    Science.gov (United States)

    Gershon, N. D.

    1978-01-01

    Crosslinking of membrane surface receptors may lead to their segregation into patches and then into a single large aggregate at one pole of the cell. This process is called capping. Here, a novel explanation of such a process is presented in which the membrane is viewed as a supersaturated solution of receptors in the lipid bilayer and the adjacent two aqueous layers. Without a crosslinking agent, a patch of receptors that is less than a certain size cannot stay in equilibrium with the solution and thus should dissolve. Patches greater than a certain size are stable and can, in principle, grow by the precipitation of the remaining dissolved receptors from the supersaturated solution. The task of the crosslinking molecules is to form such stable patches. These considerations are based on a qualitative thermodynamic calculation that takes into account the existence of a boundary tension in a patch (in analogy to the surface tension of a droplet). Thermodynamically, these systems should cap spontaneously after the patches have reached a certain size. But, in practice, such a process can be very slow. A suspension of patches may stay practically stable. The ways in which a cell may abolish this metastable equilibrium and thus achieve capping are considered and possible effects of capping inhibitors are discussed. PMID:274724

  4. Notch Filter Analysis and Its Application in Passive Coherent Location Radar (in English

    Directory of Open Access Journals (Sweden)

    Li Ji-chuan

    2015-01-01

    Full Text Available The Normalized Least-Mean-Squares (NLMS algorithm is widely used to cancel the direct and multiple path interferences in Passive Coherent Location (PCL radar systems. This study proposes that the interference cancelation using the NLMS algorithm and the calculation of the radar Cross Ambiguity Function (CAF can be modeled as a notch filter, with the notch located at zero Doppler frequency in the surface of the radar CAF. The analysis shows that the notch’s width and depth are closely related to the step size of the NLMS algorithm. Subsequently, the effect of the notch in PCL radar target detection is analyzed. The results suggest that the detection performance of the PCL radar deteriorates because of the wide notch. Furthermore, the Nonuniform NLMS (NNLMS algorithm is proposed for removing the clutter with the Doppler frequency by using notch filtering. A step-size matrix is adopted to mitigate the low Doppler frequency clutter and lower the floor of the radar CAF. With the step-size matrix, can be obtained notches of different depths and widths in different range units of the CAF, which can filter the low Doppler frequency clutter. In addition, the convergence rate of the NNLMS algorithm is better than that of the traditional NLMS algorithm. The validity of the NNLMS algorithm is verified by experimental results.

  5. Notch and presenilin regulate cellular expansion and cytokine secretion but cannot instruct Th1/Th2 fate acquisition.

    Directory of Open Access Journals (Sweden)

    Chin-Tong Ong

    2008-07-01

    Full Text Available Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4(+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4(+ T or reporter cells, the presence of Lunatic Fringe in CD4(+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4(+ T cells lacking gamma-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation.

  6. Valsartan ameliorates podocyte loss in diabetic mice through the Notch pathway.

    Science.gov (United States)

    Gao, Feng; Yao, Min; Cao, Yanping; Liu, Shuxia; Liu, Qingjuan; Duan, Huijun

    2016-05-01

    The Notch pathway is known to be linked to diabetic nephropathy (DN); however, its underlying mechanism was poorly understood. In the present study, we examined the effect of Valsartan, an angiotensin II type 1 receptor antagonist, on the Notch pathway and podocyte loss in DN. Diabetes was induced in mice by an intraperitoneal injection of streptozotocin and and this was followed by treatment with Valsartan. Levels of blood glucose, kidney weight and body weight, as well as proteinuria were measured. Samples of the kidneys were also histologically examined. The relative levels of Jagged1, Notch1, Notch intracellular domain 1 (NICD1), Hes family BHLH transcription factor 1 (Hes1) and Hes-related family BHLH transcription factor with YRPW motif 1 expression (Hey1) in the glomeruli were determined by immunohistochemical analysis, western blot analysis and RT-qPCR. The B-Cell CLL/Lymphoma 2 (Bcl-2) and p53 pathways were examined by western blot analysis. Apoptosis and detachment of podocytes from the glomerular basement membrane were examined using a TUNEL assay, flow cytometric analysis and ELISA. The number of podocytes was quantified by measuring Wilms tumor-1 (WT-1) staining. We noted that the expression of Jagged1, Notch1, NICD1, Hes1 and Hey1 was increased in a time-dependent manner in the glomeruli of mice with streptozotocin (STZ)-induced diabetes. Moreover, in diabetic mice, Valsartan significantly reduced kidney weight and proteinuria, and mitigated the pathogenic processes in the kidneys. Valsartan also inhibited the activation of Notch, Bcl-2 and p53 pathways and ameliorated podocyte loss in the glomeruli of mice with STZ-induced diabetes. Taken together, these findings indicated that Valsartan exerted a beneficial effect on reducing podocyte loss, which is associated with inhibition of Notch pathway activation in the glomeruli of diabetic mice.

  7. Fc-receptors and surface immunoglobulins in cells of the hairy cell leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Rieber, E P; Linke, R P; Riethmueller, G [Tuebingen Univ. (Germany, F.R.). Abt. fuer Experimentelle Chirurgie und Immunologie; Heyden, H.W. von; Waller, H D [Tuebingen Univ. (Germany, F.R.). Abt. Innere Medizin 2

    1976-01-01

    Using /sup 125/I-labelled aggregated IgG in a quantitative assay a strong expression of Fc-receptors was found on the leukemic cells of a patient with hairy cell leukemia. The Fc-receptor activity on these cells was much higher than that on monocytes and B-lymphocytes from normal blood. Surface immunoglobulins were detected by radioautography using radioactively labelled (Fab')/sub 2/-fragments of monospecific antibodies directed against immunoglobulin heavy chains. Prior to radioautography the cells were stained for the tartrate resistant acid phosphatase. It is found that all cells containing this enzyme bore delta-chains on their surface. On more than 90% of these cells a simultaneous expression of ..mu..-chains was detected. ..gamma..-chains could only be demonstrated on cells which were negative for the tartrate resistant acid phosphatase; part of these cells, however, were hairy cells by morphological criteria.

  8. Fc-receptors and surface immunoglobulins in cells of the hairy cell leukemia

    International Nuclear Information System (INIS)

    Rieber, E.P.; Linke, R.P.; Riethmueller, G.; Heyden, H.W. von; Waller, H.D.

    1976-01-01

    Using 125 I-labelled aggregated IgG in a quantitative assay a strong expression of Fc-receptors was found on the leukemic cells of a patient with hairy cell leukemia. The Fc-receptor activity on these cells was much higher than that on monocytes and B-lymphocytes from normal blood. Surface immunoglobulins were detected by radioautography using radioactively labelled (Fab') 2 -fragments of monospecific antibodies directed against immunoglobulin heavy chains. Prior to radioautography the cells were stained for the tartrate resistant acid phosphatase. It is found that all cells containing this enzyme bore delta-chains on their surface. On more than 90% of these cells a simultaneous expression of μ-chains was detected. γ-chains could only be demonstrated on cells which were negative for the tartrate resistant acid phosphatase; part of these cells, however, were hairy cells by morphological criteria. (orig.) [de

  9. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor

    DEFF Research Database (Denmark)

    Fabriek, Babs O; Polfliet, Machteld M J; Vloet, Rianka P M

    2007-01-01

    Erythropoiesis occurs in erythroblastic islands, where developing erythroblasts closely interact with macrophages. The adhesion molecules that govern macrophage-erythroblast contact have only been partially defined. Our previous work has implicated the rat ED2 antigen, which is highly expressed...... on the surface of macrophages in erythroblastic islands, in erythroblast binding. In particular, the monoclonal antibody ED2 was found to inhibit erythroblast binding to bone marrow macrophages. Here, we identify the ED2 antigen as the rat CD163 surface glycoprotein, a member of the group B scavenger receptor...... that it enhanced erythroid proliferation and/or survival, but did not affect differentiation. These findings identify CD163 on macrophages as an adhesion receptor for erythroblasts in erythroblastic islands, and suggest a regulatory role for CD163 during erythropoiesis....

  10. Different profiles of notch signaling in cigarette smoke-induced pulmonary emphysema and bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Li, Shi; Hu, Xiaofei; Wang, Zheng; Wu, Meng; Zhang, Jinnong

    2015-05-01

    Different profiles of Notch signaling mediate naive T cell differentiation which might be involved in pulmonary emphysema and fibrosis. C57BL/6 mice were randomized into cigarette smoke (CS) exposure, bleomycin (BLM) exposure, and two separate groups of control for sham exposure to CS or BLM. The paratracheal lymph nodes of the animals were analyzed by real-time PCR and immunohistochemistry. Morphometry of the lung parenchyma, measurement of the cytokines, and cytometry of the bronchoalveolar lavage fluid (BALF) were also done accordingly. In comparison with controls, all Notch receptors and ligands were upregulated by chronic CS exposure, especially Notch3 and DLL1 (P emphysema-like morphology and Th1-biased inflammation. While Notch3 and DLL1 were downregulated by BLM exposure (P pulmonary emphysema. Unable to initiate the Th1 response or inhibit it may lead to Th2 polarization and aberrant repair.

  11. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    Science.gov (United States)

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P cells expressed NKG2D at 10% oxygen (P oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  12. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.; Liu, Corey W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan José; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R. Scott; Mueller, Luciano; Kobilka, Brian K. (Stanford-MED); (Toronto); (BMS); (UAB, Spain)

    2010-01-14

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

  13. Notch and VEGF Interactions in Breast Cancer

    National Research Council Canada - National Science Library

    Shawber, Carrie J

    2006-01-01

    The proposal objective is to define Notch and VEGFR-3 in breast cancer. We investigated this relationship in primary endothelial cell cultures, mouse embryos, human breast tumors, and mouse mammary tumor xenografts...

  14. Notch signaling in embryology and cancer

    National Research Council Canada - National Science Library

    Reichrath, J; Reichrath, Sandra

    2012-01-01

    "The goal of this volume is to comprehensively cover a highly readable overview on our present knowledge of the role of Notch signalling for embryology and cancer, with a focus on new findings in molecular biology...

  15. Disrupting Jagged1-Notch signaling impairs spatial memory formation in adult mice.

    Science.gov (United States)

    Sargin, Derya; Botly, Leigh C P; Higgs, Gemma; Marsolais, Alexander; Frankland, Paul W; Egan, Sean E; Josselyn, Sheena A

    2013-07-01

    It is well-known that Notch signaling plays a critical role in brain development and growing evidence implicates this signaling pathway in adult synaptic plasticity and memory formation. The Notch1 receptor is activated by two subclasses of ligands, Delta-like (including Dll1 and Dll4) and Jagged (including Jag1 and Jag2). Ligand-induced Notch1 receptor signaling is modulated by a family of Fringe proteins, including Lunatic fringe (Lfng). Although Dll1, Jag1 and Lfng are critical regulators of Notch signaling, their relative contribution to memory formation in the adult brain is unknown. To investigate the roles of these important components of Notch signaling in memory formation, we examined spatial and fear memory formation in adult mice with reduced expression of Dll1, Jag1, Lfng and Dll1 plus Lfng. We also examined motor activity, anxiety-like behavior and sensorimotor gating using the acoustic startle response in these mice. Of the lines of mutant mice tested, we found that only mice with reduced Jag1 expression (mice heterozygous for a null mutation in Jag1, Jag1(+/-)) showed a selective impairment in spatial memory formation. Importantly, all other behavior including open field activity, conditioned fear memory (both context and discrete cue), acoustic startle response and prepulse inhibition, was normal in this line of mice. These results provide the first in vivo evidence that Jag1-Notch signaling is critical for memory formation in the adult brain. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  16. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    2008-03-01

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  17. Specificity and autoregulation of Notch binding by tandem WW domains in suppressor of Deltex.

    Science.gov (United States)

    Jennings, Martin D; Blankley, Richard T; Baron, Martin; Golovanov, Alexander P; Avis, Johanna M

    2007-09-28

    WW domains target proline-tyrosine (PY) motifs and frequently function as tandem pairs. When studied in isolation, single WW domains are notably promiscuous and regulatory mechanisms are undoubtedly required to ensure selective interactions. Here, we show that the fourth WW domain (WW4) of Suppressor of Deltex, a modular Nedd4-like protein that down-regulates the Notch receptor, is the primary mediator of a direct interaction with a Notch-PY motif. A natural Trp to Phe substitution in WW4 reduces its affinity for general PY sequences and enhances selective interaction with the Notch-PY motif via compensatory specificity-determining interactions with PY-flanking residues. When WW4 is paired with WW3, domain-domain association, impeding proper folding, competes with Notch-PY binding to WW4. This novel mode of autoinhibition is relieved by binding of another ligand to WW3. Such cooperativity may facilitate the transient regulatory interactions observed in vivo between Su(dx) and Notch in the endocytic pathway. The highly conserved tandem arrangement of WW domains in Nedd4 proteins, and similar arrangements in more diverse proteins, suggests domain-domain communication may be integral to regulation of their associated cellular activities.

  18. Sequestration of latent TGF-β binding protein 1 into CADASIL-related Notch3-ECD deposits.

    Science.gov (United States)

    Kast, Jessica; Hanecker, Patrizia; Beaufort, Nathalie; Giese, Armin; Joutel, Anne; Dichgans, Martin; Opherk, Christian; Haffner, Christof

    2014-08-13

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents the most common hereditary form of cerebral small vessel disease characterized by early-onset stroke and premature dementia. It is caused by mutations in the transmembrane receptor Notch3, which promote the aggregation and accumulation of the Notch3 extracellular domain (Notch3-ECD) within blood vessel walls. This process is believed to mediate the abnormal recruitment and dysregulation of additional factors including extracellular matrix (ECM) proteins resulting in brain vessel dysfunction. Based on recent evidence indicating a role for the transforming growth factor-β (TGF-β) pathway in sporadic and familial small vessel disease we studied fibronectin, fibrillin-1 and latent TGF-β binding protein 1 (LTBP-1), three ECM constituents involved in the regulation of TGF-β bioavailability, in post-mortem brain tissue from CADASIL patients and control subjects. Fibronectin and fibrillin-1 were found to be enriched in CADASIL vessels without co-localizing with Notch3-ECD deposits, likely as a result of fibrotic processes secondary to aggregate formation. In contrast, LTBP-1 showed both an accumulation and a striking co-localization with Notch3-ECD deposits suggesting specific recruitment into aggregates. We also detected increased levels of the TGF-β prodomain (also known as latency-associated peptide, LAP) indicating dysregulation of the TGF-β pathway in CADASIL development. In vitro analyses revealed a direct interaction between LTBP-1 and Notch3-ECD and demonstrated a specific co-aggregation of LTBP-1 with mutant Notch3. We propose LTBP-1 as a novel component of Notch3-ECD deposits and suggest its involvement in pathological processes triggered by Notch3-ECD aggregation.

  19. Prevention against diffuse spinal cord astrocytoma: can the Notch pathway be a novel treatment target?

    Directory of Open Access Journals (Sweden)

    Jian-jun Sun

    2015-01-01

    Full Text Available This study was designed to investigate whether the Notch pathway is involved in the development of diffuse spinal cord astrocytomas. BALB/c nude mice received injections of CD133 + and CD133− cell suspensions prepared using human recurrent diffuse spinal cord astrocytoma tissue through administration into the right parietal lobe. After 7-11 weeks, magnetic resonance imaging was performed weekly. Xenografts were observed on the surfaces of the brains of mice receiving the CD133 + cell suspension, and Notch-immunopositive expression was observed in the xenografts. By contrast, no xenografts appeared in the identical position on the surfaces of the brains of mice receiving the CD133− cell suspension, and Notch-immunopositive expression was hardly detected either. Hematoxylin-eosin staining and immunohistochemical staining revealed xenografts on the convex surfaces of the brains of mice that underwent CD133 + astrocytoma transplantation. Some sporadic astroglioma cells showed pseudopodium-like structures, which extended into the cerebral white matter. However, it should be emphasized that the subcortex xenograft with Notch-immunopositive expression was found in the fourth mouse received injection of CD133− astrocytoma cells. However, these findings suggest that the Notch pathway plays an important role in the formation of astrocytomas, and can be considered a novel treatment target for diffuse spinal cord astrocytoma.

  20. Basigin-2 Is a Cell Surface Receptor for Soluble Basigin Ligand*S⃞

    Science.gov (United States)

    Belton, Robert J.; Chen, Li; Mesquita, Fernando S.; Nowak, Romana A.

    2008-01-01

    The metastatic spread of a tumor is dependent upon the ability of the tumor to stimulate surrounding stromal cells to express enzymes required for tissue remodeling. The immunoglobulin superfamily protein basigin (EMMPRIN/CD147) is a cell surface glycoprotein expressed by tumor cells that stimulates matrix metalloproteinase and vascular endothelial growth factor expression in stromal cells. The ability of basigin to stimulate expression of molecules involved in tissue remodeling and angiogenesis makes basigin a potential target for the development of strategies to block metastasis. However, the identity of the cell surface receptor for basigin remains controversial. The goal of this study was to determine the identity of the receptor for basigin. Using a novel recombinant basigin protein (rBSG) corresponding to the extracellular domain of basigin, it was demonstrated that the native, nonglycosylated rBSG protein forms dimers in solution. Furthermore, rBSG binds to the surface of uterine fibroblasts, activates the ERK1/2 signaling pathway, and induces expression of matrix metalloproteinases 1, 2, and 3. Proteins that interact with rBSG were isolated using a biotin label transfer technique and sequenced by matrix-assisted laser desorption ionization tandem mass spectrophotometry. The results demonstrate that rBSG interacts with basigin expressed on the surface of fibroblasts and is subsequently internalized. During internalization, rBSG associates with a novel form of human basigin (basigin-3). It was concluded that cell surface basigin functions as a membrane receptor for soluble basigin and this homophilic interaction is not dependent upon glycosylation of the basigin ligand. PMID:18434307

  1. Effect of notch dimension on the fatigue life of V-notched structure

    International Nuclear Information System (INIS)

    Cheng Changzheng; Naman, Recho; Niu Zhongrong; Zhou Huanlin

    2011-01-01

    Highlights: → A novel method is proposed to calculate the SIFs of crack at notch tip. → Effect of notch opening angle on the crack extension and propagation is studied. → Influence of notch depth on the crack extension and propagation is analyzed. → The fatigue life of a welded joint is analyzed by the present method. - Abstract: The stress singularity degree associated to a V-notch has a great influence on the fatigue life of V-notched structure. The growth rate of the crack initiated at the tip of a V-notch depends on the stress singularity of the V-notch. The fatigue life accompanying with this small crack will represent a large amount of the total fatigue life. In this work, boundary element method (BEM) is used to study the propagation of the crack emanating from a V-notch tip under fatigue loading. A comparison of the fatigue life between the crack initiated from V-notch tip and a lateral crack is done by a crack propagation law until these two cracks have the same stress intensity factors (SIFs). The effect of initial crack length, notch opening angle and notch depth on the crack extension and propagation is analyzed. As an example of engineering application, the fatigue life of a welded joint is investigated by the present method. The influence of weld toe angle and initial crack length on the fatigue life of the welded structure is studied. Some suggestions are given as an attempt to improve the fatigue life of welded structures at the end.

  2. Single Particle Tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes

    International Nuclear Information System (INIS)

    Mascalchi, Patrice; Lamort, Anne Sophie; Salomé, Laurence; Dumas, Fabrice

    2012-01-01

    Highlights: ► We studied the diffusion of single CD4 receptors on living lymphocytes. ► This study reveals that CD4 receptors have either a random or confined diffusion. ► The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. ► The dynamics of confined CD4 receptors was unchanged by a temperature raise. ► Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 °C and 37 °C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.

  3. Characterizing Spatial Organization of Cell Surface Receptors in Human Breast Cancer with STORM

    Science.gov (United States)

    Lyall, Evan; Chapman, Matthew R.; Sohn, Lydia L.

    2012-02-01

    Regulation and control of complex biological functions are dependent upon spatial organization of biological structures at many different length scales. For instance Eph receptors and their ephrin ligands bind when opposing cells come into contact during development, resulting in spatial organizational changes on the nanometer scale that lead to changes on the macro scale, in a process known as organ morphogenesis. One technique able to probe this important spatial organization at both the nanometer and micrometer length scales, including at cell-cell junctions, is stochastic optical reconstruction microscopy (STORM). STORM is a technique that localizes individual fluorophores based on the centroids of their point spread functions and then reconstructs a composite image to produce super resolved structure. We have applied STORM to study spatial organization of the cell surface of human breast cancer cells, specifically the organization of tyrosine kinase receptors and chemokine receptors. A better characterization of spatial organization of breast cancer cell surface proteins is necessary to fully understand the tumorigenisis pathways in the most common malignancy in United States women.

  4. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2014-10-01

    Full Text Available Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.

  5. GABAB receptor cell surface export is controlled by an endoplasmic reticulum gatekeeper

    Science.gov (United States)

    Doly, Stéphane; Shirvani, Hamasseh; Gäta, Gabriel; Meye, Frank; Emerit, Michel-Boris; Enslen, Hervé; Achour, Lamia; Pardo-Lopez, Liliana; Kwon, Yang Seung; Armand, Vincent; Gardette, Robert; Giros, Bruno; Gassmann, Martin; Bettler, Bernhard; Mameli, Manuel; Darmon, Michèle; Marullo, Stefano

    2016-01-01

    Summary Endoplasmic reticulum (ER) release and cell surface export of many G protein-coupled receptors (GPCRs), are tightly regulated. For GABAB receptors of GABA, the major mammalian inhibitory neurotransmitter, the ligand-binding GB1 subunit is maintained in the ER by unknown mechanisms in the absence of hetero-dimerization with the GB2 subunit. We report that GB1 retention is regulated by a specific gatekeeper, PRAF2. This ER resident transmembrane protein binds to GB1, preventing its progression in the biosynthetic pathway. GB1 release occurs upon competitive displacement from PRAF2 by GB2. PRAF2 concentration, relative to that of GB1 and GB2, tightly controls cell surface receptor density and controls GABAB function in neurons. Experimental perturbation of PRAF2 levels in vivo caused marked hyperactivity disorders in mice. These data reveal an unanticipated major impact of specific ER gate-keepers on GPCR function and identify PRAF2 as a new molecular target with therapeutic potential for psychiatric and neurological diseases involving GABAB function. PMID:26033241

  6. Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor.

    Science.gov (United States)

    Hegenauer, Volker; Fürst, Ursula; Kaiser, Bettina; Smoker, Matthew; Zipfel, Cyril; Felix, Georg; Stahl, Mark; Albert, Markus

    2016-07-29

    Parasitic plants are a constraint on agriculture worldwide. Cuscuta reflexa is a stem holoparasite that infests most dicotyledonous plants. One exception is tomato, which is resistant to C. reflexa We discovered that tomato responds to a small peptide factor occurring in Cuscuta spp. with immune responses typically activated after perception of microbe-associated molecular patterns. We identified the cell surface receptor-like protein CUSCUTA RECEPTOR 1 (CuRe1) as essential for the perception of this parasite-associated molecular pattern. CuRe1 is sufficient to confer responsiveness to the Cuscuta factor and increased resistance to parasitic C. reflexa when heterologously expressed in otherwise susceptible host plants. Our findings reveal that plants recognize parasitic plants in a manner similar to perception of microbial pathogens. Copyright © 2016, American Association for the Advancement of Science.

  7. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Bokoch, Michael P; Zou, Yaozhong; Rasmussen, Søren Gøgsig Faarup

    2010-01-01

    extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known...... conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive...... about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic...

  8. Interactions of Notch1 and TLR4 signaling pathways in DRG neurons of in vivo and in vitro models of diabetic neuropathy.

    Science.gov (United States)

    Chen, Tianhua; Li, Hao; Yin, Yiting; Zhang, Yuanpin; Liu, Zhen; Liu, Huaxiang

    2017-11-02

    Understanding the interactions between Notch1 and toll-like receptor 4 (TLR4) signaling pathways in the development of diabetic peripheral neuropathy may lead to interpretation of the mechanisms and novel approaches for preventing diabetic neuropathic pain. In the present study, the interactions between Notch1 and TLR4 signaling pathways were investigated by using dorsal root ganglion (DRG) from diabetic neuropathic pain rats and cultured DRG neurons under high glucose challenge. The results showed that high glucose induced not only Notch1 mRNA, HES1 mRNA, and TLR4 mRNA expression, but also Notch1 intracellular domain (NICD1) and TLR4 protein expression in DRG neurons. The proportion of NICD1-immunoreactive (IR) and TLR4-IR neurons in DRG cultures was also increased after high glucose challenge. The above alterations could be partially reversed by inhibition of either Notch1 or TLR4 signaling pathway. Inhibition of either Notch1 or TLR4 signaling pathway could improve mechanical allodynia and thermal hyperalgesia thresholds. Inhibition of Notch1 or TLR4 signaling also decreased tumor necrosis factor-α (TNF-α) levels in DRG from diabetic neuropathic rats. These data imply that the interaction between Notch1 and TLR4 signaling pathways is one of the important mechanisms in the development or progression of diabetic neuropathy.

  9. Effects of microstructures on hydrogen induced cracking of electrochemically hydrogenated double notched tensile sample of 4340 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sk, Mobbassar Hassan, E-mail: Skmobba@qu.edu.qa [Center for Advanced Materials, Qatar University, Doha (Qatar); Overfelt, Ruel A. [Materials Research and Education Center, Materials Engineer, Auburn University, Auburn, AL (United States); Abdullah, Aboubakr M. [Center for Advanced Materials, Qatar University, Doha (Qatar)

    2016-04-06

    Quantitative fractographic characteristics of 4340 steel is demonstrated for a grain size range of 10−100 µm and hardness range of 41–52 HRC. Double-notched tensile samples were electrochemically charged in-situ with hydrogen in 0.5 m H{sub 2}SO{sub 4}+5 mg/l As{sub 2}O{sub 3} solution for 0–40 min charging time. Hydrogen induced fracture initiations were analyzed by novel metallographic investigation of the “unbroken” notch while the overall fractographic behaviors were examined by the scanning electron microscopic imaging of the fracture surfaces of the actually broken notch. Effect of hydrogen was predominantly manifested as intergranular fracture for the harder samples and quasi-cleavage fracture for the softer counterparts. 10–40 µm samples showed the maximum intensity of the hydrogen induced fracture features (intergranular and/or quasi-cleavage) close to the notch which gradually reduced with increasing distance from the notch. The largest grained samples (100 µm) however showed brittle behavior even in absence of hydrogen with similar intensity of percent fracture features at all distance from the notch, while presence of hydrogen intensified the overall percent brittle fractures with their intensities being highest close to the notch. Finally, the brittle fracture characteristics of the hydrogen embrittled samples were shown to be distinguishably different from that of the liquid nitrogen treated samples of same grain sizes and hardnesses.

  10. Engineered Biomaterials Control Differentiation and Proliferation of Human-Embryonic-Stem-Cell-Derived Cardiomyocytes via Timed Notch Activation

    Directory of Open Access Journals (Sweden)

    Jason C. Tung

    2014-03-01

    Full Text Available For cell-based treatments of myocardial infarction, a better understanding of key developmental signaling pathways and more robust techniques for producing cardiomyocytes are required. Manipulation of Notch signaling has promise as it plays an important role during cardiovascular development, but previous studies presented conflicting results that Notch activation both positively and negatively regulates cardiogenesis. We developed surface- and microparticle-based Notch-signaling biomaterials that function in a time-specific activation-tunable manner, enabling precise investigation of Notch activation at specific developmental stages. Using our technologies, a biphasic effect of Notch activation on cardiac differentiation was found: early activation in undifferentiated human embryonic stem cells (hESCs promotes ectodermal differentiation, activation in specified cardiovascular progenitor cells increases cardiac differentiation. Signaling also induces cardiomyocyte proliferation, and repeated doses of Notch-signaling microparticles further enhance cardiomyocyte population size. These results highlight the diverse effects of Notch activation during cardiac development and provide approaches for generating large quantities of cardiomyocytes.

  11. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates later-life Notch1-mediated T cell development and leukemogenesis

    International Nuclear Information System (INIS)

    Ahrenhoerster, Lori S.; Leuthner, Tess C.; Tate, Everett R.; Lakatos, Peter A.; Laiosa, Michael D.

    2015-01-01

    Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (Notch ICN-TG ). Following exposure of adult Notch ICN-TG mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3 μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch ICN-TG offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch ICN-TG offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. - Highlights: • Adult mice exposed to 30 μg/kg TCDD have higher efficiency of CD8 thymocyte generation. • Mice carrying a constitutively active Notch transgene were exposed to 3 μg/kg TCDD throughout development. • Progression of Notch-induced thymoma was different in

  12. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates later-life Notch1-mediated T cell development and leukemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenhoerster, Lori S.; Leuthner, Tess C.; Tate, Everett R.; Lakatos, Peter A.; Laiosa, Michael D., E-mail: laiosa@uwm.edu

    2015-03-01

    Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (Notch{sup ICN-TG}). Following exposure of adult Notch{sup ICN-TG} mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3 μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch{sup ICN-TG} offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch{sup ICN-TG} offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. - Highlights: • Adult mice exposed to 30 μg/kg TCDD have higher efficiency of CD8 thymocyte generation. • Mice carrying a constitutively active Notch transgene were exposed to 3 μg/kg TCDD throughout development. • Progression of Notch

  13. Using Force to Probe Single-Molecule Receptor-Cytoskeletal Anchoring Beneath the Surface of a Living Cell

    DEFF Research Database (Denmark)

    Evans, Evan; Kinoshita, Koji

    2007-01-01

    -cytoskeletal unbinding increased exponentially with the level of force, suggesting disruption at a site of single-molecule interaction. Since many important enzymes and signaling molecules are closely associated with a membrane receptor-cytoskeletal linkage, pulling on a receptor could alter interactions among its......The ligation of cell surface receptors often communicates a signal that initiates a cytoplasmic chemical cascade to implement an important cell function. Less well understood is how physical stress applied to a cell surface adhesive bond propagates throughout the cytostructure to catalyze...... or trigger important steps in these chemical processes. Probing the nanoscale impact of pulling on cell surface bonds, we discovered that receptors frequently detach prematurely from the interior cytostructure prior to failure of the exterior adhesive bond [Evans, E., Heinrich, V., Leung, A., and Kinoshita...

  14. Microscopic visualization of metabotropic glutamate receptors on the surface of living cells using bifunctional magnetic resonance imaging probes.

    Science.gov (United States)

    Mishra, Anurag; Mishra, Ritu; Gottschalk, Sven; Pal, Robert; Sim, Neil; Engelmann, Joern; Goldberg, Martin; Parker, David

    2014-02-19

    A series of bimodal metabotropic glutamate-receptor targeted MRI contrast agents has been developed and evaluated, based on established competitive metabotropic Glu receptor subtype 5 (mGluR5) antagonists. In order to directly visualize mGluR5 binding of these agents on the surface of live astrocytes, variations in the core structure were made. A set of gadolinium conjugates containing either a cyanine dye or a fluorescein moiety was accordingly prepared, to allow visualization by optical microscopy in cellulo. In each case, surface receptor binding was compromised and cell internalization observed. Another approach, examining the location of a terbium analogue via sensitized emission, also exhibited nonspecific cell uptake in neuronal cell line models. Finally, biotin derivatives of two lead compounds were prepared, and the specificity of binding to the mGluR5 cell surface receptors was demonstrated with the aid of their fluorescently labeled avidin conjugates, using both total internal reflection fluorescence (TIRF) and confocal microscopy.

  15. lin-12 Notch functions in the adult nervous system of C. elegans

    Directory of Open Access Journals (Sweden)

    Tucey Tim M

    2005-07-01

    Full Text Available Abstract Background Notch signaling pathways are conserved across species and traditionally have been implicated in cell fate determination during embryonic development. Notch signaling components are also expressed postdevelopmentally in the brains of adult mice and Drosophila. Recent studies suggest that Notch signaling may play a role in the physiological, rather than developmental, regulation of neurons. Here, we investigate a new non-developmental role for Caenorhabditis elegans lin-12 Notch signaling in neurons regulating the spontaneous reversal rate during locomotion. Results The spontaneous reversal rate of C. elegans during normal locomotion is constant. Both lin-12 gain and loss of function mutant animals had significantly increased reversal rates compared to wild type controls. These defects were caused by lin-12 activity, because the loss of function defect could be rescued by a wild type lin-12 transgene. Furthermore, overexpression of lin-12 recapitulated the gain-of-function defect. Increasing or decreasing lin-12 activity in the postdevelopmental adult animal was sufficient to rapidly and reversibly increase reversals, thereby excluding a developmental role for lin-12. Although lin-12 is expressed in the vulval and somatic gonad lineages, we find that these tissues play no role in regulating reversal rates. In contrast, altering lin-12 activity specifically in the nervous system was sufficient to increase reversals. These behavioral changes require components of the canonical lin-12 signaling cascade, including the ligand lag-2 and the transcriptional effector lag-1. Finally, the C. elegans AMPA/kainate glutamate receptor homolog glr-1 shows strong genetic interactions with lin-12, suggesting that glr-1 and/or other glutamate gated channels may be targets of lin-12 regulation. Conclusion Our results demonstrate a neuronal role for lin-12 Notch in C. elegans and suggest that lin-12 acutely regulates neuronal physiology to

  16. The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development

    Directory of Open Access Journals (Sweden)

    Bryan W. Heck

    2011-12-01

    SMRTER (SMRT-related and ecdysone receptor interacting factor is the Drosophila homologue of the vertebrate proteins SMRT and N-CoR, and forms with them a well-conserved family of transcriptional corepressors. Molecular characterization of SMRT-family proteins in cultured cells has implicated them in a wide range of transcriptional regulatory pathways. However, little is currently known about how this conserved class of transcriptional corepressors regulates the development of particular tissues via specific pathways. In this study, through our characterization of multiple Smrter (Smr mutant lines, mosaic analysis of a loss-of-function Smr allele, and studies of two independent Smr RNAi fly lines, we report that SMRTER is required for the development of both ovarian follicle cells and the wing. In these two tissues, SMRTER inhibits not only the ecdysone pathway, but also the Notch pathway. We differentiate SMRTER's influence on these two signaling pathways by showing that SMRTER inhibits the Notch pathway, but not the ecdysone pathway, in a spatiotemporally restricted manner. We further confirm the likely involvement of SMRTER in the Notch pathway by demonstrating a direct interaction between SMRTER and Suppressor of Hairless [Su(H], a DNA-binding transcription factor pivotal in the Notch pathway, and the colocalization of both proteins at many chromosomal regions in salivary glands. Based on our results, we propose that SMRTER regulates the Notch pathway through its association with Su(H, and that overcoming a SMRTER-mediated transcriptional repression barrier may represent a key mechanism used by the Notch pathway to control the precise timing of events and the formation of sharp boundaries between cells in multiple tissues during development.

  17. Cathelicidin LL-37 Affects Surface and Intracellular Toll-Like Receptor Expression in Tissue Mast Cells

    Directory of Open Access Journals (Sweden)

    Justyna Agier

    2018-01-01

    Full Text Available Undoubtedly, mast cells take part in host defense against microorganisms as they are numerous at the portal of infection, they release many proinflammatory and antimicrobial mediators, and they express pattern recognition receptors, such as TLRs. These receptors play a key role in recognition and binding molecules associated with microorganisms and molecules associated with damage. Cathelicidins exhibit direct antimicrobial activities against a broad spectrum of microbes by perturbing their cell membranes. Accumulating evidence suggests a role for these molecules in supporting cell activation. We examined the impact of human cathelicidin LL-37 on tissue mast cell TLR expression and distribution. Depending on context, we show that LL-37 stimulation resulted in minor to major effects on TLR2, TLR3, TLR4, TLR5, TLR7, and TLR9 expression. Confocal microscopy analysis showed that, upon stimulation, TLRs may translocate from the cell interior to the surface and conversely. FPR2 and EGFR inhibitors reduced the increase in expression of selected receptors. We also established that LL-37 acts as a powerful inducer of CCL3 and ROS generation. These results showed that in response to LL-37, mast cells enhance the capability to detect invading pathogens by modulation of TLR expression in what may be involved FPR2 or EGFR molecules.

  18. Fracture toughness evaluation of small notched specimen in consideration of notch effect and loading rate

    International Nuclear Information System (INIS)

    Lee, Baik Woo; Kwon, Dong Il; Jang, Jae Il

    2000-01-01

    Notch effect and loading rate dependency on fracture toughness were considered when evaluating fracture toughness of small notched specimens using the instrumented impact test. Notch effect was analyzed into stress redistribution effect and stress relaxation with a viewpoint of stress triaxiality. Stress redistribution effect was corrected by introducing effective crack length, which was the sum of actual crack length and plastic zone size. Stress relaxation effect was also corrected using elastic stress concentration factor, which would decrease if plastic deformation occurred. As a result, corrected fracture toughness of the notched specimen was very consistent with the reference fracture toughness obtained using precracked specimen. In addition, limiting notch root radius, below which fracture toughness was independent of notch radius, was observed and discussed. Loading rate dependency on fracture toughness, which was obtained from the static three point bending test and the instrumented impact test, was also discussed with stress field in plastic zone ahead of a notch and fracture based on stress control mechanism. (author)

  19. Compact microstrip bandpass filter with tunable notch

    DEFF Research Database (Denmark)

    Christensen, Silas; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    Two different designs combining a bandpass and a notch filter are developed to operate in the receiving band from 350–470 MHz. The bandpass filter is designed from a simple structure, by use of only four short circuited stubs and a half wavelength transmission line connecting the stubs. The tunable...... notch filter ensures an attenuation level of 19.3 dB to 27.3 dB in the frequency range from 360–480 MHz. The measured passband ripple of the combined filter is less than 0.5 dB, while the insertion loss for the simplest design is less than 1.7 dB only 10 MHz from the notch frequency. Even though...... the wavelength on the selected substrate (εr = 3.55) is approximately 45 cm, the outer dimensions of the final filter only measure 10×10 cm2....

  20. Magnetoresistance effect in permalloy nanowires with various types of notches

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2018-05-01

    Full Text Available Suppressing the stochastic domain wall (DW motion in magnetic nanowires is of great importance for designing DW-related spintronic devices. In this work, we have investigated the pinning/depinning processes of DWs in permalloy nanowires with three different types of notches by using longitudinal magnetoresistance (MR measurement. The averaged MR curves demonstrate that the stochastic DW depinning is suppressed partly or even completely by a transversely asymmetric notch. The single-shot MR curves show that how the resistance changes with the applied field also depends strongly on the notch type while the DW is pinned around the notch. In the case of two depinning fields, larger (smaller change of resistance always corresponds to larger (smaller depinning field, regardless of the notch type. These phenomena can be understood by that the spin structure around the notch changes differently with the notch type when the DW is traveling through the notch.

  1. Magnetoresistance effect in permalloy nanowires with various types of notches

    Science.gov (United States)

    Gao, Y.; You, B.; Wang, J.; Yuan, Y.; Wei, L. J.; Tu, H. Q.; Zhang, W.; Du, J.

