WorldWideScience

Sample records for surface rainfall amounts

  1. Modelling rainfall amounts using mixed-gamma model for Kuantan district

    Science.gov (United States)

    Zakaria, Roslinazairimah; Moslim, Nor Hafizah

    2017-05-01

    An efficient design of flood mitigation and construction of crop growth models depend upon good understanding of the rainfall process and characteristics. Gamma distribution is usually used to model nonzero rainfall amounts. In this study, the mixed-gamma model is applied to accommodate both zero and nonzero rainfall amounts. The mixed-gamma model presented is for the independent case. The formulae of mean and variance are derived for the sum of two and three independent mixed-gamma variables, respectively. Firstly, the gamma distribution is used to model the nonzero rainfall amounts and the parameters of the distribution (shape and scale) are estimated using the maximum likelihood estimation method. Then, the mixed-gamma model is defined for both zero and nonzero rainfall amounts simultaneously. The formulae of mean and variance for the sum of two and three independent mixed-gamma variables derived are tested using the monthly rainfall amounts from rainfall stations within Kuantan district in Pahang Malaysia. Based on the Kolmogorov-Smirnov goodness of fit test, the results demonstrate that the descriptive statistics of the observed sum of rainfall amounts is not significantly different at 5% significance level from the generated sum of independent mixed-gamma variables. The methodology and formulae demonstrated can be applied to find the sum of more than three independent mixed-gamma variables.

  2. Characteristics of aggregation of daily rainfall in a middle-latitudes region during a climate variability in annual rainfall amount

    Science.gov (United States)

    Lucero, Omar A.; Rozas, Daniel

    Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of

  3. Sensitivity of point scale surface runoff predictions to rainfall resolution

    Directory of Open Access Journals (Sweden)

    A. J. Hearman

    2007-01-01

    Full Text Available This paper investigates the effects of using non-linear, high resolution rainfall, compared to time averaged rainfall on the triggering of hydrologic thresholds and therefore model predictions of infiltration excess and saturation excess runoff at the point scale. The bounded random cascade model, parameterized to three locations in Western Australia, was used to scale rainfall intensities at various time resolutions ranging from 1.875 min to 2 h. A one dimensional, conceptual rainfall partitioning model was used that instantaneously partitioned water into infiltration excess, infiltration, storage, deep drainage, saturation excess and surface runoff, where the fluxes into and out of the soil store were controlled by thresholds. The results of the numerical modelling were scaled by relating soil infiltration properties to soil draining properties, and in turn, relating these to average storm intensities. For all soil types, we related maximum infiltration capacities to average storm intensities (k* and were able to show where model predictions of infiltration excess were most sensitive to rainfall resolution (ln k*=0.4 and where using time averaged rainfall data can lead to an under prediction of infiltration excess and an over prediction of the amount of water entering the soil (ln k*>2 for all three rainfall locations tested. For soils susceptible to both infiltration excess and saturation excess, total runoff sensitivity was scaled by relating drainage coefficients to average storm intensities (g* and parameter ranges where predicted runoff was dominated by infiltration excess or saturation excess depending on the resolution of rainfall data were determined (ln g*<2. Infiltration excess predicted from high resolution rainfall was short and intense, whereas saturation excess produced from low resolution rainfall was more constant and less intense. This has important implications for the accuracy of current hydrological models that use time

  4. Return period curves for extreme 5-min rainfall amounts at the Barcelona urban network

    Science.gov (United States)

    Lana, X.; Casas-Castillo, M. C.; Serra, C.; Rodríguez-Solà, R.; Redaño, A.; Burgueño, A.; Martínez, M. D.

    2018-03-01

    Heavy rainfall episodes are relatively common in the conurbation of Barcelona and neighbouring cities (NE Spain), usually due to storms generated by convective phenomena in summer and eastern and south-eastern advections in autumn. Prevention of local flood episodes and right design of urban drainage have to take into account the rainfall intensity spread instead of a simple evaluation of daily rainfall amounts. The database comes from 5-min rain amounts recorded by tipping buckets in the Barcelona urban network along the years 1994-2009. From these data, extreme 5-min rain amounts are selected applying the peaks-over-threshold method for thresholds derived from both 95% percentile and the mean excess plot. The return period curves are derived from their statistical distribution for every gauge, describing with detail expected extreme 5-min rain amounts across the urban network. These curves are compared with those derived from annual extreme time series. In this way, areas in Barcelona submitted to different levels of flood risk from the point of view of rainfall intensity are detected. Additionally, global time trends on extreme 5-min rain amounts are quantified for the whole network and found as not statistically significant.

  5. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment

    Science.gov (United States)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman

    2017-12-01

    Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity

  6. Simulation of infiltration and redistribution of intense rainfall using Land Surface Models

    Science.gov (United States)

    Mueller, Anna; Verhoef, Anne; Cloke, Hannah

    2016-04-01

    Flooding from intense rainfall (FFIR) can cause widespread damage and disruption. Numerical Weather Prediction (NWP) models provide distributed information about atmospheric conditions, such as precipitation, that can lead to a flooding event. Short duration, high intensity rainfall events are generally poorly predicted by NWP models, because of the high spatiotemporal resolution required and because of the way the convective rainfall is described in the model. The resolution of NWP models is ever increasing. Better understanding of complex hydrological processes and the effect of scale is important in order to improve the prediction of magnitude and duration of such events, in the context of disaster management. Working as part of the NERC SINATRA project, we evaluated how the Land Surface Model (LSM) components of NWP models cope with high intensity rainfall input and subsequent infiltration problems. Both in terms of the amount of water infiltrated in the soil store, as well as the timing and the amount of surface and subsurface runoff generated. The models investigated are SWAP (Soil Water Air Plant, Alterra, the Netherlands, van Dam 1997), JULES (Joint UK Land Environment Simulator a component of Unified Model in UK Met Office, Best et al. 2011) and CHTESSEL (Carbon and Hydrology- Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al. 2009) We analysed the numerical aspects arising from discontinuities (or sharp gradients) in forcing and/or the model solution. These types of infiltration configurations were tested in the laboratory (Vachaud 1971), for some there are semi-analytical solutions (Philip 1957, Parlange 1972, Vanderborght 2005) or reference numerical solutions (Haverkamp 1977, van Dam 2000, Vanderborght 2005). The maximum infiltration by the surface, Imax, is in general dependent on atmospheric conditions, surface type, soil type, soil moisture content θ, and surface orographic factor σ. The models used differ in their approach to

  7. The analysis of the possibility of using 10-minute rainfall series to determine the maximum rainfall amount with 5 minutes duration

    Science.gov (United States)

    Kaźmierczak, Bartosz; Wartalska, Katarzyna; Wdowikowski, Marcin; Kotowski, Andrzej

    2017-11-01

    Modern scientific research in the area of heavy rainfall analysis regarding to the sewerage design indicates the need to develop and use probabilistic rain models. One of the issues that remains to be resolved is the length of the shortest amount of rain to be analyzed. It is commonly believed that the best time is 5 minutes, while the least rain duration measured by the national services is often 10 or even 15 minutes. Main aim of this paper is to present the difference between probabilistic rainfall models results given from rainfall time series including and excluding 5 minutes rainfall duration. Analysis were made for long-time period from 1961-2010 on polish meteorological station Legnica. To develop best fitted to measurement rainfall data probabilistic model 4 probabilistic distributions were used. Results clearly indicates that models including 5 minutes rainfall duration remains more appropriate to use.

  8. PATTERNS OF THE MAXIMUM RAINFALL AMOUNTS REGISTERED IN 24 HOURS WITHIN THE OLTENIA PLAIN

    Directory of Open Access Journals (Sweden)

    ALINA VLĂDUŢ

    2012-03-01

    Full Text Available Patterns of the maximum rainfall amounts registered in 24 hours within the Oltenia Plain. The present study aims at rendering the main features of the maximum rainfall amounts registered in 24 h within the Oltenia Plain. We used 30-year time series (1980-2009 for seven meteorological stations. Generally, the maximum amounts in 24 h display the same pattern as the monthly mean amounts, namely higher values in the interval May-October. In terms of mean values, the highest amounts are registered in the western and northern extremity of the plain. The maximum values generally exceed 70 mm at all meteorological stations: D.T. Severin, 224 mm, July 1999; Slatina, 104.8 mm, August 2002; Caracal, 92.2 m, July 1991; Bechet, 80.8 mm, July 2006; Craiova, 77.6 mm, April 2003. During the cold season, there was noticed a greater uniformity all over the plain, due to the cyclonic origin of rainfalls compared to the warm season, when thermal convection is quite active and it triggers local showers. In order to better emphasize the peculiarities of this parameter, we have calculated the frequency on different value classes (eight classes, as well as the probability of appearance of different amounts. Thus, it resulted that the highest frequency (25-35% is held by the first two classes of values (0-10 mm; 10.1-20 mm. The lowest frequency is registered in case of the amounts of more than 100 mm, which generally display a probability of occurrence of less than 1% and only in the western and eastern extremities of the plain.

  9. Quantifying the changes of soil surface microroughness due to rainfall impact on a smooth surface

    Directory of Open Access Journals (Sweden)

    B. K. B. Abban

    2017-09-01

    Full Text Available This study examines the rainfall-induced change in soil microroughness of a bare smooth soil surface in an agricultural field. The majority of soil microroughness studies have focused on surface roughness on the order of ∼ 5–50 mm and have reported a decay of soil surface roughness with rainfall. However, there is quantitative evidence from a few studies suggesting that surfaces with microroughness less than 5 mm may undergo an increase in roughness when subject to rainfall action. The focus herein is on initial microroughness length scales on the order of 2 mm, a low roughness condition observed seasonally in some landscapes under bare conditions and chosen to systematically examine the increasing roughness phenomenon. Three rainfall intensities of 30, 60, and 75 mm h−1 are applied to a smoothened bed surface in a field plot via a rainfall simulator. Soil surface microroughness is recorded via a surface-profile laser scanner. Several indices are utilized to quantify the soil surface microroughness, namely the random roughness (RR index, the crossover length, the variance scale from the Markov–Gaussian model, and the limiting difference. Findings show a consistent increase in roughness under the action of rainfall, with an overall agreement between all indices in terms of trend and magnitude. Although this study is limited to a narrow range of rainfall and soil conditions, the results suggest that the outcome of the interaction between rainfall and a soil surface can be different for smooth and rough surfaces and thus warrant the need for a better understanding of this interaction.

  10. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert.

    Science.gov (United States)

    Zhang, Zhi-Shan; Zhao, Yang; Li, Xin-Rong; Huang, Lei; Tan, Hui-Juan

    2016-05-17

    In water-limited regions, rainfall interception is influenced by rainfall properties and crown characteristics. Rainfall properties, aside from gross rainfall amount and duration (GR and RD), maximum rainfall intensity and rainless gap (RG), within rain events may heavily affect throughfall and interception by plants. From 2004 to 2014 (except for 2007), individual shrubs of Caragana korshinskii and Artemisia ordosica were selected to measure throughfall during 210 rain events. Various rainfall properties were auto-measured and crown characteristics, i.e., height, branch and leaf area index, crown area and volume of two shrubs were also measured. The relative interceptions of C. korshinskii and A. ordosica were 29.1% and 17.1%, respectively. Rainfall properties have more contributions than crown characteristics to throughfall and interception of shrubs. Throughfall and interception of shrubs can be explained by GR, RI60 (maximum rainfall intensities during 60 min), RD and RG in deceasing importance. However, relative throughfall and interception of two shrubs have different responses to rainfall properties and crown characteristics, those of C. korshinskii were closely related to rainfall properties, while those of A. ordosica were more dependent on crown characteristics. We highlight long-term monitoring is very necessary to determine the relationships between throughfall and interception with crown characteristics.

  11. Investigation of Rainfall-Runoff Processes and Soil Moisture Dynamics in Grassland Plots under Simulated Rainfall Conditions

    Directory of Open Access Journals (Sweden)

    Nana Zhao

    2014-09-01

    Full Text Available The characteristics of rainfall-runoff are important aspects of hydrological processes. In this study, rainfall-runoff processes and soil moisture dynamics at different soil depths and slope positions of grassland with two different row spacings (5 cm and 10 cm, respectively, referred to as R5 and R10 were analyzed, by means of a solution of rainfall simulation experiments. Bare land was also considered as a comparison. The results showed that the mechanism of runoff generation was mainly excess infiltration overland flow. The surface runoff amount of R5 plot was greater than that of R10, while the interflow amount of R10 was larger than that of R5 plot, although the differences of the subsurface runoff processes between plots R5 and R10 were little. The effects of rainfall intensity on the surface runoff were significant, but not obvious on the interflow and recession curve, which can be described as a simple exponential equation, with a fitting degree of up to 0.854–0.996. The response of soil moisture to rainfall and evapotranspiration was mainly in the 0–20 cm layer, and the response at the 40 cm layer to rainfall was slower and generally occurred after the rainfall stopped. The upper slope generally responded fastest to rainfall, and the foot of the slope was the slowest. The results presented here could provide insights into understanding the surface and subsurface runoff processes and soil moisture dynamics for grasslands in semi-arid regions.

  12. Meta-heuristic ant colony optimization technique to forecast the amount of summer monsoon rainfall: skill comparison with Markov chain model

    Science.gov (United States)

    Chaudhuri, Sutapa; Goswami, Sayantika; Das, Debanjana; Middey, Anirban

    2014-05-01

    Forecasting summer monsoon rainfall with precision becomes crucial for the farmers to plan for harvesting in a country like India where the national economy is mostly based on regional agriculture. The forecast of monsoon rainfall based on artificial neural network is a well-researched problem. In the present study, the meta-heuristic ant colony optimization (ACO) technique is implemented to forecast the amount of summer monsoon rainfall for the next day over Kolkata (22.6°N, 88.4°E), India. The ACO technique belongs to swarm intelligence and simulates the decision-making processes of ant colony similar to other adaptive learning techniques. ACO technique takes inspiration from the foraging behaviour of some ant species. The ants deposit pheromone on the ground in order to mark a favourable path that should be followed by other members of the colony. A range of rainfall amount replicating the pheromone concentration is evaluated during the summer monsoon season. The maximum amount of rainfall during summer monsoon season (June—September) is observed to be within the range of 7.5-35 mm during the period from 1998 to 2007, which is in the range 4 category set by the India Meteorological Department (IMD). The result reveals that the accuracy in forecasting the amount of rainfall for the next day during the summer monsoon season using ACO technique is 95 % where as the forecast accuracy is 83 % with Markov chain model (MCM). The forecast through ACO and MCM are compared with other existing models and validated with IMD observations from 2008 to 2012.

  13. Influence of atmospheric rainfall to γ radiation Kerma rate in surface air

    International Nuclear Information System (INIS)

    Xu Zhe; Wan Jun; Yu Rongsheng

    2009-01-01

    Objective: To investigate the influence rule of the atmospheric Rainfall to the γ radiation Kerma rate in surface air in order to revise the result of its measurement during rainfall. Methods: The influence factors of rainfall to the measurement of the γ radiation Kerma rate in air were analyzed and then the differential equation of the correlation factors was established theoretically, and by resolving the equation, the mathematical model Was obtained. The model was discussed through several practical examples. Results: The mathematical model was coincided with the tendency of curve about the measured data on the influence rule of rainfall to the γ radiation Kerma rate in surface air. Conclusion: By using the theoretical formula in this article which is established to explain the relationship between the rainfall and the γ radiation Kerma rate in surface air, the influence of rainfall to the γ radiation Kerma rate in surface air could be correctly revised. (authors)

  14. Effects of sea surface temperature, cloud radiative and microphysical processes, and diurnal variations on rainfall in equilibrium cloud-resolving model simulations

    International Nuclear Information System (INIS)

    Jiang Zhe; Li Xiao-Fan; Zhou Yu-Shu; Gao Shou-Ting

    2012-01-01

    The effects of sea surface temperature (SST), cloud radiative and microphysical processes, and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations. For a rain rate of higher than 3 mm·h −1 , water vapor convergence prevails. The rainfall amount decreases with the decrease of SST from 29 °C to 27 °C, the inclusion of diurnal variation of SST, or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds, which are primarily associated with the decreases in water vapor convergence. However, the amount of rainfall increases with the increase of SST from 29 °C to 31 °C, the exclusion of diurnal variation of solar zenith angle, and the exclusion of the radiative effects of ice clouds, which are primarily related to increases in water vapor convergence. For a rain rate of less than 3 mm·h −1 , water vapor divergence prevails. Unlike rainfall statistics for rain rates of higher than 3 mm·h −1 , the decrease of SST from 29 °C to 27 °C and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount, which corresponds to the suppression in water vapor divergence. The exclusion of microphysical effects of ice clouds decreases the amount of rainfall, which corresponds to the enhancement in water vapor divergence. The amount of rainfall is less sensitive to the increase of SST from 29 °C to 31 °C and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Interaction between the effects of evaporation rate and amount of simulated rainfall on development of the free-living stages of Haemonchus contortus.

    Science.gov (United States)

    O'Connor, Lauren J; Kahn, Lewis P; Walkden-Brown, Stephen W

    2008-08-17

    A factorial experiment (3 x 4 x 2 x 3) was conducted in programmable incubators to investigate interaction between the effects of rainfall amount, rainfall distribution and evaporation rate on development of Haemonchus contortus to L3. Sheep faeces containing H. contortus eggs were incubated on sterilised soil under variable temperatures typical of summer in the Northern Tablelands of NSW, Australia. Simulated rainfall was applied in 1 of 3 amounts (12, 24 or 32 mm) and 4 distributions (a single event on the day after deposition, or the same total amount split in 2, 3 or 4 equal events over 2, 3 or 4 days, respectively). Samples were incubated at either a Low or High rate of evaporation (Low: 2.1-3.4 mm/day and High: 3.8-6.1 mm/day), and faeces and soil were destructively sampled at 4, 7 and 14 days post-deposition. Recovery of L3 from the soil (extra-pellet L3) increased over time (up to 0.52% at day 14) and with each increment of rainfall (12 mm: evaporation rate (0.01%) compared with the Low evaporation rate (0.31%). All rainfall amounts yielded significantly different recoveries of L3 under Low evaporation rates but there was no difference between the 12 and 24 mm treatments under the High evaporation rate. The distribution of simulated rainfall did not significantly affect recovery of infective larvae. Faecal moisture content was positively associated with L3 recovery, as was the ratio of cumulative precipitation and cumulative evaporation (P/E), particularly when measured in the first 4 days post-deposition. The results show that evaporation rate plays a significant role in regulating the influence of rainfall amount on the success of L3 transmission.

  16. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    Science.gov (United States)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  17. Rainfall runoff and erosion in Napa Valley vineyards: effects of slope, cover and surface roughness

    Science.gov (United States)

    Battany, M. C.; Grismer, M. E.

    2000-05-01

    The effects of slope, cover and surface roughness on rainfall runoff, infiltration and erosion were determined at two sites on a hillside vineyard in Napa County, California, using a portable rainfall simulator. Rainfall simulation experiments were carried out at two sites, with five replications of three slope treatments (5%, 10% and 15%) in a randomized block design at each site (0%bsol;64 m2 plots). Prior to initiation of the rainfall simulations, detailed assessments, not considered in previous vineyard studies, of soil slope, cover and surface roughness were conducted. Significant correlations (at the 95% confidence level) between the physical characteristics of slope, cover and surface roughness, with total infiltration, runoff, sediment discharge and average sediment concentration were obtained. The extent of soil cracking, a physical characteristic not directly measured, also affected analysis of the rainfall-runoff-erosion process. Average cumulative runoff and cumulative sediment discharge from site A was 87% and 242% greater, respectively, than at site B. This difference was linked to the greater cover, extent of soil cracking and bulk density at site B than at site A. The extent of soil cover was the dominant factor limiting soil loss when soil cracking was not present. Field slopes within the range of 4-16%, although a statistically significant factor affecting soil losses, had only a minor impact on the amount of soil loss. The Horton infiltration equation fit field data better than the modified Philip's equation. Owing to the variability in the treatment parameters affecting the rainfall-runoff-erosion process, use of ANOVA methods were found to be inappropriate; multiple-factor regression analysis was more useful for identifying significant parameters. Overall, we obtained similar values for soil erosion parameters as those obtained from vineyard erosion studies in Europe. In addition, it appears that results from the small plot studies may be

  18. Linking soil type and rainfall characteristics towards estimation of surface evaporative capacitance

    Science.gov (United States)

    Or, D.; Bickel, S.; Lehmann, P.

    2017-12-01

    Separation of evapotranspiration (ET) to evaporation (E) and transpiration (T) components for attribution of surface fluxes or for assessment of isotope fractionation in groundwater remains a challenge. Regional estimates of soil evaporation often rely on plant-based (Penman-Monteith) ET estimates where is E is obtained as a residual or a fraction of potential evaporation. We propose a novel method for estimating E from soil-specific properties, regional rainfall characteristics and considering concurrent internal drainage that shelters soil water from evaporation. A soil-dependent evaporative characteristic length defines a depth below which soil water cannot be pulled to the surface by capillarity; this depth determines the maximal soil evaporative capacitance (SEC). The SEC is recharged by rainfall and subsequently emptied by competition between drainage and surface evaporation (considering canopy interception evaporation). We show that E is strongly dependent on rainfall characteristics (mean annual, number of storms) and soil textural type, with up to 50% of rainfall lost to evaporation in loamy soil. The SEC concept applied to different soil types and climatic regions offers direct bounds on regional surface evaporation independent of plant-based parameterization or energy balance calculations.

  19. [Rainfall intensity effects on nutrients transport in surface runoff from farmlands in gentle slope hilly area of Taihu Lake Basin].

    Science.gov (United States)

    Li, Rui-ling; Zhang, Yong-chun; Liu, Zhuang; Zeng, Yuan; Li, Wei-xin; Zhang, Hong-ling

    2010-05-01

    To investigate the effect of rainfall on agricultural nonpoint source pollution, watershed scale experiments were conducted to study the characteristics of nutrients in surface runoff under different rainfall intensities from farmlands in gentle slope hilly areas around Taihu Lake. Rainfall intensity significantly affected N and P concentrations in runoff. Rainfall intensity was positively related to TP, PO4(3-) -P and NH4+ -N event mean concentrations(EMC). However, this study have found the EMC of TN and NO3- -N to be positively related to rainfall intensity under light rain and negatively related to rainfall intensity under heavy rain. TN and TP site mean amounts (SMA) in runoff were positively related to rainfall intensity and were 1.91, 311.83, 127.65, 731.69 g/hm2 and 0.04, 7.77, 2.99, 32.02 g/hm2 with rainfall applied under light rain, moderate rain, heavy rain and rainstorm respectively. N in runoff was mainly NO3- -N and NH4+ -N and was primarily in dissolved form from Meilin soils. Dissolved P (DP) was the dominant form of TP under light rain, but particulate P (PP) mass loss increased with the increase of rainfall intensity and to be the dominant form when the rainfall intensity reaches rainstorm. Single relationships were used to describe the dependence of TN and TP mass losses in runoff on rainfall, maximum rainfall intensity, average rainfall intensity and rainfall duration respectively. The results showed a significant positive correlation between TN mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01) and also TP mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01).

  20. THE MAXIMUM AMOUNTS OF RAINFALL FALLEN IN SHORT PERIODS OF TIME IN THE HILLY AREA OF CLUJ COUNTY - GENESIS, DISTRIBUTION AND PROBABILITY OF OCCURRENCE

    Directory of Open Access Journals (Sweden)

    BLAGA IRINA

    2014-03-01

    Full Text Available The maximum amounts of rainfall are usually characterized by high intensity, and their effects on the substrate are revealed, at slope level, by the deepening of the existing forms of torrential erosion and also by the formation of new ones, and by landslide processes. For the 1971-2000 period, for the weather stations in the hilly area of Cluj County: Cluj- Napoca, Dej, Huedin and Turda the highest values of rainfall amounts fallen in 24, 48 and 72 hours were analyzed and extracted, based on which the variation and the spatial and temporal distribution of the precipitation were analyzed. The annual probability of exceedance of maximum rainfall amounts fallen in short time intervals (24, 48 and 72 hours, based on thresholds and class values was determined, using climatological practices and the Hyfran program facilities.

  1. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  2. Rainfall variability and its influence on surface flow regimes. Examples from the central highlands of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Osman, M. [Debre Zeit (Ethiopia); Sauerborn, P. [Seminar fuer Geographie und ihre Didaktik, Univ. zu Koeln, Koeln (Germany)

    2002-07-01

    The article shows results of an international and interdisciplinary project with the title 'Rainfall and its Erosivity in Ethiopia'. Rainfall variability affects the water resource management of Ethiopia. The influence of rainfall variability on flow regimes was investigated using five gauging stations with data availability from 1982-1997. It was confirmed that the variability in rainfall has a direct implication for surface runoff. Surface runoff declined at most of the gauging stations investigated. Therefore, effective water resource management is recommended for the study area. Future research should focus on watershed management which includes land-use and land cover. The question posed here is whether the variability in rainfall significantly affected surface flow in the study area. (orig.)

  3. Rainfall prediction using fuzzy inference system for preliminary micro-hydro power plant planning

    Science.gov (United States)

    Suprapty, B.; Malani, R.; Minardi, J.

    2018-04-01

    East Kalimantan is a very rich area with water sources, in the form of river streams that branch to the remote areas. The conditions of natural potency like this become alternative solution for area that has not been reached by the availability of electric energy from State Electricity Company. The river water in selected location (catchment area) which is channelled to the canal, pipeline or penstock can be used to drive the waterwheel or turbine. The amount of power obtained depends on the volume/water discharge and headwater (the effective height between the reservoir and the turbine). The water discharge is strongly influenced by the amount of rainfall. Rainfall is the amount of water falling on the flat surface for a certain period measured, in units of mm3, above the horizontal surface in the absence of evaporation, run-off and infiltration. In this study, the prediction of rainfall is done in the area of East Kalimantan which has 13 watersheds which, in principle, have the potential for the construction of Micro Hydro Power Plant. Rainfall time series data is modelled by using AR (Auto Regressive) Model based on FIS (Fuzzy Inference System). The FIS structure of the training results is then used to predict the next two years rainfall.

  4. Weather model performance on extreme rainfall events simulation's over Western Iberian Peninsula

    Science.gov (United States)

    Pereira, S. C.; Carvalho, A. C.; Ferreira, J.; Nunes, J. P.; Kaiser, J. J.; Rocha, A.

    2012-08-01

    This study evaluates the performance of the WRF-ARW numerical weather model in simulating the spatial and temporal patterns of an extreme rainfall period over a complex orographic region in north-central Portugal. The analysis was performed for the December month of 2009, during the Portugal Mainland rainy season. The heavy rainfall to extreme heavy rainfall periods were due to several low surface pressure's systems associated with frontal surfaces. The total amount of precipitation for December exceeded, in average, the climatological mean for the 1971-2000 time period in +89 mm, varying from 190 mm (south part of the country) to 1175 mm (north part of the country). Three model runs were conducted to assess possible improvements in model performance: (1) the WRF-ARW is forced with the initial fields from a global domain model (RunRef); (2) data assimilation for a specific location (RunObsN) is included; (3) nudging is used to adjust the analysis field (RunGridN). Model performance was evaluated against an observed hourly precipitation dataset of 15 rainfall stations using several statistical parameters. The WRF-ARW model reproduced well the temporal rainfall patterns but tended to overestimate precipitation amounts. The RunGridN simulation provided the best results but model performance of the other two runs was good too, so that the selected extreme rainfall episode was successfully reproduced.

  5. Detecting trends in 10-day rainfall amounts at five sites in the state ofSão Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel Constantino Blain

    2014-09-01

    Full Text Available The temporal distribution of the rainfall events within a crop growing season plays a crucial role on the crop yield. In this way, the main goal of this study was to evaluate the presence of climate trends in the 10-day rainfall totalsobtained from five weather stations in the State of São Paulo, Brazil (1951-2012.The autocorrelation function, the Run test and the Durbin-Watson test indicateda lack of significant serial correlation in theseseries. The wavelet analysis revealed no conclusive evidence of periodicities in the temporal variability of this variable. According to the Mann-Kendall test, most of the 10-day rainfall amounts obtained from the five weather stations shows no significant trends. However, for the locations of States Campinas, Pindorama and Ribeirão Preto, the significant decreasing trends observed during the 2nd and 3rd ten days of October suggests a possible change in the climatic patterns of these locations, which may be linked to a delay in the return of the rainy season.

  6. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale

    2015-01-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the Rfactor in the USLE model and its revised version, RUSLE. At national...... and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based...

  7. Transfer of spatio-temporal multifractal properties of rainfall to simulated surface runoff

    Science.gov (United States)

    Gires, Auguste; Giangola-Murzyn, Agathe; Richard, Julien; Abbes, Jean-Baptiste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Willinger, Bernard; Cardinal, Hervé; Thouvenot, Thomas

    2014-05-01

    In this paper we suggest to use scaling laws and more specifically Universal Multifractals (UM) to analyse in a spatio-temporal framework both the radar rainfall and the simulated surface runoff. Such tools have been extensively used to analyse and simulate geophysical fields extremely variable over wide range of spatio-temporal scales such as rainfall, but have not often if ever been applied to surface runoff. Such novel combined analysis helps to improve the understanding of the rainfall-runoff relationship. Two catchments of the chair "Hydrology for resilient cities" sponsored by Véolia, and of the European Interreg IV RainGain project are used. They are both located in the Paris area: a 144 ha flat urban area in the Seine-Saint-Denis County, and a 250 ha urban area with a significant portion of forest located on a steep hillside of the Bièvre River. A fully distributed urban hydrological model currently under development called Multi-Hydro is implemented to represent the catchments response. It consists in an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. The fully distributed model is tested with pixels of size 5, 10 and 20 m. In a first step the model is validated for three rainfall events that occurred in 2010 and 2011, for which the Météo-France radar mosaic with a resolution of 1 km in space and 5 min in time is available. These events generated significant surface runoff and some local flooding. The sensitivity of the model to the rainfall resolution is briefly checked by stochastically generating an ensemble of realistic downscaled rainfall fields (obtained by continuing the underlying cascade process which is observed on the available range of scales) and inputting them into the model. The impact is significant on both the simulated sewer flow and surface runoff. Then rainfall fields are generated with the help of discrete multifractal cascades and inputted in the

  8. Understanding road surface pollutant wash-off and underlying physical processes using simulated rainfall.

    Science.gov (United States)

    Egodawatta, Prasanna; Goonetilleke, Ashantha

    2008-01-01

    Pollutant wash-off is one of the key pollutant processes that detailed knowledge is required in order to develop successful treatment design strategies for urban stormwater. Unfortunately, current knowledge relating to pollutant wash-off is limited. This paper presents the outcomes of a detailed investigation into pollutant wash-off on residential road surfaces. The investigations consisted of research methodologies formulated to overcome the physical constraints due to the heterogeneity of urban paved surfaces and the dependency on naturally occurring rainfall. This entailed the use of small road surface plots and artificially simulated rainfall. Road surfaces were selected due to its critical importance as an urban stormwater pollutant source. The study results showed that the influence of initially available pollutants on the wash-off process was limited. Furthermore, pollutant wash-off from road surfaces can be replicated using an exponential equation. However, the typical version of the exponential wash-off equation needs to be modified by introducing a non dimensional factor referred to as 'capacity factor' CF. Three rainfall intensity ranges were identified where the variation of CF can be defined. Furthermore, it was found that particulate density rather than size is the critical parameter that influences the process of pollutant wash-off. (c) IWA Publishing 2008.

  9. Entropy of stable seasonal rainfall distribution in Kelantan

    Science.gov (United States)

    Azman, Muhammad Az-zuhri; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Radi, Noor Fadhilah Ahmad

    2017-05-01

    Investigating the rainfall variability is vital for any planning and management in many fields related to water resources. Climate change can gives an impact of water availability and may aggravate water scarcity in the future. Two statistics measurements which have been used by many researchers to measure the rainfall variability are variance and coefficient of variation. However, these two measurements are insufficient since rainfall distribution in Malaysia especially in the East Coast of Peninsular Malaysia is not symmetric instead it is positively skewed. In this study, the entropy concept is used as a tool to measure the seasonal rainfall variability in Kelantan and ten rainfall stations were selected. In previous studies, entropy of stable rainfall (ESR) and apportionment entropy (AE) were used to describe the rainfall amount variability during years for Australian rainfall data. In this study, the entropy of stable seasonal rainfall (ESSR) is suggested to model rainfall amount variability during northeast monsoon (NEM) and southwest monsoon (SWM) seasons in Kelantan. The ESSR is defined to measure the long-term average seasonal rainfall amount variability within a given year (1960-2012). On the other hand, the AE measures the rainfall amounts variability across the months. The results of ESSR and AE values show that stations in east coastline are more variable as compared to other stations inland for Kelantan rainfall. The contour maps of ESSR for Kelantan rainfall stations are also presented.

  10. The Impact of Rainfall on Fecal Coliform Bacteria in Bayou Dorcheat (North Louisiana

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2006-03-01

    Full Text Available Fecal coliform bacteria are the most common pollutant in rivers and streams. In Louisiana, it has been reported that 37% of surveyed river miles, 31% of lakes, and 23% of estuarine water had some level of contamination. The objective of this research was to assess the effect of surface runoff amounts and rainfall amount parameters on fecal coliform bacterial densities in Bayou Dorcheat in Louisiana. Bayou Dorcheat has been designated by the Louisiana Department of Environmental Quality as a waterway that has uses such as primary contact recreation, secondary contact recreation, propagation of fish and wildlife, agriculture and as being an outstanding natural resource water. Samples from Bayou Dorcheat were collected monthly and analyzed for the presence of fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. The analysis of the bacterial levels was performed following standard test protocols as described in Standard Methods for the Examination of Water and Wastewater. Information regarding the rainfall amounts and surface runoff amounts for the selected years was retrieved from the Louisiana Office of State Climatology. It was found that a significant increase in the fecal coliform numbers may be associated with average rainfall amounts. Possible sources of elevated coliform counts could include sewage discharges from municipal treatment plants and septic tanks, storm water overflows, and runoff from pastures and range lands. It can be concluded that nonpoint source pollution that is carried by surface runoff has a significant effect on bacterial levels in water resources.

  11. Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate.

    Science.gov (United States)

    Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D

    2016-04-15

    Sediment and heavy metals in stormwater runoff are key pollutants of urban waterways, and their presence in stormwater is driven by climatic factors such as rainfall intensity. This study describes the total suspended solids (TSS) and heavy metal concentrations found in runoff from four different urban surfaces within a residential/institutional catchment, in a climate where rainfall is typically of low intensity (runoff quality from a compilation of international studies. The road runoff had the highest TSS concentrations, while copper and galvanized roof runoff had the highest copper and zinc concentrations, respectively. Pollutant concentrations were found to be significantly different between surfaces; quantification and prediction of pollutant contributions from urban surfaces should thus take account of the different surface materials, instead of being aggregated into more generalized categories such as land use. The TSS and heavy metal concentrations were found to be at the low to medium end of ranges observed internationally, except for total copper and zinc concentrations generated by dissolution of copper and galvanized roofing material respectively; these concentrations were at least as high as those reported internationally. TSS wash-off from the roofs was seen to be a source-limited process, where all available TSS is washed off during the rain event despite the low intensity rainfall, whereas both road TSS and heavy metals wash-off from roof and road surfaces appeared to all be transport-limited and therefore some carryover of pollutants occurs between rain events. A first flush effect was seen from most surfaces for TSS, but not for heavy metals. This study demonstrates that in low intensity rainfall climates, quantification of untreated runoff quality from key individual surface types in a catchment are needed to enable development of targeted and appropriately sized stormwater treatment systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Rainfall estimation in SWAT: An alternative method to simulate orographic precipitation

    Science.gov (United States)

    Galván, L.; Olías, M.; Izquierdo, T.; Cerón, J. C.; Fernández de Villarán, R.

    2014-02-01

    The input of water from precipitation is one of the most important aspects of a hydrologic model because it controls the basin's water budget. The model should reproduce the amount and distribution of rainfall in the basin, spatially and temporally. SWAT (Soil and Water Assessment Tool) is one of the most widely used hydrologic models. In this paper the rainfall estimation in SWAT is revised, focusing on the treatment of orographic precipitation. SWAT was applied to the Odiel river basin (SW Spain), with a surface of 2300 km2. Results show that SWAT does not reflect reallisticaly the spatial distribution of rainfall in the basin. In relation to orographic precipitation, SWAT estimates the daily precipitation in elevation bands by adding a constant amount to the recorded precipitation in the rain gauge, which depends on the increase in precipitation with altitude and the difference between the mean elevation of each band and the elevation of the recording gauge. This does not reflect rainfall in the subbasin because the increase in precipitation with altitude actually it is not constant, but depends on the amount of rainfall. An alternative methodology to represent the temporal distribution of orographic precipitation is proposed. After simulation, the deviation of runoff volume using the SWAT elevation bands was appreciably higher than that obtained with the proposed methodology.

  13. Rainfall erosivity map for Ghana

    International Nuclear Information System (INIS)

    Oduro Afriyie, K.

    1995-10-01

    Monthly rainfall data, spanning over a period of more than thirty years, were used to compute rainfall erosivity indices for various stations in Ghana, using the Fournier index, c, defined as p 2 /P, where p is the rainfall amount in the wettest month and P is the annual rainfall amount. Values of the rainfall erosivity indices ranged from 24.5 mm at Sunyani in the mid-portion of Ghana to 180.9 mm at Axim in the south western coastal portion. The indices were used to construct a rainfall erosivity map for the country. The map revealed that Ghana may be broadly divided into five major erosion risk zones. The middle sector of Ghana is generally in the low erosion risk zone; the northern sector is in the moderate to severe erosion risk zone, while the coastal sector is in the severe to extreme severe erosion risk zone. (author). 11 refs, 1 fig., 1 tab

  14. Nitrate Accumulation and Leaching in Surface and Ground Water Based on Simulated Rainfall Experiments

    Science.gov (United States)

    Wang, Hong; Gao, Jian-en; Li, Xing-hua; Zhang, Shao-long; Wang, Hong-jie

    2015-01-01

    To evaluate the process of nitrate accumulation and leaching in surface and ground water, we conducted simulated rainfall experiments. The experiments were performed in areas of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high (22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with. From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uniformly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments, the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L before the 5th experiment, and after the 7th experiment, these nitrate concentrations were greater than 10 mg/L throughout the process. The time-series process of the changing concentration in the groundwater flow exhibited the same parabolic trend for each fertilizer experiment. However, the time at which the nitrate concentration began to change lagged behind the start time of groundwater flow by approximately 0.94 hours on average. The experiments were also performed with no fertilizer. In these experiments, the mean nitrate concentration of groundwater initially increased continuously, and then, the process exhibited the same parabolic trend as the results of the fertilization experiments. The nitrate concentration decreased in the subsequent experiments. Eight days after the 12 rainfall experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate residues mainly existed at the surface and in the bottom soil layers, which represents a

  15. Surface temperature of the equatorial Pacific Ocean and the Indian rainfall

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.

    The time variation of the monthly mean surface temperature of the equatorial Pacific Ocean during 1982-1987 has been studied in relation to summer monsoon rainfall over India The ENSO events of 1982 and 1987 were related to a significant reduction...

  16. Computation of rainfall erosivity from daily precipitation amounts.

    Science.gov (United States)

    Beguería, Santiago; Serrano-Notivoli, Roberto; Tomas-Burguera, Miquel

    2018-10-01

    Rainfall erosivity is an important parameter in many erosion models, and the EI30 defined by the Universal Soil Loss Equation is one of the best known erosivity indices. One issue with this and other erosivity indices is that they require continuous breakpoint, or high frequency time interval, precipitation data. These data are rare, in comparison to more common medium-frequency data, such as daily precipitation data commonly recorded by many national and regional weather services. Devising methods for computing estimates of rainfall erosivity from daily precipitation data that are comparable to those obtained by using high-frequency data is, therefore, highly desired. Here we present a method for producing such estimates, based on optimal regression tools such as the Gamma Generalised Linear Model and universal kriging. Unlike other methods, this approach produces unbiased and very close to observed EI30, especially when these are aggregated at the annual level. We illustrate the method with a case study comprising more than 1500 high-frequency precipitation records across Spain. Although the original records have a short span (the mean length is around 10 years), computation of spatially-distributed upscaling parameters offers the possibility to compute high-resolution climatologies of the EI30 index based on currently available, long-span, daily precipitation databases. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Evaluation of rainfall infiltration characteristics in a volcanic ash soil by time domain reflectometry method

    Directory of Open Access Journals (Sweden)

    S. Hasegawa

    1997-01-01

    Full Text Available Time domain reflectometry (TDR was used to monitor soil water conditions and to evaluate infiltration characteristics associated with rainfall into a volcanic-ash soil (Hydric Hapludand with a low bulk density. Four 1 m TDR probes were installed vertically along a 6 m line in a bare field. Three 30 cm and one 60 cm probes were installed between the 1 m probes. Soil water content was measured every half or every hour throughout the year. TDR enabled prediction of the soil water content precisely even though the empirical equation developed by Topp et al. (1980 underestimated the water content. Field capacity, defined as the amount of water stored to a depth of 1 m on the day following heavy rainfall, was 640 mm. There was approximately 100 mm difference in the amount of water stored between field capacity and the driest period. Infiltration characteristics of rainfall were investigated for 36 rainfall events exceeding 10 mm with a total amount of rain of 969 mm out of an annual rainfall of 1192 mm. In the case of 25 low intensity rainfall events with less than 10 mm h-1 on to dry soils, the increase in the amount of water stored to a depth of 1 m was equal to the cumulative rainfall. For rain intensity in excess of 10 mm h-1, non-uniform infiltration occurred. The increase in the amount of water stored at lower elevation locations was 1.4 to 1.6 times larger than at higher elevation locations even though the difference in ground height among the 1 m probes was 6 cm. In the two instances when rainfall exceeded 100 mm, including the amount of rain in a previous rainfall event, the increase in the amount of water stored to a depth of 1 m was 65 mm lower than the total quantity of rain on the two occasions (220 mm; this indicated that 65 mm of water or 5.5% of the annual rainfall had flowed away either by surface runoff or bypass flow. Hence, approximately 95% of the annual rainfall was absorbed by the soil matrix but it is not possible to simulate

  18. Extreme Rainfall In A City

    Science.gov (United States)

    Nkemdirim, Lawrence

    Cities contain many structures and activities that are vulnerable to severe weather. Heavy precipitation cause floods which can damage structures, compromise transportation and water supply systems, and slow down economic and social activities. Rain induced flood patterns in cities must be well understood to enable effective placement of flood control and other regulatory measures. The planning goal is not to eliminate all floods but to reduce their frequency and resulting damage. Possible approaches to such planning include probability based extreme event analysis. Precipitation is normally the most variable hydrologic element over a given area. This variability results from the distribution of clouds and in cloud processes in the atmosphere, the storm path, and the distribution of topographical features on the ground along path. Some studies suggest that point rainfall patterns are also affected by urban industrial effects hence some agreement that cities are wetter than the country surrounding them. However, there are still questions regarding the intra- urban distribution of precipitation. The sealed surfaces, urban structures, and the urban heat anomaly increase convection in cities which may enhance the generation of clouds. Increased dust and gaseous aerosols loads are effective condensation and sublimation nuclei which may also enhance the generation of precipitation. Based on these associations, the greatest amount of convection type rainfall should occur at city center. A study of summer rainfall in Calgary showed that frequencies of trace amounts of rainfall and events under 0.2mm are highest downtown than elsewhere. For amounts greater than than 0.2 mm, downtown sites were not favored. The most compelling evidence for urban-industrial precipitation enhancement came from the Metromex project around St. Loius, Missouri where maximum increases of between 5 to 30 per cent in summer rainfall downwind of the city was linked to urbanization and

  19. The Impact of Amazonian Deforestation on Dry-Season Rainfall

    Science.gov (United States)

    Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming; Surratt, Jason; Starr, David OC. (Technical Monitor)

    2002-01-01

    Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, deep convective cloudiness, as well as rainfall occurrence, all increase over the deforested and non-forested (savanna) regions. This is in response to a local circulation initiated by the differential heating of the region's varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift toward afternoon hours in the deforested and savanna regions, compared to the forested regions. Analysis of 14 years of data from the Special Sensor Microwave/Imager data revealed that only in August did rainfall amounts increase over the deforested region.

  20. Potential Impact of Rainfall on the Air-Surface Exchange of Total Gaseous Mercury from Two Common Urban Ground Surfaces

    Science.gov (United States)

    The impact of rainfall on total gaseous mercury (TGM) flux from pavement and street dirt surfaces was investigated in an effort to determine the influence of wet weather events on mercury transport in urban watersheds. Street dirt and pavement are common urban ground surfaces tha...

  1. Rainfall over Friuli-Venezia Giulia: High amounts and strong geographical gradients

    Science.gov (United States)

    Ceschia, M.; Micheletti, St.; Carniel, R.

    1991-12-01

    The precipitation distribution over Friuli-Venezia Giulia — the easternmost region of Northern Italy extending from the Adriatic Sea to the Alps — has been studied. Monthly rainfall data over the region and the bordering areas of Veneto and Slovenia during the period from 1951 to 1986 have been analyzed by standard statistical methods, including cluster analysis. The overall results emphasize a distribution with rainfall increasing from the sea to the prealpine areas. The highest precipitations were recorded over the Musi-Canin range, with average values exceeding 3 200 mm per year. Noteworthy is the unforeseen subdivision of the region by the clustering procedure by means of the Angot index.

  2. Effect of Variations in Long-Duration Rainfall Intensity on Unsaturated Slope Stability

    Directory of Open Access Journals (Sweden)

    Hsin-Fu Yeh

    2018-04-01

    Full Text Available In recent years, many scientific methods have been used to prove that the Earth’s climate is changing. Climate change can affect rainfall patterns, which can in turn affect slope safety. Therefore, this study analyzed the effects of climate change on rainfall patterns from the perspective of rainfall intensity. This analysis was combined with numerical model analysis to examine the rainfall patterns of the Zengwen reservoir catchment area and its effects on slope stability. In this study, the Mann–Kendall test and the Theil–Sen estimator were used to analyze the rainfall records of rainfall stations at Da-Dong-Shan, Ma-To-Shan, and San-Jiao-Nan-Shan. The rainfall intensity of the Zengwen reservoir catchment area showed an increasing trend from 1990–2016. In addition, the analysis results of rainfall intensity trends were used for qualitative analysis of seepage and slope stability. The trend analysis result showed that in the future, from 2017–2100, if the amount of rainfall per hour continues to rise at about 0.1 mm per year, the amount of seepage will increase at the slope surface boundary and significantly change pore water pressure in the soil. As a result, the time of the occurrence of slope instability after the start of rainfall will decrease from 20 to 13 h, and the reduction in the safety coefficient will increase from 32 to 41%. Therefore, to decrease the effects of slope disasters on the safety of the Zengwen reservoir and its surrounding areas, changes in rainfall intensity trends should be considered for slope safety in this region. However, the results of trend analyses were weak and future research is needed using a wider range of precipitation data and detailed hydrological analysis to better predict rainfall pattern variations.

  3. Numerical Simulation of Heavy Rainfall in August 2014 over Japan and Analysis of Its Sensitivity to Sea Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yuki Minamiguchi

    2018-02-01

    Full Text Available This study evaluated the performance of the Weather Research and Forecasting (WRF model version 3.7 for simulating a series of rainfall events in August 2014 over Japan and investigated the impact of uncertainty in sea surface temperature (SST on simulated rainfall in the record-high precipitation period. WRF simulations for the heavy rainfall were conducted for six different cases. The heavy rainfall events caused by typhoons and rain fronts were similarly accurately reproduced by three cases: the TQW_5km case with grid nudging for air temperature, humidity, and wind and with a horizontal resolution of 5 km; W_5km with wind nudging and 5-km resolution; and W_2.5km with wind nudging and 2.5-km resolution. Because the nudging for air temperature and humidity in TQW_5km suppresses the influence of SST change, and because W_2.5km requires larger computational load, W_5km was selected as the baseline case for a sensitivity analysis of SST. In the sensitivity analysis, SST around Japan was homogeneously changed by 1 K from the original SST data. The analysis showed that the SST increase led to a larger amount of precipitation in the study period in Japan, with the mean increase rate of precipitation being 13 ± 8% K−1. In addition, 99 percentile precipitation (100 mm d−1 in the baseline case increased by 13% K−1 of SST warming. These results also indicate that an uncertainty of approximately 13% in the simulated heavy rainfall corresponds to an uncertainty of 1 K in SST data around Japan in the study period.

  4. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    Science.gov (United States)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  5. Interception of rainfall and surface runoff in the Brazilian Cerrado

    Science.gov (United States)

    Tarso Oliveira, Paulo; Wendland, Edson; Nearing, Mark; Perea Martins, João

    2014-05-01

    The Brazilian Cerrado plays a fundamental role in water resources dynamics because it distributes fresh water to the largest basins in Brazil and South America. In recent decades, the native Cerrado vegetation has increasingly been replaced by agricultural crops and pasture. These land cover and land use changes have altered the hydrological processes. Meanwhile, little is known about the components of the water balance in the Brazilian Cerrado, mainly because the experimental field studies in this region are scarce or nonexistent. The objective of this study was to evaluate two hydrological processes under native Cerrado vegetation, the canopy interception (CI) and the surface runoff (R). The Cerrado physiognomy was classified as "cerrado sensu stricto denso" with an absolute density of 15,278 trees ha-1, and a basal area of 11.44 m2 ha-1. We measured the gross rainfall (P) from an automated tipping bucket rain gauge (model TB4) located in a tower with 11 m of height on the Cerrado. Throughfall (TF) was obtained from 15 automated tipping bucket rain gauges (model Davis) spread below the Cerrado vegetation and randomly relocated every month during the wet season. Stemflow (SF) was measured on 12 trees using a plastic hose wrapped around the trees trunks, sealed with neutral silicone sealant, and a bucket to store the water. The canopy interception was computed by the difference between P and the sum of TF and SF. Surface runoff under undisturbed Cerrado was collected in three plots of 100 m2(5 x 20 m) in size and slope steepness of approximately 0.09 m m-1. The experimental study was conducted between January 2012 and November 2013. We found TF of 81.0% of P and SF of 1.6% of P, i.e. the canopy interception was calculated at 17.4% of P. There was a statistically significant correlation (p 0.8. Our results suggest that the rainfall intensity, the characteristics of the trees trunks (crooked and twisted) and stand structure are the main factors that have influenced

  6. [Characteristics of nutrient loss by runoff in sloping arable land of yellow-brown under different rainfall intensities].

    Science.gov (United States)

    Chen, Ling; Liu, De-Fu; Song, Lin-Xu; Cui, Yu-Jie; Zhang, Gei

    2013-06-01

    In order to investigate the loss characteristics of N and P through surface flow and interflow under different rainfall intensities, a field experiment was conducted on the sloping arable land covered by typical yellow-brown soils inXiangxi River watershed by artificial rainfall. The results showed that the discharge of surface flow, total runoff and sediment increased with the increase of rain intensity, while the interflow was negatively correlated with rain intensity under the same total rainfall. TN, DN and DP were all flushed at the very beginning in surface flow underdifferent rainfall intensities; TP fluctuated and kept consistent in surface flow without obvious downtrend. While TN, DN and DP in interflow kept relatively stable in the whole runoff process, TP was high at the early stage, then rapidly decreased with time and kept steady finally. P was directly influenced by rainfall intensity, its concentration in the runoff increased with the increase of the rainfall intensity, the average concentration of N and P both exceeded the threshold of eutrophication of freshwater. The higher the amount of P loss was, the higher the rain intensity. The change of N loss was the opposite. The contribution rate of TN loss carried by surface flow increased from 36.5% to 57.6% with the increase of rainfall intensity, but surface flow was the primary form of P loss which contributed above 90.0%. Thus, it is crucial to control interflow in order to reduce N loss. In addition, measures should be taken to effectively manage soil erosion to mitigate P loss. The proportion of dissolved nitrogen in surface flow elevated with the decrease of rainfall intensity, but in interflow, dissolved form was predominant. P was exported mainly in the form of particulate under different rainfall intensities and runoff conditions.

  7. Predicting watershed acidification under alternate rainfall conditions

    International Nuclear Information System (INIS)

    Huntington, T.G.

    1996-01-01

    The effect of alternate rainfall scenarios on acidification of a forested watershed subjected to chronic acidic deposition was assessed using the model of acidification of groundwater in catchments (MAGIC). The model was calibrated at the Panola Mountain Research Watershed, near Atlanta, Georgia, USA using measured soil properties, wet and dry deposition, and modeled hydrologic routing. Model forecast simulations were evaluated to compare alternate temporal averaging of rainfall inputs and variations in rainfall amount and seasonal distribution. Soil water alkalinity was predicted to decrease to substantially lower concentrations under lower rainfall compared with current or higher rainfall conditions. Soil water alkalinity was also predicted to decrease to lower levels when the majority of rainfall occurred during the growing season compared with other rainfall distributions. Changes in rainfall distribution that result in decreases in net soil water flux will temporarily delay acidification. Ultimately, however, decreased soilwater flux will result in larger increases in soil-adsorbed sulfur and soil-water sulfate concentrations and decreases in alkalinity when compared to higher water flux conditions. Potential climate change resulting in significant changes in rainfall amounts, seasonal distributions of rainfall, or evapotranspiration will change net soil water flux and, consequently, will affect the dynamics of the acidification response to continued sulfate loading. 29 refs., 7 figs., 4 tabs

  8. Inter-Annual Variability Of Rainfall In Some States Of Southern Nigeria

    Directory of Open Access Journals (Sweden)

    Egor

    2015-08-01

    Full Text Available Abstract The study inter-annual variability of rainfall in some states in Southern Nigeria focuses on analyzing the trends and fluctuations in annual rainfall over six states in Southern Nigeria covering a period of 1972 2012. In order to ascertain the variabilitys and to model the annual rainfall for future prediction to enhance policy implementation the quantitative and descriptive analysis techniques was employed. The rainfall series were analyzed for fluctuations using Standardized Anomaly Index SAI whereas the trends were examined using Statistical Package for Social Science Software SPSS 17.0. At 95 percent confidence level observations in the stations may be signals that the wetter period dominates the drier periods in this study. Each of the series contains two distinct periods when the rainfall anomalies negative and positive of a particular type were most significant. The period where the annual rainfall is above one standard deviation from the mean annual rainfall is considered Wet and the period below one standard deviation from the mean annual rainfall is considered Dry for each station. The results of the linear trend lines revealed an increase in rainfall supply over the period of study especially of recent. The annual rate of increase in rainfall over the period of investigation 1972 - 2012 were 15.21mmyear for Calabar 2.18mmyear for Port Harcourt 22.23mmyear for Owerri 3.25mmyear for Benin City 5.08mmyear for Enugu and 16.29mmyear for Uyo respectively. The variability in amount of annual rainfall revealed that in 2012 Calabar received the highest amount of rainfall of about 4062.70mm and the least value of 2099.4mm in 1973. In Porthacourt the highest amount of rainfall occurred in 1993 with a value of 3911.70mm and the least value in 1983 with a value of 1816.4mm. Owerri recorded the highest amount of rainfall of about 3064.0mm in 2011 and the least value occurred in 1986 with a value of 1228.4mm. In 1976 Benin received the

  9. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  10. Influences of Appalachian orography on heavy rainfall and rainfall variability associated with the passage of hurricane Isabel by ensemble simulations

    Science.gov (United States)

    Oldaker, Guy; Liu, Liping; Lin, Yuh-Lang

    2017-12-01

    This study focuses on the heavy rainfall event associated with hurricane Isabel's (2003) passage over the Appalachian mountains of the eastern United States. Specifically, an ensemble consisting of two groups of simulations using the Weather Research and Forecasting model (WRF), with and without topography, is performed to investigate the orographic influences on heavy rainfall and rainfall variability. In general, the simulated ensemble mean with full terrain is able to reproduce the key observed 24-h rainfall amount and distribution, while the flat-terrain mean lacks in this respect. In fact, 30-h rainfall amounts are reduced by 75% with the removal of topography. Rainfall variability is also significantly increased with the presence of orography. Further analysis shows that the complex interaction between the hurricane and terrain along with contributions from varied microphysics, cumulus parametrization, and planetary boundary layer schemes have a pronounced effect on rainfall and rainfall variability. This study follows closely with a previous study, but for a different TC case of Isabel (2003). It is an important sensitivity test for a different TC in a very different environment. This study reveals that the rainfall variability behaves similarly, even with different settings of the environment.

  11. Observation-Based Estimates of Surface Cooling Inhibition by Heavy Rainfall under Tropical Cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    Jourdain, N; Lengaigne, M.; Vialard, J.; Madec, G.; Menkes, C.E.; Vincent, E.M.; Jullien, E.; Barnier, B.

    Tropical cyclones drive intense ocean vertical mixing that explains most of the surface cooling observed in their wake (the "cold wake"). The influence of cyclonic rainfall on the cold wake at a global scale over the 2002-09 period is investigated...

  12. Some observations of the variations in natural gamma radiation due to rainfall

    International Nuclear Information System (INIS)

    Minato, S.

    1980-01-01

    Results of observations of variations in natural gamma-radiation flux densities due to rainfall are presented and discussed in relation to rate of rainfall. Variations of fluences with amounts of rainfall are also described. It is concluded that the frequency distribution of the ratio of the fluence to the amount of rainfall has a trend to be lognormal

  13. Fitting monthly Peninsula Malaysian rainfall using Tweedie distribution

    Science.gov (United States)

    Yunus, R. M.; Hasan, M. M.; Zubairi, Y. Z.

    2017-09-01

    In this study, the Tweedie distribution was used to fit the monthly rainfall data from 24 monitoring stations of Peninsula Malaysia for the period from January, 2008 to April, 2015. The aim of the study is to determine whether the distributions within the Tweedie family fit well the monthly Malaysian rainfall data. Within the Tweedie family, the gamma distribution is generally used for fitting the rainfall totals, however the Poisson-gamma distribution is more useful to describe two important features of rainfall pattern, which are the occurrences (dry months) and the amount (wet months). First, the appropriate distribution of the monthly rainfall was identified within the Tweedie family for each station. Then, the Tweedie Generalised Linear Model (GLM) with no explanatory variable was used to model the monthly rainfall data. Graphical representation was used to assess model appropriateness. The QQ plots of quantile residuals show that the Tweedie models fit the monthly rainfall data better for majority of the stations in the west coast and mid land than those in the east coast of Peninsula. This significant finding suggests that the best fitted distribution depends on the geographical location of the monitoring station. In this paper, a simple model is developed for generating synthetic rainfall data for use in various areas, including agriculture and irrigation. We have showed that the data that were simulated using the Tweedie distribution have fairly similar frequency histogram to that of the actual data. Both the mean number of rainfall events and mean amount of rain for a month were estimated simultaneously for the case that the Poisson gamma distribution fits the data reasonably well. Thus, this work complements previous studies that fit the rainfall amount and the occurrence of rainfall events separately, each to a different distribution.

  14. Relationships between southeastern Australian rainfall and sea surface temperatures examined using a climate model

    Science.gov (United States)

    Watterson, I. G.

    2010-05-01

    Rainfall in southeastern Australia has declined in recent years, particularly during austral autumn over the state of Victoria. A recent study suggests that sea surface temperature (SST) variations in both the Indonesian Throughflow (ITF) region and in a meridional dipole in the central Indian Ocean have influenced Victorian late autumn rainfall since 1950. However, it remains unclear to what extent SSTs in these and other regions force such a teleconnection. Analysis of a 1080 year simulation by the climate model CSIRO Mk3.5 shows that the model Victorian rainfall is correlated rather realistically with SSTs but that part of the above relationships is due to the model ENSO. Furthermore, the remote patterns of pressure, rainfall, and land temperature greatly diminish when the data are lagged by 1 month, suggesting that the true forcing by the persisting SSTs is weak. In a series of simulations of the atmospheric Mk3.5 with idealized SST anomalies, raised SSTs to the east of Indonesia lower the simulated Australian rainfall, while those to the west raise it. A positive ITF anomaly lowers pressure over Australia, but with little effect on Victorian rainfall. The meridional dipole and SSTs to the west and southeast of Australia have little direct effect on southeastern Australia in the model. The results suggest that tropical SSTs predominate as an influence on Victorian rainfall. However, the SST indices appear to explain only a fraction of the observed trend, which in the case of decadal means remains within the range of unforced variability simulated by Mk3.5.

  15. Enhanced Orographic Tropical Rainfall: An Study of the Colombia's rainfall

    Science.gov (United States)

    Peñaranda, V. M.; Hoyos Ortiz, C. D.; Mesa, O. J.

    2015-12-01

    Convection in tropical regions may be enhanced by orographic barriers. The orographic enhancement is an intensification of rain rates caused by the forced lifting of air over a mountainous structure. Orographic heavy rainfall events, occasionally, comes along by flooding, debris flow and substantial amount of looses, either economics or human lives. Most of the heavy convective rainfall events, occurred in Colombia, have left a lot of victims and material damages by flash flooding. An urgent action is required by either scientific communities or society, helping to find preventive solutions against these kind of events. Various scientific literature reports address the feedback process between the convection and the local orographic structures. The orographic enhancement could arise by several physical mechanism: precipitation transport on leeward side, convection triggered by the forcing of air over topography, the seeder-feeder mechanism, among others. The identification of the physical mechanisms for orographic enhancement of rainfall has not been studied over Colombia. As far as we know, orographic convective tropical rainfall is just the main factor for the altitudinal belt of maximum precipitation, but the lack of detailed hydro-meteorological measurements have precluded a complete understanding of the tropical rainfall in Colombia and its complex terrain. The emergence of the multifractal theory for rainfall has opened a field of research which builds a framework for parsimonious modeling of physical process. Studies about the scaling behavior of orographic rainfall have found some modulating functions between the rainfall intensity probability distribution and the terrain elevation. The overall objective is to advance in the understanding of the orographic influence over the Colombian tropical rainfall based on observations and scaling-analysis techniques. We use rainfall maps, weather radars scans and ground-based rainfall data. The research strategy is

  16. Rainfall erosivity in Europe.

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine

    2015-04-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods

  17. EVALUATION OF RAINFALL-RUNOFF MODELS FOR MEDITERRANEAN SUBCATCHMENTS

    Directory of Open Access Journals (Sweden)

    A. Cilek

    2016-06-01

    Full Text Available The development and the application of rainfall-runoff models have been a corner-stone of hydrological research for many decades. The amount of rainfall and its intensity and variability control the generation of runoff and the erosional processes operating at different scales. These interactions can be greatly variable in Mediterranean catchments with marked hydrological fluctuations. The aim of the study was to evaluate the performance of rainfall-runoff model, for rainfall-runoff simulation in a Mediterranean subcatchment. The Pan-European Soil Erosion Risk Assessment (PESERA, a simplified hydrological process-based approach, was used in this study to combine hydrological surface runoff factors. In total 128 input layers derived from data set includes; climate, topography, land use, crop type, planting date, and soil characteristics, are required to run the model. Initial ground cover was estimated from the Landsat ETM data provided by ESA. This hydrological model was evaluated in terms of their performance in Goksu River Watershed, Turkey. It is located at the Central Eastern Mediterranean Basin of Turkey. The area is approximately 2000 km2. The landscape is dominated by bare ground, agricultural and forests. The average annual rainfall is 636.4mm. This study has a significant importance to evaluate different model performances in a complex Mediterranean basin. The results provided comprehensive insight including advantages and limitations of modelling approaches in the Mediterranean environment.

  18. The Impact of a Amazonian Deforestation on Dry-Season Rainfall

    Science.gov (United States)

    Negri, Andrew J.; Adler, Robert F.; Xu, Liming; Surratt, Jason

    2003-01-01

    Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect to percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, shallow cumulus cloudiness, deep convective cloudiness, and rainfall occurrence all are larger over the deforested and non-forested (savanna) regions than over areas of dense jungle. This difference is in response to a local circulation initiated by the differential heating of the region s varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift in the onset of convection toward afternoon hours in the deforested and towards the morning hours in the savanna regions when compared to the neighboring forested regions. Analysis of 14 years of monthly estimates from the Special Sensor Microwave/Imager data revealed that in only in August was there a pattern of higher monthly rainfall amounts over the deforested region.

  19. High Severity Wildfire Effect On Rainfall Infiltration And Runoff: A Cellular Automata Based Simulation

    Science.gov (United States)

    Vergara-Blanco, J. E.; Leboeuf-Pasquier, J.; Benavides-Solorio, J. D. D.

    2017-12-01

    A simulation software that reproduces rainfall infiltration and runoff for a storm event in a particular forest area is presented. A cellular automaton is utilized to represent space and time. On the time scale, the simulation is composed by a sequence of discrete time steps. On the space scale, the simulation is composed of forest surface cells. The software takes into consideration rain intensity and length, individual forest cell soil absorption capacity evolution, and surface angle of inclination. The software is developed with the C++ programming language. The simulation is executed on a 100 ha area within La Primavera Forest in Jalisco, Mexico. Real soil texture for unburned terrain and high severity wildfire affected terrain is employed to recreate the specific infiltration profile. Historical rainfall data of a 92 minute event is used. The Horton infiltration equation is utilized for infiltration capacity calculation. A Digital Elevation Model (DEM) is employed to reproduce the surface topography. The DEM is displayed with a 3D mesh graph where individual surface cells can be observed. The plot colouring renders water content development at the cell level throughout the storm event. The simulation shows that the cumulative infiltration and runoff which take place at the surface cell level depend on the specific storm intensity, fluctuation and length, overall terrain topography, cell slope, and soil texture. Rainfall cumulative infiltration for unburned and high severity wildfire terrain are compared: unburned terrain exhibits a significantly higher amount of rainfall infiltration.It is concluded that a cellular automaton can be utilized with a C++ program to reproduce rainfall infiltration and runoff under diverse soil texture, topographic and rainfall conditions in a forest setting. This simulation is geared for an optimization program to pinpoint the locations of a series of forest land remediation efforts to support reforestation or to minimize runoff.

  20. Sensitivity of Horn of Africa Rainfall to Regional Sea Surface Temperature Forcing

    Directory of Open Access Journals (Sweden)

    Zewdu T. Segele

    2015-05-01

    Full Text Available The Abdus Salam International Center for Theoretical Physics (ICTP version 4.4 Regional Climate Model (RegCM4 is used to investigate the rainfall response to cooler/warmer sea surface temperature anomaly (SSTA forcing in the Indian and Atlantic Oceans. The effect of SSTA forcing in a specific ocean basin is identified by ensemble, averaging 10 individual simulations in which a constant or linearly zonally varying SSTA is prescribed in individual basins while specifying the 1971–2000 monthly varying climatological sea surface temperature (SST across the remaining model domain. The nonlinear rainfall response to SSTA amplitude also is investigated by separately specifying +1K, +2K, and +4K SSTA forcing in the Atlantic and Indian Oceans. The simulation results show that warm SSTs over the entire Indian Ocean produce drier conditions across the larger Blue Nile catchment, whereas warming ≥ +2K generates large positive rainfall anomalies exceeding 10 mm·day−1 over drought prone regions of Northeastern Ethiopia. However, the June–September rainy season tends to be wetter (drier when the SST warming (cooling is limited to either the Northern or Southern Indian Ocean. Wet rainy seasons generally are characterized by deepening of the monsoon trough, east of 40°E, intensification of the Mascarene high, strengthening of the Somali low level jet and the tropical easterly jet, enhanced zonal and meridional vertically integrated moisture fluxes, and steeply vertically decreasing moist static energy. The opposite conditions hold for dry monsoon seasons.

  1. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing.

    Science.gov (United States)

    Ouyang, Wei; Guo, Bobo; Hao, Fanghua; Huang, Haobo; Li, Junqi; Gong, Yongwei

    2012-12-30

    Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Initial conditions of urban permeable surfaces in rainfall-runoff models using Horton’s infiltration

    DEFF Research Database (Denmark)

    Davidsen, Steffen; Löwe, Roland; Høegh Ravn, Nanna

    2017-01-01

    Infiltration is a key process controlling runoff, but varies depending on antecedent conditions. This study provides estimates on initial conditions for urban permeable surfaces via continuous simulation of the infiltration capacity using historical rain data. An analysis of historical rainfall...... records show that accumulated rainfall prior to large rain events does not depend on the return period of the event. Using an infiltration-runoff model we found that for a typical large rain storm, antecedent conditions in general lead to reduced infiltration capacity both for sandy and clayey soils...... and that there is substantial runoff for return periods above 1–10 years....

  3. The use of simulated rainfall to study the discharge process and the influence factors of urban surface runoff pollution loads.

    Science.gov (United States)

    Qinqin, Li; Qiao, Chen; Jiancai, Deng; Weiping, Hu

    2015-01-01

    An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm⁻². Smaller particle sizes (pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.

  4. Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating

    Science.gov (United States)

    Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.

    2018-04-01

    In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.

  5. Beryllium-7 in Rainfall, River Sediment and Sewage Sludge - Beryllium-7 in rainwater, river sediment and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Helmut W.; Igbinosa, Aimuamwosa; Souti, Maria Evangelia [University of Bremen, Institute of Environmental Physics, Otto-Hahn-Allee 1, D-28359 Bremen (Germany)

    2014-07-01

    Introduction: The cosmogenic radioisotope {sup 7}Be is one of the major contributors to natural airborne radioactivity, with fairly constant concentrations of some mBq/m{sup 3} near the Earth's surface. The isotope is assumed to be bound to aerosols. It is deposited onto the Earth's surface mainly by wet deposition. In environmental surveillance it is detected regularly in air by aerosol sampling, and in topsoil and on plant leaves after rainfall. In previous studies of this laboratory it had also been detected regularly in freshwater sediments and in wastewater treatment primary sludge. River sediment samples from an estuary showed concentrations influenced by dilution with sea water. Thus it appeared interesting to investigate the usefulness of {sup 7}Be as tracer for rainfall contribution in environmental samples. Experimental: In order to investigate possible correlations and interrelations between {sup 7}Be activity in rainfall, sediment and primary sludge, a measurement campaign was planned and conducted covering a time span of 6 months. {sup 7}Be concentrations were determined in weekly samples of rainwater and primary sludge and in monthly samples of river sediment by high resolution gamma spectroscopy. Besides, rainfall amount and intensity were recorded and weekly primary sludge production volume data were obtained from the treatment plant operators. From these numbers, total atmospheric deposition per surface area could be calculated. Results and discussion: The data show a clear correlation between weekly rainfall amount and {sup 7}Be surface deposition. This is more than plausible as wet deposition is known to be the most effective deposition process. Although washout effectivity is assumed to decrease with rainfall intensity, no correlation could be seen in the data, probably due to averaging within the weekly sampling intervals. The time series of {sup 7}Be deposition with rain and its concentration in primary sludge exhibit very similar

  6. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    OpenAIRE

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  7. A multifractal approach to characterize cumulative rainfall and tillage effects on soil surface micro-topography and to predict depression storage

    Directory of Open Access Journals (Sweden)

    E. Vidal Vázquez

    2010-10-01

    Full Text Available Most of the indices currently employed for assessing soil surface micro-topography, such as random roughness (RR, are merely descriptors of its vertical component. Recently, multifractal analysis provided a new insight for describing the spatial configuration of soil surface roughness. The main objective of this study was to test the ability of multifractal parameters to assess in field conditions the decay of initial surface roughness induced by natural rainfall under different soil tillage systems. In addition, we evaluated the potential of the joint use of multifractal indices plus RR to improve predictions of water storage in depressions of the soil surface (MDS. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil. Six tillage treatments, namely, disc harrow, disc plough, chisel plough, disc harrow + disc level, disc plough + disc level and chisel plough + disc level were tested. In each treatment soil surface micro-topography was measured four times, with increasing amounts of natural rainfall, using a pin meter. The sampling scheme was a square grid with 25 × 25 mm point spacing and the plot size was 1350 × 1350 mm (≈1.8 m2, so that each data set consisted of 3025 individual elevation points. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental data sets. MDS was estimated from grid elevation data with a depression-filling algorithm. Multifractal analysis was performed for experimental data sets as well as for oriented and random surface conditions obtained from the former by removing slope and slope plus tillage marks, respectively. All the investigated microplots exhibited multifractal behaviour, irrespective of surface condition, but the degree of multifractality showed wide differences between them. Multifractal parameters provided valuable information for characterizing the spatial features of soil micro-topography as they were able to

  8. Rainfall intensity characteristics at coastal and high altitude stations ...

    Indian Academy of Sciences (India)

    a given amount of rain occurs is important because heavier rainfall leads to greater runoff, greater soil erosion and less infiltration into the water table. A knowledge of rainfall intensity therefore becomes. Keywords. Rainfall intensity; Kerala; cumulative distribution. J. Earth Syst. Sci. 116, No. 5, October 2007, pp. 451–463.

  9. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    Science.gov (United States)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  10. ANALYSIS OF EFFECTIVE RAINFALL INTENSITY AND WORKING RAINFALL FOR BASIC WARNING CRITERIA DEVELOPMENT ON LAHAR FLOW EVENT

    Directory of Open Access Journals (Sweden)

    Fitriyadi Fitriyadi

    2015-05-01

    The research results showed that the number of reviewed serial rain with total value ≥ 80 mm is 9.28% of the whole serial rain, and 12.5% of them caused lahar flow in Gendol River. Debris flow occurrence probability on total rainfall amount of ≥ 80 mm that may occur on Gendol River amounted to 1.89%. This value represents less possibility of debris flow in Gendol River, this is due to the rain conditions in the Gendol Watershed different from the situation in Japan as well as the limitations of the available data. It is recommended for further research on the limitation of total rainfall in accordance with the conditions in Gendol Watershed by considering other parameters becoming the lahar flow controller factor. Further, it is necessary to perform the analysis using rain catchment method by averaging rainfall values on each of serial rain.

  11. Runoff Analysis Considering Orographical Features Using Dual Polarization Radar Rainfall

    Science.gov (United States)

    Noh, Hui-seong; Shin, Hyun-seok; Kang, Na-rae; Lee, Choong-Ke; Kim, Hung-soo

    2013-04-01

    Recently, the necessity for rainfall estimation and forecasting using the radar is being highlighted, due to the frequent occurrence of torrential rainfall resulting from abnormal changes of weather. Radar rainfall data represents temporal and spatial distributions properly and replace the existing rain gauge networks. It is also frequently applied in many hydrologic field researches. However, the radar rainfall data has an accuracy limitation since it estimates rainfall, by monitoring clouds and precipitation particles formed around the surface of the earth(1.5-3km above the surface) or the atmosphere. In a condition like Korea where nearly 70% of the land is covered by mountainous areas, there are lots of restrictions to use rainfall radar, because of the occurrence of beam blocking areas by topography. This study is aiming at analyzing runoff and examining the applicability of (R(Z), R(ZDR) and R(KDP)) provided by the Han River Flood Control Office(HRFCO) based on the basin elevation of Nakdong river watershed. For this purpose, the amount of radar rainfall of each rainfall event was estimated according to three sub-basins of Nakdong river watershed with the average basin elevation above 400m which are Namgang dam, Andong dam and Hapcheon dam and also another three sub-basins with the average basin elevation below 150m which are Waegwan, Changryeong and Goryeong. After runoff analysis using a distribution model, Vflo model, the results were reviewed and compared with the observed runoff. This study estimated the rainfall by using the radar-rainfall transform formulas, (R(Z), R(Z,ZDR) and R(Z,ZDR,KDP) for four stormwater events and compared the results with the point rainfall of the rain gauge. As the result, it was overestimated or underestimated, depending on rainfall events. Also, calculation indicates that the values from R(Z,ZDR) and R(Z,ZDR,KDP) relatively showed the most similar results. Moreover the runoff analysis using the estimated radar rainfall is

  12. Prediction of Meiyu rainfall in Taiwan by multi-lead physical-empirical models

    Science.gov (United States)

    Yim, So-Young; Wang, Bin; Xing, Wen; Lu, Mong-Ming

    2015-06-01

    Taiwan is located at the dividing point of the tropical and subtropical monsoons over East Asia. Taiwan has double rainy seasons, the Meiyu in May-June and the Typhoon rains in August-September. To predict the amount of Meiyu rainfall is of profound importance to disaster preparedness and water resource management. The seasonal forecast of May-June Meiyu rainfall has been a challenge to current dynamical models and the factors controlling Taiwan Meiyu variability has eluded climate scientists for decades. Here we investigate the physical processes that are possibly important for leading to significant fluctuation of the Taiwan Meiyu rainfall. Based on this understanding, we develop a physical-empirical model to predict Taiwan Meiyu rainfall at a lead time of 0- (end of April), 1-, and 2-month, respectively. Three physically consequential and complementary predictors are used: (1) a contrasting sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (2) the tripolar SST tendency in North Atlantic that is associated with North Atlantic Oscillation, and (3) a surface warming tendency in northeast Asia. These precursors foreshadow an enhanced Philippine Sea anticyclonic anomalies and the anomalous cyclone near the southeastern China in the ensuing summer, which together favor increasing Taiwan Meiyu rainfall. Note that the identified precursors at various lead-times represent essentially the same physical processes, suggesting the robustness of the predictors. The physical empirical model made by these predictors is capable of capturing the Taiwan rainfall variability with a significant cross-validated temporal correlation coefficient skill of 0.75, 0.64, and 0.61 for 1979-2012 at the 0-, 1-, and 2-month lead time, respectively. The physical-empirical model concept used here can be extended to summer monsoon rainfall prediction over the Southeast Asia and other regions.

  13. The Variation of Tropical Cyclone Rainfall within the North Atlantic and Pacific as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward; Pierce, Harold; Adler, Robert

    1999-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations in the North Atlantic and in three equal geographical regions of the North Pacific (i.e., Western, Central, and Eastern North Pacific). These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the 1987-1989, 1991-1998 North Atlantic and Pacific rainfall during June-November when tropical cyclones are most abundant. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from the Defence Meteorological Satellite Program (DMSP) Special Sensor Microwave/ Radiometer (SSM/I) observations within 444 km radius of the center of those North Atlantic and Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are then multiplied by the number of hours in a given month. Mean monthly rainfall amounts are also constructed for all the other North Atlantic and Pacific raining systems during this eleven year period for the purpose of estimating the geographical distribution and intensity of rainfall contributed by non-tropical cyclone systems. Further, the combination of the non-tropical cyclone and tropical cyclone (i.e., total) rainfall is constructed to delineate the fractional amount that tropical cyclones contributed to the total North Pacific rainfall.

  14. Sprinkling experiments to simulate high and intense rainfall for process based investigations - a comparison of two methods

    Science.gov (United States)

    Müller, C.; Seeger, M.; Schneider, R.; Johst, M.; Casper, M.

    2009-04-01

    Land use and land management changes affect runoff and erosion dynamics. So, measures within this scope are often directed towards the mitigation of natural hazards such as floods and landslides. However, the effects of these changes (e.g. in soil physics after reforestation or a less extensive agriculture) are i) detectable first many years later or ii) hardly observable with conventional methods. Therefore, sprinkling experiments are frequently used for process based investigations of near-surface hydrological response as well as rill and interrill erosion. In this study, two different sprinkling systems have been applied under different land use and at different scales to elucidate and quantify dominant processes of runoff generation, as well as to relate them to the detachment and transport of solids. The studies take place at the micro-scale basin Zemmer and Frankelbach in Germany. At the Zemmer basin the sprinkling experiments were performed on agricultural land while the experiments in Frankelbach were performed at reforested sites. The experiments were carried out i) with a small mobile rainfall simulator of high rainfall intensities (40 mm h-1) and ii) with a larger one covering a slope segment and simulating high rainfall amounts (120 mm in 3 days). Both methods show basically comparable results. On the agricultural sites clear differences could be observed between different soil management types: contrasting to the conventionally tilled soils, deep loosened soils (in combination with conservative tillage) do not produce overland flow, but tend to transfer more water by interflow processes, retaining large amounts in the subsoil. For the forested sites runoff shows a high variability as determined the larger and the smaller rainfall simulations. This variability is rather due to the different forest and soil types than to methodologically different settings of the sprinkling systems. Both rainfall simulation systems characterized the runoff behavior in a

  15. Pattern Analysis of El Nino and La Nina Phenomenon Based on Sea Surface Temperature (SST) and Rainfall Intensity using Oceanic Nino Index (ONI) in West Java Area

    Science.gov (United States)

    Prasetyo, Yudo; Nabilah, Farras

    2017-12-01

    Climate change occurs in 1998-2016 brings significant alteration in the earth surface. It is affects an extremely anomaly temperature such as El Nino and La Nina or mostly known as ENSO (El Nino Southern Oscillation). West Java is one of the regions in Indonesia that encounters the impact of this phenomenon. Climate change due to ENSO also affects food production and other commodities. In this research, processing data method is conducted using programming language to process SST data and rainfall data from 1998 to 2016. The data are sea surface temperature from NOAA satellite, SST Reynolds (Sea Surface Temperature) and daily rainfall temperature from TRMM satellite. Data examination is done using analysis of rainfall spatial pattern and sea surface temperature (SST) where is affected by El Nino and La Nina phenomenon. This research results distribution map of SST and rainfall for each season to find out the impacts of El Nino and La Nina around West Java. El Nino and La Nina in Java Sea are occurring every August to February. During El Nino, sea surface temperature is between 27°C - 28°C with average temperature on 27.71°C. Rainfall intensity is 1.0 mm/day - 2.0 mm/day and the average are 1.63 mm/day. During La Nina, sea surface temperature is between 29°C - 30°C with average temperature on 29.06°C. Rainfall intensity is 9.0 mm/day - 10 mm/day, and the average is 9.74 mm/day. The correlation between rainfall and SST is 0,413 which is expresses a fairly strong correlation between parameters. The conclusion is, during La Nina SST and rainfall increase. While during El Nino SST and rainfall decrease. Hopefully this research could be a guideline to plan disaster mitigation in West Java region that is related extreme climate change.

  16. How is rainfall interception in urban area affected by meteorological parameters?

    Science.gov (United States)

    Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca

    2017-04-01

    Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The amount of rainfall reaching the ground depends on various meteorological and vegetation parameters. Rainfall, throughfall and stemflow have been measured in the city of Ljubljana, Slovenia since the beginning of 2014. Manual and automatic measurements are performed regularly under Betula pendula and Pinus nigra trees in urban area. In 2014, there were detected 178 rainfall events with total amount of 1672.1 mm. In average B. pendula intercepted 44% of rainfall and P. nigra intercepted 72% of rainfall. In 2015 we have detected 117 events with 1047.4 mm of rainfall, of which 37% was intercepted by B. pendula and 60% by P. nigra. The effect of various meteorological parameters on the rainfall interception was analysed in the study. The parameters included in the analysis were rainfall rate, rainfall duration, drop size distribution (average drop velocity and diameter), average wind speed, and average temperature. The results demonstrate decreasing rainfall interception with longer rainfall duration and higher rainfall intensity although the impact of the latter one is not statistically significant. In the case of very fast or very slow rainfall drops, the interception is higher than for the mean rain drop velocity values. In the case of P. nigra the impact of the rain drop diameter on interception is similar to the one of rain drop velocity while for B. pendula increasing of drop diameter also increases the interception. As expected, interception is higher for warmer events. This trend is more evident for P. nigra than for B. pendula. Furthermore, the amount of intercepted rainfall also increases with wind although it could be

  17. Distinctive Features of Surface Winds over Indian Ocean Between Strong and Weak Indian Summer Monsoons: Implications With Respect To Regional Rainfall Change in India

    Science.gov (United States)

    Zheng, Y.; Bourassa, M. A.; Ali, M. M.

    2017-12-01

    This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.

  18. Runoff of pyrethroid insecticides from concrete surfaces following simulated and natural rainfalls.

    Science.gov (United States)

    Jiang, Weiying; Haver, Darren; Rust, Michael; Gan, Jay

    2012-03-01

    Intensive residential use of insecticides has resulted in their ubiquitous presence as contaminants in urban surface streams. For pest eradication, urban hard surfaces such as concrete are often directly treated with pesticides, and wind/water can also carry pesticides onto hard surfaces from surrounding areas. This study expanded on previous bench-scale studies by considering pesticide runoff caused by irrigation under dry weather conditions and rain during the wet season, and evaluated the effects of pesticide residence time on concrete, single versus recurring precipitations, precipitation intensity, and concrete surface conditions, on pesticide transferability to runoff water. Runoff from concrete 1 d after pesticide treatment contained high levels of bifenthrin (82 μg/L) and permethrin (5143 μg/L for cis and 5518 μg/L for trans), indicating the importance of preventing water contact on concrete after pesticide treatments. Although the runoff transferability quickly decreased as the pesticide residence time on concrete increased, detectable residues were still found in runoff water after 3 months (89 d) exposure to hot and dry summer conditions. ANOVA analysis showed that precipitation intensities and concrete surface conditions (i.e., acid wash, silicone seal, stamping, and addition of microsilica) did not significantly affect the pesticide transferability to runoff. For concrete slabs subjected to natural rainfalls during the winter wet season, pesticide levels in the runoff decreased as the time interval between pesticide application and the rain event increased. However, bifenthrin and permethrin were still detected at 0.15-0.17 and 0.75-1.15 μg/L in the rain runoff after 7 months (221 d) from the initial treatment. In addition, pesticide concentrations showed no decrease between the two rainfall events, suggesting that concrete surfaces contaminated by pesticides may act as a reservoir for pesticide residues, leading to sustained urban runoff

  19. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites.

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    2000-10-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an 11-yr period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and interannual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important.To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444-km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain-rate observations are converted to monthly rainfall amounts and then compared with those for nontropical cyclone systems.The main results of this study indicate that 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maximum tropical cyclone rainfall is poleward (5°-10° latitude depending on longitude) of the maximum nontropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% off the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the Intertropical Convergence Zone; and 5) in general, tropical cyclone rainfall is enhanced during the El Niño years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  20. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments

    NARCIS (Netherlands)

    Zhao, Longshan; Hou, Rui; Wu, Faqi; Keesstra, Saskia

    2018-01-01

    Agriculture has a large effect on the properties of the soil and with that on soil hydrology. The partitioning of rainfall into infiltration and runoff is relevant to understand runoff generation, infiltration and soil erosion. Tillage manages soil surface properties and generates soil surface

  1. Characterizing rainfall parameters which influence erosivity in southeastern Nigeria

    International Nuclear Information System (INIS)

    Obi, M.E.; Salako, F.K.

    1993-12-01

    An investigation was carried out to characterize some selected parameters which influence rainfall erosivity in southeastern Nigeria. Rainfall amount, distribution, duration, intensity, storm types, energy loads and frequency of rain events in the region were studied using data from stations located in three major agroecological zones. Raindrop size and detaching capacity were evaluated in one of the stations for two months. The mean annual rainfall erosivity values for southeastern Nigeria point to the fact that rainfall tend to be highly erosive. 25 refs, 6 figs, 8 tabs

  2. Predictability of rainfall and teleconnections patterns influencing on Southwest Europe from sea surfaces temperatures

    Science.gov (United States)

    Lorenzo, M. N.; Iglesias, I.; Taboada, J. J.; Gómez-Gesteira, M.; Ramos, A. M.

    2009-04-01

    This work assesses the possibility of doing a forecast of rainfall and the main teleconnections patterns that influences climate in Southwest Europe by using sea surface temperature anomalies (SSTA). The area under study is located in the NW Iberian Peninsula. This region has a great oceanic influence on its climate and has an important dependency of the water resources. In this way if the different SST patterns are known, the different rainfall situations can be predicted. On the other hand, the teleconnection patterns, which have strong weight on rainfall, are influenced by the SSTA of different areas. In the light of this, the aim of this study is to explore the relationship between global SSTAs, rainfall and the main teleconnection patterns influencing on Europe. The SST data with a 2.0 degree resolution was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. A monthly averaged data from 1 January 1951 through December 2006 was considered. The monthly precipitation data from 1951-2006 were obtained from the database CLIMA of the University of Santiago de Compostela with data from the Meteorological State Agency (AEMET) and the Regional Government of Galicia. The teleconnection indices were taken of the Climate Prediction Center of the NOAA between 1950 and 2006. A monthly and seasonal study was analysed considering up to three months of delay in the first case and up to four seasons of delay in the second case. The Pearson product-moment correlation coefficient r was considered to quantify linear associations between SSTA and precipitation and/or SSTA and teleconnection indices. A test for field-significance was applied considering the properties of finiteness and interdependence of the spatial grid to avoid spurious correlations. Analysing the results obtained with the global SSTA and the teleconnection indices, a great number of ocean regions with high correlations can be found. The spatial patterns show very high correlations with Indian Ocean waters

  3. Soil erosion under multiple time-varying rainfall events

    Science.gov (United States)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  4. Estimation of Surface Runoff in the Jucar River Basin from Rainfall Data and SMOS Soil Moisture

    Science.gov (United States)

    Garcia Leal, Julio A.; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Gonzalez Robles, Maura; Herrera Daza, Eddy; Khodayar, Samiro; Lopez-Baeza, Ernesto

    2013-04-01

    Surface runoff is the water that flows after soil is infiltrated to full capacity and excess water from rain, meltwater, or other sources flows over the land. When the soil is saturated and the depression storage filled, and rain continues to fall, the rainfall will immediately produce surface runoff. The Soil Conservation Service Curve Number (SCS-CN) method is widely used for determining the approximate direct runoff volume for a given rainfall event in a particular area. The advantage of the method is its simplicity and widespread inclusion in existing computer models. It was originally developed by the US Department of Agriculture, Soil Conservation Service, and documented in detail in the National Engineering Handbook, Sect. 4: Hydrology (NEH-4) (USDA-SCS, 1985). Although the SCS-CN method was originally developed in the United States and mainly for the evaluation of storm runoff in small agricultural watersheds, it soon evolved well beyond its original objective and was adopted for various land uses and became an integral part of more complex, long-term, simulation models. The basic assumption of the SCS-CN method is that, for a single storm, the ratio of actual soil retention after runoff begins to potential maximum retention is equal to the ratio of direct runoff to available rainfall. This relationship, after algebraic manipulation and inclusion of simplifying assumptions, results in the following equation given in USDA-SCS (1985): (P--0,2S)2 Q = (P + 0,8S) where Q is the average runoff (mm), P the effective precipitation (mm) and S is potential maximum retention (mm) after the rainfall event. The study has been applied to the Jucar River Basin area, East of Spain. A selection of recent significant rainfall events has been made corresponding to the periods around 22nd November, 2011 and 28-29 September and 10 October, 2012, from Jucar River Basin Authority rain gauge data. Potential maximum retention values for each point have been assumed as the first

  5. Simulation of daily rainfall through markov chain modeling

    International Nuclear Information System (INIS)

    Sadiq, N.

    2015-01-01

    Being an agricultural country, the inhabitants of dry land in cultivated areas mainly rely on the daily rainfall for watering their fields. A stochastic model based on first order Markov Chain was developed to simulate daily rainfall data for Multan, D. I. Khan, Nawabshah, Chilas and Barkhan for the period 1981-2010. Transitional probability matrices of first order Markov Chain was utilized to generate the daily rainfall occurrence while gamma distribution was used to generate the daily rainfall amount. In order to achieve the parametric values of mentioned cities, method of moments is used to estimate the shape and scale parameters which lead to synthetic sequence generation as per gamma distribution. In this study, unconditional and conditional probabilities of wet and dry days in sum with means and standard deviations are considered as the essential parameters for the simulated stochastic generation of daily rainfalls. It has been found that the computerized synthetic rainfall series concurred pretty well with the actual observed rainfall series. (author)

  6. A mathematical model for soil solute transfer into surface runoff as influenced by rainfall detachment.

    Science.gov (United States)

    Yang, Ting; Wang, Quanjiu; Wu, Laosheng; Zhao, Guangxu; Liu, Yanli; Zhang, Pengyu

    2016-07-01

    Nutrients transport is a main source of water pollution. Several models describing transport of soil nutrients such as potassium, phosphate and nitrate in runoff water have been developed. The objectives of this research were to describe the nutrients transport processes by considering the effect of rainfall detachment, and to evaluate the factors that have greatest influence on nutrients transport into runoff. In this study, an existing mass-conservation equation and rainfall detachment process were combined and augmented to predict runoff of nutrients in surface water in a Loess Plateau soil in Northwestern Yangling, China. The mixing depth is a function of time as a result of rainfall impact, not a constant as described in previous models. The new model was tested using two different sub-models of complete-mixing and incomplete-mixing. The complete-mixing model is more popular to use for its simplicity. It captured the runoff trends of those high adsorption nutrients, and of nutrients transport along steep slopes. While the incomplete-mixing model predicted well for the highest observed concentrations of the test nutrients. Parameters inversely estimated by the models were applied to simulate nutrients transport, results suggested that both models can be adopted to describe nutrients transport in runoff under the impact of rainfall. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Long range prediction of Indian summer monsoon rainfall

    Indian Academy of Sciences (India)

    to the performance of summer monsoon rain- fall over India. Variations in the total amount of rainfall have strong socio-economic consequences. Parthasarathy et al .... deviation of rainfall for training period 1961–1995, are 838.4 mm and 89.3 mm respectively. The period. 1949–1960 and 1996–2005 is used for independent.

  8. Rapid modification of urban land surface temperature during rainfall

    Science.gov (United States)

    Omidvar, H.; Bou-Zeid, E.; Song, J.; Yang, J.; Arwatz, G.; Wang, Z.; Hultmark, M.; Kaloush, K.

    2017-12-01

    We study the runoff dynamics and heat transfer over urban pavements during rainfall. A kinematic wave approach is combined with heat storage and transfer schemes to develop a model for impervious (with runoff) and pervious (without runoff) pavements. The resulting framework is a numerical prognostic model that can simulate the temperature fields in the subsurface and runoff layers to capture the rapid cooling of the surface, as well as the thermal pollution advected in the runoff. Extensive field measurements were then conducted over experimental pavements in Arizona to probe the physics and better represent the relevant processes in the model, and then to validate the model. The experimental data and the model results were in very good agreements, and their joint analysis elucidated the physics of the rapid heat transfer from the subsurface to the runoff layer. Finally, we apply the developed model to investigate how the various hydrological and thermal properties of the pavements, as well as ambient environmental conditions, modulate the surface and runoff thermal dynamics, what is the relative importance of each of them, and how we can apply the model mitigate the adverse impacts of urbanization.

  9. Some analysis on the diurnal variation of rainfall over the Atlantic Ocean

    Science.gov (United States)

    Gill, T.; Perng, S.; Hughes, A.

    1981-01-01

    Data collected from the GARP Atlantic Tropical Experiment (GATE) was examined. The data were collected from 10,000 grid points arranged as a 100 x 100 array; each grid covered a 4 square km area. The amount of rainfall was measured every 15 minutes during the experiment periods using c-band radars. Two types of analyses were performed on the data: analysis of diurnal variation was done on each of grid points based on the rainfall averages at noon and at midnight, and time series analysis on selected grid points based on the hourly averages of rainfall. Since there are no known distribution model which best describes the rainfall amount, nonparametric methods were used to examine the diurnal variation. Kolmogorov-Smirnov test was used to test if the rainfalls at noon and at midnight have the same statistical distribution. Wilcoxon signed-rank test was used to test if the noon rainfall is heavier than, equal to, or lighter than the midnight rainfall. These tests were done on each of the 10,000 grid points at which the data are available.

  10. Rainfall interception and the coupled surface water and energy balance

    NARCIS (Netherlands)

    Van Dijk, A.I.J.M.; et al., et al.; Moors, E.J.

    2015-01-01

    Evaporation from wet canopies (. E) can return up to half of incident rainfall back into the atmosphere and is a major cause of the difference in water use between forests and short vegetation. Canopy water budget measurements often suggest values of E during rainfall that are several times greater

  11. Spatio-temporal variability and trends of precipitation and extreme rainfall events in Ethiopia in 1980-2010

    Science.gov (United States)

    Gummadi, Sridhar; Rao, K. P. C.; Seid, Jemal; Legesse, Gizachew; Kadiyala, M. D. M.; Takele, Robel; Amede, Tilahun; Whitbread, Anthony

    2017-12-01

    This article summarizes the results from an analysis conducted to investigate the spatio-temporal variability and trends in the rainfall over Ethiopia over a period of 31 years from 1980 to 2010. The data is mostly observed station data supplemented by bias-corrected AgMERRA climate data. Changes in annual and Belg (March-May) and Kiremt (June to September) season rainfalls and rainy days have been analysed over the entire Ethiopia. Rainfall is characterized by high temporal variability with coefficient of variation (CV, %) varying from 9 to 30% in the annual, 9 to 69% during the Kiremt season and 15-55% during the Belg season rainfall amounts. Rainfall variability increased disproportionately as the amount of rainfall declined from 700 to 100 mm or less. No significant trend was observed in the annual rainfall amounts over the country, but increasing and decreasing trends were observed in the seasonal rainfall amounts in some areas. A declining trend is also observed in the number of rainy days especially in Oromia, Benishangul-Gumuz and Gambella regions. Trends in seasonal rainfall indicated a general decline in the Belg season and an increase in the Kiremt season rainfall amounts. The increase in rainfall during the main Kiremt season along with the decrease in the number of rainy days leads to an increase in extreme rainfall events over Ethiopia. The trends in the 95th-percentile rainfall events illustrate that the annual extreme rainfall events are increasing over the eastern and south-western parts of Ethiopia covering Oromia and Benishangul-Gumuz regions. During the Belg season, extreme rainfall events are mostly observed over central Ethiopia extending towards the southern part of the country while during the Kiremt season, they are observed over parts of Oromia, (covering Borena, Guji, Bali, west Harerge and east Harerge), Somali, Gambella, southern Tigray and Afar regions. Changes in the intensity of extreme rainfall events are mostly observed over south

  12. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility

    Science.gov (United States)

    Reed, Sasha C.; Coe, Kirsten K.; Sparks, Jed P.; Housman, David C.; Zelikova, Tamara J.; Belnap, Jayne

    2012-01-01

    Arid and semi-arid ecosystems cover ~40% of Earth’s terrestrial surface, but we know little about how climate change will affect these widespread landscapes. Like many drylands, the Colorado Plateau in southwestern United States is predicted to experience elevated temperatures and alterations to the timing and amount of annual precipitation. We used a factorial warming and supplemental rainfall experiment on the Colorado Plateau to show that altered precipitation resulted in pronounced mortality of the widespread moss Syntrichia caninervis. Increased frequency of 1.2 mm summer rainfall events reduced moss cover from ~25% of total surface cover to fertility. Mosses are important members in many dryland ecosystems and the community changes observed here reveal how subtle modifications to climate can affect ecosystem structure and function on unexpectedly short timescales. Moreover, mortality resulted from increased precipitation through smaller, more frequent events, underscoring the importance of precipitation event size and timing, and highlighting our inadequate understanding of relationships between climate and ecosystem function in drylands.

  13. Bayesian estimation of extreme flood quantiles using a rainfall-runoff model and a stochastic daily rainfall generator

    Science.gov (United States)

    Costa, Veber; Fernandes, Wilson

    2017-11-01

    Extreme flood estimation has been a key research topic in hydrological sciences. Reliable estimates of such events are necessary as structures for flood conveyance are continuously evolving in size and complexity and, as a result, their failure-associated hazards become more and more pronounced. Due to this fact, several estimation techniques intended to improve flood frequency analysis and reducing uncertainty in extreme quantile estimation have been addressed in the literature in the last decades. In this paper, we develop a Bayesian framework for the indirect estimation of extreme flood quantiles from rainfall-runoff models. In the proposed approach, an ensemble of long daily rainfall series is simulated with a stochastic generator, which models extreme rainfall amounts with an upper-bounded distribution function, namely, the 4-parameter lognormal model. The rationale behind the generation model is that physical limits for rainfall amounts, and consequently for floods, exist and, by imposing an appropriate upper bound for the probabilistic model, more plausible estimates can be obtained for those rainfall quantiles with very low exceedance probabilities. Daily rainfall time series are converted into streamflows by routing each realization of the synthetic ensemble through a conceptual hydrologic model, the Rio Grande rainfall-runoff model. Calibration of parameters is performed through a nonlinear regression model, by means of the specification of a statistical model for the residuals that is able to accommodate autocorrelation, heteroscedasticity and nonnormality. By combining the outlined steps in a Bayesian structure of analysis, one is able to properly summarize the resulting uncertainty and estimating more accurate credible intervals for a set of flood quantiles of interest. The method for extreme flood indirect estimation was applied to the American river catchment, at the Folsom dam, in the state of California, USA. Results show that most floods

  14. Analysis of Rainfall Variations and Trends in Coastal Tanzania

    African Journals Online (AJOL)

    Ocean Dipole, Pacific Decadal Oscillation ... island of Mafia receives the highest amount of rainfall (1879 mm p.a.) while Kilwa. Masoko receives the ... However, the effects of the Pacific .... an important role in terrestrial and marine .... and ENSO, the largest coefficient being .... rainfall on the small islands of Southeast Asia.

  15. The Indian summer monsoon rainfall: interplay of coupled dynamics, radiation and cloud microphysics

    Directory of Open Access Journals (Sweden)

    P. K. Patra

    2005-01-01

    Full Text Available The Indian summer monsoon rainfall (ISMR, which has a strong connection to agricultural food production, has been less predictable by conventional models in recent times. Two distinct years 2002 and 2003 with lower and higher July rainfall, respectively, are selected to help understand the natural and anthropogenic influences on ISMR. We show that heating gradients along the meridional monsoon circulation are reduced due to aerosol radiative forcing and the Indian Ocean Dipole in 2002. An increase in the dust and biomass-burning component of the aerosols through the zonal monsoon circulation resulted in reduction of cloud droplet growth in July 2002. These conditions were opposite to those in July 2003 which led to an above average ISMR. In this study, we have utilized NCEP/NCAR reanalyses for meteorological data (e.g. sea-surface temperature, horizontal winds, and precipitable water, NOAA interpolated outgoing long-wave radiation, IITM constructed all-India rainfall amounts, aerosol parameters as observed from the TOMS and MODIS satellites, and ATSR fire count maps. Based on this analysis, we suggest that monsoon rainfall prediction models should include synoptic as well as interannual variability in both atmospheric dynamics and chemical composition.

  16. Rainfall Distributions in Sri Lanka in Time and Space: An Analysis Based on Daily Rainfall Data

    Directory of Open Access Journals (Sweden)

    T. P. Burt

    2014-09-01

    Full Text Available Daily rainfall totals are analyzed for the main agro-climatic zones of Sri Lanka for the period 1976–2006. The emphasis is on daily rainfall rather than on longer-period totals, in particular the number of daily falls exceeding given threshold totals. For one station (Mapalana, where a complete daily series is available from 1950, a longer-term perspective on changes over half a century is provided. The focus here is particularly on rainfall in March and April, given the sensitivity of agricultural decisions to early southwest monsoon rainfall at the beginning of the Yala cultivation season but other seasons are also considered, in particular the northeast monsoon. Rainfall across Sri Lanka over three decades is investigated in relation to the main atmospheric drivers known to affect climate in the region: sea surface temperatures in the Pacific and Indian Oceans, of which the former are shown to be more important. The strong influence of El Niño and La Niña phases on various aspects of the daily rainfall distribution in Sri Lanka is confirmed: positive correlations with Pacific sea-surface temperatures during the north east monsoon and negative correlations at other times. It is emphasized in the discussion that Sri Lanka must be placed in its regional context and it is important to draw on regional-scale research across the Indian subcontinent and the Bay of Bengal.

  17. Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia

    Science.gov (United States)

    Hassan, Zulkarnain; Haidir, Ahmad; Saad, Farah Naemah Mohd; Ayob, Afizah; Rahim, Mustaqqim Abdul; Ghazaly, Zuhayr Md.

    2018-03-01

    The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015) data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM), as compared to Southwest monsoon (SWM). Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.

  18. Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Hassan Zulkarnain

    2018-01-01

    Full Text Available The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015 data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM, as compared to Southwest monsoon (SWM. Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.

  19. Runoff generation in a Mediterranean semi-arid landscape: Thresholds, scale, rainfall and catchment characteristics

    Science.gov (United States)

    Ries, Fabian; Schmidt, Sebastian; Sauter, Martin; Lange, Jens

    2016-04-01

    Surface runoff acts as an integrated response of catchment characteristics and hydrological processes. In the Eastern Mediterranean region, a lack of runoff data has hindered a better understanding of runoff generation processes on the catchment scale, despite the importance of surface runoff as a water resource or flood hazard. Our main aim was to identify and explain differences in catchment runoff reactions across a variety of scales. Over a period of five years, we observed runoff in ephemeral streams of seven watersheds with sizes between 3 and 129 km2. Landuse and surface cover types (share of vegetation, bare soil and rock outcrops) were derived from aerial images by objective classification techniques. Using data from a dense rainfall network we analysed the effects of scale, catchment properties and aridity on runoff generation. Thereby we extracted rainfall and corresponding runoff events from our time-series to calculate event based rainfall characteristics and catchment runoff coefficients. Soil moisture observations provided additional information on antecedent moisture conditions, infiltration characteristics and the evolution of saturated areas. In contrast to the prevailing opinion that the proportion of Hortonian overland flow increases with aridity, we found that in our area the largest share (> 95 %) of runoff is generated by saturation excess overland flow in response to long lasting, rainfall events of high amount. This was supported by a strong correlation between event runoff and precipitation totals. Similar rainfall thresholds (50 mm) for runoff generation were observed in all investigated catchments. No scale effects on runoff coefficients were found; instead we identified up to three-fold runoff coefficients in catchments with larger extension of arid areas, higher percentage of rock outcrops and urbanization. Comparing two headwater catchments with noticeable differences in extent of olive orchards, no difference in runoff generation was

  20. Rainfall distribution and change detection across climatic zones in Nigeria

    OpenAIRE

    Stephen Bunmi Ogungbenro; Tobi Eniolu Morakinyo

    2014-01-01

    Nigerian agriculture is mainly rain-fed and basically dependent on the vagaries of weather especially rainfall. Nigeria today has about forty-four (44) weather observation stations which provide measurement of rainfall amount for different locations across the country. Hence, this study investigates change detection in rainfall pattern over each climatic zone of Nigeria. Data were collected for 90 years (1910–1999) period for all the weather observation stations in Nigeria, while a subdivisio...

  1. Atmospheric precursors and assessment of the extreme rainfall responsible for the Madeira flashfloods on 20 February 2010

    Science.gov (United States)

    Fragoso, M.; Trigo, R. M.; Lopes, S.; Lopes, A.; Magro, C.

    2010-09-01

    On February 20, 2010, the Madeira island (Portugal) was hit by torrential rains that triggered catastrophic flash floods, accounting for 43 deaths and 8 missing people. The regional authorities estimated that the total losses exceeded 1 billion of euros resulting from the destructive damages, which were very harmful in Funchal, the capital of the region, where 22 persons died. This paper aims to analyse and discuss two main issues related with the exceptionality of this event. The first part deals with the atmospheric context associated with the rainfall episode, which occurred embedded in a very rainy winter season on this subtropical Atlantic region. Large scale atmospheric controls will be analysed, taking into consideration the low phase conditions of the North Atlantic Oscillation (NAO) that remained overwhelmingly negative between late November 2009 and early April 2010. The role of positive sea surface temperatures anomalies in the subtropical Atlantic region during the prevous weeks will be also investigated. Furthermore, the discussion will be focused on the meteorological precursors of the 20 February rainstorm, using synoptic weather charts and sub-daily reanalysis data and analysing appropriate variables, such as, SLP, geopotential height, instability indices, precipitable water, and others atmospheric parameters. The second section of this work is devoted to the evaluation of the exceptionality of the rainfall records related with this event. In Funchal (Observatory station), the precipitation amount registered during February 2010 was 458 mm, exceeding by seven times (!) the average monthly precipitation, constituting the new absolute record, since 1865, when this meteorological station began its activity. The daily rainfall on 20 February in the same location was 132 mm, which is the highest daily amount since 1920. Return periods of this daily amount will be estimated for the two stations with the longest period available of daily precipitation

  2. A model for estimating time-variant rainfall infiltration as a function of antecedent surface moisture and hydrologic soil type

    Science.gov (United States)

    Wilkening, H. A.; Ragan, R. M.