    2018-05-01

    Suppressing the stochastic domain wall (DW) motion in magnetic nanowires is of great importance for designing DW-related spintronic devices. In this work, we have investigated the pinning/depinning processes of DWs in permalloy nanowires with three different types of notches by using longitudinal magnetoresistance (MR) measurement. The averaged MR curves demonstrate that the stochastic DW depinning is suppressed partly or even completely by a transversely asymmetric notch. The single-shot MR curves show that how the resistance changes with the applied field also depends strongly on the notch type while the DW is pinned around the notch. In the case of two depinning fields, larger (smaller) change of resistance always corresponds to larger (smaller) depinning field, regardless of the notch type. These phenomena can be understood by that the spin structure around the notch changes differently with the notch type when the DW is traveling through the notch.

  2. Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis.

    Science.gov (United States)

    Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko

    2017-04-01

    In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028-1039. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. Investigation on the Crack Initiation of V-Shaped Notch Tip in Precision Cropping

    Directory of Open Access Journals (Sweden)

    Lijun Zhang

    2014-01-01

    Full Text Available The crack initiation of V-shaped notch tip has a very important influence on the cross-section quality and the cropping time for every segment of metal bar in course of low stress precision cropping. By the finite element method, the influence of machining precision of V-shaped notch bottom corner on the crack initiation location is analyzed and it is pointed out that the crack initiation point locates in the place at the maximal equivalent stress change rate on V-shaped notch surface. The judgment criterion of the crack initiation direction is presented and the corresponding crack initiation angle can be calculated by means of the displacement extrapolation method. The factual crack initiation angle of the metal bar has been measured by using the microscopic measurement system. The formula of the crack initiation life of V-shaped notch tip is built, which mainly includes the stress concentration factor of V-shaped notch, the tensile properties of metal material, and the cyclic loading conditions. The experimental results show that the obtained theoretical analyses about the crack initiation location, the crack initiation direction, and the crack initiation time in this paper are correct. It is also shown that the crack initiation time accounts for about 80% of the cropping time for every segment of the metal bar.

  4. Syndecans as cell surface receptors: Unique structure equates with functional diversity

    DEFF Research Database (Denmark)

    Choi, Youngsil; Chung, Heesung; Jung, Heyjung

    2011-01-01

    An increasing number of functions for syndecan cell surface heparan sulfate proteoglycans have been proposed over the last decade. Moreover, aberrant syndecan regulation has been found to play a critical role in multiple pathologies, including cancers, as well as wound healing and inflammation....... As receptors, they have much in common with other molecules on the cell surface. Syndecans are type I transmembrane molecules with cytoplasmic domains that link to the actin cytoskeleton and can interact with a number of regulators. However, they are also highly complex by virtue of their external...... glycosaminoglycan chains, especially heparan sulfate. This heterodisperse polysaccharide has the potential to interact with many ligands from diverse protein families. Here, we relate the structural features of syndecans to some of their known functions....

  5. Biochemical characterization and cellular effects of CADASIL mutants of NOTCH3.

    Directory of Open Access Journals (Sweden)

    He Meng

    Full Text Available Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL is the best understood cause of dominantly inherited stroke and results from NOTCH3 mutations that lead to NOTCH3 protein accumulation and selective arterial smooth muscle degeneration. Previous studies show that NOTCH3 protein forms multimers. Here, we investigate protein interactions between NOTCH3 and other vascular Notch isoforms and characterize the effects of elevated NOTCH3 on smooth muscle gene regulation. We demonstrate that NOTCH3 forms heterodimers with NOTCH1, NOTCH3, and NOTCH4. R90C and C49Y mutant NOTCH3 form complexes which are more resistant to detergents than wild type NOTCH3 complexes. Using quantitative NOTCH3-luciferase clearance assays, we found significant inhibition of mutant NOTCH3 clearance. In coculture assays of NOTCH function, overexpressed wild type and mutant NOTCH3 significantly repressed NOTCH-regulated smooth muscle transcripts and potently impaired the activity of three independent smooth muscle promoters. Wildtype and R90C recombinant NOTCH3 proteins applied to cell cultures also blocked canonical Notch fuction. We conclude that CADASIL mutants of NOTCH3 complex with NOTCH1, 3, and 4, slow NOTCH3 clearance, and that overexpressed wild type and mutant NOTCH3 protein interfere with key NOTCH-mediated functions in smooth muscle cells.

  6. Fatigue crack growth from blunt notches

    International Nuclear Information System (INIS)

    Rhodes, D.

    1982-01-01

    A number of methods have been proposed, by which the formation and early growth of fatigue cracks at blunt notches may be predicted. In this report, four methods are compared - i.e. analysis of the crack tip plastic deformation, the cyclic contour integral, δJ, the strain in a critical volume of material, and the notch root plastic strain range. It is shown that these approaches have fundamental elements in common, and that all are compatable with linear elastic fracture mechanics. Early results from a continuing experimental programme are reported. (orig.) [de

  7. The Cell Surface Estrogen Receptor, G Protein- Coupled Receptor 30 (GPR30, is Markedly Down Regulated During Breast Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Indira Poola

    2008-01-01

    Full Text Available Background: GPR30 is a cell surface estrogen receptor that has been shown to mediate a number of non-genomic rapid effects of estrogen and appear to balance the signaling of estrogen and growth factors. In addition, progestins appear to use GPR30 for their actions. Therefore, GPR30 could play a critical role in hormonal regulation of breast epithelial cell integrity. Deregulation of the events mediated by GPR30 could contribute to tumorigenesis.Methods: To understand the role of GPR30 in the deregulation of estrogen signaling processes during breast carcinogenesis, we have undertaken this study to investigate its expression at mRNA levels in tumor tissues and their matched normal tissues. We compared its expression at mRNA levels by RT quantitative real-time PCR relative to GAPDH in ERα”—positive (n = 54 and ERα”—negative (n = 45 breast cancer tissues to their matched normal tissues.Results: We report here, for the first time, that GPR30 mRNA levels were significantly down-regulated in cancer tissues in comparison with their matched normal tissues (p 0.0001 by two sided paired t-test. The GPR30 expression levels were significantly lower in tumor tissues from patients (n = 29 who had lymph node metastasis in comparison with tumors from patients (n = 53 who were negative for lymph node metastasis (two sample t-test, p 0.02, but no association was found with ERα, PR and other tumor characteristics.Conclusions: Down-regulation of GPR30 could contribute to breast tumorigenesis and lymph node metastasis.

  8. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury.

    Science.gov (United States)

    Weidenbusch, Marc; Rodler, Severin; Song, Shangqing; Romoli, Simone; Marschner, Julian A; Kraft, Franziska; Holderied, Alexander; Kumar, Santosh; Mulay, Shrikant R; Honarpisheh, Mohsen; Kumar Devarapu, Satish; Lech, Maciej; Anders, Hans-Joachim

    2017-12-22

    Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered. © 2017 The Author(s).

  9. Observations of the severity of notch-root radius in initiation of subcritical crack growth

    International Nuclear Information System (INIS)

    Reuter, W.G.; Eiholzer, C.R.; Tupper, M.A.

    1981-01-01

    Slow bend tests were conducted on Charpy specimens containing precracks or machined notches of 0.10 or 0.25 mm radius. The test specimens were fabricated from three heats of annealed Type 304 stainless steel. The purpose of these tests was to examine the effects of notch root radius, in very ductile materials, on initiation of subcritical crack growth. In addition, it was intended to establish the critical values of J, COD, etc. for the single-edge notch specimen for comparison with results obtained from specimens containing surface flaws. This paper will briefly describe only those results of the calculation for J. The tests were monitored by acoustic emission to identify the load corresponding to initiation of subcritical crack growth, by a crack-opening displacement gage (COD), by cross-head displacement, and by stop-action photography

  10. Notch-strengthening in two-dimensional foams

    NARCIS (Netherlands)

    Onck, P.R.

    Metallic foams show notch-strengthening behavior when analyzing double-edge notched specimen in compression and tension. A discrete microstructural model has been used to simulate the effect of notch depth and specimen size on the net-section-strength. The non-uniform deformation behavior is

  11. Synthesis of an endothelial cell mimicking surface containing thrombomodulin and endothelial protein C receptor

    Science.gov (United States)

    Kador, Karl Erich

    Synthetic materials for use in blood contacting applications have been studied for many years with limited success. One of the main areas of need for these materials is the design of synthetic vascular grafts for use in the hundreds of thousands of patients who have coronary artery bypass grafting, many without suitable veins for autologous grafts. The design of these grafts is constrained by two common modes of failure, the formation of intimal hyperplasia (IH) and thrombosis. IH formation has been previously linked to a mismatching of the mechanical properties of the graft and has been overcome by creating grafts using materials whose compliance mimics that of the native artery. Several techniques and surface modification have been designed to limit thrombosis on the surface of synthetic materials. One which has shown the greatest promise is the immobilization of Thrombomodulin (TM), a protein found on the endothelial cell membrane lining native blood vessels involved in the activation of the anticoagulant Protein C (PC). While TM immobilization has been shown to arrest thrombin formation and limit fibrous formations in in-vitro and in-vivo experiments, it has shown to be transport limiting under arterial flow. On the endothelial cell surface, TM is co-localized with Endothelial Protein C Receptor (EPCR), which increases PC transport onto the cell surface and increases PC activation via TM between 20-100 fold. This dissertation will describe the chemical modification of medical grade polyurethane (PU), whose compliance has been shown to match that of native arteries. This modification will enable the immobilization of two proteins on an enzymatically relevant scale estimated at less than 10 nm. This dissertation will further describe the immobilization of the proteins TM and EPCR, and analyze the ability of a surface co-immobilized with these proteins to activate the anticoagulant PC. Finally, it will compare the ability of this co-immobilized surface to delay

  12. Notch1 Mediates Preconditioning Protection Induced by GPER in Normotensive and Hypertensive Female Rat Hearts

    Directory of Open Access Journals (Sweden)

    Carmine Rocca

    2018-05-01

    Full Text Available G protein-coupled estrogen receptor (GPER is an estrogen receptor expressed in the cardiovascular system. G1, a selective GPER ligand, exerts cardiovascular effects through activation of the PI3K-Akt pathway and Notch signaling in normotensive animals. Here, we investigated whether the G1/GPER interaction is involved in the limitation of infarct size, and improvement of post-ischemic contractile function in female spontaneous hypertensive rat (SHR hearts. In this model, we also studied Notch signaling and key components of survival pathway, namely PI3K-Akt, nitric oxide synthase (NOS and mitochondrial K+-ATP (MitoKATP channels. Rat hearts isolated from female SHR underwent 30 min of global, normothermic ischemia and 120 min of reperfusion. G1 (10 nM alone or specific inhibitors of GPER, PI3K/NOS and MitoKATP channels co-infused with G1, just before I/R, were studied. The involvement of Notch1 was studied by Western blotting. Infarct size and left ventricular pressure were measured. To confirm endothelial-independent G1-induced protection by Notch signaling, H9c2 cells were studied with specific inhibitor, N-[N-(3,5 difluorophenacetyl-L-alanyl]-S-phenylglycine t-butyl ester (DAPT, 5 μM, of this signaling. Using DAPT, we confirmed the involvement of G1/Notch signaling in limiting infarct size in heart of normotensive animals. In the hypertensive model, G1-induced reduction in infarct size and improvement of cardiac function were prevented by the inhibition of GPER, PI3K/NOS, and MitoKATP channels. The involvement of Notch was confirmed by western blot in the hypertensive model and by the specific inhibitor in the normotensive model and cardiac cell line. Our results suggest that GPERs play a pivotal role in mediating preconditioning cardioprotection in normotensive and hypertensive conditions. The G1-induced protection involves Notch1 and is able to activate the survival pathway in the presence of comorbidity. Several pathological conditions

  13. Cell surface estrogen receptor alpha is upregulated during subchronic metabolic stress and inhibits neuronal cell degeneration.

    Directory of Open Access Journals (Sweden)

    Cristiana Barbati

    Full Text Available In addition to the classical nuclear estrogen receptor, the expression of non-nuclear estrogen receptors localized to the cell surface membrane (mER has recently been demonstrated. Estrogen and its receptors have been implicated in the development or progression of numerous neurodegenerative disorders. Furthermore, the pathogenesis of these diseases has been associated with disturbances of two key cellular programs: apoptosis and autophagy. An excess of apoptosis or a defect in autophagy has been implicated in neurodegeneration. The aim of this study was to clarify the role of ER in determining neuronal cell fate and the possible implication of these receptors in regulating either apoptosis or autophagy. The human neuronal cell line SH-SY5Y and mouse neuronal cells in primary culture were thus exposed to chronic minimal peroxide treatment (CMP, a form of subcytotoxic minimal chronic stress previously that mimics multiple aspects of long-term cell stress and represents a limited molecular proxy for neurodegenerative processes. We actually found that either E2 or E2-bovine serum albumin construct (E2BSA, i.e. a non-permeant form of E2 was capable of modulating intracellular cell signals and regulating cell survival and death. In particular, under CMP, the up-regulation of mERα, but not mERβ, was associated with functional signals (ERK phosphorylation and p38 dephosphorylation compatible with autophagic cytoprotection triggering and leading to cell survival. The mERα trafficking appeared to be independent of the microfilament system cytoskeletal network but was seemingly associated with microtubular apparatus network, i.e., to MAP2 molecular chaperone. Importantly, antioxidant treatments, administration of siRNA to ERα, or the presence of antagonist of ERα hindered these events. These results support that the surface expression of mERα plays a pivotal role in determining cell fate, and that ligand-induced activation of mER signalling exerts a

  14. Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling.

    Science.gov (United States)

    Altmann, Christine; Vasic, Verica; Hardt, Stefanie; Heidler, Juliana; Häussler, Annett; Wittig, Ilka; Schmidt, Mirko H H; Tegeder, Irmgard

    2016-10-22

    Peripheral nerve injury is a frequent cause of lasting motor deficits and chronic pain. Although peripheral nerves are capable of regrowth they often fail to re-innervate target tissues. Using newly generated transgenic mice with inducible neuronal progranulin overexpression we show that progranulin accelerates axonal regrowth, restoration of neuromuscular synapses and recovery of sensory and motor functions after injury of the sciatic nerve. Oppositely, progranulin deficient mice have long-lasting deficits in motor function tests after nerve injury due to enhanced losses of motor neurons and stronger microglia activation in the ventral horn of the spinal cord. Deep proteome and gene ontology (GO) enrichment analysis revealed that the proteins upregulated in progranulin overexpressing mice were involved in 'regulation of transcription' and 'response to insulin' (GO terms). Transcription factor prediction pointed to activation of Notch signaling and indeed, co-immunoprecipitation studies revealed that progranulin bound to the extracellular domain of Notch receptors, and this was functionally associated with higher expression of Notch target genes in the dorsal root ganglia of transgenic mice with neuronal progranulin overexpression. Functionally, these transgenic mice recovered normal gait and running, which was not achieved by controls and was stronger impaired in progranulin deficient mice. We infer that progranulin activates Notch signaling pathways, enhancing thereby the regenerative capacity of partially injured neurons, which leads to improved motor function recovery.

  15. Oridonin inhibits breast cancer growth and metastasis through blocking the Notch signaling

    Directory of Open Access Journals (Sweden)

    Shixin Xia

    2017-05-01

    Full Text Available Background: Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to inhibit growth and metastasis of human breast cancer cells. Methods: The effect of oridonin on proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in human breast cancer cells. The inhibitive effect of oridonin in vivo was determined by using xenografted nude mice. In addition, the expression of Notch receptors (Notch 1–4 was detected by western blot. Results: Oridonin inhibited human breast cancer cells in vitro and in vivo. In addition, oridonin significantly induced human breast cancer cells apoptosis. Furthermore, the oridonin treatment not only inhibited cancer cell migration and invasion, but more significantly, decreased the expression of Notch 1-4 protein. Conclusion: Our results suggest that the inhibitive effect of oridonin is likely to be driven by the inhibition of Notch signaling pathway and the resulting increased apoptosis.

  16. Leptospira surface adhesin (Lsa21) induces Toll like receptor 2 and 4 mediated inflammatory responses in macrophages

    OpenAIRE

    Syed M. Faisal; Vivek P. Varma; M. Subathra; Sarwar Azam; Anil K. Sunkara; Mohd Akif; Mirza. S. Baig; Yung-Fu Chang

    2016-01-01

    Leptospirosis is zoonotic and emerging infectious disease of global importance. Little is understood about Leptospira pathogenesis and host immune response. In the present work we have investigated how Leptospira modulates the host innate immune response mediated by Toll-like receptors (TLRs) via surface exposed proteins. We screened Leptospira outer membrane/surface proteins for their ability to activate/inhibit TLR2/4 signaling in HEK293 cell lines. Of these the 21?kDa Leptospira surface ad...

  17. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    Science.gov (United States)

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.

  18. Role of Notch signaling in the mammalian heart

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.L.; Liu, J.C. [Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Donghu District, Nanchang, Jiangxi (China)

    2013-12-12

    Notch signaling is an evolutionarily ancient, highly conserved pathway important for deciding cell fate, cellular development, differentiation, proliferation, apoptosis, adhesion, and epithelial-to-mesenchymal transition. Notch signaling is also critical in mammalian cardiogenesis, as mutations in this signaling pathway are linked to human congenital heart disease. Furthermore, Notch signaling can repair myocardial injury by promoting myocardial regeneration, protecting ischemic myocardium, inducing angiogenesis, and negatively regulating cardiac fibroblast-myofibroblast transformation. This review provides an update on the known roles of Notch signaling in the mammalian heart. The goal is to assist in developing strategies to influence Notch signaling and optimize myocardial injury repair.

  19. Inhibitory role of Notch1 in calcific aortic valve disease.

    Directory of Open Access Journals (Sweden)

    Asha Acharya

    Full Text Available Aortic valve calcification is the most common form of valvular heart disease, but the mechanisms of calcific aortic valve disease (CAVD are unknown. NOTCH1 mutations are associated with aortic valve malformations and adult-onset calcification in families with inherited disease. The Notch signaling pathway is critical for multiple cell differentiation processes, but its role in the development of CAVD is not well understood. The aim of this study was to investigate the molecular changes that occur with inhibition of Notch signaling in the aortic valve. Notch signaling pathway members are expressed in adult aortic valve cusps, and examination of diseased human aortic valves revealed decreased expression of NOTCH1 in areas of calcium deposition. To identify downstream mediators of Notch1, we examined gene expression changes that occur with chemical inhibition of Notch signaling in rat aortic valve interstitial cells (AVICs. We found significant downregulation of Sox9 along with several cartilage-specific genes that were direct targets of the transcription factor, Sox9. Loss of Sox9 expression has been published to be associated with aortic valve calcification. Utilizing an in vitro porcine aortic valve calcification model system, inhibition of Notch activity resulted in accelerated calcification while stimulation of Notch signaling attenuated the calcific process. Finally, the addition of Sox9 was able to prevent the calcification of porcine AVICs that occurs with Notch inhibition. In conclusion, loss of Notch signaling contributes to aortic valve calcification via a Sox9-dependent mechanism.

  20. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    Science.gov (United States)

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  1. Significance of a notch in the otoacoustic emission stimulus spectrum.

    Science.gov (United States)

    Grenner, J

    2012-09-01

    To explain a clinical observation: a notch in the stimulus spectrum during transient evoked otoacoustic emission measurement in ears with secretory otitis media. The effects of tympanic under-pressure were investigated using a pressure chamber. A model of the ear canal was also studied. Tympanic membrane reflectance increased as a consequence of increased stiffness, causing a notch in the stimulus spectrum. In an adult, the notch could be clearly distinguished at an under-pressure of approximately -185 daPa. The sound frequency of the notch corresponded to a wavelength four times the ear canal length. The ear canal of infants was too short to cause a notch within the displayed frequency range. The notch was demonstrated using both Otodynamics and Madsen equipment. A notch in the otoacoustic emission stimulus spectrum can be caused by increased stiffness of the tympanic membrane, raising suspicion of low middle-ear pressure or secretory otitis media. This finding is not applicable to infants.

  2. ADAM10 regulates Notch function in intestinal stem cells of mice.

    Science.gov (United States)

    Tsai, Yu-Hwai; VanDussen, Kelli L; Sawey, Eric T; Wade, Alex W; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C; Samuelson, Linda C; Dempsey, Peter J

    2014-10-01

    A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. A receptor-based biosensor for lipoprotein docking at the endothelial surface and vascular matrix.

    Science.gov (United States)

    Siegel, G; Malmsten, M; Klüssendorf, D; Michel, F

    2001-12-01

    Proteoheparan sulfate can be adsorbed to a methylated silica surface in a monomolecular layer via its transmembrane hydrophobic protein core domain. Due to electrostatic repulsion, its anionic glycosaminoglycan side chains are stretched out into the blood substitute solution, representing a receptor site for specific lipoprotein binding through basic amino acid-rich residues within their apolipoproteins. The binding process was studied by ellipsometric techniques showing that HDL has a high binding affinity to the receptor and a protective effect on interfacial heparan sulfate proteoglycan layers, with respect to LDL and Ca(2+) complexation. LDL was found to deposit strongly at the proteoheparan sulfate, particularly in the presence of Ca(2+), thus creating the complex formation "proteoglycan-low density lipoprotein-calcium". This ternary complex build-up may be interpreted as arteriosclerotic nanoplaque formation on the molecular level responsible for the arteriosclerotic primary lesion. On the other hand, HDL bound to heparan sulfate proteoglycan protected against LDL docking and completely suppressed calcification of the proteoglycan-lipoprotein complex. In addition, HDL and aqueous garlic extract were able to reduce the ternary complex deposition and to disintegrate HS-PG/LDL/Ca(2+) aggregates. Although much remains unclear regarding the mechanism of lipoprotein depositions at proteoglycan-coated surfaces, it seems clear that the use of such systems offers possibilities for investigating lipoprotein deposition at a "nanoscopic" level under close to physiological conditions. In particular, Ca(2+)-promoted LDL deposition and the protective effect of HDL, even at high Ca(2+) and LDL concentrations, agree well with previous clinical observations regarding risk and beneficial factors for early stages of atherosclerosis. Therefore, we believe that the system can be of some use in investigations, e.g. of the interplay between different lipoproteins in arteriosclerotic

  4. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein

    Directory of Open Access Journals (Sweden)

    Yang Ting

    2008-11-01

    Full Text Available Abstract Background Deposition of amyloid-β protein (Aβ is a major pathological hallmark of Alzheimer's disease (AD. Aβ is generated from γ-secretase cleavage of amyloid precursor protein (APP. In addition to APP, γ-secretase also cleaves other type I integral membrane proteins, including the Notch receptor, a key molecule involved in embryonic development. Results To explore selective γ-secretase inhibitors, a combination of five methods was used to systematically determine these inhibitors' profiles on the γ-secretase cleavage of APP and Notch. When two potent γ-secretase inhibitors, compound E (cpd E and DAPT, were used in a conventional in vitro γ-secretase activity assay, cpd E completely blocked Aβ generation from the cleavage of substrate APP C100, but only had a minor effect on Notch cleavage and NICD generation. Next, cpd E and DAPT were applied to HEK293 cells expressing a truncated Notch substrate NotchΔE. Both cpd E and DAPT were more potent in blocking Aβ generation than NICD generation. Third, a reporter construct was created that carried the NICD targeting promoter with three Su(H binding sequences followed by the luciferase gene. We found that the inhibition of NICD generation by cpd E and DAPT was consistent with the reduced expression of luciferase gene driven by this Notch targeting promoter. Fourth, levels of "Notch-Aβ-like" (Nβ* peptide derived from two previously reported chimeric APP with its transmembrane domain or the juxtamembrane portion replaced by the Notch sequence were quantified. Measurement of Nβ* peptides by ELISA confirmed that EC50's of cpd E were much higher for Nβ* than Aβ. Finally, the expression levels of Notch target gene her6 in cpd E or DAPT-treated zebrafish were correlated with the degree of tail curvature due to defective somitogenesis, a well characterized Notch phenotype in zebrafish. Conclusion Our ELISA-based quantification of Aβ and Nβ* in combination with the test in

  5. Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles

    International Nuclear Information System (INIS)

    Kamen, B.A.; Wang, M.T.; Streckfuss, A.J.; Peryea, X.; Anderson, R.G.

    1988-01-01

    MA104 cells, as well as several other rapidly dividing tissue culture cells, have a folate-binding protein associated with their cell surface. The protein has the properties of a membrane receptor: (a) 5-methyl[ 3 H]tetrahydrofolic acid binds with high affinity (Kd approximately equal to 3 nM); (b) the protein is an integral membrane protein; (c) it appears to deliver physiological concentrations of 5-methyl[ 3 H]tetrahydrofolic acid to the inside of the cell; (d) binding activity is regulated by the concentration of folate within the cell. To better understand the mechanism of action of this receptor, we have studied the pathway of folate internalization. We present evidence that during internalization: (a) folate binds to the membrane receptor; (b) the ligand-receptor complex moves into the cell; (c) the ligand is released from the receptor in an acidic intracellular compartment and moves into the cytoplasm; and (d) the unoccupied receptor returns to the cell surface

  6. The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, bFGF or PPAR gamma mediated angiogenesis in HUVEC

    DEFF Research Database (Denmark)

    Kiec-Wilk, B; Grzybowska-Galuszka, J; Polus, A

    2010-01-01

    The Jagged-Notch signalling, plays a crucial role in cell differentiation. Angiogenesis, is regulated by VEGF, bFGF as well as by the free fatty acid metabolites , which are regulators of transcription factors such as peroxisome proliferation activating receptors (PPARs). The study analyzed...... the signalling pathways involved in the regulation of Jagged-1/Notch-4 expression in endothelial cells (HUVECs) in response to VEGF, bFGF and PPAR-gamma exogenous activator - ciglitazone. HUVECs were incubated with investigated substances for 24 hours, with or without the presence of the MAP-kinases inhibitors...... were used. Jagged-1 and Notch-4 gene expression was determined using quantitative Real-Time PCR. The Jagged-1/Notch-4 protein expression was compared by flow cytometry, when the phosphorylation-dependent activation of kinases was estimated by Western-blot method. The opposite effect of VEGF, b...

  7. Angiogenesis-related protein expression in bevacizumab-treated metastatic colorectal cancer: NOTCH1 detrimental to overall survival

    International Nuclear Information System (INIS)

    Paiva, Tadeu Ferreira Jr.; Jesus, Victor Hugo Fonseca de; Marques, Raul Amorim; Costa, Alexandre André Balieiro Anastácio da; Macedo, Mariana Petaccia de; Peresi, Patricia Maria; Damascena, Aline; Rossi, Benedito Mauro; Begnami, Maria Dirlei; Lima, Vladmir Cláudio Cordeiro de

    2015-01-01

    The development of targeted therapies has undoubtedly broadened therapeutic options for patients with colorectal cancer (CRC). The use of bevacizumab to reduce angiogenesis has been associated with improved clinical outcomes. However, an urgent need for prognostic/predictive biomarkers for anti-angiogenic therapies still exists. Clinical data of 105 CRC patients treated with bevacizumab in conjunction with chemotherapy were analyzed. The expression of vascular endothelial growth factor (VEGF) receptors, NOTCH1 receptor and its ligand DLL4 were determined by immunohistochemistry. Tumor samples were arranged on a tissue microarray. The association between protein expression and clinicopathological characteristics and outcomes was determined. Bevacizumab was administered as a first-line of treatment in 70.5 % of our cases. The median progression-free survival (PFS) was 10.2 months. The median overall survival (OS) of the total cohort was 24.4 months. Bevacizumab, as the first-line of treatment, and the presence of liver metastasis were independently associated with objective response rate. Membrane VEGFR1 and VEGFR3 expressions were associated with the presence of lung metastasis; interestingly, VEGFR3 was associated with less liver metastasis. NOTCH1 expression was associated with lymph node metastasis. There was a trend toward association between improved PFS and lower NOTCH1 expression (p = 0.06). Improved OS was significantly associated with lower NOTCH1 expression (p = 0.01). In a multivariate analysis, ECOG (Eastern Cooperative Oncology Group) performance status, liver metastasis, histological grade, and NOTCH1 expression were independently associated with OS. Our findings illustrated the expression profile of angiogenesis-related proteins and their association with clinicopathological characteristics and outcomes. NOTCH1 expression is a detrimental prognostic factor in metastatic CRC patients treated with chemotherapy plus bevacizumab. The online version of

  8. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit.

    Directory of Open Access Journals (Sweden)

    Simon Kidd

    2015-05-01

    Full Text Available Olfactory receptor neurons (ORNs convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs. We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse.

  9. Part 1: Notch-sparing γ-secretase inhibitors: The identification of novel naphthyl and benzofuranyl amide analogs.

    Science.gov (United States)

    Lu, Dai; Wei, Han-Xun; Zhang, Jing; Gu, Yongli; Osenkowski, Pamela; Ye, Wenjuan; Selkoe, Dennis J; Wolfe, Michael S; Augelli-Szafran, Corinne E

    2016-05-01

    γ-Secretase is one of two proteases directly involved in the production of the amyloid β-peptide (Aβ), which is pathogenic in Alzheimer's disease. Inhibition of γ-secretase to suppress the production of Aβ should not block processing of one of its alternative substrates, Notch1 receptors, as interference with Notch1 signaling leads to severe toxic effects. In the course of our studies to identify γ-secretase inhibitors with selectivity for APP over Notch, 1 [3-(benzyl(isopropyl)amino)-1-(naphthalen-2-yl)propan-1-one] was found to inhibit γ-secretase-mediated Aβ production without interfering with γ-secretase-mediated Notch processing in purified enzyme assays. As 1 is chemically unstable, efforts to increase the stability of this compound led to the identification of 2 [naphthalene-2-carboxylic acid benzyl-isopropyl-amide] which showed similar biological activity to compound 1. Synthesis and evaluation of a series of amide analogs resulted in benzofuranyl amide analogs that showed promising Notch-sparing γ-secretase inhibitory effects. This class of compounds may serve as a novel lead series for further study in the development of γ-secretase inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Immunohistochemical analysis of the role and relationship between Notch-1 and Oct-4 expression in urinary bladder carcinoma.

    Science.gov (United States)

    Abdou, Asmaa Gaber; El-Wahed, Moshira Mohammed Abd; Kandil, Mona Abd-Elhalim; Samaka, Rehab Monir; Elkady, Noha

    2013-10-01

    Most tumors contain a minor population of cancer stem cells that are responsible for tumor heterogeneity, resistance to therapy and recurrence. Oct-4 is a transcription factor responsible for self-renewal of stem cells, whereas the Notch family of receptors and ligands may play a pivotal role in the regulation of stem cell maintenance and differentiation. This study aimed at an evaluation of Oct-4 and Notch-1 expression in both carcinoma and stromal cells of 83 cases of primary bladder carcinoma and to study the relationship between them. Notch-1 was expressed in carcinoma and stromal cells of all malignant cases, where expression in both cell types was correlated with parameters indicating differentiation, such as low grade (p bladder carcinoma, such as poor differentiation (p = 0.001), high proliferation (p bladder carcinoma, where they may cooperate in the progression of bladder carcinoma by acquiring aggressive features, such as a liability for recurrence and dissemination. Notch-1 is also expressed in both carcinoma cells and stromal cells of bladder carcinoma. Although they could share in enhancing differentiation, stromal expression of Notch-1 may have a bad impact, possibly through up-regulation of the active nuclear form of Oct-4 in carcinoma cells. © 2013 APMIS Published by Blackwell Publishing Ltd.

  11. Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity.

    Science.gov (United States)

    Kapsimali, Marika; Kaushik, Anna-Lila; Gibon, Guillaume; Dirian, Lara; Ernest, Sylvain; Rosa, Frederic M

    2011-08-01

    Taste buds, the taste sensory organs, are conserved in vertebrates and composed of distinct cell types, including taste receptor, basal/presynaptic and support cells. Here, we characterize zebrafish taste bud development and show that compromised Fgf signaling in the larva results in taste bud reduction and disorganization. We determine that Fgf activity is required within pharyngeal endoderm for formation of Calb2b(+) cells and reveal miR-200 and Delta-Notch signaling as key factors in this process. miR-200 knock down shows that miR-200 activity is required for taste bud formation and in particular for Calb2b(+) cell formation. Compromised delta activity in mib(-/-) dramatically reduces the number of Calb2b(+) cells and increases the number of 5HT(+) cells. Conversely, larvae with increased Notch activity and ascl1a(-/-) mutants are devoid of 5HT(+) cells, but have maintained and increased Calb2b(+) cells, respectively. These results show that Delta-Notch signaling is required for intact taste bud organ formation. Consistent with this, Notch activity restores Calb2b(+) cell formation in pharyngeal endoderm with compromised Fgf signaling, but fails to restore the formation of these cells after miR-200 knock down. Altogether, this study provides genetic evidence that supports a novel model where Fgf regulates Delta-Notch signaling, and subsequently miR-200 activity, in order to promote taste bud cell type differentiation.

  12. Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone

    Science.gov (United States)

    Kolonin, Mikhail G.; Sergeeva, Anna; Staquicini, Daniela I.; Smith, Tracey L.; Tarleton, Christy A.; Molldrem, Jeffrey J.; Sidman, Richard L.; Marchiò, Serena; Pasqualini, Renata; Arap, Wadih

    2017-01-01

    Human prostate cancer often metastasizes to bone, but the biological basis for such site-specific tropism remains largely unresolved. Recent work led us to hypothesize that this tropism may reflect pathogenic interactions between RAGE, a cell surface receptor expressed on malignant cells in advanced prostate cancer, and proteinase 3 (PR3), a serine protease present in inflammatory neutrophils and hematopoietic cells within the bone marrow microenvironment. In this study, we establish that RAGE-PR3 interaction mediates homing of prostate cancer cells to the bone marrow. PR3 bound to RAGE on the surface of prostate cancer cells in vitro, inducing tumor cell motility through a non-proteolytic signal transduction cascade involving activation and phosphorylation of ERK1/2 and JNK1. In preclinical models of experimental metastasis, ectopic expression of RAGE on human prostate cancer cells was sufficient to promote bone marrow homing within a short time frame. Our findings demonstrate how RAGE-PR3 interactions between human prostate cancer cells and the bone marrow microenvironment mediate bone metastasis during prostate cancer progression, with potential implications for prognosis and therapeutic intervention. PMID:28428279

  13. Quantitation of Fc receptors and surface immunoglobulin is affected by cell isolation procedures using plasmagel and ficoll-hypaque.

    Science.gov (United States)

    Alexander, E L; Titus, J A; Segal, D M

    1978-01-01

    When mononuclear leukocytes are isolated directly from whole human blood using Ficoll-Hypaque or Plasmagel, cytophilic immunoglobulin is detected on cell surfaces. Upon incubation at 37 degrees C, this cell-associated immunoglobulin is shed slowly into the medium. However, when cells are prewashed in phosphate-buffered saline prior to isolation, they appear to be free of cytophilic immunoglobulin. Compared to prewashed cells, populations retaining cytophilic immunoglobulin on their surfaces demonstrate a decreased binding of soluble immune complexes and radiolabelled trimeric rabbit IgG. The data suggest that Ficoll-Hypaque and Plasmagel cause serum IgG to bind with abnormally high affinity to human mononuclear leukocytes, probably via Fc receptors. This artifact of preparation can lead to erroneous estimates of the numbers of cells bearing Fc receptors or intrinsic membrane immunoglobulin within a given population of cells and to an inaccurate assessment of the average number of Fc receptors per cell.

  14. Differential expression of the P2X7 receptor in ovarian surface epithelium during the oestrous cycle in the mouse.

    Science.gov (United States)

    Vázquez-Cuevas, F G; Cruz-Rico, A; Garay, E; García-Carrancá, A; Pérez-Montiel, D; Juárez, B; Arellano, R O

    2013-01-01

    Purinergic signalling has been proposed as an intraovarian regulatory mechanism. Of the receptors responsible for purinergic transmission, the P2X7 receptor is an ATP-gated cationic channel that displays a broad spectrum of cellular functions ranging from apoptosis to cell proliferation and tumourigenesis. In the present study, we investigated the functional expression of P2X7 receptors in ovarian surface epithelium (OSE). P2X7 protein was detected in the OSE layer of the mouse, both in situ and in primary cultures. In cultures, 2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate (BzATP) activation of P2X7 receptors increased [Ca(2+)]i and induced apoptosis. The functionality of the P2X7 receptor was investigated in situ by intrabursal injection of BzATP on each day of the oestrous cycle and evaluation of apoptosis 24h using the terminal deoxyribonucleotidyl transferase-mediated dUTP-fluorescein nick end-labelling (TUNEL) assay. Maximum effects of BzATP were observed during pro-oestrus, with the effects being blocked by A438079, a specific P2X7 receptor antagonist. Immunofluorescence staining for P2X7 protein revealed more robust expression during pro-oestrus and in OSE regions behind the antral follicles, strongly supporting the notion that the differences in apoptosis can be explained by increased receptor expression, which is regulated during the oestrous cycle. Finally, P2X7 receptor expression was detected in the OSE layer of human ovaries, with receptor expression maintained in human ovaries diagnosed with cancer, as well as in the human ovarian carcinoma SKOV3 cell line.

  15. Ligand receptor dynamics at streptavidin-coated particle surfaces: A flow cytometric and spectrofluorimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Buranda, T. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States)]|[Univ. of New Mexico, Albuquerque, NM (United States); Jones, G.M. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States); Nolan, J.P.; Keij, J. [Los Alamos National Labs., NM (United States); Lopez, G.P. [Univ. of New Mexico, Albuquerque, NM (United States); Sklar, L.A. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States)]|[Los Alamos National Lab., NM (United States)

    1999-04-29

    The authors have studied the binding of 5-((N-(5-(N-(6-(biotinoyl)amino)hexanoyl)amino)pentyl)thioureidyl)fluorescein (fluorescein biotin) to 6.2 {micro}m diameter, streptavidin-coated polystyrene beads using a combination of fluorimetric and flow cytometric methods. They have determined the average number of binding sites per bead, the extent of fluorescein quenching upon binding to the bead, and the association and dissociation kinetics. The authors estimate the site number to be {approx}1 million per bead. The binding of the fluorescein biotin ligand occurs in steps where the insertion of the biotin moiety into one receptor pocket is followed immediately by the capture of the fluorescein moiety by a neighboring binding pocket; fluorescence quenching is a consequence of this secondary binding. At high surface coverage, the dominant mechanism of quenching appears to be via the formation of nonfluorescent nearest-neighbor aggregates. At early times, the binding process is characterized by biphasic association and dissociation kinetics which are remarkably dependent on the initial concentration of the ligand. The rate constant for binding to the first receptor pocket of a streptavidin molecule is {approx}(1.3 {+-} 0.3) {times} 10{sup 7} 1{sup {minus}1} S{sup {minus}1}. The rate of binding of a second biotin may be reduced due to steric interference. The early time dissociative behavior is in sharp contrast to the typical stability associated with this system. The early time dissociative behavior is in sharp contrast to the typical stability associated with this system. The dissociation rate constant is as high as 0.05 s{sup {minus}1} shortly after binding, but decreases by 3 orders of magnitude after 3 h of binding. Potential sources for the time dependence of the dissociation rate constant are discussed.