    1982-01-01

    Recent research indicates that the use of remote sensing techniques for the measurement of near surface soil moisture could be practical in the not too distant future. Other research shows that infiltration rates, especially for average or frequent rainfall events, are extremely sensitive to the proper definition and consideration of the role of the soil moisture at the beginning of the rainfall. Thus, it is important that an easy to use, but theoretically sound, rainfall infiltration model be available if the anticipated remotely sensed soil moisture data is to be optimally utilized for hydrologic simulation. A series of numerical experiments with the Richards' equation for an array of conditions anticipated in watershed hydrology were used to develop functional relationships that describe temporal infiltration rates as a function of soil type and initial moisture conditions.

  3. Fitting the Statistical Distribution for Daily Rainfall in Ibadan, Based ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-06-01

    Jun 1, 2013 ... Abstract. This paper presents several types of statistical distributions to describe rainfall distribution in Ibadan metropolis over a period of 30 years. The exponential, gamma, normal and poison distributions are compared to identify the optimal model for daily rainfall amount based on data recorded at rain ...

  4. Sensitivity of effective rainfall amount to land use description using GIS tool. Case of a small mediterranean catchment

    Science.gov (United States)

    Payraudeau, S.; Tournoud, M. G.; Cernesson, F.

    Distributed modelling in hydrology assess catchment subdivision to take into account physic characteristics. In this paper, we test the effect of land use aggregation scheme on catchment hydrological response. Evolution of intra-subcatchment land use is studied using statistic and entropy methods. The SCS-CN method is used to calculate effective rainfall which is here assimilated to hydrological response. Our purpose is to determine the existence of a critical threshold-area appropriate for the application of hydrological modelling. Land use aggregation effects on effective rainfall is assessed on small mediterranean catchment. The results show that land use aggregation and land use classification type have significant effects on hydrological modelling and in particular on effective rainfall modelling.

  5. Automatic Extraction of High-Resolution Rainfall Series from Rainfall Strip Charts

    Science.gov (United States)

    Saa-Requejo, Antonio; Valencia, Jose Luis; Garrido, Alberto; Tarquis, Ana M.

    2015-04-01

    Soil erosion is a complex phenomenon involving the detachment and transport of soil particles, storage and runoff of rainwater, and infiltration. The relative magnitude and importance of these processes depends on a host of factors, including climate, soil, topography, cropping and land management practices among others. Most models for soil erosion or hydrological processes need an accurate storm characterization. However, this data are not always available and in some cases indirect models are generated to fill this gap. In Spain, the rain intensity data known for time periods less than 24 hours back to 1924 and many studies are limited by it. In many cases this data is stored in rainfall strip charts in the meteorological stations but haven't been transfer in a numerical form. To overcome this deficiency in the raw data a process of information extraction from large amounts of rainfall strip charts is implemented by means of computer software. The method has been developed that largely automates the intensive-labour extraction work based on van Piggelen et al. (2011). The method consists of the following five basic steps: 1) scanning the charts to high-resolution digital images, 2) manually and visually registering relevant meta information from charts and pre-processing, 3) applying automatic curve extraction software in a batch process to determine the coordinates of cumulative rainfall lines on the images (main step), 4) post processing the curves that were not correctly determined in step 3, and 5) aggregating the cumulative rainfall in pixel coordinates to the desired time resolution. A colour detection procedure is introduced that automatically separates the background of the charts and rolls from the grid and subsequently the rainfall curve. The rainfall curve is detected by minimization of a cost function. Some utilities have been added to improve the previous work and automates some auxiliary processes: readjust the bands properly, merge bands when

  6. Performance and efficiency of geotextile-supported erosion control measures during simulated rainfall events

    Science.gov (United States)

    Obriejetan, Michael; Rauch, Hans Peter; Florineth, Florin

    2013-04-01

    Erosion control systems consisting of technical and biological components are widely accepted and proven to work well if installed properly with regard to site-specific parameters. A wide range of implementation measures for this specific protection purpose is existent and new, in particular technical solutions are constantly introduced into the market. Nevertheless, especially vegetation aspects of erosion control measures are frequently disregarded and should be considered enhanced against the backdrop of the development and realization of adaptation strategies in an altering environment due to climate change associated effects. Technical auxiliaries such as geotextiles typically used for slope protection (nettings, blankets, turf reinforcement mats etc.) address specific features and due to structural and material diversity, differing effects on sediment yield, surface runoff and vegetational development seem evident. Nevertheless there is a knowledge gap concerning the mutual interaction processes between technical and biological components respectively specific comparable data on erosion-reducing effects of technical-biological erosion protection systems are insufficient. In this context, an experimental arrangement was set up to study the correlated influences of geotextiles and vegetation and determine its (combined) effects on surface runoff and soil loss during simulated heavy rainfall events. Sowing vessels serve as testing facilities which are filled with top soil under application of various organic and synthetic geotextiles and by using a reliable drought resistant seed mixture. Regular vegetational monitoring as well as two rainfall simulation runs with four repetitions of each variant were conducted. Therefore a portable rainfall simulator with standardized rainfall intensity of 240 mm h-1 and three minute rainfall duration was used to stress these systems on different stages of plant development at an inclination of 30 degrees. First results show

  7. Multisite rainfall downscaling and disaggregation in a tropical urban area

    Science.gov (United States)

    Lu, Y.; Qin, X. S.

    2014-02-01

    A systematic downscaling-disaggregation study was conducted over Singapore Island, with an aim to generate high spatial and temporal resolution rainfall data under future climate-change conditions. The study consisted of two major components. The first part was to perform an inter-comparison of various alternatives of downscaling and disaggregation methods based on observed data. This included (i) single-site generalized linear model (GLM) plus K-nearest neighbor (KNN) (S-G-K) vs. multisite GLM (M-G) for spatial downscaling, (ii) HYETOS vs. KNN for single-site disaggregation, and (iii) KNN vs. MuDRain (Multivariate Rainfall Disaggregation tool) for multisite disaggregation. The results revealed that, for multisite downscaling, M-G performs better than S-G-K in covering the observed data with a lower RMSE value; for single-site disaggregation, KNN could better keep the basic statistics (i.e. standard deviation, lag-1 autocorrelation and probability of wet hour) than HYETOS; for multisite disaggregation, MuDRain outperformed KNN in fitting interstation correlations. In the second part of the study, an integrated downscaling-disaggregation framework based on M-G, KNN, and MuDRain was used to generate hourly rainfall at multiple sites. The results indicated that the downscaled and disaggregated rainfall data based on multiple ensembles from HadCM3 for the period from 1980 to 2010 could well cover the observed mean rainfall amount and extreme data, and also reasonably keep the spatial correlations both at daily and hourly timescales. The framework was also used to project future rainfall conditions under HadCM3 SRES A2 and B2 scenarios. It was indicated that the annual rainfall amount could reduce up to 5% at the end of this century, but the rainfall of wet season and extreme hourly rainfall could notably increase.

  8. Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan.

    Science.gov (United States)

    Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey

    2017-04-01

    Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this

  9. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China.

    Directory of Open Access Journals (Sweden)

    Jian Duan

    Full Text Available Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface

  10. A Two-year Record of Daily Rainfall Isotopes from Fiji: Implications for Reconstructing Precipitation from Speleothem δ18O

    Science.gov (United States)

    Brett, M.; Mattey, D.; Stephens, M.

    2015-12-01

    Oxygen isotopes in speleothem provide opportunities to construct precisely dated records of palaeoclimate variability, underpinned by an understanding of both the regional climate and local controls on isotopes in rainfall and groundwater. For tropical islands, a potential means to reconstruct past rainfall variability is to exploit the generally high correlation between rainfall amount and δ18O: the 'amount effect'. The GNIP program provides δ18O data at monthly resolution for several tropical Pacific islands but there are few data for precipitation isotopes at daily resolution, for investigating the amount effect over different timescales in a tropical maritime setting. Timescales are important since meteoric water feeding a speleothem has undergone storage and mixing in the aquifer system and understanding how the isotope amount effect is preserved in aquifer recharge has fundamental implications on the interpretation of speleothem δ18O in terms of palaeo-precipitation. The islands of Fiji host speleothem caves. Seasonal precipitation is related to the movement of the South Pacific Convergence Zone, and interannual variations in rainfall are coupled to ENSO behaviour. Individual rainfall events are stratiform or convective, with proximal moisture sources. We have daily resolution isotope data for rainfall collected at the University of the South Pacific in Suva, covering every rain event in 2012 and 2013. δ18O varies between -18‰ and +3‰ with the annual weighted averages at -7.6‰ and -6.8‰ respectively, while total recorded rainfall amount is similar in both years. We shall present analysis of our data compared with GNIP, meteorological data and back trajectory analyses to demonstrate the nature of the relationship between rainfall amount and isotopic signatures over this short timescale. Comparison with GNIP data for 2012-13 will shed light on the origin of the amount effect at monthly and seasonal timescales in convective, maritime, tropical

  11. Experimental Study of Leaching and Penetration of Nitrite ions in Nitrite-type Repair Materials on the Surface of Concrete

    Directory of Open Access Journals (Sweden)

    Masumi Inoue

    2017-01-01

    Full Text Available This study aimed to clarify the leaching properties of nitrite ions in nitrite-type repair materials exposed to rainfall. Repaired concrete specimens were prepared for leaching tests using a lithium nitrite solution, and the amounts of leaching and penetration of nitrite ions were measured under simulated rainfall. The results demonstrated that the amount of leaching could be controlled by using polymer cement paste and mortar surface coatings containing lithium nitrite solution, and by using polymer cement mortar surface coatings following direct lithium nitrite solution coatings. Furthermore, the amount of nitrite ion leaching in all cases was lower than the discharge standard value established by the water pollution control law.

  12. Hydrological Effects of Historic Rainfall on the Waccamaw River

    Science.gov (United States)

    Jolly, J.; Bao, S.

    2017-12-01

    This study focuses on the overall water budget of the Waccamaw River during and after a historic rainfall event related to Hurricane Joaquin, producing a 1000-year rainfall event. While rainfall is the only input, it enters the basin through various means. Some rainwater enters the soil as soil moisture while rainfall also goes underground and enters the river channels from underground, which is defined as bucket in. Over time, the rainfall was removed from the river site through various natural processes. Those processes, including evaporation, soil storage as soil moisture, discharge runoff through the river channel, among others, were modeled and validated against the USGS gauge stations. The validated model results were then used to estimate the hydrological response of the Waccamaw River to the rainfall event and determine the overall water budget. The experiment was completed using a WRF-Hydro modeling system for the purposes of weather forecasting and meteorological analysis. Upon completion of the data analysis, the WRF-Hydro model result showed that large amounts of rainfall were variously dispersed through the aforementioned areas. It was determined that after entering the soil rainfall predominantly left the river basin by discharge, while evaporation accounted for the second most common destination of rainfall. Base flow also accounted for a destination of rainfall, though not as much as those previously mentioned.

  13. Uganda rainfall variability and prediction

    Science.gov (United States)

    Jury, Mark R.

    2018-05-01

    This study analyzes large-scale controls on Uganda's rainfall. Unlike past work, here, a May-October season is used because of the year-round nature of agricultural production, vegetation sensitivity to rainfall, and disease transmission. The Uganda rainfall record exhibits steady oscillations of ˜3 and 6 years over 1950-2013. Correlation maps at two-season lead time resolve the subtropical ridge over global oceans as an important feature. Multi-variate environmental predictors include Dec-May south Indian Ocean sea surface temperature, east African upper zonal wind, and South Atlantic wind streamfunction, providing a 33% fit to May-Oct rainfall time series. Composite analysis indicates that cool-phase El Niño Southern Oscillation supports increased May-Oct Uganda rainfall via a zonal overturning lower westerly/upper easterly atmospheric circulation. Sea temperature anomalies are positive in the east Atlantic and negative in the west Indian Ocean in respect of wet seasons. The northern Hadley Cell plays a role in limiting the northward march of the equatorial trough from May to October. An analysis of early season floods found that moist inflow from the west Indian Ocean converges over Uganda, generating diurnal thunderstorm clusters that drift southwestward producing high runoff.

  14. Continuous rainfall simulation for regional flood risk assessment - application in the Austrian Alps

    Science.gov (United States)

    Salinas, Jose Luis; Nester, Thomas; Komma, Jürgen; Blöschl, Günter

    2017-04-01

    Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of the observed rainfall characteristics, such as regional intensity-duration-frequency curves, is necessary to adequately model the magnitude and frequency of the flood peaks. Furthermore, the replication of the observed rainfall spatial and temporal correlations allows to model important other hydrological features like antecedent soil moisture conditions before extreme rainfall events. In this work, we present an application in the Tirol region (Austrian alps) of a modification of the model presented by Bardossy and Platte (1992), where precipitation is modeled on a station basis as a mutivariate autoregressive model (mAr) in a Normal space, and then transformed to a Gamma-distributed space. For the sake of simplicity, the parameters of the Gamma distributions are assumed to vary monthly according to a sinusoidal function, and are calibrated trying to simultaneously reproduce i) mean annual rainfall, ii) mean daily rainfall amounts, iii) standard deviations of daily rainfall amounts, and iv) 24-hours intensity duration frequency curve. The calibration of the spatial and temporal correlation parameters is performed in a way that the intensity-duration-frequency curves aggregated at different spatial and temporal scales reproduce the measured ones. Bardossy, A., and E. J. Plate (1992), Space-time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28(5), 1247-1259, doi:10.1029/91WR02589.

  15. Analysis of rainfall distribution in Kelantan river basin, Malaysia

    Science.gov (United States)

    Che Ros, Faizah; Tosaka, Hiroyuki

    2018-03-01

    Using rainfall gauge on its own as input carries great uncertainties regarding runoff estimation, especially when the area is large and the rainfall is measured and recorded at irregular spaced gauging stations. Hence spatial interpolation is the key to obtain continuous and orderly rainfall distribution at unknown points to be the input to the rainfall runoff processes for distributed and semi-distributed numerical modelling. It is crucial to study and predict the behaviour of rainfall and river runoff to reduce flood damages of the affected area along the Kelantan river. Thus, a good knowledge on rainfall distribution is essential in early flood prediction studies. Forty six rainfall stations and their daily time-series were used to interpolate gridded rainfall surfaces using inverse-distance weighting (IDW), inverse-distance and elevation weighting (IDEW) methods and average rainfall distribution. Sensitivity analysis for distance and elevation parameters were conducted to see the variation produced. The accuracy of these interpolated datasets was examined using cross-validation assessment.

  16. The Effect of Rainfall Patterns on the Mechanisms of Shallow Slope Failure

    Directory of Open Access Journals (Sweden)

    Muhammad Suradi

    2014-04-01

    Full Text Available This paper examines how rainfall patterns affect the mechanisms of shallow slope failure. Numerical modelling, utilising the commercial software SVFlux and SVSlope, was carried out for a coupled analysis of rainfall-induced slope seepage and instability, with reference to a shallow landslide took place in Jabiru, Northern Territory (NT Australia in 2007. Rainfall events were varied in terms of pattern in this analysis. The results revealed that slopes are sensitive to rainfall pattern when the rainfall intensity has a high degree of fluctuation at around the same value as that of saturated hydraulic conductivity. Average rainfall intensity at the beginning of a rainfall period plays a primary role in determining the rate of decrease in initial factor of safety (Fi towards minimum factor of safety (Fmin. The effect of rainfall events on the slope instability is attributed to the amount of rainwater infiltration into slope associated with rainfall pattern.

  17. Rainfall measurement based on in-situ storm drainage flow sensors

    DEFF Research Database (Denmark)

    Ahm, Malte; Rasmussen, Michael Robdrup

    2017-01-01

    Data for adjustment of weather radar rainfall estimations are mostly obtained from rain gauge observations. However, the density of rain gauges is often very low. Yet in many urban catchments, runoff sensors are typically available which can measure the rainfall indirectly. By utilising these sen......Data for adjustment of weather radar rainfall estimations are mostly obtained from rain gauge observations. However, the density of rain gauges is often very low. Yet in many urban catchments, runoff sensors are typically available which can measure the rainfall indirectly. By utilising...... these sensors, it may be possible to improve the ground rainfall estimate, and thereby improve the quantitative precipitation estimation from weather radars for urban drainage applications. To test the hypothesis, this paper presents a rainfall measurement method based on flow rate measurements from well......-defined urban surfaces. This principle was used to design a runoff measurement system in a parking structure in Aalborg, Denmark, where it was evaluated against rain gauges. The measurements show that runoff measurements from well-defined urban surfaces perform just as well as rain gauges. This opens up...

  18. Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length

    Science.gov (United States)

    Guan, Kaiyu; Good, Stephen P.; Caylor, Kelly K.; Medvigy, David; Pan, Ming; Wood, Eric F.; Sato, Hisashi; Biasutti, Michela; Chen, Min; Ahlström, Anders; Xu, Xiangtao

    2018-02-01

    There is growing evidence of ongoing changes in the statistics of intra-seasonal rainfall variability over large parts of the world. Changes in annual total rainfall may arise from shifts, either singly or in a combination, of distinctive intra-seasonal characteristics -i.e. rainfall frequency, rainfall intensity, and rainfall seasonality. Understanding how various ecosystems respond to the changes in intra-seasonal rainfall characteristics is critical for predictions of future biome shifts and ecosystem services under climate change, especially for arid and semi-arid ecosystems. Here, we use an advanced dynamic vegetation model (SEIB-DGVM) coupled with a stochastic rainfall/weather simulator to answer the following question: how does the productivity of ecosystems respond to a given percentage change in the total seasonal rainfall that is realized by varying only one of the three rainfall characteristics (rainfall frequency, intensity, and rainy season length)? We conducted ensemble simulations for continental Africa for a realistic range of changes (-20% ~ +20%) in total rainfall amount. We find that the simulated ecosystem productivity (measured by gross primary production, GPP) shows distinctive responses to the intra-seasonal rainfall characteristics. Specifically, increase in rainfall frequency can lead to 28% more GPP increase than the same percentage increase in rainfall intensity; in tropical woodlands, GPP sensitivity to changes in rainy season length is ~4 times larger than to the same percentage changes in rainfall frequency or intensity. In contrast, shifts in the simulated biome distribution are much less sensitive to intra-seasonal rainfall characteristics than they are to total rainfall amount. Our results reveal three major distinctive productivity responses to seasonal rainfall variability—‘chronic water stress’, ‘acute water stress’ and ‘minimum water stress’ - which are respectively associated with three broad spatial patterns of

  19. What aspects of future rainfall changes matter for crop yields in West Africa?

    Science.gov (United States)

    Guan, Kaiyu; Sultan, Benjamin; Biasutti, Michela; Baron, Christian; Lobell, David B.

    2015-10-01

    How rainfall arrives, in terms of its frequency, intensity, the timing and duration of rainy season, may have a large influence on rainfed agriculture. However, a thorough assessment of these effects is largely missing. This study combines a new synthetic rainfall model and two independently validated crop models (APSIM and SARRA-H) to assess sorghum yield response to possible shifts in seasonal rainfall characteristics in West Africa. We find that shifts in total rainfall amount primarily drive the rainfall-related crop yield change, with less relevance to intraseasonal rainfall features. However, dry regions (total annual rainfall below 500 mm/yr) have a high sensitivity to rainfall frequency and intensity, and more intense rainfall events have greater benefits for crop yield than more frequent rainfall. Delayed monsoon onset may negatively impact yields. Our study implies that future changes in seasonal rainfall characteristics should be considered in designing specific crop adaptations in West Africa.

  20. Impact assessment of rainfall-vegetation on sedimentation and predicting erosion-prone region by GIS and RS

    Directory of Open Access Journals (Sweden)

    Mahboob Alam

    2016-03-01

    Full Text Available Water reservoirs are facing universal sedimentation problems worldwide. Land covers, whether natural or manmade, eventually change, and the vegetation cover and rainfall have a great effect on the sediment load. Traditional techniques for analysing this problem are time-consuming and spatially limited. Remote sensing (RS provides a convenient way to observe land cover changes, and geographic information system (GIS provides tools for geographic analysis. This study demonstrates a GIS-based methodology for calculating the impact of vegetation and rainfall on the sediment load using remotely sensed data. Moderate resolution imaging spectroradiometer data were used to observe temporal changes in the vegetation-cover area of the watershed surface. The total drainage area for the reservoir was calculated from shuttle radar topographic mission data. The annual rainfall amount was used to compute the annual available rainwater for the watershed, and the impact of the annual available rainwater on the vegetation-covered area was determined. In addition, areas that were adding sedimentation to the reservoir were identified. An inverse relationship between the rainfall and vegetation cover was observed, clearly showing the triggering of erosion.

  1. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics

    Science.gov (United States)

    Armenise, Elena; Simmons, Robert W.; Ahn, Sujung; Garbout, Amin; Doerr, Stefan H.; Mooney, Sacha J.; Sturrock, Craig J.; Ritz, Karl

    2018-01-01

    This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 min). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 to 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24-0.48 mm below the soil surface. This

  2. Amount and composition of rain failing at Rothamsted

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E J; Richards, E H

    1919-01-01

    The monthly fluctuations in the ammoniacal concentration varies with rainfall, i.e., highest in spring; lowest in winter. The nitric nitrogen concentration fluctuated year by year and month by month in the same way as the ammoniacal nitrogen and the rainfall until 1910, since when there has been no simple relationship. The close relationship between the amounts of ammoniacal and nitric nitrogen suggests either a common origin or the production of nitric compounds from ammonia. Chlorine fluctuations closely follow the rainfall also. Since 1888, when the experiments began, to 1916, when they terminated, there has been a rise in the amounts of nitric nitrogen and of chlorine in the rain. In the case of chlorine a parallel series of determinations made at Cirencester over the same period shows a similar rise. There is no rise of ammonia but on the contrary a tendency to drop; the sum of ammoniacal and nitric nitrogen shows little change over the period. This seems to suggest that a former source of ammonia is now turning out nitric acid. It is possible that modern gas burners and grates tend to the formation of nitric oxides rather than of ammonia. Rain contains on an average 10 parts of dissolved oxygen per million, the amount being higher in winter than in summer: 66.4 lb per acre per annum was brought down during the two years over which the determinations extended. The marked difference in composition between summer and winter rainfall suggests that these may differ in their origin. The winter rain resembles Atlantic rain in its high chlorine and low ammonia and nitrate content; the summer rain is characterized by low chlorine but high ammonia and nitrate content, suggesting that it arises by evaporation of water from the soil and condensation at higher altitudes than in the case of winter rain.

  3. Rainfall model investigation and scenario analyses of the effect of government reforestation policy on seasonal rainfalls: A case study from Northern Thailand

    Science.gov (United States)

    Duangdai, Eakkapong; Likasiri, Chulin

    2017-03-01

    In this work, 4 models for predicting rainfall amounts are investigated and compared using Northern Thailand's seasonal rainfall data for 1973-2008. Two models, global temperature, forest area and seasonal rainfall (TFR) and modified TFR based on a system of differential equations, give the relationships between global temperature, Northern Thailand's forest cover and seasonal rainfalls in the region. The other two models studied are time series and Autoregressive Moving Average (ARMA) models. All models are validated using the k-fold cross validation method with the resulting errors being 0.971233, 0.740891, 2.376415 and 2.430891 for time series, ARMA, TFR and modified TFR models, respectively. Under Business as Usual (BaU) scenario, seasonal rainfalls in Northern Thailand are projected through the year 2020 using all 4 models. TFR and modified TFR models are also used to further analyze how global temperature rise and government reforestation policy affect seasonal rainfalls in the region. Rainfall projections obtained via the two models are also compared with those from the International Panel on Climate Change (IPCC) under IS92a scenario. Results obtained through a mathematical model for global temperature, forest area and seasonal rainfall show that the higher the forest cover, the less fluctuation there is between rainy-season and summer rainfalls. Moreover, growth in forest cover also correlates with an increase in summer rainfalls. An investigation into the relationship between main crop productions and rainfalls in dry and rainy seasons indicates that if the rainy-season rainfall is high, that year's main-crop rice production will decrease but the second-crop rice, maize, sugarcane and soybean productions will increase in the following year.

  4. Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

    Science.gov (United States)

    Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.

    2018-05-01

    Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

  5. The impact of Amazonian deforestation on Amazon basin rainfall

    Science.gov (United States)

    Spracklen, D. V.; Garcia-Carreras, L.

    2015-11-01

    We completed a meta-analysis of regional and global climate model simulations (n = 96) of the impact of Amazonian deforestation on Amazon basin rainfall. Across all simulations, mean (±1σ) change in annual mean Amazon basin rainfall was -12 ± 11%. Variability in simulated rainfall was not explained by differences in model resolution or surface parameters. Across all simulations we find a negative linear relationship between rainfall and deforestation extent, although individual studies often simulate a nonlinear response. Using the linear relationship, we estimate that deforestation in 2010 has reduced annual mean rainfall across the Amazon basin by 1.8 ± 0.3%, less than the interannual variability in observed rainfall. This may explain why a reduction in Amazon rainfall has not consistently been observed. We estimate that business-as-usual deforestation (based on deforestation rates prior to 2004) would lead to an 8.1 ± 1.4% reduction in annual mean Amazon basin rainfall by 2050, greater than natural variability.

  6. Rainfall Erosivity Database on the European Scale (REDES): A product of a high temporal resolution rainfall data collection in Europe

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the

  7. Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: The Guadalete River basin (SW, Spain).

    Science.gov (United States)

    Corada-Fernández, Carmen; Candela, Lucila; Torres-Fuentes, Nivis; Pintado-Herrera, Marina G; Paniw, Maria; González-Mazo, Eduardo

    2017-12-15

    This study is focused on the Guadalete River basin (SW, Spain), where extreme weather conditions have become common, with and alternation between periods of drought and extreme rainfall events. Combined sewer overflows (CSOs) occur when heavy rainfall events exceed the capacity of the wastewater treatment plants (WWTP), as well as pollution episodes in parts of the basin due to uncontrolled sewage spills and the use of reclaimed water and sludge from the local WWTP. The sampling was carried out along two seasons and three campaigns during dry (March 2007) and extreme rainfall (April and December 2010) in the Guadalete River, alluvial aquifer and Jerez de la Frontera aquifer. Results showed minimum concentrations for synthetic surfactants in groundwater (contaminants increased in December 2010 as the heavy rainfall caused the river to overflow. In surface water, surfactant concentrations showed similar trends to groundwater observations. In addition to surfactants, pharmaceuticals and personal care products (PPCPs) were analyzed in the third campaign, 22 of which were detected in surface waters. Two fragrances (OTNE and galaxolide) and one analgesic/anti-inflammatory (ibuprofen) were the most abundant PPCPs (up to 6540, 2748 and 1747ng·L -1 , respectively). Regarding groundwater, most PPCPs were detected in Jerez de la Frontera aquifer, where a synthetic fragrance (OTNE) was predominant (up to 1285ng·L -1 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Characterization of the Sahelian-Sudan rainfall based on observations and regional climate models

    Science.gov (United States)

    Salih, Abubakr A. M.; Elagib, Nadir Ahmed; Tjernström, Michael; Zhang, Qiong

    2018-04-01

    The African Sahel region is known to be highly vulnerable to climate variability and change. We analyze rainfall in the Sahelian Sudan in terms of distribution of rain-days and amounts, and examine whether regional climate models can capture these rainfall features. Three regional models namely, Regional Model (REMO), Rossby Center Atmospheric Model (RCA) and Regional Climate Model (RegCM4), are evaluated against gridded observations (Climate Research Unit, Tropical Rainfall Measuring Mission, and ERA-interim reanalysis) and rain-gauge data from six arid and semi-arid weather stations across Sahelian Sudan over the period 1989 to 2008. Most of the observed rain-days are characterized by weak (0.1-1.0 mm/day) to moderate (> 1.0-10.0 mm/day) rainfall, with average frequencies of 18.5% and 48.0% of the total annual rain-days, respectively. Although very strong rainfall events (> 30.0 mm/day) occur rarely, they account for a large fraction of the total annual rainfall (28-42% across the stations). The performance of the models varies both spatially and temporally. RegCM4 most closely reproduces the observed annual rainfall cycle, especially for the more arid locations, but all of the three models fail to capture the strong rainfall events and hence underestimate its contribution to the total annual number of rain-days and rainfall amount. However, excessive moderate rainfall compensates this underestimation in the models in an annual average sense. The present study uncovers some of the models' limitations in skillfully reproducing the observed climate over dry regions, will aid model users in recognizing the uncertainties in the model output and will help climate and hydrological modeling communities in improving models.

  9. Prediction of Rainfall-Induced Landslides

    Science.gov (United States)

    Nadim, F.; Sandersen, F.

    2009-12-01

    Rainfall-induced landslides can be triggered by two main mechanisms: shear failure due to build-up of pore water pressure and erosion by surface water runoff when flow velocity exceeds a critical value. Field measurements indicate that, in the initial phase, the slip surface of a landslide often occurs along the top of a relatively impermeable layer located at some depth within the soil profile, e.g. at the contact with a shallow underlying bedrock or parent rock. The shear strength along this surface and hence the stability of the slope is governed by the pore water pressure. The pore pressure is in turn controlled by water seepage through the slope, either from infiltrated rain, or from groundwater that follows bedrock joints and soil layers with high permeability. When the infiltration rate of the underlying layer is too low for further downward penetration of water or when a wetting front is produced, pore water pressure builds up, reducing the soil shear strength. During high intensity rainfall, surface water runoff will exert shear stresses on the bed material. De-pending on the grain size distribution and specific gravity of the material, erosion might occur when the flow velocity exceeds a critical value. As erosion progresses and sediment concentration increases, the flow regime may become unstable with heavy erosion at high flow velocity locations triggering a debris flow. In many cases, previous landslides along steep gully walls have fed an abundance of loose soil material into the gullies. Landslides along gully walls that obstruct the water transport may also trigger debris flows when the landslide-dam collapses, creating a surge downstream. Both the long-duration (1 or more days) and short-duration precipitation (of the order of 1 hour) are significant in the triggering of shallow landslides, since the critical short-duration rainfall intensity reduces as the antecedent accumulated rainfall increases. Experiences in Norway indicate that the maxi

  10. Urban Run-off Volumes Dependency on Rainfall Measurement Method

    DEFF Research Database (Denmark)

    Pedersen, L.; Jensen, N. E.; Rasmussen, Michael R.

    2005-01-01

    Urban run-off is characterized with fast response since the large surface run-off in the catchments responds immediately to variations in the rainfall. Modeling such type of catchments is most often done with the input from very few rain gauges, but the large variation in rainfall over small areas...... resolutions and single gauge rainfall was fed to a MOUSE run-off model. The flow and total volume over the event is evaluated....

  11. Derivation of critical rainfall thresholds for landslide in Sicily

    Science.gov (United States)

    Caracciolo, Domenico; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    Rainfall is the primary trigger of shallow landslides that can cause fatalities, damage to properties and economic losses in many areas of the world. For this reason, determining the rainfall amount/intensity responsible for landslide occurrence is important, and may contribute to mitigate the related risk and save lives. Efforts have been made in different countries to investigate triggering conditions in order to define landslide-triggering rainfall thresholds. The rainfall thresholds are generally described by a functional relationship of power in terms of cumulated or intensity event rainfall-duration, whose parameters are estimated empirically from the analysis of historical rainfall events that triggered landslides. The aim of this paper is the derivation of critical rainfall thresholds for landslide occurrence in Sicily, southern Italy, by focusing particularly on the role of the antecedent wet conditions. The creation of the appropriate landslide-rainfall database likely represents one of main efforts in this type of analysis. For this work, historical landslide events occurred in Sicily from 1919 to 2001 were selected from the archive of the Sistema Informativo sulle Catastrofi Idrogeologiche, developed under the project Aree Vulnerabili Italiane. The corresponding triggering precipitations were screened from the raingauges network in Sicily, maintained by the Osservatorio delle Acque - Agenzia Regionale per i Rifiuti e le Acque. In particular, a detailed analysis was carried out to identify and reconstruct the hourly rainfall events that caused the selected landslides. A bootstrapping statistical technique has been used to determine the uncertainties associated with the threshold parameters. The rainfall thresholds at different exceedance probability levels, from 1% to 10%, were defined in terms of cumulated event rainfall, E, and rainfall duration, D. The role of rainfall prior to the damaging events was taken into account by including in the analysis

  12. Regionalization of monthly rainfall erosivity patternsin Switzerland

    Science.gov (United States)

    Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin

    2016-10-01

    One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of

  13. Effect of variations in rainfall intensity on slope stability in Singapore

    OpenAIRE

    Christofer Kristo; Harianto Rahardjo; Alfrendo Satyanaga

    2017-01-01

    Numerous scientific evidence has given credence to the true existence and deleterious impacts of climate change. One aspect of climate change is the variations in rainfall patterns, which affect the flux boundary condition across ground surface. A possible disastrous consequence of this change is the occurrence of rainfall-induced slope failures. This paper aims to investigate the variations in rainfall patterns in Singapore and its effect on slope stability. Singapore's historical rainfall d...

  14. Measurements of effective non-rainfall in soil with the use of time-domain reflectometry technique

    Science.gov (United States)

    Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Skierucha, Wojciech

    2014-05-01

    The non-rainfall vectors are fog, dew, hoarfrost and vapour adsorption directly from the atmosphere. The measurements of the amount of water supplied to the soil due to their temporary existence are essential, because in dry areas such water uptake can exceed that of rainfall. Although several devices and methods were proposed for estimating the effective non-rainfall input into the soil, the measurement standard has not yet been established. This is mainly due to obstacles in measuring small water additions to the medium, problems with taking readings in actual soil samples and atmospheric disturbances during their course in natural environment. There still exists the need for automated devices capable of measuring water deposition on real-world soil surfaces, whose resolution is high enough to measure the non-rainfall intensity and increase rate, which are usually very low. In order to achieve the desirable resolution and accuracy of the effective non-rainfall measurements the time-domain reflectometry (TDR) technique was employed. The TDR sensor designed and made especially for the purpose was an untypical waveguide. It consisted of a base made of laminate covered with copper, which served as a bottom of a cuboidal open container in which the examined materials were placed, and a copper signal wire placed on the top of the container. The wire adhered along its entire length to the tested material in order to eliminate the formation of air gaps between the two, what enhanced the accuracy of the measurements. The tested porous materials were glass beads, rinsed sand and three soil samples, which were collected in south-eastern Poland. The diameter ranges of their constituent particles were measured with the use of the laser diffraction technique. The sensor filled with the wetted material was placed on a scale and connected to the TDR meter. The automated readings of mass and TDR time were collected simultaneously every minute. The TDR time was correlated with the

  15. A protocol for conducting rainfall simulation to study soil runoff.

    Science.gov (United States)

    Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B

    2014-04-03

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.

  16. Analysing surface runoff and erosion responses to different land uses from the NE of Iberian Peninsula through rainfall simulation

    Science.gov (United States)

    Regüés, David; Arnáez, José; Badía, David; Cerdà, Artemi; Echeverría, María Teresa; Gispert, María; Lana-Renault, Noemí; Lasanta, Teodoro; León, Javier; Nadal-Romero, Estela; Pardini, Giovanni

    2014-05-01

    Rainfall simulation experiments are being used by soil scientists, geomorphologists, and hydrologist to study runoff generation and erosion processes. The use of different apparatus with different rainfall intensities and size of the wetted area contribute to determine the most vulnerable soils and land uses (Cerdá, 1998; Cerdà et al., 2009; Nadal-Romero et al., 2011; Martínez-Murillo et al., 2013; León et al., 2014). This research aims to determine the land uses that yield more sediments and water and to know the factors that control the differences. The information from 152 experiments of rainfall simulation was jointly analysed. Experiments were done in 17 land uses (natural forest, tree plantation, burned forest, scrub, meadows, crops and badlands), with contrasted exposition (north-south), and vegetation cover variety and/or density. These situations were selected from four geographic contexts (NE of Catalonia, high and medium lands from the Ebro valley and Southern range of central Pyrenees) with significant altitude variations, between 90 and 1000 meters above sea level, which represent the heterogeneity of the Mediterranean climate. The use of similar rainfall simulation apparatus, with the same spray nozzle, spraying components and plot size, favours the comparison of the results. A wide spectrum of precipitation intensities was applied, in order to reach surface runoff generation in all cases. Results showed significant differences in runoff amounts and erosion rates, which were mainly associated with land uses, even more than precipitation differences. Runoff coefficient shows an inversed exponential relationship with rainfall intensity, which is the opposite what could be previously expected (Ziadat and Taimeh, 2013). This may be only justified by land use characteristics because a direct effect between runoff generation intensity and soil degradation conditions, with respect vegetation covers features and density, was observed. In fact, even though

  17. Moisture source for summer monsoon rainfall over India

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Rao, D.P.

    Southwest monsoon plays a vital role in India's economy as the major income comes from agriculture. What could be the moisture source for this copious amount of rainfall over the Indian sub-continent?. This has been studied in detail and noticed...

  18. Deterministic Approach for Estimating Critical Rainfall Threshold of Rainfall-induced Landslide in Taiwan

    Science.gov (United States)

    Chung, Ming-Chien; Tan, Chih-Hao; Chen, Mien-Min; Su, Tai-Wei

    2013-04-01

    Taiwan is an active mountain belt created by the oblique collision between the northern Luzon arc and the Asian continental margin. The inherent complexities of geological nature create numerous discontinuities through rock masses and relatively steep hillside on the island. In recent years, the increase in the frequency and intensity of extreme natural events due to global warming or climate change brought significant landslides. The causes of landslides in these slopes are attributed to a number of factors. As is well known, rainfall is one of the most significant triggering factors for landslide occurrence. In general, the rainfall infiltration results in changing the suction and the moisture of soil, raising the unit weight of soil, and reducing the shear strength of soil in the colluvium of landslide. The stability of landslide is closely related to the groundwater pressure in response to rainfall infiltration, the geological and topographical conditions, and the physical and mechanical parameters. To assess the potential susceptibility to landslide, an effective modeling of rainfall-induced landslide is essential. In this paper, a deterministic approach is adopted to estimate the critical rainfall threshold of the rainfall-induced landslide. The critical rainfall threshold is defined as the accumulated rainfall while the safety factor of the slope is equal to 1.0. First, the process of deterministic approach establishes the hydrogeological conceptual model of the slope based on a series of in-situ investigations, including geological drilling, surface geological investigation, geophysical investigation, and borehole explorations. The material strength and hydraulic properties of the model were given by the field and laboratory tests. Second, the hydraulic and mechanical parameters of the model are calibrated with the long-term monitoring data. Furthermore, a two-dimensional numerical program, GeoStudio, was employed to perform the modelling practice. Finally

  19. Characteristics of Rainfall-Discharge and Water Quality at Limboto Lake, Gorontalo, Indonesia

    Directory of Open Access Journals (Sweden)

    Luki Subehi

    2016-08-01

    Full Text Available Problems of high turbidity, sedimentation, water pollution and siltation occur at Limboto Lake, Gorontalo, Indonesia. The objective of this study was to analyze the rainfall-discharge relationship and its implications for water quality conditions. Secchi disk (water transparency, chlorophyll-a (chl-a, and total organic matter (TOM were measured in May 2012, September 2012 and March 2013 at three sites of the lake (L-1, L-2 and L-3 to observe the impacts on the surrounding catchment. Based on representative stations for rainfall data from 2004 to 2013, monthly averages of rainfall in March-May (166.7 mm and September (76.4 mm were used to represent the wet and dry period, respectively. Moreover, sediment traps at these three sites were installed in September 2012. Based on the analysis it is suggested that rainfall magnitude and land use change at the Alopohu River catchment influenced the amount of materials flowing into the lake, degrading the water quality. Specifically, the higher average rainfall in May (184.5 mm gave a higher average total sediment load (4.41 g/L/day. In addition, water transparency decreased with increasing chl-a. This indicates that the concentrations of sediment and nutrients, reflected by the high amount of chl-a, influenced the water quality conditions.

  20. Heavy rainfall in Mediterranean cyclones. Part I: contribution of deep convection and warm conveyor belt

    Science.gov (United States)

    Flaounas, Emmanouil; Kotroni, Vassiliki; Lagouvardos, Konstantinos; Gray, Suzanne L.; Rysman, Jean-François; Claud, Chantal

    2018-04-01

    In this study, we provide an insight to the role of deep convection (DC) and the warm conveyor belt (WCB) as leading processes to Mediterranean cyclones' heavy rainfall. To this end, we use reanalysis data, lighting and satellite observations to quantify the relative contribution of DC and the WCB to cyclone rainfall, as well as to analyse the spatial and temporal variability of these processes with respect to the cyclone centre and life cycle. Results for the period 2005-2015 show that the relationship between cyclone rainfall and intensity has high variability and demonstrate that even intense cyclones may produce low rainfall amounts. However, when considering rainfall averages for cyclone intensity bins, a linear relationship was found. We focus on the 500 most intense tracked cyclones (responsible for about 40-50% of the total 11-year Mediterranean rainfall) and distinguish between the ones producing high and low rainfall amounts. DC and the WCB are found to be the main cause of rainfall for the former (producing up to 70% of cyclone rainfall), while, for the latter, DC and the WCB play a secondary role (producing up to 50% of rainfall). Further analysis showed that rainfall due to DC tends to occur close to the cyclones' centre and to their eastern sides, while the WCBs tend to produce rainfall towards the northeast. In fact, about 30% of rainfall produced by DC overlaps with rainfall produced by WCBs but this represents only about 8% of rainfall produced by WCBs. This suggests that a considerable percentage of DC is associated with embedded convection in WCBs. Finally, DC was found to be able to produce higher rain rates than WCBs, exceeding 50 mm in 3-h accumulated rainfall compared to a maximum of the order of 40 mm for WCBs. Our results demonstrate in a climatological framework the relationship between cyclone intensity and processes that lead to heavy rainfall, one of the most prominent environmental risks in the Mediterranean. Therefore, we set

  1. Simulated transient thermal infrared emissions of forest canopies during rainfall events

    Science.gov (United States)

    Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.

    2017-05-01

    We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.

  2. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans

    Science.gov (United States)

    Ronchail, Josyane; Cochonneau, Gérard; Molinier, Michel; Guyot, Jean-Loup; Chaves, Adriana Goretti De Miranda; Guimarães, Valdemar; de Oliveira, Eurides

    2002-11-01

    Rainfall variability in the Amazon basin is studied in relation to sea-surface temperatures (SSTs) in the equatorial Pacific and the northern and southern tropical Atlantic during the 1977-99 period, using the HiBAm original rainfall data set and complementary cluster and composite analyses.The northeastern part of the basin, north of 5 °S and east of 60 °W, is significantly related with tropical SSTs: a rainier wet season is observed when the equatorial Pacific and the northern (southern) tropical Atlantic are anomalously cold (warm). A shorter and drier wet season is observed during El Niño events and negative rainfall anomalies are also significantly associated with a warm northern Atlantic in the austral autumn and a cold southern Atlantic in the spring. The northeastern Amazon rainfall anomalies are closely related with El Niño-southern oscillation during the whole year, whereas the relationships with the tropical Atlantic SST anomalies are mainly observed during the autumn. A time-space continuity is observed between El Niño-related rainfall anomalies in the northeastern Amazon, those in the northern Amazon and south-eastern Amazon, and those in northern South America and in the Nordeste of Brazil.A reinforcement of certain rainfall anomalies is observed when specific oceanic events combine. For instance, when El Niño and cold SSTs in the southern Atlantic are associated, very strong negative anomalies are observed in the whole northern Amazon basin. Nonetheless, the comparison of the cluster and the composite analyses results shows that the rainfall anomalies in the northeastern Amazon are not always associated with tropical SST anomalies.In the southern and western Amazon, significant tropical SST-related rainfall anomalies are very few and spatially variable. The precipitation origins differ from those of the northeastern Amazon: land temperature variability, extratropical perturbations and moisture advection are important rainfall factors, as well

  3. Using Conditional Analysis to Investigate Spatial and Temporal patterns in Upland Rainfall

    Science.gov (United States)

    Sakamoto Ferranti, Emma Jayne; Whyatt, James Duncan; Timmis, Roger James

    2010-05-01

    rainfall amount were analysed for each rainfall sub-region and weather type from 1961-2007 (Ferranti et al., 2010). The conditional analysis showed total rainfall under SW and W weather types to be increasing, with the greatest increases observed in the upland sub-regions. The increase in total SW rainfall is driven by a greater occurrence of SW rain days, and there has been little change to the average wet-day rainfall amount. The increase in total W rainfall is driven in part by an increase in the frequency of wet-days, but more significantly by an increase in the average wet-day rainfall amount. In contrast, total rainfall under C weather types has decreased. Further analysis will investigate how spring, summer and autumn rainfall climatologies have changed for the different weather types and sub-regions. Conditional analysis that combines GIS and synoptic climatology provides greater insights into the processes underlying readily available meteorological data. Dissecting Cumbrian rainfall data under different synoptic and geographic conditions showed the observed changes in winter rainfall are not uniform for the different weather types, nor for the different geographic sub-regions. These intricate details are often lost during coarser resolution analysis, and conditional analysis will provide a detailed synopsis of Cumbrian rainfall processes against which Regional Climate Model (RCM) performance can be tested. Conventionally RCMs try to simulate composite rainfall over many different weather types and sub-regions and by undertaking conditional validation the model performance for individual processes can be tested. This will help to target improvements in model performance, and ultimately lead to better simulation of rainfall in areas of complex topography. BURT, T. P. & FERRANTI, E. J. S. (2010) Changing patterns of heavy rainfall in upland areas: a case study from northern England. Atmospheric Environment, [in review]. FERRANTI, E. J. S., WHYATT, J. D. & TIMMIS, R

  4. Water Isotope Proxy-Proxy and Proxy-Model Convergence for Late Pleistocene East Asian Monsoon Rainfall Reconstructions

    Science.gov (United States)

    Clemens, S. C.; Holbourn, A.; Kubota, Y.; Lee, K. E.; Liu, Z.; Chen, G.

    2017-12-01

    Confidence in reconstruction of East Asian paleomonsoon rainfall using precipitation isotope proxies is a matter of considerable debate, largely due to the lack of correlation between precipitation amount and isotopic composition in the present climate. We present four new, very highly resolved records spanning the past 300,000 years ( 200 year sample spacing) from IODP Site U1429 in the East China Sea. We demonstrate that all the orbital- and millennial-scale variance in the onshore Yangtze River Valley speleothem δ18O record1 is also embedded in the offshore Site U1429 seawater δ18O record (derived from the planktonic foraminifer Globigerinoides ruber and sea surface temperature reconstructions). Signal replication in these two independent terrestrial and marine archives, both controlled by the same monsoon system, uniquely identifies δ18O of precipitation as the primary driver of the precession-band variance in both records. This proxy-proxy convergence also eliminates a wide array of other drivers that have been called upon as potential contaminants to the precipitation δ18O signal recorded by these proxies. We compare East Asian precipitation isotope proxy records to precipitation amount from a CCSM3 transient climate model simulation of the past 300,000 years using realistic insolation, ice volume, greenhouse gasses, and sea level boundary conditions. This model-proxy comparison suggests that both Yangtze River Valley precipitation isotope proxies (seawater and speleothem δ18O) track changes in summer-monsoon rainfall amount at orbital time scales, as do precipitation isotope records from the Pearl River Valley2 (leaf wax δ2H) and Borneo3 (speleothem δ18O). Notably, these proxy records all have significantly different spectral structure indicating strongly regional rainfall patterns that are also consistent with model results. Transient, isotope-enabled model simulations will be necessary to more thoroughly evaluate these promising results, and to

  5. Quantification of tillage, plant cover, and cumulative rainfall effects on soil surface microrelief by statistical, geostatistical and fractal indices

    Science.gov (United States)

    Paz-Ferreiro, J.; Bertol, I.; Vidal Vázquez, E.

    2008-07-01

    Changes in soil surface microrelief with cumulative rainfall under different tillage systems and crop cover conditions were investigated in southern Brazil. Surface cover was none (fallow) or the crop succession maize followed by oats. Tillage treatments were: 1) conventional tillage on bare soil (BS), 2) conventional tillage (CT), 3) minimum tillage (MT) and 4) no tillage (NT) under maize and oats. Measurements were taken with a manual relief meter on small rectangular grids of 0.234 and 0.156 m2, throughout growing season of maize and oats, respectively. Each data set consisted of 200 point height readings, the size of the smallest cells being 3×5 cm during maize and 2×5 cm during oats growth periods. Random Roughness (RR), Limiting Difference (LD), Limiting Slope (LS) and two fractal parameters, fractal dimension (D) and crossover length (l) were estimated from the measured microtopographic data sets. Indices describing the vertical component of soil roughness such as RR, LD and l generally decreased with cumulative rain in the BS treatment, left fallow, and in the CT and MT treatments under maize and oats canopy. However, these indices were not substantially affected by cumulative rain in the NT treatment, whose surface was protected with previous crop residues. Roughness decay from initial values was larger in the BS treatment than in CT and MT treatments. Moreover, roughness decay generally tended to be faster under maize than under oats. The RR and LD indices decreased quadratically, while the l index decreased exponentially in the tilled, BS, CT and MT treatments. Crossover length was sensitive to differences in soil roughness conditions allowing a description of microrelief decay due to rainfall in the tilled treatments, although better correlations between cumulative rainfall and the most commonly used indices RR and LD were obtained. At the studied scale, parameters l and D have been found to be useful in interpreting the configuration properties of

  6. Rainfall thresholds for the triggering of landslides in Slovenia

    Science.gov (United States)

    Peternel, Tina; Jemec Auflič, Mateja; Rosi, Ascanio; Segoni, Samuele; Komac, Marko; Casagli, Nicola

    2017-04-01

    Both at the worldwide level and in Slovenia, precipitation and related phenomena represent one of the most important triggering factors for the occurrence of slope mass movements. In the past decade, extreme rainfall events with a very high amount of precipitation occurs in a relatively short rainfall period have become increasingly important and more frequent, that causing numerous undesirable consequences. Intense rainstorms cause flash floods and mostly trigger shallow landslides and soil slips. On the other hand, the damage of long lasting rainstorms depends on the region's adaptation and its capacity to store or infiltrate excessive water from the rain. The amount and, consequently, the intensity of daily precipitation that can cause floods in the eastern part of Slovenia is a rather common event for the north-western part of the country. Likewise, the effect of rainfall is very dependent on the prior soil moisture, periods of full soil saturation and the creation of drifts in groundwater levels due to the slow melting of snow, growing period, etc. Landslides could be identified and to some extent also prevent with better knowledge of the relation between landslides and rainfall. In this paper the definition of rainfall thresholds for rainfall-induced landslides in Slovenia is presented. The thresholds have been calculated by collecting approximately 900 landslide data and the relative rainfall amounts, which have been collected from 41 rain gauges all over the country. The thresholds have been defined by the (1) use of an existing procedure, characterized by a high degree of objectiveness and (2) software that was developed for a test site with very different geological and climatic characteristics (Tuscany, central Italy). Firstly, a single national threshold has been defined, later the country was divided into four zones, on the basis of major the river basins and a single threshold has been calculated for each of them. Validation of the calculated

  7. Soil and surface layer type affect non-rainfall water inputs

    Science.gov (United States)

    Agam, Nurit; Berliner, Pedro; Jiang, Anxia

    2017-04-01

    Non-rainfall water inputs (NRWIs), which include fog deposition, dew formation, and direct water vapor adsorption by the soil, play a vital role in arid and semiarid regions. Environmental conditions, namely radiation, air temperature, air humidity, and wind speed, largely affect the water cycle driven by NRWIs. The substrate type (soil type and the existence/absence of a crust layer) may as well play a major role. Our objective was to quantify the effects of soil type (loess vs. sand) and surface layer (bare vs. crusted) on the gain and posterior evaporation of NRWIs in the Negev Highlands throughout the dry summer season. Four undisturbed soil samples (20 cm diameter and 50 cm depth) were excavated and simultaneously introduced into a PVC tube. Two samples were obtained in the Negev's Boker plain (loess soil) and two in the Nizzana sand dunes in the Western Negev. On one sample from each site the crust was removed while on the remaining one the natural crust was left in place. The samples were brought to the research site at the Jacob Bluestein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel (31˚08' N, 34˚53' E, 400 meter above the sea level) where they were exposed to the same environmental conditions. The four samples in their PVC tubes were placed on top of scales and the samples mass was continuously monitored. Soil temperatures were monitored at depths of 1, 2, 3, 5 and10 cm in each microlysimeter (ML) using Copper-Constantan thermocouples. The results of particle size distribution indicated that the crust of the loess soil is probably a physical crust, i.e., a crust that forms due to raindroplets impact; while the crust on the sand soil is biological. On most days, the loess soils adsorbed more water than their corresponding sand soil samples. For both soils, the samples for which the crust was removed adsorbed more water than the samples for which it was intact. The difference in daily water adsorption amount between crusted

  8. Rainfall erosivity factor estimation in Republic of Moldova

    Science.gov (United States)

    Castraveš, Tudor; Kuhn, Nikolaus

    2017-04-01

    Rainfall erosivity represents a measure of the erosive force of rainfall. Typically, it is expressed as variable such as the R factor in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965, 1978) or its derivates. The rainfall erosivity index for a rainfall event (EI30) is calculated from the total kinetic energy and maximum 30 minutes intensity of individual events. However, these data are often unavailable for wide regions and countries. Usually, there are three issues regarding precipitation data: low temporal resolution, low spatial density and limited access to the data. This is especially true for some of postsoviet countries from Eastern Europe, such as Republic of Moldova, where soil erosion is a real and persistent problem (Summer, 2003) and where soils represents the main natural resource of the country. Consequently, researching and managing soil erosion is particularly important. The purpose of this study is to develop a model based on commonly available rainfall data, such as event, daily or monthly amounts, to calculate rainfall erosivity for the territory of Republic of Moldova. Rainfall data collected during 1994-2015 period at 15 meteorological stations in the Republic of Moldova, with 10 minutes temporal resolution, were used to develop and calibrate a model to generate an erosivity map of Moldova. References 1. Summer, W., (2003). Soil erosion in the Republic of Moldova — the importance of institutional arrangements. Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 at Sapporo. July 2003). IAHS Publ. no. 279. 2. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No. 282, U.S. Dept. Agr., Washington, DC 3. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses. Agr. handbook No. 537, U.S. Dept. of Agr., Science and Education Administration.

  9. Assessment of two loss methods for estimation of surface runoff in Zaafrania urban catchment, North-East of Algeria

    OpenAIRE

    Dahdouh Yacina; Ouerdachi Lahbassi

    2018-01-01

    Surface runoff is a major problem in urban catchments; its generation is always related to the amount of effective rainfall dropped over the surface, however in urban catchments the process is considerably altered by the emergence of impervious areas. In this study the Soil Consevation Service – curve number (SCS-CN) and the Green–Ampt loss methods were used in rainfall-runoff modelling in the Zaafrania urban catchment which is located in Annaba city in the north east of Algeria. The two loss...

  10. The rainfall plot: its motivation, characteristics and pitfalls.

    Science.gov (United States)

    Domanska, Diana; Vodák, Daniel; Lund-Andersen, Christin; Salvatore, Stefania; Hovig, Eivind; Sandve, Geir Kjetil

    2017-05-18

    A visualization referred to as rainfall plot has recently gained popularity in genome data analysis. The plot is mostly used for illustrating the distribution of somatic cancer mutations along a reference genome, typically aiming to identify mutation hotspots. In general terms, the rainfall plot can be seen as a scatter plot showing the location of events on the x-axis versus the distance between consecutive events on the y-axis. Despite its frequent use, the motivation for applying this particular visualization and the appropriateness of its usage have never been critically addressed in detail. We show that the rainfall plot allows visual detection even for events occurring at high frequency over very short distances. In addition, event clustering at multiple scales may be detected as distinct horizontal bands in rainfall plots. At the same time, due to the limited size of standard figures, rainfall plots might suffer from inability to distinguish overlapping events, especially when multiple datasets are plotted in the same figure. We demonstrate the consequences of plot congestion, which results in obscured visual data interpretations. This work provides the first comprehensive survey of the characteristics and proper usage of rainfall plots. We find that the rainfall plot is able to convey a large amount of information without any need for parameterization or tuning. However, we also demonstrate how plot congestion and the use of a logarithmic y-axis may result in obscured visual data interpretations. To aid the productive utilization of rainfall plots, we demonstrate their characteristics and potential pitfalls using both simulated and real data, and provide a set of practical guidelines for their proper interpretation and usage.

  11. Responses of hydrochemical inorganic ions in the rainfall-runoff processes of the experimental catchments and its significance for tracing

    Science.gov (United States)

    Gu, W.-Z.; Lu, J.-J.; Zhao, X.; Peters, N.E.

    2007-01-01

    Aimed at the rainfall-runoff tracing using inorganic ions, the experimental study is conducted in the Chuzhou Hydrology Laboratory with special designed experimental catchments, lysimeters, etc. The various runoff components including the surface runoff, interflow from the unsaturated zone and the groundwater flow from saturated zone were monitored hydrometrically. Hydrochemical inorganic ions including Na+, K+, Ca2+, Mg2+, Cl-, SO42-, HCO3- + CO32-, NO3-, F-, NH4-, PO42-, SiO2 and, pH, EC, 18O were measured within a one month period for all processes of rainfall, various runoff components and groundwater within the catchment from 17 boreholes distributed in the Hydrohill Catchment, few soil water samples were also included. The results show that: (a) all the runoff components are distinctly identifiable from both the relationships of Ca2+ versus Cl-/SO42-, EC versus Na+/(Na+ + Ca2+) and, from most inorganic ions individually; (b) the variation of inorganic ions in surface runoff is the biggest than that in other flow components; (c) most ions has its lowermost concentration in rainfall process but it increases as the generation depths of runoff components increased; (d) quantitatively, ion processes of rainfall and groundwater flow display as two end members of that of other runoff components; and (e) the 18O processes of rainfall and runoff components show some correlation with that of inorganic ions. The results also show that the rainfall input is not always the main source of inorganic ions of various runoff outputs due to the process of infiltration and dissolution resulted from the pre-event processes. The amount and sources of Cl- of runoff components with various generation mechanisms challenge the current method of groundwater recharge estimation using Cl-.

  12. Traffic Flow Prediction with Rainfall Impact Using a Deep Learning Method

    Directory of Open Access Journals (Sweden)

    Yuhan Jia

    2017-01-01

    Full Text Available Accurate traffic flow prediction is increasingly essential for successful traffic modeling, operation, and management. Traditional data driven traffic flow prediction approaches have largely assumed restrictive (shallow model architectures and do not leverage the large amount of environmental data available. Inspired by deep learning methods with more complex model architectures and effective data mining capabilities, this paper introduces the deep belief network (DBN and long short-term memory (LSTM to predict urban traffic flow considering the impact of rainfall. The rainfall-integrated DBN and LSTM can learn the features of traffic flow under various rainfall scenarios. Experimental results indicate that, with the consideration of additional rainfall factor, the deep learning predictors have better accuracy than existing predictors and also yield improvements over the original deep learning models without rainfall input. Furthermore, the LSTM can outperform the DBN to capture the time series characteristics of traffic flow data.

  13. How would peak rainfall intensity affect runoff predictions using conceptual water balance models?

    Directory of Open Access Journals (Sweden)

    B. Yu

    2015-06-01

    Full Text Available Most hydrological models use continuous daily precipitation and potential evapotranspiration for streamflow estimation. With the projected increase in mean surface temperature, hydrological processes are set to intensify irrespective of the underlying changes to the mean precipitation. The effect of an increase in rainfall intensity on the long-term water balance is, however, not adequately accounted for in the commonly used hydrological models. This study follows from a previous comparative analysis of a non-stationary daily series of stream flow of a forested watershed (River Rimbaud in the French Alps (area = 1.478 km2 (1966–2006. Non-stationarity in the recorded stream flow occurred as a result of a severe wild fire in 1990. Two daily models (AWBM and SimHyd were initially calibrated for each of three distinct phases in relation to the well documented land disturbance. At the daily and monthly time scales, both models performed satisfactorily with the Nash–Sutcliffe coefficient of efficiency (NSE varying from 0.77 to 0.92. When aggregated to the annual time scale, both models underestimated the flow by about 22% with a reduced NSE at about 0.71. Exploratory data analysis was undertaken to relate daily peak hourly rainfall intensity to the discrepancy between the observed and modelled daily runoff amount. Preliminary results show that the effect of peak hourly rainfall intensity on runoff prediction is insignificant, and model performance is unlikely to improve when peak daily precipitation is included. Trend analysis indicated that the large decrease of precipitation when daily precipitation amount exceeded 10–20 mm may have contributed greatly to the decrease in stream flow of this forested watershed.

  14. Using rainfall simulations to understand the relationship between precipitation, soil crust and infiltration in four agricultural soils

    Science.gov (United States)

    Angulo-Martinez, Marta; Alastrué, Juan; Moret-Fernández, David; Beguería, Santiago; López, Mariví; Navas, Ana

    2017-04-01

    Rainfall simulation experiments were carried out in order to study soil crust formation and its relation with soil infiltration parameters—sorptivity (S) and hydraulic conductivity (K)—on four common agricultural soils with contrasted properties; namely, Cambisol, Gypsisol, Solonchak, and Solonetz. Three different rainfall simulations, replicated three times each of them, were performed over the soils. Prior to rainfall simulations all soils were mechanically tilled with a rototiller to create similar soil surface conditions and homogeneous soils. Rainfall simulation parameters were monitored in real time by a Thies Laser Precipitation Monitor, allowing a complete characterization of simulated rainfall microphysics (drop size and velocity distributions) and integrated variables (accumulated rainfall, intensity and kinetic energy). Once soils dried after the simulations, soil penetration resistance was measured and soil hydraulic parameters, S and K, were estimated using the disc infiltrometry technique. There was little variation in rainfall parameters among simulations. Mean intensity and mean median diameter (D50) varied in simulations 1 ( 0.5 bar), 2 ( 0.8 bar) and 3 ( 1.2 bar) from 26.5 mm h-1 and 0.43 mm (s1) to 40.5 mm h-1 and 0.54 mm (s2) and 41.1 mm h-1 and 0.56 mm for (s3), respectively. Crust formation by soil was explained by D50 and subsequently by the total precipitation amount and the percentage of silt and clay in soil, being Cambisol and Gypsisol the soils that showed more increase in penetration resistance by simulation. All soils showed similar S values by simulations which were explained by rainfall intensity. Different patterns of K were shown by the four soils, which were explained by the combined effect of D50 and intensity, together with soil physico-chemical properties. This study highlights the importance of monitoring all precipitation parameters to determine their effect on different soil processes.

  15. Description of rainfall variability in Br hat -samhita of Varâha-mihira

    OpenAIRE

    Iyengar, RN

    2004-01-01

    Br hat -samhita of Varâha-mihira (5–6th century AD) provides valuable information on the approach in ancient India towards monsoon rainfall, including its measurement and forecasting. In this context, we come across a description of the expected amount of total seasonal rainfall depending on the first rains under the 27 naks atras of Indian astronomy. This provides a rough statistical picture of what might have been the rainfall and its variability in the region around Ujjain, where Varâha-mi...

  16. Interannual Rainfall Variability in North-East Brazil: Observation and Model Simulation

    Science.gov (United States)

    Harzallah, A.; Rocha de Aragão, J. O.; Sadourny, R.

    1996-08-01

    The relationship between interannual variability of rainfall in north-east Brazil and tropical sea-surface temperature is studied using observations and model simulations. The simulated precipitation is the average of seven independent realizations performed using the Laboratoire de Météorologie Dynamique atmospheric general model forced by the 1970-1988 observed sea-surface temperature. The model reproduces very well the rainfall anomalies (correlation of 091 between observed and modelled anomalies). The study confirms that precipitation in north-east Brazil is highly correlated to the sea-surface temperature in the tropical Atlantic and Pacific oceans. Using the singular value decomposition method, we find that Nordeste rainfall is modulated by two independent oscillations, both governed by the Atlantic dipole, but one involving only the Pacific, the other one having a period of about 10 years. Correlations between precipitation in north-east Brazil during February-May and the sea-surface temperature 6 months earlier indicate that both modes are essential to estimate the quality of the rainy season.

  17. Reclaimed mineland curve number response to temporal distribution of rainfall

    Science.gov (United States)

    Warner, R.C.; Agouridis, C.T.; Vingralek, P.T.; Fogle, A.W.

    2010-01-01

    The curve number (CN) method is a common technique to estimate runoff volume, and it is widely used in coal mining operations such as those in the Appalachian region of Kentucky. However, very little CN data are available for watersheds disturbed by surface mining and then reclaimed using traditional techniques. Furthermore, as the CN method does not readily account for variations in infiltration rates due to varying rainfall distributions, the selection of a single CN value to encompass all temporal rainfall distributions could lead engineers to substantially under- or over-size water detention structures used in mining operations or other land uses such as development. Using rainfall and runoff data from a surface coal mine located in the Cumberland Plateau of eastern Kentucky, CNs were computed for conventionally reclaimed lands. The effects of temporal rainfall distributions on CNs was also examined by classifying storms as intense, steady, multi-interval intense, or multi-interval steady. Results indicate that CNs for such reclaimed lands ranged from 62 to 94 with a mean value of 85. Temporal rainfall distributions were also shown to significantly affect CN values with intense storms having significantly higher CNs than multi-interval storms. These results indicate that a period of recovery is present between rainfall bursts of a multi-interval storm that allows depressional storage and infiltration rates to rebound. ?? 2010 American Water Resources Association.

  18. The linkage between household water consumption and rainfall in the semi-arid region of East Nusa Tenggara, Indonesia

    Science.gov (United States)

    Messakh, J. J.; Moy, D. L.; Mojo, D.; Maliti, Y.

    2018-01-01

    Several studies have shown that the amount of water consumption by communities will depend on the factors of water consumption patterns that are influenced by social, cultural, economic and local climate conditions. Research on the linkage between rainfall and household water consumption in semi-arid areas of Indonesia has never been done. This study has been conducted on 17 regions in NTT, and case study has taken samples in one town and one village. The research used survey and documentation method. The results show that the average amount of household water consumption in semi-arid region of East Nusa Tenggara is 107 liters / person / day. Statistical test results using Pearson correlation found r = -0.194 and sig = 0.448. This means that there is a negative correlation between rainfall and household water consumption. The greater the rainfall the smaller the consumption of water, or the smaller the rainfall the greater the consumption of water, but the linkage is not significant. Research shows that the amount of household water consumption will be influenced by many interrelated factors and none of the most dominant factors, including the size of the rainfall that occurs in a region.

  19. Heavy rainfall equations for Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Álvaro José Back

    2011-12-01

    Full Text Available Knowledge of intensity-duration-frequency (IDF relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.

  20. Measuring urban rainfall using microwave links from commercial cellular communication networks

    NARCIS (Netherlands)

    Overeem, A.; Leijnse, H.; Uijlenhoet, R.

    2011-01-01

    The estimation of rainfall using commercial microwave links is a new and promising measurement technique. Commercial link networks cover large parts of the land surface of the earth and have a high density, particularly in urban areas. Rainfall attenuates the electromagnetic signals transmitted

  1. Assessment of satellite rainfall products over the Andean plateau

    Science.gov (United States)

    Satgé, Frédéric; Bonnet, Marie-Paule; Gosset, Marielle; Molina, Jorge; Hernan Yuque Lima, Wilson; Pillco Zolá, Ramiro; Timouk, Franck; Garnier, Jérémie

    2016-01-01

    Nine satellite rainfall estimations (SREs) were evaluated for the first time over the South American Andean plateau watershed by comparison with rain gauge data acquired between 2005 and 2007. The comparisons were carried out at the annual, monthly and daily time steps. All SREs reproduce the salient pattern of the annual rain field, with a marked north-south gradient and a lighter east-west gradient. However, the intensity of the gradient differs among SREs: it is well marked in the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 (TMPA-3B42), Precipitation Estimation from remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Global Satellite Mapping of Precipitation (GSMaP) products, and it is smoothed out in the Climate prediction center MORPHing (CMORPH) products. Another interesting difference among products is the contrast in rainfall amounts between the water surfaces (Lake Titicaca) and the surrounding land. Some products (TMPA-3B42, PERSIANN and GSMaP) show a contradictory rainfall deficit over Lake Titicaca, which may be due to the emissivity contrast between the lake and the surrounding lands and warm rain cloud processes. An analysis differentiating coastal Lake Titicaca from inland pixels confirmed this trend. The raw or Real Time (RT) products have strong biases over the study region. These biases are strongly positive for PERSIANN (above 90%), moderately positive for TMPA-3B42 (28%), strongly negative for CMORPH (- 42%) and moderately negative for GSMaP (- 18%). The biases are associated with a deformation of the rain rate frequency distribution: GSMaP underestimates the proportion of rainfall events for all rain rates; CMORPH overestimates the proportion of rain rates below 2 mm day- 1; and the other products tend to overestimate the proportion of moderate to high rain rates. These biases are greatly reduced by the gauge adjustment in the TMPA-3B42, PERSIANN and CMORPH products, whereas a

  2. A relationship between leach rate of nuclear waste glass and residual amount of sodium on the glass surface

    International Nuclear Information System (INIS)

    Kamizono, Hiroshi; Banba, Tsunetaka

    1984-12-01

    Leach tests of simulated high-level waste glass were carried out in order to examine the quantitative relationship between the amount of elements on the sample surface and that in the leachate. An experimental equation was obtained expressing the relationship between the amount of Na on the sample surface and that in the leachate. This shows that it is possible in some cases to estimate the amount of Na in the leachate by measuring the amount of Na on the sample surface. One example of such an estimation was observed with the simulated high-level waste glass leached at 100 0 C in the presence of a backfill material. (author)

  3. Variability of water content useful in surface along a rainfall gradient Mediterranean; Variabilidad de la disposibilidad hidrica superficial para la vegetacion a lo largo de un gradiente pluviometrico

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Sinoga, J. D.; Martinez-Murillo, J. F.; Gabarron-Galeote, M. A.

    2009-07-01

    A climatic gradient was defined in South of spain with a great decreased of rainfall from West to East (>1,000 mm), which produces changes in vegetation and hydric resources. this study was carried out in five hill slopes under different climatic conditions and their aims were to analyze: the variability of available water along the gradient since 2002 to 2006, the key factors of it and the influence on the vegetal cover. Results showed that clay content had a great influence in the surface available water for plants, which did not decrease in the deerfield sites, where the amount of days with hydric deficient was lower. Relationships between vegetation and soil water were stronger in the more humid field sites, where existed a feedback between both properties. (Author) 4 refs.

  4. Near-Surface Geophysical Mapping of the Hydrological Response to an Intense Rainfall Event at the Field Scale

    Science.gov (United States)

    Martínez, G.; Vanderlinden, K.; Giraldez, J. V.; Espejo, A. J.; Muriel, J. L.

    2009-12-01

    Soil moisture plays an important role in a wide variety of biogeochemical fluxes in the soil-plant-atmosphere system and governs the (eco)hydrological response of a catchment to an external forcing such as rainfall. Near-surface electromagnetic induction (EMI) sensors that measure the soil apparent electrical conductivity (ECa) provide a fast and non-invasive means for characterizing this response at the field or catchment scale through high-resolution time-lapse mapping. Here we show how ECa maps, obtained before and after an intense rainfall event of 125 mm h-1, elucidate differences in soil moisture patterns and hydrologic response of an experimental field as a consequence of differed soil management. The dryland field (Vertisol) was located in SW Spain and cropped with a typical wheat-sunflower-legume rotation. Both, near-surface and subsurface ECa (ECas and ECad, respectively), were measured using the EM38-DD EMI sensor in a mobile configuration. Raw ECa measurements and Mean Relative Differences (MRD) provided information on soil moisture patterns while time-lapse maps were used to evaluate the hydrologic response of the field. ECa maps of the field, measured before and after the rainfall event showed similar patterns. The field depressions where most of water and sediments accumulated had the highest ECa and MRD values. The SE-oriented soil, which was deeper and more exposed to sun and wind, showed the lowest ECa and MRD. The largest differences raised in the central part of the field where a high ECa and MRD area appeared after the rainfall event as a consequence of the smaller soil depth and a possible subsurface flux concentration. Time-lapse maps of both ECa and MRD were also similar. The direct drill plots showed higher increments of ECa and MRD as a result of the smaller runoff production. Time-lapse ECa increments showed a bimodal distribution differentiating clearly the direct drill from the conventional and minimum tillage plots. However this kind

  5. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan

    Science.gov (United States)

    Hussain, Yawar; Satgé, Frédéric; Hussain, Muhammad Babar; Martinez-Carvajal, Hernan; Bonnet, Marie-Paule; Cárdenas-Soto, Martin; Roig, Henrique Llacer; Akhter, Gulraiz

    2018-02-01

    The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.

  6. Observed daily large-scale rainfall patterns during BOBMEX-1999

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    . Individual sci- entists and research institutes use these special datasets to ... including the data reporting no rain is very impor- tant to make the final merged dataset. Figures 2 and 3 show the total weekly rainfall amounts for different weeks in ...

  7. A soil moisture-rainfall feedback mechanism. 1. Theory and observations

    International Nuclear Information System (INIS)

    Eltahir, E.A.B.

    1998-01-01

    This paper presents a hypothesis regarding the fundamental role of soil moisture conditions in land-atmosphere interactions. We propose that wet soil moisture conditions over any large region should be associated with relatively large boundary layer moist static energy, which favors the occurrence of more rainfall. Since soil moisture conditions themselves reflect past occurrence of rainfall, the proposed hypothesis implies a positive feedback mechanism between soil moisture and rainfall. This mechanism is based on considerations of the energy balance at the land-atmosphere boundary, in contrast to similar mechanisms that were proposed in the past and that were based on the concepts of water balance and precipitation recycling. The control of soil moisture on surface albedo and Bowen ratio is the fundamental basis of the proposed soil moisture-rainfall feedback mechanism. The water content in the upper soil layer affects these two important properties of the land surface such that both variables decrease with any increase in the water content of the top soil layer. The direct effect of soil moisture on surface albedo implies that wet soil moisture conditions enhance net solar radiation. The direct effect of soil moisture on Bowen ratio dictates that wet soil moisture conditions would tend to enhance net terrestrial radiation at the surface through cooling of surface temperature, reduction of upwards emissions of terrestrial radiation, and simultaneous increase in atmospheric water vapor content and downwards flux of terrestrial radiation. Thus, under wet soil moisture conditions, both components of net radiation are enhanced, resulting in a larger total flux of heat from the surface into the boundary layer. This total flux represents the sum of the corresponding sensible and latent heat fluxes. Simultaneously, cooling of surface temperature should be associated with a smaller sensible heat flux and a smaller depth of the boundary layer

  8. Wheat yield vulnerability: relation to rainfall and suggestions for adaptation

    Directory of Open Access Journals (Sweden)

    Khalid Tafoughalti

    2018-04-01

    Full Text Available Wheat production is of paramount importance in the region of Meknes, which is mainly produced under rainfed conditions. It is the dominant cereal, the greater proportion being the soft type. During the past few decades, rainfall flaws have caused a number of cases of droughts. These flaws have seriously affecting wheat production. The main objective of this study is the assessment of rainfall variability at monthly, seasonal and annual scales and to determine their impact on wheat yields. To reduce this impact we suggested some mechanisms of adaptation. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model to evaluate the impact of rainfall on wheat yields. Data analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that soft wheat and hard wheat are strongly correlated with the period of January to March than with the whole growing-season. While they are adversely correlated with the mid-spring. This investigation concluded that synchronizing appropriate adaptation with the period of January to March was crucial to achieving success yield of wheat.

  9. Influence of radioactive contamination to agricultural products by rainfall during a nuclear accident

    International Nuclear Information System (INIS)

    Hwang, W. T.; Han, M. H.; Choi, Y. H.; Lee, H. S.; Lee, C. W.

    2001-01-01

    For the consideration of the effects on radioactive contamination of agricultural products by rainfall during a nuclear accident, the wet interception coefficients for the plants were derived, and the previous dynamic food chain model was also modified. From the results, radioactive contamination of agricultural products was greatly decreased by rainfall, and it decreased dramatically according to increase of rainfall amount. It means that the predictive contamination in agricultural products using the previous dynamic food chain model, in which dry interception to the plants is only considered, can be overestimated. Influence of rainfall on the contamination of agricultural products was the most sensitive for 131 I, and the least sensitive for 90 Sr

  10. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  11. Areal rainfall estimation using moving cars - computer experiments including hydrological modeling

    OpenAIRE

    Rabiei, Ehsan; Haberlandt, Uwe; Sester, Monika; Fitzner, Daniel; Wallner, Markus

    2016-01-01

    The need for high temporal and spatial resolution precipitation data for hydrological analyses has been discussed in several studies. Although rain gauges provide valuable information, a very dense rain gauge network is costly. As a result, several new ideas have been emerged to help estimating areal rainfall with higher temporal and spatial resolution. Rabiei et al. (2013) observed that moving cars, called RainCars (RCs), can potentially be a new source of data for measuring rainfall amounts...

  12. Tropical intraseasonal rainfall variability in the CFSR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiande [I.M. System Group Inc. at NOAA/NCEP/EMC, Camp Springs, MD (United States); Wang, Wanqiu [NOAA/NCEP/CPC, Camp Springs, MD (United States); Fu, Xiouhua [University of Hawaii at Manoa, IPRC, SOEST, Honolulu, HI (United States); Seo, Kyong-Hwan [Pusan National University, Department of Atmospheric Sciences, Busan (Korea, Republic of)

    2012-06-15

    While large-scale circulation fields from atmospheric reanalyses have been widely used to study the tropical intraseasonal variability, rainfall variations from the reanalyses are less focused. Because of the sparseness of in situ observations available in the tropics and strong coupling between convection and large-scale circulation, the accuracy of tropical rainfall from the reanalyses not only measures the quality of reanalysis rainfall but is also to some extent indicative of the accuracy of the circulations fields. This study analyzes tropical intraseasonal rainfall variability in the recently completed NCEP Climate Forecast System Reanalysis (CFSR) and its comparison with the widely used NCEP/NCAR reanalysis (R1) and NCEP/DOE reanalysis (R2). The R1 produces too weak rainfall variability while the R2 generates too strong westward propagation. Compared with the R1 and R2, the CFSR produces greatly improved tropical intraseasonal rainfall variability with the dominance of eastward propagation and more realistic amplitude. An analysis of the relationship between rainfall and large-scale fields using composites based on Madden-Julian Oscillation (MJO) events shows that, in all three NCEP reanalyses, the moisture convergence leading the rainfall maximum is near the surface in the western Pacific but is above 925 hPa in the eastern Indian Ocean. However, the CFSR produces the strongest large-scale convergence and the rainfall from CFSR lags the column integrated precipitable water by 1 or 2 days while R1 and R2 rainfall tends to lead the respective precipitable water. Diabatic heating related to the MJO variability in the CFSR is analyzed and compared with that derived from large-scale fields. It is found that the amplitude of CFSR-produced total heating anomalies is smaller than that of the derived. Rainfall variability from the other two recently produced reanalyses, the ECMWF Re-Analysis Interim (ERAI), and the Modern Era Retrospective-analysis for Research and

  13. Testing the Beta-Lognormal Model in Amazonian Rainfall Fields Using the Generalized Space q-Entropy

    Directory of Open Access Journals (Sweden)

    Hernán D. Salas

    2017-12-01

    Full Text Available We study spatial scaling and complexity properties of Amazonian radar rainfall fields using the Beta-Lognormal Model (BL-Model with the aim to characterize and model the process at a broad range of spatial scales. The Generalized Space q-Entropy Function (GSEF, an entropic measure defined as a continuous set of power laws covering a broad range of spatial scales, S q ( λ ∼ λ Ω ( q , is used as a tool to check the ability of the BL-Model to represent observed 2-D radar rainfall fields. In addition, we evaluate the effect of the amount of zeros, the variability of rainfall intensity, the number of bins used to estimate the probability mass function, and the record length on the GSFE estimation. Our results show that: (i the BL-Model adequately represents the scaling properties of the q-entropy, S q, for Amazonian rainfall fields across a range of spatial scales λ from 2 km to 64 km; (ii the q-entropy in rainfall fields can be characterized by a non-additivity value, q s a t, at which rainfall reaches a maximum scaling exponent, Ω s a t; (iii the maximum scaling exponent Ω s a t is directly related to the amount of zeros in rainfall fields and is not sensitive to either the number of bins to estimate the probability mass function or the variability of rainfall intensity; and (iv for small-samples, the GSEF of rainfall fields may incur in considerable bias. Finally, for synthetic 2-D rainfall fields from the BL-Model, we look for a connection between intermittency using a metric based on generalized Hurst exponents, M ( q 1 , q 2 , and the non-extensive order (q-order of a system, Θ q, which relates to the GSEF. Our results do not exhibit evidence of such relationship.

  14. A simulation of rainfall infiltration based on two-phase flow

    Science.gov (United States)

    Wang, Jun; Xi, Niannian; Liu, Gang; Hao, Shuang

    2016-04-01

    Rainfall infiltration in slope usually is one of major reasons cause landslide, which involves multiphase flow coupling with soil, water and gas. In order to study the mechanism of landslide caused by rainfall infiltration, a simulation of rainfall infiltration of DaPing slope, which locates in the Three Gorges Region of China, is presented based on the numerical solution of governing equations of two-phase flow in this paper. The results of this research suggest that there are two sections can be divided in the surface of slope, one is inflow area and the other is overflow area, according to where it is infiltration and discharge. The general inflow area is on the upside of slope, while the overflow area is on the underside. The middle section of slope is on a fluctuant position between inflow and overflow area, which is dramatically affected by the water content inside of slope. Moreover, the average rate of infiltration is more stable in both inflow and overflow area, whose numerical value is depend on the geometry and transmission characteristics of slope. And the factors of rainfall characteristics, surface flow and temperature have little effect on them. Furthermore, in the inflow area, when rainfall intensity is higher than infiltration the rain on the surface of slope will run off, otherwise water and gas will completely infiltrate through soil. The situation is different in the overflow area whose overland flow condition is depended on whether it is saturated or not inside of slope. When it is saturated in the slope, there is no infiltration in the overflow area. But when it is unsaturated, the infiltration intensity will equal to rainfall intensity. In a summary, the difference from inflow and overflow area is the evidence that the landslide may likely to happen on the slope of overflow area when it comes to a rainfall. It is disadvantageous for slope stability when transmitting the pressure of saturated water weight at the top of slope through the pore

  15. Monthly Rainfall Erosivity Assessment for Switzerland

    Science.gov (United States)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation

  16. Rainfall Simulations of Typhoon Morakot with Controlled Translation Speed Based on EnKF Data Assimilation

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiung Yen

    2011-01-01

    Full Text Available Typhoon Morakot produced record-breaking accumulated rainfall over southern Taiwan in August 2009. The combination of several factors resulted in this extreme weather event: the steep terrain in Taiwan, the prevailing south-westerly flow in the monsoon trough, Typhoon Goni over the northern South China Sea, and the slow translation speed of Morakot itself over Taiwan. In this study, the influence of the translation speed is particularly emphasized. Based on the EnKF data assimilation, an innovative method is applied to perform ensemble simulations with several designated translation speeds of Morakot using the WRF model. Thus the influence of the translation speed on the amount of accumulated rainfall over Taiwan can be quantitatively evaluated. In the control simulation with observed translation speed, the maximum amount and geographic pattern of accumulated rainfall during the landfall period of Morakot are generally consistent with the observations, though the detailed overall distributions of accumulated rainfall is mostly underestimated, resulting in the low bias of the frequency distribution of the accumulated rainfall. In a simulation with nearly-doubled translation speed of Morakot, the maximum accumulated rainfall is decreased by 33% than that in the control simulation, while the rainfall distribution over Taiwan remains similar. In addition, the 28 ensemble members can further provide additional information in terms of their spread and other statistics. The results from ensemble members reveal the usefulness of ensemble simulations for the quantitative precipitation forecast.

  17. Rainfall and streamflow from small tree-covered and fern-covered and burned watersheds in Hawaii

    Science.gov (United States)

    H. W. Anderson; P. D. Duffy; Teruo Yamamoto

    1966-01-01

    Streamflow from two 30-acre watersheds near Honolulu was studied by using principal components regression analysis. Models using data on monthly, storm, and peak discharges were tested against several variables expressing amount and intensity of rainfall, and against variables expressing antecedent rainfall. Explained variation ranged from 78 to 94 percent. The...

  18. Development of Radar-Satellite Blended QPF (Quantitative Precipitation Forecast) Technique for heavy rainfall

    Science.gov (United States)

    Jang, Sangmin; Yoon, Sunkwon; Rhee, Jinyoung; Park, Kyungwon

    2016-04-01

    Due to the recent extreme weather and climate change, a frequency and size of localized heavy rainfall increases and it may bring various hazards including sediment-related disasters, flooding and inundation. To prevent and mitigate damage from such disasters, very short range forecasting and nowcasting of precipitation amounts are very important. Weather radar data very useful in monitoring and forecasting because weather radar has high resolution in spatial and temporal. Generally, extrapolation based on the motion vector is the best method of precipitation forecasting using radar rainfall data for a time frame within a few hours from the present. However, there is a need for improvement due to the radar rainfall being less accurate than rain-gauge on surface. To improve the radar rainfall and to take advantage of the COMS (Communication, Ocean and Meteorological Satellite) data, a technique to blend the different data types for very short range forecasting purposes was developed in the present study. The motion vector of precipitation systems are estimated using 1.5km CAPPI (Constant Altitude Plan Position Indicator) reflectivity by pattern matching method, which indicates the systems' direction and speed of movement and blended radar-COMS rain field is used for initial data. Since the original horizontal resolution of COMS is 4 km while that of radar is about 1 km, spatial downscaling technique is used to downscale the COMS data from 4 to 1 km pixels in order to match with the radar data. The accuracies of rainfall forecasting data were verified utilizing AWS (Automatic Weather System) observed data for an extreme rainfall occurred in the southern part of Korean Peninsula on 25 August 2014. The results of this study will be used as input data for an urban stream real-time flood early warning system and a prediction model of landslide. Acknowledgement This research was supported by a grant (13SCIPS04) from Smart Civil Infrastructure Research Program funded by

  19. Monsoon rainfall behaviour in recent times on local/regional scale in India

    International Nuclear Information System (INIS)

    Singh, Surender; Rao, V.U.M.; Singh, Diwan

    2002-08-01

    An attempt has been made here to investigate the local/regional monsoon rainfall behaviour in the meteorological sub-division no. 13 comprising the areas of Haryana, Delhi and Chandigarh in India. The monthly monsoon rainfall data of 30 years (1970-99) of different locations in the region were used for the investigation. All locations except Delhi received more rainfall in monsoon season during the decade (1990-99) showing general increasing trend in the rainfall behaviour in recent times. The mean monsoon rainfall at various locations ranged between 324.8 mm at Sirsa and 974.9 mm at Chandigarh. The major amount of monsoon rainfall occurred during the month of July and August in the entire region. Monthly mean rainfall ranged between 37.5 to 144.9 mm (June), 130.6 to 298.2 mm (July), 92.6 to 313.6 mm (August) and 44.0 to 149.4mm (September) at different locations. All the locations in the region exhibited overall increasing trend in monsoon rainfall over the period under study. All locations in the region received their lowest monsoon rainfall in the year 1987 which was a drought year and the season's rainfall ranged between 56.1 mm (Sirsa) and 290.0 mm (Delhi) during this year. Many of the locations observed clusters of fluctuations in their respective monsoon rainfall. The statistical summaries of historical data series (1970-99) gave rainfall information on various time scale. Such information acquires value through its influence on the decision making of the ultimate users. (author)

  20. Karst Aquifer in Qatar and its bearing on Natural Rainfall Recharge

    Science.gov (United States)

    Baalousha, Husam; Ackerer, Philippe

    2017-04-01

    Qatar is an arid country with little rainfall and high evaporation. Surface water is non-existent so aquifer is the only source of natural water. The annual long-term averages of rainfall and evaporation are 80 mm and more than 2000 mm, respectively. Despite the low rainfall and high evaporation, natural recharge from rainfall occurs at an average of approximately 50 million m3 per year. Rainfall recharge in Qatar takes in land depressions that occur all over the country. These depressions are a result of land collapse due to sinkholes and cavity in the limestone formation. In the northern part of the country, karst features occur as a result of dissolution of limestone, which leads to land depressions. Results of this study shows groundwater recharge occurs in land depression areas, especially in the northern part of the country, where surface runoff accumulates in these land depressions and recharges the aquifer. This paper was made possible by NPRP grant # [NPRP 9-030-1-008] from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the author[s]."

  1. Applying volumetric weather radar data for rainfall runoff modeling: The importance of error correction.

    Science.gov (United States)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.; Delobbe, L.; Weerts, A.; Reggiani, P.

    2009-04-01

    In the current study half a year of volumetric radar data for the period October 1, 2002 until March 31, 2003 is being analyzed which was sampled at 5 minutes intervals by C-band Doppler radar situated at an elevation of 600 m in the southern Ardennes region, Belgium. During this winter half year most of the rainfall has a stratiform character. Though radar and raingauge will never sample the same amount of rainfall due to differences in sampling strategies, for these stratiform situations differences between both measuring devices become even larger due to the occurrence of a bright band (the point where ice particles start to melt intensifying the radar reflectivity measurement). For these circumstances the radar overestimates the amount of precipitation and because in the Ardennes bright bands occur within 1000 meter from the surface, it's detrimental effects on the performance of the radar can already be observed at relatively close range (e.g. within 50 km). Although the radar is situated at one of the highest points in the region, very close to the radar clutter is a serious problem. As a result both nearby and farther away, using uncorrected radar results in serious errors when estimating the amount of precipitation. This study shows the effect of carefully correcting for these radar errors using volumetric radar data, taking into account the vertical reflectivity profile of the atmosphere, the effects of attenuation and trying to limit the amount of clutter. After applying these correction algorithms, the overall differences between radar and raingauge are much smaller which emphasizes the importance of carefully correcting radar rainfall measurements. The next step is to assess the effect of using uncorrected and corrected radar measurements on rainfall-runoff modeling. The 1597 km2 Ourthe catchment lies within 60 km of the radar. Using a lumped hydrological model serious improvement in simulating observed discharges is found when using corrected radar

  2. Topographic relationships for design rainfalls over Australia

    Science.gov (United States)

    Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.

    2016-02-01

    Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as

  3. Stable Isotopic Composition of Precipitation from 2015-2016 Central Texas Rainfall Events

    Science.gov (United States)

    Maupin, C. R.; McChesney, C. L.; Roark, B.; Gorman, M. K.; Housson, A. L.

    2016-12-01

    Central Texas lies within the Southern Great Plains, a region where rainfall is of tremendous agricultural and associated socioeconomic importance. Paleoclimate records from speleothems in central Texas caves may assist in placing historical and recent drought and pluvial events in the context of natural variability. Effective interpretation of such records requires the nature and origin of variations in the meteoric δ18O signal transmitted from cloud to speleothem to be understood. Here we present a record of meteoric δ18O and δD from each individual precipitation event (δ18Op and δDp), collected by rain gauge in Austin, Texas, USA, from April 2015 through 2016. Backwards hybrid single-particle Lagrangian integrated trajectories (HYSPLITs) indicate the broader moisture source for each precipitation event during this time was the Gulf of Mexico. The local meteoric water line is within error of the global meteoric water line, suggesting minimal sourcing of evaporated continental vapor for precipitation. Total monthly rainfall followed the climatological pattern of a dual boreal spring and fall maximum, with highly variable event δ18Op and δDp values. Surface temperature during precipitation often exerts control over continental and mid latitude δ18Op values, but is not significantly correlated to study site δ18Op (p>0.10). Amount of rain falling during each precipitation event ("amount effect") explains a significant 18% of variance in δ18Op. We hypothesize that this relationship can be attributed to the following: 1) minimal recycling of continental water vapor during the study period; 2) the presence of synoptic conditions favoring intense boreal spring and fall precipitation, driven by a developing, and subsequently in-place, strong ENSO event coupled with a southerly flow from the open Gulf of Mexico; and 3) the meteorological nature of the predominant precipitating events over Texas during this time, mesoscale convective systems, which are known to

  4. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    Science.gov (United States)

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important

  5. Rainfall simulators - innovations seeking rainfall uniformity and automatic flow rate measurements

    Science.gov (United States)

    Bauer, Miroslav; Kavka, Petr; Strouhal, Luděk; Dostál, Tomáš; Krása, Josef

    2016-04-01

    Field rainfall simulators are used worldwide for many experimental purposes, such as runoff generation and soil erosion research. At CTU in Prague a laboratory simulator with swinging nozzles VeeJet has been operated since 2001. Since 2012 an additional terrain simulator is being used with 4 fixed FullJet 40WSQ nozzles with 2,4 m spacing and operating over two simultaneously sprinkled experimental plots sizing 8x2 and 1x1 m. In parallel to other research projects a specific problem was solved: improving rainfall spatial uniformity and overall intensity and surface runoff measurements. These fundamental variables significantly affect investigated processes as well as resulting water balance of the plot, therefore they need to be determined as accurately as possible. Although the original nozzles setting produced (commonly used) Christiansen uniformity index CU over 80 %, detailed measurements proved this index insufficient and showed many unrequired rainfall extremes within the plot. Moreover the number of rainfall intensity scenarios was limited and some of them required problematic multi-pressure operation of the water distribution system. Therefore the simulator was subjected to many substantial changes in 2015. Innovations ranged from pump intensification to control unit upgrade. As essential change was considered increase in number of nozzles to 9 in total and reducing their spacing to 1,2 m. However new uniformity measurements did not bring any significant improvement. Tested scenarios showed equal standard deviations of interpolated intensity rasters and equal or slightly lower CU index. Imperfections of sprinkling nozzles were found to be the limiting factor. Still many other benefits were brought with the new setup. Whole experimental plot 10x2 m is better covered with the rainfall while the water consumption is retained. Nozzles are triggered in triplets, which enables more rainfall intensity scenarios. Water distribution system is more stable due to

  6. Persistence Characteristics of Australian Rainfall Anomalies

    Science.gov (United States)

    Simmonds, Ian; Hope, Pandora

    1997-05-01

    Using 79 years (1913-1991) of Australian monthly precipitation data we examined the nature of the persistence of rainfall anomalies. Analyses were performed for four climate regions covering the country, as well as for the entire Australian continent. We show that rainfall over these regions has high temporal variability and that annual rainfall amounts over all five sectors vary in phase and are, with the exception of the north-west region, significantly correlated with the Southern Oscillation Index (SOI). These relationships were particularly strong during the spring season.It is demonstrated that Australian rainfall exhibits statistically significant persistence on monthly, seasonal, and (to a limited extent) annual time-scales, up to lags of 3 months and one season and 1 year. The persistence showed strong seasonal dependence, with each of the five regions showing memory out to 4 or 5 months from winter and spring. Many aspects of climate in the Australasian region are known to have undergone considerable changes about 1950. We show this to be true for persistence also; its characteristics identified for the entire record were present during the 1951--1980 period, but virtually disappeared in the previous 30-year period.Much of the seasonal distribution of rainfall persistence on monthly time-scales, particularly in the east, is due to the influence of the SOI. However, most of the persistence identified in winter and spring in the north-west is independent of the ENSO phenomenon.Rainfall anomalies following extreme dry and wet months, seasons and years (lowest and highest two deciles) persisted more than would be expected by chance. For monthly extreme events this was more marked in the winter semester for the wet events, except in the south-east region. In general, less persistence was found for the extreme seasons. Although the persistence of dry years was less than would have been expected by chance, the wet years appear to display persistence.

  7. Projections of West African summer monsoon rainfall extremes from two CORDEX models

    Science.gov (United States)

    Akinsanola, A. A.; Zhou, Wen

    2018-05-01

    Global warming has a profound impact on the vulnerable environment of West Africa; hence, robust climate projection, especially of rainfall extremes, is quite important. Based on two representative concentration pathway (RCP) scenarios, projected changes in extreme summer rainfall events over West Africa were investigated using data from the Coordinated Regional Climate Downscaling Experiment models. Eight (8) extreme rainfall indices (CDD, CWD, r10mm, r20mm, PRCPTOT, R95pTOT, rx5day, and sdii) defined by the Expert Team on Climate Change Detection and Indices were used in the study. The performance of the regional climate model (RCM) simulations was validated by comparing with GPCP and TRMM observation data sets. Results show that the RCMs reasonably reproduced the observed pattern of extreme rainfall over the region and further added significant value to the driven GCMs over some grids. Compared to the baseline period 1976-2005, future changes (2070-2099) in summer rainfall extremes under the RCP4.5 and RCP8.5 scenarios show statistically significant decreasing total rainfall (PRCPTOT), while consecutive dry days and extreme rainfall events (R95pTOT) are projected to increase significantly. There are obvious indications that simple rainfall intensity (sdii) will increase in the future. This does not amount to an increase in total rainfall but suggests a likelihood of greater intensity of rainfall events. Overall, our results project that West Africa may suffer more natural disasters such as droughts and floods in the future.

  8. Influence of the sea surface temperature anomaly over the Indian Ocean in March on the summer rainfall in Xinjiang

    Science.gov (United States)

    Zhou, Yang; Huang, Anning; Zhao, Yong; Yang, Qing; Jiang, Jing; La, Mengke

    2015-02-01

    This study explores the relationship between the sea surface temperature over the Indian Ocean (IOSST) in March and the summer rainfall in Xinjiang. In the observations, the IOSST in March significantly correlates with the summer rainfall in Xinjiang with a correlation coefficient of about 0.49 during 1961-2007. This relationship is independent from the El Niño Southern Oscillation (ENSO), with a partial correlation coefficient of about 0.40-0.48 controlling for the ENSO indices from December to March. In addition to the observations, three sets of numerical sensitivity experiments are conducted with a regional climate model (RegCM4.3). The model results show that warm IOSST can excite a negative anomaly of geopotential height at 500 hPa over the Indian Ocean in March. This anomaly stays over the tropical Indian Ocean, and then propagates north to central Asia in June. Consequently, the anomalous wind associated with this geopotential height anomaly transports moisture from the Persian Gulf and the coast of Iran to Xinjiang, passing over Pakistan and the Tibetan Plateau. Therefore, the warm (cold) IOSST in March tends to cause the increase (decrease) of the summer rainfall over Xinjiang, especially in the Tian Shan and Kunlun Mountains.

  9. ICUD-0471 Weather radar rainfall for design of urban storm water systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Wright, D. B.; Nielsen, Jesper Ellerbæk

    2017-01-01

    Long continuous series of high-resolution radar rainfall series provides valuable information on spatial and temporal variability of rainfall, which can be used in design of urban drainage systems. In design of especially large drainage systems with complex flow patterns (and potentially surface ...

  10. Preferences of dairy cows for three stall surface materials with small amounts of bedding.

    Science.gov (United States)

    Norring, M; Manninen, E; de Passillé, A M; Rushen, J; Saloniemi, H

    2010-01-01

    Farmers' concerns about the economy, cost of labor, and hygiene have resulted in reduced use of organic bedding in stalls for dairy cows; however, the reduced use of organic bedding possibly impairs cow comfort. The effects of different stall surface materials were evaluated in an unheated building in which only a small amount of bedding was used. The lying time and preferences of 18 cows using 3 stall surface materials (concrete, soft rubber mat, and sand) were compared. All materials were lightly bedded with a small amount of straw, and the amount of straw added to each stall was measured. The cows only had access to stalls of one surface type while their lying time was observed. Lying times were longest on the rubber mats compared with other surfaces (rubber mat 768; concrete 727; sand 707+/-16 min/d). In a preference test, cows had access to 2 of the 3 types of stalls for 10 d and their stall preference was measured. Cows preferred stalls with rubber mats to stalls with a concrete floor (median 73 vs. 18 from a total of 160 observations per day; interquartile range was 27 and 12, respectively), but showed no preference for sand stalls compared with stalls with a concrete floor or with rubber mats. More straw was needed on sand stalls compared with concrete or mat (638+/-13 g/d on sand, 468+/-10 g/d on concrete, and 464+/-8 g/d on rubber mats). Lying times on bedded mats indicated that mats were comfortable for the cows. If availability or cost of bedding material requires limiting the amount of bedding used, rubber mats may help maintain cow comfort. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Heavy Rainfall Episodes in the Eastern Northeast Brazil Linked to Large-Scale Ocean-Atmosphere Conditions in the Tropical Atlantic

    Directory of Open Access Journals (Sweden)

    Yves K. Kouadio

    2012-01-01

    Full Text Available Relationships between simultaneous occurrences of distinctive atmospheric easterly wave (EW signatures that cross the south-equatorial Atlantic, intense mesoscale convective systems (lifespan > 2 hour that propagate westward over the western south-equatorial Atlantic, and subsequent strong rainfall episodes (anomaly > 10 mm·day−1 that occur in eastern Northeast Brazil (ENEB are investigated. Using a simple diagnostic analysis, twelve cases with EW lifespan ranging between 3 and 8 days and a mean velocity of 8 m·s−1 were selected and documented during each rainy season of 2004, 2005, and 2006. These cases, which represent 50% of the total number of strong rainfall episodes and 60% of the rainfall amount over the ENEB, were concomitant with an acceleration of the trade winds over the south-equatorial Atlantic, an excess of moisture transported westward from Africa to America, and a strengthening of the convective activity in the oceanic region close to Brazil. Most of these episodes occurred during positive sea surface temperature anomaly patterns over the entire south-equatorial Atlantic and low-frequency warm conditions within the oceanic mixing layer. A real-time monitoring and the simulation of this ocean-atmosphere relationship could help in forecasting such dramatic rainfall events.

  12. Climatology and Spatio-Temporal Variability of Wintertime Total and Extreme Rainfall in Thailand during 1970-2012

    Directory of Open Access Journals (Sweden)

    Atsamon Limsakul

    2017-07-01

    Full Text Available This study aims at examining wintertime (December-January-February; DJF climatology and spatio-temporal variability of Thailand’s total and extreme rainfall during 1970-2012. Analysis showed that the area along the Gulf of Thailand’s eastern coast not only received much amount of rainfall but also underwent great extremes and variances during the northeast monsoon (NEM winters. Empirical Orthogonal Function (EOF analysis similarly revealed that the leading mode of each DJF total or extreme rainfall index was marked by maximum loadings concentrated at the stations located at the exposed area of the NEM flow. Correlation analysis indicated that the leading EOF mode of DJF total and extreme indices in Thailand tended to be higher (lower than normal during strong (weak East Asian Winter Monsoon (EAWM. On longer timescales, the recent decadal change observed in the leading EOF mode of all rainfall indices has been coincident with re-amplification of the EAWM taken place since the early/mid 2000. The leading EOF mode of DJF total and extreme rainfall indices in Thailand also exhibited strong correlations with the tropical-subtropical Pacific Ocean surface temperatures. It was characterized as the Pacific Decadal Oscillation (PDO/El Niño Southern Oscillation (ENSO-related boomerang-shaped spatial patterns, resembling the typical mature phases of the La Niña event and the PDO cool epoch. Based on our analysis, it is reasonable to believe that the anomalies of the NEM and other key EAWM-related circulations are likely to be the possible causes of DJF total and extreme rainfall variations in Thailand. In addition, the ENSO and PDO as the primary global atmospheric external forcing are likely to exert their influence on wintertime Thailand’s climate via modulating the EAWM/NEM-related circulations anomalies.

  13. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  14. Sediment yield during typhoon events in relation to landslides, rainfall, and catchment areas in Taiwan

    Science.gov (United States)

    Chen, Chi-Wen; Oguchi, Takashi; Hayakawa, Yuichi S.; Saito, Hitoshi; Chen, Hongey; Lin, Guan-Wei; Wei, Lun-Wei; Chao, Yi-Chiung

    2018-02-01

    Debris sourced from landslides will result in environmental problems such as increased sediment discharge in rivers. This study analyzed the sediment discharge of 17 main rivers in Taiwan during 14 typhoon events, selected from the catchment area and river length, that caused landslides according to government reports. The measured suspended sediment and water discharge, collected from hydrometric stations of the Water Resources Agency of Taiwan, were used to establish rating-curve relationships, a power-law relation between them. Then sediment discharge during typhoon events was estimated using the rating-curve method and the measured data of daily water discharge. Positive correlations between sediment discharge and rainfall conditions for each river indicate that sediment discharge increases when a greater amount of rainfall or a higher intensity of rainfall falls during a typhoon event. In addition, the amount of sediment discharge during a typhoon event is mainly controlled by the total amount of rainfall, not by peak rainfall. Differences in correlation equations among the rivers suggest that catchments with larger areas produce more sediment. Catchments with relatively low sediment discharge show more distinct increases in sediment discharge in response to increases in rainfall, owing to the little opportunity for deposition in small catchments with high connectivity to rivers and the transportation of the majority of landslide debris to rivers during typhoon events. Also, differences in geomorphic and geologic conditions among catchments around Taiwan lead to a variety of suspended sediment dynamics and the sediment budget. Positive correlation between average sediment discharge and average area of landslides during typhoon events indicates that when larger landslides are caused by heavier rainfall during a typhoon event, more loose materials from the most recent landslide debris are flushed into rivers, resulting in higher sediment discharge. The high

  15. Assessment of runoff contributing catchment areas in rainfall runoff modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Johansen, C.; Schaarup-Jensen, Kjeld

    2006-01-01

    In numerical modelling of rainfall caused runoff in urban sewer systems an essential parameter is the hydrological reduction factor which defines the percentage of the impervious area contributing to the surface flow towards the sewer. As the hydrological processes during a rainfall are difficult...... to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till now...... recommended literature values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literature values of the hydrological reduction factor are over-estimated for this type of catchment. In addition, different catchment descriptions...

  16. Further developments of the Neyman-Scott clustered point process for modeling rainfall

    Science.gov (United States)

    Cowpertwait, Paul S. P.

    1991-07-01

    This paper provides some useful results for modeling rainfall. It extends work on the Neyman-Scott cluster model for simulating rainfall time series. Several important properties have previously been found for the model, for example, the expectation and variance of the amount of rain captured in an arbitrary time interval (Rodriguez-Iturbe et al., 1987a), In this paper additional properties are derived, such as the probability of an arbitrary interval of any chosen length being dry. In applications this is a desirable property to have, and is often used for fitting stochastic rainfall models to field data. The model is currently being used in rainfall time series research directed toward improving sewage systems in the United Kingdom. To illustrate the model's performance an example is given, where the model is fitted to 10 years of hourly data taken from Blackpool, England.

  17. Warning Model for Shallow Landslides Induced by Extreme Rainfall

    Directory of Open Access Journals (Sweden)

    Lien-Kwei Chien

    2015-08-01

    Full Text Available In this study, the geophysical properties of the landslide-prone catchment of the Gaoping River in Taiwan were investigated using zones based on landslide history in conjunction with landslide analysis using a deterministic approach based on the TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope-Stability model. Typhoon Morakot in 2009 was selected as a simulation scenario to calibrate the combination of geophysical parameters in each zone before analyzing changes in the factor of safety (FS. Considering the amount of response time required for typhoons, suitable FS thresholds for landslide warnings are proposed for each town in the catchment area. Typhoon Fanapi of 2010 was used as a test scenario to verify the applicability of the FS as well as the efficacy of the cumulative rainfall thresholds derived in this study. Finally, the amount of response time provided by the FS thresholds in cases of yellow and red alerts was determined. All five of the landslide events reported by the Soil and Water Conservation Bureau were listed among the unstable sites identified in the proposed model, thereby demonstrating its effectiveness and accuracy in determining unstable areas and areas that require evacuation. These cumulative rainfall thresholds provide a valuable reference to guide disaster prevention authorities in the issuance of yellow and red alerts with the ability to reduce losses and save lives.