  16. Design of UWB Filter with WLAN Notch

    Directory of Open Access Journals (Sweden)

    Harish Kumar

    2012-01-01

    Full Text Available UWB technology- (operating in broad frequency range of 3.1–10.6 GHz based filter with WLAN notch has shown great achievement for high-speed wireless communications. To satisfy the UWB system requirements, a band pass filter with a broad pass band width, low insertion loss, and high stop-band suppression are needed. UWB filter with wireless local area network (WLAN notch at 5.6 GHz and 3 dB fractional bandwidth of 109.5% using a microstrip structure is presented. Initially a two-transmission-pole UWB band pass filter in the frequency range 3.1–10.6 GHz is achieved by designing a parallel-coupled microstrip line with defective ground plane structure using GML 1000 substrate with specifications: dielectric constant 3.2 and thickness 0.762 mm at centre frequency 6.85 GHz. In this structure a λ/4 open-circuited stub is introduced to achieve the notch at 5.6 GHz to avoid the interference with WLAN frequency which lies in the desired UWB band. The design structure was simulated on electromagnetic circuit simulation software and fabricated by microwave integrated circuit technique. The measured VNA results show the close agreement with simulated results.

  17. The neuronal Ca(2+) -binding protein 2 (NECAB2) interacts with the adenosine A(2A) receptor and modulates the cell surface expression and function of the receptor.

    Science.gov (United States)

    Canela, Laia; Luján, Rafael; Lluís, Carme; Burgueño, Javier; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Ciruela, Francisco

    2007-09-01

    Heptaspanning membrane also known as G protein-coupled receptors (GPCR) do interact with a variety of intracellular proteins whose function is regulate receptor traffic and/or signaling. Using a yeast two-hybrid screen, NECAB2, a neuronal calcium binding protein, was identified as a binding partner for the adenosine A(2A) receptor (A(2A)R) interacting with its C-terminal domain. Co-localization, co-immunoprecipitation and pull-down experiments showed a close and specific interaction between A(2A)R and NECAB2 in both transfected HEK-293 cells and also in rat striatum. Immunoelectron microscopy detection of NECAB2 and A(2A)R in the rat striatopallidal structures indicated that both proteins are co-distributed in the same glutamatergic nerve terminals. The interaction of NECAB2 with A(2A)R modulated the cell surface expression, the ligand-dependent internalization and the receptor-mediated activation of the MAPK pathway. Overall, these results show that A(2A)R interacts with NECAB2 in striatal neurones co-expressing the two proteins and that the interaction is relevant for A(2A)R function.

  18. 17β-estradiol regulates the differentiation of cementoblasts via Notch signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jing; Zhou, Zeyuan; Huang, Li; Li, Yuyu [Department of Orthodontics, The State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province (China); Li, Jingtao [Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province (China); Zou, Shujuan, E-mail: drzsj@scu.edu.cn [Department of Orthodontics, The State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province (China)

    2016-08-12

    Estrogen has been well recognized as a key factor in the homeostasis of bone and periodontal tissue, but the way it regulates the activities of cementoblasts, the cell population maintaining cementum has not been fully understood. In this study, we examined the expression of estrogen receptor in OCCM-30 cells and the effect of 17β-estradiol (E2) on the proliferation and differentiation of OCCM-30 cells. We found that both estrogen receptor α and β were expressed in OCCM-30 cells. E2 exerted no significant influence on the proliferation of OCCM-30 cells, but inhibited the transcription and translation of BSP and Runx2 in the early phase of osteogenic induction except the BSP mRNA. Afterwards in the late phase of osteogenic induction, E2 enhanced the transcription and translation of BSP and Runx2 and promoted the calcium deposition. In addition, the expression level of Notch1, NICD and Hey1 mRNAs responded to exogenous E2 in a pattern similar to that of the osteoblastic markers. DAPT could attenuate the effect of E2 on the expression of osteoblastic markers. These findings indicated that E2 might regulate the differentiation of cementoblasts via Notch signaling. - Highlights: • 17β-estradiol showed no significant effect on the proliferation of cementoblasts. • 17β-estradiol promoted the osteoblastic differentiation of cementoblasts despite of an early transient inhibition. • Notch signaling was regulated by 17β-estradiol and was responsible for mediating the effect of E2 on cementoblasts. • Hey1 might display an opposite expression pattern to Notch signaling in certain circumstances.

  19. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  20. Down-regulation of Cell Surface Cyclic AMP Receptors and Desensitization of Cyclic AMP-stimulated Adenylate Cyclase by Cyclic AMP in Dictyostelium discoideum. Kinetics and Concentration Dependence

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1987-01-01

    cAMP binds to Dictyostelium discoideum surface receptors and induces a transient activation of adenylate cyclase, which is followed by desensitization. cAMP also induces a loss of detectable surface receptors (down-regulation). Cells were incubated with constant cAMP concentrations, washed free of

  1. Notch signaling inhibitor DAPT provides protection against acute craniocerebral injury.

    Directory of Open Access Journals (Sweden)

    Hong-Mei Zhang

    Full Text Available Notch signaling pathway is involved in many physiological and pathological processes. The γ-secretase inhibitor DAPT inhibits Notch signaling pathway and promotes nerve regeneration after cerebral ischemia. However, neuroprotective effects of DAPT against acute craniocerebral injury remain unclear. In this study, we established rat model of acute craniocerebral injury, and found that with the increase of damage grade, the expression of Notch and downstream protein Hes1 and Hes5 expression gradually increased. After the administration of DAPT, the expression of Notch, Hes1 and Hes5 was inhibited, apoptosis and oxidative stress decreased, neurological function and cognitive function improved. These results suggest that Notch signaling can be used as an indicator to assess the severity of post-traumatic brain injury. Notch inhibitor DAPT can reduce oxidative stress and apoptosis after acute craniocerebral injury, and is a potential drug for the treatment of acute craniocerebral injury.

  2. Study of microstructure and fracture properties of blunt notched and sharp cracked high density polyethylene specimens.

    Science.gov (United States)

    Pan, Huanyu; Devasahayam, Sheila; Bandyopadhyay, Sri

    2017-07-21

    This paper examines the effect of a broad range of crosshead speed (0.05 to 100 mm/min) and a small range of temperature (25 °C and 45 °C) on the failure behaviour of high density polyethylene (HDPE) specimens containing a) standard size blunt notch and b) standard size blunt notch plus small sharp crack - all tested in air. It was observed that the yield stress properties showed linear increase with the natural logarithm of strain rate. The stress intensity factors under blunt notch and sharp crack conditions also increased linearly with natural logarithm of the crosshead speed. The results indicate that in the practical temperature range of 25 °C and 45 °C under normal atmosphere and increasing strain rates, HDPE specimens with both blunt notches and sharp cracks possess superior fracture properties. SEM microstructure studies of fracture surfaces showed craze initiation mechanisms at lower strain rate, whilst at higher strain rates there is evidence of dimple patterns absorbing the strain energy and creating plastic deformation. The stress intensity factor and the yield strength were higher at 25 °C compared to those at 45 °C.

  3. Self-collimation-based photonic crystal notch filters

    International Nuclear Information System (INIS)

    Lee, Sun-Goo; Kim, Seong-Han; Kee, Chul-Sik; Kim, Kap-Joong

    2017-01-01

    We introduce a design concept of an optical notch filter (NF) utilizing two perfectly reflecting mirrors and a beam splitter. Based on the new design concept, a photonic crystal (PC)-NF based on the self-collimation phenomenon in a two-dimensional PC is proposed and studied through finite-difference time-domain simulations and experimental measurements in a microwave region. The transmission properties of the self-collimation-based PC-NF were demonstrated to be controlled by adjusting the values of parameters such as the radius of rods in the line-defect beam splitter, distance between the two perfectly reflecting mirrors, and radius of rods on the outermost surface of the perfectly reflecting mirrors. Our results indicate that the proposed design concept could provide a new approach to manipulate light propagation, and the PC-NF could increase the applicability of the self-collimation phenomenon in a PC. (paper)

  4. The Role of Notch Signaling Pathway in Breast Cancer Pathogenesis

    Science.gov (United States)

    2005-07-01

    breast cancer cells, I tested whether ErbB2 overexpression will cooperate with Notch in HMLE cells. While overexpression of activated Notch1 failed to...tyrosine kinase upstream of Ras normally found overexpressed in many breast cancers , also failed to transform HMLE cells. These observations suggested...cooperation between Notch1IC and ErbB2 signaling in transforming HMLE cells. Breast cancers typically do not harbor oncogenic Ras mutations; nevertheless

  5. Chromatin modification of Notch targets in olfactory receptor neuron diversification

    Czech Academy of Sciences Publication Activity Database

    Endo, K.; Karim, M. R.; Taniguchi, H.; Krejčí, Alena; Kinameri, E.; Siebert, M.; Ito, K.; Bray, S. J.; Moore, A. W.

    2012-01-01

    Roč. 15, č. 2 (2012), s. 224-233 ISSN 1097-6256 Institutional research plan: CEZ:AV0Z50070508 Keywords : neuron diversification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 15.251, year: 2012

  6. Analysis list: NOTCH1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NOTCH1 Blood + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/NOTCH1.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/NOTCH1.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/NOTC...H1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/NOTCH1.Blood.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Blood.gml ...

  7. The functional role of Notch signaling in human gliomas

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2010-01-01

    have been referred to as brain cancer stem cells (bCSC), as they share similarities to normal neural stem cells in the brain. The Notch signaling pathway is involved in cell fate decisions throughout normal development and in stem cell proliferation and maintenance. The role of Notch in cancer is now...... firmly established, and recent data implicate a role for Notch signaling also in gliomas and bCSC. In this review, we explore the role of the Notch signaling pathway in gliomas with emphasis on its role in normal brain development and its interplay with pathways and processes that are characteristic...

  8. Surface Expression of TGFβ Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer.

    Science.gov (United States)

    Metelli, Alessandra; Wu, Bill X; Fugle, Caroline W; Rachidi, Saleh; Sun, Shaoli; Zhang, Yongliang; Wu, Jennifer; Tomlinson, Stephen; Howe, Philip H; Yang, Yi; Garrett-Mayer, Elizabeth; Liu, Bei; Li, Zihai

    2016-12-15

    GARP encoded by the Lrrc32 gene is the cell surface docking receptor for latent TGFβ, which is expressed naturally by platelets and regulatory T cells (Treg). Although Lrrc32 is amplified frequently in breast cancer, the expression and relevant functions of GARP in cancer have not been explored. Here, we report that GARP exerts oncogenic effects, promoting immune tolerance by enriching and activating latent TGFβ in the tumor microenvironment. We found that human breast, lung, and colon cancers expressed GARP aberrantly. In genetic studies in normal mammary gland epithelial and carcinoma cells, GARP expression increased TGFβ bioactivity and promoted malignant transformation in immunodeficient mice. In breast carcinoma-bearing mice that were immunocompetent, GARP overexpression promoted Foxp3 + Treg activity, which in turn contributed to enhancing cancer progression and metastasis. Notably, administration of a GARP-specific mAb limited metastasis in an orthotopic model of human breast cancer. Overall, these results define the oncogenic effects of the GARP-TGFβ axis in the tumor microenvironment and suggest mechanisms that might be exploited for diagnostic and therapeutic purposes. Cancer Res; 76(24); 7106-17. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Identification and characterization of the murine cell surface receptor for the urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Solberg, H; Løber, D; Eriksen, J

    1992-01-01

    -blotting analysis. Binding of mouse u-PA to its receptor showed species specificity in ligand-blotting analysis, since mouse u-PA did not bind to human u-PAR and human u-PA did not bind to mouse u-PAR. The apparent M(r) of mouse u-PAR varied between different mouse cell lines and ranged over M(r) 45......,000-60,000. In four of the cell lines, mouse u-PA bound to two mouse u-PAR variant proteins, whereas in the other two cell lines studied, there was only one mouse u-PA-binding protein. In the monocyte macrophage cell line P388D.1, trypsin-treatment of intact cells could remove only the large mouse u-PAR variant (M...... to the cell surface by glycosylphosphatidylinositol. Purification of the two mouse u-PAR variant proteins by diisopropylfluorophosphate-inactivated mouse u-PA-Sepharose affinity chromatography yielded two silver-stained bands when analysed by SDS/PAGE, corresponding in electrophoretic mobility to those seen...

  10. Distinctive receptor binding properties of the surface glycoprotein of a natural Feline Leukemia Virus isolate with unusual disease spectrum

    Directory of Open Access Journals (Sweden)

    Albritton Lorraine M

    2011-05-01

    Full Text Available Abstract Background Feline leukemia virus (FeLV-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor. Results Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect. Conclusions The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.

  11. Ligand-independent Thrombopoietin Mutant Receptor Requires Cell Surface Localization for Endogenous Activity*

    OpenAIRE

    Marty, Caroline; Chaligné, Ronan; Lacout, Catherine; Constantinescu, Stefan N.; Vainchenker, William; Villeval, Jean-Luc

    2009-01-01

    The activating W515L mutation in the thrombopoietin receptor (MPL) has been identified in primary myelofibrosis and essential thrombocythemia. MPL belongs to a subset of the cytokine receptor superfamily that requires the JAK2 kinase for signaling. We examined whether the ligand-independent MPLW515L mutant could signal intracellularly. Addition of the endoplasmic reticulum (ER) retention KDEL sequence to the receptor C terminus efficiently locked MPLW515L within its na...

  12. Weld investigations by 3D analyses of Charpy V-notch specimens

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, Allan

    2005-01-01

    The Charpy impact test is a standard procedure for determining the ductile-brittle transition in welds. The predictions of such tests have been investigated by full three dimensional transient analyses of Charpy V-notch specimens. The material response is characterised by an elastic...... parameters in the weld material differ from those in the base material, and the heat a®ected zone (HAZ) tends to be more brittle than the other material regions. The effect of weld strength undermatch or overmatch is an important issue. Some specimens, for which the notched surface is rotated relative...... to the surface of the test piece, have so complex geometry that only a full 3D analysis is able to account for the interaction of failure in the three different material regions, whereas ther specimens can be approximated in terms of a planar analysis....

  13. A novel thromboxane A2 receptor N42S variant results in reduced surface expression and platelet dysfunction.

    Science.gov (United States)

    Nisar, Shaista P; Lordkipanidzé, Marie; Jones, Matthew L; Dawood, Ban; Murden, Sherina; Cunningham, Margaret R; Mumford, Andrew D; Wilde, Jonathan T; Watson, Steve P; Mundell, Stuart J; Lowe, Gillian C

    2014-05-05

    A small number of thromboxane receptor variants have been described in patients with a bleeding history that result in platelet dysfunction. We have identified a patient with a history of significant bleeding, who expresses a novel heterozygous thromboxane receptor variant that predicts an asparagine to serine substitution (N42S). This asparagine is conserved across all class A GPCRs, suggesting a vital role for receptor structure and function.We investigated the functional consequences of the TP receptor heterozygous N42S substitution by performing platelet function studies on platelet-rich plasma taken from the patient and healthy controls. We investigated the N42S mutation by expressing the wild-type (WT) and mutant receptor in human embryonic kidney (HEK) cells. Aggregation studies showed an ablation of arachidonic acid responses in the patient, whilst there was right-ward shift of the U46619 concentration response curve (CRC). Thromboxane generation was unaffected. Calcium mobilisation studies in cells lines showed a rightward shift of the U46619 CRC in N42S-expressing cells compared to WT. Radioligand binding studies revealed a reduction in BMax in platelets taken from the patient and in N42S-expressing cells, whilst cell studies confirmed poor surface expression. We have identified a novel thromboxane receptor variant, N42S, which results in platelet dysfunction due to reduced surface expression. It is associated with a significant bleeding history in the patient in whom it was identified. This is the first description of a naturally occurring variant that results in the substitution of this highly conserved residue and confirms the importance of this residue for correct GPCR function.

  14. Progress Report on Alloy 617 Notched Specimen Testing

    Energy Technology Data Exchange (ETDEWEB)

    McMurtrey, Michael David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard Neil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lillo, Thomas Martin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Creep behavior of Alloy 617 has been extensively characterized to support the development of a draft Code Case to qualify Alloy 617 in Section III division 5 of the ASME Boiler and Pressure Vessel Code. This will allow use of Alloy 617 in construction of nuclear reactor components at elevated temperatures and longer periods of time (up to 950°C and 100,000 hours). Prior to actual use, additional concerns not considered in the ASME code need to be addressed. Code Cases are based largely on uniaxial testing of smooth gage specimens. In service conditions, components will generally be under multi axial loading. There is also the concern of the behavior at discontinuities, such as threaded components. To address the concerns of multi axial creep behavior and at geometric discontinuities, notched specimens have been designed to create conditions representative of the states that service components experience. Two general notch geometries have been used for these series of tests: U notch and V notch specimens. The notches produce a tri axial stress state, though not uniform across the specimen. Characterization of the creep behavior of the U notch specimens and the creep rupture behavior of the V notch specimens provides a good approximation of the behavior expected of actual components. Preliminary testing and analysis have been completed and are reported in this document. This includes results from V notch specimens tested at 900°C and 800°C. Failure occurred in the smooth gage section of the specimen rather than at the root of the notch, though some damage was present at the root of the notch, where initial stress was highest. This indicates notch strengthening behavior in this material at these temperatures.

  15. Precracking of round notched bars. Progress Report

    International Nuclear Information System (INIS)

    Scibetta, M.

    1996-02-01

    Precracking round notched bars is the first step before fracture mechanics testing. This report gives an overview of the different techniques described in the literature. Difficulties generally encountered are linked to the crack length determination and the creation of eccentric cracks. As the compliance technique is often used, a detailed study of the stress intensity factor and the compliance of the precracked bar under bending and tension is presented. Comparison with finite element calculations is made to validate the proposed analytical formulation. Finally a practical way for precracking is described

  16. [Valsartan inhibits angiotensin II-Notch signaling of mesangial cells induced by high glucose].

    Science.gov (United States)

    Yuan, Qin; Lyu, Chuan; Wu, Can; Lei, Sha; Shao, Ying; Wang, Qiuyue

    2016-01-01

    To explore the role of angiotensin II (Ang II)-Notch signaling in high glucose-induced secretion of extracellular matrix of rat mesangial cells (RMCs) and to further investigate the protective effect of valsartan (one of Ang II receptor blockers) on kidney. Subcultured RMCs were divided into groups as follows: normal glucose group (5.5 mmol/L glucose); high glucose group (30 mmol/L glucose); high concentration of mannitol as osmotic control group (5.5 mmol/L glucose and 24.5 mmol/L mannitol); normal glucose plus 1 μmol/L N-[N-(3, 5-difluorophenacetyl)-L-alanyl ]-S-phenylglycine t-butyl ester (DAPT) group; normal glucose plus (1, 5, 10) μmol/L valsartan group; high glucose plus 1 μmol/L DAPT group; high glucose plus (1, 5, 10) μmol/L valsartan group. Cells and supernatants were harvested after 12, 24 and 48 hours. Notch1 expression was examined by Western blotting. Secretion of transforming growth factor (TGF-β) and fibronectin (FN) were detected by ELISA. Compared to the normal glucose group, Notch1 expression was elevated in the high glucose group after 12 hours, and peaked at 24 hours. Besides, secretion of TGF-β and FN were much higher in the high glucose group than in the normal glucose group in a time-dependent manner. Compared to the untreated group, Notch1 expression decreased in a dose-dependent manner in the valsartan or DAPT treated group under high glucose after 24 hours. After pre-treatment by either valsartan or DAPT in the high glucose group, secretion of TGF-β and FN obviously decreased as compared to the untreated group. Hyperglycemia could stimulate activation of Notch signaling in cultured RMCs, which may increase secretion of downstream fibrotic factors such as TGF-β and FN. Valsartan may decrease the secretion of downstream FN in a dose-dependent manner via inhibiting AngII-Notch signaling.

  17. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure

    Science.gov (United States)

    Krebs, Luke T.; Norton, Christine R.; Gridley, Thomas

    2017-01-01

    Summary The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. PMID:26742650

  18. O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function.

    Directory of Open Access Journals (Sweden)

    Julia Müller

    Full Text Available Fucosylation of Epidermal Growth Factor-like (EGF repeats by protein O-fucosyltransferase 1 (POFUT1 in vertebrates, OFUT1 in Drosophila is pivotal for NOTCH function. In Drosophila OFUT1 also acts as chaperone for Notch independent from its enzymatic activity. NOTCH ligands are also substrates for POFUT1, but in Drosophila OFUT1 is not essential for ligand function. In vertebrates the significance of POFUT1 for ligand function and subcellular localization is unclear. Here, we analyze the importance of O-fucosylation and POFUT1 for the mouse NOTCH ligand Delta-like 1 (DLL1. We show by mass spectral glycoproteomic analyses that DLL1 is O-fucosylated at the consensus motif C²XXXX(S/TC³ (where C² and C³ are the second and third conserved cysteines within the EGF repeats found in EGF repeats 3, 4, 7 and 8. A putative site with only three amino acids between the second cysteine and the hydroxy amino acid within EGF repeat 2 is not modified. DLL1 proteins with mutated O-fucosylation sites reach the cell surface and accumulate intracellularly. Likewise, in presomitic mesoderm cells of POFUT1 deficient embryos DLL1 is present on the cell surface, and in mouse embryonic fibroblasts lacking POFUT1 the same relative amount of overexpressed wild type DLL1 reaches the cell surface as in wild type embryonic fibroblasts. DLL1 expressed in POFUT1 mutant cells can activate NOTCH, indicating that POFUT1 is not required for DLL1 function as a Notch ligand.

  19. The effect of shot peening on notched low cycle fatigue

    International Nuclear Information System (INIS)

    Soady, K.A.; Mellor, B.G.; Shackleton, J.; Morris, A.; Reed, P.A.S.

    2011-01-01

    Highlights: → Shot peening improves notched component three point bend low cycle fatigue life. → Notch shape does not affect the efficacy of the peening process. → Strain hardening and residual stress effects need separate consideration. → Loading direction residual stresses do not relax under bend load. - Abstract: The improvement in low cycle fatigue life created by shot peening ferritic heat resistant steel was investigated in components of varying geometries based on those found in conventional power station steam turbine blades. It was found that the shape of the component did not affect the efficacy of the shot peening process, which was found to be beneficial even under the high stress amplitude three point bend loads applied. Furthermore, by varying the shot peening process parameters and considering fatigue life it has been shown that the three surface effects of shot peening; roughening, strain hardening and the generation of a compressive residual stress field must be included in remnant life models as physically separate entities. The compressive residual stress field during plane bending low cycle fatigue has been experimentally determined using X-ray diffraction at varying life fractions and found to be retained in a direction parallel to that of loading and to only relax to 80% of its original magnitude in a direction orthogonal to loading. This result, which contributes to the retention of fatigue life improvement in low cycle fatigue conditions, has been discussed in light of the specific stress distribution applied to the components. The ultimate aim of the research is to apply these results in a life assessment methodology which can be used to justify a reduction in the length of scheduled plant overhauls. This will result in significant cost savings for the generating utility.

  20. The thrombopoietin receptor, c-Mpl, is a selective surface marker for human hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Kerr William G

    2006-02-01

    Full Text Available Abstract Background Thrombopoietin (TPO, the primary cytokine regulating megakaryocyte proliferation and differentiation, exerts significant influence on other hematopoietic lineages as well, including erythroid, granulocytic and lymphoid lineages. We previously demonstrated that the receptor for TPO, c-mpl, is expressed by a subset of human adult bone marrow hematopoietic stem/progenitor cells (HSC/PC that are enriched for long-term multilineage repopulating ability in the SCID-hu Bone in vivo model of human hematopoiesis. Methods Here, we employ flow cytometry and an anti-c-mpl monoclonal antibody to comprehensively define the surface expression pattern of c-mpl in four differentiation stages of human CD34+ HSC/PC (I: CD34+38--, II: CD34+38dim, III: CD34+38+, IV: CD34dim38+ for the major sources of human HSC: fetal liver (FL, umbilical cord blood (UCB, adult bone marrow (ABM, and cytokine-mobilized peripheral blood stem cells (mPBSC. We use a surrogate in vivo model of human thymopoiesis, SCID-hu Thy/Liv, to compare the capacity of c-mpl+ vs. c-mpl-- CD34+38--/dim HSC/PC for thymocyte reconstitution. Results For all tissue sources, the percentage of c-mpl+ cells was significantly highest in stage I HSC/PC (FL 72 ± 10%, UCB 67 ± 19%, ABM 82 ± 16%, mPBSC 71 ± 15%, and decreased significantly through stages II, III, and IV ((FL 3 ± 3%, UCB 8 ± 13%, ABM 0.6 ± 0.6%, mPBSC 0.2 ± 0.1% [ANOVA: P I, decreasing through stage IV [ANOVA: P + cells [P = 0.89] or intensity of c-mpl expression [P = 0.21]. Primary Thy/Liv grafts injected with CD34+38--/dimc-mpl+ cells showed slightly higher levels of donor HLA+ thymocyte reconstitution vs. CD34+38--/dimc-mpl---injected grafts and non-injected controls (c-mpl+ vs. c-mpl--: CD2+ 6.8 ± 4.5% vs. 2.8 ± 3.3%, CD4+8-- 54 ± 35% vs. 31 ± 29%, CD4--8+ 29 ± 19% vs. 18 ± 14%. Conclusion These findings support the hypothesis that the TPO receptor, c-mpl, participates in the regulation of primitive human HSC

  1. Notch sensitivity of ductile metallic foams : A computational study

    NARCIS (Netherlands)

    Mangipudi, K. R.; Onck, P. R.

    2011-01-01

    The role of notches in the fracture strength of metal foams has been studied using a multiscale model based on a two-dimensional Voronoi representation of the cellular architecture. The effect of the crack length to the specimen width ratio on the net section strength of double edge notch (DEN)

  2. Evaluation of Notch and Hypoxia Signaling Pathways in Chemically ...

    African Journals Online (AJOL)

    Hepatocellular carcinoma (HCC) is a common worldwide malignancy. Notch signaling pathway contributes to the genesis of diverse cancers, however, its role in HCC is unclear. Hypoxia is a common feature of HCC. Signal integration between Notch and hypoxia may be involved in HCC. The aim of this study was to ...

  3. Failure of a porous solid from a deep notch

    DEFF Research Database (Denmark)

    Redanz, Pia; Fleck, Norman A.; McMeeking, Robert M.

    1997-01-01

    A finite strain finite element method is used to examine the stress state near the tip of a deep notch in an elastic-plastic porous solid. The notch is loaded in mode I plane strain tension and small scale yielding is assumed. Two rate independent strain hardening material models are used...

  4. Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia.

    Science.gov (United States)

    Fabbri, Giulia; Holmes, Antony B; Viganotti, Mara; Scuoppo, Claudio; Belver, Laura; Herranz, Daniel; Yan, Xiao-Jie; Kieso, Yasmine; Rossi, Davide; Gaidano, Gianluca; Chiorazzi, Nicholas; Ferrando, Adolfo A; Dalla-Favera, Riccardo

    2017-04-04

    Activating mutations of NOTCH1 (a well-known oncogene in T-cell acute lymphoblastic leukemia) are present in ∼4-13% of chronic lymphocytic leukemia (CLL) cases, where they are associated with disease progression and chemorefractoriness. However, the specific role of NOTCH1 in leukemogenesis remains to be established. Here, we report that the active intracellular portion of NOTCH1 (ICN1) is detectable in ∼50% of peripheral blood CLL cases lacking gene mutations. We identify a "NOTCH1 gene-expression signature" in CLL cells, and show that this signature is significantly enriched in primary CLL cases expressing ICN1, independent of NOTCH1 mutation. NOTCH1 target genes include key regulators of B-cell proliferation, survival, and signal transduction. In particular, we show that NOTCH1 transactivates MYC via binding to B-cell-specific regulatory elements, thus implicating this oncogene in CLL development. These results significantly extend the role of NOTCH1 in CLL pathogenesis, and have direct implications for specific therapeutic targeting.

  5. Static and Fatigue Behavior Investigation of Artificial Notched Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Yafei Ma

    2017-05-01

    Full Text Available Pitting corrosion is one of the most common forms of localized corrosion. Corrosion pit results in a stress concentration and fatigue cracks usually initiate and propagate from these corrosion pits. Aging structures may fracture when the fatigue crack reaches a critical size. This paper experimentally simulates the effects of pitting morphologies on the static and fatigue behavior of steel bars. Four artificial notch shapes are considered: radial ellipse, axial ellipse, triangle and length-variable triangle. Each shape notch includes six sizes to simulate a variety of pitting corrosion morphologies. The stress-strain curves of steel bars with different notch shape and depth are obtained based on static tensile testing, and the stress concentration coefficients for various conditions are determined. It was determined that the triangular notch has the highest stress concentration coefficient, followed by length-variable triangle, radial ellipse and axial ellipse shaped notches. Subsequently, the effects of notch depth and notch aspect ratios on the fatigue life under three stress levels are investigated by fatigue testing, and the equations for stress range-fatigue life-notch depth are obtained. Several conclusions are drawn based on the proposed study. The established relationships provide an experimental reference for evaluating the fatigue life of concrete bridges.

  6. Surface Expression of TGF-β Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer

    OpenAIRE

    Metelli, Alessandra; Wu, Bill X; Fugle, Caroline W; Rachidi, Saleh; Sun, Shaoli; Zhang, Yongliang; Wu, Jennifer; Tomlinson, Stephen; Howe, Philip; Yang, Yi; Garrett-Mayer, Elizabeth; Liu, Bei; Li, Zihai

    2016-01-01

    GARP encoded by the Lrrc32 gene is the cell surface docking receptor for latent TGF-β which is expressed naturally by platelets and regulatory T cells. Although Lrrc32 is amplified frequently in breast cancer, the expression and relevant functions of GARP in cancer have not been explored. Here we report that GARP exerts oncogenic effects, promoting immune tolerance by enriching and activating latent TGF-β in the tumor microenvironment. We found that human breast, lung and colon cancers expres...

  7. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

    International Nuclear Information System (INIS)

    Sanlioglu, Ahter D; Dirice, Ercument; Aydin, Cigdem; Erin, Nuray; Koksoy, Sadi; Sanlioglu, Salih

    2005-01-01

    Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA) were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL). TRAIL sensitivity assays were conducted using Molecular Probe's Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells. MCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4) expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3) on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells displayed very low levels of surface TRAIL-R4

  8. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    OpenAIRE

    Lina, Taslima T.; Dunphy, Paige S.; Luo, Tian; McBride, Jere W.

    2016-01-01

    ABSTRACT Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E.?chaffeensis type 1 secreted tandem repeat protein (TRP) effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E.?chaffeensis, via the TRP120 effector, activat...

  9. Reciprocal upregulation of Notch signaling molecules in hematopoietic progenitor and mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Kikuchi Y

    2011-01-01

    Full Text Available Although mesenchymal stem cells (MSCs play pivotal supportive roles in hematopoiesis, how they interact with hematopoietic stem cells (HSCs is not well understood. We investigated the interaction between HSCs and surrogate MSCs (C3H10T1/2 stromal cells, focusing on the molecular events induced by cell contact of these bipartite populations. C3H10T1/2 is a mesenchymal stromal cell line that can be induced to differentiate into preadipocytes (A54 and myoblasts (M1601. The stromal cell derivatives were cocultured with murine HSCs (Lineage-Sca1+, and gene expression profiles in stromal cells and HSCs were compared before and after the coculture. HSCs gave rise to cobblestone areas only on A54 cells, with ninefold more progenitors than on M1601 or undifferentiated C3H10T1/2 cells. Microarray-based screening and a quantitative reverse transcriptase directed-polymerase chain reaction showed that the levels of Notch ligands (Jagged1 and Delta-like 3 were increased in A54 cells upon interaction with HSCs. On the other hand, the expression of Notch1 and Hes1 was upregulated in the HSCs cocultured with A54 cells. A transwell assay revealed that the reciprocal upregulation was dependent on cell-to-cell contact. The result suggested that in the hematopoietic niche, HSCs help MSCs to produce Notch ligands, and in turn, MSCs help HSCs to express Notch receptor. Such a reciprocal upregulation would reinforce the downstream signaling to determine the fate of hematopoietic cell lineage. Clarification of the initiating events on cell contact should lead to the identification of specific molecular targets to facilitate HSC engraftment in transplantation therapy.

  10. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor.

    Science.gov (United States)

    Masuda, Tetsuya; Kigo, Satomi; Mitsumoto, Mayuko; Ohta, Keisuke; Suzuki, Mamoru; Mikami, Bunzo; Kitabatake, Naofumi; Tani, Fumito

    2018-01-01

    Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137), which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A) were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20-40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model.

  11. Scalable Notch Antenna System for Multiport Applications

    Directory of Open Access Journals (Sweden)

    Abdurrahim Toktas

    2016-01-01

    Full Text Available A novel and compact scalable antenna system is designed for multiport applications. The basic design is built on a square patch with an electrical size of 0.82λ0×0.82λ0 (at 2.4 GHz on a dielectric substrate. The design consists of four symmetrical and orthogonal triangular notches with circular feeding slots at the corners of the common patch. The 4-port antenna can be simply rearranged to 8-port and 12-port systems. The operating band of the system can be tuned by scaling (S the size of the system while fixing the thickness of the substrate. The antenna system with S: 1/1 in size of 103.5×103.5 mm2 operates at the frequency band of 2.3–3.0 GHz. By scaling the antenna with S: 1/2.3, a system of 45×45 mm2 is achieved, and thus the operating band is tuned to 4.7–6.1 GHz with the same scattering characteristic. A parametric study is also conducted to investigate the effects of changing the notch dimensions. The performance of the antenna is verified in terms of the antenna characteristics as well as diversity and multiplexing parameters. The antenna system can be tuned by scaling so that it is applicable to the multiport WLAN, WIMAX, and LTE devices with port upgradability.

  12. Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Michael J Kluk

    Full Text Available Fixed, paraffin-embedded (FPE tissues are a potentially rich resource for studying the role of NOTCH1 in cancer and other pathologies, but tests that reliably detect activated NOTCH1 (NICD1 in FPE samples have been lacking. Here, we bridge this gap by developing an immunohistochemical (IHC stain that detects a neoepitope created by the proteolytic cleavage event that activates NOTCH1. Following validation using xenografted cancers and normal tissues with known patterns of NOTCH1 activation, we applied this test to tumors linked to dysregulated Notch signaling by mutational studies. As expected, frequent NICD1 staining was observed in T lymphoblastic leukemia/lymphoma, a tumor in which activating NOTCH1 mutations are common. However, when IHC was used to gauge NOTCH1 activation in other human cancers, several unexpected findings emerged. Among B cell tumors, NICD1 staining was much more frequent in chronic lymphocytic leukemia than would be predicted based on the frequency of NOTCH1 mutations, while mantle cell lymphoma and diffuse large B cell lymphoma showed no evidence of NOTCH1 activation. NICD1 was also detected in 38% of peripheral T cell lymphomas. Of interest, NICD1 staining in chronic lymphocytic leukemia cells and in angioimmunoblastic lymphoma was consistently more pronounced in lymph nodes than in surrounding soft tissues, implicating factors in the nodal microenvironment in NOTCH1 activation in these diseases. Among carcinomas, diffuse strong NICD1 staining was observed in 3.8% of cases of triple negative breast cancer (3 of 78 tumors, but was absent from 151 non-small cell lung carcinomas and 147 ovarian carcinomas. Frequent staining of normal endothelium was also observed; in line with this observation, strong NICD1 staining was also seen in 77% of angiosarcomas. These findings complement insights from genomic sequencing studies and suggest that IHC staining is a valuable experimental tool that may be useful in selection of

  13. The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism.

    Science.gov (United States)

    Wootten, Denise; Reynolds, Christopher A; Smith, Kevin J; Mobarec, Juan C; Koole, Cassandra; Savage, Emilia E; Pabreja, Kavita; Simms, John; Sridhar, Rohan; Furness, Sebastian G B; Liu, Mengjie; Thompson, Philip E; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M

    2016-06-16

    Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Genetic Variations in the Human G Protein-coupled Receptor Class C, Group 6, Member A (GPRC6A) Control Cell Surface Expression and Function

    DEFF Research Database (Denmark)

    Jorgensen, Stine; Have, Christian Theil; Underwood, Christina Rye

    2017-01-01

    -expressed murine and goldfish orthologs. The latter orthologs are Gq-coupled and lead to intracellular accumulation of inositol phosphates and calcium release. In the present study we cloned the bonobo chimpanzee GPRC6A receptor, which is 99% identical to the human receptor, and show that it is cell surface...

  15. Tyrosine phosphorylation and proteolytic cleavage of Notch are required for non-canonical Notch/Abl signaling in Drosophila axon guidance.

    Science.gov (United States)

    Kannan, Ramakrishnan; Cox, Eric; Wang, Lei; Kuzina, Irina; Gu, Qun; Giniger, Edward

    2018-01-17

    Notch signaling is required for the development and physiology of nearly every tissue in metazoans. Much of Notch signaling is mediated by transcriptional regulation of downstream target genes, but Notch controls axon patterning in Drosophila by local modulation of Abl tyrosine kinase signaling, via direct interactions with the Abl co-factors Disabled and Trio. Here, we show that Notch-Abl axonal signaling requires both of the proteolytic cleavage events that initiate canonical Notch signaling. We further show that some Notch protein is tyrosine phosphorylated in Drosophila , that this form of the protein is selectively associated with Disabled and Trio, and that relevant tyrosines are essential for Notch-dependent axon patterning but not for canonical Notch-dependent regulation of cell fate. Based on these data, we propose a model for the molecular mechanism by which Notch controls Abl signaling in Drosophila axons. © 2018. Published by The Company of Biologists Ltd.

  16. Early Alterations in Ovarian Surface Epithelial Cells and Induction of Ovarian Epithelial Tumors Triggered by Loss of FSH Receptor

    Directory of Open Access Journals (Sweden)

    Xinlei Chen

    2007-06-01

    Full Text Available Little is known about the behavior of the ovarian surface epithelium (OSE, which plays a central role in ovarian cancer etiology. It has been suggested that incessant ovulation causes OSE changes leading to transformation and that high gonadotropin levels during postmenopause activate OSE receptors, inducing proliferation. We examined the chronology of OSE changes, including tumor appearance, in a mouse model where ovulation never occurs due to deletion of follitropin receptor. Changes in epithelial cells were marked by pan-cytokeratin (CK staining. Histologic changes and CK staining in the OSE increased from postnatal day 2. CK staining was observed inside the ovary by 24 days and increased thereafter in tumor-bearing animals. Ovaries from a third of aged (1 year mutant mice showed CK deep inside, indicating cell migration. These tumors resembled serous papillary adenoma of human ovaries. Weak expression of GATA-4 and elevation of PCNA, cyclooxygenase-1, cyclooxygenase-2, and plateletderived growth factor receptors α and β in mutants indicated differences in cell proliferation, differentiation, and inflammation. Thus, we report that OSE changes occur long before epithelial tumors appear in FORKO mice. Our results suggest that neither incessant ovulation nor follicle-stimulating hormone receptor presence in the OSE is required for inducing ovarian tumors; thus, other mechanisms must contribute to ovarian tumorigenesis.

  17. Engineering of PDMS surfaces for use in microsystems for capture and isolation of complex and biomedically important proteins: epidermal growth factor receptor as a model system.