  18. A simulation-optimization model for Stone column-supported embankment stability considering rainfall effect

    International Nuclear Information System (INIS)

    Deb, Kousik; Dhar, Anirban; Purohit, Sandip

    2016-01-01

    Landslide due to rainfall has been and continues to be one of the most important concerns of geotechnical engineering. The paper presents the variation of factor of safety of stone column-supported embankment constructed over soft soil due to change in water level for an incessant period of rainfall. A combined simulation-optimization based methodology has been proposed to predict the critical surface of failure of the embankment and to optimize the corresponding factor of safety under rainfall conditions using an evolutionary genetic algorithm NSGA-II (Non-Dominated Sorted Genetic Algorithm-II). It has been observed that the position of water table can be reliably estimated with varying periods of infiltration using developed numerical method. The parametric study is presented to study the optimum factor of safety of the embankment and its corresponding critical failure surface under the steady-state infiltration condition. Results show that in case of floating stone columns, period of infiltration has no effect on factor of safety. Even critical failure surfaces for a particular floating column length remain same irrespective of rainfall duration

  19. A simulation-optimization model for Stone column-supported embankment stability considering rainfall effect

    Energy Technology Data Exchange (ETDEWEB)

    Deb, Kousik, E-mail: kousik@civil.iitkgp.ernet.in [Associate Professor, Department of Civil Engineering, IIT Kharagpur, Kharagpur-721302 (India); Dhar, Anirban, E-mail: anirban@civil.iitkgp.ernet.in [Assistant Professor, Department of Civil Engineering, IIT Kharagpur, Kharagpur-721302 (India); Purohit, Sandip, E-mail: sandip.purohit91@gmail.com [Former B.Tech Student, Department of Civil Engineering, NIT Rourkela, Rourkela (India)

    2016-02-01

    Landslide due to rainfall has been and continues to be one of the most important concerns of geotechnical engineering. The paper presents the variation of factor of safety of stone column-supported embankment constructed over soft soil due to change in water level for an incessant period of rainfall. A combined simulation-optimization based methodology has been proposed to predict the critical surface of failure of the embankment and to optimize the corresponding factor of safety under rainfall conditions using an evolutionary genetic algorithm NSGA-II (Non-Dominated Sorted Genetic Algorithm-II). It has been observed that the position of water table can be reliably estimated with varying periods of infiltration using developed numerical method. The parametric study is presented to study the optimum factor of safety of the embankment and its corresponding critical failure surface under the steady-state infiltration condition. Results show that in case of floating stone columns, period of infiltration has no effect on factor of safety. Even critical failure surfaces for a particular floating column length remain same irrespective of rainfall duration.

  20. Sensitivity of Rainfall Extremes Under Warming Climate in Urban India

    Science.gov (United States)

    Ali, H.; Mishra, V.

    2017-12-01

    Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.

  1. Daily rainfall statistics of TRMM and CMORPH: A case for trans-boundary Gandak River basin

    Science.gov (United States)

    Kumar, Brijesh; Patra, Kanhu Charan; Lakshmi, Venkat

    2016-07-01

    Satellite precipitation products offer an opportunity to evaluate extreme events (flood and drought) for areas where rainfall data are not available or rain gauge stations are sparse. In this study, daily precipitation amount and frequency of TRMM 3B42V.7 and CMORPH products have been validated against daily rain gauge precipitation for the monsoon months (June-September or JJAS) from 2005-2010 in the trans-boundary Gandak River basin. The analysis shows that the both TRMM and CMORPH can detect rain and no-rain events, but they fail to capture the intensity of rainfall. The detection of precipitation amount is strongly dependent on the topography. In the plains areas, TRMM product is capable of capturing high-intensity rain events but in the hilly regions, it underestimates the amount of high-intensity rain events. On the other hand, CMORPH entirely fails to capture the high-intensity rain events but does well with low-intensity rain events in both hilly regions as well as the plain region. The continuous variable verification method shows better agreement of TRMM rainfall products with rain gauge data. TRMM fares better in the prediction of probability of occurrence of high-intensity rainfall events, but it underestimates intensity at high altitudes. This implies that TRMM precipitation estimates can be used for flood-related studies only after bias adjustment for the topography.

  2. Improving rainfall representation for large-scale hydrological modelling of tropical mountain basins

    Science.gov (United States)

    Zulkafli, Zed; Buytaert, Wouter; Onof, Christian; Lavado, Waldo; Guyot, Jean-Loup

    2013-04-01

    Errors in the forcing data are sometimes overlooked in hydrological studies even when they could be the most important source of uncertainty. The latter particularly holds true in tropical countries with short historical records of rainfall monitoring and remote areas with sparse rain gauge network. In such instances, alternative data such as the remotely sensed precipitation from the TRMM (Tropical Rainfall Measuring Mission) satellite have been used. These provide a good spatial representation of rainfall processes but have been established in the literature to contain volumetric biases that may impair the results of hydrological modelling or worse, are compensated during model calibration. In this study, we analysed precipitation time series from the TMPA (TRMM Multiple Precipitation Algorithm, version 6) against measurements from over 300 gauges in the Andes and Amazon regions of Peru and Ecuador. We found moderately good monthly correlation between the pixel and gauge pairs but a severe underestimation of rainfall amounts and wet days. The discrepancy between the time series pairs is particularly visible over the east side of the Andes and may be attributed to localized and orographic-driven high intensity rainfall, which the satellite product may have limited skills at capturing due to technical and scale issues. This consequently results in a low bias in the simulated streamflow volumes further downstream. In comparison, with the recently released TMPA, version 7, the biases reduce. This work further explores several approaches to merge the two sources of rainfall measurements, each of a different spatial and temporal support, with the objective of improving the representation of rainfall in hydrological simulations. The methods used are (1) mean bias correction (2) data assimilation using Kalman filter Bayesian updating. The results are evaluated by means of (1) a comparison of runoff ratios (the ratio of the total runoff and the total precipitation over an

  3. Canopy rainfall partitioning across an urbanization gradient in forest structure as characterized by terrestrial LiDAR

    Science.gov (United States)

    Mesta, D. C.; Van Stan, J. T., II; Yankine, S. A.; Cote, J. F.; Jarvis, M. T.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    As urbanization expands, greater forest area is shifting from natural stand structures to urban stand structures, like forest fragments and landscaped tree rows. Changes in forest canopy structure have been found to drastically alter the amount of rainwater reaching the surface. However, stormwater management models generally treat all forest structures (beyond needle versus broadleaved) similarly. This study examines the rainfall partitioning of Pinus spp. canopies along a natural-to-urban forest gradient and compares these to canopy structural measurements using terrestrial LiDAR. Throughfall and meteorological observations were also used to estimate parameters of the commonly-used Gash interception model. Preliminary findings indicate that as forest structure changed from natural, closed canopy conditions to semi-closed canopy fragments and, ultimately, to exposed urban landscaping tree rows, the interchange between throughfall and rainfall interception also changed. This shift in partitioning between throughfall and rainfall interception may be linked to intuitive parameters, like canopy closure and density, as well as more complex metrics, like the fine-scale patterning of gaps (ie, lacunarity). Thus, results indicate that not all forests of the same species should be treated the same by stormwater models. Rather, their canopy structural characteristics should be used to vary their hydrometeorological interactions.

  4. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  5. Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field

    OpenAIRE

    Abdulfatah Faraj Aboufayed

    2013-01-01

    Water erosion is the most important problems of the soil in the Jabel Nefusa area located in northwest of Libya; therefore, erosion station had been established in the Faculty of Veterinary and dryfarming research Station, University of the Al-japel Al-gharbi in Zentan. The length of the station is 72.6 feet, 6 feet width and the percentage of its slope is 3%. The station were established to measure the amount of soil eroded and amount of surface water produced during the seasons 95/96 and 96...

  6. Physical Responses of Convective Heavy Rainfall to Future Warming Condition: Case Study of the Hiroshima Event

    Directory of Open Access Journals (Sweden)

    Kenshi Hibino

    2018-04-01

    Full Text Available An extreme precipitation event happened at Hiroshima in 2014. Over 200 mm of total rainfall was observed on the night of August 19th, which caused floods and many landslides. The rainfall event was estimated to be a rare event happening once in approximately 30 years. The physical response of this event to the change of the future atmospheric condition, which includes a temperature increase on average and convective stability change, is investigated in the present study using a 27-member ensemble experiment and pseudo global warming downscaling method. The experiment is integrated using the Japan Meteorological Research Institute non-hydrostatic regional climate model. A very high-resolution horizontal grid, 500 m, is used to reproduce dense cumulonimbus cloud formation causing heavy rainfall in the model. The future climate condition determined by a higher greenhouse gas concentration is prescribed to the model, in which the surface air temperature globally averaged is 4 K warmer than that in the preindustrial era. The total amounts of precipitation around the Hiroshima area in the future experiments are closer to or slightly lower than in the current experiments in spite of the increase in water vapor due to the atmospheric warming. The effect of the water vapor increase on extreme precipitation is found to be canceled out by the suppression of convection due to the thermal stability enhancement. The fact that future extreme precipitation like the Hiroshima event is not intensified is in contrast to the well-known result that extreme rainfall tends to be intensified in the future. The results in the present study imply that the response of extreme precipitation to global warming differs for each rainfall phenomenon.

  7. Rainfall Climatology over Asir Region, Saudi Arabia

    Science.gov (United States)

    Sharif, H.; Furl, C.; Al-Zahrani, M.

    2012-04-01

    Arid and semi-arid lands occupy about one-third of the land surface of the earth and support about one-fifth of the world population. The Asir area in Saudi Arabia is an example of these areas faced with the problem of maintaining sustainable water resources. This problem is exacerbated by the high levels of population growth, land use changes, increasing water demand, and climate variability. In this study, the characteristics of decade-scale variations in precipitation are examined in more detail for Asir region. The spatio-temporal distributions of rainfall over the region are analyzed. The objectives are to identify the sensitivity, magnitude, and range of changes in annual and seasonal evapotranspiration resulting from observed decade-scale precipitation variations. An additional objective is to characterize orographic controls on the space-time variability of rainfall. The rainfall data is obtained from more than 30 rain gauges spread over the region.

  8. Disentangling sea-surface temperature and anthropogenic aerosol influences on recent trends in South Asian monsoon rainfall

    Science.gov (United States)

    Patil, Nitin; Venkataraman, Chandra; Muduchuru, Kaushik; Ghosh, Subimal; Mondal, Arpita

    2018-05-01

    Recent studies point to combined effects of changes in regional land-use, anthropogenic aerosol forcing and sea surface temperature (SST) gradient on declining trends in the South Asian monsoon (SAM). This study attempted disentangling the effects produced by changes in SST gradient from those by aerosol levels in an atmospheric general circulation model. Two pairs of transient ensemble simulations were made, for a 40-year period from 1971 to 2010, with evolving versus climatological SSTs and with anthropogenic aerosol emissions fixed at 1971 versus 2010, in each case with evolution of the other forcing element, as well as GHGs. Evolving SST was linked to a widespread feedback on increased surface temperature, reduced land-sea thermal contrast and a weakened Hadley circulation, with weakening of cross-equatorial transport of moisture transport towards South Asia. Increases in anthropogenic aerosol levels (1971 versus 2010), led to an intensification of drying in the peninsular Indian region, through several regional pathways. Aerosol forcing induced north-south asymmetries in temperature and sea-level pressure response, and a cyclonic circulation in the Bay of Bengal, leading to an easterly flow, which opposes the monsoon flow, suppressing moisture transport over peninsular India. Further, aerosol induced decreases in convection, vertically integrated moisture flux convergence, evaporation flux and cloud fraction, in the peninsular region, were spatially congruent with reduced convective and stratiform rainfall. Overall, evolution of SST acted through a weakening of cross-equatorial moisture flow, while increases in aerosol levels acted through suppression of Arabian Sea moisture transport, as well as, of convection and vertical moisture transport, to influence the suppression of SAM rainfall.

  9. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    Directory of Open Access Journals (Sweden)

    Carolien Toté

    2015-02-01

    Full Text Available Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT v2.0, Famine Early Warning System NETwork (FEWS NET Rainfall Estimate (RFE v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS are compared to independent gauge data (2001–2012. This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  10. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique

    Science.gov (United States)

    Tote, Carolien; Patricio, Domingos; Boogaard, Hendrik; van der Wijngaart, Raymond; Tarnavsky, Elena; Funk, Christopher C.

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT) v2.0, Famine Early Warning System NETwork (FEWS NET) Rainfall Estimate (RFE) v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)) are compared to independent gauge data (2001–2012). This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  11. Rainfall interception from a lowland tropical rainforest in Brunei

    Science.gov (United States)

    Dykes, A. P.

    1997-12-01

    Results from a programme of throughfall measurements in a lowland tropical rainforest in Brunei, northwest Borneo, indicate that interception losses amount to 18% of the gross incident rainfall. The high annual rainfall experienced by the study area results in annual interception losses of around 800 mm, which may result in total annual evapotranspiration losses significantly higher than in other rainforest locations. An improved version of Gash's analytical interception model is tested on the available data using assumed values for the "forest" parameters, and is found to predict interception losses extremely well. The model predictions are based on an estimated evaporation rate during rainfall of 0.71 mm h -1. This is significantly higher than has been reported in other tropical studies. It is concluded that these results are distinctive when compared with previous results from rainforests, and that further, detailed work is required to establish whether the enhanced evaporation rate is due to advective effects associated with the maritime setting of the study area.

  12. Determining the amount of soil erosion in an arid desert area based on RS, GIS and USLE

    International Nuclear Information System (INIS)

    Wang Huawei; Bai Youliang; Chen Jianjie; Chu Yucheng

    2010-01-01

    Based on RS, GIS and USLE model, this paper calculates the amount of soil erosion of a near surface waste disposal siting region in an arid area and makes a distribution map of soil erosion by using Landsat TM image combined with the terrain and relief data. Results which are valuable for engineering siting indicate that in most of the region the erosion is tiny, only in some small areas they are light or moderate. Under the conditions of normal rainfall, upslope runoff does little harm to the engineering site. The conclusion may provides a useful gist for engineering siting. (authors)

  13. Spatiotemporal Interpolation of Rainfall by Combining BME Theory and Satellite Rainfall Estimates

    Directory of Open Access Journals (Sweden)

    Tingting Shi

    2015-09-01

    Full Text Available The accurate assessment of spatiotemporal rainfall variability is a crucial and challenging task in many hydrological applications, mainly due to the lack of a sufficient number of rain gauges. The purpose of the present study is to investigate the spatiotemporal variations of annual and monthly rainfall over Fujian province in China by combining the Bayesian maximum entropy (BME method and satellite rainfall estimates. Specifically, based on annual and monthly rainfall data at 20 meteorological stations from 2000 to 2012, (1 the BME method with Tropical Rainfall Measuring Mission (TRMM estimates considered as soft data, (2 ordinary kriging (OK and (3 cokriging (CK were employed to model the spatiotemporal variations of rainfall in Fujian province. Subsequently, the performance of these methods was evaluated using cross-validation statistics. The results demonstrated that BME with TRMM as soft data (BME-TRMM performed better than the other two methods, generating rainfall maps that represented the local rainfall disparities in a more realistic manner. Of the three interpolation (mapping methods, the mean absolute error (MAE and root mean square error (RMSE values of the BME-TRMM method were the smallest. In conclusion, the BME-TRMM method improved spatiotemporal rainfall modeling and mapping by integrating hard data and soft information. Lastly, the study identified new opportunities concerning the application of TRMM rainfall estimates.

  14. Observational evidence for the relationship between spring soil moisture and June rainfall over the Indian region

    Science.gov (United States)

    KanthaRao, B.; Rakesh, V.

    2018-05-01

    Understanding the relationship between gradually varying soil moisture (SM) conditions and monsoon rainfall anomalies is crucial for seasonal prediction. Though it is an important issue, very few studies in the past attempted to diagnose the linkages between the antecedent SM and Indian summer monsoon rainfall. This study examined the relationship between spring (April-May) SM and June rainfall using observed data during the period 1979-2010. The Empirical Orthogonal Function (EOF) analyses showed that the spring SM plays a significant role in June rainfall over the Central India (CI), South India (SI), and North East India (NEI) regions. The composite anomaly of the spring SM and June rainfall showed that excess (deficit) June rainfall over the CI was preceded by wet (dry) spring SM. The anomalies in surface-specific humidity, air temperature, and surface radiation fluxes also supported the existence of a positive SM-precipitation feedback over the CI. On the contrary, excess (deficit) June rainfall over the SI and NEI region were preceded by dry (wet) spring SM. The abnormal wet (dry) SM over the SI and NEI decreased (increased) the 2-m air temperature and increased (decreased) the surface pressure compared to the surrounding oceans which resulted in less (more) moisture transport from oceans to land (negative SM-precipitation feedback over the Indian monsoon region).

  15. Potential of deterministic and geostatistical rainfall interpolation under high rainfall variability and dry spells: case of Kenya's Central Highlands

    Science.gov (United States)

    Kisaka, M. Oscar; Mucheru-Muna, M.; Ngetich, F. K.; Mugwe, J.; Mugendi, D.; Mairura, F.; Shisanya, C.; Makokha, G. L.

    2016-04-01

    digital elevation model in ArcGIS environment. Validation of the selected interpolation methods were based on goodness of fit between gauged (observed) and generated rainfall derived from residual errors statistics, coefficient of determination (R 2), mean absolute errors (MAE) and root mean square error (RMSE) statistics. Analyses showed 90 % chance of below cropping-threshold rainfall (500 mm) exceeding 258.1 mm during short rains in Embu for 1 year return period. Rainfall variability was found to be high in seasonal amounts (e.g. coefficient of variation (CV) = 0.56, 0.47, 0.59) and in number of rainy days (e.g. CV = 0.88, 0.53) in Machang'a and Kiritiri, respectively. Monthly rainfall variability was found to be equally high during April and November (e.g. CV = 0.48, 0.49 and 0.76) with high probabilities (0.67) of droughts exceeding 15 days in Machang'a. Dry spell probabilities within growing months were high, e.g. 81 and 60 % in Machang'a and Embu, respectively. Kriging interpolation method emerged as the most appropriate geostatistical interpolation technique suitable for spatial rainfall maps generation for the study region.

  16. Toward Continental-scale Rainfall Monitoring Using Commercial Microwave Links From Cellular Communication Networks

    Science.gov (United States)

    Uijlenhoet, R.; Leijnse, H.; Overeem, A.

    2017-12-01

    Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal's attenuation between transmitter and receiver. We have previously shown how one such a network can be used to retrieve the space-time dynamics of rainfall for an entire country (The Netherlands, ˜35,500 km2), based on an unprecedented number of links (˜2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrated the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. The presentation will focus on the potential for upscaling this technique to continental-scale rainfall monitoring in Europe. In addition, several examples of recent applications of this technique on other continents (South America, Africa, Asia and Australia) will be given.

  17. Changing character of rainfall in eastern China, 1951–2007

    Science.gov (United States)

    Day, Jesse A.; Fung, Inez; Liu, Weihan

    2018-03-01

    The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call “frontal rain events.” In spring and early summer (known as “Meiyu Season”), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951–2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the “South Flood–North Drought” pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994–2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.

  18. Forecasting the heavy rainfall during Himalayan flooding—June 2013

    Directory of Open Access Journals (Sweden)

    Anumeha Dube

    2014-08-01

    Verification of the synoptic features in forecasts of the two models suggests that NCUM accurately captures the circulation features as compared to T574. Further verification of this event is carried out based on the contiguous rain area (CRA technique. CRA verification is used in computing the total mean square error (MSE which is based on displacement, volume and pattern errors. This verification technique also, confirms the better skill of NCUM over T574 in terms of forecast peak rainfall amounts, volume and average rain rate, lower MSE and root mean square error (RMSE as well as having higher hit rates and lower misses and false alarm rates for different rainfall thresholds from Day 1 to Day 5 forecasts.

  19. Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall

    Directory of Open Access Journals (Sweden)

    Elena Tarnavsky

    2013-12-01

    Full Text Available This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR. Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.

  20. Rainfall Effects on the Kuroshio Current East of Taiwan

    Science.gov (United States)

    Hsu, Po-Chun; Lin, Chen-Chih; Ho, Chung-Ru

    2017-04-01

    Changes of sea surface salinity (SSS) in the open oceans are related to precipitation and evaporation. SSS has been an indicator of water cycle. It may be related to the global change. The Kuroshio Current, a western boundary current originating from the North Equatorial Current, transfers warm and higher salinity to higher latitudes. It flows northward along the east coasts of Luzon Island and Taiwan Island to Japan. In this study, effects of heavy rainfall on the Kuroshio surface salinity east of Taiwan are investigated. Sea surface salinity (SSS) data taken by conductivity temperature depth (CTD) sensor on R/V Ocean Researcher I cruises, conductivity sensor on eight glider cruises, and Aquarius satellite data are used in this study. The rain rate data derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) are also employed. A glider is a kind of autonomous underwater vehicle, which uses small changes in its buoyancy in conjunction with wings to convert vertical motion to horizontal in the underwater without requiring input from an operator. It can take sensors to measure salinity, temperature, and pressure. The TRMM/TMI data from remote sensing system are daily and are mapped to 0.25-degree grid. The results show a good correlation between the rain rate and SSS with a correlation coefficient of 0.86. The rainfall causes SSS of the Kuroshio surface water drops 0.176 PSU per 1 mm/hr rain rate.

  1. Examining spatial-temporal variability and prediction of rainfall in North-eastern Nigeria

    Science.gov (United States)

    Muhammed, B. U.; Kaduk, J.; Balzter, H.

    2012-12-01

    In the last 50 years rainfall in North-eastern Nigeria under the influence of the West African Monsoon (WAM) has been characterised by large annual variations with severe droughts recorded in 1967-1973, and 1983-1987. This variability in rainfall has a large impact on the regions agricultural output, economy and security where the majority of the people depend on subsistence agriculture. In the 1990s there was a sign of recovery with higher annual rainfall totals compared to the 1961-1990 period but annual totals were slightly above the long term mean for the century. In this study we examine how significant this recovery is by analysing medium-term (1980-2006) rainfall of the region using the Climate Research Unit (CRU) and National Centre for Environment Prediction (NCEP) precipitation ½ degree, 6 hourly reanalysis data set. Percentage coefficient of variation increases northwards for annual rainfall (10%-35%) and the number of rainy days (10%-50%). The standardized precipitation index (SPI) of the area shows 7 years during the period as very wet (1996, 1999, 2003 and 2004) with SPI≥1.5 and moderately wet (1993, 1998, and 2006) with values of 1.0≥SPI≤1.49. Annual rainfall indicates a recovery from the 1990s and onwards but significant increases (in the amount of rainfall and number of days recorded with rainfall) is only during the peak of the monsoon season in the months of August and September (pARIMA) model. The model is further evaluated using 24 months rainfall data yielding r=0.79 (regression slope=0.8; pARIMA model and the rainfall data used for this study indicates that the model can be satisfactorily used in forecasting rainfall in the in the sub-humid part of North-eastern Nigeria over a 24 months period.

  2. Rainfall: Features and Variations over Saudi Arabia, A Review

    Directory of Open Access Journals (Sweden)

    Hosny Hasanean

    2015-08-01

    Full Text Available The Saudi Arabia (SA climate varies greatly, depending on the geography and the season. According to K ppen and Geiger, the climates of SA is “desert climate”. The analysis of the seasonal rainfall detects that spring and winter seasons have the highestrainfall incidence, respectively. Through the summer,small quantities of precipitation are observed, while autumn received more precipitation more than summer season considering the total annual rainfall. In all seasons, the SW area receives rainfall, with a maximum in spring, whereas in the summer season, the NE and NW areas receive very little quantities of precipitation. The Rub Al-Khali (the SE region is almost totally dry. The maximum amount of annual rainfall does not always happen at the highest elevation. Therefore, the elevation is not the only factor in rainfall distribution.A great inter-annual change in the rainfall over the SA for the period (1978–2009 is observed. In addition, in the same period, a linear decreasing trend is found in the observed rainfall, whilst in the recent past (1994–2009 a statistically significant negative trend is observed. In the Southern part of the Arabian Peninsula (AP and along the coast of the Red Sea, it is interesting to note that rainfall increased, whilst it decreased over most areas of SA during the 2000–2009 decade, compared to 1980–1989.Statistical and numerical models are used to predict rainfall over Saudi Arabia (SA. The statistical models based on stochastic models of ARIMA and numerical models based on Providing Regional Climates for Impact Studies of Hadley Centre (PRECIS. Climate and its qualitative character and quantified range of possible future changes are investigated. The annual total rainfall decreases in most regions of the SA and only increases in the south. The summertime precipitation will be the highest between other seasons over the southern, the southwestern provinces and Asir mountains, while the wintertime

  3. The Soil Moisture Dependence of TRMM Microwave Imager Rainfall Estimates

    Science.gov (United States)

    Seyyedi, H.; Anagnostou, E. N.

    2011-12-01

    This study presents an in-depth analysis of the dependence of overland rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) on the soil moisture conditions at the land surface. TMI retrievals are verified against rainfall fields derived from a high resolution rain-gauge network (MESONET) covering Oklahoma. Soil moisture (SOM) patterns are extracted based on recorded data from 2000-2007 with 30 minutes temporal resolution. The area is divided into wet and dry regions based on normalized SOM (Nsom) values. Statistical comparison between two groups is conducted based on recorded ground station measurements and the corresponding passive microwave retrievals from TMI overpasses at the respective MESONET station location and time. The zero order error statistics show that the Probability of Detection (POD) for the wet regions (higher Nsom values) is higher than the dry regions. The Falls Alarm Ratio (FAR) and volumetric FAR is lower for the wet regions. The volumetric missed rain for the wet region is lower than dry region. Analysis of the MESONET-to-TMI ratio values shows that TMI tends to overestimate for surface rainfall intensities less than 12 (mm/h), however the magnitude of the overestimation over the wet regions is lower than the dry regions.

  4. Seasonal predictability of Kiremt rainfall in coupled general circulation models

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel S.; Demissie, Teferi D.; Counillon, François; Wang, Yiguo; Viste, Ellen

    2017-11-01

    The Ethiopian economy and population is strongly dependent on rainfall. Operational seasonal predictions for the main rainy season (Kiremt, June-September) are based on statistical approaches with Pacific sea surface temperatures (SST) as the main predictor. Here we analyse dynamical predictions from 11 coupled general circulation models for the Kiremt seasons from 1985-2005 with the forecasts starting from the beginning of May. We find skillful predictions from three of the 11 models, but no model beats a simple linear prediction model based on the predicted Niño3.4 indices. The skill of the individual models for dynamically predicting Kiremt rainfall depends on the strength of the teleconnection between Kiremt rainfall and concurrent Pacific SST in the models. Models that do not simulate this teleconnection fail to capture the observed relationship between Kiremt rainfall and the large-scale Walker circulation.

  5. Rainfall simulation in education

    Science.gov (United States)

    Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia

    2016-04-01

    Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain

  6. Evaluation of intense rainfall parameters interpolation methods for the Espírito Santo State

    Directory of Open Access Journals (Sweden)

    José Eduardo Macedo Pezzopane

    2009-12-01

    Full Text Available Intense rainfalls are often responsible for the occurrence of undesirable processes in agricultural and forest areas, such as surface runoff, soil erosion and flooding. The knowledge of intense rainfall spatial distribution is important to agricultural watershed management, soil conservation and to the design of hydraulic structures. The present paper evaluated methods of spatial interpolation of the intense rainfall parameters (“K”, “a”, “b” and “c” for the Espírito Santo State, Brazil. Were compared real intense rainfall rates with those calculated by the interpolated intense rainfall parameters, considering different durations and return periods. Inverse distance to the 5th power IPD5 was the spatial interpolation method with better performance to spatial interpolated intense rainfall parameters.

  7. Imaging rainfall infiltration processes with the time-lapse electrical resistivity imaging method

    Science.gov (United States)

    Jia, Zhengyuan; Jiang, Guoming; Zhang, Guibin; Zhang, Gang

    2017-04-01

    Electrical Resistivity Imaging (ERI) was carried out continuously for ten days to map the subsurface resistivity distribution along a potentially hazardous hillslope at the Jieshou Junior High School in Taoyuan, Taiwan. The inversions confirm the viability of ERI in tracking the movement of groundwater flow and rainfall infiltration by recording the variation of subsurface resistivity distribution. Meanwhile, relative-water-saturation (RWS) maps can be obtained from ERI images via Archie's Law, which provide a more intuitive reflection of the variation of subsurface rainfall infiltration and a more capable means of estimating the stability of a landslide body. What is more, we then found that the averaged RWS is significantly correlated with daily precipitation. Our observations indicate that real-time ERI is effective in monitoring subterraneous rainfall infiltration, and thereby in estimating the stability of a potential landslide body. When the agglomerate rainfall in the landslide slippage surface was infiltrated quickly without sustaining hydraulic pressure along the landslide slippage surface, the probability of landslides occurring was very low. On the contrary, the probability of landslides occurring could be increased due to the overpressure of pore fluids. Keywords Electrical Resistivity Imaging; Depth-of-Investigation; Archie's Law; Landslide Monitoring; Rainfall Infiltration; Preferential Path

  8. Rainfall: State of the Science

    Science.gov (United States)

    Testik, Firat Y.; Gebremichael, Mekonnen

    Rainfall: State of the Science offers the most up-to-date knowledge on the fundamental and practical aspects of rainfall. Each chapter, self-contained and written by prominent scientists in their respective fields, provides three forms of information: fundamental principles, detailed overview of current knowledge and description of existing methods, and emerging techniques and future research directions. The book discusses • Rainfall microphysics: raindrop morphodynamics, interactions, size distribution, and evolution • Rainfall measurement and estimation: ground-based direct measurement (disdrometer and rain gauge), weather radar rainfall estimation, polarimetric radar rainfall estimation, and satellite rainfall estimation • Statistical analyses: intensity-duration-frequency curves, frequency analysis of extreme events, spatial analyses, simulation and disaggregation, ensemble approach for radar rainfall uncertainty, and uncertainty analysis of satellite rainfall products The book is tailored to be an indispensable reference for researchers, practitioners, and graduate students who study any aspect of rainfall or utilize rainfall information in various science and engineering disciplines.

  9. Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia

    Science.gov (United States)

    Mayowa, Olaniya Olusegun; Pour, Sahar Hadi; Shahid, Shamsuddin; Mohsenipour, Morteza; Harun, Sobri Bin; Heryansyah, Arien; Ismail, Tarmizi

    2015-12-01

    The coastlines have been identified as the most vulnerable regions with respect to hydrological hazards as a result of climate change and variability. The east of peninsular Malaysia is not an exception for this, considering the evidence of heavy rainfall resulting in floods as an annual phenomenon and also water scarcity due to long dry spells in the region. This study examines recent trends in rainfall and rainfall- related extremes such as, maximum daily rainfall, number of rainy days, average rainfall intensity, heavy rainfall days, extreme rainfall days, and precipitation concentration index in the east coast of peninsular Malaysia. Recent 40 years (1971-2010) rainfall records from 54 stations along the east coast of peninsular Malaysia have been analyzed using the non-parametric Mann-Kendall test and the Sen's slope method. The Monte Carlo simulation technique has been used to determine the field significance of the regional trends. The results showed that there was a substantial increase in the annual rainfall as well as the rainfall during the monsoon period. Also, there was an increase in the number of heavy rainfall days during the past four decades.

  10. Organic carbon fluxes in stemflow, throughfall and rainfall in an olive orchard

    Science.gov (United States)

    Lombardo, L.; Vanwalleghem, T.; Gomez, J. A.

    2012-04-01

    The importance of rainfall distribution under the vegetation canopy for nutrient cycling of forest ecosystems has been widely studied (e.g. Kolkai et al., 1999, Bath et al., 2011). It has been demonstrated how throughfall and stemflow reach the soil as chemically-enriched water, by incorporating soluble organic and inorganic particles deriving from plant exudates and from atmospheric depositions (dryfall and wetfall) present on the surfaces of the plant (leaves, bark, fruits). Dissolved (DOC) and particulate (POC) organic carbon inputs from stem- and canopy-derived hydrologic fluxes are small but important components of the natural carbon cycle. DOC has also the capability to form complexes that control the transport and solubility of heavy metals in surface and ground waters, being composed for the most part (75-90%) of fulvic, humic or tanninic compounds, and for the resting part of molecules like carbohydrates, hydrocarbons, waxes, fatty acids, amino and hydroxy acids. However, very little data is available for agricultural tree crops, especially olive trees. In this sense, the objective of this work is to investigate the concentration and fluxes of organic carbon in rainfall, throughfall, and stemflow in a mature olive orchard located in Cordoba, in Southern Spain and to relate them to rainfall characteristics and tree physiology. The measurements started in October 2011. Four high density polyethylene bottles with 18-cm-diameter polyethylene funnels for throughfall collection were placed beneath the canopy of each of the three selected olive trees; four more collectors were placed in open spaces in the same orchard for rainfall sampling. Stemflow was collected through PVC spiral tubes wrapped around the trunks and leading into collection bins. The throughflow sampling points were chosen randomly. Total and dissolved organic carbon concentrations in unfiltered (TOC) and filtered (0.45 µm membrane filter, DOC) collected waters were measured using a TOC analyzer

  11. Tea shoot production in relation to rainfall, solar radiation, and temperature in Pagilaran tea estate, Batang

    International Nuclear Information System (INIS)

    Yudono, P.

    2000-01-01

    Tea shoot production pattern in PT Pagilaran tea estate, Batang, is studied in relation to rainfall, solar radiation, and temperature. Pagilaran tea estate is located at 700-1,500 m above the sea level, with temperature of 15-30 deg. C and rainfall ranging from 4,500 mm to 7,000 mm per year. However, the area is also characterized by two up to three dry months for every three years. Monthly data of rainfall, solar radiation, and temperature were collected and were related to tea shoot production using correlation and regression analysis. The results indicated that there was no significant different pattern of tea shoot production form the three estate units (Kayulandak, Pagilaran, and Andongsili). Monthly shoots production increases during October up to December, and then goes down in January up to February. It fluctuated at a lesser degree in the upper units (Kayulandak and Andongsili) which might be attributed to better soil moisture available in the area. They are right below a forests area which understandably serves as rainfall catchment area and maintains soil moisture of the area below in a better condition. Weak to moderate correlation was obtained when monthly tea shoot production was correlated to amount of rainfall (r = -0.3771), days of rainfall (r = -0.3512), maximum temperature (r = -0.3502), minimum temperature (r = -0.2786), and solar radiation (r=0.6607) of the same month. On regressing monthly tea shoot production to those variables, rainfall and duration of solar radiation turned out to be the two significant factors through the following equation y = 759.5616-0.1802 xi-1 + 0.1057 xi-2 + 0.5239 zi-1 (R at the power of 2 = 0.3398), where y = tea shoots production, x=amount of monthly rainfall, z=duration of solar radiation, and i refer to month [in

  12. Soil erodibility variability in laboratory and field rainfall simulations

    Science.gov (United States)

    Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán

    2017-04-01

    Rainfall simulation experiments are the most common way to observe and to model the soil erosion processes in in situ and ex situ circumstances. During modelling soil erosion, one of the most important factors are the annual soil loss and the soil erodibility which represent the effect of soil properties on soil loss and the soil resistance against water erosion. The amount of runoff and soil loss can differ in case of the same soil type, while it's characteristics determine the soil erodibility factor. This leads to uncertainties regarding soil erodibility. Soil loss and soil erodibility were examined with the investigation of the same soil under laboratory and field conditions with rainfall simulators. The comparative measurement was carried out in a laboratory on 0,5 m2, and in the field (Shower Power-02) on 6 m2 plot size where the applied slope angles were 5% and 12% with 30 and 90 mm/h rainfall intensity. The main idea was to examine and compare the soil erodibility and its variability coming from the same soil, but different rainfall simulator type. The applied model was the USLE, nomograph and other equations which concern single rainfall events. The given results show differences between the field and laboratory experiments and between the different calculations. Concerning for the whole rainfall events runoff and soil loss, were significantly higher at the laboratory experiments, which affected the soil erodibility values too. The given differences can originate from the plot size. The main research questions are that: How should we handle the soil erodibility factors and its significant variability? What is the best solution for soil erodibility determination?

  13. A technique to obtain a multiparameter radar rainfall algorithm using the probability matching procedure

    International Nuclear Information System (INIS)

    Gorgucci, E.; Scarchilli, G.

    1997-01-01

    The natural cumulative distributions of rainfall observed by a network of rain gauges and a multiparameter radar are matched to derive multiparameter radar algorithms for rainfall estimation. The use of multiparameter radar measurements in a statistical framework to estimate rainfall is resented in this paper, The techniques developed in this paper are applied to the radar and rain gauge measurement of rainfall observed in central Florida and central Italy. Conventional pointwise estimates of rainfall are also compared. The probability matching procedure, when applied to the radar and surface measurements, shows that multiparameter radar algorithms can match the probability distribution function better than the reflectivity-based algorithms. It is also shown that the multiparameter radar algorithm derived matching the cumulative distribution function of rainfall provides more accurate estimates of rainfall on the ground in comparison to any conventional reflectivity-based algorithm

  14. Rainfall Imprint on Sea Surface Salinity in the ITCZ: new satellite perspectives

    Science.gov (United States)

    Boutin, J.; Viltard, N.; Supply, A.; Martin, N.; Vergely, J. L.; Hénocq, C.; Reverdin, G. P.

    2016-02-01

    The European Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors sea surface salinity (SSS) over the global ocean for more than 5 years since 2010. The MADRAS microwave radiometer carried by the French (CNES) Indian (ISRO) satellite mission Megha-Tropiques sampled the 30° N-30° S region end of 2011 and in 2012, very complementary to other Global Precipitation Measurement(GPM) missions. In tropical regions, SMOS SSS contains a large imprint of atmospheric rainfall, but is also likely affected by oceanographic processes (advection and diffusion). At local and short time scales, Boutin et al. (2013, 2014) have shown that the spatio-temporal variability of SSS is dominated by rainfall as detected by satellite microwave radiometers and have demonstrated a close to linear relationship between SMOS SSS freshening under rain cells and satellite rain rate. The order of magnitude is in remarkable agreement with the theoretical renewal model of Schlussel et al. (1997) and compatible with AQUARIUS SSS observations, as well as with in situ drifters observations although the latter are local and taken at 45cm depth while satellite L-band SSS roughly correspond to the top 1cm depth and are spatially integrated over 43-150km. It is thus expected that the combined information of satellite rain rates and satellite SSS brings new constraints on the precipitation budget. We first look at the consistency between the spatial structures of SMOS SSS decrease and of rain rates derived either from the MADRAS microwave radiometer or from the CMORPH combined products that do not use MADRAS rain rates. This provides an indirect validation of the rain rates estimates. We then investigate the impact of rain history and of wind speed on the observed SMOS freshening. Based on these results, we discuss the precision on various precipitation estimates over 2012 in the ITCZ region and the major sources of uncertainties that the SPURS2 campaign could help to resolve.

  15. Resolving orographic rainfall on the Indian west coast

    Digital Repository Service at National Institute of Oceanography (India)

    Suprit, K.; Shankar, D.

    We discuss a method to obtain the spatial estimates of rainfall on the Indian west coast for calculating the surface water budget. The region includes the basin of the Mandovi River, a typical west-coast river whose catchment area includes...

  16. [Effects of rainfall intensity on rainfall infiltration and redistribution in soil on Loess slope land].

    Science.gov (United States)

    Li, Yi; Shao, Ming'an

    2006-12-01

    With simulation test, this paper studied the patterns of rainfall infiltration and redistribution in soil on typical Loess slope land, and analyzed the quantitative relations between the infiltration and redistribution and the movement of soil water and mass, with rainfall intensity as the main affecting factor. The results showed that rainfall intensity had significant effects on the rainfall infiltration and water redistribution in soil, and the microcosmic movement of soil water. The larger the rainfall intensity, the deeper the wetting front of rainfall infiltration and redistribution was, and the wetting front of soil water redistribution had a slower increase velocity than that of rainfall infiltration. The power function of the wetting front with time, and also with rainfall intensity, was fitted well. There was also a quantitative relation between the wetting front of rainfall redistribution and the duration of rainfall. The larger the rainfall intensity, the higher the initial and steady infiltration rates were, and the cumulative infiltration increased faster with time. Moreover, the larger the rainfall intensity, the smaller the wetting front difference was at the top and the end of the slope. With the larger rainfall intensity, both the difference of soil water content and its descending trend between soil layers became more obvious during the redistribution process on slope land.

  17. Rainfall Runoff Mitigation by Retrofitted Permeable Pavement in an Urban Area

    Directory of Open Access Journals (Sweden)

    Muhammad Shafique

    2018-04-01

    Full Text Available Permeable pavement is an effective low impact development (LID practice that can play an important role in reducing rainfall runoff amount in urban areas. Permeable interlocking concrete pavement (PICP was retrofitted in a tremendously developed area of Seoul, Korea and the data was monitored to evaluate its effect on the hydrology and stormwater quality performance for four months. Rainfall runoff was first absorbed by different layers of the PICP system and then contributed to the sewage system. This not only helps to reduce the runoff volume, but also increase the time of concentration. In this experiment, different real rain events were observed and the field results were investigated to check the effectiveness of the PICP system for controlling the rainfall runoff in Songpa, Korea. From the analysis of data, results showed that the PCIP system was very effective in controlling rainfall runoff. Overall runoff reduction performance from the PCIP was found to be around 30–65% during various storm events. In addition, PICP significantly reduced peak flows in different storm events which is very helpful in reducing the chances of water-logging in an urbanized area. Research results also allow us to sum up that retrofitted PICP is a very effective approach for rainfall runoff management in urban areas.

  18. Runoff and leaching of metolachlor from Mississippi River alluvial soil during seasons of average and below-average rainfall.

    Science.gov (United States)

    Southwick, Lloyd M; Appelboom, Timothy W; Fouss, James L

    2009-02-25

    The movement of the herbicide metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] via runoff and leaching from 0.21 ha plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a 6-year period, 1995-2000. The first three years received normal rainfall (30 year average); the second three years experienced reduced rainfall. The 4-month periods prior to application plus the following 4 months after application were characterized by 1039 +/- 148 mm of rainfall for 1995-1997 and by 674 +/- 108 mm for 1998-2000. During the normal rainfall years 216 +/- 150 mm of runoff occurred during the study seasons (4 months following herbicide application), accompanied by 76.9 +/- 38.9 mm of leachate. For the low-rainfall years these amounts were 16.2 +/- 18.2 mm of runoff (92% less than the normal years) and 45.1 +/- 25.5 mm of leachate (41% less than the normal seasons). Runoff of metolachlor during the normal-rainfall seasons was 4.5-6.1% of application, whereas leaching was 0.10-0.18%. For the below-normal periods, these losses were 0.07-0.37% of application in runoff and 0.22-0.27% in leachate. When averages over the three normal and the three less-than-normal seasons were taken, a 35% reduction in rainfall was characterized by a 97% reduction in runoff loss and a 71% increase in leachate loss of metolachlor on a percent of application basis. The data indicate an increase in preferential flow in the leaching movement of metolachlor from the surface soil layer during the reduced rainfall periods. Even with increased preferential flow through the soil during the below-average rainfall seasons, leachate loss (percent of application) of the herbicide remained below 0.3%. Compared to the average rainfall seasons of 1995-1997, the below-normal seasons of 1998-2000 were characterized by a 79% reduction in total runoff and leachate flow and by a 93% reduction in corresponding metolachlor movement via these routes

  19. Estimation of Rainfall Erosivity via 1-Minute to Hourly Rainfall Data from Taipei, Taiwan

    Science.gov (United States)

    Huang, Ting-Yin; Yang, Ssu-Yao; Jan, Chyan-Deng

    2017-04-01

    Soil erosion is a natural process on hillslopes that threats people's life and properties, having a considerable environmental and economic implications for soil degradation, agricultural activity and water quality. The rainfall erosivity factor (R-factor) in the Universal Soil Loss Equation (USLE), composed of total kinetic energy (E) and the maximum 30-min rainfall intensity (I30), is widely used as an indicator to measure the potential risks of soil loss caused by rainfall at a regional scale. This R factor can represent the detachment and entrainment involved in climate conditions on hillslopes, but lack of 30-min rainfall intensity data usually lead to apply this factor more difficult in many regions. In recent years, fixed-interval, hourly rainfall data is readily available and widely used due to the development of automatic weather stations. Here we assess the estimations of R, E, and I30 based on 1-, 5-, 10-, 15-, 30-, 60-minute rainfall data, and hourly rainfall data obtained from Taipei weather station during 2004 to 2010. Results show that there is a strong correlation among R-factors estimated from different interval rainfall data. Moreover, the shorter time-interval rainfall data (e.g., 1-min) yields larger value of R-factor. The conversion factors of rainfall erosivity (ratio of values estimated from the resolution lower than 30-min rainfall data to those estimated from 60-min and hourly rainfall data, respectively) range from 1.85 to 1.40 (resp. from 1.89 to 1.02) for 60-min (resp. hourly) rainfall data as the time resolution increasing from 30-min to 1-min. This paper provides useful information on estimating R-factor when hourly rainfall data is only available.

  20. Soil organic carbon loss and selective transportation under field simulated rainfall events.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Zhang, Yan; Ma, Wenming; Hu, Yanbiao; Zeng, Guangming

    2014-01-01

    The study on the lateral movement of soil organic carbon (SOC) during soil erosion can improve the understanding of global carbon budget. Simulated rainfall experiments on small field plots were conducted to investigate the SOC lateral movement under different rainfall intensities and tillage practices. Two rainfall intensities (High intensity (HI) and Low intensity (LI)) and two tillage practices (No tillage (NT) and Conventional tillage (CT)) were maintained on three plots (2 m width × 5 m length): HI-NT, LI-NT and LI-CT. The rainfall lasted 60 minutes after the runoff generated, the sediment yield and runoff volume were measured and sampled at 6-min intervals. SOC concentration of sediment and runoff as well as the sediment particle size distribution were measured. The results showed that most of the eroded organic carbon (OC) was lost in form of sediment-bound organic carbon in all events. The amount of lost SOC in LI-NT event was 12.76 times greater than that in LI-CT event, whereas this measure in HI-NT event was 3.25 times greater than that in LI-NT event. These results suggest that conventional tillage as well as lower rainfall intensity can reduce the amount of lost SOC during short-term soil erosion. Meanwhile, the eroded sediment in all events was enriched in OC, and higher enrichment ratio of OC (ERoc) in sediment was observed in LI events than that in HI event, whereas similar ERoc curves were found in LI-CT and LI-NT events. Furthermore, significant correlations between ERoc and different size sediment particles were only observed in HI-NT event. This indicates that the enrichment of OC is dependent on the erosion process, and the specific enrichment mechanisms with respect to different erosion processes should be studied in future.

  1. FROM RAINFALL DATA

    Directory of Open Access Journals (Sweden)

    Sisuru Sendanayake

    2015-01-01

    Full Text Available There are many correlations developed to predict incident solar radiation at a givenlocation developed based on geographical and meteorological parameters. However, allcorrelations depend on accurate measurement and availability of weather data such assunshine duration, cloud cover, relative humidity, maximum and minimumtemperatures etc, which essentially is a costly exercise in terms of equipment andlabour. Sri Lanka being a tropical island of latitudinal change of only 30 along thelength of the country, the meteorological factors govern the amount of incidentradiation. Considering the cloud formation and wind patterns over Sri Lanka as well asthe seasonal rainfall patterns, it can be observed that the mean number of rainy dayscan be used to predict the monthly average daily global radiation which can be used forcalculations in solar related activities conveniently.

  2. Darfur: rainfall and conflict

    International Nuclear Information System (INIS)

    Kevane, Michael; Gray, Leslie

    2008-01-01

    Data on rainfall patterns only weakly corroborate the claim that climate change explains the Darfur conflict that began in 2003 and has claimed more than 200 000 lives and displaced more than two million persons. Rainfall in Darfur did not decline significantly in the years prior to the eruption of major conflict in 2003; rainfall exhibited a flat trend in the thirty years preceding the conflict (1972-2002). The rainfall evidence suggests instead a break around 1971. Rainfall is basically stationary over the pre- and post-1971 sub-periods. The break is larger for the more northerly rainfall stations, and is less noticeable for En Nahud. Rainfall in Darfur did indeed decline, but the decline happened over 30 years before the conflict erupted. Preliminary analysis suggests little merit to the proposition that a structural break several decades earlier is a reasonable predictor of the outbreak of large-scale civil conflict in Africa

  3. Darfur: rainfall and conflict

    Science.gov (United States)

    Kevane, Michael; Gray, Leslie

    2008-07-01

    Data on rainfall patterns only weakly corroborate the claim that climate change explains the Darfur conflict that began in 2003 and has claimed more than 200 000 lives and displaced more than two million persons. Rainfall in Darfur did not decline significantly in the years prior to the eruption of major conflict in 2003; rainfall exhibited a flat trend in the thirty years preceding the conflict (1972 2002). The rainfall evidence suggests instead a break around 1971. Rainfall is basically stationary over the pre- and post-1971 sub-periods. The break is larger for the more northerly rainfall stations, and is less noticeable for En Nahud. Rainfall in Darfur did indeed decline, but the decline happened over 30 years before the conflict erupted. Preliminary analysis suggests little merit to the proposition that a structural break several decades earlier is a reasonable predictor of the outbreak of large-scale civil conflict in Africa.

  4. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    Science.gov (United States)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that

  5. The all-year rainfall region of South Africa: Satellite rainfall-estimate perspective

    CSIR Research Space (South Africa)

    Engelbrecht, CJ

    2012-09-01

    Full Text Available Climate predictability and variability studies over South Africa typically focus on the summer rainfall region and to a lesser extent on the winter rainfall region. The all-year rainfall region of South Africa, a narrow strip located along the Cape...

  6. Rainfall and temperature scenarios for Bangladesh for the middle of ...

    Indian Academy of Sciences (India)

    mean surface air temperature projection for Bangladesh is experimentally obtained for 2050 and 2060. This work discloses that simulated ... seasonal and annual rainfall, and mean surface air temperature in Bangladesh. The projected change ... already being felt in South Asia and will continue to intensify (Haq et al 1998; ...

  7. Strategy for introduction of rainwater management facility considering rainfall event applied on new apartment complex

    Science.gov (United States)

    KIM, H.; Lee, D. K.; Yoo, S.

    2014-12-01

    As regional torrential rains become frequent due to climate change, urban flooding happens very often. That is why it is necessary to prepare for integrated measures against a wide range of rainfall. This study proposes introduction of effective rainwater management facilities to maximize the rainwater runoff reductions and recover natural water circulation for unpredictable extreme rainfall in apartment complex scale. The study site is new apartment complex in Hanam located in east of Seoul, Korea. It has an area of 7.28ha and is analysed using the EPA-SWMM and STORM model. First, it is analyzed that green infrastructure(GI) had efficiency of flood reduction at the various rainfall events and soil characteristics, and then the most effective value of variables are derived. In case of rainfall event, Last 10 years data of 15 minutes were used for analysis. A comparison between A(686mm rainfall during 22days) and B(661mm/4days) knew that soil infiltration of A is 17.08% and B is 5.48% of the rainfall. Reduction of runoff after introduction of the GI of A is 24.76% and B is 6.56%. These results mean that GI is effective to small rainfall intensity, and artificial rainwater retarding reservoir is needed at extreme rainfall. Second, set of target year is conducted for the recovery of hydrological cycle at the predevelopment. And an amount of infiltration, evaporation, surface runoff of the target year and now is analysed on the basis of land coverage, and an arrangement of LID facilities. Third, rainwater management scenarios are established and simulated by the SWMM-LID. Rainwater management facilities include GI(green roof, porous pavement, vegetative swale, ecological pond, and raingarden), and artificial rainwater. Design scenarios are categorized five type: 1)no GI, 2)conventional GI design(current design), 3)intensive GI design, 4)GI design+rainwater retarding reservoir 5)maximized rainwater retarding reservoir. Intensive GI design is to have attribute value to

  8. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    Science.gov (United States)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

  9. Effect of variations in rainfall intensity on slope stability in Singapore

    Directory of Open Access Journals (Sweden)

    Christofer Kristo

    2017-12-01

    Full Text Available Numerous scientific evidence has given credence to the true existence and deleterious impacts of climate change. One aspect of climate change is the variations in rainfall patterns, which affect the flux boundary condition across ground surface. A possible disastrous consequence of this change is the occurrence of rainfall-induced slope failures. This paper aims to investigate the variations in rainfall patterns in Singapore and its effect on slope stability. Singapore's historical rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 were obtained and analysed by duration using linear regression. A general increasing trend was observed in both weather stations, with a possible shift to longer duration rainfall events, despite being statistically insignificant according to the Mann-Kendall test. Using the derived trends, projected rainfall intensities in 2050 and 2100 were used in the seepage and slope stability analyses performed on a typical residual soil slope in Singapore. A significant reduction in factor of safety was observed in the next 50 years, with only a marginal decrease in factor of safety in the subsequent 50 years. This indicates a possible detrimental effect of variations in rainfall patterns on slope stability in Singapore, especially in the next 50 years. The statistical analyses on rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 indicated that rainfall intensity tend to increase over the years, with a possible shift to longer duration rainfall events in the future. The stability analyses showed a significant decrease in factor of safety from 2003 to 2050 due to increase in rainfall intensity, suggesting that a climate change might have existed beyond 2009 with possibly detrimental effects to slope stability. Keywords: Climate change, Rainfall, Seepage, Slope stability

  10. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4

    Science.gov (United States)

    Li, Wenhong; Fu, Rong; Dickinson, Robert E.

    2006-01-01

    The global climate models for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) predict very different changes of rainfall over the Amazon under the SRES A1B scenario for global climate change. Five of the eleven models predict an increase of annual rainfall, three models predict a decrease of rainfall, and the other three models predict no significant changes in the Amazon rainfall. We have further examined two models. The UKMO-HadCM3 model predicts an El Niño-like sea surface temperature (SST) change and warming in the northern tropical Atlantic which appear to enhance atmospheric subsidence and consequently reduce clouds over the Amazon. The resultant increase of surface solar absorption causes a stronger surface sensible heat flux and thus reduces relative humidity of the surface air. These changes decrease the rate and length of wet season rainfall and surface latent heat flux. This decreased wet season rainfall leads to drier soil during the subsequent dry season, which in turn can delay the transition from the dry to wet season. GISS-ER predicts a weaker SST warming in the western Pacific and the southern tropical Atlantic which increases moisture transport and hence rainfall in the Amazon. In the southern Amazon and Nordeste where the strongest rainfall increase occurs, the resultant higher soil moisture supports a higher surface latent heat flux during the dry and transition season and leads to an earlier wet season onset.