    Science.gov (United States)

    Lowe, Aaron M; Ozer, Byram H; Wiepz, Gregory J; Bertics, Paul J; Abbott, Nicholas L

    2008-08-01

    Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was (32)P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (clones H11 and 111.6) and one phosphospecific EGF receptor antibody (clone pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82 : 1, exceeding the signal-to-background measured on the ELISA plate (<48 : 1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the

  18. Effect of spatial inhomogeneities on the membrane surface on receptor dimerization and signal initiation

    Directory of Open Access Journals (Sweden)

    Romica Kerketta

    2016-08-01

    Full Text Available Important signal transduction pathways originate on the plasma membrane, where microdomains may transiently entrap diffusing receptors. This results in a non-random distribution of receptors even in the resting state, which can be visualized as clusters by high resolution imaging methods. Here, we explore how spatial in-homogeneities in the plasma membrane might influence the dimerization and phosphorylation status of ErbB2 and ErbB3, two receptor tyrosine kinases that preferentially heterodimerize and are often co-expressed in cancer. This theoretical study is based upon spatial stochastic simulations of the two-dimensional membrane landscape, where variables include differential distributions and overlap of transient confinement zones (domains for the two receptor species. The in silico model is parameterized and validated using data from single particle tracking experiments. We report key differences in signaling output based on the degree of overlap between domains and the relative retention of receptors in such domains, expressed as escape probability. Results predict that a high overlap of domains, which favors transient co-confinement of both receptor species, will enhance the rate of hetero-interactions. Where domains do not overlap, simulations confirm expectations that homo-interactions are favored. Since ErbB3 is uniquely dependent on ErbB2 interactions for activation of its catalytic activity, variations in domain overlap or escape probability markedly alter the predicted patterns and time course of ErbB3 and ErbB2 phosphorylation. Taken together, these results implicate membrane domain organization as an important modulator of signal initiation, motivating the design of novel experimental approaches to measure these important parameters across a wider range of receptor systems.

  19. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor.

    Science.gov (United States)

    Sousa, Marcelo R; Jones, Jon P; Frind, Emil O; Rudolph, David L

    2013-01-01

    In contaminant travel from ground surface to groundwater receptors, the time taken in travelling through the unsaturated zone is known as the unsaturated zone time lag. Depending on the situation, this time lag may or may not be significant within the context of the overall problem. A method is presented for assessing the importance of the unsaturated zone in the travel time from source to receptor in terms of estimates of both the absolute and the relative advective times. A choice of different techniques for both unsaturated and saturated travel time estimation is provided. This method may be useful for practitioners to decide whether to incorporate unsaturated processes in conceptual and numerical models and can also be used to roughly estimate the total travel time between points near ground surface and a groundwater receptor. This method was applied to a field site located in a glacial aquifer system in Ontario, Canada. Advective travel times were estimated using techniques with different levels of sophistication. The application of the proposed method indicates that the time lag in the unsaturated zone is significant at this field site and should be taken into account. For this case, sophisticated and simplified techniques lead to similar assessments when the same knowledge of the hydraulic conductivity field is assumed. When there is significant uncertainty regarding the hydraulic conductivity, simplified calculations did not lead to a conclusive decision. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Ephrinb1 and Ephrinb2 Are Associated with Interleukin-7 Receptor α and Retard Its Internalization from the Cell Surface*

    Science.gov (United States)

    Luo, Hongyu; Wu, Zenghui; Qi, Shijie; Jin, Wei; Han, Bing; Wu, Jiangping

    2011-01-01

    IL-7 plays vital roles in thymocyte development, T cell homeostasis, and the survival of these cells. IL-7 receptor α (IL-7Rα) on thymocytes and T cells is rapidly internalized upon IL-7 ligation. Ephrins (Efns) are cell surface molecules and ligands of the largest receptor kinase family, Eph kinases. We discovered that T cell-specific double gene knock-out (dKO) of Efnb1 and Efnb2 in mice led to reduced IL-7Rα expression in thymocytes and T cells, and that IL-7Rα down-regulation was accelerated in dKO CD4 cells upon IL-7 treatment. On the other hand, Efnb1 and Efnb2 overexpression on T cell lymphoma EL4 cells retarded IL-7Rα down-regulation. dKO T cells manifested compromised STAT5 activation and homeostatic proliferation, an IL-7-dependent process. Fluorescence resonance energy transfer and immunoprecipitation demonstrated that Efnb1 and Efnb2 interacted physically with IL-7Rα. Such interaction likely retarded IL-7Rα internalization, as Efnb1 and Efnb2 were not internalized. Therefore, we revealed a novel function of Efnb1 and Efnb2 in stabilizing IL-7Rα expression at the post-translational level, and a previously unknown modus operandi of Efnbs in the regulation of expression of other vital cell surface receptors. PMID:22069310

  1. Mandibular Ramus Notching As a Tool for Sexual Dimorphism

    Directory of Open Access Journals (Sweden)

    Bibhuti Bhusana Panda

    2016-02-01

    Full Text Available Sex determination from a single or a part of bone is always difficult in absence of other bones of the same individual. The current study is an attempt to know the sex of an individual from the study of posterior ramus of mandible. The study was done from December, 2014 to August, 2015 in various Medical Colleges of the state of Odisha, India with the use of morbid anatomical specimen of mandibles and simple measuring instruments. The posterior ramus of adult mandibles were studied for presence or absence of any notching and if present its position in relation to occlusal plane. The study resulted, that there was a role of notch position in sex determination. The presence or absence of the notch though was not a consistent finding of all the mandibles. Males had frequent notching at the level of occlusal plane (P< 0.01 and females had frequent notching above the occlusal plane (P < 0.01. Notch present below the occlusal plane had no relation with sex. Accuracy of sexing mandible from the posterior ramus notch position was 61%, which was more for males (68.57% as compared to females (43.33%. So the posterior ramus of mandible could be considered for determination of sex of mandible but this should not be the sole criteria and should be correlated with the other standard criteria.

  2. On short cracks that depart from elastoplastic notch tips

    Directory of Open Access Journals (Sweden)

    Verônica Miquelin Machado

    2017-07-01

    Full Text Available The behavior of short cracks that depart from elastoplastic notch tips is modeled to estimate the stresses required to initiate and to propagate cracks in notched structural components, and to evaluate the size of tolerable crack-like defects under general loading conditions. This analysis can model both fatigue and environmentally assisted cracking problems; can evaluate notch sensitivity in both cases; and can as well be used to establish design or acceptance criteria for tolerable non-propagating crack-like defects in such cases. The growth of short cracks is assumed driven by the applied stresses and by the stress gradient ahead the notch tip, and supported by the material resistances to crack initiation and to long crack propagation by fatigue or EAC. In the elastoplastic case, the stress gradient ahead of the notch tip is quantified by a J-field to consider the short crack behavior. The tolerable short crack predictions made by this model are evaluated by suitable fatigue and EAC tests of notched specimens specially designed to start nonpropagating cracks from the notch tips, both under elastic and elastoplastic conditions.

  3. Nanostructured hydroxyapatite surfaces-mediated adsorption alters recognition of BMP receptor IA and bioactivity of bone morphogenetic protein-2.

    Science.gov (United States)

    Huang, Baolin; Yuan, Yuan; Ding, Sai; Li, Jianbo; Ren, Jie; Feng, Bo; Li, Tong; Gu, Yuantong; Liu, Changsheng

    2015-11-01

    Highly efficient loading of bone morphogenetic protein-2 (BMP-2) onto carriers with desirable performance is still a major challenge in the field of bone regeneration. Till now, the nanoscaled surface-induced changes of the structure and bioactivity of BMP-2 remains poorly understood. Here, the effect of nanoscaled surface on the adsorption and bioactivity of BMP-2 was investigated with a series of hydroxyapatite surfaces (HAPs): HAP crystal-coated surface (HAP), HAP crystal-coated polished surface (HAP-Pol), and sintered HAP crystal-coated surface (HAP-Sin). The adsorption dynamics of recombinant human BMP-2 (rhBMP-2) and the accessibility of the binding epitopes of adsorbed rhBMP-2 for BMP receptors (BMPRs) were examined by a quartz crystal microbalance with dissipation. Moreover, the bioactivity of adsorbed rhBMP-2 and the BMP-induced Smad signaling were investigated with C2C12 model cells. A noticeably high mass-uptake of rhBMP-2 and enhanced recognition of BMPR-IA to adsorbed rhBMP-2 were found on the HAP-Pol surface. For the rhBMP-2-adsorbed HAPs, both ALP activity and Smad signaling increased in the order of HAP-Sinuses of rhBMP-2 in clinical applications and arouse broad interests among researchers in the fields of nano-biotechnology, biomaterials and bone tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. High levels of Notch signaling down-regulate Numb and Numblike

    NARCIS (Netherlands)

    Chapman, G.; Liu, L.; Sahlgren, C.; Dahlqvist, C.; Lendahl, U.

    2006-01-01

    Inhibition of Notch signaling by Numb is critical for many cell fate decisions. In this study, we demonstrate a more complex relationship between Notch and the two vertebrate Numb homologues Numb and Numblike. Although Numb and Numblike at low levels of Notch signaling negatively regulated Notch,

  5. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis

    DEFF Research Database (Denmark)

    Roldan, A.L.; Cubellis, M.V.; Masucci, M.T.

    1990-01-01

    , and therefore the capacity of cells to migrate and invade neighboring tissues. We have isolated a 1.4 kb cDNA clone coding for the entire human uPAR. An oligonucleotide synthesized on the basis of the N-terminal sequence of the purified protein was used to screen a cDNA library made from SV40 transformed human......, a size very close to that of the cloned cDNA. Expression of the uPAR cDNA in mouse cells confirms that the clone is complete and expresses a functional uPA binding protein, located on the cell surface and with properties similar to the human uPAR. Caseinolytic plaque assay, immunofluorescence analysis......The surface receptor for urokinase plasminogen activator (uPAR) has been recognized in recent years as a key molecule in regulating plasminogen mediated extracellular proteolysis. Surface plasminogen activation controls the connections between cells, basement membrane and extracellular matrix...

  6. Characterization and molecular features of the cell surface receptor for human granulocyte-macrophage colony-stimulating factor

    International Nuclear Information System (INIS)

    Chiba, S.; Tojo, A.; Kitamura, T.; Urabe, A.; Miyazono, K.; Takaku, F.

    1990-01-01

    The receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF) on the surfaces of normal and leukemic myeloid cells were characterized using 125I-labeled bacterially synthesized GM-CSF. The binding was rapid, specific, time dependent, and saturable. Scatchard analysis of the 125I-GM-CSF binding to peripheral blood neutrophils indicated the presence of a single class of binding site (Kd = 99 +/- 21 pM; 2,304 +/- 953 sites/cell). However, for peripheral blood monocytes and two GM-CSF-responsive myeloid cell lines (U-937 and TF-1), the Scatchard plots were biphasic curvilinear, which were best fit by curves derived from two binding site model: one with high affinity (Kd1 = 10-40 pM) and the other with low affinity (Kd2 = 0.9-2.0 nM). For U-937 cells, the number of high-affinity receptors was 1,058 +/- 402 sites/cell and that of low-affinity receptors was estimated to be 10,834 +/- 2,396 sites/cell. Cross-linking studies yielded three major bands with molecular masses of 150 kDa, 115 kDa, and 95 kDa, which were displaced by an excess amount of unlabeled GM-CSF, suggesting 135-kDa, 100-kDa, and 80-kDa species for the individual components of the human GM-CSF receptor. These bands comigrated for different cell types including peripheral blood neutrophils, U-937 cells and TF-1 cells. In experiments using U-937 cells, only the latter two bands appeared to be labeled in a dose-dependent manner in a low-affinity state. These results suggest that the human GM-CSF receptor possibly forms a multichain complex

  7. Short-term exposure to oleandrin enhances responses to IL-8 by increasing cell surface IL-8 receptors

    Science.gov (United States)

    Raviprakash, Nune; Manna, Sunil Kumar

    2014-01-01

    BACKGROUND AND PURPOSE One of the first steps in host defence is the migration of leukocytes. IL-8 and its receptors are a chemokine system essential to such migration. Up-regulation of these receptors would be a viable strategy to treat dysfunctional host defence. Here, we studied the effects of the plant glycoside oleandrin on responses to IL-8 in a human monocytic cell line. EXPERIMENTAL APPROACH U937 cells were incubated with oleandrin (1-200 ng mL−1) for either 1 h (pulse) or for 24 h (non-pulse). Apoptosis; activation of NF-κB, AP-1 and NFAT; calcineurin activity and IL-8 receptors (CXCR1 and CXCR2) were measured using Western blotting, RT-PCR and reporter gene assays. KEY RESULTS Pulse exposure to oleandrin did not induce apoptosis or cytoxicity as observed after non-pulse exposure. Pulse exposure enhanced activation of NF-κB induced by IL-8 but not that induced by TNF-α, IL-1, EGF or LPS. Exposure to other apoptosis-inducing compounds (azadirachtin, resveratrol, thiadiazolidine, or benzofuran) did not enhance activation of NF-κB. Pulse exposure to oleandrin increased expression of IL-8 receptors and chemotaxis, release of enzymes and activation of NF-κB, NFAT and AP-1 along with increased IL-8-mediated calcineurin activation, and wound healing. Pulse exposure increased numbers of cell surface IL-8 receptors. CONCLUSIONS AND IMPLICATIONS Short-term (1 h; pulse) exposure to a toxic glycoside oleandrin, enhanced biological responses to IL-8 in monocytic cells, without cytoxicity. Pulse exposure to oleandrin could provide a viable therapy for those conditions where leukocyte migration is defective. PMID:24172227

  8. Vitamin A transport and the transmembrane pore in the cell-surface receptor for plasma retinol binding protein.

    Directory of Open Access Journals (Sweden)

    Ming Zhong

    Full Text Available Vitamin A and its derivatives (retinoids play diverse and crucial functions from embryogenesis to adulthood and are used as therapeutic agents in human medicine for eye and skin diseases, infections and cancer. Plasma retinol binding protein (RBP is the principal and specific vitamin A carrier in the blood and binds vitamin A at 1:1 ratio. STRA6 is the high-affinity membrane receptor for RBP and mediates cellular vitamin A uptake. STRA6 null mice have severely depleted vitamin A reserves for vision and consequently have vision loss, even under vitamin A sufficient conditions. STRA6 null humans have a wide range of severe pathological phenotypes in many organs including the eye, brain, heart and lung. Known membrane transport mechanisms involve transmembrane pores that regulate the transport of the substrate (e.g., the gating of ion channels. STRA6 represents a new type of membrane receptor. How this receptor interacts with its transport substrate vitamin A and the functions of its nine transmembrane domains are still completely unknown. These questions are critical to understanding the molecular basis of STRA6's activities and its regulation. We employ acute chemical modification to introduce chemical side chains to STRA6 in a site-specific manner. We found that modifications with specific chemicals at specific positions in or near the transmembrane domains of this receptor can almost completely suppress its vitamin A transport activity. These experiments provide the first evidence for the existence of a transmembrane pore, analogous to the pore of ion channels, for this new type of cell-surface receptor.

  9. Lipopolysaccharide-induced expression of cell surface receptors and cell activation of neutrophils and monocytes in whole human blood

    Directory of Open Access Journals (Sweden)

    N.E. Gomes

    2010-09-01

    Full Text Available Lipopolysaccharide (LPS activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R and smooth (S forms signal through Toll-like receptor 4 (TLR4, but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS and nitric oxide (NO generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.

  10. Broadband notch filter design for millimeter-wave plasma diagnostics

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank

    2010-01-01

    Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼ 900 MHz, and a typical insertion loss below 2 dB in the passband...... of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode...

  11. Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis.

    Science.gov (United States)

    Gao, Wei; Sweeney, Catherine; Connolly, Mary; Kennedy, Aisling; Ng, Chin Teck; McCormick, Jennifer; Veale, Douglas J; Fearon, Ursula

    2012-07-01

    To examine the effect of hypoxia on Notch-1 signaling pathway components and angiogenesis in inflammatory arthritis. The expression and regulation of Notch-1, its ligand delta-like protein 4 (DLL-4) and downstream signaling components (hairy-related transcription factor 1 [HRT-1], HRT-2), and hypoxia-inducible factor 1α (HIF-1α) under normoxic and hypoxic conditions (1-3%) were assessed in synovial tissue specimens from patients with inflammatory arthritis and controls and in human dermal microvascular endothelial cells (HDMECs) by immunohistology, dual immunofluorescence staining (Notch-1/factor VIII), Western blotting, and real-time polymerase chain reaction. In vivo synovial tissue oxygen levels (tissue PO2) were measured under direct visualization at arthroscopy. HDMEC activation under hypoxic conditions in the presence of Notch-1 small interfering RNA (siRNA), the γ-secretase inhibitor DAPT, or dimethyloxalylglycine (DMOG) was assessed by Matrigel tube formation assay, migration assay, invasion assay, and matrix metalloproteinase 2 (MMP-2)/MMP-9 zymography. Expression of Notch-1, its ligand DLL-4, and HRT-1 was demonstrated in synovial tissue, with the strongest expression localized to perivascular/vascular regions. Localization of Notch-1 to synovial endothelium was confirmed by dual immunofluorescence staining. Notch-1 intracellular domain (NICD) expression was significantly higher in synovial tissue from patients with tissue PO2 of PO2 of >20 mm Hg (>3% O2). Exposure of HDMECs to 3% hypoxia induced HIF-1α and NICD protein expression and DLL-4, HRT-1, and HRT-2 messenger RNA expression. DMOG directly induced NICD expression, while Notch-1 siRNA inhibited hypoxia-induced HIF-1α expression, suggesting that Notch-1/HIF-1α signaling is bidirectional. Finally, 3% hypoxia-induced angiogenesis, endothelial cell migration, endothelial cell invasion, and proMMP-2 and proMMP-9 activities were inhibited by Notch-1 siRNA and/or the γ-secretase inhibitor DAPT. Our

  12. Deep lateral notch sign and double notch sign in complete tears of the anterior cruciate ligament: MR imaging evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Grimberg, Alexandre [University of California, San Diego School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, San Diego, CA (United States); Universidade Federal de Sao Paulo, Department of Diagnostic Imaging, Sao Paulo, SP (Brazil); Shirazian, Hoda; Torshizy, Hamid; Smitaman, Edward; Resnick, Donald L. [University of California, San Diego School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, San Diego, CA (United States); Chang, Eric Y. [Veterans Administrations San Diego Healthcare Systems, Osteoradiology Section, Department of Radiology, San Diego, CA (United States); University of California, San Diego School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, San Diego, CA (United States)

    2014-11-20

    To systematically compare the notches of the lateral femoral condyle (LFC) in patients with and without complete tears of the anterior cruciate ligament (ACL) in MR studies by (1) evaluating the dimensions of the lateral condylopatellar sulcus; (2) evaluating the presence and appearance of an extra or a double notch and its association with such tears. This retrospective study was approved by our institutional review board, and informed written patient consent was waived. In 58 cases of complete ACL tears and 37 control cases with intact ACL, the number of notches on the LFC was determined, and the depth and anteroposterior (AP) length of each notch were measured in each third of the LFC. The chi-square test, t-test, and logistic regression model were used to analyze demographic data and image findings, as appropriate. Presence of more than one notch demonstrated a sensitivity of 17.2 %, specificity of 100 %, positive predictive value of 100 %, and negative predictive value of 43.5 % for detecting a complete ACL tear. Lateral third depth measurement (p = 0.028) was a significant associated finding with a complete ACL tear. A deep notch in the lateral third of the LFC is a significant associated finding with a complete ACL tear when compared with an ACL-intact control group, and the presence of more than one notch is a specific but insensitive sign of such a tear. (orig.)

  13. Blockade of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depending on Tumor Cell Types

    Directory of Open Access Journals (Sweden)

    Xing-Bin Hu

    2009-01-01

    Full Text Available It has been reported that blocking Notch signaling in tumor-bearing mice results in abortive angiogenesis and tumor regression. However, given that Notch signaling influences numerous cellular processes in vivo, a comprehensive evaluation of the effect of Notch inactivation on tumor growth would be favorable. In this study, we inoculated four cancer cell lines in mice with the conditional inactivation of recombination signal-binding protein-Jκ (RBP-J, which mediates signaling from all four mammalian Notch receptors. We found that whereas three tumors including hepatocarcinoma, lung cancer, and osteogenic sarcoma grew slower in the RBP-J-deficient mice, at least a melanoma, B16, grew significantly faster in the RBP-J-deficient mice than in the controls, suggesting that the RBP-J-deficient hosts could provide permissive cues for tumor growth. All these tumors showed increased microvessels and up-regulated hypoxia-inducible factor 1α, suggesting that whereas defective angiogenesis resulted in hypoxia, different tumors might grow differentially in the RBP-J-deleted mice. Similarly, increased infiltration of Gr1+/Mac1+ cells were noticed in tumors grown in the RBP-J-inactivated mice. Moreover, we found that when inoculated in the RBP-J knockout hosts, the H22 hepatoma cells had a high frequency of metastasis and lethality, suggesting that at least for H22, deficiency of environmental Notch signaling favored tumor metastasis. Our findings suggested that the general blockade of Notch signaling in tumor-bearing mice could lead to defective angiogenesis in tumors, but depending on tumor cell types, general inhibition of Notch signaling might result in tumor regression, progression, or metastasis.

  14. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    Directory of Open Access Journals (Sweden)

    Vanesa Alonso-Camino

    2013-01-01

    Full Text Available A human single-chain variable fragment (scFv antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs. The repertoire was fused to a first-generation T cell receptor ζ (TCRζ-based chimeric antigen receptor (CAR. We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2 bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR and the selection context (cell synapse, which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells.

  15. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor

    Directory of Open Access Journals (Sweden)

    Tetsuya Masuda

    2018-02-01

    Full Text Available Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137, which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20–40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model.

  16. The homeobox gene mirror links EGF signalling to embryonic dorso-ventral axis formation through notch activation.

    Science.gov (United States)

    Jordan, K C; Clegg, N J; Blasi, J A; Morimoto, A M; Sen, J; Stein, D; McNeill, H; Deng, W M; Tworoger, M; Ruohola-Baker, H

    2000-04-01

    Recent studies in vertebrates and Drosophila melanogaster have revealed that Fringe-mediated activation of the Notch pathway has a role in patterning cell layers during organogenesis. In these processes, a homeobox-containing transcription factor is responsible for spatially regulating fringe (fng) expression and thus directing activation of the Notch pathway along the fng expression border. Here we show that this may be a general mechanism for patterning epithelial cell layers. At three stages in Drosophila oogenesis, mirror (mirr) and fng have complementary expression patterns in the follicle-cell epithelial layer, and at all three stages loss of mirr enlarges, and ectopic expression of mirr restricts, fng expression, with consequences for follicle-cell patterning. These morphological changes are similar to those caused by Notch mutations. Ectopic expression of mirr in the posterior follicle cells induces a stripe of rhomboid (rho) expression and represses pipe (pip), a gene with a role in the establishment of the dorsal-ventral axis, at a distance. Ectopic Notch activation has a similar long-range effect on pip. Our results suggest that Mirror and Notch induce secretion of diffusible morphogens and we have identified TGF-beta (encoded by dpp) as such a molecule in germarium. We also found that mirr expression in dorsal follicle cells is induced by the EGF-receptor (EGFR) pathway and that mirr then represses pip expression in all but the ventral follicle cells, connecting EGFR activation in the dorsal follicle cells to repression of pip in the dorsal and lateral follicle cells. Our results suggest that the differentiation of ventral follicle cells is not a direct consequence of germline signalling, but depends on long-range signals from dorsal follicle cells, and provide a link between early and late events in Drosophila embryonic dorsal-ventral axis formation.

  17. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Danø, K

    1995-01-01

    PA receptor, uPAR, is a cell-surface protein which plays an important role in the localization and regulation of these processes. In the present article a number of established conclusions concerning the structure and function of uPAR are presented, and in addition various models are discussed which might...... explain additional observations for which the mechanisms involved have not yet been clarified experimentally. uPAR is a highly glycosylated, 3-domain protein, anchored in the plasma membrane by a glycolipid moiety. The domain organization is important for efficient ligand-binding, and the NH2-terminal...

  18. Effect of cardiopulmonary bypass on beta adrenergic receptor-adenylate cyclase system on surfaces of peripheral lymphocytes.

    Science.gov (United States)

    Luo, A; Tian, Y; Jin, S

    2000-01-01

    The experimental results showed that the level of CAMP, the ratio of cAPM to cGMP, IL-2R expression and IL-2 production in vitro in lymphocytes immediate and 2 weeks after cardiopulmonary bypass (CPB) were significantly lower than those before anesthetics in the patients undergoing cardiac surgery with CPB. These findings suggested that CPB could cause serious damage to adrenergic beta receptor-adenylate cyclase system on circulating lymphocytes surfaces, which might be one of the mechanisms resulting in immunosuppression after open heart surgery with CPB.

  19. Notch signalling mediates reproductive constraint in the adult worker honeybee

    Science.gov (United States)

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  20. Computer simulation of the Charpy V-notch toughness test

    International Nuclear Information System (INIS)

    Norris, D.M. Jr.

    1977-01-01

    The dynamic Charpy V-notch test was simulated on a computer. The calculational models (for A-533 Grade B class 1 steel) used both a rounded and a flat-tipped striker. The notch stress/strain state was found to be independent of the three-point loading type and was most strongly correlated with notch-opening displacement. The dynamic stress/strain state at the time of fracture initiation was obtained by comparing the calculated deformed shape with that obtained in interrupted Charpy V-notch tests where cracking had started. The calculation was also compared with stress/strain states calculated in other geometries at failure. The distribution and partition of specimen energy was calculated and adiabatic heating and strain rate are discussed

  1. A Compact Printed Quadruple Band-Notched UWB Antenna

    Directory of Open Access Journals (Sweden)

    Xiaoyin Li

    2013-01-01

    Full Text Available A novel compact coplanar waveguide- (CPW- fed ultrawideband (UWB printed planar volcano-smoke antenna (PVSA with four band-notches for various wireless applications is proposed and demonstrated. The low-profile antenna consists of a C-shaped parasitic strip to generate a notched band at 8.01~8.55 GHz for the ITU band, two C-shaped slots, and an inverted U-shaped slot etched in the radiator patch to create three notched bands at 5.15~5.35 GHz, 5.75~5.85 GHz, and 7.25~7.75 GHz for filtering the WLAN and X-band satellite signals. Simulated and measured results both confirm that the proposed antenna has a broad bandwidth of 3.1~12 GHz with VSWR < 2 and good omnidirectional radiation patterns with four notched-bands.

  2. In-plane deeply-etched optical MEMS notch filter with high-speed tunability

    International Nuclear Information System (INIS)

    Sabry, Yasser M; Eltagoury, Yomna M; Shebl, Ahmed; Khalil, Diaa; Soliman, Mostafa; Sadek, Mohamed

    2015-01-01

    Notch filters are used in spectroscopy, multi-photon microscopy, fluorescence instrumentation, optical sensors and other life science applications. One type of notch filter is based on a fiber-coupled Fabry–Pérot cavity, which is formed by a reflector (external mirror) facing a dielectric-coated end of an optical fiber. Tailoring this kind of optical filter for different applications is possible because the external mirror has fewer mechanical and optical constraints. In this paper we present optical modeling and implementation of a fiber-coupled Fabry–Pérot filter based on dielectric-coated optical fiber inserted into a micromachined fiber groove facing a metallized micromirror, which is driven by a high-speed MEMS actuator. The optical MEMS chip is fabricated using deep reactive ion etching (DRIE) technology on a silicon on insulator wafer, where the optical axis is parallel to the substrate (in-plane) and the optical/mechanical components are self-aligned by the photolithographic process. The DRIE etching depth is 150 μm, chosen to increase the micromirror optical throughput and improving the out-of-plane stiffness of the MEMS actuator. The MEMS actuator type is closing-gap, while its quality factor is almost doubled by slotting the fixed plate. A low-finesse Fabry–Pérot interferometer is formed by the metallized surface of the micromirror and a cleaved end of a standard single-mode fiber, for characterization of the MEMS actuator stroke and resonance frequency. The actuator achieves a travel distance of 800 nm at a resonance frequency of 89.9 kHz. The notch filter characteristics were measured using an optical spectrum analyzer, and the filter exhibits a free spectral range up to 100 nm and a notch rejection ratio up to 20 dB around a wavelength of 1300 nm. The presented device provides batch processing and low-cost production of the filter. (paper)

  3. Effect of vibration loading on the fatigue life of part-through notched pipe

    International Nuclear Information System (INIS)

    Mittal, Rahul; Singh, P.K.; Pukazhendi, D.M.; Bhasin, V.; Vaze, K.K.; Ghosh, A.K.

    2011-01-01

    A systematic experimental and analytical study has been carried out to investigate the effect of vibration loading on the fatigue life of the piping components. Three Point bend (TPB) specimens machined from the actual pipe have been used for the evaluation of Paris constants by carrying out the experiments under vibration + cyclic and cyclic loading as per the ASTM Standard E647. These constants have been used for the prediction of the fatigue life of the pipe having part-through notch of a/t = 0.25 and aspect ratio (2c/a) of 10. Predicted results have shown the reduction in fatigue life of the notched pipe subjected to vibration + cyclic loading by 50% compared to that of cyclic loading. Predicted results have been validated by carrying out the full-scale pipe (with part-through notch) tests. Notched pipes were subjected to loading conditions such that the initial stress-intensity factor remains same as that of TPB specimen. Experimental results of the full-scale pipe tests under vibration + cyclic loading has shown the reduction in fatigue life by 70% compared to that of cyclic loading. Fractographic examination of the fracture surface of the tested specimens subjected to vibration + cyclic loading have shown higher presence of brittle phases such as martensite (in the form of isolated planar facets) and secondary micro cracks. This could be the reason for the reduction of fatigue life in pipe subjected to vibration + cyclic loading. - Highlights: → Vibration loading affects fatigue crack growth rate. → Crack initiation life depends on crack tip radius. → Crack initiation life depends on the characteristic distance. → Characteristic distance depends on the loading conditions. → Vibration + cyclic load gives lower fatigue life.

  4. Source contribution analysis of surface particulate polycyclic aromatic hydrocarbon concentrations in northeastern Asia by source–receptor relationships

    International Nuclear Information System (INIS)

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-01-01

    We analyzed the source–receptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40–60%) and central China (30–40°N, 10–40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40–80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O 3 on particulate surfaces may be an important component of the PAH oxidation processes. -- Highlights: •Source–receptor analysis was conducted for investigating PAHs in northeast Asia. •In winter, transboundary transport from China is large contribution in leeward. •Relative contribution from Korea, Japan, and eastern Russia is increased in summer. •This seasonal variation is strongly controlled by the meteorological conditions. •The transport distance is different among PAH species. -- Transboundary transport of PAHs in northeast Asia was investigated by source–receptor analysis

  5. Dangerous Liaisons: Deviant Endothelium NOTCHes toward Tumor Metastasis.

    Science.gov (United States)

    Guo, Peipei; Rafii, Shahin

    2017-03-13

    In this issue of Cancer Cell, Wieland et al. uncover a feedback loop in which tumor cells, by augmenting Notch signaling, provoke a senescent and pro-inflammatory state in endothelial cells, promoting neutrophil infiltration, tumor cell adhesion, and metastasis. Interfering with this Notch-dependent crosstalk may be a therapeutic approach to block metastasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Potential fatigue strength improvement of AA 5083-H111 notched parts by wire brush hammering: Experimental analysis and numerical simulation

    International Nuclear Information System (INIS)

    Sidhom, Naziha; Moussa, Naoufel Ben; Janeb, Sameh; Braham, Chedly; Sidhom, Habib

    2014-01-01

    Highlights: • Wire brush hammering increases by 20% the AA 5083-H111 notched parts fatigue limit. • Improvement of fatigue strength is related to the fatigue cracks nucleation. • Fatigue strength prediction accounts for wire brush hammering effects. - Abstract: The effects of milling as machining process and a post-machining treatment by wire-brush hammering, on the near surface layer characteristics of AA 5083-H111 were investigated. Surface texture, work-hardening and residual stress profiles were determined by roughness measurement, scanning electron microscope (SEM) examinations, microhardness and X-ray diffraction (XRD) measurements. The effects of surface preparation on the fatigue strength were assessed by bending fatigue tests performed on notched samples for two loading stress ratios R 0.1 and R 0.5 . It is found that the bending fatigue limit at R 0.1 and 10 7 cycles is 20% increased, with respect to the machined surface, by wire-brush hammering. This improvement was discussed on the basis of the role of surface topography, stabilized residual stress and work-hardening on the fatigue-crack network nucleation and growth. The effects biaxial residual stress field and surface work-hardening were taken into account in the finite element model. A multi-axial fatigue criterion was proposed to predict the fatigue strength of aluminum alloy notched parts for both machined and treated states

  7. Notched K-wire for low thermal damage bone drilling.

    Science.gov (United States)

    Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert

    2017-07-01

    The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Effect of notch and alloying on steel properties during extension

    International Nuclear Information System (INIS)

    Vinokur, B.B.; Pilyushenko, U.L.; Kasatkin, O.G.

    1985-01-01

    A study was made on change of strength and plastic characteristics during extension of notched steel samples of 15 compositions containing often-used alloying elements in various amounts and combinations. The notch causes increase of strength and decrease of plastic properties of structural steels during extension. The most pronounced change of properties takes place for the notched sample with expansion angle close to 180 deg. Reduction of notch expansion angle below 150 deg causes slower decrease of the rate of property change. Nickel alloying and vanadium, titanium microalloying assist the improvement of steel plasticity despite the increase of strength properties. Introduction of these elements in steel compensate partially for the negative notch effect. Alloying by silicon, molybdenum and tungsten results in steel strengthening and chromium alloying causes some loss of strength. Manse, chromium, silicon, molybdenum and tungsten cause decrease of plasticity, which intensifies the negative notch effect. When determining concentration ranges of carbon and alloying elements within the limits of quality composition it is necessary to consider both technology and possibility of sufficient change of properties especially in the case of stress concentrator presence in structures

  9. The non-canonical NOTCH1 ligand Delta-like 1 homolog (DLK1) self interacts in mammals

    DEFF Research Database (Denmark)

    Traustadóttir, Gunnhildur Ásta; Jensen, Charlotte Harken; Garcia Ramirez, Jose Javier

    2017-01-01

    the proposed DLK1-IGFBP1 interaction was not supported by MTH. Very little has previously been described on the DLK1 self-interaction. Herein, we showed by immunoprecipitation as well as Sulfo-SBED label transfer that the DLK1-DLK1 interaction likely is part of Dlk1's function in preadipocytes. Furthermore our......Delta-like 1 homolog (DLK1) is an imprinted gene, which is widely expressed during mammalian development and plays a pivotal role in differentiation of various tissue types. Most recently, we have shown that DLK1 interacts with NOTCH1, yet several Notch independent mechanisms have previously been...... suggested as well, but only poorly confirmed in a mammalian context. In the present study, we employed the mammalian two-hybrid (MTH) system, a genetic in vivo protein-protein interaction system, to show robust DLK1-DLK1, DLK1-FnI (Fibronectin) and DLK1-CFR (cysteine-rich FGF receptor) interactions, whereas...

  10. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface.

    Science.gov (United States)

    Lee, Sangmin; Yoon, Hwa In; Na, Jin Hee; Jeon, Sangmin; Lim, Seungho; Koo, Heebeom; Han, Sang-Soo; Kang, Sun-Woong; Park, Soon-Jung; Moon, Sung-Hwan; Park, Jae Hyung; Cho, Yong Woo; Kim, Byung-Soo; Kim, Sang Kyoon; Lee, Taekwan; Kim, Dongkyu; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-09-01

    It is urgently necessary to develop reliable non-invasive stem cell imaging technology for tracking the in vivo fate of transplanted stem cells in living subjects. Herein, we developed a simple and well controlled stem cell imaging method through a combination of metabolic glycoengineering and bioorthogonal copper-free click chemistry. Firstly, the exogenous chemical receptors containing azide (-N 3 ) groups were generated on the surfaces of stem cells through metabolic glycoengineering using metabolic precursor, tetra-acetylated N-azidoacetyl-d-mannosamine(Ac 4 ManNAz). Next, bicyclo[6.1.0]nonyne-modified glycol chitosan nanoparticles (BCN-CNPs) were prepared as imageable nanoparticles to deliver different imaging agents. Cy5.5, iron oxide nanoparticles and gold nanoparticles were conjugated or encapsulated to BCN-CNPs for optical, MR and CT imaging, respectively. These imageable nanoparticles bound chemical receptors on the Ac 4 ManNAz-treated stem cell surface specifically via bioorthogonal copper-free click chemistry. Then they were rapidly taken up by the cell membrane turn-over mechanism resulting in higher endocytic capacity compared non-specific uptake of nanoparticles. During in vivo animal test, BCN-CNP-Cy5.5-labeled stem cells could be continuously tracked by non-invasive optical imaging over 15 days. Furthermore, BCN-CNP-IRON- and BCN-CNP-GOLD-labeled stem cells could be efficiently visualized using in vivo MR and CT imaging demonstrating utility of our stem cell labeling method using chemical receptors. These results conclude that our method based on metabolic glycoengineering and bioorthogonal copper-free click chemistry can stably label stem cells with diverse imageable nanoparticles representing great potential as new stem cell imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil

    Science.gov (United States)

    Zou, Yanjiao; Aggarwal, Mini; Zheng, Wen-Guang; Wu, Hen-Ming; Cheung, Alice Y.

    2011-01-01

    Background RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. Scope We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). Significance The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber. PMID:22476487

  12. Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ashrafizadeh, F.; Niroumand, B. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Forouzan, M.R.; Mohseni mofidi, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Barlat, F. [Materials Mechanics Laboratory (MML), Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology POSTECH, San 31 Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2015-09-17

    Due to growing global concern about the environmental issues, steel developers have been forced by automobile makers to produce more efficient steel grades with high strength to weight ratios along with high crashworthiness performance. In order to find deficiencies of the existing steels and develop superior steel products, detailed understanding of deformation and damage behavior in the existing steels is needed. In the present research, deformation and damage evolution during room temperature uniaxial tensile test of a modern high strength Dual Phase Steel, i.e. DP780, were studied. Detailed scanning electron microscopy (SEM) examination of the microstructures of notched and un-notched tensile fractured specimens revealed that in notched specimen, plastic deformation was concentrated more within the notched region. Therefore, much higher reduction in thickness with a high reduction gradient occurred in this region, In the un-notched specimen, however, plastic deformation was more uniformly distributed in larger parts of the gauge length, and therefore, thickness reduction happened with a lower gradient. Although geometric notch on the specimen did not change the void nucleation and growth mechanisms, the kinetics of these phenomena was influenced. On the other hand, voids linkage mechanism tended to change from void coalescence in the un-notched specimen to void sheeting in the notched specimen. Moreover, three different models developed by Brown & Embury (BM), Thomason and Pardoen were employed to predict the final fracture strain. It was revealed that, BM model showed much more accurate predictions for the studied DP steel in comparison with those of Thomason and Pardoens’ models.

  13. Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel

    International Nuclear Information System (INIS)

    Saeidi, N.; Ashrafizadeh, F.; Niroumand, B.; Forouzan, M.R.; Mohseni mofidi, S.; Barlat, F.

    2015-01-01

    Due to growing global concern about the environmental issues, steel developers have been forced by automobile makers to produce more efficient steel grades with high strength to weight ratios along with high crashworthiness performance. In order to find deficiencies of the existing steels and develop superior steel products, detailed understanding of deformation and damage behavior in the existing steels is needed. In the present research, deformation and damage evolution during room temperature uniaxial tensile test of a modern high strength Dual Phase Steel, i.e. DP780, were studied. Detailed scanning electron microscopy (SEM) examination of the microstructures of notched and un-notched tensile fractured specimens revealed that in notched specimen, plastic deformation was concentrated more within the notched region. Therefore, much higher reduction in thickness with a high reduction gradient occurred in this region, In the un-notched specimen, however, plastic deformation was more uniformly distributed in larger parts of the gauge length, and therefore, thickness reduction happened with a lower gradient. Although geometric notch on the specimen did not change the void nucleation and growth mechanisms, the kinetics of these phenomena was influenced. On the other hand, voids linkage mechanism tended to change from void coalescence in the un-notched specimen to void sheeting in the notched specimen. Moreover, three different models developed by Brown & Embury (BM), Thomason and Pardoen were employed to predict the final fracture strain. It was revealed that, BM model showed much more accurate predictions for the studied DP steel in comparison with those of Thomason and Pardoens’ models

  14. Notched audiograms and noise exposure history in older adults.

    Science.gov (United States)

    Nondahl, David M; Shi, Xiaoyu; Cruickshanks, Karen J; Dalton, Dayna S; Tweed, Ted S; Wiley, Terry L; Carmichael, Lakeesha L

    2009-12-01

    Using data from a population-based cohort study, we compared four published algorithms for identifying notched audiograms and compared their resulting classifications with noise exposure history. Four algorithms: (1) , (2) , (3) , and (4) were used to identify notched audiograms. Audiometric evaluations were collected as a part of the 10-yr follow-up examinations of the Epidemiology of Hearing Loss Study, in Beaver Dam, WI (2003-2005, N = 2395). Detailed noise exposure histories were collected by interview at the baseline examination (1993-1995) and updated at subsequent visits. An extensive history of occupational noise exposure, participation in noisy hobbies, and firearm usage was used to evaluate consistency of the notch classifications with the history of noise exposure. The prevalence of notched audiograms varied greatly by definition (31.7, 25.9, 47.2, and 11.7% for methods 1, 2, 3, and 4, respectively). In this cohort, a history of noise exposure was common (56.2% for occupational noise, 71.7% for noisy hobbies, 13.4% for firearms, and 81.2% for any of these three sources). Among participants with a notched audiogram, almost one-third did not have a history of occupational noise exposure (31.4, 33.0, 32.5, and 28.1% for methods 1, 2, 3, and 4, respectively), and approximately 11% did not have a history of exposure to any of the three sources of noise (11.5, 13.6, 10.3, and 7.6%). Discordance was greater in women than in men. These results suggest that there is a poor agreement across existing algorithms for audiometric notches. In addition, notches can occur in the absence of a positive noise history. In the absence of an objective consensus definition of a notched audiogram and in light of the degree of discordance in women between noise history and notches by each of these algorithms, researchers should be cautious about classifying noise-induced hearing loss by notched audiograms.

  15. Averaged strain energy density-based synthesis of crack initiation life in notched steel bars under torsional fatigue

    Directory of Open Access Journals (Sweden)

    Filippo Berto

    2016-10-01

    Full Text Available The torsional fatigue behaviour of circumferentially notched specimens made of austenitic stainless steel, SUS316L, and carbon steel, SGV410, characterized by different notch root radii has been recently investigated by Tanaka. In that contribution, it was observed that the total fatigue life of the austenitic stainless steel increases with increasing stress concentration factor for a given applied nominal shear stress amplitude. By using the electrical potential drop method, Tanaka observed that the crack nucleation life was reduced with increasing stress concentration, on the other hand the crack propagation life increased. The experimental fatigue results, originally expressed in terms of nominal shear stress amplitude, have been reanalysed by means of the local strain energy density (SED averaged over a control volume having radius R0 surrounding the notch tip. To exclude all extrinsic effects acting during the fatigue crack propagation phase, such as sliding contact and/or friction between fracture surfaces, crack initiation life has been considered in the present work. In the original paper, initiation life was defined in correspondence of a 0.1÷0.4-mm-deep crack. The control radius R0 for fatigue strength assessment of notched components, thought of as a material property, has been estimated by imposing the constancy of the averaged SED for both smooth and cracked specimens at NA = 2 million loading cycles

  16. The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis

    Directory of Open Access Journals (Sweden)

    Barth Julia MI

    2012-12-01

    Full Text Available Abstract Background The proper balance of autophagy, a lysosome-mediated degradation process, is indispensable for oogenesis in Drosophila. We recently demonstrated that egg development depends on autophagy in the somatic follicle cells (FC, but not in the germline cells (GCs. However, the lack of autophagy only affects oogenesis when FCs are autophagy-deficient but GCs are wild type, indicating that a dysfunctional signaling between soma and germline may be responsible for the oogenesis defects. Thus, autophagy could play an essential role in modulating signal transduction pathways during egg development. Results Here, we provide further evidence for the necessity of autophagy during oogenesis and demonstrate that autophagy is especially required in subsets of FCs. Generation of autophagy-deficient FCs leads to a wide range of phenotypes that are similar to mutants with defects in the classical cell-cell signaling pathways in the ovary. Interestingly, we observe that loss of autophagy leads to a precocious activation of the Notch pathway in the FCs as monitored by the expression of Cut and Hindsight, two downstream effectors of Notch signaling. Conclusion Our findings point to an unexpected function for autophagy in the modulation of the Notch signaling pathway during Drosophila oogenesis and suggest a function for autophagy in proper receptor activation. Egg development is affected by an imbalance of autophagy between signal sending (germline and signal receiving cell (FC, thus the lack of autophagy in the germline is likely to decrease the amount of active ligand and accordingly compensates for increased signaling in autophagy-defective follicle cells.

  17. HUMAN NK CELLS: FROM SURFACE RECEPTORS TO THE THERAPY OF LEUKEMIAS AND SOLID TUMORS

    Directory of Open Access Journals (Sweden)

    LORENZO eMORETTA

    2014-03-01

    Full Text Available Natural Killer (NK cells are major effector cells of the innate immunity. The discovery, over two decades ago, of MHC-class I specific NK receptors and subsequently of activating receptors, recognizing ligands expressed by tumor or virus-infected cells, paved the way to our understanding of the mechanisms of selective recognition and killing of tumor cells. Although NK cells can efficiently kill tumor cells of different histotypes in vitro, their activity may be limited in vivo by their inefficient trafficking to tumor lesions and by the inhibition of their function induced by tumor cells themselves and by the tumor microenvironment. On the other hand, the important role of NK cells has been clearly demonstrated in the therapy of high risk leukemias in the haploidentical hematopoietic cell (HSC transplantation setting. NK cells derived from donor HSC kill leukemic cells residual after the conditioning regimen, thus preventing leukemia relapses. In addition, they also kill residual dendritic cells and T lymphocytes, thus preventing both GvHD and graft rejection.

  18. Screening Effect of PEG on Avidin Binding to Liposome Surface Receptors

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Mouritsen, Ole G.; Jørgensen, Kent

    2000-01-01

    This study investigates the screening effect of poly(ethylene glycol)-phospholipids (PE-PEG) on the interaction of avidin with PEGylated liposomes containing surface-bound biotin ligands. The influence of grafting density and lipopolymer chain length is examined. A simple fluorescence assay....... Furthermore. it is found that none of the lipopolymers completely prevents avidin from reaching the surface-bound biotin ligands....

  19. Three distinct roles for notch in Drosophila R7 photoreceptor specification.

    Directory of Open Access Journals (Sweden)

    Andrew Tomlinson

    2011-08-01

    Full Text Available Receptor tyrosine kinases (RTKs and Notch (N proteins are different types of transmembrane receptors that transduce extracellular signals and control cell fate. Here we examine cell fate specification in the Drosophila retina and ask how N acts together with the RTKs Sevenless (Sev and the EGF receptor (DER to specify the R7 photoreceptor. The retina is composed of many hundred ommatidia, each of which grows by recruiting surrounding, undifferentiated cells and directing them to particular fates. The R7 photoreceptor derives from a cohort of three cells that are incorporated together following specification of the R2-R5 and R8 photoreceptors. Two cells of the cohort are specified as the R1/6 photoreceptor type by DER activation. These cells then activate N in the third cell (the R7 precursor. By manipulation of N and RTK signaling in diverse combinations we establish three roles for N in specifying the R7 fate. The first role is to impose a block to photoreceptor differentiation; a block that DER activation cannot overcome. The second role, paradoxically, is to negate the first; Notch activation up-regulates Sev expression, enabling the presumptive R7 cell to receive an RTK signal from R8 that can override the block. The third role is to specify the cell as an R7 rather than an R1/6 once RTK signaling has specified the cells as a photoreceptor. We speculate why N acts both to block and to facilitate photoreceptor differentiation, and provide a model for how N and RTK signaling act combinatorially to specify the R1/6 and R7 photoreceptors as well as the surrounding non-neuronal cone cells.

  20. Coastal dune dynamics in response to excavated foredune notches

    Science.gov (United States)

    Ruessink, B. G.; Arens, S. M.; Kuipers, M.; Donker, J. J. A.

    2018-04-01

    Dune management along developed coasts has traditionally focussed on the suppression of the geomorphic dynamics of the foredune to improve its role in sea defence. Because a stabilized foredune acts as an almost total barrier to aeolian transport from the beach, the habitat diversity in the more landward dunes has degraded. With the overarching objective to mitigate this undesirable loss in biodiversity, dune management projects nowadays increasingly intend to restore aeolian dynamics by reconnecting the beach-dune system with notches excavated through the foredune. Here, we use repeat topographic survey data to examine the geomorphic response of a coastal dune system in the Dutch National Park Zuid-Kennemerland to five notches excavated in 2012-2013 within an 850-m stretch of the 20-m high established foredune. The notches were dug in a V-shape (viewed onshore), with a width between approximately 50 and 100 m at the top, a (cross-dune) length between 100 and 200 m, and excavation depths between 9 and 12.5 m. The 1 × 1 m digital terrain models, acquired with airborne Lidar and UAV photogrammetry, illustrate that during the 3-year survey period the notches developed into a U-shape because of wall deflation, and that up to 8-m thick and 150-m long depositional lobes formed landward of the notches. Sand budget computations showed that the sand volume of the entire study area increased by about 22,750 m3/year, which, given the 850-m width of the study area, corresponds to an aeolian input from the beach of approximately 26.5 m3/m/year. Between 2006 and 2012 all wind-blown beach sand deposited on the seaward side of the foredune; since 2013, the notches have caused 75% of the sand to be deposited landward of the foredune. This highlights that the notches are highly effective conduits for aeolian transport into the back dunes. Future monitoring is required to determine for how long the notches will stimulate aeolian dynamics and if (and when) vegetation eventually

  1. Why does necking ignore notches in dynamic tension?

    Directory of Open Access Journals (Sweden)

    Rotbaum Y.

    2015-01-01

    Full Text Available Recent experimental work has revealed that necking of tensile specimens, subjected to dynamic loading, is a deterministic phenomenon, governed by the applied boundary conditions. Furthermore it was shown that the potential sited, dictated by the boundary conditions, may prevail even in the presence of a notch, thus necking may occur away of the notched region. The present paper combines experimental and numerical work to address this issue. Specifically, it is shown that the dynamic tensile failure locus is dictated by both the applied velocity boundary condition and the material mechanical properties, specifically strain-rate sensitivity and strain-rate hardening. It is shown that at sufficiently high impact velocities, the flows stress in the notch vicinity becomes quite higher than in the rest of the specimen, so that while the former resists deformation, it transfers the load to the latter, resulting in the formation of a local neck and failure away from the notch. Small local perturbations in the material properties are shown to be sufficient to stabilize the structure under local failure until a neck forms elsewhere. While the physical observations are quite counterintuitive with respect to the engineering views of stress concentrator's effect, the present work rationalizes those observations and also provides information for the designers of dynamically tensioned structures that may contain notches or similar flaws.

  2. Notch pathway signaling in the skin antagonizes Merkel cell development.

    Science.gov (United States)

    Logan, Gregory J; Wright, Margaret C; Kubicki, Adam C; Maricich, Stephen M

    2018-02-15

    Merkel cells are mechanosensitive skin cells derived from the epidermal lineage whose development requires expression of the basic helix-loop-helix transcription factor Atoh1. The genes and pathways involved in regulating Merkel cell development during embryogenesis are poorly understood. Notch pathway signaling antagonizes Atoh1 expression in many developing body regions, so we hypothesized that Notch signaling might inhibit Merkel cell development. We found that conditional, constitutive overexpression of the Notch intracellular domain (NICD) in mouse epidermis significantly decreased Merkel cell numbers in whisker follicles and touch domes of hairy skin. Conversely, conditional deletion of the obligate NICD binding partner RBPj in the epidermis significantly increased Merkel cell numbers in whisker follicles, led to the development of ectopic Merkel cells outside of touch domes in hairy skin epidermis, and altered the distribution of Merkel cells in touch domes. Deletion of the downstream Notch effector gene Hes1 also significantly increased Merkel cell numbers in whisker follicles. Together, these data demonstrate that Notch signaling regulates Merkel cell production and patterning. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Oncogenic programmes and Notch activity: an 'organized crime'?

    Science.gov (United States)

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Genetic screens to identify new Notch pathway mutants in Drosophila.

    Science.gov (United States)

    Giagtzoglou, Nikolaos

    2014-01-01

    Notch signaling controls a wide range of developmental processes, including proliferation, apoptosis, and cell fate specification during both development and adult tissue homeostasis. The functional versatility of the Notch signaling pathway is tightly linked with the complexity of its regulation in different cellular contexts. To unravel the complexity of Notch signaling, it is important to identify the different components of the Notch signaling pathway. A powerful strategy to accomplish this task is based on genetic screens. Given that the developmental context of signaling is important, these screens should be customized to specific cell populations or tissues. Here, I describe how to perform F1 clonal forward genetic screens in Drosophila to identify novel components of the Notch signaling pathway. These screens combine a classical EMS (ethyl methanesulfonate) chemical mutagenesis protocol along with clonal analysis via FRT-mediated mitotic recombination. These F1 clonal screens allow rapid phenotypic screening within clones of mutant cells induced at specific developmental stages and in tissues of interest, bypassing the pleiotropic effects of isolated mutations. More importantly, since EMS mutations have been notoriously difficult to map to specific genes in the past, I briefly discuss mapping methods that allow rapid identification of the causative mutations.

  5. An investigation of interactions between hypocretin/orexin signaling and glutamate receptor surface expression in the rat nucleus accumbens under basal conditions and after cocaine exposure.

    Science.gov (United States)

    Plaza-Zabala, Ainhoa; Li, Xuan; Milovanovic, Mike; Loweth, Jessica A; Maldonado, Rafael; Berrendero, Fernando; Wolf, Marina E

    2013-12-17

    Hypocretin peptides are critical for the effects of cocaine on excitatory synaptic strength in the ventral tegmental area (VTA). However, little is known about their role in cocaine-induced synaptic plasticity in the nucleus accumbens (NAc). First, we tested whether hypocretin-1 by itself could acutely modulate glutamate receptor surface expression in the NAc, given that hypocretin-1 in the VTA reproduces cocaine's effects on glutamate transmission. We found no effect of hypocretin-1 infusion on AMPA or NMDA receptor surface expression in the NAc, measured by biotinylation, either 30 min or 3h after the infusion. Second, we were interested in whether changes in hypocretin receptor-2 (Hcrtr-2) expression contribute to cocaine-induced plasticity in the NAc. As a first step towards addressing this question, Hcrtr-2 surface expression was compared in the NAc after withdrawal from extended-access self-administration of saline (control) versus cocaine. We found that surface Hcrtr-2 levels remain unchanged following 14, 25 or 48 days of withdrawal from cocaine, a time period in which high conductance GluA2-lacking AMPA receptors progressively emerge in the NAc. Overall, our results fail to support a role for hypocretins in acute modulation of glutamate receptor levels in the NAc or a role for altered Hcrtr-2 expression in withdrawal-dependent synaptic adaptations in the NAc following cocaine self-administration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Jun Ishii

    Full Text Available G-protein-coupled receptors (GPCRs regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP strategy. In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.

  7. Acoustic emission during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches

    International Nuclear Information System (INIS)

    Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission generated during tensile deformation and fracture of nuclear grade AISI type 304 stainless steel specimens with notches has been studied. The extent of acoustic activity generated depends on notch tip severity, notch tip blunting and tearing of the notches. The equation N=AK m applied to the acoustic emission data of the notched specimens has shown good correlation. Acoustic emission technique can be used to estimate the size of an unknown notch. (author)

  8. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays

    NARCIS (Netherlands)

    Wang, J.; Bovee, T.F.H.; Bi, Y.; Bernhöft, S.; Schramm, K.W.

    2014-01-01

    Two types of biological tests were employed for monitoring the toxicological profile of sediment cores in the Three Gorges Reservoir (TGR), China. In the present study, sediments collected in June 2010 from TGR were analyzed for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated

  9. Digital notch filter based active damping for LCL filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2015-01-01

    . In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...... in the z-domain. Simulations and experiments are carried out to verify the proposed active damping method. Both results have confirmed that the notch filter based active damping can ensure the entire system stability in the case of resonances with a good system performance....

  10. Passive notch circuit for pulsed-off compression fields

    International Nuclear Information System (INIS)

    Nunnally, W.C.

    1976-06-01

    The operation and simulated results of a passive notch circuit used to pulse off the field in a multiturn, fusion-power system, compression coil are presented. The notch circuit permits initial plasma preparation at field zero, adiabatic compression as the field returns to its initial value, and long field decay time for plasma confinement. The major advantages and disadvantages of the notch circuit are compared with those of a standard capacitor power supply system. The major advantages are that: (1) slow-rising fields can be used for adiabatic compression, (2) solid-state switches can be used because of the inherent current and voltage waveforms, and (3) long field decay times are easier to attain than with single-turn coils

  11. Planar Ultrawideband Antenna with Photonically Controlled Notched Bands

    Directory of Open Access Journals (Sweden)

    Drasko Draskovic

    2013-01-01

    Full Text Available A design of a planar microstrip-fed ultrawideband (UWB printed circular monopole antenna with optically controlled notched bands is presented. The proposed antenna is composed of a circular ultrawideband patch, with an etched T-shaped slot controlled by an integrated silicon switch. The slot modifies the frequency response of the antenna suppressing 3.5–5 GHz band when the switch is in open state. The optical switch is controlled by a low-power near-infrared (808 nm laser diode, which causes the change in the frequency response of the antenna generating a frequency notch. This solution could be expanded to include several notches in the antenna frequency response achieving a fully reconfigurable UWB antenna. The antenna could be remotely controlled at large distances using optical fiber. The prototype antenna has been fully characterized to verify these design concepts.

  12. Layilin, a cell surface hyaluronan receptor, interacts with merlin and radixin

    International Nuclear Information System (INIS)

    Bono, Petri; Cordero, Etchell; Johnson, Kristen; Borowsky, Mark; Ramesh, Vijaya; Jacks, Tyler; Hynes, Richard O.

    2005-01-01

    Layilin is a widely expressed integral membrane hyaluronan receptor, originally identified as a binding partner of talin located in membrane ruffles. We have identified merlin, the neurofibromatosis type 2 tumor suppressor protein and radixin, as other interactors with the carboxy-terminal domain of layilin. We show that the carboxy-terminal domain of layilin is capable of binding to the amino-terminal domain of radixin. An interdomain interaction between the amino- and the carboxy-terminal domains of radixin inhibits its ability to bind to layilin. In the presence of acidic phospholipids, the interdomain interaction of radixin is inhibited and layilin can bind to full-length radixin. In contrast, layilin binds both full-length and amino-terminal merlin-GST fusion proteins without a requirement for phospholipids. Furthermore, layilin antibody can immunoprecipitate merlin, confirming association in vivo between these two proteins, which also display similar subcellular localizations in ruffling membranes. No interaction was observed between layilin and ezrin or layilin and moesin. These findings expand the known binding partners of layilin to include other members of the talin/band 4.1/ERM (ezrin, radixin, and moesin) family of cytoskeletal-membrane linker molecules. This in turn suggests that layilin may mediate signals from extracellular matrix to the cell cytoskeleton via interaction with different intracellular binding partners and thereby be involved in the modulation of cortical structures in the cell

  13. NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Mauro Di Ianni

    2018-04-01

    Full Text Available To investigate chronic lymphocytic leukemia (CLL-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs. In NOTCH1-mutated CLL, we detected subclonal mutations in 57% CD34+/CD38− HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38− and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.

  14. NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells.

    Science.gov (United States)

    Di Ianni, Mauro; Baldoni, Stefano; Del Papa, Beatrice; Aureli, Patrizia; Dorillo, Erica; De Falco, Filomena; Albi, Elisa; Varasano, Emanuela; Di Tommaso, Ambra; Giancola, Raffaella; Accorsi, Patrizia; Rotta, Gianluca; Rompietti, Chiara; Silva Barcelos, Estevão Carlos; Campese, Antonio Francesco; Di Bartolomeo, Paolo; Screpanti, Isabella; Rosati, Emanuela; Falzetti, Franca; Sportoletti, Paolo

    2018-01-01

    To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs). In NOTCH1- mutated CLL, we detected subclonal mutations in 57% CD34+/CD38- HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38- and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.

  15. Damage Study in Notched Particulate Composie Specimens Under Nonuniform Strain Loading

    National Research Council Canada - National Science Library

    Kwon, Y

    1999-01-01

    .... The numerical specimen considered had a semi-circular notch with a linearly varying length. The initial crack size occurring at the notch tip was modeled and predicted using a micro/macro-approach along with a damage model...

  16. Notch signalling in primary cutaneous CD30+ lymphoproliferative disorders: a new therapeutic approach?

    DEFF Research Database (Denmark)

    Kamstrup, M R; Biskup, E; Gniadecki, R

    2010-01-01

    The oncogenic potential of deregulated Notch signalling has been described in several haematopoietic malignancies. We have previously reported an increased expression of Notch1 in primary cutaneous CD30+ lymphoproliferative disorders, lymphomatoid papulosis and primary cutaneous anaplastic large...

  17. Role of Notch signalling pathway in cancer and its association with ...

    Indian Academy of Sciences (India)

    The Notch signalling pathway is an evolutionarily conserved cell signalling pathway involved in the development of organ- ... Abnormal Notch signalling is seen in many cancers like T-cell acute ...... Morgan T. H. 1917 The theory of the gene.

  18. Notch3 is dispensable for thymocyte β-selection and Notch1-induced T cell leukemogenesis.

    Directory of Open Access Journals (Sweden)

    Sara Suliman

    Full Text Available Notch1 (N1 signaling induced by intrathymic Delta-like (DL ligands is required for T cell lineage commitment as well as self-renewal during "β-selection" of TCRβ⁺CD4⁻CD8⁻ double negative 3 (DN3 T cell progenitors. However, over-expression of the N1 intracellular domain (ICN1 renders N1 activation ligand-independent and drives leukemic transformation during β-selection. DN3 progenitors also express Notch3 (N3 mRNA, and over-expression of ligand-independent mutant N3 (ICN3 influences β-selection and drives T cell leukemogenesis. However, the importance of ligand-activated N3 in promoting β-selection and ICN1-induced T cell leukemogenesis has not been examined. To address these questions we generated mice lacking functional N3. We confirmed that DN3 progenitors express N3 protein using a N3-specific antibody. Surprisingly however, N3-deficient DN3 thymocytes were not defective in generating DP thymocytes under steady state conditions or in more stringent competition assays. To determine if N3 co-operates with N1 to regulate β-selection, we generated N1;N3 compound mutants. However, N3 deficiency did not exacerbate the competitive defect of N1⁺/⁻ DN3 progenitors, demonstrating that N3 does not compensate for limiting N1 during T cell development. Finally, N3 deficiency did not attenuate T cell leukemogenesis induced by conditional expression of ICN1 in DN3 thymocytes. Importantly, we showed that in contrast to N1, N3 has a low binding affinity for DL4, the most abundant intrathymic DL ligand. Thus, despite the profound effects of ectopic ligand-independent N3 activation on T cell development and leukemogenesis, physiologically activated N3 is dispensable for both processes, likely because N3 interacts poorly with intrathymic DL4.

  19. Crack initiation life in notched Ti-6Al-4V titanium bars under uniaxial and multiaxial fatigue: synthesis based on the averaged strain energy density approach

    Directory of Open Access Journals (Sweden)

    Giovanni Meneghetti

    2017-07-01

    Full Text Available The fatigue behaviour of circumferentially notched specimens made of titanium alloy, Ti-6Al-4V, has been analysed. To investigate the notch effect on the fatigue strength, pure bending, pure torsion and multiaxial bending-torsion fatigue tests have been carried out on specimens characterized by two different root radii, namely 0.1 and 4 mm. Crack nucleation and subsequent propagation have been accurately monitored by using the direct current potential drop (DCPD technique. Based on the results obtained from the potential drop technique, the crack initiation life has been defined in correspondence of a relative potential drop increase V/V0 equal to 1%, and it has been used as failure criterion. Doing so, the effect of extrinsic mechanisms operating during crack propagation phase, such as sliding contact, friction and meshing between fracture surfaces, is expected to be reduced. The experimental fatigue test results have been re-analysed by using the local strain energy density (SED averaged over a structural volume having radius R0 and surrounding the notch tip. Finally, the use of the local strain energy density parameter allowed us to properly correlate the crack initiation life of Ti-6Al-4V notched specimens, despite the different notch geometries and loading conditions involved in the tests

  20. Use of notched beams to establish fracture criteria for beryllium

    International Nuclear Information System (INIS)

    Mayville, R.A.

    1980-01-01

    The fracture of an improved form of pure beryllium was studied under triaxial tensile stresses. This state of stress was produced by testing notched beams, which were thick enough to be in a state of plane strain at the center. A plane strain, elastic-incremental plasticity finite element program was then used to determine the stress and strain distributions at fracture. A four-point bend fixture was used to load the specimens. It was carefully designed and manufactured to eliminate virtually all of the shear stresses at the reduced section of the notched beams. The unixial properties were obtained

  1. Peripheral Osteoma of the Mandibular Notch: Report of a Case

    International Nuclear Information System (INIS)

    Iwai, Toshinori; Izumi, Toshiharu; Baba, Junichi; Maegawa, Jiro; Mitsudo, Kenji; Tohnai, Iwai

    2013-01-01

    Osteoma is a benign, slow-growing osteogenic tumor that sometimes arises from the craniomaxillofacial region, such as the sinus, temporal or jaw bones. Osteoma consists of compact or cancellous bone that may be peripheral, central or extraskeletal type. Peripheral osteoma arises from the periosteum and is commonly a unilateral, pedunculated mushroom-like mass. Peripheral osteoma of the mandible is relatively uncommon, and peripheral osteoma of the mandibular notch is extremely rare, although many cases arise from the mandibular body, angle, condyle, or coronoid process. We report here an unusual peripheral osteoma of the mandibular notch in a 78-year-old nonsyndromic female

  2. Ultra-Wideband Notched Characteristic Fed by Coplanar Waveguide

    Directory of Open Access Journals (Sweden)

    Rastanto Hadinegoro

    2015-02-01

    Full Text Available In this paper, a novel Ultra-Wide Band (UWB notch patch antenna with co-planar waveguide (CPW fed is presented. This antenna only used one layer and the patch antenna is constructed on the first layer and back to back with CPW fed and bottom part is ground plane. The width notch is used to achieve the UWB characteristic. The results shown that the impedance bandwidth is 1130 MHz (1.662–2.792 GHz or about 50.7% for VSWR <2.

  3. Mechano sorptive behaviour of notched beams in bending

    DEFF Research Database (Denmark)

    Jensen, Signe Kamp; Hoffmeyer, Preben

    1996-01-01

    Short term bending tests with end-notched beams at constant or varying moisture content have shown an apparent contradictory dependency between moisture content and strength. The higher the moisture content the higher the strength. Varying moisture results in particularly significant differences...... and by neglecting deformation due to shear. Compression stresses perpendicular to grain in excess of 6 MPa were found in the vicinity of the notch following a period of adsorption. Similarly, small tension stresses of the order 1 MPa were registered in this area when the specimens were at their most dry condition...

  4. Study of the ultrasonic technique of elapsed time of notch

    International Nuclear Information System (INIS)

    Gomes, L.C.F.L.; Rebello, J.M.A.

    1989-01-01

    The study of the ultrasonic technique of elapsed time in the dimensionment of notch inclined of 15 and 30 degree and of depth of 5 and 10 mm using the superficial Rayleigh wave and the mode conversion, with a headstock transmitter and other receiver. The dimensionment of notch and of the binding of the piece were made with headstock in different positions. Between the various results obtained can be mentioned the increase of the dimensionment, by two techniques, with the increase of the angle and/or of the depth. (V.R.B.)

  5. Hyper-activation of Notch3 amplifies the proliferative potential of rhabdomyosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Maria De Salvo

    Full Text Available Rhabdomyosarcoma (RMS is a pediatric myogenic-derived soft tissue sarcoma that includes two major histopathological subtypes: embryonal and alveolar. The majority of alveolar RMS expresses PAX3-FOXO1 fusion oncoprotein, associated with the worst prognosis. RMS cells show myogenic markers expression but are unable to terminally differentiate. The Notch signaling pathway is a master player during myogenesis, with Notch1 activation sustaining myoblast expansion and Notch3 activation inhibiting myoblast fusion and differentiation. Accordingly, Notch1 signaling is up-regulated and activated in embryonal RMS samples and supports the proliferation of tumor cells. However, it is unable to control their differentiation properties. We previously reported that Notch3 is activated in RMS cell lines, of both alveolar and embryonal subtype, and acts by inhibiting differentiation. Moreover, Notch3 depletion reduces PAX3-FOXO1 alveolar RMS tumor growth in vivo. However, whether Notch3 activation also sustains the proliferation of RMS cells remained unclear. To address this question, we forced the expression of the activated form of Notch3, Notch3IC, in the RH30 and RH41 PAX3-FOXO1-positive alveolar and in the RD embryonal RMS cell lines and studied the proliferation of these cells. We show that, in all three cell lines tested, Notch3IC over-expression stimulates in vitro cell proliferation and prevents the effects of pharmacological Notch inhibition. Furthermore, Notch3IC further increases RH30 cell growth in vivo. Interestingly, knockdown of Notch canonical ligands JAG1 or DLL1 in RMS cell lines decreases Notch3 activity and reduces cell proliferation. Finally, the expression of Notch3IC and its target gene HES1 correlates with that of the proliferative marker Ki67 in a small cohort of primary PAX-FOXO1 alveolar RMS samples. These results strongly suggest that high levels of Notch3 activation increase the proliferative potential of RMS cells.

  6. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Quitterer, Ursula, E-mail: ursula.quitterer@pharma.ethz.ch [Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland); Pohl, Armin; Langer, Andreas; Koller, Samuel; AbdAlla, Said [Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland)

    2011-06-10

    Highlights: {yields} A new FRET-based method detects AT1/B2 receptor heterodimerization. {yields} First time application of AT1-Cerulean as a FRET donor. {yields} Method relies on signal peptide-enhanced cell surface delivery of AT1-Cerulean. {yields} A high FRET efficiency revealed efficient heterodimerization of AT1/B2R proteins. {yields} AT1/B2R heterodimers were functionally coupled to desensitization mechanisms. -- Abstract: Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R

  7. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor

    International Nuclear Information System (INIS)

    Quitterer, Ursula; Pohl, Armin; Langer, Andreas; Koller, Samuel; AbdAlla, Said

    2011-01-01

    Highlights: → A new FRET-based method detects AT1/B2 receptor heterodimerization. → First time application of AT1-Cerulean as a FRET donor. → Method relies on signal peptide-enhanced cell surface delivery of AT1-Cerulean. → A high FRET efficiency revealed efficient heterodimerization of AT1/B2R proteins. → AT1/B2R heterodimers were functionally coupled to desensitization mechanisms. -- Abstract: Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R heterodimerization, confocal FRET imaging of

  8. The Prader-Willi syndrome proteins MAGEL2 and necdin regulate leptin receptor cell surface abundance through ubiquitination pathways.

    Science.gov (United States)

    Wijesuriya, Tishani Methsala; De Ceuninck, Leentje; Masschaele, Delphine; Sanderson, Matthea R; Carias, Karin Vanessa; Tavernier, Jan; Wevrick, Rachel

    2017-11-01

    In Prader-Willi syndrome (PWS), obesity is caused by the disruption of appetite-controlling pathways in the brain. Two PWS candidate genes encode MAGEL2 and necdin, related melanoma antigen proteins that assemble into ubiquitination complexes. Mice lacking Magel2 are obese and lack leptin sensitivity in hypothalamic pro-opiomelanocortin neurons, suggesting dysregulation of leptin receptor (LepR) activity. Hypothalamus from Magel2-null mice had less LepR and altered levels of ubiquitin pathway proteins that regulate LepR processing (Rnf41, Usp8, and Stam1). MAGEL2 increased the cell surface abundance of LepR and decreased their degradation. LepR interacts with necdin, which interacts with MAGEL2, which complexes with RNF41 and USP8. Mutations in the MAGE homology domain of MAGEL2 suppress RNF41 stabilization and prevent the MAGEL2-mediated increase of cell surface LepR. Thus, MAGEL2 and necdin together control LepR sorting and degradation through a dynamic ubiquitin-dependent pathway. Loss of MAGEL2 and necdin may uncouple LepR from ubiquitination pathways, providing a cellular mechanism for obesity in PWS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation

    DEFF Research Database (Denmark)

    Shih, Hung Ping; Kopp, Janel L; Sandhu, Manbir

    2012-01-01

    necessitates subsequent Sox9 downregulation and evasion from Notch activity via cell-autonomous repression of Sox9 by Ngn3. If high Notch levels are maintained, endocrine progenitors retain Sox9 and undergo ductal fate conversion. Taken together, our findings establish a novel role for Notch in initiating both...

  10. Experimental analysis of compressive notch strengthening in closed-cell aluminum alloy foam

    NARCIS (Netherlands)

    Antoniou, A; Onck, PR; Bastawros, Ashraf F.

    2004-01-01

    The notch strengthening effect is studied experimentally in closed cell aluminum foams. The limit loads, net section strength were found for a set of double-edge-notched (DEN) and single-edge-notched (SEN) specimens loaded in compression. In addition, the evolution of the deformation is monitored

  11. Epidermal Notch1 recruits RORγ + group 3 innate lymphoid cells to orchestrate normal skin repair

    NARCIS (Netherlands)

    Z. Li (Zhi); T. Hodgkinson (Tom); E.J. Gothard (Elizabeth J.); S. Boroumand (Soulmaz); R. Lamb (Rebecca); I. Cummins (Ian); P. Narang (Priyanka); A. Sawtell (Amy); J. Coles (Jenny); G. Leonov (German); A. Reboldi (Andrea); C.D. Buckley; T. Cupedo (Tom); C. Siebel (Christian); A. Bayat (Ardeshir); M. Coles (Mark); C.A. Ambler (Carrie A.)

    2016-01-01

    textabstractNotch has a well-defined role in controlling cell fate decisions in the embryo and the adult epidermis and immune systems, yet emerging evidence suggests Notch also directs non-cell-autonomous signalling in adult tissues. Here, we show that Notch1 works as a damage response signal.

  12. Down-regulation of Notch-1 by γ-secretase inhibitor suppress the ...

    African Journals Online (AJOL)

    Notch-1 signaling is crucial for stem cell maintenance and in a variety of tissues. Previous research has demonstrated that Notch-1 activity plays a key role in prostate tumorigenesis. However, the function of Notch-1 signaling in tumorigenesis can be either oncogene or suppressor gene. In our paper, γ- secretase inhibitor ...

  13. Femoral intercondylar notch shape and dimensions in ACL-injured patients

    NARCIS (Netherlands)

    van Eck, Carola F.; Martins, Cesar A. Q.; Vyas, Shail M.; Celentano, Umberto; van Dijk, C. Niek; Fu, Freddie H.

    2010-01-01

    The femoral intercondylar notch has been an anatomic site of interest as it houses the anterior cruciate ligament (ACL). The objective of this study was to arthroscopically evaluate the femoral notch in patients with known ACL injury. This evaluation included establishing a classification for notch

  14. The pathological significance of Notch1 in oral squamous cell carcinoma.

    Science.gov (United States)

    Yoshida, Ryoji; Nagata, Masashi; Nakayama, Hideki; Niimori-Kita, Kanako; Hassan, Wael; Tanaka, Takuji; Shinohara, Masanori; Ito, Takaaki

    2013-10-01

    Notch signaling has been reported to be involved in several types of malignant tumors; however, the role and activation mechanism of Notch signaling in oral squamous cell carcinoma (OSCC) remains poorly characterized. The purpose of this study was to elucidate the pathological significance of Notch signaling and its activation mechanism in the development and progression of OSCC. In this study, we showed that the expression of Notch1 and intracellular Notch domain (NICD) are upregulated in OSCCs. In addition, Notch1 and NICD were found to be characteristically localized at the invasive tumor front. TNF-α, a major inflammatory cytokine, significantly activated Notch signaling in vitro. In a clinicopathological analysis, Notch1 expression correlated with both the T-stage and the clinical stage. Furthermore, loss of Notch1 expression correlated with the inhibition of cell proliferation and TNF-α-dependent invasiveness in an OSCC cell line. In addition, γ-secretase inhibitor (GSI) prevented cell proliferation and TNF-α-dependent invasion of OSCC cells in vitro. These results indicate that altered expression of Notch1 is associated with increased cancer progression and that Notch1 regulates the steps involved in cell metastasis in OSCC. Moreover, inactivating Notch signaling with GSI could therefore be a useful approach for treating patients with OSCC.

  15. High NOTCH activity induces radiation resistance in non small cell lung cancer

    International Nuclear Information System (INIS)

    Theys, Jan; Yahyanejad, Sanaz; Habets, Roger; Span, Paul; Dubois, Ludwig; Paesmans, Kim; Kattenbeld, Bo; Cleutjens, Jack; Groot, Arjan J.; Schuurbiers, Olga C.J.; Lambin, Philippe; Bussink, Jan; Vooijs, Marc

    2013-01-01

    Background and purpose: Patients with advanced NSCLC have survival rates <15%. The NOTCH pathway plays an important role during lung development and physiology but is often deregulated in lung cancer, making it a potential therapeutic target. We investigated NOTCH signaling in NSCLC and hypothesized that high NOTCH activity contributes to radiation resistance. Materials and methods: NOTCH signaling in NSCLC patient samples was investigated using quantitative RT-PCR. H460 NSCLC cells with either high or blocked NOTCH activity were generated and their radiation sensitivity monitored using clonogenic assays. In vivo, xenograft tumors were irradiated and response assessed using growth delay. Microenvironmental parameters were analyzed by immunohistochemistry. Results: Patients with high NOTCH activity in tumors showed significantly worse disease-free survival. In vitro, NOTCH activity did not affect the proliferation or intrinsic radiosensitivity of NSCLC cells. In contrast, xenografts with blocked NOTCH activity grew slower than wild type tumors. Tumors with high NOTCH activity grew significantly faster, were more hypoxic and showed a radioresistant phenotype. Conclusions: We demonstrate an important role for NOTCH in tumor growth and correlate high NOTCH activity with poor prognosis and radioresistance. Blocking NOTCH activity in NSCLC might be a promising intervention to improve outcome after radiotherapy

  16. Impact of Spectral Notch Width on Neurophysiological Plasticity and Clinical Effectiveness of the Tailor-Made Notched Music Training.