  11. How El-Nino affects Ethiopian summer rainfall

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel; Viste, Ellen

    2016-04-01

    Ethiopian economy and society are strongly dependent on agriculture and therefore rainfall. Reliable forecasts for the rainy seasons are important to allow for agricultural planning and drought preparations. The operational seasonal forecasts for Ethiopia are based on analogue methods relying mainly on sea surface temperature (SST) indices. A better understanding of the physical links between Ethiopian rainfall and SST may help to improve forecasts. The highest rainfall rates are observed in the Kiremt season (defined as JJAS), which is the rainy season in Central and Northwestern Ethiopia. Kiremt rainfall shows clear negative correlation with Central Pacific SST, linking dry Ethiopian summers with ENSO-like warm SST anomalies. We use the atmosphere general circulation model Echam5.3 to investigate the physical link between Pacific SST anomalies and Kiremt rainfall. We compare a historical simulation with a T106 horizontal resolution (~ 1.125°), forced with reconstructed SST data, to gauge-based rainfall observations for the time period of 1961 to 2009. Composite analysis for model and observations show warm SST anomalies in the Central Pacific and a corresponding large-scale circulation anomaly with subsidence over Ethiopia in dry Kiremt seasons. Horizontal wind fields show a slow-down of the whole Indian monsoon system with a weaker Tropical Easterly Jet (TEJ) and a weaker East African Low-Level Jet (EALLJ) in these summers. We conducted a sensitivity experiment with El Nino like SST anomalies in the Central Pacific with the same Echam version. Its results show that warm Pacific SST anomalies cause dry summer conditions over Ethiopia. While the large-scale subsidence over East Africa is present in the experiment, there is no significant weakening of the Indian monsoon system. We rather find an anomalous circulation cell over Northern Africa with westerlies at 100-200 hPa and easterlies below 500 hPa. The anomalous easterly flow in the lower and middle

  12. Rainfall Intensity and Frequency Explain Production Basis Risk in Cumulative Rain Index Insurance

    Science.gov (United States)

    Muneepeerakul, Chitsomanus P.; Muneepeerakul, Rachata; Huffaker, Ray G.

    2017-12-01

    With minimal moral hazard and adverse selection, weather index insurance promises financial resilience to farmers struck by harsh weather conditions through swift compensation at affordable premium. Despite these advantages, the very nature of indexing gives rise to production basis risk as the selected weather indexes do not sufficiently correspond to actual damages. To address this problem, we develop a stochastic yield model, built upon a stochastic soil moisture model driven by marked Poisson rainfall. Our analysis shows that even under similar temperature and rainfall amount yields can differ significantly; this was empirically supported by a 2-year field experiment in which rain-fed maize was grown under very similar total rainfall. Here, the year with more intense, less-frequent rainfall produces a better yield—a rare counter evidence to most climate change projections. Through a stochastic yield model, we demonstrate the crucial roles of rainfall intensity and frequency in determining the yield. Importantly, the model allows us to compute rainfall pattern-related basis risk inherent in cumulative rain index insurance. The model results and a case study herein clearly show that total rainfall is a poor indicator of yield, imposing unnecessary production basis risk on farmers and false-positive payouts on insurers. Incorporating rainfall intensity and frequency in the design of rain index insurance can offer farmers better protection, while maintaining the attractive features of the weather index insurance and thus fulfilling its promise of financial resilience.

  13. Rainfall control of debris-flow triggering in the Réal Torrent, Southern French Prealps

    Science.gov (United States)

    Bel, Coraline; Liébault, Frédéric; Navratil, Oldrich; Eckert, Nicolas; Bellot, Hervé; Fontaine, Firmin; Laigle, Dominique

    2017-08-01

    This paper investigates the occurrence of debris flow due to rainfall forcing in the Réal Torrent, a very active debris flow-prone catchment in the Southern French Prealps. The study is supported by a 4-year record of flow responses and rainfall events, from three high-frequency monitoring stations equipped with geophones, flow stage sensors, digital cameras, and rain gauges measuring rainfall at 5-min intervals. The classic method of rainfall intensity-duration (ID) threshold was used, and a specific emphasis was placed on the objective identification of rainfall events, as well as on the discrimination of flow responses observed above the ID threshold. The results show that parameters used to identify rainfall events significantly affect the ID threshold and are likely to explain part of the threshold variability reported in the literature. This is especially the case regarding the minimum duration of rain interruption (MDRI) between two distinct rainfall events. In the Réal Torrent, a 3-h MDRI appears to be representative of the local rainfall regime. A systematic increase in the ID threshold with drainage area was also observed from the comparison of the three stations, as well as from the compilation of data from experimental debris-flow catchments. A logistic regression used to separate flow responses above the ID threshold, revealed that the best predictors are the 5-min maximum rainfall intensity, the 48-h antecedent rainfall, the rainfall amount and the number of days elapsed since the end of winter (used as a proxy of sediment supply). This emphasizes the critical role played by short intense rainfall sequences that are only detectable using high time-resolution rainfall records. It also highlights the significant influence of antecedent conditions and the seasonal fluctuations of sediment supply.

  14. Simulation of Tropical Rainfall Variability

    Science.gov (United States)

    Bader, J.; Latif, M.

    2002-12-01

    The impact of sea surface temperature (SST) - especially the role of the tropical Atlantic meridional SST gradient and the El Nino-Southern Oscillation - on precipitation is investigated with the atmospheric general circulation model ECHAM4/T42. Ensemble experiments - driven with observed SST - show that Atlantic SST has a significant influence on precipitation over West Africa and northeast Brazil. SST sensitivity experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropical Atlantic caused only significant changes along the Guinea Coast, with a positive anomaly (SSTA) increasing rainfall and a negative SSTA reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, especially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. The influence of SST on precipitation over northeast Brazil (Nordeste) was also investigated. Three experiments were performed in which the climatological SST was enhanced/decreased or decreased/enhanced by one Kelvin in the North/South Atlantic and increased by two Kelvin in the Nino3 ocean area. All experiments caused significant changes over Nordeste, with an enhanced/reduced SST gradient in the Atlantic increasing/reducing rainfall. The response was nearly linear. The main effect of the Atlantic SST gradient was a shift of the ITCZ, caused by trade wind changes. The ''El Nino'' event generates a significant reduction in Nordeste rainfall. A significant positive SLP anomaly occurs in northeast Brazil which may be associated with the descending branch of the Walker circulation. Also a significant positive SLP over the Atlantic from 30S to 10N north occurs. This results in a reduced SLP

  15. Rainfall simulations to study the types of groundcover on surface runoff and soil erosion in Champagne vineyards in France

    Science.gov (United States)

    Xavier, Morvan; Christophe, Naisse; Issa Oumarou, Malam; Jean-François, Desprats; Anne, Combaud; Olivier, Cerdan

    2015-04-01

    In the literature, grass cover is often considered to be one of the best methods of limiting runoff in the vineyards; But results can vary, especially when the plot area is Champagne vineyards in France, was to quantify the influence of the cultivation practices in the inter-rows of vines and determine the influence of the density of the grass cover in the wheel tracks on the surface runoff and soil erosion in experimental plots of 0.25 m2 under simulated rainfall. Three types of ground cover were studied. In the bark-and-vine-prunings plots, the runoff coefficient ranged from 1.3 to 4.0% and soil losses were <1 g/m²/h. In the bare soil plot, the highest runoff coefficient of the study was found (80.0%) and soil losses reached 7.4 g/m²/h. In the grass cover plots, the runoff coefficient and amount of eroded soil were highly variable: the runoff coefficients ranged from 0.4 to 77.0%, and soil losses were between less than 1 and 13.4 g/m²/h. Soil type, soil moisture, slope and agricultural practices did not account for the variability. In fact, the density of grass cover in the wheel tracks explained a portion of this variability. The lack of grass in the centre of the inter-row allowed for a preferential flow and created an erosion line in the wheel tracks where the soil was compacted. This study showed that grass cover in a vineyard was not necessarily sufficient to reduce surface runoff and prevent soil erosion. To be effective, the grass cover must be dense enough in the wheel tracks of agricultural machinery to avoid runoff coefficients close to those achieved with bare soil.

  16. [Infiltration characteristics of soil water on loess slope land under intermittent and repetitive rainfall conditions].

    Science.gov (United States)

    Li, Yi; Shao, Ming-An

    2008-07-01

    Based on the experiments of controlled intermittent and repetitive rainfall on slope land, the infiltration and distribution characteristics of soil water on loess slope land were studied. The results showed that under the condition of intermittent rainfall, the cumulative runoff during two rainfall events increased linearly with time, and the wetting front also increased with time. In the interval of the two rainfall events, the wetting front increased slowly, and the infiltration rate was smaller on steeper slope than on flat surface. During the second rainfall event, there was an obvious decreasing trend of infiltration rate with time. The cumulative infiltration on 15 degrees slope land was larger than that of 25 degrees slope land, being 178 mm and 88 mm, respectively. Under the condition of repetitive rainfall, the initial infiltration rate during each rainfall event was relatively large, and during the first rainfall, both the infiltration rate and the cumulative infiltration at various stages were larger than those during the other three rainfall events. However, after the first rainfall, there were no obvious differences in the infiltration rate among the next three rainfall events. The more the rainfall event, the deeper the wetting front advanced.

  17. Predicting extreme rainfall events over Jeddah, Saudi Arabia: Impact of data assimilation with conventional and satellite observations

    KAUST Repository

    Viswanadhapalli, Yesubabu

    2015-08-20

    The impact of variational data assimilation for predicting two heavy rainfall events that caused devastating floods in Jeddah, Saudi Arabia is studied using the Weather Research and Forecasting (WRF) model. On 25 November 2009 and 26 January 2011, the city was deluged with more than double the annual rainfall amount caused by convective storms. We used a high resolution, two-way nested domain WRF model to simulate the two rainfall episodes. Simulations include control runs initialized with National Center for Environmental Prediction (NCEP) Global Forecasting System (GFS) data and 3-Dimensional Variational (3DVAR) data assimilation experiments conducted by assimilating NCEP prepbufr and radiance observations. Observations from Automated Weather Stations (AWS), synoptic charts, radar reflectivity and satellite pictures from the Presidency of Meteorology and Environment (PME), Jeddah, Saudi Arabia are used to assess the forecasting results. To evaluate the impact of the different assimilated observational datasets on the simulation of the major flooding event of 2009, we conducted 3DVAR experiments assimilating individual sources and a combination of all data sets. Results suggest that while the control run had a tendency to predict the storm earlier than observed, the assimilation of profile observations greatly improved the model\\'s thermodynamic structure and lead to better representation of simulated rainfall both in timing and amount. The experiment with assimilation of all available observations compared best with observed rainfall in terms of timing of the storm and rainfall distribution, demonstrating the importance of assimilating different types of observations. Retrospective experiments with and without data assimilation, for three different model lead times (48, 72 and 96-h), were performed to examine the skill of WRF model to predict the heavy rainfall events. Quantitative rainfall analysis of these simulations suggests that 48-h lead time runs with

  18. An Atlantic influence on Amazon rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Zeng, Ning [University of Maryland, Earth System Science Interdisciplinary Center, College Park, MD (United States); University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States)

    2010-02-15

    Rainfall variability over the Amazon basin has often been linked to variations in Pacific sea surface temperature (SST), and in particular, to the El Nino/Southern Oscillation (ENSO). However, only a fraction of Amazon rainfall variability can be explained by ENSO. Building upon the recent work of Zeng (Environ Res Lett 3:014002, 2008), here we provide further evidence for an influence on Amazon rainfall from the tropical Atlantic Ocean. The strength of the North Atlantic influence is found to be comparable to the better-known Pacific ENSO connection. The tropical South Atlantic Ocean also shows some influence during the wet-to-dry season transition period. The Atlantic influence is through changes in the north-south divergent circulation and the movement of the ITCZ following warm SST. Therefore, it is strongest in the southern part of the Amazon basin during the Amazon's dry season (July-October). In contrast, the ENSO related teleconnection is through anomalous east-west Walker circulation with largely concentrated in the eastern (lower) Amazon. This ENSO connection is seasonally locked to boreal winter. A complication due to the influence of ENSO on Atlantic SST causes an apparent North Atlantic SST lag of Amazon rainfall. Removing ENSO from North Atlantic SST via linear regression resolves this causality problem in that the residual Atlantic variability correlates well and is in phase with the Amazon rainfall. A strong Atlantic influence during boreal summer and autumn is particularly significant in terms of the impact on the hydro-ecosystem which is most vulnerable during the dry season, as highlighted by the severe 2005 Amazon drought. Such findings have implications for both seasonal-interannual climate prediction and understanding the longer-term changes of the Amazon rainforest. (orig.)

  19. Constraining relationships between rainfall and landsliding with satellite derived rainfall measurements and landslide inventories.

    Science.gov (United States)

    Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle

    2017-04-01

    In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a

  20. RAINLINK: Retrieval algorithm for rainfall monitoring employing microwave links from a cellular communication network

    Science.gov (United States)

    Uijlenhoet, R.; Overeem, A.; Leijnse, H.; Rios Gaona, M. F.

    2017-12-01

    The basic principle of rainfall estimation using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated, which can be converted to average rainfall intensities over the length of a link. Microwave links from cellular communication networks have been proposed as a promising new rainfall measurement technique for one decade. They are particularly interesting for those countries where few surface rainfall observations are available. Yet to date no operational (real-time) link-based rainfall products are available. To advance the process towards operational application and upscaling of this technique, there is a need for freely available, user-friendly computer code for microwave link data processing and rainfall mapping. Such software is now available as R package "RAINLINK" on GitHub (https://github.com/overeem11/RAINLINK). It contains a working example to compute link-based 15-min rainfall maps for the entire surface area of The Netherlands for 40 hours from real microwave link data. This is a working example using actual data from an extensive network of commercial microwave links, for the first time, which will allow users to test their own algorithms and compare their results with ours. The package consists of modular functions, which facilitates running only part of the algorithm. The main processings steps are: 1) Preprocessing of link data (initial quality and consistency checks); 2) Wet-dry classification using link data; 3) Reference signal determination; 4) Removal of outliers ; 5) Correction of received signal powers; 6) Computation of mean path-averaged rainfall intensities; 7) Interpolation of rainfall intensities ; 8) Rainfall map visualisation. Some applications of RAINLINK will be shown based on microwave link data from a

  1. Variations of Sea Surface Temperature, Wind Stress, and Rainfall over the Tropical Atlantic and South America.

    Science.gov (United States)

    Nobre, Paulo; Srukla, J.

    1996-10-01

    Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies

  2. Quantifying Rainfall Interception Loss of a Subtropical Broadleaved Forest in Central Taiwan

    Directory of Open Access Journals (Sweden)

    Yi-Ying Chen

    2016-01-01

    Full Text Available The factors controlling seasonal rainfall interception loss are investigated by using a double-mass curve analysis, based on direct measurements of high-temporal resolution gross rainfall, throughfall and stemflow from 43 rainfall events that occurred in central Taiwan from April 2008 to April 2009. The canopy water storage capacity for the wet season was estimated to be 1.86 mm, about twice that for the dry season (0.91 mm, likely due to the large reduction in the leaf area index (LAI from 4.63 to 2.23 (m2·m−2. Changes in seasonal canopy structure and micro-meteorological conditions resulted in temporal variations in the amount of interception components, and rainfall partitioning into stemflow and throughfall. Wet canopy evaporation after rainfall contributed 41.8% of the wet season interception loss, but only 17.1% of the dry season interception loss. Wet canopy evaporation during rainfall accounted for 82.9% of the dry season interception loss, but only 58.2% of the wet season interception loss. Throughfall accounted for over 79.7% of the dry season precipitation and 76.1% of the wet season precipitation, possibly due to the change in gap fraction from 64.2% in the dry season to 50.0% in the wet season. The reduced canopy cover in the dry season also produced less stemflow than that of the wet season. The rainfall stemflow ratio ( P s f / P g was reduced from 12.6% to 8.9%. Despite relatively large changes in canopy structure, seasonal variation of the ratio of rainfall partitioned to interception was quite small. Rainfall interception loss accounted for nearly 12% of gross precipitation for both dry and wet seasons.

  3. Streamflow prediction using multi-site rainfall obtained from hydroclimatic teleconnection

    Science.gov (United States)

    Kashid, S. S.; Ghosh, Subimal; Maity, Rajib

    2010-12-01

    SummarySimultaneous variations in weather and climate over widely separated regions are commonly known as "hydroclimatic teleconnections". Rainfall and runoff patterns, over continents, are found to be significantly teleconnected, with large-scale circulation patterns, through such hydroclimatic teleconnections. Though such teleconnections exist in nature, it is very difficult to model them, due to their inherent complexity. Statistical techniques and Artificial Intelligence (AI) tools gain popularity in modeling hydroclimatic teleconnection, based on their ability, in capturing the complicated relationship between the predictors (e.g. sea surface temperatures) and predictand (e.g., rainfall). Genetic Programming is such an AI tool, which is capable of capturing nonlinear relationship, between predictor and predictand, due to its flexible functional structure. In the present study, gridded multi-site weekly rainfall is predicted from El Niño Southern Oscillation (ENSO) indices, Equatorial Indian Ocean Oscillation (EQUINOO) indices, Outgoing Longwave Radiation (OLR) and lag rainfall at grid points, over the catchment, using Genetic Programming. The predicted rainfall is further used in a Genetic Programming model to predict streamflows. The model is applied for weekly forecasting of streamflow in Mahanadi River, India, and satisfactory performance is observed.

  4. Trends in rainfall erosivity in NE Spain at annual, seasonal and daily scales, 1955–2006

    Directory of Open Access Journals (Sweden)

    S. Beguería

    2012-10-01

    Full Text Available Rainfall erosivity refers to the ability of precipitation to erode soil, and depends on characteristics such as its total volume, duration, and intensity and amount of energy released by raindrops. Despite the relevance of rainfall erosivity for soil degradation prevention, very few studies have addressed its spatial and temporal variability. In this study the time variation of rainfall erosivity in the Ebro Valley (NE Spain is assessed for the period 1955–2006. The results show a general decrease in annual and seasonal rainfall erosivity, which is explained by a decrease of very intense rainfall events whilst the frequency of moderate and low events increased. This trend is related to prevailing positive conditions of the main atmospheric teleconnection indices affecting the West Mediterranean, i.e. the North Atlantic Oscillation (NAO, the Mediterranean Oscillation (MO and the Western Mediterranean Oscillation (WeMO.

  5. Hydrological Modelling Using a Rainfall Simulator over an Experimental Hillslope Plot

    Directory of Open Access Journals (Sweden)

    Arpit Chouksey

    2017-03-01

    Full Text Available Hydrological processes are complex to compute in hilly areas when compared to plain areas. The governing processes behind runoff generation on hillslopes are subsurface storm flow, saturation excess flow, overland flow, return flow and pipe storage. The simulations of the above processes in the soil matrix require detailed hillslope hydrological modelling. In the present study, a hillslope experimental plot has been designed to study the runoff generation processes on the plot scale. The setup is designed keeping in view the natural hillslope conditions prevailing in the Northwestern Himalayas, India where high intensity rainfall events occur frequently. A rainfall simulator was installed over the experimental hillslope plot to generate rainfall with an intensity of 100 mm/h, which represents the dominating rainfall intensity range in the region. Soil moisture sensors were also installed at variable depths from 100 to 1000 mm at different locations of the plot to observe the soil moisture regime. From the experimental observations it was found that once the soil is saturated, it remains at field capacity for the next 24–36 h. Such antecedent moisture conditions are most favorable for the generation of rapid stormflow from hillslopes. A dye infiltration test was performed on the undisturbed soil column to observe the macropore fraction variability over the vegetated hillslopes. The estimated macropore fractions are used as essential input for the hillslope hydrological model. The main objective of the present study was to develop and test a method for estimating runoff responses from natural rainfall over hillslopes of the Northwestern Himalayas using a portable rainfall simulator. Using the experimental data and the developed conceptual model, the overland flow and the subsurface flow through a macropore-dominated area have been estimated/analyzed. The surface and subsurface runoff estimated using the developed hillslope hydrological model

  6. Impacts of different rainfall patterns on hyporheic zone under transient conditions

    Science.gov (United States)

    Liu, Suning; Chui, Ting Fong May

    2018-06-01

    The hyporheic zone (HZ) plays an important role in stream ecology. Previous studies have mainly focused on the factors influencing the HZ in the steady state. However, the exchange between surface water and groundwater in the HZ can become transient during a storm. This study investigates the impacts of different rainfall patterns (varying in intensity and duration) on the HZ under transient conditions. A two-dimensional numerical model of a 10-m long and 2-m deep domain is developed, in which the streambed consists of a series of dunes. Brinkman-Darcy and Navier-Stokes equations are respectively solved for groundwater and surface water, and velocity and pressure are coupled at the interface (i.e., the streambed surface). To compare the results under different transient conditions, this study proposes two indicators, i.e., the influential time (IT, the time required for the HZ to return to its initial state once it starts to change) and the influential depth (ID, the maximum increment in the HZ depth). To detect the extent to which the HZ undergoes significant spatial changes, moving split-window and inflection point tests are conducted. The results indicate that rainfall intensity (RI) and rainfall duration (RD) both display logarithmic relationships with the IT and ID with high coefficients of determination, but only between certain lower and upper thresholds of the RI and RD. Moreover, the distributions of the IT and ID as a function of the RI and RD are mapped using the surface spline and kriging interpolation methods to facilitate future prediction of the IT and ID. In addition, it is observed that the IT has a linear negative correlation with the groundwater response while the ID is not affected by different groundwater responses. All of the derived relationships can be used to predict the impacts of a future rainfall event on the HZ.

  7. Projections of Rainfall and Surface Temperature from CMIP5 Models under RCP4.5 and 8.5 over BIMSTEC Countries

    Science.gov (United States)

    Charan Pattnayak, Kanhu; Kar, Sarat Chandra; Kumari Pattnayak, Rashmita

    2015-04-01

    Rainfall and surface temperature are the most important climatic variables in the context of climate change. Thus, these variables simulated from fifth phase of the Climate Model Inter-comparison Project (CMIP5) models have been compared against Climatic Research Unit (CRU) observed data and projected for the twenty first century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 emission scenarios. Results for the seven countries under Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) such as Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand have been examined. Six CMIP5 models namely GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, HadGEM2-AO, HadGEM2-CC and HadGEM2-ES have been chosen for this study. The study period has been considered is from 1861 to 2100. From this period, initial 145 years i.e. 1861 to 2005 is reference or historical period and the later 95 years i.e. 2005 to 2100 is projected period. The climate change in the projected period has been examined with respect to the reference period. In order to validate the models, the mean annual rainfall and temperature has been compared with CRU over the reference period 1901 to 2005. Comparison reveals that most of the models are able to capture the spatial distribution of rainfall and temperature over most of the regions of BIMSTEC countries. Therefore these model data can be used to study the future changes in the 21st Century. Four out six models shows that the rainfall over Central and North India, Thailand and eastern part of Myanmar shows decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka shows an increasing trend in both RCP 4.5 and 8.5 scenarios. In case of temperature, all of the models show an increasing trend over all the BIMSTEC countries in both scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. Annual cycles of rainfall and temperature over Bangladesh, Myanmar and Thailand

  8. The capacity of radar, crowdsourced personal weather stations and commercial microwave links to monitor small scale urban rainfall

    Science.gov (United States)

    Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.

    2017-12-01

    For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.

  9. Mapping extreme rainfall in the Northwest Portugal region: statistical analysis and spatial modelling

    Science.gov (United States)

    Santos, Monica; Fragoso, Marcelo

    2010-05-01

    Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude

  10. The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico

    Science.gov (United States)

    Scholl, Martha A.; Shanley, James B.; Zegarra, Jan Paul; Coplen, Tyler B.

    2009-01-01

    The stable isotope amount effect has often been invoked to explain patterns of isotopic composition of rainfall in the tropics. This paper describes a new approach, correlating the isotopic composition of precipitation with cloud height and atmospheric temperature using NEXRAD radar echo tops, which are a measure of the maximum altitude of rainfall within the clouds. The seasonal differences in echo top altitudes and their corresponding temperatures are correlated with the isotopic composition of rainfall. These results offer another factor to consider in interpretation of the seasonal variation in isotopic composition of tropical rainfall, which has previously been linked to amount or rainout effects and not to temperature effects. Rain and cloud water isotope collectors in the Luquillo Mountains in northeastern Puerto Rico were sampled monthly for three years and precipitation was analyzed for δ18O and δ2H. Precipitation enriched in 18O and 2H occurred during the winter dry season (approximately December–May) and was associated with a weather pattern of trade wind showers and frontal systems. During the summer rainy season (approximately June–November), precipitation was depleted in 18O and 2H and originated in low pressure systems and convection associated with waves embedded in the prevailing easterly airflow. Rain substantially depleted in 18O and 2H compared to the aforementioned weather patterns occurred during large low pressure systems. Weather analysis showed that 29% of rain input to the Luquillo Mountains was trade wind orographic rainfall, and 30% of rainfall could be attributed to easterly waves and low pressure systems. Isotopic signatures associated with these major climate patterns can be used to determine their influence on streamflow and groundwater recharge and to monitor possible effects of climate change on regional water resources.

  11. Study of Climate Change Impact to Local Rainfall Distribution in Lampung Provinces

    Directory of Open Access Journals (Sweden)

    Tumiar Katarina Manik

    2016-08-01

    Full Text Available Global warming which leads to climate change has potential affect to Indonesia agriculture activities and production. Analyzing rainfall pattern and distribution is important to investigate the impact of global climate change to local climate. This study using rainfall data from 1976-2010 from both lowland and upland area of Lampung Province. The results show that rainfall tends to decrease since the 1990s which related to the years with El Nino event. Monsoonal pattern- having rain and dry season- still excist in Lampung; however, since most rain fell below the average, it could not meet crops water need. Farmers conclude that dry seasons were longer and seasonal pattern has been changed. Global climate change might affect Lampung rainfall distribution through changes on sea surface temperature which could intensify the El Nino effect. Therefore, watching the El Nino phenomena and how global warming affects it, is important in predicting local climate especially the rainfall distribution in order to prevent significant loss in agriculture productivities.

  12. Deforestation and rainfall recycling in Brazil: Is decreased forest cover connectivity associated with decreased rainfall connectivity?

    Science.gov (United States)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2017-12-01

    In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.

  13. Thermodynamic ocean-atmosphere Coupling and the Predictability of Nordeste rainfall

    Science.gov (United States)

    Chang, P.; Saravanan, R.; Giannini, A.

    2003-04-01

    The interannual variability of rainfall in the northeastern region of Brazil, or Nordeste, is known to be very strongly correlated with sea surface temperature (SST) variability, of Atlantic and Pacific origin. For this reason the potential predictability of Nordeste rainfall is high. The current generation of state-of-the-art atmospheric models can replicate the observed rainfall variability with high skill when forced with the observed record of SST variability. The correlation between observed and modeled indices of Nordeste rainfall, in the AMIP-style integrations with two such models (NSIPP and CCM3) analyzed here, is of the order of 0.8, i.e. the models explain about 2/3 of the observed variability. Assuming that thermodynamic, ocean-atmosphere heat exchange plays the dominant role in tropical Atlantic SST variability on the seasonal to interannual time scale, we analyze its role in Nordeste rainfall predictability using an atmospheric general circulation model coupled to a slab ocean model. Predictability experiments initialized with observed December SST show that thermodynamic coupling plays a significant role in enhancing the persistence of SST anomalies, both in the tropical Pacific and in the tropical Atlantic. We show that thermodynamic coupling is sufficient to provide fairly accurate forecasts of tropical Atlantic SST in the boreal spring that are significantly better than the persistence forecasts. The consequences for the prediction of Nordeste rainfall are analyzed.

  14. Salt nuclei, wind and daily rainfall in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, A H; Mordy, W A

    1955-01-01

    The discovery of large sea-salt particulates at cloud levels led to the hypothesis that these particles act as nuclei on which raindrops initially form within clouds and to the suggestion that the amount of rainfall on an oceanic island might be a function of the number of the salt particles in the air. Exploratory observations of rain and airborne salt in Hawaii, which were intended to test this suggestion, are presented and discussed. These observations do not prove that greater numbers of salt nuclei are related to greater amounts of rain. They do, however, indicate that such a relationship may exist, and that additional field studies should be made which utilize the pertinent results of the present study.

  15. Role of urban surface roughness in road-deposited sediment build-up and wash-off

    Science.gov (United States)

    Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing

    2018-05-01

    Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.

  16. Rainfall spatiotemporal variability relation to wetlands hydroperiods

    Science.gov (United States)

    Serrano-Hidalgo, Carmen; Guardiola-Albert, Carolina; Fernandez-Naranjo, Nuria

    2017-04-01

    Doñana natural space (Southwestern Spain) is one of the largest protected wetlands in Europe. The wide marshes present in this natural space have such ecological value that this wetland has been declared a Ramsar reserve in 1982. Apart from the extensive marsh, there are also small lagoons and seasonally flooded areas which are likewise essential to maintain a wide variety of valuable habitats. Hydroperiod, the length of time each point remains flooded along an annual cycle, is a critical ecological parameter that shapes aquatic plants and animals distribution and determines available habitat for many of the living organisms in the marshes. Recently, there have been published two different works estimating the hydroperiod of Doñana lagoons with Landsat Time Series images (Cifuentes et al., 2015; Díaz-Delgado et al., 2016). In both works the flooding cycle hydroperiod in Doñana marshes reveals a flooding regime mainly driven by rainfall, evapotranspiration, topography and local hydrological management actions. The correlation found between rainfall and hydroperiod is studied differently in both works. While in one the rainfall is taken from one raingauge (Cifuentes et al., 2015), the one performed by Díaz-Delgado (2016) uses annual rainfall maps interpolated with the inverse of the distance method. The rainfall spatiotemporal variability in this area can be highly significant; however the amount of this importance has not been quantified at the moment. In the present work the geostatistical tool known as spatiotemporal variogram is used to study the rainfall spatiotemporal variability. The spacetime package implemented in R (Pebesma, 2012) facilities its computation from a high rainfall data base of more than 100 raingauges from 1950 to 2016. With the aid of these variograms the rainfall spatiotemporal variability is quantified. The principal aim of the present work is the study of the relation between the rainfall spatiotemporal variability and the

  17. Historical analysis of interannual rainfall variability and trends in southeastern Brazil based on observational and remotely sensed data

    Science.gov (United States)

    Vásquez P., Isela L.; de Araujo, Lígia Maria Nascimento; Molion, Luiz Carlos Baldicero; de Araujo Abdalad, Mariana; Moreira, Daniel Medeiros; Sanchez, Arturo; Barbosa, Humberto Alves; Rotunno Filho, Otto Corrêa

    2018-02-01

    The Brazilian Southeast is considered a humid region. It is also prone to landslides and floods, a result of significant increases in rainfall during spring and summer caused by the South Atlantic Convergence Zone (SACZ). Recently, however, the region has faced a striking rainfall shortage, raising serious concerns regarding water availability. The present work endeavored to explain the meteorological drought that has led to hydrological imbalance and water scarcity in the region. Hodrick-Prescott smoothing and wavelet transform techniques were applied to long-term hydrologic and sea surface temperature (SST)—based climate indices monthly time series data in an attempt to detect cycles and trends that could help explain rainfall patterns and define a framework for improving the predictability of extreme events in the region. Historical observational hydrologic datasets available include monthly precipitation amounts gauged since 1888 and 1940 and stream flow measured since the 1930s. The spatial representativeness of rain gauges was tested against gridded rainfall satellite estimates from 2000 to 2015. The analyses revealed variability in four time scale domains—infra-annual, interannual, quasi-decadal and inter-decadal or multi-decadal. The strongest oscillations periods revealed were: for precipitation—8 months, 2, 8 and 32 years; for Pacific SST in the Niño-3.4 region—6 months, 2, 8 and 35.6 years, for North Atlantic SST variability—6 months, 2, 8 and 32 years and for Pacific Decadal Oscillation (PDO) index—6.19 months, 2.04, 8.35 and 27.31 years. Other periodicities less prominent but still statistically significant were also highlighted.

  18. Estimation of potential rainfall recharge in the pothwar area

    International Nuclear Information System (INIS)

    Afzal, M.; Yaseen, M.

    2015-01-01

    Groundwater recharge is complex phenomenon to understand and describe because it cannot be seen with open eyes. We have to depend some theoretical assumptions to understand this complicated hidden natural underground water movement process. There are many factors affecting and controlling the water movement in soil profile. Groundwater use in district chakwal is of a fundamental importance to meet the rapidly expanding drinking and agricultural water requirements. The man factors contributing to groundwater recharge in chakwal are rainfall, evapotranspiration and geology. due to the semi arid climatic conditions of the area, this resource is almost the only key to economic development. There are a number of dug wells in the area where water is getting stored during rainy season. source and processes of recharge in humid areas are different compared with semi-arid areas. Due to the main resource of available water in the area, the potential groundwater recharge estimation could be good exercise to visulize the amount of rainwater entering the ground. For groundwater recharge estimation there are a number of simple and advanced techniques available. In the present study simple methods were used to estimate potential recharge due to available limited resources. Rainfall runoff, gravimetric and water table fluctuation methods were used to quantify rainfall recharge during the monsoon season. The average potential recharge estimated was 60% of the rainfall of 148 mm. Rainfall runoff and gravimetric methods were found to be comparable for short period potential recharge estimation while water table fluctuation method gives actual recharge and require longer period data. Potential recharge values were higher for area having grassland type vegetation and low for area covering shrubs and tick vegetation. (author)

  19. Validity and extension of the SCS-CN method for computing infiltration and rainfall-excess rates

    Science.gov (United States)

    Mishra, Surendra Kumar; Singh, Vijay P.

    2004-12-01

    A criterion is developed for determining the validity of the Soil Conservation Service curve number (SCS-CN) method. According to this criterion, the existing SCS-CN method is found to be applicable when the potential maximum retention, S, is less than or equal to twice the total rainfall amount. The criterion is tested using published data of two watersheds. Separating the steady infiltration from capillary infiltration, the method is extended for predicting infiltration and rainfall-excess rates. The extended SCS-CN method is tested using 55 sets of laboratory infiltration data on soils varying from Plainfield sand to Yolo light clay, and the computed and observed infiltration and rainfall-excess rates are found to be in good agreement.

  20. Influence of rainfall intensity on infiltration and deformation of unsaturated soil slopes

    International Nuclear Information System (INIS)

    Garcia Aristizabal, Edwin Fabian; Riveros Jerez, Carlos Alberto; Builes Brand, Manuel Alonso

    2011-01-01

    In order to improve the understanding of the influence of rainfall intensity on infiltration and deformation behavior of unsaturated soil slopes, numerical 2D analyses are carried out by a three-phase elasto-viscoplastic seepage-deformation coupled method. From the numerical results, it is shown that regardless of the saturated permeability of the soil slope, the increase in the pore water pressure (reduction in suction) during rainfall infiltration is localized close to the slope surface. In addition, the generation of the pore water pressure and the lateral displacement are mainly controlled by the ratio of the rainfall intensity to the saturated permeability of the soil.

  1. Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling

    Science.gov (United States)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2017-03-01

    The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP - Space-Time Realizations of Areal Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM - the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the

  2. Study of acid mine drainage management with evaluating climate and rainfall in East Pit 3 West Banko coal mine

    Science.gov (United States)

    Rochyani, Neny

    2017-11-01

    Acid mine drainage is a major problem for the mining environment. The main factor that formed acid mine drainage is the volume of rainfall. Therefore, it is important to know clearly the main climate pattern of rainfall and season on the management of acid mine drainage. This study focuses on the effects of rainfall on acid mine water management. Based on daily rainfall data, monthly and seasonal patterns by using Gumbel approach is known the amount of rainfall that occurred in East Pit 3 West Banko area. The data also obtained the highest maximum daily rainfall on 165 mm/day and the lowest at 76.4 mm/day, where it is known that the rainfall conditions during the period 2007 - 2016 is from November to April so the use of lime is also slightly, While the low rainfall is from May to October and the use of lime will be more and more. Based on calculation of lime requirement for each return period, it can be seen the total of lime and financial requirement for treatment of each return period.

  3. [Response of sloping water erosion to rainfall and micro-earth pattern in the loess hilly area].

    Science.gov (United States)

    Wei, Wei; Jia, Fu-yan; Chen, Li-ding; Wu, Dong-ping; Chen, Jin

    2012-08-01

    Severe water erosion in the key loess hilly area is affected by the coupling role of rainfall and earth surface features. In this study, rainfall simulation techniques at the micro-plot scale (1.2 m x 1.2 m; 2 m x 1.2 m) was used as the basic measures, the relations between rainfall depth, intensity and runoff-erosion under different plant morphology features as well as micro-landscape positions were quantified and analyzed. Several key findings were captured. Firstly, rainfall depth and intensity both affected water erosion significantly, while the role of the rainfall intensity was more important than that of the depth. Secondly, a strong negative correlation was found between the antecedent soil moisture content and the generation timing of surface runoff, while water erosion had a positive relation with the antecedent soil moisture. Thirdly, different plant morphology and micro-landscape positions of shrub plant (seabuckthorn) played different roles leading to different rates of surface runoff and soil erosion. Dominated by a rainfall intensity ranging from 50 to 60 mm x h(-1), runoff coefficient in those micro-plots covered by seabuckthorn was about 5%-8%, and changed into 25%, 45% and 63% in grassland-plots, bared plots covered by biological-crust and bared plots without any coverage, respectively. Fourthly, the specific landscape position of seabuckthorn in the plots was also found to play a key role in affecting water erosion processes, and seabuckthorn at the lower landscape position, rather than the upper and middle position, played a better buffering role in reducing runoff and soil loss.

  4. The consecutive dry days to trigger rainfall over West Africa

    Science.gov (United States)

    Lee, J. H.

    2018-01-01

    In order to resolve contradictions in addressing a soil moisture-precipitation feedback mechanism over West Africa and to clarify the impact of antecedent soil moisture on subsequent rainfall evolution, we first validated various data sets (SMOS satellite soil moisture observations, NOAH land surface model, TRMM rainfall, CMORPH rainfall and HadGEM climate models) with the Analyses Multidisciplinaires de la Mousson Africaine (AMMA) field campaign data. Based on this analysis, it was suggested that biases of data sets might cause contradictions in studying mechanisms. Thus, by taking into account uncertainties in data, it was found that the approach of consecutive dry days (i.e. a relative comparison of time-series) showed consistency across various data sets, while the direct comparison approach for soil moisture state and rainfall did not. Thus, it was discussed that it may be difficult to directly relate rain with soil moisture as the absolute value, however, it may be reasonable to compare a temporal progress of the variables. Based upon the results consistently showing a positive relationship between the consecutive dry days and rainfall, this study supports a negative feedback often neglected by climate model structure. This approach is less sensitive to interpretation errors arising from systematic errors in data sets, as this measures a temporal gradient of soil moisture state.

  5. Rainfall thresholds and flood warning: an operative case study

    Directory of Open Access Journals (Sweden)

    V. Montesarchio

    2009-02-01

    Full Text Available An operative methodology for rainfall thresholds definition is illustrated, in order to provide at critical river section optimal flood warnings. Threshold overcoming could produce a critical situation in river sites exposed to alluvial risk and trigger the prevention and emergency system alert. The procedure for the definition of critical rainfall threshold values is based both on the quantitative precipitation observed and the hydrological response of the basin. Thresholds values specify the precipitation amount for a given duration that generates a critical discharge in a given cross section and are estimated by hydrological modelling for several scenarios (e.g.: modifying the soil moisture conditions. Some preliminary results, in terms of reliability analysis (presence of false alarms and missed alarms, evaluated using indicators like hit rate and false alarm rate for the case study of Mignone River are presented.

  6. What rainfall events trigger landslides on the West Coast US?

    Science.gov (United States)

    Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia

    2016-04-01

    A dataset of landslide occurrences compiled by collating google news reports covers 9 full years of data. We show that, while this compilation cannot provide consistent and widespread monitoring everywhere, it is adequate to capture the distribution of events in the major urban areas of the West Coast US and it can be used to provide a quantitative relationship between landslides and rainfall events. The case of the Seattle metropolitan area is presented as an example. The landslide dataset shows a clear seasonality in landslide occurrence, corresponding to the seasonality of rainfall, modified by the accumulation of soil moisture as winter progresses. Interannual variability of landslide occurrences is also linked to interannual variability of monthly rainfall. In most instances, landslides are clustered on consecutive days or at least within the same pentad and correspond to days of large rainfall accumulation at the regional scale. A joint analysis of the landslide data and of the high-resolution PRISM daily rainfall accumulation shows that on days when landslides occurred, the distribution of rainfall was shifted, with rainfall accumulation higher than 10mm/day being more common. Accumulations above 50mm/day much increase the probability of landslides, including the possibility of a major landslide event (one with multiple landslides in a day). The synoptic meteorological conditions associated with these major events show a mid-tropospheric ridge to the south of the target area steering a surface low and bringing enhanced precipitable water towards the Pacific North West. The interaction of the low-level flow with the local orography results in instances of a strong Puget Sound Convergence Zone, with widespread rainfall accumulation above 30mm/day and localized maxima as high as 100mm/day or more.

  7. Do we really use rainfall observations consistent with reality in hydrological modelling?

    Science.gov (United States)

    Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves

    2017-04-01

    Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.

  8. Implications of rainfall for agricultural and urban development of Eldoret, Kenya

    Directory of Open Access Journals (Sweden)

    E. Ofori- Sarpong

    2013-07-01

    Full Text Available This paper examines the role of rainfall in the urban development of Kenya. The rainfall characteristics have been analysed and their influence on agricultural and urban development assessed. It is noted that since Eldoret is one of the rapidly expanding towns in Kenya located in highly potential agricultural region, variability of rainfall and drought can seriously affect urban development as farmers in the hinterland will abandon their farms and migrate to the town thus creating food shortage. Secondly, in times of drought, the water supply problems in the town will be exacerbated as it depends on surface water source. The tempo of rural-urban migration will be speeded up and this will create more socio-economic problems.

  9. Model simulations of rainfall over southern Africa and its eastern ...

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... Rainfall simulations over southern and tropical Africa in the form of low-resolution Atmospheric Model ..... provision of sea-surface temperatures and sea-ice fields of a host ...... with variability of the Atlantic Ocean. Bull.

  10. Ajustement statistique des simulations climatiques : l'exemple des précipitations saisonnières de l'Amérique tropicaleStatistical adjustment of simulated climate: example of seasonal rainfall of tropical America.

    Science.gov (United States)

    Moron, Vincent; Navarra, Antonio

    2000-05-01

    This study presents the skill of the seasonal rainfall of tropical America from an ensemble of three 34-year general circulation model (ECHAM 4) simulations forced with observed sea surface temperature between 1961 and 1994. The skill gives a first idea of the amount of potential predictability if the sea surface temperatures are perfectly known some time in advance. We use statistical post-processing based on the leading modes (extracted from Singular Value Decomposition of the covariance matrix between observed and simulated rainfall fields) to improve the raw skill obtained by simple comparison between observations and simulations. It is shown that 36-55 % of the observed seasonal variability is explained by the simulations on a regional basis. Skill is greatest for Brazilian Nordeste (March-May), but also for northern South America or the Caribbean basin in June-September or northern Amazonia in September-November for example.

  11. Impacts of climate change on the trends of extreme rainfall indices and values of maximum precipitation at Olimpiyat Station, Istanbul, Turkey

    Science.gov (United States)

    Nigussie, Tewodros Assefa; Altunkaynak, Abdusselam

    2018-03-01

    In this study, extreme rainfall indices of Olimpiyat Station were determined from reference period (1971-2000) and future period (2070-2099) daily rainfall data projected using the HadGEM2-ES and GFDL-ESM2M global circulation models (GCMs) and downscaled by the RegCM4.3.4 regional model under the Representative Concentration Pathway RCP4.5 and RCP8.5 scenarios. The Mann-Kendall (MK) trend statistics was used to detect trends in the indices of each group, and the nonparametric Wilcoxon signed ranks test was employed to identify the presence of differences among the values of the rainfall indices of the three groups. Moreover, the peaks-over-threshold (POT) method was used to undertake frequency analysis and estimate the maximum 24-h rainfall values of various return periods. The results of the M-K-based trend analyses showed that there are insignificant increasing trends in most of the extreme rainfall indices. However, based on the Wilcoxon signed ranks test, the values of the extreme rainfall indices determined for the future period, particularly under RCP8.5, were found to be significantly different from the corresponding values determined for the reference period. The maximum 24-h rainfall amounts of the 50-year return period of the future period under RCP4.5 of the HadGEM2-ES and GFDL-ESM2M GCMs were found to be larger (by 5.85%) than the corresponding value of the reference period by 5.85 and 21.43%, respectively. The results also showed that the maximum 24-h rainfall amount under RCP8.5 of both the HadGEM2-ES and GFDL-ESM2M GCMs was found to be greater (34.33 and 12.18%, respectively, for the 50-year return period) than the reference period values. This may increase the risk of flooding in Ayamama Watershed, and thus, studying the effects of the predicted amount of rainfall under the RCP8.5 scenario on the flooding risk of Ayamama Watershed and devising management strategies are recommended to enhance the design and implementation of adaptation measures.

  12. Comparison between intensity- duration thresholds and cumulative rainfall thresholds for the forecasting of landslide

    Science.gov (United States)

    Lagomarsino, Daniela; Rosi, Ascanio; Rossi, Guglielmo; Segoni, Samuele; Catani, Filippo

    2014-05-01

    This work makes a quantitative comparison between the results of landslide forecasting obtained using two different rainfall threshold models, one using intensity-duration thresholds and the other based on cumulative rainfall thresholds in an area of northern Tuscany of 116 km2. The first methodology identifies rainfall intensity-duration thresholds by means a software called MaCumBA (Massive CUMulative Brisk Analyzer) that analyzes rain-gauge records, extracts the intensities (I) and durations (D) of the rainstorms associated with the initiation of landslides, plots these values on a diagram, and identifies thresholds that define the lower bounds of the I-D values. A back analysis using data from past events can be used to identify the threshold conditions associated with the least amount of false alarms. The second method (SIGMA) is based on the hypothesis that anomalous or extreme values of rainfall are responsible for landslide triggering: the statistical distribution of the rainfall series is analyzed, and multiples of the standard deviation (σ) are used as thresholds to discriminate between ordinary and extraordinary rainfall events. The name of the model, SIGMA, reflects the central role of the standard deviations in the proposed methodology. The definition of intensity-duration rainfall thresholds requires the combined use of rainfall measurements and an inventory of dated landslides, whereas SIGMA model can be implemented using only rainfall data. These two methodologies were applied in an area of 116 km2 where a database of 1200 landslides was available for the period 2000-2012. The results obtained are compared and discussed. Although several examples of visual comparisons between different intensity-duration rainfall thresholds are reported in the international literature, a quantitative comparison between thresholds obtained in the same area using different techniques and approaches is a relatively undebated research topic.

  13. Simulation of rainfall-runoff for major flash flood events in Karachi

    Science.gov (United States)

    Zafar, Sumaira

    2016-07-01

    Metropolitan city Karachi has strategic importance for Pakistan. With the each passing decade the city is facing urban sprawl and rapid population growth. These rapid changes directly affecting the natural resources of city including its drainage pattern. Karachi has three major cities Malir River with the catchment area of 2252 sqkm and Lyari River has catchment area about 470.4 sqkm. These are non-perennial rivers and active only during storms. Change of natural surfaces into hard pavement causing an increase in rainfall-runoff response. Curve Number is increased which is now causing flash floods in the urban locality of Karachi. There is only one gauge installed on the upstream of the river but there no record for the discharge. Only one gauge located at the upstream is not sufficient for discharge measurements. To simulate the maximum discharge of Malir River rainfall (1985 to 2014) data were collected from Pakistan meteorological department. Major rainfall events use to simulate the rainfall runoff. Maximum rainfall-runoff response was recorded in during 1994, 2007 and 2013. This runoff causes damages and inundation in floodplain areas of Karachi. These flash flooding events not only damage the property but also cause losses of lives

  14. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    Science.gov (United States)

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  15. Urban flood return period assessment through rainfall-flood response modelling

    DEFF Research Database (Denmark)

    Murla, Damian; Thorndahl, Søren Liedtke

    Intense rainfall can often cause severe floods, especially in urbanized areas, where population density or large impermeable areas are found. In this context, floods can generate a direct impact in a social-environmental-economic viewpoint. Traditionally, in design of Urban Drainage Systems (UDS......), correlation between return period (RP) of a given rainfall and RP of its consequent flood has been assumed to be linear (e.g.DS/EN752 (2008)). However, this is not always the case. Complex UDS, where diverse hydraulic infrastructures are often found, increase the heterogeneity of system response, which may...... cause an alteration of the mentioned correlation. Consequently, reliability on future urban planning, design and resilience against floods may be also affected by this misassumption. In this study, an assessment of surface flood RP across rainfall RP has been carried out at Lystrup, a urbanized...

  16. Improved spatial mapping of rainfall events with spaceborne SAR imagery

    Science.gov (United States)

    Ulaby, F. T.; Brisco, B.; Dobson, C.

    1983-01-01

    The Seasat satellite acquired the first spaceborne synthetic-aperture radar (SAR) images of the earth's surface, in 1978, at a frequency of 1.275 GHz (L-band) in a like-polarization mode at incidence angles of 23 + or - 3 deg. Although this may not be the optimum system configuration for radar remote sensing of soil moisture, interpretation of two Seasat images of Iowa demonstrates the sensitivity of microwave backscatter to soil moisture content. In both scenes, increased image brightness, which represents more radar backscatter, can be related to previous rainfall activity in the two areas. Comparison of these images with ground-based rainfall observations illustrates the increased spatial coverage of the rainfall event that can be obtained from the satellite SAR data. These data can then be color-enhanced by a digital computer to produce aesthetically pleasing output products for the user community.

  17. EVALUATION OF RAINFALL-RUNOFF EROSIVITY FACTOR FOR CAMERON HIGHLAND, PAHANG, MALAYSIA

    Directory of Open Access Journals (Sweden)

    Abdulkadir Taofeeq Sholagberu

    2016-07-01

    Full Text Available Rainfall-runoff is the active agent of soil erosion which often resulted in land degradation and water quality deterioration. Its aggressiveness to induce erosion is usually termed as rainfall erosivity index or factor (R. R-factor is one of the factors to be parameterized in the evaluation of soil loss using the Universal Soil Loss Equation and its reversed versions (USLE/RUSLE. The computation of accurate R-factor for a particular watershed requires high temporal resolution rainfall (pluviograph data with less than 30-minutes intensities for at least 20 yrs, which is available only in a few regions of the world. As a result, various simplified models have been proposed by researchers to evaluate R-factor using readily available daily, monthly or annual precipitation data. This study is thus aimed at estimating R-factor and to establish an approximate relationship between R-factor and rainfall for subsequent usage in the estimation of soil loss in Cameron highlands watershed. The results of the analysis showed that the least and peak (critical R-factors occurred in the months of January and April with 660.82 and 2399.18 MJ mm ha-1 h-1year-1 respectively. Also, it was observed that erosivity power starts to increase from the month of January through April before started falling in the month of July. The monthly and annual peaks (critical periods may be attributed to increased rainfall amount due to climate change which in turn resulted to increased aggressiveness of rains to cause erosion in the study area. The correlation coefficient of 0.985 showed that there was a strong relationship rainfall and R-factor.

  18. Weather types across the Caribbean basin and their relationship with rainfall and sea surface temperature

    Science.gov (United States)

    Moron, Vincent; Gouirand, Isabelle; Taylor, Michael

    2016-07-01

    Eight weather types (WTs) are computed over 98.75°W-56.25°W, 8.75°N-31.25°N using cluster analysis of daily low-level (925 hPa) winds and outgoing longwave radiation, without removing the mean annual cycle, by a k-means algorithm from 1979 to 2013. The WTs can be firstly interpreted as snapshots of the annual cycle with a clear distinction between 5 "wintertime" and 3 "summertime" WTs, which account together for 70 % of the total mean annual rainfall across the studied domain. The wintertime WTs occur mostly from late November to late April and are characterized by varying intensity and location of the North Atlantic subtropical high (NASH) and transient synoptic troughs along the northern edge of the domain. Large-scale subsidence dominates the whole basin but rainfall can occur over sections of the basin, especially on the windward shores of the troughs associated with the synoptic waves. The transition between wintertime and summertime WTs is rather abrupt, especially in May. One summertime WT (WT 4) is prevalent in summer, and almost exclusive around late July. It is characterized by strong NASH, fast Caribbean low level jet and rainfall mostly concentrated over the Caribbean Islands, the Florida Peninsula, the whole Central America and the tropical Eastern Pacific. The two remaining summertime WTs display widespread rainfall respectively from Central America to Bermuda (WT 5) and over the Eastern Caribbean (WT 6). Both WTs combine reduced regional scale subsidence and weaker Caribbean low-level jet relatively to WT 4. The relationships between WT frequency and El Niño Southern Oscillation (ENSO) events are broadly linear. Warm central and eastern ENSO events are associated with more WT 4 (less WT 5-6) during boreal summer and autumn (0) while this relationship is reversed during boreal summer (+1) for central events only. In boreal winter, the largest anomalies are observed for two WTs consistent with negative (WT 2) and positive (WT 8) phases of the

  19. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China.

    Science.gov (United States)

    Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer

    2018-01-01

    As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.

  20. Convective-stratiform rainfall separation of Typhoon Fitow (2013: A 3D WRF modeling study

    Directory of Open Access Journals (Sweden)

    Huiyan Xu

    2018-01-01

    Full Text Available Surface precipitation budget equation in a three-dimensional (3D WRF model framework is derived. By applying the convective-stratiform partition method to the surface precipitation budget equation in the 3D model, this study separated convective and stratiform rainfall of typhoon Fitow (2013. The separations are further verified by examining statistics of vertical velocity, surface precipitation budget, and cloud microphysical budget. Results show that water vapor convergence moistens local atmosphere and offsets hydrometeor divergence, and producing convective rainfall, while hydrometeor convergence primarily supports stratiform rainfall, since water vapor divergence and local atmospheric drying generally cancelled out. Mean ascending motions are prevailing in the entire troposphere in the convective region, whereas mean descending motions occur below 5 km and mean ascending motions occur above in the stratiform region. The frequency distribution of vertical velocity shows vertical velocity has wide distribution with the maximum values up to 13 m s-1 in the convective regions, whereas it has narrow distribution with absolute values confined within 7 m s-1 in the stratiform region. Liquid cloud microphysics is dominant in convective regions and ice cloud microphysics is dominant in stratiform regions. These indicate that the statistics results are generally consistent with the corresponding physical characteristics of the convective-stratiform rainfall structures generalized by previous studies.

  1. A Web Architecture to Geographically Interrogate CHIRPS Rainfall and eMODIS NDVI for Land Use Change

    Science.gov (United States)

    Burks, Jason E.; Limaye, Ashutosh

    2014-01-01

    Monitoring of rainfall and vegetation over the continent of Africa is important for assessing the status of crop health and agriculture, along with long-term changes in land use change. These issues can be addressed through examination of long-term precipitation (rainfall) data sets and remote sensing of land surface vegetation and land use types. Two products have been used previously to address these goals: the Climate Hazard Group Infrared Precipitation with Stations (CHIRPS) rainfall data, and multi-day composites of Normalized Difference Vegetation Index (NDVI) from the USGS eMODIS product. Combined, these are very large data sets that require unique tools and architecture to facilitate a variety of data analysis methods or data exploration by the end user community. To address these needs, a web-enabled system has been developed to allow end-users to interrogate CHIRPS rainfall and eMODIS NDVI data over the continent of Africa. The architecture allows end-users to use custom defined geometries, or the use of predefined political boundaries in their interrogation of the data. The massive amount of data interrogated by the system allows the end-users with only a web browser to extract vital information in order to investigate land use change and its causes. The system can be used to generate daily, monthly and yearly averages over a geographical area and range of dates of interest to the user. It also provides analysis of trends in precipitation or vegetation change for times of interest. The data provided back to the end-user is displayed in graphical form and can be exported for use in other, external tools. The development of this tool has significantly decreased the investment and requirements for end-users to use these two important datasets, while also allowing the flexibility to the end-user to limit the search to the area of interest.

  2. Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Korup Andersen, Aske; Larsen, Anders Badsberg

    2017-01-01

    Continuous and long rainfall series are a necessity in rural and urban hydrology for analysis and design purposes. Local historical point rainfall series often cover several decades, which makes it possible to estimate rainfall means at different timescales, and to assess return periods of extreme...... includes climate changes projected to a specific future period. This paper presents a framework for resampling of historical point rainfall series in order to generate synthetic rainfall series, which has the same statistical properties as an original series. Using a number of key target predictions...... for the future climate, such as winter and summer precipitation, and representation of extreme events, the resampled historical series are projected to represent rainfall properties in a future climate. Climate-projected rainfall series are simulated by brute force randomization of model parameters, which leads...

  3. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann-Kendall test

    Science.gov (United States)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    This study assesses the spatial pattern of changes in rainfall extremes of Sarawak in recent years (1980-2014). The Mann-Kendall (MK) test along with modified Mann-Kendall (m-MK) test, which can discriminate multi-scale variability of unidirectional trend, was used to analyze the changes at 31 stations. Taking account of the scaling effect through eliminating the effect of autocorrelation, m-MK was employed to discriminate multi-scale variability of the unidirectional trends of the annual rainfall in Sarawak. It can confirm the significance of the MK test. The annual rainfall trend from MK test showed significant changes at 95% confidence level at five stations. The seasonal trends from MK test indicate an increasing rate of rainfall during the Northeast monsoon and a decreasing trend during the Southwest monsoon in some region of Sarawak. However, the m-MK test detected an increasing trend in annual rainfall only at one station and no significant trend in seasonal rainfall at any stations. The significant increasing trends of the 1-h maximum rainfall from the MK test are detected mainly at the stations located in the urban area giving concern to the occurrence of the flash flood. On the other hand, the m-MK test detected no significant trend in 1- and 3-h maximum rainfalls at any location. On the contrary, it detected significant trends in 6- and 72-h maximum rainfalls at a station located in the Lower Rajang basin area which is an extensive low-lying agricultural area and prone to stagnant flood. These results indicate that the trends in rainfall and rainfall extremes reported in Malaysia and surrounding region should be verified with m-MK test as most of the trends may result from scaling effect.

  4. Climate change and predicting soil loss from rainfall

    Science.gov (United States)

    Kinnell, Peter

    2017-04-01

    Conceptually, rainfall has a certain capacity to cause soil loss from an eroding area while soil surfaces have a certain resistance to being eroded by rainfall. The terms "rainfall erosivity' and "soil erodibility" are frequently used to encapsulate the concept and in the Revised Universal Soil Loss Equation (RUSLE), the most widely used soil loss prediction equation in the world, average annual values of the R "erosivity" factor and the K "erodibility" factor provide a basis for accounting for variation in rainfall erosion associated with geographic variations of climate and soils. In many applications of RUSLE, R and K are considered to be independent but in reality they are not. In RUSLE2, provision has been made to take account of the fact that K values determined using soil physical factors have to be adjusted for variations in climate because runoff is not directly included as a factor in determining R. Also, the USLE event erosivity index EI30 is better related to accounting for event sediment concentration than event soil loss. While the USLE-M, a modification of the USLE which includes runoff as a factor in determining the event erosivity index provides better estimates of event soil loss when event runoff is known, runoff prediction provides a challenge to modelling event soil loss as climate changes

  5. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.

    Science.gov (United States)

    Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R

    2015-01-01

    When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a

  7. ANALYSIS OF THE CHARACTERISTICS OF RAINFALL AND LINEAR TREND IN MENGLUN, XISHUANGBANNA, SOUTHWEST CHINA

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; ZHANG Yi-ping

    2006-01-01

    @@ 1 INTRODUCTION As one of the main factors affecting input and use of precipitation by forests, rainfall also makes a difference on partitioning of gross precipitation over the canopy, equilibrium of water amount in river basins and water cycling processes[1-4].

  8. Tropical Atlantic Contributions to Strong Rainfall Variability Along the Northeast Brazilian Coast

    Directory of Open Access Journals (Sweden)

    G. A. Hounsou-gbo

    2015-01-01

    Full Text Available Tropical Atlantic (TA Ocean-atmosphere interactions and their contributions to strong variability of rainfall along the Northeast Brazilian (NEB coast were investigated for the years 1974–2008. The core rainy seasons of March-April and June-July were identified for Fortaleza (northern NEB; NNEB and Recife (eastern NEB; ENEB, respectively. Lagged linear regressions between sea surface temperature (SST and pseudo wind stress (PWS anomalies over the entire TA and strong rainfall anomalies at Fortaleza and Recife show that the rainfall variability of these regions is differentially influenced by the dynamics of the TA. When the Intertropical Convergence Zone is abnormally displaced southward a few months prior to the NNEB rainy season, the associated meridional mode increases humidity and precipitation during the rainy season. Additionally, this study shows predictive effect of SST, meridional PWS, and barrier layer thickness, in the Northwestern equatorial Atlantic, on the NNEB rainfall. The dynamical influence of the TA on the June-July ENEB rainfall variability shows a northwestward-propagating area of strong, positively correlated SST from the southeastern TA to the southwestern Atlantic warm pool (SAWP offshore of Brazil. Our results also show predictive effect of SST, zonal PWS, and mixed layer depth, in the SAWP, on the ENEB rainfall.

  9. A spatio-temporal evaluation of the WRF physical parameterisations for numerical rainfall simulation in semi-humid and semi-arid catchments of Northern China

    Science.gov (United States)

    Tian, Jiyang; Liu, Jia; Wang, Jianhua; Li, Chuanzhe; Yu, Fuliang; Chu, Zhigang

    2017-07-01

    Mesoscale Numerical Weather Prediction systems can provide rainfall products at high resolutions in space and time, playing an increasingly more important role in water management and flood forecasting. The Weather Research and Forecasting (WRF) model is one of the most popular mesoscale systems and has been extensively used in research and practice. However, for hydrologists, an unsolved question must be addressed before each model application in a different target area. That is, how are the most appropriate combinations of physical parameterisations from the vast WRF library selected to provide the best downscaled rainfall? In this study, the WRF model was applied with 12 designed parameterisation schemes with different combinations of physical parameterisations, including microphysics, radiation, planetary boundary layer (PBL), land-surface model (LSM) and cumulus parameterisations. The selected study areas are two semi-humid and semi-arid catchments located in the Daqinghe River basin, Northern China. The performance of WRF with different parameterisation schemes is tested for simulating eight typical 24-h storm events with different evenness in space and time. In addition to the cumulative rainfall amount, the spatial and temporal patterns of the simulated rainfall are evaluated based on a two-dimensional composed verification statistic. Among the 12 parameterisation schemes, Scheme 4 outperforms the other schemes with the best average performance in simulating rainfall totals and temporal patterns; in contrast, Scheme 6 is generally a good choice for simulations of spatial rainfall distributions. Regarding the individual parameterisations, Single-Moment 6 (WSM6), Yonsei University (YSU), Kain-Fritsch (KF) and Grell-Devenyi (GD) are better choices for microphysics, planetary boundary layers (PBL) and cumulus parameterisations, respectively, in the study area. These findings provide helpful information for WRF rainfall downscaling in semi-humid and semi

  10. An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East Africa

    Directory of Open Access Journals (Sweden)

    Margaret Wambui Kimani

    2017-05-01

    Full Text Available Accurate and consistent rainfall observations are vital for climatological studies in support of better agricultural and water management decision-making and planning. In East Africa, accurate rainfall estimation with an adequate spatial distribution is limited due to sparse rain gauge networks. Satellite rainfall products can potentially play a role in increasing the spatial coverage of rainfall estimates; however, their performance needs to be understood across space–time scales and factors relating to their errors. This study assesses the performance of seven satellite products: Tropical Applications of Meteorology using Satellite and ground-based observations (TAMSAT, African Rainfall Climatology And Time series (TARCAT, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS, Tropical Rainfall Measuring Mission (TRMM-3B43, Climate Prediction Centre (CPC Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN-CDR, CPC Merged Analysis of Precipitation (CMAP, and Global Precipitation Climatology Project (GPCP, using locally developed gridded (0.05° rainfall data for 15 years (1998–2012 over East Africa. The products’ assessments were done at monthly and yearly timescales and were remapped to the gridded rain gauge data spatial scale during the March to May (MAM and October to December (OND rainy seasons. A grid-based statistical comparison between the two datasets was used, but only pixel values located at the rainfall stations were considered for validation. Additionally, the impact of topography on the performance of the products was assessed by analyzing the pixels in areas of highest negative bias. All the products could substantially replicate rainfall patterns, but their differences are mainly based on retrieving high rainfall amounts, especially of localized orographic types. The products exhibited systematic errors, which

  11. The relation of vegetation over the Tibetan Plateau to rainfall in China during the boreal summer

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Zhiyan; Zhang, Renhe [Chinese Academy of Meteorological Sciences, State Key Laboratory of Severe Weather, Beijing (China); Zhao, Ping [National Meteorological Information Centre, Beijing (China)

    2011-03-15

    The relationship between vegetation on the Tibetan Plateau (TP) and summer (June-August) rainfall in China is investigated using the normalized difference vegetation index (NDVI) from the Earth Resources Observation System and observed rainfall data from surface 616 stations in China for the period 1982-2001. The leading mode of empirical orthogonal functions analysis for summer rainfall variability in China shows a negative anomaly in the area from the Yangtze River valley to the Yellow River valley (YYR) and most of western China, and positive anomalies in southern China and North China. This mode is significantly correlated with summer NDVI around the southern TP. This finding indicates that vegetation around the southern TP has a positive correlation with summer rainfall in southern China and North China, but a negative correlation with summer rainfall in YYR and western China. We investigate the physical process by which vegetation change affects summer rainfall in China. Increased vegetation around the southern TP is associated with a descending motion anomaly on the TP and the neighboring area to the east, resulting in reduced surface heating and a lower Bowen ratio, accompanied by weaker divergence in the upper troposphere and convergence in the lower troposphere on the TP. In turn, these changes result in the weakening of and a westward shift in the southern Asian High in the upper troposphere and thereby the weakening of and an eastward withdrawal in the western Pacific subtropical high. These features result in weak circulation in the East Asian summer monsoon. Consequently, enhanced summer rainfall occurs in southern China and North China, but reduced rainfall in YYR. (orig.)

  12. Experimental evidence of lateral flow in unsaturated homogeneous isotropic sloping soil due to rainfall

    Science.gov (United States)

    Sinai, G.; Dirksen, C.

    2006-12-01

    This paper describes laboratory experimental evidence for lateral flow in the top layer of unsaturated sloping soil due to rainfall. Water was applied uniformly on horizontal and V-shaped surfaces of fine sand, at rates about 100 times smaller than the saturated hydraulic conductivity. Flow regimes near the surface and in the soil bulk were studied by using dyes. Streamlines and streak lines and wetting fronts were visually studied and photographed through a vertical glass wall. Near wetting fronts the flow direction was always perpendicular to the fronts owing to dominant matrix potential gradients. Thus, during early wetting of dry sloping sand, the flow direction is directed upslope. Far above a wetting front the flow was vertical due to the dominance of gravity. Downslope flow was observed during decreasing rainfall and dry periods. The lateral movement was largest near the soil surface and decayed with soil depth. Unstable downslope lateral flow close to the soil surface was attributed to non-Darcian flow due to variable temporal and spatial raindrop distributions. The experiments verify the theory that predicts unsaturated downslope lateral flow in sloping soil due to rainfall dynamics only, without apparent soil texture difference or anisotropy. This phenomenon could have significant implications for hillside hydrology, desert agriculture, irrigation management, etc., as well as for the basic mechanisms of surface runoff and erosion.

  13. Rainfall prediction with backpropagation method

    Science.gov (United States)

    Wahyuni, E. G.; Fauzan, L. M. F.; Abriyani, F.; Muchlis, N. F.; Ulfa, M.

    2018-03-01

    Rainfall is an important factor in many fields, such as aviation and agriculture. Although it has been assisted by technology but the accuracy can not reach 100% and there is still the possibility of error. Though current rainfall prediction information is needed in various fields, such as agriculture and aviation fields. In the field of agriculture, to obtain abundant and quality yields, farmers are very dependent on weather conditions, especially rainfall. Rainfall is one of the factors that affect the safety of aircraft. To overcome the problems above, then it’s required a system that can accurately predict rainfall. In predicting rainfall, artificial neural network modeling is applied in this research. The method used in modeling this artificial neural network is backpropagation method. Backpropagation methods can result in better performance in repetitive exercises. This means that the weight of the ANN interconnection can approach the weight it should be. Another advantage of this method is the ability in the learning process adaptively and multilayer owned on this method there is a process of weight changes so as to minimize error (fault tolerance). Therefore, this method can guarantee good system resilience and consistently work well. The network is designed using 4 input variables, namely air temperature, air humidity, wind speed, and sunshine duration and 3 output variables ie low rainfall, medium rainfall, and high rainfall. Based on the research that has been done, the network can be used properly, as evidenced by the results of the prediction of the system precipitation is the same as the results of manual calculations.

  14. Rainfall Product Evaluation for the TRMM Ground Validation Program

    Science.gov (United States)

    Amitai, E.; Wolff, D. B.; Robinson, M.; Silberstein, D. S.; Marks, D. A.; Kulie, M. S.; Fisher, B.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Evaluation of the Tropical Rainfall Measuring Mission (TRMM) satellite observations is conducted through a comprehensive Ground Validation (GV) Program. Standardized instantaneous and monthly rainfall products are routinely generated using quality-controlled ground based radar data from four primary GV sites. As part of the TRMM GV program, effort is being made to evaluate these GV products and to determine the uncertainties of the rainfall estimates. The evaluation effort is based on comparison to rain gauge data. The variance between the gauge measurement and the true averaged rain amount within the radar pixel is a limiting factor in the evaluation process. While monthly estimates are relatively simple to evaluate, the evaluation of the instantaneous products are much more of a challenge. Scattegrams of point comparisons between radar and rain gauges are extremely noisy for several reasons (e.g. sample volume discrepancies, timing and navigation mismatches, variability of Z(sub e)-R relationships), and therefore useless for evaluating the estimates. Several alternative methods, such as the analysis of the distribution of rain volume by rain rate as derived from gauge intensities and from reflectivities above the gauge network will be presented. Alternative procedures to increase the accuracy of the estimates and to reduce their uncertainties also will be discussed.

  15. Regional analysis of annual maximum rainfall using TL-moments method

    Science.gov (United States)

    Shabri, Ani Bin; Daud, Zalina Mohd; Ariff, Noratiqah Mohd

    2011-06-01

    Information related to distributions of rainfall amounts are of great importance for designs of water-related structures. One of the concerns of hydrologists and engineers is the probability distribution for modeling of regional data. In this study, a novel approach to regional frequency analysis using L-moments is revisited. Subsequently, an alternative regional frequency analysis using the TL-moments method is employed. The results from both methods were then compared. The analysis was based on daily annual maximum rainfall data from 40 stations in Selangor Malaysia. TL-moments for the generalized extreme value (GEV) and generalized logistic (GLO) distributions were derived and used to develop the regional frequency analysis procedure. TL-moment ratio diagram and Z-test were employed in determining the best-fit distribution. Comparison between the two approaches showed that the L-moments and TL-moments produced equivalent results. GLO and GEV distributions were identified as the most suitable distributions for representing the statistical properties of extreme rainfall in Selangor. Monte Carlo simulation was used for performance evaluation, and it showed that the method of TL-moments was more efficient for lower quantile estimation compared with the L-moments.

  16. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  17. Detecting Climate Variability in Tropical Rainfall

    Science.gov (United States)

    Berg, W.

    2004-05-01

    A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to

  18. Comparing Approaches to Deal With Non-Gaussianity of Rainfall Data in Kriging-Based Radar-Gauge Rainfall Merging

    Science.gov (United States)

    Cecinati, F.; Wani, O.; Rico-Ramirez, M. A.

    2017-11-01

    Merging radar and rain gauge rainfall data is a technique used to improve the quality of spatial rainfall estimates and in particular the use of Kriging with External Drift (KED) is a very effective radar-rain gauge rainfall merging technique. However, kriging interpolations assume Gaussianity of the process. Rainfall has a strongly skewed, positive, probability distribution, characterized by a discontinuity due to intermittency. In KED rainfall residuals are used, implicitly calculated as the difference between rain gauge data and a linear function of the radar estimates. Rainfall residuals are non-Gaussian as well. The aim of this work is to evaluate the impact of applying KED to non-Gaussian rainfall residuals, and to assess the best techniques to improve Gaussianity. We compare Box-Cox transformations with λ parameters equal to 0.5, 0.25, and 0.1, Box-Cox with time-variant optimization of λ, normal score transformation, and a singularity analysis technique. The results suggest that Box-Cox with λ = 0.1 and the singularity analysis is not suitable for KED. Normal score transformation and Box-Cox with optimized λ, or λ = 0.25 produce satisfactory results in terms of Gaussianity of the residuals, probability distribution of the merged rainfall products, and rainfall estimate quality, when validated through cross-validation. However, it is observed that Box-Cox transformations are strongly dependent on the temporal and spatial variability of rainfall and on the units used for the rainfall intensity. Overall, applying transformations results in a quantitative improvement of the rainfall estimates only if the correct transformations for the specific data set are used.

  19. The Impact of Typhoon Danas (2013 on the Torrential Rainfall Associated with Typhoon Fitow (2013 in East China

    Directory of Open Access Journals (Sweden)

    Hongxiong Xu

    2015-01-01

    Full Text Available When typhoon Danas (2013 was located at northeast of Taiwan during 6–8 October 2013, a torrential rainfall brought by typhoon Fitow (2013 occurred over the east of China. Observations show that the rainband of Fitow, which may be impacted by Danas, caused the rainfall over north of Zhejiang. The Advanced Research version of the Weather Research and Forecast (ARW-WRF model was used to investigate the possible effects of typhoon Danas (2013 on this rainfall event. Results show that the model captured reasonably well the spatial distribution and evolution of the rainband of Fitow. The results of a sensitivity experiment removing Danas vortex, which is conducted to determine its impact on the extreme rainfall, show that extra moist associated with Danas plays an important role in the maintenance and enhancement of the north rainband of Fitow, which resulted in torrential rainfall over the north of Zhejiang. This study may explain the unusual amount of rainfall over the north of Zhejiang province caused by interaction between the rainband of typhoon Fitow and extra moisture brought by typhoon Danas.

  20. Comparison between Pludix and impact/optical disdrometers during rainfall measurement campaigns

    Science.gov (United States)

    Caracciolo, Clelia; Prodi, Franco; Uijlenhoet, Remko

    2006-11-01

    The performances of two couples of disdrometers based on different measuring principles are compared: a classical Joss-Waldvogel disdrometer and a recently developed device, called the Pludix tested in Ferrara, Italy, and Pludix and the two-dimensional video disdrometer (2DVD) tested in Cabauw, The Netherlands. First, the measuring principles of the different instruments are presented and compared. Secondly, the performances of the two pairs of disdrometers are analysed by comparing their rain amounts with nearby tipping bucket rain gauges and the inferred drop size distributions. The most important rainfall integral parameters (e.g. rain rate and radar reflectivity) and drop size distribution parameters are also analysed and compared. The data set for Ferrara comprises 13 rainfall events, with a total of 20 mm of rainfall and a maximum rain rate of 4 mm h - 1 . The data set for Cabauw consists of 9 events, with 25-50 mm of rainfall and a maximum rain rate of 20-40 mm h - 1 . The Pludix tends to underestimate slightly the bulk rainfall variables in less intense events, whereas it tends to overestimate with respect to the other instruments in heavier events. The correspondence of the inferred drop size distributions with those measured by the other disdrometers is reasonable, particularly with the Joss-Waldvogel disdrometer. Considering that the Pludix is still in a calibration and testing phase, the reported results are encouraging. A new signal inversion algorithm, which will allow the detection of rain drops throughout the entire diameter interval between 0.3 and 7.0 mm, is under development.

  1. A Statistical Model for Seasonal Rainfall Forecasting over the ...

    African Journals Online (AJOL)

    In a preliminary step, in order to identify the most influential rainfall predictor, a correlation matrix and step-wise regression of 10 predictors with different lags were analysed. The influence of the southern Indian Ocean Sea Surface Temperature was identified as the most influential predictor for the highland of Eritrea.

  2. Characterisation of Hydrological Response to Rainfall at Multi Spatio-Temporal Scales in Savannas of Semi-Arid Australia

    Directory of Open Access Journals (Sweden)

    Ben Jarihani

    2017-07-01

    Full Text Available Rainfall is the main driver of hydrological processes in dryland environments and characterising the rainfall variability and processes of runoff generation are critical for understanding ecosystem function of catchments. Using remote sensing and in situ data sets, we assess the spatial and temporal variability of the rainfall, rainfall–runoff response, and effects on runoff coefficients of antecedent soil moisture and ground cover at different spatial scales. This analysis was undertaken in the Upper Burdekin catchment, northeast Australia, which is a major contributor of sediment and nutrients to the Great Barrier Reef. The high temporal and spatial variability of rainfall are found to exert significant controls on runoff generation processes. Rainfall amount and intensity are the primary runoff controls, and runoff coefficients for wet antecedent conditions were higher than for dry conditions. The majority of runoff occurred via surface runoff generation mechanisms, with subsurface runoff likely contributing little runoff due to the intense nature of rainfall events. MODIS monthly ground cover data showed better results in distinguishing effects of ground cover on runoff that Landsat-derived seasonal ground cover data. We conclude that in the range of moderate to large catchments (193–36,260 km2 runoff generation processes are sensitive to both antecedent soil moisture and ground cover. A higher runoff–ground cover correlation in drier months with sparse ground cover highlighted the critical role of cover at the onset of the wet season (driest period and how runoff generation is more sensitive to cover in drier months than in wetter months. The monthly water balance analysis indicates that runoff generation in wetter months (January and February is partially influenced by saturation overland flow, most likely confined to saturated soils in riparian corridors, swales, and areas of shallow soil. By March and continuing through October

  3. Which resilience of the continental rainfall-runoff chain?

    Science.gov (United States)

    Fraedrich, Klaus

    2015-04-01

    Processes along the continental rainfall-runoff chain are extremely variable over a wide range of time and space scales. A key societal question is the multiscale resilience of this chain. We argue that the adequate framework to tackle this question can be obtained by combining observations (ranging from minutes to decades) and minimalist concepts: (i) Rainfall exhibits 1/f-spectra if presented as binary events (tropics) and extrema world wide increase with duration according to Jennings' scaling law as simulated by a censored first-order autoregressive process representing vertical moisture fluxes. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function (Gumbel) not unlike physical systems at criticality, while short and long return times of extremes are Weibull-distributed. (iii) Soil moisture, interpreted by a biased coinflip Ansatz for rainfall events, provides an equation of state to the surface energy and water flux balances comprising Budyko's framework for quasi-stationary watershed analysis. (iv) Vegetation-greenness (NDVI), included as an active tracer extends Budyko's eco-hydrologic state space analysis, supplements the common geographical presentations, and it may be linked to a minimalist biodiversity concept. (v) Finally, attributions of change to external (or climate) and internal (or anthropogenic) causes are determined by eco-hydrologic state space trajectories using surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation). Risk-estimates (by GCM-emulators) and possible policy advice mechanisms enter the outlook.

  4. Rainfall simulation experiments in ecological and conventional vineyards.

    Science.gov (United States)

    Adrian, Alexander; Brings, Christine; Rodrigo Comino, Jesús; Iserloh, Thomas; Ries, Johannes B.

    2015-04-01

    In October 2014, the Trier University started a measurement series, which defines, compares and evaluates the behavior of runoff and soil erosion with different farming productions in vineyards. The research area is located in Kanzem, a traditional wine village in the Saar Valley (Rheinland-Palatinate, Germany). The test fields show different cultivation methods: ecological (with natural vegetation cover under and around the vines) and conventional cultivated rows of wine. By using the small portable rainfall simulator of Trier University it shall be proved if the assumption that there is more runoff and soil erosion in the conventional part than in the ecological part of the tillage system. Rainfall simulations assess the generation of overland flow, soil erosion and infiltration. So, a trend of soil erosion and runoff of the different cultivation techniques are noted. The objective of this work is to compare the geomorphological dynamics of two different tillage systems. Therefore, 30 rainfall simulations plots were evenly distributed on a west exposition hillside with different slope angels (8-25°), vegetation- and stone-covers. In concrete, the plot surface reaches from strongly covered soil across lithoidal surfaces to bare soil often with compacted lanes of typical using machines. In addition, by using the collected substrate, an estimation and distribution of the grain size of the eroded material shall be given. The eroded substrate is compared to soil samples of the test plots. The first results have shown that there is slightly more runoff and soil erosion in the ecological area than on the conventional part of the vineyard.

  5. Downscaling of rainfall in Peru using Generalised Linear Models

    Science.gov (United States)

    Bergin, E.; Buytaert, W.; Onof, C.; Wheater, H.

    2012-04-01

    The assessment of water resources in the Peruvian Andes is particularly important because the Peruvian economy relies heavily on agriculture. Much of the agricultural land is situated near to the coast and relies on large quantities of water for irrigation. The simulation of synthetic rainfall series is thus important to evaluate the reliability of water supplies for current and future scenarios of climate change. In addition to water resources concerns, there is also a need to understand extreme heavy rainfall events, as there was significant flooding in Machu Picchu in 2010. The region exhibits a reduction of rainfall in 1983, associated with El Nino Southern Oscillation (SOI). NCEP Reanalysis 1 data was used to provide weather variable data. Correlations were calculated for several weather variables using raingauge data in the Andes. These were used to evaluate teleconnections and provide suggested covariates for the downscaling model. External covariates used in the model include sea level pressure and sea surface temperature over the region of the Humboldt Current. Relative humidity and temperature data over the region are also included. The SOI teleconnection is also used. Covariates are standardised using observations for 1960-1990. The GlimClim downscaling model was used to fit a stochastic daily rainfall model to 13 sites in the Peruvian Andes. Results indicate that the model is able to reproduce rainfall statistics well, despite the large area used. Although the correlation between individual rain gauges is generally quite low, all sites are affected by similar weather patterns. This is an assumption of the GlimClim downscaling model. Climate change scenarios are considered using several GCM outputs for the A1B scenario. GCM data was corrected for bias using 1960-1990 outputs from the 20C3M scenario. Rainfall statistics for current and future scenarios are compared. The region shows an overall decrease in mean rainfall but with an increase in variance.

  6. Along the Rainfall-Runoff Chain: From Scaling of Greatest Point Rainfall to Global Change Attribution

    Science.gov (United States)

    Fraedrich, K.

    2014-12-01

    Processes along the continental rainfall-runoff chain cover a wide range of time and space scales which are presented here combining observations (ranging from minutes to decades) and minimalist concepts. (i) Rainfall, which can be simulated by a censored first-order autoregressive process (vertical moisture fluxes), exhibits 1/f-spectra if presented as binary events (tropics), while extrema world wide increase with duration according to Jennings' scaling law. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function not unlike physical systems at criticality and the short and long return times of extremes are Weibull-distributed. Atmospheric and soil moisture variabilities are also discussed. (iii) Soil moisture (in a bucket), whose variability is interpreted by a biased coinflip Ansatz for rainfall events, adds an equation of state to energy and water flux balances comprising Budyko's frame work for quasi-stationary watershed analysis. Eco-hydrologic state space presentations in terms of surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation) allow attributions of state change to external (or climate) and internal (or anthropogenic) causes. Including the vegetation-greenness index (NDVI) as an active tracer extends the eco-hydrologic state space analysis to supplement the common geographical presentations. Two examples demonstrate the approach combining ERA and MODIS data sets: (a) global geobotanic classification by combining first and second moments of the dryness ratio (net radiation over precipitation) and (b) regional attributions (Tibetan Plateau) of vegetation changes.

  7. Flowering phenology in the arid winter rainfall region of southern Africa

    Directory of Open Access Journals (Sweden)

    M. Struck

    1994-10-01

    Full Text Available The impact of physical factors on the flowering phenology of a succulent karroid community in the winter rainfall region of the northwestern Cape, South Africa, based upon a three year study on permanent plots, is examined, (in the permanent plots, flowering of the shrubby species extended over a period of 4 to 4'/i> months each year, while blooming ot the therophytes peaked m the first half of the flowering season. Species composition and numbers of individuals in the therophytes and geophytes offering flowers varied greatly according to the pattern and amount of seasonal precipitation. Despite these variations a consistent flowering sequence between the years was observed. Possible relations between the flowering phenology and the climatic variables are discussed in detail. The present data suggest that the onset of flowering is determined indirectly by the first drop in temperature in autumn, indicating the beginning of the rainy season and presumably the start of the growing period, and/or by the increase of temperatures in the beginning of spring. The pattern and amount of rainfall within a given season mainly influenced the duration of anthesis and the number of flowers produced.

  8. Characterizing fluvial heavy metal pollutions under different rainfall conditions: Implication for aquatic environment protection.

    Science.gov (United States)

    Zhang, Lixun; Zhao, Bo; Xu, Gang; Guan, Yuntao

    2018-09-01

    Globally, fluvial heavy metal (HM) pollution has recently become an increasingly severe problem. However, few studies have investigated the variational characteristics of fluvial HMs after rain over long periods (≥1 year). The Dakan River in Xili Reservoir watershed (China) was selected as a case study to investigate pollution levels, influencing factors, and sources of HMs under different rainfall conditions during 2015 and 2016. Fluvial HMs showed evident spatiotemporal variations attributable to the coupled effects of pollution generation and rainfall diffusion. Fluvial HM concentrations were significantly associated with rainfall characteristics (e.g., rainfall intensity, rainfall amount, and antecedent dry period) and river flow, which influenced the generation and the transmission of fluvial HMs in various ways. Moreover, this interrelationship depended considerably on the HM type and particle size distribution. Mn, Pb, Cr, and Ni were major contributors to high values of the comprehensive pollution index; therefore, they should be afforded special attention. Additionally, quantitative source apportionment of fluvial HMs was conducted by combining principal component analysis with multiple linear regression and chemical mass balance models to obtain comprehensive source profiles. Finally, an environment-friendly control strategy coupling "source elimination" and "transport barriers" was proposed for aquatic environment protection. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A simple rainfall-runoff model based on hydrological units applied to the Teba catchment (south-east Spain)

    Science.gov (United States)

    Donker, N. H. W.

    2001-01-01

    A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall-runoff relationship of the 202 km2 Teba river catchment, located in semi-arid south-eastern Spain. The period of available data (1976-1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years.The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes.The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum.Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level.

  10. Urban flood return period assessment through rainfall-flood response modelling

    Science.gov (United States)

    Murla Tuyls, Damian; Thorndahl, Søren

    2017-04-01

    Intense rainfall can often cause severe floods, especially in urbanized areas, where population density or large impermeable areas are found. In this context, floods can generate a direct impact in a social-environmental-economic viewpoint. Traditionally, in design of Urban Drainage Systems (UDS), correlation between return period (RP) of a given rainfall and RP of its consequent flood has been assumed to be linear (e.g. DS/EN752 (2008)). However, this is not always the case. Complex UDS, where diverse hydraulic infrastructures are often found, increase the heterogeneity of system response, which may cause an alteration of the mentioned correlation. Consequently, reliability on future urban planning, design and resilience against floods may be also affected by this misassumption. In this study, an assessment of surface flood RP across rainfall RP has been carried out at Lystrup, a urbanized catchment area of 440ha and 10.400inhab. located in Jutland (Denmark), which has received the impact of several pluvial flooding in the last recent years. A historical rainfall dataset from the last 35 years from two different rain gauges located at 2 and 10 km from the study area has been provided by the Danish Wastewater Pollution Committee and the Danish Meteorological Institute (DMI). The most extreme 25 rainfall events have been selected through a two-step multi-criteria procedure, ensuring an adequate variability of rainfall, from extreme high peak storms with a short duration to moderate rainfall with longer duration. In addition, a coupled 1D/2D surface and network UDS model of the catchment area developed in an integrated MIKE URBAN and MIKE Flood model (DHI 2014), considering both permeable and impermeable areas, in combination with a DTM (2x2m res.) has been used to study and assess in detail flood RP. Results show an ambiguous relation between rainfall RP and flood response. Local flood levels, flood area and volume RP estimates should therefore not be neglected in

  11. A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis

    Science.gov (United States)

    Bech, Joan; Pineda, Nicolau; Rigo, Tomeu; Aran, Montserrat; Amaro, Jéssica; Gayà, Miquel; Arús, Joan; Montanyà, Joan; der Velde, Oscar van

    2011-06-01

    This study presents an analysis of a severe weather case that took place during the early morning of the 2nd of November 2008, when intense convective activity associated with a rapidly evolving low pressure system affected the southern coast of Catalonia (NE Spain). The synoptic framework was dominated by an upper level trough and an associated cold front extending from Gibraltar along the Mediterranean coast of the Iberian Peninsula to SE France, which moved north-eastward. South easterly winds in the north of the Balearic Islands and the coast of Catalonia favoured high values of 0-3 km storm relative helicity which combined with moderate MLCAPE values and high shear favoured the conditions for organized convection. A number of multicell storms and others exhibiting supercell features, as indicated by Doppler radar observations, clustered later in a mesoscale convective system, and moved north-eastwards across Catalonia. They produced ground-level strong damaging wind gusts, an F2 tornado, hail and heavy rainfall. Total lightning activity (intra-cloud and cloud to ground flashes) was also relevant, exhibiting several classical features such as a sudden increased rate before ground level severe damage, as discussed in a companion study. Remarkable surface observations of this event include 24 h precipitation accumulations exceeding 100 mm in four different observatories and 30 minute rainfall amounts up to 40 mm which caused local flash floods. As the convective system evolved northward later that day it also affected SE France causing large hail, ground level damaging wind gusts and heavy rainfall.

  12. Predictability of Seasonal Rainfall over the Greater Horn of Africa

    Science.gov (United States)

    Ngaina, J. N.

    2016-12-01

    The El Nino-Southern Oscillation (ENSO) is a primary mode of climate variability in the Greater of Africa (GHA). The expected impacts of climate variability and change on water, agriculture, and food resources in GHA underscore the importance of reliable and accurate seasonal climate predictions. The study evaluated different model selection criteria which included the Coefficient of determination (R2), Akaike's Information Criterion (AIC), Bayesian Information Criterion (BIC), and the Fisher information approximation (FIA). A forecast scheme based on the optimal model was developed to predict the October-November-December (OND) and March-April-May (MAM) rainfall. The predictability of GHA rainfall based on ENSO was quantified based on composite analysis, correlations and contingency tables. A test for field-significance considering the properties of finiteness and interdependence of the spatial grid was applied to avoid correlations by chance. The study identified FIA as the optimal model selection criterion. However, complex model selection criteria (FIA followed by BIC) performed better compared to simple approach (R2 and AIC). Notably, operational seasonal rainfall predictions over the GHA makes of simple model selection procedures e.g. R2. Rainfall is modestly predictable based on ENSO during OND and MAM seasons. El Nino typically leads to wetter conditions during OND and drier conditions during MAM. The correlations of ENSO indices with rainfall are statistically significant for OND and MAM seasons. Analysis based on contingency tables shows higher predictability of OND rainfall with the use of ENSO indices derived from the Pacific and Indian Oceans sea surfaces showing significant improvement during OND season. The predictability based on ENSO for OND rainfall is robust on a decadal scale compared to MAM. An ENSO-based scheme based on an optimal model selection criterion can thus provide skillful rainfall predictions over GHA. This study concludes that the

  13. Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds

    Science.gov (United States)

    Peres, David J.; Cancelliere, Antonino; Greco, Roberto; Bogaard, Thom A.

    2018-03-01

    Uncertainty in rainfall datasets and landslide inventories is known to have negative impacts on the assessment of landslide-triggering thresholds. In this paper, we perform a quantitative analysis of the impacts of uncertain knowledge of landslide initiation instants on the assessment of rainfall intensity-duration landslide early warning thresholds. The analysis is based on a synthetic database of rainfall and landslide information, generated by coupling a stochastic rainfall generator and a physically based hydrological and slope stability model, and is therefore error-free in terms of knowledge of triggering instants. This dataset is then perturbed according to hypothetical reporting scenarios that allow simulation of possible errors in landslide-triggering instants as retrieved from historical archives. The impact of these errors is analysed jointly using different criteria to single out rainfall events from a continuous series and two typical temporal aggregations of rainfall (hourly and daily). The analysis shows that the impacts of the above uncertainty sources can be significant, especially when errors exceed 1 day or the actual instants follow the erroneous ones. Errors generally lead to underestimated thresholds, i.e. lower than those that would be obtained from an error-free dataset. Potentially, the amount of the underestimation can be enough to induce an excessive number of false positives, hence limiting possible landslide mitigation benefits. Moreover, the uncertain knowledge of triggering rainfall limits the possibility to set up links between thresholds and physio-geographical factors.

  14. Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds

    Directory of Open Access Journals (Sweden)

    D. J. Peres

    2018-03-01

    Full Text Available Uncertainty in rainfall datasets and landslide inventories is known to have negative impacts on the assessment of landslide-triggering thresholds. In this paper, we perform a quantitative analysis of the impacts of uncertain knowledge of landslide initiation instants on the assessment of rainfall intensity–duration landslide early warning thresholds. The analysis is based on a synthetic database of rainfall and landslide information, generated by coupling a stochastic rainfall generator and a physically based hydrological and slope stability model, and is therefore error-free in terms of knowledge of triggering instants. This dataset is then perturbed according to hypothetical reporting scenarios that allow simulation of possible errors in landslide-triggering instants as retrieved from historical archives. The impact of these errors is analysed jointly using different criteria to single out rainfall events from a continuous series and two typical temporal aggregations of rainfall (hourly and daily. The analysis shows that the impacts of the above uncertainty sources can be significant, especially when errors exceed 1 day or the actual instants follow the erroneous ones. Errors generally lead to underestimated thresholds, i.e. lower than those that would be obtained from an error-free dataset. Potentially, the amount of the underestimation can be enough to induce an excessive number of false positives, hence limiting possible landslide mitigation benefits. Moreover, the uncertain knowledge of triggering rainfall limits the possibility to set up links between thresholds and physio-geographical factors.

  15. Spatial dependence of extreme rainfall

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  16. Rainfall characterisation by application of standardised precipitation index (SPI) in Peninsular Malaysia

    Science.gov (United States)

    Yusof, Fadhilah; Hui-Mean, Foo; Suhaila, Jamaludin; Yusop, Zulkifli; Ching-Yee, Kong

    2014-02-01

    The interpretations of trend behaviour for dry and wet events are analysed in order to verify the dryness and wetness episodes. The fitting distribution of rainfall is computed to classify the dry and wet events by applying the standardised precipitation index (SPI). The rainfall amount for each station is categorised into seven categories, namely extremely wet, severely wet, moderately wet, near normal, moderately dry, severely dry and extremely dry. The computation of the SPI is based on the monsoon periods, which include the northeast monsoon, southwest monsoon and inter-monsoon. The trends of the dry and wet periods were then detected using the Mann-Kendall trend test and the results indicate that the major parts of Peninsular Malaysia are characterised by increasing droughts rather than wet events. The annual trends of drought and wet events of the randomly selected stations from each region also yield similar results. Hence, the northwest and southwest regions are predicted to have a higher probability of drought occurrence during a dry event and not much rain during the wet event. The east and west regions, on the other hand, are going through a significant upward trend that implies lower rainfall during the drought episodes and heavy rainfall during the wet events.

  17. Feasibility of High-Resolution Soil Erosion Measurements by Means of Rainfall Simulations and SfM Photogrammetry

    Directory of Open Access Journals (Sweden)

    Phoebe Hänsel

    2016-11-01

    Full Text Available The silty soils of the intensively used agricultural landscape of the Saxon loess province, eastern Germany, are very prone to soil erosion, mainly caused by water erosion. Rainfall simulations, and also increasingly structure-from-motion (SfM photogrammetry, are used as methods in soil erosion research not only to assess soil erosion by water, but also to quantify soil loss. This study aims to validate SfM photogrammetry determined soil loss estimations with rainfall simulations measurements. Rainfall simulations were performed at three agricultural sites in central Saxony. Besides the measured data runoff and soil loss by sampling (in mm, terrestrial images were taken from the plots with digital cameras before and after the rainfall simulation. Subsequently, SfM photogrammetry was used to reconstruct soil surface changes due to soil erosion in terms of high resolution digital elevation models (DEMs for the pre- and post-event (resolution 1 × 1 mm. By multi-temporal change detection, the digital elevation model of difference (DoD and an averaged soil loss (in mm is received, which was compared to the soil loss by sampling. Soil loss by DoD was higher than soil loss by sampling. The method of SfM photogrammetry-determined soil loss estimations also include a comparison of three different ground control point (GCP approaches, revealing that the most complex one delivers the most reliable soil loss by DoD. Additionally, soil bulk density changes and splash erosion beyond the plot were measured during the rainfall simulation experiments in order to separate these processes and associated surface changes from the soil loss by DoD. Furthermore, splash was negligibly small, whereas higher soil densities after the rainfall simulations indicated soil compaction. By means of calculated soil surface changes due to soil compaction, the soil loss by DoD achieved approximately the same value as the soil loss by rainfall simulation.

  18. [Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].

    Science.gov (United States)

    Dong, Wen; Li, Huai-En; Li, Jia-Ke

    2013-02-01

    In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%.

  19. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: Implications for slope stability, Edmonds, Washington, USA

    Science.gov (United States)

    Biavati, G.; Godt, J.W.; McKenna, J.P.

    2006-01-01

    Shallow landslides on steep (>25??) hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope-parallel flow conditions

  20. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: implications for slope stability, Edmonds, Washington, USA

    Directory of Open Access Journals (Sweden)

    G. Biavati

    2006-01-01

    Full Text Available Shallow landslides on steep (>25° hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5 m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope

  1. An Establishment of Rainfall-induced Soil Erosion Index for the Slope Land in Watershed

    Science.gov (United States)

    Tsai, Kuang-Jung; Chen, Yie-Ruey; Hsieh, Shun-Chieh; Shu, Chia-Chun; Chen, Ying-Hui

    2014-05-01

    With more and more concentrated extreme rainfall events as a result of climate change, in Taiwan, mass cover soil erosion occurred frequently and led to sediment related disasters in high intensity precipiton region during typhoons or torrential rain storms. These disasters cause a severely lost to the property, public construction and even the casualty of the resident in the affected areas. Therefore, we collected soil losses by using field investigation data from the upstream of watershed where near speific rivers to explore the soil erosion caused by heavy rainfall under different natural environment. Soil losses induced by rainfall and runoff were obtained from the long-term soil depth measurement of erosion plots, which were established in the field, used to estimate the total volume of soil erosion. Furthermore, the soil erosion index was obtained by referring to natural environment of erosion test plots and the Universal Soil Loss Equation (USLE). All data collected from field were used to compare with the one obtained from laboratory test recommended by the Technical Regulation for Soil and Water Conservation in Taiwan. With MATLAB as a modeling platform, evaluation model for soil erodibility factors was obtained by golden section search method, considering factors contributing to the soil erosion; such as degree of slope, soil texture, slope aspect, the distance far away from water system, topography elevation, and normalized difference vegetation index (NDVI). The distribution map of soil erosion index was developed by this project and used to estimate the rainfall-induced soil losses from erosion plots have been established in the study area since 2008. All results indicated that soil erodibility increases with accumulated rainfall amount regardless of soil characteristics measured in the field. Under the same accumulated rainfall amount, the volume of soil erosion also increases with the degree of slope and soil permeability, but decreases with the

  2. Contribution of hydrological data to the understanding of the spatio-temporal dynamics of F-specific RNA bacteriophages in river water during rainfall-runoff events.

    Science.gov (United States)

    Fauvel, Blandine; Cauchie, Henry-Michel; Gantzer, Christophe; Ogorzaly, Leslie

    2016-05-01

    Heavy rainfall events were previously reported to bring large amounts of microorganisms in surface water, including viruses. However, little information is available on the origin and transport of viral particles in water during such rain events. In this study, an integrative approach combining microbiological and hydrological measurements was investigated to appreciate the dynamics and origins of F-specific RNA bacteriophage fluxes during two distinct rainfall-runoff events. A high frequency sampling (automatic sampler) was set up to monitor the F-specific RNA bacteriophages fluxes at a fine temporal scale during the whole course of the rainfall-runoff events. A total of 276 rainfall-runoff samples were collected and analysed using both infectivity and RT-qPCR assays. The results highlight an increase of 2.5 log10 and 1.8 log10 of infectious F-specific RNA bacteriophage fluxes in parallel of an increase of the water flow levels for both events. Faecal pollution was characterised as being mainly from anthropic origin with a significant flux of phage particles belonging to the genogroup II. At the temporal scale, two successive distinct waves of phage pollution were established and identified through the hydrological measurements. The first arrival of phages in the water column was likely to be linked to the resuspension of riverbed sediments that was responsible for a high input of genogroup II. Surface runoff contributed further to the second input of phages, and more particularly of genogroup I. In addition, an important contribution of infectious phage particles has been highlighted. These findings imply the existence of a close relationship between the risk for human health and the viral contamination of flood water. Copyright © 2016 Luxembourg institute of Science and Technology. Published by Elsevier Ltd.. All rights reserved.

  3. Modeling and forecasting rainfall patterns of southwest monsoons in North-East India as a SARIMA process

    Science.gov (United States)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-02-01

    Weather forecasting is an important issue in the field of meteorology all over the world. The pattern and amount of rainfall are the essential factors that affect agricultural systems. India experiences the precious Southwest monsoon season for four months from June to September. The present paper describes an empirical study for modeling and forecasting the time series of Southwest monsoon rainfall patterns in the North-East India. The Box-Jenkins Seasonal Autoregressive Integrated Moving Average (SARIMA) methodology has been adopted for model identification, diagnostic checking and forecasting for this region. The study has shown that the SARIMA (0, 1, 1) (1, 0, 1)4 model is appropriate for analyzing and forecasting the future rainfall patterns. The Analysis of Means (ANOM) is a useful alternative to the analysis of variance (ANOVA) for comparing the group of treatments to study the variations and critical comparisons of rainfall patterns in different months of the season.

  4. Set-up and calibration of an indoor nozzle-type rainfall simulator for soil erosion studies

    Science.gov (United States)

    Lassu, T.; Seeger, M.

    2012-04-01

    Rainfall simulation is one of the most prevalent methods used in soil erosion studies on agricultural land. In-situ simulators have been used to relate soil surface characteristics and management to runoff generation, infiltration and erosion, eg. the influence of different cultivation systems, and to parameterise erosion models. Laboratory rainfall simulators have been used to determine the impact of the soil surface characteristics such as micro-topography, surface roughness, and soil chemistry on infiltration and erosion rates, and to elucidate the processes involved. The purpose of the following study is to demonstrate the set-up and the calibration of a large indoor, nozzle-type rainfall simulator (RS) for soil erosion, surface runoff and rill development studies. This RS is part of the Kraijenhoff van de Leur Laboratory for Water and Sediment Dynamics in Wageningen University. The rainfall simulator consists from a 6 m long and 2,5 m wide plot, with metal lateral frame and one open side. Infiltration can be collected in different segments. The plot can be inclined up to 15.5° slope. From 3,85 m height above the plot 2 Lechler nozzles 460.788 are sprinkling the water onto the surface with constant intensity. A Zehnder HMP 450 pump provides the constant water supply. An automatic pressure switch on the pump keeps the pressure constant during the experiments. The flow rate is controlled for each nozzle by independent valves. Additionally, solenoid valves are mounted at each nozzle to interrupt water flow. The flow is monitored for each nozzle with flow meters and can be recorded within the computer network. For calibration of the RS we measured the rainfall distribution with 60 gauges equally distributed over the plot during 15 minutes for each nozzle independently and for a combination of 2 identical nozzles. The rainfall energy was recorded on the same grid by measuring drop size distribution and fall velocity with a laser disdrometer. We applied 2 different

  5. Rainfall and wet and dry cycle's impact on ash thickness. A laboratory experiment

    Science.gov (United States)

    Pereira, Paulo; Keestra, Saskia; Peters, Piet; Cerdà, Artemi

    2016-04-01

    Ash is the most important and effective soil protection in the immediate period after the fire (Cerda and Doerr, 2008; Pereira et al., 2015a). This protection can last for days or weeks depending on the fire severity, topography of the burned area and post-fire meteorological conditions. In the initial period after the fire, ash is easily transported by wind. However after the first rainfalls, ash is eroded, or bind in soil surface (Pereira et al., 2013, 2015a). Ash thickness has implications on soil protection. The soil protection against the erosion and the ash capacity to retain water increases with the ash thickness (Bodi et al., 2014). Ash cover is very important after fire because store water and releases into soil a large amount of nutrients, fundamental to vegetation recuperation (Pereira et al., 2014). Despite the importance of ash thickness in post fire environments, little information is available about the effects of rainfall and wet and dry cycle's effects on ash thickness. This work aims to fill this gap. The objective of this study is to investigate the impacts of rainfall and wet and dry cycles in the ash thickness of two different under laboratory conditions. Litter from Oak (Quercus robur) and Spruce (Picea abis) were collected to and exposed during 2 hours to produce ash at 200 and 400 C. Subsequently a layer of 15 mm ash was spread on soil surface in small boxes (24x32 cm) and then subjected to rainfall simulation. Boxes were placed at a 17% of inclination and a rainfall intensity of 55 mm/h during 40 minutes was applied. After the rainfall simulation the plots were stored in an Oven at the temperature of 25 C during four days, in order to identify the effects of wet and dry cycles (Bodi et al., 2013). Ash thickness was measured after the first rainfall (AFR), before the second rainfall (BSR) - after the dry period of 4 days - and after the second rainfall (ASR). In each box a grid with 57 points was designed in order to analyse ash thickness

  6. Comparison of mass transport using average and transient rainfall boundary conditions

    International Nuclear Information System (INIS)

    Duguid, J.O.; Reeves, M.

    1976-01-01

    A general two-dimensional model for simulation of saturated-unsaturated transport of radionuclides in ground water has been developed and is currently being tested. The model is being applied to study the transport of radionuclides from a waste-disposal site where field investigations are currently under way to obtain the necessary model parameters. A comparison of the amount of tritium transported is made using both average and transient rainfall boundary conditions. The simulations indicate that there is no substantial difference in the transport for the two conditions tested. However, the values of dispersivity used in the unsaturated zone caused more transport above the water table than has been observed under actual conditions. This deficiency should be corrected and further comparisons should be made before average rainfall boundary conditions are used for long-term transport simulations

  7. Forecasting of rainfall using ocean-atmospheric indices with a fuzzy neural technique

    Science.gov (United States)

    Srivastava, Gaurav; Panda, Sudhindra N.; Mondal, Pratap; Liu, Junguo

    2010-12-01

    SummaryForecasting of rainfall is imperative for rainfed agriculture of arid and semi-arid regions of the world where agriculture consumes nearly 80% of the total water demand. Fuzzy-Ranking Algorithm (FRA) is used to identify the significant input variables for rainfall forecast. A case study is carried out to forecast monthly rainfall in India with several ocean-atmospheric predictor variables. Three different scenarios of ocean-atmospheric predictor variables are used as a set of possible input variables for rainfall forecasting model: (1) two climate indices, i.e. Southern Oscillation Index (SOI) and Pacific Decadal Oscillation Index (PDOI); (2) Sea Surface Temperature anomalies (SSTa) in the 5° × 5° grid points in Indian Ocean; and (3) both the climate indices and SSTa. To generate a set of possible input variables for these scenarios, we use climatic indices and the SSTa data with different lags between 1 and 12 months. Nonlinear relationship between identified inputs and rainfall is captured with an Artificial Neural Network (ANN) technique. A new approach based on fuzzy c-mean clustering is proposed for dividing data into representative subsets for training, testing, and validation. The results show that this proposed approach overcomes the difficulty in determining optimal numbers of clusters associated with the data division technique of self-organized map. The ANN model developed with both the climate indices and SSTa shows the best performance for the forecast of the monthly August rainfall in India. Similar approach can be applied to forecast rainfall of any period at selected climatic regions of the world where significant relationship exists between the rainfall and climate indices.

  8. Be-7 measured at ground air level and rainfall in the city of Sao Paulo

    International Nuclear Information System (INIS)

    Damatto, Sandra R.; Souza, Joseilton M.; Frujuele, Jonatan V.; Maduar, Marcelo F.; Leonardo, Lucio; Pecequilo, Brigitte R.S.