    Directory of Open Access Journals (Sweden)

    Robert Wunderlich

    Full Text Available Tinnitus, the ringing in the ears that is unrelated to any external source, causes a significant loss in quality of life, involving sleep disturbance and depression for 1 to 3% of the general population. While in the first place tinnitus may be triggered by damage to the inner ear cells, the neural generators of subjective tinnitus are located in central regions of the nervous system. A loss of lateral inhibition, tonotopical reorganization and a gain-increase in response to the sensory deprivation result in hypersensitivity and hyperactivity in certain regions of the auditory cortex. In the tailor-made notched music training (TMNMT patients listen to music from which the frequency spectrum of the tinnitus has been removed. This evokes strong lateral inhibition from neurons tuned to adjacent frequencies onto the neurons involved in the tinnitus percept. A reduction of tinnitus loudness and tinnitus-related neural activity was achieved with TMNMT in previous studies. As the effect of lateral inhibition depends on the bandwidth of the notch, in the current study we altered the notch width to find the most effective notch width for TMNMT. We compared 1-octave notch width with ½-octave and ¼-octave. Participants chose their favorite music for the training that included three month of two hours daily listening. The outcome was measured by means of standardized questionnaires and magnetoencephalography. We found a general reduction of tinnitus distress in all administered tinnitus questionnaires after the training. Additionally, tinnitus-related neural activity was reduced after the training. Nevertheless, notch width did not have an influence on the behavioral or neural effects of TMNMT. This could be due to a non-linear resolution of lateral inhibition in high frequencies.

  17. Polysiloxane surface modified with bipyrazolic tripodal receptor for quantitative lead adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Radi, Smaail, E-mail: radi_smaail@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Equipe de Chimie Bio-organique et Macromoleculaire, Unite Associee au CNRST URAC 25, Departement de Chimie, Faculte des Sciences, Universite Med I, BP 524, 60 000 Oujda (Morocco); Tighadouini, Said; Toubi, Yahya [Laboratoire de Chimie Organique, Macromoleculaire et Produits Naturels, Equipe de Chimie Bio-organique et Macromoleculaire, Unite Associee au CNRST URAC 25, Departement de Chimie, Faculte des Sciences, Universite Med I, BP 524, 60 000 Oujda (Morocco); Bacquet, Maryse [Universite des Sciences et Technologies de Lille, UMET: Unite Materiaux et Transformations UMR8207, Equipe Ingenierie des Systemes Polymeres, Batiment C6 salle 119-59655 Villeneuve d' Ascq (France)

    2011-01-15

    A new silica gel compound modified N,N-bis(3,5-dimethylpyrazol-1-ylmethyl) amine (SiN{sub 2}Pz) was synthesized and characterized by elemental analysis, FT-IR, {sup 13}C NMR of the solid state, nitrogen adsorption-desorption isotherm, BET surface area and BJH pore sizes. The new surface exhibits good chemical and thermal stability determined by thermogravimetry curves (TGA). The effect of pH and stirring time on the adsorption of Pb(II) were studied. The process of metal retention was followed by batch method and the optimum pH value for the quantitative adsorption of this toxic metal ion was 7. At this pH value, the new functionalized polysiloxane presents further improvements and shows higher affinity (123 mg of Pb{sup 2+}/g of silica) for the effective adsorption of Pb(II) compared to others described sorbents. The extracted amounts of Pb(II) were determined by atomic absorption measurements.

  18. Effects of anisotropic properties on bursting behavior of rectangular cup with a V-notch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Tai [R and D Center, TERA Co. Ltd., Seoul (Korea, Republic of); Kim, Sang Mok [R and D Center, Hyosung Power and Industrial Systems PG, Changwon (Korea, Republic of); Kang, Beom Soo [Dept. of Aerospace Engineering, Pusan National University, Busan (Korea, Republic of); Ku, Tae Wan [Engineering Research Center of Innovative Technology on Advanced Forming, Pusan National University, Busan (Korea, Republic of)

    2016-09-15

    Effects of mechanical anisotropic properties on bursting failure and its pressure of rectangular deep-drawn cup fabricated by using AA3005-H14 thin sheet are investigated to utilize for electrolyte container of lithium-ion secondary batteries. The V-notch shape with a depth of 0.1 mm and an angle of 20.0 degrees is defined on the rectangular cup, which has a thickness of 0.20 mm on the major surface and that of 0.30 mm on the minor surface. With the measured mechanical properties by uni-axial tensile tests and the defined V-notch geometry, a series of numerical prediction models considering isotropic, planar and normal anisotropic characteristics, are built-up and the bursting simulations are performed. Thereafter, the bursting fracture behavior is investigated by adopting ductile fracture criterion proposed by Cockcroft and Latham. The results predicted for the planar and the normal anisotropic models show that the bursting fracture pressure is well matched to 0.400 MPa, and the isotropic and the planar anisotropic models present a bursting fracture height of about 4.95 mm and 4.92 mm, respectively. A series of experimental investigations are undertaken to verify the bursting deformation that had been predicted. The bursting pressure and its height during experimental verifications are shown to be in good agreement with each variation of about 5.88% and roughly 0.20% with respect to the numerical results obtained using the planar anisotropic model.

  19. A Genotypic Analysis of Five P. aeruginosa Strains after Biofilm Infection by Phages Targeting Different Cell Surface Receptors

    Directory of Open Access Journals (Sweden)

    Diana P. Pires

    2017-06-01

    Full Text Available Antibiotic resistance constitutes one of the most serious threats to the global public health and urgently requires new and effective solutions. Bacteriophages are bacterial viruses increasingly recognized as being good alternatives to traditional antibiotic therapies. In this study, the efficacy of phages, targeting different cell receptors, against Pseudomonas aeruginosa PAO1 biofilm and planktonic cell cultures was evaluated over the course of 48 h. Although significant reductions in the number of viable cells were achieved for both cases, the high level of adaptability of the bacteria in response to the selective pressure caused by phage treatment resulted in the emergence of phage-resistant variants. To further investigate the genetic makeup of phage-resistant variants isolated from biofilm infection experiments, some of these bacteria were selected for phenotypic and genotypic characterization. Whole genome sequencing was performed on five phage-resistant variants and all of them carried mutations affecting the galU gene as well as one of pil genes. The sequencing analysis further revealed that three of the P. aeruginosa PAO1 variants carry large deletions (>200 kbp in their genomes. Complementation of the galU mutants with wild-type galU in trans restored LPS expression on the bacterial cell surface of these bacterial strains and rendered the complemented strains to be sensitive to phages. This provides unequivocal evidence that inactivation of galU function was associated with resistance to the phages that uses LPS as primary receptors. Overall, this work demonstrates that P. aeruginosa biofilms can survive phage attack and develop phage-resistant variants exhibiting defective LPS production and loss of type IV pili that are well adapted to the biofilm mode of growth.

  20. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6.

    Science.gov (United States)

    Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J

    2012-03-02

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.

  1. Effect of notch depth of modified current collector on internal-short-circuit mitigation for lithium-ion battery

    Science.gov (United States)

    Wang, Meng; Noelle, Daniel J.; Shi, Yang; Le, Anh V.; Qiao, Yu

    2018-01-01

    Formation of internal short circuit (ISC) may result in catastrophic thermal runaway of lithium-ion battery (LIB). Among LIB cell components, direct contact between cathode and anode current collectors is most critical to the ISC behavior, yet is still relatively uninvestigated. In the current study, we analyze the effect of heterogeneity of current collector on the temperature increase of LIB cells subjected to mechanical abuse. The cathode current collector is modified by surface notches, so that it becomes effectively brittle and the ISC site can be isolated. Results from impact tests on LIB cells with modified current collectors suggest that their temperature increase can be negligible. The critical parameters include the failure strain and the failure work of modified current collector, both of which are related to the notch depth.

  2. Dual Mechanism of Action of Resveratrol in Notch Signaling ...

    African Journals Online (AJOL)

    activation of Notch signaling in osteosarcoma cells. ... HeyL in U2OS cells. Treatment of U2OS cells with 20 µM concentration of resveratrol for 48 h induced a ... Cell lines and culture .... concentration of resveratrol required for induced.

  3. Notch Signaling in Prostate Cancer Cells Promotes Osteoblastic Metastasis

    Science.gov (United States)

    2017-06-01

    information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this...function and number while inducing osteoblast proliferation. Our results suggest that Notch signaling from cancer cells promotes osteoblastic...Participants and other collaborating organizations: I initiated collaboration with Dr. Evan Keller at University of Michigan to interrogate PCa bone

  4. Dual Mechanism of Action of Resveratrol in Notch Signaling ...

    African Journals Online (AJOL)

    Results: The results revealed that resveratrol treatment exhibited dual mechanisms of action on the activation of Notch signaling in osteosarcoma cells. The osteosarcoma cell lines, MG-63 and U2OS, when exposed to 20 μM concentration of resveratrol for 48 h showed significant toxicity compared to untreated cells.

  5. On-line identification, flutter testing and adaptive notching of ...

    Indian Academy of Sciences (India)

    multiple modes simultaneously from sine sweep and other multifrequency data, ... envelope expansion and to adjust the notch filter frequencies and suppress aero- .... estimated frequency and damping values were compared with those ..... The current configuration results in a phase delay of (p И 0X19 s, while the Kalman.

  6. Regularized Adaptive Notch Filters for Acoustic Howling Suppression

    DEFF Research Database (Denmark)

    Gil-Cacho, Pepe; van Waterschoot, Toon; Moonen, Marc

    2009-01-01

    In this paper, a method for the suppression of acoustic howling is developed, based on adaptive notch filters (ANF) with regularization (RANF). The method features three RANFs working in parallel to achieve frequency tracking, howling detection and suppression. The ANF-based approach to howling...

  7. 105 GHz Notch Filter Design for Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank

    2011-01-01

    A millimeter-wave notch filter with 105-GHz center frequency, >20-GHz passband coverage, and 1-GHz rejection bandwidth has been constructed. The design is based on a fundamental rectangular waveguide with cylindrical cavities coupled by narrow iris gaps, i.e., small elongated holes of negligible...

  8. Experimental and Numerical Analysis of Notched Composites Under Tension Loading

    Science.gov (United States)

    Aidi, Bilel; Case, Scott W.

    2015-12-01

    Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.

  9. Enhanced Growth Inhibition of Osteosarcoma by Cytotoxic Polymerized Liposomal Nanoparticles Targeting the Alcam Cell Surface Receptor

    Directory of Open Access Journals (Sweden)

    Noah Federman

    2012-01-01

    Full Text Available Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%–30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.

  10. The importance of Notch signaling in peripheral T-cell lymphomas

    DEFF Research Database (Denmark)

    Kamstrup, Maria Rørbæk; Biskup, Edyta; Gjerdrum, Lise Mette Rahbek

    2014-01-01

    Peripheral T-cell lymphomas (PTLs) represent an area of high medical need. Previously, we demonstrated high expression of Notch, a known oncogene, in primary cutaneous anaplastic large cell lymphoma (ALCL). In this study, we performed immunohistochemical staining for Notch1 in lymph nodes from PTL...... cases) (p > 0.05). In the ALK+ ALCL cell line, Karpas-299, pharmacological inhibition of Notch with γ-secretase inhibitor (GSI) I was far more potent than with GSI IX, XX and XXI with regard to cell viability and apoptosis. In conclusion, PTL tumor cells have prominent Notch1 expression and treatment...... with Notch inhibitors has cytotoxic effects....

  11. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    International Nuclear Information System (INIS)

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-01-01

    Highlights: → Nerve transection increased Notch signaling in paralyzed muscle. → Nandrolone prevented denervation-induced Notch signaling. → Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. → Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  12. Evaluation of notch effects in low cycle fatigue of alloy 718 using critical distances

    Directory of Open Access Journals (Sweden)

    Eriksson Robert

    2018-01-01

    Full Text Available Gas turbine disks contain many notch-like features acting as stress raisers. The fatigue life based on the notch root stress may be overly conservative as the steep stress gradient in front of the notch may give rise to so-called notch support. In the current work, the theory of critical distances was applied to the prediction of the total fatigue life of low cycle fatigued, notched specimens made from alloy 718. The fatigue tests were performed at 450 °C and 550 °C. It was found that, for lives shorter than 5000–10000 cycles, the notched specimens had longer lives than would have been expected based on the notch root strain. For lives longer than 5000–10000 cycles, there were no notch support. The life prediction for notched specimens could be significantly improved by basing the prediction on the strain chosen some distance from the notch (the critical distance. An expression for calculating the critical distance based on the notch root strain was suggested.

  13. The histone deacetylase HDAC1 positively regulates Notch signaling during Drosophila wing development

    Directory of Open Access Journals (Sweden)

    Zehua Wang

    2018-02-01

    Full Text Available The Notch signaling pathway is highly conserved across different animal species and plays crucial roles in development and physiology. Regulation of Notch signaling occurs at multiple levels in different tissues and cell types. Here, we show that the histone deacetylase HDAC1 acts as a positive regulator of Notch signaling during Drosophila wing development. Depletion of HDAC1 causes wing notches on the margin of adult wing. Consistently, the expression of Notch target genes is reduced in the absence of HDAC1 during wing margin formation. We further provide evidence that HDAC1 acts upstream of Notch activation. Mechanistically, we show that HDAC1 regulates Notch protein levels by promoting Notch transcription. Consistent with this, the HDAC1-associated transcriptional co-repressor Atrophin (Atro is also required for transcriptional activation of Notch in the wing disc. In summary, our results demonstrate that HDAC1 positively regulates Notch signaling and reveal a previously unidentified function of HDAC1 in Notch signaling.

  14. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Yao, Shen; Qiao, Rui-Fang; Levine, Alice C. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Kirschenbaum, Alexander [Department of Urology, Mount Sinai School of Medicine, New York, NY 10029 (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Qin, Weiping [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Cardozo, Christopher P., E-mail: chris.cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  15. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer.

    Science.gov (United States)

    Rodilla, Verónica; Villanueva, Alberto; Obrador-Hevia, Antonia; Robert-Moreno, Alex; Fernández-Majada, Vanessa; Grilli, Andrea; López-Bigas, Nuria; Bellora, Nicolás; Albà, M Mar; Torres, Ferran; Duñach, Mireia; Sanjuan, Xavier; Gonzalez, Sara; Gridley, Thomas; Capella, Gabriel; Bigas, Anna; Espinosa, Lluís

    2009-04-14

    Notch has been linked to beta-catenin-dependent tumorigenesis; however, the mechanisms leading to Notch activation and the contribution of the Notch pathway to colorectal cancer is not yet understood. By microarray analysis, we have identified a group of genes downstream of Wnt/beta-catenin (down-regulated when blocking Wnt/beta-catenin) that are directly regulated by Notch (repressed by gamma-secretase inhibitors and up-regulated by active Notch1 in the absence of beta-catenin signaling). We demonstrate that Notch is downstream of Wnt in colorectal cancer cells through beta-catenin-mediated transcriptional activation of the Notch-ligand Jagged1. Consistently, expression of activated Notch1 partially reverts the effects of blocking Wnt/beta-catenin pathway in tumors implanted s.c. in nude mice. Crossing APC(Min/+) with Jagged1(+/Delta) mice is sufficient to significantly reduce the size of the polyps arising in the APC mutant background indicating that Notch is an essential modulator of tumorigenesis induced by nuclear beta-catenin. We show that this mechanism is operating in human tumors from Familial Adenomatous Polyposis patients. We conclude that Notch activation, accomplished by beta-catenin-mediated up-regulation of Jagged1, is required for tumorigenesis in the intestine. The Notch-specific genetic signature is sufficient to block differentiation and promote vasculogenesis in tumors whereas proliferation depends on both pathways.

  16. Stress intensity factors and weight functions for cracks in front of notches

    International Nuclear Information System (INIS)

    Fett, T.

    1993-12-01

    The knowledge of stress intensity factors for cracks at notch roots is important for the fracture mechanical treatment of real components. Stress intensity factor solutions are available only for special notches and externally applied loads. For the treatment of more complex loadings as thermal stresses near the notch root the weight function is needed in addition. In the first part of this report weight functions for cracks in front of internal notches are derived from stress intensity factor solutions under external loading available in the literature. The second part deals with cracks in front of edge notches. Limit cases of stress intensity factors are derived which allow to estimate stress intensity factors for cracks in front of internal elliptical notches with arbitrary aspect ratio of the ellipse and for external notches. (orig.) [de

  17. Application and validation of the notch master curve in medium and high strength structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, Sergio; Garcia, Tiberio [Universidad de Cantabria, Santander (Spain); Madrazo, Virginia [PCTCAN, Santander (Spain)

    2015-10-15

    This paper applies and validates the Notch master curve in two ferritic steels with medium (steel S460M) and high (steel S690Q) strength. The Notch master curve is an engineering tool that allows the fracture resistance of notched ferritic steels operating within their corresponding ductile-to-brittle transition zone to be estimated. It combines the Master curve and the Theory of critical distances in order to take into account the temperature and the notch effect respectively, assuming that both effects are independent. The results, derived from 168 fracture tests on notched specimens, demonstrate the capability of the Notch master curve for the prediction of the fracture resistance of medium and high strength ferritic steels operating within their ductile-to-brittle transition zone and containing notches.

  18. Notch 1 as a potential therapeutic target in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria Rørbæk; Gjerdrum, Lise Mette Rahbek; Biskup, Edyta Urszula

    2010-01-01

    Deregulation of Notch signaling has been linked to the development of T-cell leukemias and several solid malignancies. Yet, it is unknown whether Notch signalling is involved in the pathogenesis of mycosis fungoides and Sezary syndrome, the most common subtypes of cutaneous T cell lymphoma....... By immunohistochemistry of 40 biopsies taken from skin lesions of mycosis fungoides and Sezary syndrome we demonstrated prominent expression of Notch1 on tumor cells, especially in the more advanced stages. The gamma-secretase inhibitor I blocked Notch signaling and potently induced apoptosis in cell lines derived from...... mycosis fungoides (MyLa) and Sezary syndrome (SeAx, HuT-78)and in primary leukemic Sézary cells. Specific downregulation of Notch1 (but not Notch2 and Notch3) by siRNA induced apoptosis in SeAx. The mechanism of apoptosis involved the inhibition of NF-kappaB, which is the most important prosurvival...

  19. Fracture Mechanics Assessment for Different Notch Sizes Using Finite Element Analysis Based on Ductile Failure Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Keun Hyung; Jeon, Jun Young; Han, Jae Jun; Nam, Hyun Suk; Lee, Dae Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of)

    2016-08-15

    In this study, notch defects are evaluated using fracture mechanics. To understand the effects of notch defects, FE analysis is conducted to predict the limit load and J-integral for middle-cracked and single-edge cracked plates with various sizes of notch under tension and bending. As the radius of the notch increases, the energy release rate also increases, although the limit load remains constant. The values of fracture toughness(J{sub IC}) of SM490A are determined for various notch radii through FE simulation instead of conducting an experiment. As the radius of the notch increases, the energy release rate also increases, together with a more significant increase in fracture toughness. To conclude, as the notch radius increases, the resistance to crack propagation also increases.

  20. Surface Expression of TGF-β Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer

    Science.gov (United States)

    Metelli, Alessandra; Wu, Bill X; Fugle, Caroline W; Rachidi, Saleh; Sun, Shaoli; Zhang, Yongliang; Wu, Jennifer; Tomlinson, Stephen; Howe, Philip; Yang, Yi; Garrett-Mayer, Elizabeth; Liu, Bei; Li, Zihai

    2016-01-01

    GARP encoded by the Lrrc32 gene is the cell surface docking receptor for latent TGF-β which is expressed naturally by platelets and regulatory T cells. Although Lrrc32 is amplified frequently in breast cancer, the expression and relevant functions of GARP in cancer have not been explored. Here we report that GARP exerts oncogenic effects, promoting immune tolerance by enriching and activating latent TGF-β in the tumor microenvironment. We found that human breast, lung and colon cancers expressed GARP aberrantly. In genetic studies in normal mammary gland epithelial and carcinoma cells, GARP expression increased TGF-β bioactivity and promoted malignant transformation in immune deficient mice. In breast carcinoma-bearing mice that were immune competent, GARP overexpression promoted Foxp3+ regulatory T cell activity, which in turn contributed to enhancing cancer progression and metastasis. Notably, administration of a panel of GARP-specific monoclonal antibodies limited metastasis in an orthotopic model of human breast cancer. Overall, these results define the oncogenic effects of the GARP-TGF-β axis in the tumor microenvironment and suggest mechanisms that might be exploited for diagnostic and therapeutic purposes. PMID:27913437

  1. Chronic zinc exposure decreases the surface expression of NR2A-containing NMDA receptors in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Jia Zhu

    Full Text Available Zinc distributes widely in the central nervous system, especially in the hippocampus, amygdala and cortex. The dynamic balance of zinc is critical for neuronal functions. Zinc modulates the activity of N-methyl-D-aspartate receptors (NMDARs through the direct inhibition and various intracellular signaling pathways. Abnormal NMDAR activities have been implicated in the aetiology of many brain diseases. Sustained zinc accumulation in the extracellular fluid is known to link to pathological conditions. However, the mechanism linking this chronic zinc exposure and NMDAR dysfunction is poorly understood.We reported that chronic zinc exposure reduced the numbers of NR1 and NR2A clusters in cultured hippocampal pyramidal neurons. Whole-cell and synaptic NR2A-mediated currents also decreased. By contrast, zinc did not affect NR2B, suggesting that chronic zinc exposure specifically influences NR2A-containg NMDARs. Surface biotinylation indicated that zinc exposure attenuated the membrane expression of NR1 and NR2A, which might arise from to the dissociation of the NR2A-PSD-95-Src complex.Chronic zinc exposure perturbs the interaction of NR2A to PSD-95 and causes the disorder of NMDARs in hippocampal neurons, suggesting a novel action of zinc distinct from its acute effects on NMDAR activity.

  2. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Hales, Eric C; Taub, Jeffrey W; Matherly, Larry H

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is characterized as a high-risk stratified disease associated with frequent relapse, chemotherapy resistance, and a poorer prognostic outlook than B-precursor ALL. Many of the challenges in treating T-ALL reflect the lack of prognostic cytogenetic or molecular abnormalities on which to base therapy, including targeted therapy. Notch1 activating mutations were identified in more than 50% of T-ALL cases and can be therapeutically targeted with γ-secretase inhibitors (GSIs). Mutant Notch1 can activate cMyc and PI3K-AKT-mTOR1 signaling in T-ALL. In T-ALLs with wild-type phosphatase and tensin homolog deleted on chromosome ten (PTEN), Notch1 transcriptionally represses PTEN, an effect reversible by GSIs. Notch1 also promotes growth factor receptor (IGF1R and IL7Rα) signaling to PI3K-AKT. Loss of PTEN is common in primary T-ALLs due to mutation or posttranslational inactivation and results in chronic activation of PI3K-AKT-mTOR1 signaling, GSI-resistance, and repression of p53-mediated apoptosis. Notch1 itself might regulate posttranslational inactivation of PTEN. PP2A is activated by Notch1 in PTEN-null T-ALL cells, and GSIs reduce PP2A activity and increase phosphorylation of AKT, AMPK, and p70S6K. This review focuses on the central role of the PI3K-AKT-mTOR1 signaling in T-ALL, including its regulation by Notch1 and potential therapeutic interventions, with emphasis on GSI-resistant T-ALL. © 2013.

  3. Galectin-3 Induces Clustering of CD147 and Integrin-β1 Transmembrane Glycoprotein Receptors on the RPE Cell Surface

    Science.gov (United States)

    Priglinger, Claudia S.; Szober, Christoph M.; Priglinger, Siegfried G.; Merl, Juliane; Euler, Kerstin N.; Kernt, Marcus; Gondi, Gabor; Behler, Jennifer; Geerlof, Arie; Kampik, Anselm; Ueffing, Marius; Hauck, Stefanie M.

    2013-01-01

    Proliferative vitreoretinopathy (PVR) is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE) cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers clustering of CD147 and

  4. Galectin-3 induces clustering of CD147 and integrin-β1 transmembrane glycoprotein receptors on the RPE cell surface.

    Directory of Open Access Journals (Sweden)

    Claudia S Priglinger

    Full Text Available Proliferative vitreoretinopathy (PVR is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers

  5. The critical role of Notch ligand Delta-like 1 in the pathogenesis of influenza A virus (H1N1 infection.

    Directory of Open Access Journals (Sweden)

    Toshihiro Ito

    2011-11-01

    Full Text Available Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs, increased Notch ligand Delta-like 1 (Dll1 expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI, a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4(+and CD8(+T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response

  6. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  7. FOXA1 promotes tumor cell proliferation through AR involving the Notch pathway in endometrial cancer

    International Nuclear Information System (INIS)

    Qiu, Meiting; Bao, Wei; Wang, Jingyun; Yang, Tingting; He, Xiaoying; Liao, Yun; Wan, Xiaoping

    2014-01-01

    Increasing evidence suggests that forkhead box A1 (FOXA1) is frequently dysregulated in many types of human cancers. However, the exact function and mechanism of FOXA1 in human endometrial cancer (EC) remains unclear. FOXA1 expression, androgen receptor (AR) expression, and the relationships of these two markers with clinicopathological factors were determined by immunohistochemistry analysis. FOXA1 and AR were up-regulated by transient transfection with plasmids, and were down-regulated by transfection with siRNA or short hairpin RNA (shRNA). The effects of FOXA1 depletion and FOXA1 overexpression on AR-mediated transcription as well as Notch pathway and their impact on EC cell proliferation were examined by qRT-PCR, western blotting, co-immunoprecipitation, ChIP-PCR, MTT, colony-formation, and xenograft tumor–formation assays. We found that the expression of FOXA1 and AR in ECs was significantly higher than that in a typical hyperplasia and normal tissues. FOXA1 expression was significantly correlated with AR expression in clinical tissues. High FOXA1 levels positively correlated with pathological grade and depth of myometrial invasion in EC. High AR levels also positively correlated with pathological grade in EC. Moreover, the expression of XBP1, MYC, ZBTB16, and UHRF1, which are downstream targets of AR, was promoted by FOXA1 up-regulation or inhibited by FOXA1 down-regulation. Co-immunoprecipitation showed that FOXA1 interacted with AR in EC cells. ChIP-PCR assays showed that FOXA1 and AR could directly bind to the promoter and enhancer regions upstream of MYC. Mechanistic investigation revealed that over-expression of Notch1 and Hes1 proteins by FOXA1 could be reversed by AR depletion. In addition, we showed that down-regulation of AR attenuated FOXA1-up-regulated cell proliferation. However, AR didn’t influence the promotion effect of FOXA1 on cell migration and invasion. In vivo xenograft model, FOXA1 knockdown reduced the rate of tumor growth. These

  8. Transmembrane and ubiquitin-like domain-containing protein 1 (Tmub1/HOPS facilitates surface expression of GluR2-containing AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Hyunjeong Yang

    Full Text Available Some ubiquitin-like (UBL domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1 protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.

  9. α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase.

    Science.gov (United States)

    Whittaker, Jonathan; Whittaker, Linda J; Roberts, Charles T; Phillips, Nelson B; Ismail-Beigi, Faramarz; Lawrence, Michael C; Weiss, Michael A

    2012-07-10

    The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal β-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 β-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT. The pattern of αCT-mediated photo-cross-linking within the free and bound receptor is in accord with the crystal structure and prior mutagenesis. Surprisingly, L1 photo-probes in β-strands 2 and 3, predicted to be shielded by αCT, efficiently cross-link to insulin. Furthermore, anomalous mutations were identified on neighboring surfaces of αCT and insulin that impair hormone-dependent activation of the intracellular receptor tyrosine kinase (contained within the transmembrane β-subunit) disproportionately to their effects on insulin binding. Taken together, these results suggest that αCT, in addition to its hormone-recognition role, provides a signaling element in the mechanism of receptor activation.

  10. Aberrant Regulation of Notch3 Signaling Pathway in Polycystic Kidney Disease.

    Science.gov (United States)

    Idowu, Jessica; Home, Trisha; Patel, Nisha; Magenheimer, Brenda; Tran, Pamela V; Maser, Robin L; Ward, Christopher J; Calvet, James P; Wallace, Darren P; Sharma, Madhulika

    2018-02-20

    Polycystic kidney disease (PKD) is a genetic disorder characterized by fluid-filled cysts in the kidney and liver that ultimately leads to end-stage renal disease. Currently there is no globally approved therapy for PKD. The Notch signaling pathway regulates cellular processes such as proliferation and de-differentiation, which are cellular hallmarks of PKD. Thus we hypothesized that the Notch pathway plays a critical role in PKD. Evaluation of protein expression of Notch signaling components in kidneys of Autosomal Recessive PKD (ARPKD) and Autosomal Dominant PKD (ADPKD) mouse models and of ADPKD patients revealed that Notch pathway members, particularly Notch3, were consistently upregulated or activated in cyst-lining epithelial cells. Notch3 expression correlated with rapidly growing cysts and co-localized with the proliferation marker, PCNA. Importantly, Notch inhibition significantly decreased forskolin-induced Notch3 activation and proliferation of primary human ADPKD cells, and significantly reduced cyst formation and growth of human ADPKD cells cultured in collagen gels. Thus our data indicate that Notch3 is aberrantly activated and facilitates epithelial cell proliferation in PKD, and that inhibition of Notch signaling may prevent cyst formation and growth.

  11. The Evolution of the Maine Lobster V-Notch Practice: Cooperation in a Prisoner's Dilemma Game

    Directory of Open Access Journals (Sweden)

    James Acheson

    2011-03-01

    Full Text Available The Maine lobster industry is experiencing record high catches because, in all probability, of an effective management program. One of the most important conservation measures is the V-notch program that allows fishermen to conserve proven breeding females by notching the tails of egg-bearing lobsters. Such marked lobsters may never be taken. Although thousands of lobster fishermen participate, it is a voluntary practice. The genesis of this practice is not easily explained, because V-notching poses a prisoner's dilemma problem that gives fishermen an incentive to avoid the practice. The most common explanations for ways to overcome prisoner's dilemma problems will not work in the case of the V-notch. An unusual combination of factors explains the V-notch program: (1 a strong belief among those in the industry that the V-notch is effective in conserving the lobster stock; (2 a low discount rate because the long-term gains from V-notching are higher than the one-time gain from defection; (3 a gain in reputation for those who V-notch. At the start of the 20th century, fishermen did not V-notch; by the end of the century, V-notching was common. We explain the change in strategies using a three-parameter evolutionary model that emphasizes the importance of culture change.

  12. In-situ tensile testing of notched poly- and oligocrystalline 316L wires

    Energy Technology Data Exchange (ETDEWEB)

    Mitevski, Bojan [Materials Science and Engineering (ITM), Duisburg (Germany); Weiss, Sabine [Brandenburg Technical Univ., Cottbus-Senftenberg (Germany). Chair of Physical Metallurgy and Materials Science.; Fischer, Alfons [Duisburg-Essen Univ. (Germany). Materials Science and Engineering; Rush Univ. Medical Center, Chicago, IL (United States). Dept. of Orthopedics

    2017-03-01

    In-situ testing inside a scanning electron microscope is a helpful tool for detailed analyses of small sized specimens with respect to their mechanical properties and the correlated microstructural alterations. Thus, this test method is used to analyze the tensional properties of thin 316L (1.4441) wires used for microscale components, e.g., like coronary artery stents. Tensile tests were conducted on unnotched and circularly notched 316L wires (oe 0.95 mm) with a special focus on the number of grains within the cross section as well as the notch geometry. Four combinations of notch width (2 and 4 mm) and notch depth (diameter at notch root: 0.5 and 0.75 mm) were chosen. Notch depth and notch shape were adjusted by means of electrochemical polishing. Previous investigations showed, that oligocrystalline structures exhibit a different mechanical behavior compared to polycrystalline ones or single crystals. There are only a few data available on mechanical testing of oligocrystalline structures with respect to varying notch geometries. Depending on the notch geometry, grain size and, therefore, the number of grains within the notch cross section widely scattering yield- and tensile strength as well as failure elongation values were measured. However, the transition criterion between poly- and oligocrystalline behavior could be quantified to be 6 to 7 grains within the cross section.

  13. Modifiers of notch transcriptional activity identified by genome-wide RNAi

    Directory of Open Access Journals (Sweden)

    Firnhaber Christopher B

    2010-10-01

    Full Text Available Abstract Background The Notch signaling pathway regulates a diverse array of developmental processes, and aberrant Notch signaling can lead to diseases, including cancer. To obtain a more comprehensive understanding of the genetic network that integrates into Notch signaling, we performed a genome-wide RNAi screen in Drosophila cell culture to identify genes that modify Notch-dependent transcription. Results Employing complementary data analyses, we found 399 putative modifiers: 189 promoting and 210 antagonizing Notch activated transcription. These modifiers included several known Notch interactors, validating the robustness of the assay. Many novel modifiers were also identified, covering a range of cellular localizations from the extracellular matrix to the nucleus, as well as a large number of proteins with unknown function. Chromatin-modifying proteins represent a major class of genes identified, including histone deacetylase and demethylase complex components and other chromatin modifying, remodeling and replacement factors. A protein-protein interaction map of the Notch-dependent transcription modifiers revealed that a large number of the identified proteins interact physically with these core chromatin components. Conclusions The genome-wide RNAi screen identified many genes that can modulate Notch transcriptional output. A protein interaction map of the identified genes highlighted a network of chromatin-modifying enzymes and remodelers that regulate Notch transcription. Our results open new avenues to explore the mechanisms of Notch signal regulation and the integration of this pathway into diverse cellular processes.

  14. Analysis of the Charpy V-notch test for welds

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    The ductile-brittle transition for a weld is investigated by numerical analyses of Charpy impact specimens. The material response is characterized by an elastic-viscoplastic constitutive relation for a porous plastic solid, with adiabatic heating due to plastic dissipation and the resulting thermal...... softening accounted for. The onset of cleavage is taken to occur when a critical value of the maximum principal stress is attained. The effect of weld strength undermatch or overmatch is investigated for a comparison material, and analyses are also carried out based on experimentally determined flow...... strength variations in a weldment in a HY100 steel. The predicted work to fracture shows a strong sensitivity to the location of the notch relative to the weld, with the most brittle behavior for a notch close to the narrow heat affected zone. The analyses illustrate the strong dependence of the transition...

  15. The effect of notches and pits on corrosion fatigue strength

    Science.gov (United States)

    Tatner, Ian

    An investigation has been undertaken to examine the fatigue behaviour of two martensitic steels in air and aggressive environments. The steels studied are, 18% Ni marageing steel and FV520B, the later being a stainless steel turbine blade material and the former being a marageing steel that suffers general corrosion in mild environments. Both steels were heat treated to give similar tensile strength.The design and manufacture of an autoclave allowed push-pull fatigue tests to be conducted in aggressive environments at elevated temperatures.Corrosion potential was monitored using a three electrode cell and was controlled during testing. Base-line fatigue tests were conducted with a range of constant corrosion potentials, using both notched and plain FV520B specimens. In addition fatigue tests with pulsed corrosion potential were performed to asses the effect of transient corrosion conditions on the corrosion fatigue strength. The pulsed tests were designed to simulate service transients in the oxygen content and general chemical hostility in the condensing steam environment during start-up and shut down of the steam turbine.Post test examination of fractured samples was performed using Scanning Electron Microscopy (SEM) and optical microscope techniques. The fractography results were used to quantify microstructural and fracture features of the steels.A model based on the size and geometry of the initial corrosion pitting has been proposed to asses the fatigue life of FV520B in an aggressive environment.The effect of pitting on the corrosion fatigue strength of FV520B has been modelled using linear elastic fracture mechanics (LEFM) type approach. The model has shown a good correlation between predicted fatigue lives with experimental results.The results suggest that the fatigue life is governed by the mechanical stress concentrating effect of the pits rather than the electrochemical damage caused by the environment.Finite Element Analysis (FEA) of the notch allowed

  16. Combined EGFR- and notch inhibition display additive inhibitory effect on glioblastoma cell viability and glioblastoma-induced endothelial cell sprouting in vitro

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Michaelsen, Signe Regner; Olsen, Louise Stobbe

    2016-01-01

    BACKGROUND: For Glioblastoma (GBM) patients, a number of anti-neoplastic strategies using specifically targeting drugs have been tested; however, the effects on survival have been limited. One explanation could be treatment resistance due to redundant signaling pathways, which substantiates...... the need for combination therapies. In GBM, both the epidermal growth factor receptor (EGFR) and the notch signaling pathways are often deregulated and linked to cellular growth, invasion and angiogenesis. Several studies have confirmed cross-talk and co-dependence of these pathways. Therefore, this study....... In order to determine angiogenic processes, we used an endothelial spheroid sprouting assay. For assessment of secreted VEGF from GBM cells we performed a VEGF-quantikine ELISA. RESULTS: GBM cells were confirmed to express EGFR and Notch and to have the capacity to induce endothelial cell sprouting...

  17. Notch sensitivity of cast AZ31 magnesium alloy

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Estrin, Y.; Zúberová, Z.

    2005-01-01

    Roč. 12, č. 3 (2005), s. 88-91 ISSN 1335-0803. [Degradácia konštrukčných materiálov 2005. Terchová - Biely Potok, 05.09.2005-07.09.2005] R&D Projects: GA MŠk(CZ) 1P05ME804 Institutional research plan: CEZ:AV0Z20410507 Keywords : notch sensitivity * magnesium alloy * fatigue lifetime Subject RIV: JG - Metallurgy

  18. Hierarchical object class representation using holes and notches

    Energy Technology Data Exchange (ETDEWEB)

    Osbourn, G.C.

    1989-01-01

    A general representation approach is described which employs a hierarchy of holes and notches. A matching procedure is also described which allows non-ideal image hierarchies to be matched to class representations. The representation and matching methods are demonstrated on a set of handgun photographs. Examples of handguns which are different in detail are shown to exhibit the same class characteristics, while other similarly shaped objects are correctly distinguished from the handgun class. 6 refs., 8 figs.

  19. Case Study of Crack Initiation from Bi-material Notches

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Knésl, Zdeněk

    2011-01-01

    Roč. 452-453, - (2011), s. 449-452 ISSN 1013-9826. [Fracture and Damage Mechanics /9./. Nagasaki, 20.09.2010-22.09.2010] R&D Projects: GA ČR GAP108/10/2049; GA ČR GA101/08/0994 Institutional research plan: CEZ:AV0Z20410507 Keywords : Crack initiation * bi-material notch * fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  20. Frequency Agile Microwave Photonic Notch Filter in a Photonic Chip

    Science.gov (United States)

    2016-10-21

    Interference mitigation is crucial in modern radiofrequency (RF) communications systems with dynamically changing operating frequencies, such as cognitive...frequency measurement (IFM) system was also explored. 4. Results and discussions: a. High extinction tunable notch filter in a chalcogenide chip [Optica...Figure 2(b, lower). The measured interferer suppression in this case was 47 dB, limited by the noise floor of the measurements . This paper is in the

  1. Pseudointercondylar notch sign: manifestation of osteochondritis dissecans of the trochlea

    International Nuclear Information System (INIS)

    Pruthi, Sumit; Parnell, Shawn E.; Thapa, Mahesh M.

    2009-01-01

    Osteochondritis dissecans (OCD) is an idiopathic condition affecting the articular epiphysis. Initially described in the knee, this entity affects several other parts of the body such as the talar dome, tarsal navicular, and femoral capital epiphysis. OCD of the elbow primarily involves the capitellum. OCD involving the trochlea has rarely been reported. We describe an unusual and interesting case of OCD affecting the trochlea, mimicking a pseudointercondylar notch. (orig.)

  2. Lactobacillus reuteri Surface Mucus Adhesins Upregulate Inflammatory Responses Through Interactions With Innate C-Type Lectin Receptors.

    Science.gov (United States)

    Bene, Krisztián P; Kavanaugh, Devon W; Leclaire, Charlotte; Gunning, Allan P; MacKenzie, Donald A; Wittmann, Alexandra; Young, Ian D; Kawasaki, Norihito; Rajnavolgyi, Eva; Juge, Nathalie

    2017-01-01

    The vertebrate gut symbiont Lactobacillus reuteri exhibits strain-specific adhesion and health-promoting properties. Here, we investigated the role of the mucus adhesins, CmbA and MUB, upon interaction of L. reuteri ATCC PTA 6475 and ATCC 53608 strains with human monocyte-derived dendritic cells (moDCs). We showed that mucus adhesins increased the capacity of L. reuteri strains to interact with moDCs and promoted phagocytosis. Our data also indicated that mucus adhesins mediate anti- and pro-inflammatory effects by the induction of interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), IL-1β, IL-6, and IL-12 cytokines. L. reuteri ATCC PTA 6475 and ATCC 53608 were exclusively able to induce moDC-mediated Th1 and Th17 immune responses. We further showed that purified MUB activates moDCs and induces Th1 polarized immune responses associated with increased IFNγ production. MUB appeared to mediate these effects via binding to C-type lectin receptors (CLRs), as shown using cell reporter assays. Blocking moDCs with antibodies against DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) or Dectin-2 did not affect the uptake of the MUB-expressing strain, but reduced the production of TNF-α and IL-6 by moDCs significantly, in line with the Th1 polarizing capacity of moDCs. The direct interaction between MUB and CLRs was further confirmed by atomic force spectroscopy. Taken together these data suggest that mucus adhesins expressed at the cell surface of L. reuteri strains may exert immunoregulatory effects in the gut through modulating the Th1-promoting capacity of DCs upon interaction with C-type lectins.

  3. Magnetic domain wall motion in notch patterned permalloy nanowire devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ting-Chieh; Kuo, Cheng-Yi; Mishra, Amit K.; Das, Bipul; Wu, Jong-Ching, E-mail: phjcwu@cc.ncue.edu.tw

    2015-11-01

    We report a study of magnetization reversal process of notch-patterned permalloy (Py) nanowires (NWs) by using an in-situ magnetic force microscopy (MFM). Three neighboring straight NWs and an individual straight NW with discs connected to the wires ends are fabricated by standard electron beam lithography through a lift-off technique. MFM images are taken in the presence of an in-plane magnetic field applied along the wires length. As a result, the nucleation, pinning and depinning of domain walls (DWs) along the NW are observed. The artificial constraints (notch) in such symmetrical geometry of NWs indeed serve as pinning sites to pin the DWs. The nature of magnetization reversal, pinning field and depinning field for the DWs that are observed in these permalloy NWs, indicate the key roles of notch depth, the terminal connection structure of NW end and the inter-wire interaction among the NWs. The in-situ MFM measurements are examined with the micromagnetic simulations. Consequently, good agreements are obtained for the DW structures and the effect of DWs pining/depinning, however a dissimilarity in experimental and simulation observations for the direction of propagation of DWs in NWs needs further investigation.

  4. Activation of protein kinase A and clustering of cell surface receptors by N-methyl-N'-nitro-N-nitrosoguanidine are independent of genomic DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zheng; Wang Guliang; Yang Jun; Guo Lei; Yu Yingnian

    2003-07-25

    Alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induces cellular stress leading to chromosomal aberrations, mutations and cell death. Previous reports from our laboratory have shown that low concentration of MNNG induces untargeted mutation (UTM), which occurs on intact DNA in mammalian cells through changes in gene expression profile. It also causes the activation of cAMP-protein kinase A (PKA) and up-regulation of POL-{beta}, which is demonstrated to play a role in DNA repair system. In order to find out the possible initial signal involved in UTM, we try to investigate whether the activation of PKA-CREB signal pathway is closely related to DNA damage. Our data shows that the treatment of low concentration MNNG (0.2 {mu}M) activates PKA-CREB pathway in a comparable level both in a nuclear and enucleated cell system. And similar to the cell response caused by UV, the clustering of cell surface receptors of epidermal growth factor (EGF) and tumor necrosis factor {alpha} (TNF{alpha}) was also observed in cells exposed to MNNG. It was further demonstrated that the clustering of the surface receptors is independent of the genomic DNA damage, as this phenomenon was also observed in enucleated cells. These observations indicate that the initiation of signal cascades induced by low concentration of MNNG might be associated with its interaction with cell surface receptors and/or direct activation of related signal proteins but not its DNA damaging property.

  5. Panel of monoclonal antibodies to sperm surface proteins as a tool for monitoring localization and identification of sperm-zona pellucida receptors

    Czech Academy of Sciences Publication Activity Database

    Zigo, Michal; Dorosh, Andriy; Pohlová, Alžběta; Jonáková, Věra; Šulc, Miroslav; Maňásková-Postlerová, Pavla

    March, č. 359 (2015), s. 895-908 ISSN 0302-766X R&D Projects: GA ČR(CZ) GA14-05547S; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR(CZ) GAP503/12/1834 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:86652036 ; RVO:61388971 Keywords : zona pellucida-binding receptors * monoclonal antibodies against sperm surface proteins * sperm surface proteins * RAB-2A * lactahedrin P47 Subject RIV: CE - Biochemistry Impact factor: 2.948, year: 2015

  6. Notch inhibition counteracts Paneth cell death in absence of caspase-8.

    Science.gov (United States)

    Jeon, M K; Kaemmerer, E; Schneider, U; Schiffer, M; Klaus, C; Hennings, J; Clahsen, T; Ackerstaff, T; Niggemann, M; Schippers, A; Longerich, T; Sellge, G; Trautwein, C; Wagner, N; Liedtke, C; Gassler, N

    2018-05-16

    Opposing activities of Notch and Wnt signaling regulate mucosal barrier homeostasis and differentiation of intestinal epithelial cells. Specifically, Wnt activity is essential for differentiation of secretory cells including Wnt3-producing Paneth cells, whereas Notch signaling strongly promotes generation of absorptive cells. Loss of caspase-8 in intestinal epithelium (casp8 ∆int ) is associated with fulminant epithelial necroptosis, severe Paneth cell death, secondary intestinal inflammation, and an increase in Notch activity. Here, we found that pharmacological Notch inhibition with dibenzazepine (DBZ) is able to essentially rescue the loss of Paneth cells, deescalate the inflammatory phenotype, and reduce intestinal permeability in casp8 ∆int mice. The secretory cell metaplasia in DBZ-treated casp8 ∆int animals is proliferative, indicating for Notch activities partially insensitive to gamma-secretase inhibition in a casp8 ∆int background. Our data suggest that casp8 acts in the intestinal Notch network.

  7. Optical stress investigations of notched bars with superimposed types of loads

    International Nuclear Information System (INIS)

    Richard, H.A.; Theis, W.

    1982-01-01

    Starting from the notch effect for various types of load, notch stresses are determined by optical methods for superimposed tensile and shearing stress and for superimposed tensile and bending stress. The superimposed stresses are induced by a device developed at the Technical Mechanics Department of Kaiserslautern University; only tensile stress needs to be applied to this testing device. The investigations have shown that in notched bars subject to superimposed tensile and shearing stress, stress increases will be higher than the maximum values of the two types of stress. For superimposed tensile and bending stress, notches on the outer side of the test piece and eccentric notches on the inner side may lead to a considerable stress increase. However, the stress distribution can be improved by an optimum arrangement of notches. (orig.) [de

  8. Notch size effects on high cycle fatigue limit stress of Udimet 720

    International Nuclear Information System (INIS)

    Ren Weiju; Nicholas, Theodore

    2003-01-01

    Notch size effects on the high cycle fatigue (HCF) limit stress of Ni-base superalloy Udimet 720 were investigated on cylindrical specimens with three notch sizes of the same stress concentration factor K t =2.74. The HCF limit stress corresponding to a life of 10 6 cycles was experimentally determined at a stress ratio of 0.1 and a frequency of 25 Hz at room temperature. The stresses were calculated using finite element analysis (FEA) and the specimens analyzed using scanning electron microscopy (SEM). Test results show that at the same K t value, notch size can slightly affect the HCF limit stress of U720 when notch root plasticity occurs. FEA and SEM results reveal that the notch size effects are influenced by a complicated combination of the stress and plastic strain fields at the notch tip, the nominal stress, and the effects of prior plastic deformation on fatigue crack initiation

  9. Notch constraint effects on the dynamic fracture toughness of an unaged beta titanium alloy

    International Nuclear Information System (INIS)

    Rack, H.J.

    1975-01-01

    The influence of notch included angle and root radius on the apparent dynamic fracture toughness of an unaged metastable beta titanium alloy, Ti--3Al--8V--6Cr--4Zr--4Mo, has been examined. The apparent fracture toughness, K/sub Id/(rho), increases with both notch radius, rho and included angle, ω. These results have been compared with the theoretical predictions of Tetelman, et al. and Smith. The comparisons show that neither theory accurately describes the effect of varying notch constraint on the apparent dynamic fracture toughness. Although preliminary considerations indicate that qualitative descriptions of notch acuity effects may be given by recent finite element analysis of the stress and strain distributions below a notch root, there is presently no quantitative basis for determining the true dynamic fracture toughness of materials from the results of blunt notch experiments. (auth)

  10. Application of FIB technique to introduction of a notch into a carbon fiber for direct measurement of fracture toughness

    International Nuclear Information System (INIS)

    Ogihara, S; Imafuku, Y; Yamamoto, R; Kogo, Y

    2009-01-01

    For the direct measurement of the fracture toughness of the carbon fiber, a new technique was proposed and examined its applicability. At first, machining condition of the notch was examined. The notch was introduced using focused ion beam (FIB). The ion beam can be electronically scanned to introduce a sharp notch on the carbon fiber. Notches with various notch width and length were introduced by changing beam and scanning conditions. Tensile tests on notched carbon fibers were carried out following the test method for carbon fiber monofilaments. Fractured specimens were successfully corrected without secondary damage using protection films. SEM observations revealed that a crack propagated from a notch-tip, and notch size was able to be determined successfully. Effect of notch root radius was also examined to investigate the validity of the fracture toughness obtained by this method.

  11. Slip band distribution and morphology in cyclically deformed nickel polycrystals with ion beam mixed surface films

    International Nuclear Information System (INIS)

    Grummon, D.S.; Jones, J.W.; Eridon, J.; Was, G.S.; Rehn, L.E.

    1986-08-01

    It is shown that surface modification by ion beam mixing produces potentially beneficial effects on cyclic deformation phenomena associated with fatigue crack initiation. The principal effects of the modifications are to suppress the formation of the notch-peak surface topography of persistent slip bands (PSBs) and inhibit the net extrusion of PSBs from the free surface. The dominant ''failure mode'' of the surface is changed from extrusion and notch formation to surface film rupture

  12. Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway.

    Science.gov (United States)

    Won, Hee-Young; Lee, Jeong-Yeon; Shin, Dong-Hui; Park, Ji-Hye; Nam, Jeong-Seok; Kim, Hyoung-Chin; Kong, Gu

    2012-12-01

    Mel-18 has been proposed as a negative regulator of Bmi-1, a cancer stem cell (CSC) marker, but it is still unclear whether Mel-18 is involved in CSC regulation. Here, we examined the effect of Mel-18 on the stemness of human breast CSCs. In Mel-18 small hairpin RNA (shRNA)-transduced MCF-7 cells, side population (SP) cells and breast CSC surface marker (CD44(+)/CD24(-)/ESA(+))-expressing cells, which imply a CSC population, were enriched. Moreover, the self-renewal of CSCs was enhanced by Mel-18 knockdown, as measured by the ability for tumorsphere formation in vitro and tumor-initiating capacity in vivo. Similarly, Mel-18 overexpression inhibited the number and self-renewal activity of breast CSCs in SK-BR-3 cells. Furthermore, our data showed that Mel-18 blockade up-regulated the expression of the Wnt/TCF target Jagged-1, a Notch ligand, and consequently activated the Notch pathway. Pharmacologic inhibition of the Notch and Wnt pathways abrogated Mel-18 knockdown-mediated tumorsphere formation ability. Taken together, our findings suggest that Mel-18 is a novel negative regulator of breast CSCs that inhibits the stem cell population and in vitro and in vivo self-renewal through the inactivation of Wnt-mediated Notch signaling.

  13. Far infrared promotes wound healing through activation of Notch1 signaling.

    Science.gov (United States)

    Hsu, Yung-Ho; Lin, Yuan-Feng; Chen, Cheng-Hsien; Chiu, Yu-Jhe; Chiu, Hui-Wen

    2017-11-01

    The Notch signaling pathway is critically involved in cell proliferation, differentiation, development, and homeostasis. Far infrared (FIR) has an effect that promotes wound healing. However, the underlying molecular mechanisms are unclear. In the present study, we employed in vivo and HaCaT (a human skin keratinocyte cell line) models to elucidate the role of Notch1 signaling in FIR-promoted wound healing. We found that FIR enhanced keratinocyte migration and proliferation. FIR induced the Notch1 signaling pathway in HaCaT cells and in a microarray dataset from the Gene Expression Omnibus database. We next determined the mRNA levels of NOTCH1 in paired normal and wound skin tissues derived from clinical patients using the microarray dataset and Ingenuity Pathway Analysis software. The result indicated that the Notch1/Twist1 axis plays important roles in wound healing and tissue repair. In addition, inhibiting Notch1 signaling decreased the FIR-enhanced proliferation and migration. In a full-thickness wound model in rats, the wounds healed more rapidly and the scar size was smaller in the FIR group than in the light group. Moreover, FIR could increase Notch1 and Delta1 in skin tissues. The activation of Notch1 signaling may be considered as a possible mechanism for the promoting effect of FIR on wound healing. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model. FIR stimulates keratinocyte migration and proliferation. Notch1 in keratinocytes has an essential role in FIR-induced migration and proliferation. NOTCH1 promotes TWIST1-mediated gene expression to assist wound healing. FIR might promote skin wound healing in a rat model.

  14. Experience with the Notch Stress Approach for Fatigue Assessment of Welded Joints

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    In this paper, fatigue assessment using the notch stress approach is discussed based on re-analysis of many fatigue test results and experience from practical application. Three topics are treated; evaluation of the fatigue strength for as-welded details (FAT225) in the notch stress system......, problems regarding assessment of mild-SCF details and a novel proposal for extension of the notch stress approach for use with post-weld treated details....

  15. Inhibition of Notch1 increases paclitaxel sensitivity to human breast cancer

    Institute of Scientific and Technical Information of China (English)

    Zhao Li; Ma Yongjie; Gu Feng; Fu Li

    2014-01-01

    Background Paclitaxel (PAC) is the first-line chemotherapy drug for most breast cancer patients,but clinical studies showed that some breast cancer patients were insensitive to PAC,which led to chemotherapy failure.It was reported that Notch1 signaling participated in drug resistance of breast cancer.Here,we show whether Notch1 expression is related to PAC sensitivity of breast cancer.Methods We employed Notch1 siRNA and Notch1 inhibitor,N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester (DAPT),to down regulate Notch1 expression in human breast cancer cells MDA-MB-231,and detected the inhibition effect by Western blotting and reverse trans cription-polymerase chain reaction,respectively.After 24 hours exposure to different concentration of PAC (0,1,5,10,15,20,and 25 μg/ml),the viability of the control group and experimental group cells was tested by MTT.We also examined the expression of Notch1 in PAC sensitive and nonsensitive breast cancer patients,respectively by immunohistochemistry (IHC).The PAC sensitivity of breast cancer patients were identified by collagen gel droplet embedded culture-drug sensitivity test (CD-DST).Results Down regulation of Notch1 expression by Notch1siRNA interference or Notch1 inhibitor increased the PAC sensitivity in MDA-MB-231 cells (P <0.05).Also,the expression of Notch1 in PAC sensitive patients was much lower than that of PAC non-sensitive patients (P <0.01).Conclusion Notch1 expression has an effect on PAC sensitivity in breast cancer patients,and the inhibition of Notch1 increases paclitaxel sensitivity to human breast cancer.

  16. Prediction of multiaxial fatigue life for notched specimens of titanium alloy TC4

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. R.; Li, Z. X. [Southeast University, Nanjing (China); Hu, X. T.; Song, Y. D. [Nanjing University, Nanjing (China)

    2016-05-15

    Both the proportional and nonproportional multiaxial fatigue tests were conducted on two kinds of notched specimens of titanium alloy TC4. The multiaxial fatigue critical area of notched specimen is considered as the location experiencing the maximum damage. It is unsatisfactory to predict the multiaxial fatigue life with the local stress and strain in the fatigue critical area. The critical distance concepts are employed in the multiaxial life prediction method for notched specimens. The proposed method was checked by the test data of TC4 notched specimens. The prediction results are almost within a factor of three scatter band of the test results.

  17. The effect of electric discharge machined notches on the fracture toughness of several structural alloys

    International Nuclear Information System (INIS)

    Joyce, J.A.; Link, R.E.

    1993-09-01

    Recent computational studies of the stress and strain fields at the tip of very sharp notches have shown that the stress and strain fields are very weakly dependent on the initial geometry of the notch once the notch has been blunted to a radius that is 6 to 10 times the initial root radius. It follows that if the fracture toughness of a material is sufficiently high so that fracture initiation does not occur in a specimen until the crack-tip opening displacement (CTOD) reaches a value from 6 to 10 times the size of the initial notch tip diameter, then the fracture toughness will be independent of whether a fatigue crack or a machined notch served as the initial crack. In this experimental program the fracture toughness (J Ic and J resistance (J-R) curve, and CTOD) for several structure alloys was measured using specimens with conventional fatigue cracks and with EDM machined notches. The results of this program have shown, in fact, that most structural materials do not achieve initiation CTOD values on the order of 6 to 10 times the radius of even the smallest EDM notch tip presently achievable. It is found furthermore that tougher materials do not seem to be less dependent on the type of notch tip present. Some materials are shown to be much more dependent on the type of notch tip used, but no simple pattern is found that relates this observed dependence to the material strength toughness, or strain hardening rate

  18. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    2016-01-01

    Full Text Available Skeletal muscle atrophy in cancer cachexia is mediated by the interaction between muscle stem cells and various tumor factors. Although Notch signaling has been known as a key regulator of both cancer development and muscle stem cell activity, the potential involvement of Notch signaling in cancer cachexia and concomitant muscle atrophy has yet to be elucidated. The murine K7M2 osteosarcoma cell line was used to generate an orthotopic model of sarcoma-associated cachexia, and the role of Notch signaling was evaluated. Skeletal muscle atrophy was observed in the sarcoma-bearing mice, and Notch signaling was highly active in both tumor tissues and the atrophic skeletal muscles. Systemic inhibition of Notch signaling reduced muscle atrophy. In vitro coculture of osteosarcoma cells with muscle-derived stem cells (MDSCs isolated from normal mice resulted in decreased myogenic potential of MDSCs, while the application of Notch inhibitor was able to rescue this repressed myogenic potential. We further observed that Notch-activating factors reside in the exosomes of osteosarcoma cells, which activate Notch signaling in MDSCs and subsequently repress myogenesis. Our results revealed that signaling between tumor and muscle via the Notch pathway may play an important role in mediating the skeletal muscle atrophy seen in cancer cachexia.

  19. Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular-Subventricular Zone

    Directory of Open Access Journals (Sweden)

    Anna Engler

    2018-01-01

    Full Text Available Neurogenesis continues in the ventricular-subventricular zone (V-SVZ of the adult forebrain from quiescent neural stem cells (NSCs. V-SVZ NSCs are a reservoir for new olfactory bulb (OB neurons that migrate through the rostral migratory stream (RMS. To generate neurons, V-SVZ NSCs need to activate and enter the cell cycle. The mechanisms underlying NSC transition from quiescence to activity are poorly understood. We show that Notch2, but not Notch1, signaling conveys quiescence to V-SVZ NSCs by repressing cell-cycle-related genes and neurogenesis. Loss of Notch2 activates quiescent NSCs, which proliferate and generate new neurons of the OB lineage. Notch2 deficiency results in accelerated V-SVZ NSC exhaustion and an aging-like phenotype. Simultaneous loss of Notch1 and Notch2 resembled the total loss of Rbpj-mediated canonical Notch signaling; thus, Notch2 functions are not compensated in NSCs, and Notch2 is indispensable for the maintenance of NSC quiescence in the adult V-SVZ.

  20. Plane-stress fields for sharp notches in pressure-sensitive materials

    International Nuclear Information System (INIS)

    Al-Abduljabbar, Abdulhamid

    2003-01-01

    The effect of pressure sensitive yield on materials toughness can be determined by investigating stress fields around cracks and notches. In this work, fully-developed plastic stress fields around sharp wedge-shaped notches of perfectly-plastic pressure-sensitive materials are investigated for plane-stress case and Mode 1 loading condition. The pressure-sensitive yielding behavior is represented using the Drucker-Prager criterion. Using equilibrium equations, boundary conditions, and the yield criterion, closed-form expressions for stress fields are derived. The analysis covers the gradual change in the notch angle and compares it with the limiting case of a pure horizontal crack. Effects of notch geometry and pressure sensitivity on stress fields are examined by considering different specimen geometries, as well as different levels of pressure sensitivity. Results indicate that while the stress values directly ahead of the notch-tip are not affected, the extent of stress sector at notch front is reduced, thereby causing increase in the radial stress value around the notch. As the pressure sensitivity increases the reduction of the stress sector directly ahead of the notch tip is more evident. Also, for high pressure sensitivity values, introduction of the notch angle reduces the variation of the stress levels. Results are useful for design of structural components. (author)

  1. The Anti-Adipogenic Potential of COUP-TFII Is Mediated by Downregulation of the Notch Target Gene Hey1.

    Directory of Open Access Journals (Sweden)

    Ilse Scroyen

    Full Text Available Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII belongs to the steroid/thyroid hormone receptor superfamily and may contribute to the pathogenesis of obesity. It has not conclusively been established, however, whether its role is pro- or anti-adipogenic.Gene silencing of Coup-tfII in 3T3-F442A preadipocytes resulted in enhanced differentiation into mature adipocytes. This was associated with upregulation of the Notch signaling target gene Hey1. A functional role of Hey1 was confirmed by gene silencing in 3T3-F442A preadipocytes, resulting in impaired differentiation. In vivo, de novo fat pad formation in NUDE mice was significantly stimulated following injection of preadipocytes with Coup-tfII gene silencing, but impaired with Hey1 gene silencing. Moreover, expression of Coup-tfII was lower and that of Hey1 higher in isolated adipocytes of obese as compared to lean adipose tissue.These in vitro and in vivo data support an anti-adipogenic role of COUP-TFII via downregulating the Notch signaling target gene Hey1.

  2. Identification of an estrogen receptor α non covalent ubiquitin-binding surface: role in 17β-estradiol-induced transcriptional activity.

    Science.gov (United States)

    Pesiri, Valeria; La Rosa, Piergiorgio; Stano, Pasquale; Acconcia, Filippo

    2013-06-15

    Ubiquitin (Ub)-binding domains (UBDs) located in Ub receptors decode the ubiquitination signal by non-covalently engaging the Ub modification on their binding partners and transduce the Ub signalling through Ub-based molecular interactions. In this way, inducible protein ubiquitination regulates diverse biological processes. The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that mediates the pleiotropic effects of the sex hormone 17β-estradiol (E2). Fine regulation of E2 pleiotropic actions depends on E2-dependent ERα association with a plethora of binding partners and/or on the E2 modulation of receptor ubiquitination. Indeed, E2-induced ERα polyubiquitination triggers receptor degradation and transcriptional activity, and E2-dependent reduction in ERα monoubiquitination is crucial for E2 signalling. Monoubiquitinated proteins often contain UBDs, but whether non-covalent Ub-ERα binding could occur and play a role in E2-ERα signalling is unknown. Here, we report an Ub-binding surface within the ERα ligand binding domain that directs in vitro the receptor interaction with both ubiquitinated proteins and recombinant Ub chains. Mutational analysis reveals that ERα residues leucine 429 and alanine 430 are involved in Ub binding. Moreover, impairment of ERα association to ubiquitinated species strongly affects E2-induced ERα transcriptional activity. Considering the importance of UBDs in the Ub-based signalling network and the central role of different ERα binding partners in the modulation of E2-dependent effects, our discoveries provide novel insights into ERα activity that could also be relevant for ERα-dependent diseases.

  3. TLX1 and NOTCH coregulate transcription in T cell acute lymphoblastic leukemia cells

    Directory of Open Access Journals (Sweden)

    Lee Norman H

    2010-07-01

    Full Text Available Abstract Background The homeobox gene TLX1 (for T-cell leukemia homeobox 1, previously known as HOX11 is inappropriately expressed in a major subgroup of T cell acute lymphoblastic leukemia (T-ALL where it is strongly associated with activating NOTCH1 mutations. Despite the recognition that these genetic lesions cooperate in leukemogenesis, there have been no mechanistic studies addressing how TLX1 and NOTCH1 functionally interact to promote the leukemic phenotype. Results Global gene expression profiling after downregulation of TLX1 and inhibition of the NOTCH pathway in ALL-SIL cells revealed that TLX1 synergistically regulated more than 60% of the NOTCH-responsive genes. Structure-function analysis demonstrated that TLX1 binding to Groucho-related TLE corepressors was necessary for maximal transcriptional regulation of the NOTCH-responsive genes tested, implicating TLX1 modulation of the NOTCH-TLE regulatory network. Comparison of the dataset to publicly available biological databases indicated that the TLX1/NOTCH-coregulated genes are frequently targeted by MYC. Gain- and loss-of-function experiments confirmed that MYC was an essential mediator of TLX1/NOTCH transcriptional output and growth promotion in ALL-SIL cells, with TLX1 contributing to the NOTCH-MYC regulatory axis by posttranscriptional enhancement of MYC protein levels. Functional classification of the TLX1/NOTCH-coregulated targets also showed enrichment for genes associated with other human cancers as well as those involved in developmental processes. In particular, we found that TLX1, NOTCH and MYC coregulate CD1B and RAG1, characteristic markers of early cortical thymocytes, and that concerted downregulation of the TLX1 and NOTCH pathways resulted in their irreversible repression. Conclusions We found that TLX1 and NOTCH synergistically regulate transcription in T-ALL, at least in part via the sharing of a TLE corepressor and by augmenting expression of MYC. We conclude that

  4. Glioma cell fate decisions mediated by Dll1-Jag1-Fringe in Notch1 signaling pathway.

    Science.gov (United States)

    Shi, Xiaofei; Wang, Ruiqi

    2017-09-21

    The Notch family of proteins plays a vital role in determining cell fates, such as proliferation, differentiation, and apoptosis. It has been shown that Notch1 and its ligands, Dll1 and Jag1, are overexpressed in many glioma cell lines and primary human gliomas. The roles of Notch1 in some cancers have been firmly established, and recent data implicate that it plays important roles in glioma cell fate decisions. This paper focuses on devising a specific theoretical framework that incorporates Dll1, Jag1, and Fringe in Notch1 signaling pathway to explore their functional roles of these proteins in glioma cells in the tumorigenesis and progression of human gliomas, and to study how glioma cell fate decisions are modulated by both trans-activation and cis-inhibition. This paper presents a computational model for Notch1 signaling pathway in glioma cells. Based on the bifurcation analysis of the model, we show that how the glioma cell fate decisions are modulated by both trans-activation and cis-inhibition mediated by the Fringe protein, providing insight into the design and control principles of the Notch signaling system and the gliomas. This paper presents a computational model for Notch1 signaling pathway in glioma cells based on intertwined dynamics with cis-inhibition and trans-activation involving the proteins Notch1, Dll1, Jag1, and Fringe. The results show that how the glioma cell fate transitions are performed by the Notch1 signaling. Transition from grade III ∼ IV with significantly high Notch1 to grade I ∼ II with high Notch1, and then to normal cells by repressing the Fringe levels or decreasing the strength of enhancement induced by Fringe.

  5. Droplet digital PCR analysis of NOTCH1 gene mutations in chronic lymphocytic leukemia.

    Science.gov (United States)

    Minervini, Angela; Francesco Minervini, Crescenzio; Anelli, Luisa; Zagaria, Antonella; Casieri, Paola; Coccaro, Nicoletta; Cumbo, Cosimo; Tota, Giuseppina; Impera, Luciana; Orsini, Paola; Brunetti, Claudia; Giordano, Annamaria; Specchia, Giorgina; Albano, Francesco

    2016-12-27

    In chronic lymphocytic leukemia (CLL), NOTCH1 gene mutations (NOTCH1mut) have been associated with adverse prognostic features but the independence of these as a prognostic factor is still controversial. In our study we validated a c.7541-7542delCT NOTCH1 mutation assay based on droplet digital PCR (ddPCR); we also analyzed the NOTCH1mut allelic burden, expressed as fractional abundance (FA), in 88 CLL patients at diagnosis to assess its prognostic role and made a longitudinal ddPCR analysis in 10 cases harboring NOTCH1mut to verify the FA variation over time. Our data revealed that with the ddPCR approach the incidence of NOTCH1mut in CLL was much higher (53.4%) than expected. However, longitudinal ddPCR analysis of CLL cases showed a statistically significant reduction of the NOTCH1mut FA detected at diagnosis after treatment (median FA 11.67 % vs 0.09 %, respectively, p = 0.01); the same difference, in terms of NOTCH1mut FA, was observed in the relapsed cases compared to the NOTCH1mut allelic fraction observed in patients in complete or partial remission (median FA 4.75% vs 0.43%, respectively, p = 0.007). Our study demonstrated a much higher incidence of NOTCH1mut in CLL than has previously been reported, and showed that the NOTCH1mut allelic burden evaluation by ddPCR might identify patients in need of a closer clinical follow-up during the "watch and wait" interval and after standard chemotherapy.

  6. Dll1- and Dll4-mediated Notch signaling is required for homeostasis of intestinal stem cells

    Science.gov (United States)

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H.; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-01-01

    Background & Aims Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors, due to their conversion into post-mitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SC), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiological ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Methods Trasgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ERT2). Results Notch1 signaling was found to be activated in intestinal SC. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into post-mitotic goblet cells, concomitant with loss of SC (Olfm4+, Lgr5+ and Ascl2+). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Conclusions Notch signaling in SC and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SC. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. PMID:21238454

  7. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells.

    Science.gov (United States)

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-04-01

    Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors due to their conversion into postmitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SCs), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiologic ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Transgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ER(T2)). Notch1 signaling was found to be activated in intestinal SCs. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into postmitotic goblet cells, concomitant with loss of SCs (Olfm4(+), Lgr5(+), and Ascl2(+)). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Notch signaling in SCs and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SCs. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Ductile crack initiation in the Charpy V-notch test

    International Nuclear Information System (INIS)

    Server, W.L.; Norris, D.M. Jr.; Prado, M.E.

    1978-01-01

    Initiation and growth of a crack in the Charpy V-notch test was investigated by performing both static and impact controlled deflection tests. Test specimens were deformed to various deflections, heat-tinted to mark crack extension and broken apart at low temperature to allow extension measurements. Measurement of the crack extension provided an estimate of crack initiation as defined by different criteria. Crack initiation starts well before maximum load, and is dependent on the definition of ''initiation''. Using a definition of first micro-initiation away from the ductile blunting, computer model predictions agreed favorably with the experimental results

  9. Kynurenine promotes the goblet cell differentiation of HT-29 colon carcinoma cells by modulating Wnt, Notch and AhR signals.

    Science.gov (United States)

    Park, Joo-Hung; Lee, Jeong-Min; Lee, Eun-Jin; Kim, Da-Jeong; Hwang, Won-Bhin

    2018-04-01

    Various amino acids regulate cell growth and differentiation. In the present study, we examined the ability of HT-29 cells to differentiate into goblet cells in RPMI and DMEM which are largely different in the amounts of numerous amino acids. Most of the HT-29 cells differentiated into goblet cells downregulating the stem cell marker Lgr5 when cultured in DMEM, but remained undifferentiated in RPMI. The goblet cell differentiation in DMEM was inhibited by 1-methyl-tryptophan (1-MT), an inhibitor of indoleamine 2,3 dioxygenase-1 which is the initial enzyme in tryptophan metabolism along the kynurenine (KN) pathway, whereas tryptophan and KN induced goblet cell differentiation in RPMI. The levels of Notch1 and its activation product Notch intracytoplasmic domain in HT-29 cells were lower in DMEM than those in RPMI and were increased by 1-MT in both media. HT-29 cells grown in both media expressed β-catenin at the same level on day 2 when goblet cell differentiation was not observed. β-catenin expression, which was increased by 1-MT in both media, was decreased by KN. DMEM reduced Hes1 expression while enhancing Hath1 expression. Finally, aryl hydrocarbon receptor (AhR) activation moderately induced goblet cell differentiation. Our results suggest that KN promotes goblet cell differentiation by regulating Wnt, Notch, and AhR signals and expression of Hes1 and Hath1.

  10. On impact testing of subsize Charpy V-notch type specimens

    International Nuclear Information System (INIS)

    Mikhail, A.S.; Nanstad, R.K.

    1994-01-01

    The potential for using subsize specimens to determine the actual properties of reactor pressure vessel steels is receiving increasing attention for improved vessel condition monitoring that could be beneficial for light-water reactor plant-life extension. This potential is made conditional upon, on the one hand, by the possibility of cutting samples of small volume from the internal surface of the pressure vessel for determination of actual properties of the operating pressure vessel. The plant-life extension will require supplemental surveillance data that cannot be provided by the existing surveillance programs. Testing of subsize specimens manufactured from broken halves of previously tested surveillance Charpy V-notch (CVN) specimens offers an attractive means of extending existing surveillance programs. Using subsize CVN type specimens requires the establishment of a specimen geometry that is adequate to obtain a ductile-to-brittle transition curve similar to that obtained from full-size specimens. This requires the development of a correlation of transition temperature and upper-shelf toughness between subsize and full-size specimens. The present study was conducted under the Heavy-Section Steel Irradiation Program. Different published approaches to the use of subsize specimens were analyzed and five different geometries of subsize specimens were selected for testing and evaluation. The specimens were made from several types of pressure vessel steels with a wide range of yield strengths, transition temperatures, and upper-shelf energies (USEs). Effects of specimen dimensions, including depth, angle, and radius of notch have been studied. The correlation of transition temperature determined from different types of subsize specimens and the full-size specimen is presented. A new procedure for transforming data from subsize specimens was developed and is presented

  11. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species

    Czech Academy of Sciences Publication Activity Database

    Kučerová, Dana; Plachý, Jiří; Reinišová, Markéta; Šenigl, Filip; Trejbalová, Kateřina; Geryk, Josef; Hejnar, Jiří

    2013-01-01

    Roč. 87, č. 15 (2013), s. 8399-8407 ISSN 0022-538X R&D Projects: GA ČR GAP502/10/1651 Institutional support: RVO:68378050 Keywords : avian leukosis virus * ALV-J * NHE1 * host resistance * receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.648, year: 2013

  12. ALTERED EXPRESSION OF SURFACE RECEPTORS AT EA.HY926 ENDOTHELIAL CELL LINE INDUCED WITH PLACENTAL SECRETORY FACTORS

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2012-01-01

    Full Text Available Abstract. Placental cell populations produce a great variety of angiogenic factors and cytokines than control angiogenesis in placenta. Functional regulation of endothelial cells proceeds via modulation of endothelial cell receptors for endogenous angiogenic and apoptotic signals. Endothelial phenotype alteration during normal pregnancy and in cases of preclampsia is not well understood. The goal of this investigation was to evaluate altered expression of angiogenic and cytokine receptors at EA.hy926 endothelial cells under the influence of placental tissue supernatants. Normal placental tissue supernatants from 1st and 3rd trimesters, and pre-eclamptic placental tissue supernatants (3rd trimester stimulated angiogenic and cytokine receptors expression by the cultured endothelial cells, as compared with their background expression. Tissue supernatants from placental samples of 3rd trimester caused a decreased expression of angiogenic and cytokine receptors by endothelial cells, thus reflecting maturation of placental vascular system at these terms. Supernatants from preeclamptic placental tissue induced an increase of CD119 expression, in comparison with normal placental supernatants from the 3rd trimester. This finding suggests that IFNγ may be a factor of endothelial activation in pre-eclampsia. The study was supported by grants ГК №02.740.11.0711, НШ-3594.2010.7., and МД-150.2011.7.

  13. Human cytomegalovirus chemokine receptor US28 induces migration of cells on a CX3CL1-presenting surface

    DEFF Research Database (Denmark)

    Hjortø, Gertrud M; Kiilerich-Pedersen, Katrine; Selmeczi, David

    2013-01-01

    Human cytomegalovirus (HCMV)-encoded G protein-coupled-receptor US28 is believed to participate in virus dissemination through modulation of cell migration and immune evasion. US28 binds different CC chemokines and the CX3C chemokine CX3CL1. Membrane-anchored CX3CL1 is expressed by immune-activat...

  14. Propranolol decreases retention of fear memory by modulating the stability of surface glutamate receptor GluA1 subunits in the lateral amygdala.

    Science.gov (United States)

    Zhou, Jun; Luo, Yi; Zhang, Jie-Ting; Li, Ming-Xing; Wang, Can-Ming; Guan, Xin-Lei; Wu, Peng-Fei; Hu, Zhuang-Li; Jin, You; Ni, Lan; Wang, Fang; Chen, Jian-Guo

    2015-11-01

    Posttraumatic stress disorder (PTSD) is a mental disorder with enhanced retention of fear memory and has profound impact on quality of life for millions of people worldwide. The β-adrenoceptor antagonist propranolol has been used in preclinical and clinical studies for the treatment of PTSD, but the mechanisms underlying its potential efficacy on fear memory retention remain to be elucidated. We investigated the action of propranolol on the retention of conditioned fear memory, the surface expression of glutamate receptor GluA1 subunits of AMPA receptors and synaptic adaptation in the lateral amygdala (LA) of rats. Propranolol attenuated reactivation-induced strengthening of fear retention while reducing enhanced surface expression of GluA1 subunits and restoring the impaired long-term depression in LA. These effects of propranolol were mediated by antagonizing reactivation-induced enhancement of adrenergic signalling, which activates PKA and calcium/calmodulin-dependent protein kinase II and then regulates the trafficking of AMPA receptors via phosphorylation of GluA1 subunits at the C-terminus. Both i.p. injection and intra-amygdala infusion of propranolol attenuated reactivation-induced enhancement of fear retention. Reactivation strengthens fear retention by increasing the level of noradrenaline and promotes the surface expression of GluA1 subunits and the excitatory synaptic transmission in LA. These findings uncover one mechanism underlying the efficiency of propranolol on retention of fear memories and suggest that β-adrenoceptor antagonists, which act centrally, may be more suitable for the treatment of PTSD. © 2015 The British Pharmacological Society.

  15. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Bani-Yaghoub, Mahmud [Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Taylor, Rod [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Johnston, Linda J., E-mail: Linda.Johnston@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada); Pezacki, John Paul, E-mail: John.Pezacki@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, ON, Canada K1A 0R6 (Canada)

    2009-04-24

    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline, the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.

  16. The Notch ligand delta-like 3 promotes tumor growth and inhibits Notch signaling in lung cancer cells in mice

    International Nuclear Information System (INIS)

    Deng, San-Ming; Yan, Xian-Chun; Liang, Liang; Wang, Li; Liu, Yuan; Duan, Juan-Li; Yang, Zi-Yan; Chang, Tian-Fang; Ruan, Bai; Zheng, Qi-Jun; Han, Hua

    2017-01-01

    Although it has been suggested that Dll3, one of the Notch ligands, promotes the proliferation and inhibits the apoptosis of cancer cells, the role of Dll3 in cancers remains unclear. In this study, we found that in the murine Lewis lung carcinoma (LLC) cells, the level of Dll3 mRNA changed upon tumor microenvironment (TME) stimulation, namely, decreased under hypoxia or stimulated with tumor necrosis factor (TNF)-α. Dll3 was also expressed at higher level in human lung carcinoma tissues than in the para-carcinoma tissues. Overexpression of Dll3 in LLC cells promoted cell proliferation and reduced apoptosis in vitro, and enhanced tumor growth when inoculated in vivo in mice. The Dll3-mediated proliferation could be due to increased Akt phosphorylation in LLC cells, because an Akt inhibitor counteracted Dll3-induced proliferation. Moreover, Dll3 overexpression promoted PI3K/Akt signaling through inhibiting Notch signaling. - Highlights: • The level of Dll3 in Lewis lung carcinoma changed upon tumor microenvironment (TME) stimulation, namely, decreased under hypoxia or stimulated with TNF-α. • The Dll3 was rarely detectable in the para-carcinoma tissues, but positive in 82.1% of NSCLC tissues from 84 patients. • Overexpression of Dll3 in LLC cells promoted tumor growth but did not remarkably alter TME after inoculated in mice. • Overexpression of Dll3 in LLC cells promoted cell proliferation and reduced apoptosis in vitro in an Akt-dependent way. • Dll3 overexpression promoted PI3K/Akt signaling through inhibiting Notch signaling.

  17. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch

    DEFF Research Database (Denmark)

    López-Arribillaga, Erika; Rodilla, Verónica; Pellegrinet, Luca

    2015-01-01

    Genetic data indicate that abrogation of Notch-Rbpj or Wnt-β-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. T...

  18. Functional studies on the role of Notch signaling in Hydractinia development.

    Science.gov (United States)

    Gahan, James M; Schnitzler, Christine E; DuBuc, Timothy Q; Doonan, Liam B; Kanska, Justyna; Gornik, Sebastian G; Barreira, Sofia; Thompson, Kerry; Schiffer, Philipp; Baxevanis, Andreas D; Frank, Uri

    2017-08-01

    The function of Notch signaling was previously studied in two cnidarians, Hydra and Nematostella, representing the lineages Hydrozoa and Anthozoa, respectively. Using pharmacological inhibition in Hydra and a combination of pharmacological and genetic approaches in Nematostella, it was shown in both animals that Notch is required for tentacle morphogenesis and for late stages of stinging cell maturation. Surprisingly, a role for Notch in neural development, which is well documented in bilaterians, was evident in embryonic Nematostella but not in adult Hydra. Adult neurogenesis in the latter seemed to be unaffected by DAPT, a drug that inhibits Notch signaling. To address this apparent discrepancy, we studied the role of Notch in Hydractinia echinata, an additional hydrozoan, in all life stages. Using CRISPR-Cas9 mediated mutagenesis, transgenesis, and pharmacological interference we show that Notch is dispensable for Hydractinia normal neurogenesis in all life stages but is required for the maturation of stinging cells and for tentacle morphogenesis. Our results are consistent with a conserved role for Notch in morphogenesis and nematogenesis across Cnidaria, and a lineage-specific loss of Notch dependence in neurogenesis in hydrozoans. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Notching of samples for fracture toughness' measurements via SEVNB Method of brittle ceramics

    International Nuclear Information System (INIS)

    Ribeiro, S.; Atilio, I.; Oliveira, M.R.; Garcia, G.C.R.; Rodrigues, J.A.

    2012-01-01

    The goal of this work is to present a notching machine to produce notches in ceramic bodies as well the choice and how to make the notches, using SiC produced by liquid phase sintering as experimental material. For the liquid sintering a mixture of Al 2 O 3 and Yb 2 O 3 as additive was applied. It was developed and built by an enterprise sited in Sao Carlos-SP an equipment, which permits to obtain polished notches in ceramic specimens to be fractured afterwards. That is to facilitate the measurement of K IC via the SEVNB method. Specimens of 10% of (Al 2 O 3 +Yb 2 O 3 ) containing SiC were sintered at 1950 deg C. Those specimens were machined and notched using razor blades and diamond pastes of 15, 9, 6, 3, 1 and 0.25 μm of particle size. The built machine to notch specimens is installed at DEMAR-EEL-USP, and it is said to be the first of that type in Brazil. The results showed that depending on the thickness of the razor blade and the size of the diamond particles, it can be curried out notches with distinct tip radius and notch depth values. (author)

  20. Stress concentration factors for an internally pressurized circular vessel containing a radial U-notch

    International Nuclear Information System (INIS)

    Carvalho, E.A. de

    2005-01-01

    This paper evaluates the stress concentration factors for an internally pressurized cylinder containing a radial U-notch along its length. This work studies the cases where the external to internal radius ratio (Ψ) is equal to 1.26, 1.52, 2.00, and 3.00 and the notch radius to internal radius ratio (Φ) is fixed and equal to 0.026. The U-notch depth varies from 0.1 to 0.6 of the wall thickness. Results are also presented for a fixed size semi-circular notch. Hoop stresses at the external wall are presented, showing regions where the stress matches the nominal one and the favourable places to install strain sensors. The finite element method is used to determine the stress concentration factors (K t ) for the above described situations and for a special case where a varying semi-circular notch is present with Ψ=3.00. This notch depth varies from 0.013 to 0.3 of the wall thickness. It is pointed out that even relatively small notches introduce large stress concentrations and disrupt the hoop stress distribution all over the cross section. Results are also compared to an example found in the literature for semi-circular notches and K t curves for both cases present the same shape

  1. Therapeutic NOTCH3 cysteine correction in CADASIL using exon skipping: in vitro proof of concept

    NARCIS (Netherlands)

    Rutten, J.W.; Dauwerse, H.G.; Peters, D.J.; Goldfarb, A.; Venselaar, H.; Haffner, C.; Ommen, G.J. van; Aartsma-Rus, A.M.; Oberstein, S.A.

    2016-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, is a hereditary cerebral small vessel disease caused by characteristic cysteine altering missense mutations in theNOTCH3gene.NOTCH3mutations in CADASIL result in an uneven number of cysteine

  2. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch

    NARCIS (Netherlands)

    Amsen, Derk; Antov, Andrey; Jankovic, Dragana; Sher, Alan; Radtke, Freddy; Souabni, Abdallah; Busslinger, Meinrad; McCright, Brent; Gridley, Thomas; Flavell, Richard A.

    2007-01-01

    CD4(+) T helper cells differentiate into T helper 1 (Th1) or Th2 effector lineages, which orchestrate immunity to different types of microbes. Both Th1 and Th2 differentiation can be induced by Notch, but what dictates which of these programs is activated in response to Notch is not known. By using

  3. RBP-Jκ-dependent Notch signaling enhances retinal pigment epithelial cell proliferation in transgenic mice.

    Science.gov (United States)

    Schouwey, K; Aydin, I T; Radtke, F; Beermann, F

    2011-01-20

    The Notch signaling pathway is an ubiquitous cell-cell interaction mechanism, which is essential in controlling processes like cell proliferation, cell fate decision, differentiation or stem cell maintenance. Recent data have shown that Notch signaling is RBP-Jκ-dependent in melanocytes, being required for survival of these pigment cells that are responsible for coloration of the skin and hairs in mammals. In addition, Notch is believed to function as an oncogene in melanoma, whereas it is a tumor suppressor in mouse epidermis. In this study, we addressed the implication of the Notch signaling in the development of another population of pigment cells forming the retinal pigment epithelium (RPE) in mammalian eyes. The constitutive activity of Notch in Tyrp1::NotchIC/° transgenic mice enhanced RPE cell proliferation, and the resulting RPE-derived pigmented tumor severely affected the overall eye structure. This RPE cell proliferation is dependent on the presence of the transcription factor RBP-Jκ, as it is rescued in mice lacking RBP-Jκ in the RPE. In conclusion, Notch signaling in the RPE uses the canonical pathway, which is dependent on the transcription factor RBP-Jκ. In addition, it is of importance for RPE development, and constitutive Notch activity leads to hyperproliferation and benign tumors of these pigment cells.

  4. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila

    Directory of Open Access Journals (Sweden)

    Carlos Estella

    2015-02-01

    Full Text Available The Notch signalling pathway is evolutionary conserved and participates in numerous developmental processes, including the control of cell proliferation. However, Notch signalling can promote or restrain cell division depending on the developmental context, as has been observed in human cancer where Notch can function as a tumor suppressor or an oncogene. Thus, the outcome of Notch signalling can be influenced by the cross-talk between Notch and other signalling pathways. The use of model organisms such as Drosophila has been proven to be very valuable to understand the developmental role of the Notch pathway in different tissues and its relationship with other signalling pathways during cell proliferation control. Here we review recent studies in Drosophila that shed light in the developmental control of cell proliferation by the Notch pathway in different contexts such as the eye, wing and leg imaginal discs. We also discuss the autonomous and non-autonomous effects of the Notch pathway on cell proliferation and its interactions with different signalling pathways.

  5. Shengui Sansheng San extraction is an angiogenic switch via regulations of AKT/mTOR, ERK1/2 and Notch1 signal pathways after ischemic stroke.

    Science.gov (United States)

    Liu, Bowen; Luo, Cheng; Zheng, Zhaoguang; Xia, Zhenyan; Zhang, Qian; Ke, Chienchih; Liu, Renshyan; Zhao, Yonghua

    2018-05-15

    As a traditional Chinese herbal formula, Shengui Sansheng San (SSS) has been employed for stroke treatment more than 300 years. We hypothesize that SSS extraction is an angiogenic switch in penumbra post-stroke, and corresponding mechanisms are investigated. In present study, rats were subjected to permanent middle cerebral artery occlusion model (MCAo) and were treated with low, middle and high doses of SSS extraction. We assessed neurological function and survival rate, and measured infarct volume by 2,3,5-triphenyltetrazolium chloride staining on day 7 after ischemia. von Willebrand factor (vWF), stromal cell-derived factor-1 alpha (SDF-1α) /chemokine (C-X-C motif) receptor 4 (CXCR4) axis, vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) as well as protein kinase B (AKT)/mammalian target of rapamycin (mTOR) /hypoxia-inducible factor-1 alpha (HIF-1α), extracellular signal-regulated kinase 1/2 (ERK1/2) and Notch1 signaling pathways were respectively investigated by immunofluorescence assay or western blotting in vivo and oxygen-glucose-deprived (OGD) brain microvascular endothelial cells (BMECs); simultaneously, wound healing of BMECs and tube formation assay were administrated. Compared to MCAo group, SSS extraction could significantly improve neurological functional scores, survival rate and cerebral infarct volume, enhance vWF + vascular density and perimeter, SDF-1α/CXCR4 axis, VEGF expression, as well as activate AKT/mTOR/HIF-1α and ERK1/2 and inhibit Notch1 pathways in penumbra. In vitro, containing SSS extraction serum increased BMEC migration, capillary formation and VEGF expression via up-regulations of AKT/mTOR and ERK1/2 pathways in OGD BMECs, but ERK inhibitor (U0126) reversed the result of VEGF expression in high dose of SSS group. Additionally, VEGFR2 and Notch1 expressions were suppressed by containing SSS extraction serum. All results were in dose dependent manner. Our study firstly demonstrates that SSS extraction is an

  6. Notch signaling activation in human embryonic stem cells is required for embryonic but not trophoblastic lineage commitment

    OpenAIRE

    Yu, Xiaobing; Zou, Jizhong; Ye, Zhaohui; Hammond, Holly; Chen, Guibin; Tokunaga, Akinori; Mali, Prashant; Li, Yue-Ming; Civin, Curt; Gaiano, Nicholas; Cheng, Linzhao

    2008-01-01

    The Notch signaling pathway plays important roles in cell fate determination during embryonic development and adult life. In this study, we focus on the role of Notch signaling in governing cell fate choices in human embryonic stem (hES) cells. Using genetic and pharmacological approaches, we achieved both blockade and conditional activation of Notch signaling in several hES cell lines. We report here that activation of Notch signaling is required for undifferentiated hES cells to form the pr...

  7. Neuropsychological findings in a patient with Kernohan's notch.

    Science.gov (United States)

    Clement, V L; Sherer, M

    1996-05-01

    This case report describes the use of neuropsychological testing to Iocalize and diagnose lesions The testing was instrumental in disentangling contradictory symptoms to reveal a Kernohan's notch (later confirmed by MRI), thus ruling out incorrect diagnoses We describe the case of a 36-year-old right-handed man who developed a left epidural hematoma after suffering head trauma from a blunt instrument Sequelae 2 months post-injury included left hemiparesis (ipsilateral to the lesion), dysphonic speech, severe naming/word-finding deficits, and severe memory impairment This patient's symptom pattern presented somewhat of a mystery as his cognitive deficits appeared consistent with left hemisphere damage, while his left motor symptoms suggested right hemisphere damage Medical records were inconsistent Deficits on neuropsychological testing at 3 months post-injury included impairment in verbal and visual memory, confrontation naming, and left-sided motor function Attention, visual-spatial skills, nonverbal problem solving, and right motor speed and coordination were intact A herniation syndrome, Kernohan's notch, was considered to be the most likely explanation This phenomenon occurs when a mass occupying lesion causes significant midline shift of the midbrain, pressing the contralateral cerebral peduncle against the tentorium This pressure produces an ischemic infact in the region of the corticospinal (motor) pathways Subsequent MRI confirmed a lesion in the right cerebral crus The pattern of neuropsychological finding in this patient is discussed.

  8. Design of Two Novel Dual Band-Notched UWB Antennas

    Directory of Open Access Journals (Sweden)

    Bing Li

    2012-01-01

    Full Text Available Two novel dual band-notched ultra-wideband (UWB printed monopole antennas with simple structure and small size are presented. The size of both antennas is 25×25×0.8 mm3. The bandwidth of one of the proposed antenna can be from 2.7 GHz to 36.8 GHz, except the bandwidth of 3.2–3.9 GHz for WiMAX applications and 5.14–5.94 GHz for WLAN applications. The bandwidth of the other is ranging for 2.7 to 41.1 GHz, except the bandwidth of 3.2–3.9 GHz for WiMAX applications and 4.8–5.9 GHz for WLAN applications. Bandwidths of the antennas are about 512% and 455% wider than those of conventional band-notched UWB antennas, respectively. In addition, the time-domain characteristics of the two antennas are investigated to show the difference between both antennas.

  9. Tumor Architecture and Notch Signaling Modulate Drug Response in Basal Cell Carcinoma.

    Science.gov (United States)

    Eberl, Markus; Mangelberger, Doris; Swanson, Jacob B; Verhaegen, Monique E; Harms, Paul W; Frohm, Marcus L; Dlugosz, Andrzej A; Wong, Sunny Y

    2018-02-12

    Hedgehog (Hh) pathway inhibitors such as vismodegib are highly effective for treating basal cell carcinoma (BCC); however, residual tumor cells frequently persist and regenerate the primary tumor upon drug discontinuation. Here, we show that BCCs are organized into two molecularly and functionally distinct compartments. Whereas interior Hh + /Notch + suprabasal cells undergo apoptosis in response to vismodegib, peripheral Hh +++ /Notch - basal cells survive throughout treatment. Inhibiting Notch specifically promotes tumor persistence without causing drug resistance, while activating Notch is sufficient to regress already established lesions. Altogether, these findings suggest that the three-dimensional architecture of BCCs establishes a natural hierarchy of drug response in the tumor and that this hierarchy can be overcome, for better or worse, by modulating Notch. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Dynamic determination of kinetic parameters for the interaction between polypeptide hormones and cell-surface receptors in the perfused rat liver by the multiple-indicator dilution method

    International Nuclear Information System (INIS)

    Sato, H.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Sakamoto, S.; Fuwa, T.; Hanano, M.

    1988-01-01

    Hepatic elimination of epidermal growth factor (EGF) via receptor-mediated endocytosis was studied by a multiple-indicator dilution method in the isolated perfused rat liver, in which cell polarity and spatial organization are maintained. In this method EGF was given with inulin, an extracellular reference, as a bolus into the portal vein, and dilution curves of both compounds in the hepatic vein effluent were analyzed. Analysis of the dilution curve for EGF, compared with that for somatostatin, which showed no specific binding to isolated liver plasma membranes, resulted as follows: (i) both extraction ratio and distribution volume of 125 I-labeled EGF decreased as the injected amount of unlabeled EGF increased; (ii) the ratio plot of the dilution curve for EGF exhibited an upward straight line initially for a short period of time, whereas the ratio plot of somatostatin gradually decreased. The multiple-indicator dilution method was used for other peptides also. Insulin and glucagon, known to have hepatocyte receptors, behaved similarly to EGF in shape of their ratio plots. The kinetic parameters calculated by this analysis were comparable with reported values obtained by in vitro direct binding measurements at equilibrium using liver homogenates. They conclude that the multiple-indicator dilution method is a good tool for analyzing the dynamics of peptide hormones-cell-surface receptor interaction under a condition in which spatial architecture of the liver is maintained

  11. AKAP200 promotes Notch stability by protecting it from Cbl/lysosome-mediated degradation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Neeta Bala Tannan

    2018-01-01

    Full Text Available AKAP200 is a Drosophila melanogaster member of the "A Kinase Associated Protein" family of scaffolding proteins, known for their role in the spatial and temporal regulation of Protein Kinase A (PKA in multiple signaling contexts. Here, we demonstrate an unexpected function of AKAP200 in promoting Notch protein stability. In Drosophila, AKAP200 loss-of-function (LOF mutants show phenotypes that resemble Notch LOF defects, including eye patterning and sensory organ specification defects. Through genetic interactions, we demonstrate that AKAP200 interacts positively with Notch in both the eye and the thorax. We further show that AKAP200 is part of a physical complex with Notch. Biochemical studies reveal that AKAP200 stabilizes endogenous Notch protein, and that it limits ubiquitination of Notch. Specifically, our genetic and biochemical evidence indicates that AKAP200 protects Notch from the E3-ubiquitin ligase Cbl, which targets Notch to the lysosomal pathway. Indeed, we demonstrate that the effect of AKAP200 on Notch levels depends on the lysosome. Interestingly, this function of AKAP200 is fully independent of its role in PKA signaling and independent of its ability to bind PKA. Taken together, our data indicate that AKAP200 is a novel tissue specific posttranslational regulator of Notch, maintaining high Notch protein levels and thus promoting Notch signaling.

  12. AKAP200 promotes Notch stability by protecting it from Cbl/lysosome-mediated degradation in Drosophila melanogaster.

    Science.gov (United States)

    Bala Tannan, Neeta; Collu, Giovanna; Humphries, Ashley C; Serysheva, Ekatherina; Weber, Ursula; Mlodzik, Marek

    2018-01-01

    AKAP200 is a Drosophila melanogaster member of the "A Kinase Associated Protein" family of scaffolding proteins, known for their role in the spatial and temporal regulation of Protein Kinase A (PKA) in multiple signaling contexts. Here, we demonstrate an unexpected function of AKAP200 in promoting Notch protein stability. In Drosophila, AKAP200 loss-of-function (LOF) mutants show phenotypes that resemble Notch LOF defects, including eye patterning and sensory organ specification defects. Through genetic interactions, we demonstrate that AKAP200 interacts positively with Notch in both the eye and the thorax. We further show that AKAP200 is part of a physical complex with Notch. Biochemical studies reveal that AKAP200 stabilizes endogenous Notch protein, and that it limits ubiquitination of Notch. Specifically, our genetic and biochemical evidence indicates that AKAP200 protects Notch from the E3-ubiquitin ligase Cbl, which targets Notch to the lysosomal pathway. Indeed, we demonstrate that the effect of AKAP200 on Notch levels depends on the lysosome. Interestingly, this function of AKAP200 is fully independent of its role in PKA signaling and independent of its ability to bind PKA. Taken together, our data indicate that AKAP200 is a novel tissue specific posttranslational regulator of Notch, maintaining high Notch protein levels and thus promoting Notch signaling.

  13. Beta2-adrenergic receptor homodimers: Role of transmembrane domain 1 and helix 8 in dimerization and cell surface expression.

    Science.gov (United States)

    Parmar, Vikas K; Grinde, Ellinor; Mazurkiewicz, Joseph E; Herrick-Davis, Katharine

    2017-09-01

    Even though there are hundreds of reports in the published literature supporting the hypothesis that G protein-coupled receptors (GPCR) form and function as dimers this remains a highly controversial area of research and mechanisms governing homodimer formation are poorly understood. Crystal structures revealing homodimers have been reported for many different GPCR. For adrenergic receptors, a potential dimer interface involving transmembrane domain 1 (TMD1) and helix 8 (H8) was identified in crystal structures of the beta 1 -adrenergic (β 1 -AR) and β 2 -AR. The purpose of this study was to investigate a potential role for TMD1 and H8 in dimerization and plasma membrane expression of functional β 2 -AR. Charged residues at the base of TMD1 and in the distal portion of H8 were replaced, singly and in combination, with non-polar residues or residues of opposite charge. Wild type and mutant β 2 -AR, tagged with YFP and expressed in HEK293 cells, were evaluated for plasma membrane expression and function. Homodimer formation was evaluated using bioluminescence resonance energy transfer, bimolecular fluorescence complementation, and fluorescence correlation spectroscopy. Amino acid substitutions at the base of TMD1 and in the distal portion of H8 disrupted homodimer formation and caused receptors to be retained in the endoplasmic reticulum. Mutations in the proximal region of H8 did not disrupt dimerization but did interfere with plasma membrane expression. This study provides biophysical evidence linking a potential TMD1/H8 interface with ER export and the expression of functional β 2 -AR on the plasma membrane. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Different Use of Cell Surface Glycosaminoglycans As Adherence Receptors to Corneal Cells by Gram Positive and Gram Negative Pathogens

    Science.gov (United States)

    García, Beatriz; Merayo-Lloves, Jesús; Rodríguez, David; Alcalde, Ignacio; García-Suárez, Olivia; Alfonso, José F.; Baamonde, Begoña; Fernández-Vega, Andrés; Vazquez, Fernando; Quirós, Luis M.

    2016-01-01

    The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive, and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies. PMID:27965938

  15. Cytokine and surface receptor diversity of NK cells in resistant C3H/HeN and susceptible BALB/c mice with chronic Pseudomonas aeruginosa lung infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Moser, Claus; Jensen, Peter Østrup

    2003-01-01

    The purpose of the present study was to investigate whether NK cells from resistant C3H/HeN mice and susceptible BALB/c mice showed different release of cytokines and expression of surface molecules during chronic P. aeruginosa lung infection using alginate-embedded P. aeruginosa mimicking...... expression of the LFA-1 and Fc receptors on NK cells. At day 2, IFN-gamma levels increased in C3H/HeN mice but decreased in BALB/c mice. The GM-CSF levels increased only in the C3H/HeN mice at day 1 and 2. Surface expression of LFA-1 on the NK cells was higher in C3H/HeN mice at day 1 and 2. In contrast...

  16. The herpes virus Fc receptor gE-gI mediates antibody bipolar bridging to clear viral antigens from the cell surface.

    Directory of Open Access Journals (Sweden)

    Blaise Ndjamen

    2014-03-01

    Full Text Available The Herpes Simplex Virus 1 (HSV-1 glycoprotein gE-gI is a transmembrane Fc receptor found on the surface of infected cells and virions that binds human immunoglobulin G (hIgG. gE-gI can also participate in antibody bipolar bridging (ABB, a process by which the antigen-binding fragments (Fabs of the IgG bind a viral antigen while the Fc binds to gE-gI. IgG Fc binds gE-gI at basic, but not acidic, pH, suggesting that IgG bound at extracellular pH by cell surface gE-gI would dissociate and be degraded in acidic endosomes/lysosomes if endocytosed. The fate of viral antigens associated with gE-gI-bound IgG had been unknown: they could remain at the cell surface or be endocytosed with IgG. Here, we developed an in vitro model system for ABB and investigated the trafficking of ABB complexes using 4-D confocal fluorescence imaging of ABB complexes with transferrin or epidermal growth factor, well-characterized intracellular trafficking markers. Our data showed that cells expressing gE-gI and the viral antigen HSV-1 gD endocytosed anti-gD IgG and gD in a gE-gI-dependent process, resulting in lysosomal localization. These results suggest that gE-gI can mediate clearance of infected cell surfaces of anti-viral host IgG and viral antigens to evade IgG-mediated responses, representing a general mechanism for viral Fc receptors in immune evasion and viral pathogenesis.

  17. Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease.

    Science.gov (United States)

    Coursey, Terry G; Gandhi, Niral B; Volpe, Eugene A; Pflugfelder, Stephen C; de Paiva, Cintia S

    2013-01-01

    CD4(+) T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4(+) T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4(+) T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4(+) T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.

  18. Chemokine Receptors CCR6 and CXCR3 Are Necessary for CD4+ T Cell Mediated Ocular Surface Disease in Experimental Dry Eye Disease

    Science.gov (United States)

    Coursey, Terry G.; Gandhi, Niral B.; Volpe, Eugene A.; Pflugfelder, Stephen C.; de Paiva, Cintia S.

    2013-01-01

    CD4+ T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4+ T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4+ T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4+ T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease. PMID:24223818

  19. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    Science.gov (United States)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  20. Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid.

    Science.gov (United States)

    Bobby Kannan, M; Singh Raman, R K; Witte, F; Blawert, C; Dietzel, W

    2011-02-01

    Applications of magnesium alloys as biodegradable orthopaedic implants are critically dependent on the mechanical integrity of the implant during service. In this study, the mechanical integrity of an AZ91 magnesium alloy was studied using a constant extension rate tensile (CERT) method. The samples in two different geometries that is, circumferentially notched (CN), and circumferentially notched and fatigue cracked (CNFC), were tested in air and in simulated body fluid (SBF). The test results show that the mechanical integrity of the AZ91 magnesium alloy decreased substantially (∼50%) in both the CN and CNFC samples exposed to SBF. Fracture surface analysis revealed secondary cracks suggesting stress corrosion cracking susceptibility of the alloy in SBF. Copyright © 2010 Wiley Periodicals, Inc.

  1. Neurotrophin responsiveness of sympathetic neurons is regulated by rapid mobilization of the p75 receptor to the cell surface through TrkA activation of Arf6.

    Science.gov (United States)

    Edward Hickman, F; Stanley, Emily M; Carter, Bruce D

    2018-05-22

    The p75 neurotrophin receptor (p75NTR) plays an integral role in patterning the sympathetic nervous system during development. Initially, p75NTR is expressed at low levels as sympathetic axons project toward their targets, which enables neurotrophin-3 (NT3) to activate TrkA receptors and promote growth. Upon reaching nerve growth factor (NGF) producing tissues, p75NTR is up regulated resulting in formation of TrkA-p75 complexes, which are high affinity binding sites selective for NGF, thereby blunting NT3 signaling. The level of p75NTR expressed on the neuron surface is instrumental in regulating trophic factor response; however, the mechanisms by which p75NTR expression is regulated are poorly understood. Here, we demonstrate a rapid, translation independent increase in surface expression of p75NTR in response to NGF in rat sympathetic neurons. p75NTR was mobilized to the neuron surface from GGA3-postitive vesicles through activation of the GTPase Arf6, which was stimulated by NGF, but not NT3 binding to TrkA. Arf6 activation required PI3 kinase activity and was prevented by an inhibitor of the cytohesin family of Arf6 GEFs. Overexpression of a constitutively active Arf6 mutant (Q67L) was sufficient to significantly increase surface expression of p75NTR even in the absence of NGF. Functionally, expression of active Arf6 markedly attenuated the ability of NT3 to promote neuronal survival and neurite outgrowth while the NGF response was unaltered. These data suggest that NGF activation of Arf6 through TrkA is critical for the increase in p75NTR surface expression that enables the switch in neurotrophin responsiveness during development in the sympathetic nervous system. SIGNIFICANCE STATEMENT p75NTR is instrumental in the regulation of neuronal survival and apoptosis during development and is also implicated as a contributor to aberrant neurodegeneration in numerous conditions. Therefore, a better understanding of the mechanisms that mediate p75NTR surface

  2. Expression of Notch1 Correlates with Breast Cancer Progression and Prognosis.

    Directory of Open Access Journals (Sweden)

    Xun Yuan

    Full Text Available Various studies have evaluated the significance of Notch1 expression in breast cancer, but the results have ever been disputed. By using 21 studies involving 3867 patients, this meta-analysis revealed that the expression of Notch1 was significantly higher in breast cancer than in normal tissues (OR=7.21; 95%CI, 4.7-11.07 and that higher Notch1 expression was associated with transition from ductal carcinoma in situ (DCIS to invasive cancer (OR=3.75; 95% CI, 1.8-7.78. Higher Notch1 activity was observed in the basal subtype of breast cancer (OR=2.53; 95% CI, 1.18-5.43. Moreover, patients with Notch1 overexpression exhibited significantly worse overall and recurrence-free survival. Our meta-analysis suggests that Notch inhibitors may be useful in blocking the early progression of DCIS and that the outcomes of clinical trials for Notch1-targeting therapeutics could be improved by the molecular stratification of breast cancer patients.

  3. Asymmetric cell division and Notch signaling specify dopaminergic neurons in Drosophila.

    Directory of Open Access Journals (Sweden)

    Murni Tio

    Full Text Available In Drosophila, dopaminergic (DA neurons can be found from mid embryonic stages of development till adulthood. Despite their functional involvement in learning and memory, not much is known about the developmental as well as molecular mechanisms involved in the events of DA neuronal specification, differentiation and maturation. In this report we demonstrate that most larval DA neurons are generated during embryonic development. Furthermore, we show that loss of function (l-o-f mutations of genes of the apical complex proteins in the asymmetric cell division (ACD machinery, such as inscuteable and bazooka result in supernumerary DA neurons, whereas l-o-f mutations of genes of the basal complex proteins such as numb result in loss or reduction of DA neurons. In addition, when Notch signaling is reduced or abolished, additional DA neurons are formed and conversely, when Notch signaling is activated, less DA neurons are generated. Our data demonstrate that both ACD and Notch signaling are crucial mechanisms for DA neuronal specification. We propose a model in which ACD results in differential Notch activation in direct siblings and in this context Notch acts as a repressor for DA neuronal specification in the sibling that receives active Notch signaling. Our study provides the first link of ACD and Notch signaling in the specification of a neurotransmitter phenotype in Drosophila. Given the high degree of conservation between Drosophila and vertebrate systems, this study could be of significance to mechanisms of DA neuronal differentiation not limited to flies.

  4. Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise.

    Science.gov (United States)

    Lina, Ioan A; Lauer, Amanda M

    2013-04-01

    The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development.

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    Full Text Available Endocardial to mesenchymal transformation (EMT is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1 show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.

  6. Evidence of Aortopathy in Mice with Haploinsufficiency of Notch1 in Nos3-Null Background

    Directory of Open Access Journals (Sweden)

    Sara N. Koenig

    2015-03-01

    Full Text Available Thoracic aortic aneurysms (TAA are a significant cause of morbidity and mortality in humans. While the exact etiology is unknown, genetic factors play an important role. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV and aortopathy in humans. The aim of this study was to determine if haploinsufficiency of Notch1 contributes to aortopathy using Notch1+/−; Nos3−/− mice. Echocardiographic analysis of Notch1+/−; Nos3−/− mice reveals effacement of the sinotubular junction and a trend toward dilation of the aortic sinus. Furthermore, examination of the proximal aorta of Notch1+/−; Nos3−/− mice reveals elastic fiber degradation, a trend toward increased matrix metalloproteinase 2 expression, and increased smooth muscle cell apoptosis, features characteristic of aneurysmal disease. Although at a lower penetrance, we also found features consistent with aortopathic changes in Notch1 heterozygote mice and in Nos3-null mice. Our findings implicate a novel role for Notch1 in aortopathy of the proximal aorta.

  7. Electroacupuncture pretreatment induces tolerance against focal cerebral ischemia through activation of canonical Notch pathway

    Directory of Open Access Journals (Sweden)

    Zhao Yu

    2012-09-01

    Full Text Available Abstract Background Electroacupuncture (EA pretreatment can induce the tolerance against focal cerebral ischemia. However, the underlying mechanisms have not been fully understood. Emerging evidences suggest that canonical Notch signaling may be involved in ischemic brain injury. In the present study, we tested the hypothesis that EA pretreatment-induced tolerance against focal cerebral ischemia is mediated by Notch signaling. Results EA pretreatment significantly enhanced Notch1, Notch4 and Jag1 gene transcriptions in the striatum, except Notch1 intracellular domain level, which could be increased evidently by ischemia. After ischemia and reperfusion, Hes1 mRNA and Notch1 intracellular domain level in ischemic striatum in EA pretreatment group were increased and reached the peak at 2 h and 24 h, respectively, which were both earlier than the peak achieved in control group. Intraventricular injection with the γ-secretase inhibitor MW167 attenuated the neuroprotective effect of EA pretreatment. Conclusions EA pretreatment induces the tolerance against focal cerebral ischemia through activation of canonical Notch pathway.

  8. Fatigue damage mechanics of notched graphite-epoxy laminates

    Science.gov (United States)

    Spearing, Mark; Beaumont, Peter W. R.; Ashby, Michael F.

    A modeling approach is presented that recognizes that the residual properties of composite laminates after any form of loading depend on the damage state. Therefore, in the case of cyclic loading, it is necessary to first derive a damage growth law and then relate the residual properties to the accumulated damage. The propagation of fatigue damage in notched laminates is investigated. A power law relationship between damage growth and the strain energy release rate is developed. The material constants used in the model have been determined in independent experiments and are invariant for all the layups investigated. The strain energy release rates are calculated using a simple finite element representation of the damaged specimen. The model is used to predict the effect of tension-tension cyclic loading on laminates of the T300/914C carbon-fiber epoxy system. The extent of damage propagation is successfully predicted in a number of cross-ply laminates.

  9. Simplified elastoplastic methods of analysing fatigue in notches

    International Nuclear Information System (INIS)

    Autrusson, B.

    1993-01-01

    The aim of this study is to show the state of the art concerning methods of mechanical analysis available in the literature for evaluating notch root elastoplastic strain. The components of fast breeder reactors are subjected to numerous thermal transients, which can cause fatigue failure. To prevent this from happening, it is necessary to know the local strain range and to use it to estimate the number of cycles to crack initiation. Practical methods have been developed for the calculation of the local strain range, and have led to the drafting of design rules. Direct methods of determining the local strain range of the 'inelastic analysis' type have also been described. In conclusion a series of recommendations is made on the applicability and the conservatism of these methods

  10. Six host range variants of the xenotropic/polytropic gammaretroviruses define determinants for entry in the XPR1 cell surface receptor

    Directory of Open Access Journals (Sweden)

    Kozak Christine A

    2009-10-01

    Full Text Available Abstract Background The evolutionary interactions between retroviruses and their receptors result in adaptive selection of restriction variants that can allow natural populations to evade retrovirus infection. The mouse xenotropic/polytropic (X/PMV gammaretroviruses rely on the XPR1 cell surface receptor for entry into host cells, and polymorphic variants of this receptor have been identified in different rodent species. Results We screened a panel of X/PMVs for infectivity on rodent cells carrying 6 different XPR1 receptor variants. The X/PMVs included 5 well-characterized laboratory and wild mouse virus isolates as well as a novel cytopathic XMV-related virus, termed Cz524, isolated from an Eastern European wild mouse-derived strain, and XMRV, a xenotropic-like virus isolated from human prostate cancer. The 7 viruses define 6 distinct tropisms. Cz524 and another wild mouse isolate, CasE#1, have unique species tropisms. Among the PMVs, one Friend isolate is restricted by rat cells. Among the XMVs, two isolates, XMRV and AKR6, differ from other XMVs in their PMV-like restriction in hamster cells. We generated a set of Xpr1 mutants and chimeras, and identified critical amino acids in two extracellular loops (ECLs that mediate entry of these different viruses, including 3 residues in ECL3 that are involved in PMV entry (E500, T507, and V508 and can also influence infectivity by AKR6 and Cz524. Conclusion We used a set of natural variants and mutants of Xpr1 to define 6 distinct host range variants among naturally occurring X/PMVs (2 XMV variants, 2 PMVs, 2 different wild mouse variants. We identified critical amino acids in XPR1 that mediate entry of these viruses. These gammaretroviruses and their XPR1 receptor are thus highly functionally polymorphic, a consequence of the evolutionary pressures that favor both host resistance and virus escape mutants. This variation accounts for multiple naturally occurring virus resistance phenotypes and

  11. A Novel Notch-YAP Circuit Drives Stemness and Tumorigenesis in Embryonal Rhabdomyosarcoma.

    Science.gov (United States)

    Slemmons, Katherine K; Crose, Lisa E S; Riedel, Stefan; Sushnitha, Manuela; Belyea, Brian; Linardic, Corinne M

    2017-12-01

    Rhabdomyosarcoma (RMS), a cancer characterized by skeletal muscle features, is the most common soft-tissue sarcoma of childhood. While low- and intermediate-risk groups have seen improved outcomes, high-risk patients still face a 5-year survival rate of statistic that has not changed in over 40 years. Understanding the biologic underpinnings of RMS is critical. The developmental pathways of Notch and YAP have been identified as potent but independent oncogenic signals that support the embryonal variant of RMS (eRMS). Here, the cross-talk between these pathways and the impact on eRMS tumorigenesis is reported. Using human eRMS cells grown as three-dimensional (3D) rhabdospheres, which enriches in stem cells, it was found that Notch signaling transcriptionally upregulates YAP1 gene expression and YAP activity. Reciprocally, YAP transcriptionally upregulates the Notch ligand genes JAG1 and DLL1 and the core Notch transcription factor RBPJ This bidirectional circuit boosts expression of key stem cell genes, including SOX2 , which is functionally required for eRMS spheres. Silencing this circuit for therapeutic purposes may be challenging, because the inhibition of one node (e.g., pharmacologic Notch blockade) can be rescued by upregulation of another (constitutive YAP expression). Instead, dual inhibition of Notch and YAP is necessary. Finally, supporting the existence of this circuit beyond a model system, nuclear Notch and YAP protein expression are correlated in human eRMS tumors, and YAP suppression in vivo decreases Notch signaling and SOX2 expression. Implications: This study identifies a novel oncogenic signaling circuit driving eRMS stemness and tumorigenesis, and provides evidence and rationale for combination therapies co-targeting Notch and YAP. Mol Cancer Res; 15(12); 1777-91. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Notch Signaling Is Associated With ALDH Activity And An Aggressive Metastatic Phenotype In Murin