    2013-01-01

    The cosmogenic radionuclide 7 Be (T 1/2 = 53.3 d), produced in the upper atmosphere by cosmic ray spallation of oxygen and nitrogen, is one of the cosmogenic radionuclides that can be used as tracer for heavy metals and pollutants in the environment, tracer of soil erosion and sedimentation in lakes, among other examples. Their subsequent deposition to the land surface occurs as both wet and dry fallout, although it has been demonstrated that 7 Be fallout is primarily associated with precipitation. There is limited data on the concentration of 7 Be in rainfall and in particulate in the Southern Hemisphere and in Brazil, compared with data from the Northern Hemisphere. This paper presents the results obtained of 7 Be concentrations measured from April 2011 to June 2013, in samples of air at ground level, each fifteen days, and rainfall in all the rainy events that occurred at Instituto de Pesquisas Energeticas e Nucleares (IPEN), which has its campus located in the city of Sao Paulo, state of Sao Paulo, Brazil. The concentrations of 7 Be were measured by non-destructive gamma-ray spectrometry using an extended range closed-end coaxial Be-layer HPGe detector with 25% relative efficiency and associated electronic devices and live counting time varying from 100,000 s to 300,000 s. The results obtained of 7 Be in particulate and in rainfall were correlated to seasons, precipitation, temperature and sunspot number. The higher values obtained for the concentrations were in spring and summer time presenting good correlations with the amount of precipitation and sunspot number and a clear seasonal variation. (author)

  9. The Chennai extreme rainfall event in 2015: The Bay of Bengal connection

    Science.gov (United States)

    Boyaj, Alugula; Ashok, Karumuri; Ghosh, Subimal; Devanand, Anjana; Dandu, Govardhan

    2018-04-01

    Southeast India experienced a heavy rainfall during 30 Nov-2 Dec 2015. Particularly, the Chennai city, the fourth major metropolitan city in India with a population of 5 million, experienced extreme flooding and causalities. Using various observed/reanalysed datasets, we find that the concurrent southern Bay of Bengal (BoB) sea surface temperatures (SST) were anomalously warm. Our analysis shows that BoB sea surface temperature anomalies (SSTA) are indeed positively, and significantly, correlated with the northeastern Indian monsoonal rainfall during this season. Our sensitivity experiments carried out with the Weather Research and Forecasting (WRF) model at 25 km resolution suggest that, while the strong concurrent El Niño conditions contributed to about 21.5% of the intensity of the extreme Chennai rainfall through its signals in the local SST mentioned above, the warming trend in BoB SST also contributed equally to the extremity of the event. Further, the El Niño southern oscillation (ENSO) impacts on the intensity of the synoptic events in the BoB during the northeast monsoon are manifested largely through the local SST in the BoB as compared through its signature in the atmospheric circulations over the BoB.

  10. Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause

    Science.gov (United States)

    Bigg, E. K.; Soubeyrand, S.; Morris, C. E.

    2015-03-01

    Rainfall is one of the most important aspects of climate, but the extent to which atmospheric ice nuclei (IN) influence its formation, quantity, frequency, and location is not clear. Microorganisms and other biological particles are released following rainfall and have been shown to serve as efficient IN, in turn impacting cloud and precipitation formation. Here we investigated potential long-term effects of IN on rainfall frequency and quantity. Differences in IN concentrations and rainfall after and before days of large rainfall accumulation (i.e., key days) were calculated for measurements made over the past century in southeastern and southwestern Australia. Cumulative differences in IN concentrations and daily rainfall quantity and frequency as a function of days from a key day demonstrated statistically significant increasing logarithmic trends (R2 > 0.97). Based on observations that cumulative effects of rainfall persisted for about 20 days, we calculated cumulative differences for the entire sequence of key days at each site to create a historical record of how the differences changed with time. Comparison of pre-1960 and post-1960 sequences most commonly showed smaller rainfall totals in the post-1960 sequences, particularly in regions downwind from coal-fired power stations. This led us to explore the hypothesis that the increased leaf surface populations of IN-active bacteria due to rain led to a sustained but slowly diminishing increase in atmospheric concentrations of IN that could potentially initiate or augment rainfall. This hypothesis is supported by previous research showing that leaf surface populations of the ice-nucleating bacterium Pseudomonas syringae increased by orders of magnitude after heavy rain and that microorganisms become airborne during and after rain in a forest ecosystem. At the sites studied in this work, aerosols that could have initiated rain from sources unrelated to previous rainfall events (such as power stations) would

  11. Rainfall and runoff water quality of the Pang and Lambourn, tributaries of the River Thames, south-eastern England

    Directory of Open Access Journals (Sweden)

    C. Neal

    2004-01-01

    Full Text Available The water quality of rainfall and runoff is described for two catchments of two tributaries of the River Thames, the Pang and Lambourn. Rainfall chemistry is variable and concentrations of most determinands decrease with increasing volume of catch probably due to 'wash out' processes. Two rainfall sites have been monitored, one for each catchment. The rainfall site on the Lambourn shows higher chemical concentrations than the one for the Pang which probably reflects higher amounts of local inputs from agricultural activity. Rainfall quality data at a long-term rainfall site on the Pang (UK National Air Quality Archive shows chemistries similar to that for the Lambourn site, but with some clear differences. Rainfall chemistries show considerable variation on an event-to-event basis. Average water quality concentrations and flow-weighted concentrations as well as fluxes vary across the sites, typically by about 30%. Stream chemistry is much less variable due to the main source of water coming from aquifer sources of high storage. The relationship between rainfall and runoff chemistry at the catchment outlet is described in terms of the relative proportions of atmospheric and within-catchment sources. Remarkably, in view of the quantity of agricultural and sewage inputs to the streams, the catchments appear to be retaining both P and N. Keywords: water quality, nitrate, ammonium, phosphorus, ammonia, nitrogen dioxide, pH, alkalinity, nutrients, trace metals, rainfall, river, Pang, Lambourn, LOCAR

  12. Rainfall and temperature scenarios for Bangladesh for the middle of ...

    Indian Academy of Sciences (India)

    The simulated rainfall and mean surface air temperature were calibrated and validated against ground-based observed data in Bangladesh during the period 1961–1990. The Climate Research Unit (CRU) data is also used for understanding the model performance. Better performance of RegCM3 obtained through ...

  13. Tropical Rainfall Measuring Mission (TRMM) and the Future of Rainfall Estimation from Space

    Science.gov (United States)

    Kakar, Ramesh; Adler, Robert; Smith, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    Tropical rainfall is important in the hydrological cycle and to the lives and welfare of humans. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. Recognizing the importance of rain in the tropics, NASA for the U.S.A. and NASDA for Japan have partnered in the design, construction and flight of a satellite mission to measure tropical rainfall and calculate the associated latent heat release. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms and applications of these results to areas such as Data Assimilation and model initialization. TRMM has reduced the uncertainty of climatological rainfall in tropics by over a factor of two, therefore establishing a standard for comparison with previous data sets and climatologies. It has documented the diurnal variation of precipitation over the oceans, showing a distinct early morning peak and this satellite mission has shown the utility of precipitation information for the improvement of numerical weather forecasts and climate modeling. This paper discusses some promising applications using TRMM data and introduces a measurement concept being discussed by NASA/NASDA and ESA for the future of rainfall estimation from space.

  14. Rainfall Downscaling Conditional on Upper-air Variables: Assessing Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Deidda, Roberto; Marrocu, Marino; Kaleris, Vassilios

    2014-05-01

    Due to its intermittent and highly variable character, and the modeling parameterizations used, precipitation is one of the least well reproduced hydrologic variables by both Global Climate Models (GCMs) and Regional Climate Models (RCMs). This is especially the case at a regional level (where hydrologic risks are assessed) and at small temporal scales (e.g. daily) used to run hydrologic models. In an effort to remedy those shortcomings and assess the effect of climate change on rainfall statistics at hydrologically relevant scales, Langousis and Kaleris (2013) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables. The developed downscaling scheme was tested using atmospheric data from the ERA-Interim archive (http://www.ecmwf.int/research/era/do/get/index), and daily rainfall measurements from western Greece, and was proved capable of reproducing several statistical properties of actual rainfall records, at both annual and seasonal levels. This was done solely by conditioning rainfall simulation on a vector of atmospheric predictors, properly selected to reflect the relative influence of upper-air variables on ground-level rainfall statistics. In this study, we apply the developed framework for conditional rainfall simulation using atmospheric data from different GCM/RCM combinations. This is done using atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com), and daily rainfall measurements for an intermediate-sized catchment in Italy; i.e. the Flumendosa catchment. Since GCM/RCM products are suited to reproduce the local climatology in a statistical sense (i.e. in terms of relative frequencies), rather than ensuring a one-to-one temporal correspondence between observed and simulated fields (i.e. as is the case for ERA-interim reanalysis data), we proceed in three steps: a) we use statistical tools to establish a linkage between ERA-Interim upper-air atmospheric forecasts and

  15. Seasonal amounts of nutrients in Western cherry fruit fly (Diptera: Tephritidae) and their relation to nutrient availability on cherry plant surfaces.

    Science.gov (United States)

    Yee, Wee L; Chapman, Peter S

    2008-10-01

    Relatively little is known about the nutritional ecology of fruit flies in the genus Rhagoletis. In this study, nutrient amounts in male and female western cherry fruit fly, Rhagoletis indifferens Curran, and availability of nitrogen and sugar on surfaces of leaves, fruit, and extrafloral nectaries (EFNs) of sweet cherry trees, were determined from late May to late June 2005 and of sugar from EFNs from mid-May to late June 2007 in Washington state. Protein amounts in male and female flies did not differ over the season. Nitrogen was present on leaves, fruit, and EFNs during the sampling period, but amounts on leaves and fruit were lower in late May than the rest of the season. Sugar amounts in flies did not differ over the season. Sugar was present on leaf, fruit, and EFN surfaces all season, but amounts on all three were lower in late May than later in the season. Fructose and glucose were the predominant sugars on all plant surfaces, but sucrose was also present in nectar from EFNs. In outdoor and field cage experiments in 2004 and 2006, more flies survived when cherry branches with leaves and fruit were present than absent. Results suggest that R. indifferens maintains stable protein and sugar levels throughout the season because sufficient amounts of nutrients are found in cherry trees during this time and that increases in nutrient availability caused by ripening and damaged cherries later in the season do not result in increased amounts of nutrients in flies.

  16. Multivariate Analysis of Erosivity Indices and Rainfall Physical Characteristics Associated with Rainfall Patterns in Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Roriz Luciano Machado

    2017-12-01

    Full Text Available ABSTRACT The identification of areas with greater erosive potential is important for planning soil and water conservation. The objective of this study was to evaluate the physical characteristics of rainfall events in the state of Rio de Janeiro, Brazil, and their interactions with rainfall patterns through multivariate statistical analysis. Rainfall depth, kinetic energy, 30-min intensity (I30, duration of rainfall events, and the erosivity indices KE >10, KE >25, and EI30 in 36 locations (stations were subjected to principal component analysis (PCA and canonical discriminant analysis (CDA. Based on evaluation of the respective historical series of hyetographs, it was found that the advanced pattern occurs with highest frequency (51.8 %, followed by the delayed pattern (26.1 %, and by the intermediate pattern (22.1 %. All the evaluated rainfall characteristics have high response capacity in describing localities and rainfall patterns through PCA and CDA. In CDA, the Tukey test (p<0.05 applied to the scores of the first canonical discriminant function (CDF1 allowed differentiation of the stations with respect to the rainfall and erosivity characteristics for the advanced and delayed patterns. In the delayed pattern, the localities of Angra dos Reis, Campos, Eletrobrás, Manuel Duarte, Santa Isabel do Rio Preto, Tanguá, Teresópolis, Vila Mambucaba, and Xerém had the highest CDF1 scores, indicating that they have rainfalls with higher depth, I30, and duration because the standardized canonical coefficient (SCC and the correlation coefficient (“r” of these characteristics were positive. The rainfall events in the state of Rio de Janeiro differ from one locality to another in relation to the advanced and delayed rainfall patterns, mainly due to the physical characteristics of rainfall depth, I30, and duration, indicating a higher risk of soil loss and runoff in the localities where rainfall events with the delayed pattern prevail.

  17. Characteristics of PAHs in farmland soil and rainfall runoff in Tianjin, China.

    Science.gov (United States)

    Shi, Rongguang; Xu, Mengmeng; Liu, Aifeng; Tian, Yong; Zhao, Zongshan

    2017-10-14

    Rainfall runoff can remove certain amounts of pollutants from contaminated farmland soil and result in a decline in water quality. However, the leaching behaviors of polycyclic aromatic hydrocarbons (PAHs) with rainfall have been rarely reported due to wide variations in the soil compositions, rainfall conditions, and sources of soil PAHs in complex farmland ecosystems. In this paper, the levels, spatial distributions, and composition profiles of PAHs in 30 farmland soil samples and 49 rainfall-runoff samples from the Tianjin region in 2012 were studied to investigate their leaching behaviors caused by rainfall runoff. The contents of the Σ 16 PAHs ranged from 58.53 to 3137.90 μg/kg in the soil and 146.58 to 3636.59 μg/L in the runoff. In total, most of the soil sampling sites (23 of 30) were contaminated, and biomass and petroleum combustion were proposed as the main sources of the soil PAHs. Both the spatial distributions of the soil and the runoff PAHs show a decreasing trend moving away from the downtown, which suggested that the leaching behaviors of PAHs in a larger region during rainfall may be mainly affected by the compounds themselves. In addition, 4- and 5-ring PAHs are the dominant components in farmland soil and 3- and 4-ring PAHs dominate the runoff. Comparisons of the PAH pairs and enrichment ratios showed that acenaphthylene, acenaphthene, benzo[a]anthracene, chrysene, and fluoranthene were more easily transferred into water systems from soil than benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, and indeno[123-cd]pyrene, which indicated that PAHs with low molecular weight are preferentially dissolved due to their higher solubility compared to those with high molecular weight.

  18. Lixiviação de potássio da palha de espécies de cobertura de solo de acordo com a quantidade de chuva aplicada Potassium leaching from green cover crop residues as affected by rainfall amount

    Directory of Open Access Journals (Sweden)

    C. A. Rosolem

    2003-04-01

    Full Text Available Os restos vegetais deixados na superfície do solo em sistemas de semeadura direta, além de proteger o solo da erosão, constituem considerável reserva de nutrientes que podem ser disponibilizados para a cultura principal, subseqüente. Avaliou-se a lixiviação de K da palha de seis espécies vegetais com potencial de uso como plantas para cobertura do solo de acordo com a quantidade de chuva recebida após o manejo. Milheto (Pennisetum americanum, var. BN-2, sorgo de guiné (Sorghum vulgare, aveia preta (Avena strigosa, triticale (Triticum secale, crotalária juncea (Crotalaria juncea e braquiária (Brachiaria decumbens foram cultivados em vasos com terra, em casa de vegetação, em Botucatu (SP. Aos 45 dias da emergência, as plantas foram cortadas na altura do colo, secas em estufa e submetidas a chuvas simuladas de 4,4, 8,7, 17,4, 34,9 e 69,8 mm, considerando uma quantidade de palha equivalente a 8,0 t ha-1. A máxima retenção de água pela palha corresponde a uma lâmina de até 3,0 mm, independentemente da espécie, praticamente não ocorrendo lixiviação do potássio com chuvas da ordem de 5 mm. A máxima liberação de K por unidade de chuva ocorre com lâminas de até 20 mm, decrescendo a partir deste ponto. A quantidade de K liberado da palha logo após o manejo depende da espécie vegetal, não ultrapassando, no entanto, 24 kg ha-1 com chuvas da ordem de 70 mm, apresentando correlação positiva com a concentração do nutriente no tecido vegetal. O triticale e a aveia são mais eficientes na ciclagem do potássio.Besides protecting soil from erosion, plant residues left on the soil surface by green cover crops in no-till cropping systems represent a considerable nutrient source of nutrients that can be made available for the following crop. Potassium leaching from the straw of six cover crop species was evaluated, in relation to the amount of rain on the residues. Pearl millet (Pennisetum americanum, guinea sorghum (Sorghum

  19. Prediction of early summer rainfall over South China by a physical-empirical model

    Science.gov (United States)

    Yim, So-Young; Wang, Bin; Xing, Wen

    2014-10-01

    In early summer (May-June, MJ) the strongest rainfall belt of the northern hemisphere occurs over the East Asian (EA) subtropical front. During this period the South China (SC) rainfall reaches its annual peak and represents the maximum rainfall variability over EA. Hence we establish an SC rainfall index, which is the MJ mean precipitation averaged over 72 stations over SC (south of 28°N and east of 110°E) and represents superbly the leading empirical orthogonal function mode of MJ precipitation variability over EA. In order to predict SC rainfall, we established a physical-empirical model. Analysis of 34-year observations (1979-2012) reveals three physically consequential predictors. A plentiful SC rainfall is preceded in the previous winter by (a) a dipole sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (b) a tripolar SST tendency in North Atlantic Ocean, and (c) a warming tendency in northern Asia. These precursors foreshadow enhanced Philippine Sea subtropical High and Okhotsk High in early summer, which are controlling factors for enhanced subtropical frontal rainfall. The physical empirical model built on these predictors achieves a cross-validated forecast correlation skill of 0.75 for 1979-2012. Surprisingly, this skill is substantially higher than four-dynamical models' ensemble prediction for 1979-2010 period (0.15). The results here suggest that the low prediction skill of current dynamical models is largely due to models' deficiency and the dynamical prediction has large room to improve.

  20. Regions Subject to Rainfall Oscillation in the 5–10 Year Band

    Directory of Open Access Journals (Sweden)

    Jean-Louis Pinault

    2018-01-01

    Full Text Available The decadal oscillation of rainfall in Europe that has been observed since the end of the 20th century is a phenomenon well known to climatologists. Consequences are considerable because the succession of wet or dry years produces floods or, inversely, droughts. Moreover, much research has tried to answer the question about the possible link between the frequency and the intensity of extra-tropical cyclones, which are particularly devastating, and global warming. This work aims at providing an exhaustive description of the rainfall oscillation in the 5–10 year band during one century on a planetary scale. It is shown that the rainfall oscillation results from baroclinic instabilities over the oceans. For that, a joint analysis of the amplitude and the phase of sea surface temperature anomalies and rainfall anomalies is performed, which discloses the mechanisms leading to the alternation of high and low atmospheric pressure systems. For a prospective purpose, some milestones are suggested on a possible link with very long-period Rossby waves in the oceans.

  1. Underwater Acoustic Measurements to Estimate Wind and Rainfall in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Sara Pensieri

    2015-01-01

    Full Text Available Oceanic ambient noise measurements can be analyzed to obtain qualitative and quantitative information about wind and rainfall phenomena over the ocean filling the existing gap of reliable meteorological observations at sea. The Ligurian Sea Acoustic Experiment was designed to collect long-term synergistic observations from a passive acoustic recorder and surface sensors (i.e., buoy mounted rain gauge and anemometer and weather radar to support error analysis of rainfall rate and wind speed quantification techniques developed in past studies. The study period included combination of high and low wind and rainfall episodes and two storm events that caused two floods in the vicinity of La Spezia and in the city of Genoa in 2011. The availability of high resolution in situ meteorological data allows improving data processing technique to detect and especially to provide effective estimates of wind and rainfall at sea. Results show a very good correspondence between estimates provided by passive acoustic recorder algorithm and in situ observations for both rainfall and wind phenomena and demonstrate the potential of using measurements provided by passive acoustic instruments in open sea for early warning of approaching coastal storms, which for the Mediterranean coastal areas constitutes one of the main causes of recurrent floods.

  2. Assessment of probabilistic areal reduction factors of precipitations for the entire French territory with gridded rainfall data.

    Science.gov (United States)

    Fouchier, Catherine; Maire, Alexis; Arnaud, Patrick; Cantet, Philippe; Odry, Jean

    2016-04-01

    The starting point of our study was the availability of maps of rainfall quantiles available for the entire French mainland territory at the spatial resolution of 1 km². These maps display the rainfall amounts estimated for different rainfall durations (from 15 minutes to 72 hours) and different return periods (from 2 years up to 1 000 years). They are provided by a regionalized stochastic hourly point rainfall generator, the SHYREG method which was previously developed by Irstea (Arnaud et al., 2007; Cantet and Arnaud, 2014). Being calibrated independently on numerous raingauges data (with an average density across the country of 1 raingauge per 200 km²), this method suffers from a limitation common to point-process rainfall generators: it can only reproduce point rainfall patterns and has no capacity to generate rainfall fields. It can't hence provide areal rainfall quantiles, the estimation of the latter being however needed for the construction of design rainfall or for the diagnostic of observed events. One means of bridging this gap between our local rainfall quantiles and areal rainfall quantiles is given by the concept of probabilistic areal reduction factors of rainfall (ARF) as defined by Omolayo (1993). This concept enables to estimate areal rainfall of a particular frequency within a certain amount of time from point rainfalls of the same frequency and duration. Assessing such ARF for the whole French territory is of particular interest since it should allow us to compute areal rainfall quantiles, and eventually watershed rainfall quantiles, by using the already available grids of statistical point rainfall of the SHYREG method. Our purpose was then to assess these ARF thanks to long time-series of spatial rainfall data. We have used two sets of rainfall fields: i) hourly rainfall fields from a 10-year reference database of Quantitative Precipitation Estimation (QPE) over France (Tabary et al., 2012), ii) daily rainfall fields resulting from a 53-year

  3. A Preliminary Study on Rainfall Interception Loss and Water Yield Analysis on Arabica Coffee Plants in Central Aceh Regency, Indonesia

    Directory of Open Access Journals (Sweden)

    Reza Benara

    2012-12-01

    Full Text Available Rainfall interception loss from plants or trees can reduce a net rainfall as source of water yield. The amount of rainfall interception loss depends on kinds of plants and hydro-meteorological characteristics. Therefore, it is important to study rainfall interception loss such as from Arabica Coffee plantation which is as main agricultural commodity for Central Aceh Regency. In this study, rainfall interception loss from Arabica Coffee plants was studied in Kebet Village of Central Aceh Regency, Indonesia from January 20 to March 9, 2011. Arabica coffee plants used in this study was 15 years old, height of 1.5 m and canopy of 4.567 m2. Rainfall interception loss was determined based on water balance approach of daily rainfall, throughfall, and stemflow data. Empirical regression equation between rainfall interception loss and rainfall were adopted as a model to estimate rainfall interception loss from Arabica Coffee plantation, which the coefficient of correlation, r is 0.98. In water yield analysis, this formula was applied and founded that Arabica Coffee plants intercept 76% of annual rainfall or it leaved over annual net rainfall 24% of annual rainfall. Using this net rainfall, water yield produced from Paya Bener River which is the catchment area covered by Arabica Coffee plantation was analyzed in a planning of water supply project for water needs domestic of 3 sub-districts in Central Aceh Regency. Based on increasing population until year of 2025, the results showed that the water yield will be not enough from year of 2015. However, if the catchment area is covered by forest, the water yield is still enough until year of 2025

  4. Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Richard C. [Met Office Hadley Centre, Devon (United Kingdom); Turner, Andrew G. [University of Reading, NCAS-Climate, Department of Meteorology, Reading (United Kingdom)

    2012-06-15

    The Arabian Sea is an important moisture source for Indian monsoon rainfall. The skill of climate models in simulating the monsoon and its variability varies widely, while Arabian Sea cold sea surface temperature (SST) biases are common in coupled models and may therefore influence the monsoon and its sensitivity to climate change. We examine the relationship between monsoon rainfall, moisture fluxes and Arabian Sea SST in observations and climate model simulations. Observational analysis shows strong monsoons depend on moisture fluxes across the Arabian Sea, however detecting consistent signals with contemporaneous summer SST anomalies is complicated in the observed system by air/sea coupling and large-scale induced variability such as the El Nino-Southern Oscillation feeding back onto the monsoon through development of the Somali Jet. Comparison of HadGEM3 coupled and atmosphere-only configurations suggests coupled model cold SST biases significantly reduce monsoon rainfall. Idealised atmosphere-only experiments show that the weakened monsoon can be mainly attributed to systematic Arabian Sea cold SST biases during summer and their impact on the monsoon-moisture relationship. The impact of large cold SST biases on atmospheric moisture content over the Arabian Sea, and also the subsequent reduced latent heat release over India, dominates over any enhancement in the land-sea temperature gradient and results in changes to the mean state. We hypothesize that a cold base state will result in underestimation of the impact of larger projected Arabian Sea SST changes in future climate, suggesting that Arabian Sea biases should be a clear target for model development. (orig.)

  5. Potentials for Supplemental Irrigation in Some Rainfall Areas of Imo ...

    African Journals Online (AJOL)

    In addition, there were up to five months of the year during which rainwater was much in deficit of evapotranspiration. All these stress the need for irrigation. Analysis of water quality (surface, groundwater, and rainfall runoff) showed their suitability for irrigation. Quantity assessment of supplemental irrigation during the dry ...

  6. Monsoon Rainfall and Landslides in Nepal

    Science.gov (United States)

    Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.

    2009-12-01

    A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of

  7. Comparing a simple methodology to evaluate hydrodynamic parameters with rainfall simulation experiments

    Science.gov (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Burguet, Maria; Cerdà, Artemi; Iovino, Massimo; Prosdocimi, Massimo

    2016-04-01

    Studying soil hydraulic properties is necessary for interpreting and simulating many hydrological processes having environmental and economic importance, such as rainfall partition into infiltration and runoff. The saturated hydraulic conductivity, Ks, exerts a dominating influence on the partitioning of rainfall in vertical and lateral flow paths. Therefore, estimates of Ks are essential for describing and modeling hydrological processes (Zimmermann et al., 2013). According to several investigations, Ks data collected by ponded infiltration tests could be expected to be unusable for interpreting field hydrological processes, and particularly infiltration. In fact, infiltration measured by ponding give us information about the soil maximum or potential infiltration rate (Cerdà, 1996). Moreover, especially for the hydrodynamic parameters, many replicated measurements have to be carried out to characterize an area of interest since they are known to vary widely both in space and time (Logsdon and Jaynes, 1996; Prieksat et al., 1994). Therefore, the technique to be applied at the near point scale should be simple and rapid. Bagarello et al. (2014) and Alagna et al. (2015) suggested that the Ks values determined by an infiltration experiment carried applying water at a relatively large distance from the soil surface could be more appropriate than those obtained with a low height of water pouring to explain surface runoff generation phenomena during intense rainfall events. These authors used the Beerkan Estimation of Soil Transfer parameters (BEST) procedure for complete soil hydraulic characterization (Lassabatère et al., 2006) to analyze the field infiltration experiment. This methodology, combining low and high height of water pouring, seems appropriate to test the effect of intense and prolonged rainfall events on the hydraulic characteristics of the surface soil layer. In fact, an intense and prolonged rainfall event has a perturbing effect on the soil surface

  8. Use of a large-scale rainfall simulator reveals novel insights into stemflow generation

    Science.gov (United States)

    Levia, D. F., Jr.; Iida, S. I.; Nanko, K.; Sun, X.; Shinohara, Y.; Sakai, N.

    2017-12-01

    Detailed knowledge of stemflow generation and its effects on both hydrological and biogoechemical cycling is important to achieve a holistic understanding of forest ecosystems. Field studies and a smaller set of experiments performed under laboratory conditions have increased our process-based knowledge of stemflow production. Building upon these earlier works, a large-scale rainfall simulator was employed to deepen our understanding of stemflow generation processes. The use of the large-scale rainfall simulator provides a unique opportunity to examine a range of rainfall intensities under constant conditions that are difficult under natural conditions due to the variable nature of rainfall intensities in the field. Stemflow generation and production was examined for three species- Cryptomeria japonica D. Don (Japanese cedar), Chamaecyparis obtusa (Siebold & Zucc.) Endl. (Japanese cypress), Zelkova serrata Thunb. (Japanese zelkova)- under both leafed and leafless conditions at several different rainfall intensities (15, 20, 30, 40, 50, and 100 mm h-1) using a large-scale rainfall simulator in National Research Institute for Earth Science and Disaster Resilience (Tsukuba, Japan). Stemflow production and rates and funneling ratios were examined in relation to both rainfall intensity and canopy structure. Preliminary results indicate a dynamic and complex response of the funneling ratios of individual trees to different rainfall intensities among the species examined. This is partly the result of different canopy structures, hydrophobicity of vegetative surfaces, and differential wet-up processes across species and rainfall intensities. This presentation delves into these differences and attempts to distill them into generalizable patterns, which can advance our theories of stemflow generation processes and ultimately permit better stewardship of forest resources. ________________ Funding note: This research was supported by JSPS Invitation Fellowship for Research in

  9. Application of seasonal rainfall forecasts and satellite rainfall observations to crop yield forecasting for Africa

    Science.gov (United States)

    Greatrex, H. L.; Grimes, D. I. F.; Wheeler, T. R.

    2009-04-01

    Rain-fed agriculture is of utmost importance in sub-Saharan Africa; the FAO estimates that over 90% of food consumed in the region is grown in rain-fed farming systems. As the climate in sub-Saharan Africa has a high interannual variability, this dependence on rainfall can leave communities extremely vulnerable to food shortages, especially when coupled with a lack of crop management options. The ability to make a regional forecast of crop yield on a timescale of months would be of enormous benefit; it would enable both governmental and non-governmental organisations to be alerted in advance to crop failure and could facilitate national and regional economic planning. Such a system would also enable individual communities to make more informed crop management decisions, increasing their resilience to climate variability and change. It should be noted that the majority of crops in the region are rainfall limited, therefore the ability to create a seasonal crop forecast depends on the ability to forecast rainfall at a monthly or seasonal timescale and to temporally downscale this to a daily time-series of rainfall. The aim of this project is to develop a regional-scale seasonal forecast for sub-Saharan crops, utilising the General Large Area Model for annual crops (GLAM). GLAM would initially be driven using both dynamical and statistical seasonal rainfall forecasts to provide an initial estimate of crop yield. The system would then be continuously updated throughout the season by replacing the seasonal rainfall forecast with daily weather observations. TAMSAT satellite rainfall estimates are used rather than rain-gauge data due to the scarcity of ground based observations. An important feature of the system is the use of the geo-statistical method of sequential simulation to create an ensemble of daily weather inputs from both the statistical seasonal rainfall forecasts and the satellite rainfall estimates. This allows a range of possible yield outputs to be

  10. Periods of high intensity rainfall and the safety of the Angra dos Reis nuclear power plant

    International Nuclear Information System (INIS)

    Nicolli, D.

    1993-01-01

    The high precipitation rates aggravate the consequences of hypothetical accidental releases of radioactive material from the Angra dos Reis Nuclear Power Plant (NPP), as determined by probabilistic risk assessment. A 30-year rainfall series was analysed, aiming at calculating the probability of occurring a given amount q of precipitation during a certain period of n days. The nine highest precipitation amounts have also been determined. The results show there was a rainier climate in the '50 s and '60 s than in the '70 s and '80 s. The risk of catastrophic landslide has been enhanced as an environmental impact of the construction of the Rio-Santos highway and NPP which have not yet gone through an abnormal rainfall period. It has been suggested that criteria should be established to reduce the nuclear power and shut down the reactor when the precipitation accumulates to a dangerous limit. (author)

  11. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    Science.gov (United States)

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model

    KAUST Repository

    Konda, Gopinadh; Chowdary, Jasti S.; Srinivas, G; Gnanaseelan, C; Parekh, Anant; Attada, Raju; Rama Krishna, S S V S

    2018-01-01

    In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.

  13. Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model

    Science.gov (United States)

    Konda, Gopinadh; Chowdary, J. S.; Srinivas, G.; Gnanaseelan, C.; Parekh, Anant; Attada, Raju; Rama Krishna, S. S. V. S.

    2018-06-01

    In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.

  14. Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model

    KAUST Repository

    Konda, Gopinadh

    2018-05-22

    In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.

  15. Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project.

    Science.gov (United States)

    Sperber, K. R.; Palmer, T. N.

    1996-11-01

    The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall

  16. Effects of Rainfall-Induced Topsoil Structure Changes on Root-Zone Moisture Regime during the Dry Period

    Science.gov (United States)

    Wang, Feng; Chen, Jiazhou; Lin, Lirong

    2018-01-01

    Rainfall erosion and subsequent intermittent drought are serious barriers for agricultural production in the subtropical red soil region of China. Although it is widely recognized that rainfall-induced soil structure degradation reduced soil water storage and water-holding capacity, the effects of variation of the rainfall-induced topsoil structure on the subsequent soil water regime during the dry period is still rarely considered. The objective of this study was to ascertain the way of rainfall-induced topsoil structure changes on the subsequent soil water regime during the dry period. In a three-year-long experiment, six practices (CK, only crop; SM, straw mulching; PAM, polyacrylamide surface application; B, contour Bahia-grass strip; SPAM, straw mulching and polyacrylamide surface application; and BPAM, contour Bahia-grass strip and polyacrylamide surface application) were conducted at an 8° farmland with planting summer maize resulting in different topsoil structure and root-zone moisture, to establish and reveal the quantitatively relationship between the factors of topsoil structure and soil drought. Rainfall erosion significantly increased the soil crust coverage, and decreased the WSA 0.25, 0-30 mm soil porosity and mean pore size. There was no significant difference during the raining stage of root-zone water storage between CK and other practices. An index of soil drought intensity ( I) and degree ( D) was established using soil water loss rate and soil drought severity. The larger value of I means a higher rate of water loss. The larger value of D means more severe drought. During the dry period, I and D were significantly higher in CK than in other practices. I and D had significantly positively correlation with the crust size and crust coverage, and negatively with WSA 0.25, 15-30 mm soil porosity and mean pore size. Among of soil structure factors, the soil porosity had the largest effect on I and D. The rainfall-induced topsoil structure changes

  17. The cross wavelet and wavelet coherence analysis of spatio-temporal rainfall-groundwater system in Pingtung plain, Taiwan

    Science.gov (United States)

    Lin, Yuan-Chien; Yu, Hwa-Lung

    2013-04-01

    The increasing frequency and intensity of extreme rainfall events has been observed recently in Taiwan. Particularly, Typhoon Morakot, Typhoon Fanapi, and Typhoon Megi consecutively brought record-breaking intensity and magnitude of rainfalls to different locations of Taiwan in these two years. However, records show the extreme rainfall events did not elevate the amount of annual rainfall accordingly. Conversely, the increasing frequency of droughts has also been occurring in Taiwan. The challenges have been confronted by governmental agencies and scientific communities to come up with effective adaptation strategies for natural disaster reduction and sustainable environment establishment. Groundwater has long been a reliable water source for a variety of domestic, agricultural, and industrial uses because of its stable quantity and quality. In Taiwan, groundwater accounts for the largest proportion of all water resources for about 40%. This study plans to identify and quantify the nonlinear relationship between precipitation and groundwater recharge, find the non-stationary time-frequency relations between the variations of rainfall and groundwater levels to understand the phase difference of time series. Groundwater level data and over-50-years hourly rainfall records obtained from 20 weather stations in Pingtung Plain, Taiwan has been collected. Extract the space-time pattern by EOF method, which is a decomposition of a signal or data set in terms of orthogonal basis functions determined from the data for both time series and spatial patterns, to identify the important spatial pattern of groundwater recharge and using cross wavelet and wavelet coherence method to identify the relationship between rainfall and groundwater levels. Results show that EOF method can specify the spatial-temporal patterns which represents certain geological characteristics and other mechanisms of groundwater, and the wavelet coherence method can identify general correlation between

  18. Stochastic modelling of daily rainfall sequences

    NARCIS (Netherlands)

    Buishand, T.A.

    1977-01-01

    Rainfall series of different climatic regions were analysed with the aim of generating daily rainfall sequences. A survey of the data is given in I, 1. When analysing daily rainfall sequences one must be aware of the following points:
    a. Seasonality. Because of seasonal variation

  19. High-frequency DOC and nitrate measurements provide new insights into their export and their relationships to rainfall-runoff processes

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Over the past decades, stream sampling protocols for environmental tracers were often limited by logistical and technological constraints. Long-term sampling programs would typically rely on weekly sampling campaigns, while high-frequency sampling would remain restricted to a few days or hours at best. We stipulate that the currently predominant sampling protocols are too coarse to capture and understand the full amplitude of rainfall-runoff processes and its relation to water quality fluctuations. Weekly sampling protocols are not suited to get insights into the hydrological system during high flow conditions. Likewise, high frequency measurements of a few isolated events do not allow grasping inter-event variability in contributions and processes. Our working hypothesis is based on the potential of a new generation of field-deployable instruments for measuring environmental tracers at high temporal frequencies over an extended period. With this new generation of instruments we expect to gain new insights into rainfall-runoff dynamics, both at intra- and inter-event scales. Here, we present the results of one year of DOC and nitrate measurements with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH). The instrument measures the absorption spectrum from 220 to 720 nm in situ and at high frequencies and derives DOC and nitrate concentrations. The measurements were carried out at 15 minutes intervals in the Weierbach catchment (0.47 km2) in Luxemburg. This fully forested catchment is characterized by cambisol soils and fractured schist as underlying bedrock. The time series of DOC and nitrate give insights into the high frequency dynamics of stream water. Peaks in DOC concentrations are closely linked to discharge peaks that occur during or right after a rainfall event. Those first discharge peaks can be linked to fast near surface runoff processes and are responsible for a remarkable amount of DOC export. A special characterisation of

  20. Characterization of Future Caribbean Rainfall and Temperature Extremes across Rainfall Zones

    Directory of Open Access Journals (Sweden)

    Natalie Melissa McLean

    2015-01-01

    Full Text Available End-of-century changes in Caribbean climate extremes are derived from the Providing Regional Climate for Impact Studies (PRECIS regional climate model (RCM under the A2 and B2 emission scenarios across five rainfall zones. Trends in rainfall, maximum temperature, and minimum temperature extremes from the RCM are validated against meteorological stations over 1979–1989. The model displays greater skill at representing trends in consecutive wet days (CWD and extreme rainfall (R95P than consecutive dry days (CDD, wet days (R10, and maximum 5-day precipitation (RX5. Trends in warm nights, cool days, and warm days were generally well reproduced. Projections for 2071–2099 relative to 1961–1989 are obtained from the ECHAM5 driven RCM. Northern and eastern zones are projected to experience more intense rainfall under A2 and B2. There is less consensus across scenarios with respect to changes in the dry and wet spell lengths. However, there is indication that a drying trend may be manifest over zone 5 (Trinidad and northern Guyana. Changes in the extreme temperature indices generally suggest a warmer Caribbean towards the end of century across both scenarios with the strongest changes over zone 4 (eastern Caribbean.

  1. Rainfall Stochastic models

    Science.gov (United States)

    Campo, M. A.; Lopez, J. J.; Rebole, J. P.

    2012-04-01

    This work was carried out in north of Spain. San Sebastian A meteorological station, where there are available precipitation records every ten minutes was selected. Precipitation data covers from October of 1927 to September of 1997. Pulse models describe the temporal process of rainfall as a succession of rainy cells, main storm, whose origins are distributed in time according to a Poisson process and a secondary process that generates a random number of cells of rain within each storm. Among different pulse models, the Bartlett-Lewis was used. On the other hand, alternative renewal processes and Markov chains describe the way in which the process will evolve in the future depending only on the current state. Therefore they are nor dependant on past events. Two basic processes are considered when describing the occurrence of rain: the alternation of wet and dry periods and temporal distribution of rainfall in each rain event, which determines the rainwater collected in each of the intervals that make up the rain. This allows the introduction of alternative renewal processes and Markov chains of three states, where interstorm time is given by either of the two dry states, short or long. Thus, the stochastic model of Markov chains tries to reproduce the basis of pulse models: the succession of storms, each one composed for a series of rain, separated by a short interval of time without theoretical complexity of these. In a first step, we analyzed all variables involved in the sequential process of the rain: rain event duration, event duration of non-rain, average rainfall intensity in rain events, and finally, temporal distribution of rainfall within the rain event. Additionally, for pulse Bartlett-Lewis model calibration, main descriptive statistics were calculated for each month, considering the process of seasonal rainfall in each month. In a second step, both models were calibrated. Finally, synthetic series were simulated with calibration parameters; series

  2. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  3. Analyses of the temporal and spatial structures of heavy rainfall from a catalog of high-resolution radar rainfall fields

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Smith, James A.; Baeck, Mary Lynn

    2014-01-01

    that relate to size, structure and evolution of heavy rainfall. Extreme rainfall is also linked with severe weather (tornados, large hail and damaging wind). The diurnal cycle of rainfall for heavy rain days is characterized by an early peak in the largest rainfall rates, an afternoon-evening peak in rain...

  4. Urban rainfall estimation employing commercial microwave links

    Science.gov (United States)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  5. Forty years experience in developing and using rainfall simulators under tropical and Mediterranean conditions

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Nacci, Silvana

    2010-05-01

    Rainfall simulation has been used as a practical tool for evaluating the interaction of falling water drops on the soil surface, to measure both stability of soil aggregates to drop impact and water infiltration rates. In both cases it is tried to simulate the effects of natural rainfall, which usually occurs at very different, variable and erratic rates and intensities. One of the main arguments against the use of rainfall simulators is the difficulty to reproduce the size, final velocity and kinetic energy of the drops in natural rainfall. Since the early 70´s we have been developing and using different kinds of rainfall simulators, both at laboratory and field levels, and under tropical and Mediterranean soil and climate conditions, in flat and sloping lands. They have been mainly used to evaluate the relative effects of different land use and management, including different cropping systems, tillage practices, surface soil conditioning, surface covers, etc. on soil water infiltration, on runoff and on erosion. Our experience is that in any case it is impossible to reproduce the variable size distribution and terminal velocity of raindrops, and the variable changes in intensity of natural storms, under a particular climate condition. In spite of this, with the use of rainfall simulators it is possible to obtain very good information, which if it is properly interpreted in relation to each particular condition (land and crop management, rainfall characteristics, measurement conditions, etc.) may be used as one of the parameters for deducing and modelling soil water balance and soil moisture regime under different land use and management and variable climate conditions. Due to the possibility for a better control of the intensity of simulated rainfall and of the size of water drops, and the possibility to make more repeated measurements under very variable soil and land conditions, both in the laboratory and specially in the field, the better results have been

  6. Influence of Superparameterization and a Higher-Order Turbulence Closure on Rainfall Bias Over Amazonia in Community Atmosphere Model Version 5: How Parameterization Changes Rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Fu, Rong [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles CA USA; Shaikh, Muhammad J. [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Ghan, Steven [Pacific Northwest National Laboratory, Richland WA USA; Wang, Minghuai [Institute for Climate and Global Change Research and School of Atmospheric Sciences, Nanjing University, Nanjing China; Collaborative Innovation Center of Climate Change, Nanjing China; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland WA USA; Dickinson, Robert E. [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Marengo, Jose [Centro Nacional de Monitoramento e Alertas aos Desastres Naturais, São Jose dos Campos Brazil

    2017-09-21

    We evaluate the Community Atmosphere Model Version 5 (CAM5) with a higher-order turbulence closure scheme, named Cloud Layers Unified By Binomials (CLUBB), and a Multiscale Modeling Framework (MMF) with two different microphysics configurations to investigate their influences on rainfall simulations over Southern Amazonia. The two different microphysics configurations in MMF are the one-moment cloud microphysics without aerosol treatment (SAM1MOM) and two-moment cloud microphysics coupled with aerosol treatment (SAM2MOM). Results show that both MMF-SAM2MOM and CLUBB effectively reduce the low biases of rainfall, mainly during the wet season. The CLUBB reduces low biases of humidity in the lower troposphere with further reduced shallow clouds. The latter enables more surface solar flux, leading to stronger convection and more rainfall. MMF, especially MMF-SAM2MOM, unstablizes the atmosphere with more moisture and higher atmospheric temperatures in the atmospheric boundary layer, allowing the growth of more extreme convection and further generating more deep convection. MMF-SAM2MOM significantly increases rainfall in the afternoon, but it does not reduce the early bias of the diurnal rainfall peak; LUBB, on the other hand, delays the afternoon peak time and produces more precipitation in the early morning, due to more realistic gradual transition between shallow and deep convection. MMF appears to be able to realistically capture the observed increase of relative humidity prior to deep convection, especially with its two-moment configuration. In contrast, in CAM5 and CAM5 with CLUBB, occurrence of deep convection in these models appears to be a result of stronger heating rather than higher relative humidity.

  7. Effects of ridge and furrow rainfall harvesting system on Elymus ...

    African Journals Online (AJOL)

    ARL

    2012-05-10

    May 10, 2012 ... A ridge-furrow rainfall harvesting system (RFRHS) was designed to increase the available soil water for .... The solar energy passed through the plastic-film and heated up the air and the surface soil of ridge and then the heat was trapped by the greenhouse effect (Zhou et al., 2009). Meanwhile, the.

  8. Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance

    Science.gov (United States)

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2016-01-01

    Hydrologic response to extreme rainfall in disturbed landscapes is poorly understood because of the paucity of measurements. A unique opportunity presented itself when extreme rainfall in September 2013 fell on a headwater catchment (i.e., soil-hydraulic properties, soil saturation from subsurface sensors, and estimated peak runoff during the extreme rainfall with numerical simulations of runoff generation and subsurface hydrologic response during this event. The simulations were used to explore differences in runoff generation between the wildfire-affected headwater catchment, a simulated unburned case, and for uniform versus spatially variable parameterizations of soil-hydraulic properties that affect infiltration and runoff generation in burned landscapes. Despite 3 years of elapsed time since the 2010 wildfire, observations and simulations pointed to substantial surface runoff generation in the wildfire-affected headwater catchment by the infiltration-excess mechanism while no surface runoff was generated in the unburned case. The surface runoff generation was the result of incomplete recovery of soil-hydraulic properties in the burned area, suggesting recovery takes longer than 3 years. Moreover, spatially variable soil-hydraulic property parameterizations produced longer duration but lower peak-flow infiltration-excess runoff, compared to uniform parameterization, which may have important hillslope sediment export and geomorphologic implications during long duration, extreme rainfall. The majority of the simulated surface runoff in the spatially variable cases came from connected near-channel contributing areas, which was a substantially smaller contributing area than the uniform simulations.

  9. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2012-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2–0.3 Bq/L and 2–7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1–0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below

  10. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2013-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2-0.3 Bq/L and 2-7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1-0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below the

  11. Influence of rainfall and catchment characteristics on urban stormwater quality.

    Science.gov (United States)

    Liu, An; Egodawatta, Prasanna; Guan, Yuntao; Goonetilleke, Ashantha

    2013-02-01

    The accuracy and reliability of urban stormwater quality modelling outcomes are important for stormwater management decision making. The commonly adopted approach where only a limited number of factors are used to predict urban stormwater quality may not adequately represent the complexity of the quality response to a rainfall event or site-to-site differences to support efficient treatment design. This paper discusses an investigation into the influence of rainfall and catchment characteristics on urban stormwater quality in order to investigate the potential areas for errors in current stormwater quality modelling practices. It was found that the influence of rainfall characteristics on pollutant wash-off is step-wise based on specific thresholds. This means that a modelling approach where the wash-off process is predicted as a continuous function of rainfall intensity and duration is not appropriate. Additionally, other than conventional catchment characteristics, namely, land use and impervious surface fraction, other catchment characteristics such as impervious area layout, urban form and site specific characteristics have an important influence on both, pollutant build-up and wash-off processes. Finally, the use of solids as a surrogate to estimate other pollutant species was found to be inappropriate. Individually considering build-up and wash-off processes for each pollutant species should be the preferred option. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The partitioning of litter carbon during litter decomposition under different rainfall patterns: a laboratory study

    Science.gov (United States)

    Yang, X.; Szlavecz, K. A.; Langley, J. A.; Pitz, S.; Chang, C. H.

    2017-12-01

    Quantifying litter C into different C fluxes during litter decomposition is necessary to understand carbon cycling under changing climatic conditions. Rainfall patterns are predicted to change in the future, and their effects on the fate of litter carbon are poorly understood. Soils from deciduous forests in Smithsonian Environmental Research Center (SERC) in Maryland, USA were collected to reconstruct soil columns in the lab. 13C labeled tulip poplar leaf litter was used to trace carbon during litter decomposition. Top 1% and the mean of 15-minute historical precipitation data from nearby weather stations were considered as extreme and control rainfall intensity, respectively. Both intensity and frequency of rainfall were manipulated, while the total amount was kept constant. A pulse of CO2 efflux was detected right after each rainfall event in the soil columns with leaf litter. After the first event, CO2 efflux of the control rainfall treatment soils increased to threefold of the CO2 efflux before rain event and that of the extreme treatment soils increased to fivefold. However, in soils without leaf litter, CO2 efflux was suppressed right after rainfall events. After each rainfall event, the leaf litter contribution to CO2 efflux first showed an increase, decreased sharply in the following two days, and then stayed relatively constant. In soil columns with leaf litter, the order of cumulative CO2 efflux was control > extreme > intermediate. The order of cumulative CO2 efflux in the bare soil treatment was extreme > intermediate > control. The order of volume of leachate from different treatments was extreme > intermediate > control. Our initial results suggest that more intense rainfall events result in larger pulses of CO2, which is rarely measured in the field. Additionally, soils with and without leaf litter respond differently to precipitation events. This is important to consider in temperate regions where leaf litter cover changes throughout the year

  13. Detecting the hydrological impacts of forest cover change in tropical mountain areas: need for detrending time series of rainfall and streamflow data.

    Science.gov (United States)

    Molina, A.; Vanacker, V.; Brisson, E.; Balthazar, V.

    2012-04-01

    Interactions between human activities and the physical environment have increasingly transformed the hydrological functioning of Andean ecosystems. In these human-modified landscapes, land use/-cover change may have a profound effect on riverine water and sediment fluxes. The hydrological impacts of land use/-cover change are diverse, as changes in vegetation affect the various components of the hydrological cycle including evapotranspiration, infiltration and surface runoff. Quantitative data for tropical mountain regions are scarce, as few long time series on rainfall, water discharge and land use are available. Furthermore, time series of rainfall and streamflow data in tropical mountains are often highly influenced by large inter- and intra-annual variability. In this paper, we analyse the hydrological response to complex forest cover change for a catchment of 280 km2 located in the Ecuadorian Andes. Forest cover change in the Pangor catchment was reconstructed based on airphotos (1963, 1977), LANDSAT TM (1991) and ETM+ data (2001, 2009). From 1963, natural vegetation was converted to agricultural land and pine plantations: forests decreased by a factor 2, and paramo decreased by 20 km2 between 1963 and 2009. For this catchment, there exists an exceptionally long record of rainfall and streamflow data that dates back from the '70s till now, but large variability in hydrometeorological data exists that is partly related to ENSO events. Given the nonstationary and nonlinear character of the ENSO-related changes in rainfall, we used the Hilbert-Huang transformation to detrend the time series of the river flow data from inter- and intra-annual fluctuations in rainfall. After applying adaptive data analysis based on empirical model decomposition techniques, it becomes apparent that the long-term trend in streamflow is different from the long-term trend in rainfall data. While the streamflow data show a long-term decrease in monthly flow, the rainfall data have a

  14. Selective nature and inherent variability of interrill erosion across prolonged rainfall simulation

    Science.gov (United States)

    Hu, Y.; Kuhn, N. J.; Fister, W.

    2012-04-01

    Sediment of interrill erosion has been generally recognized to be selectively enriched with soil organic carbon (SOC) and fine fractions (clay/silt-sized particles or aggregates) in comparison to source area soil. Limited kinetic energy and lack of concentrated runoff are the dominant factors causing selective detachment and transportation. Although enrichment ratios of SOC (ERsoc) in eroded sediment were generally reported > 1, the values varied widely. Causal factors to variation, such as initial soil properties, rainfall properties and experimental conditions, have been extensively discussed. But less attention was directed to the potential influence of prolonged rainfall time onto the temporal pattern of ERsoc. Conservation of mass dictates that ERsoc must be balanced by a decline in the source material which should also lead to a reduced or even negative ERsoc in sediment over time. Besides, the stabilizing effects of structural crust on reducing erosional variation, and the unavoidable variations of erosional response induced by the inherent complexity of interrill erosion, have scarcely been integrated. Moreover, during a prolonged rainfall event surface roughness evolves and affects the movement of eroded aggregates and mineral particles. In this study, two silt loams from Möhlin, Switzerland, organically (OS) and conventionally farmed (CS), were exposed to simulated rainfall of 30 mm h-1 for up to 6 hours. Round donut-flumes with a confined eroding area (1845 cm2) and limited transporting distance (20 cm) were used. Sediments, runoff and subsurface flow were collected in intervals of 30 min. Loose aggregates left on the eroded soil surface, crusts and the soil underneath the crusts were collected after the experiment. All the samples were analyzed for total organic carbon (TOC) content, and texture. Laser scanning of soil surface was applied before and after the rainfall event. The whole experiment was repeated for 10 times. Results from this study showed

  15. Estimating Typhoon Rainfall over Sea from SSM/I Satellite Data Using an Improved Genetic Programming

    Science.gov (United States)

    Yeh, K.; Wei, H.; Chen, L.; Liu, G.

    2010-12-01

    Estimating Typhoon Rainfall over Sea from SSM/I Satellite Data Using an Improved Genetic Programming Keh-Chia Yeha, Hsiao-Ping Weia,d, Li Chenb, and Gin-Rong Liuc a Department of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan, 300, R.O.C. b Department of Civil Engineering and Engineering Informatics, Chung Hua University, Hsinchu, Taiwan, 300, R.O.C. c Center for Space and Remote Sensing Research, National Central University, Tao-Yuan, Taiwan, 320, R.O.C. d National Science and Technology Center for Disaster Reduction, Taipei County, Taiwan, 231, R.O.C. Abstract This paper proposes an improved multi-run genetic programming (GP) and applies it to predict the rainfall using meteorological satellite data. GP is a well-known evolutionary programming and data mining method, used to automatically discover the complex relationships among nonlinear systems. The main advantage of GP is to optimize appropriate types of function and their associated coefficients simultaneously. This study makes an improvement to enhance escape ability from local optimums during the optimization procedure. The GP continuously runs several times by replacing the terminal nodes at the next run with the best solution at the current run. The current novel model improves GP, obtaining a highly nonlinear mathematical equation to estimate the rainfall. In the case study, this improved GP described above combining with SSM/I satellite data is employed to establish a suitable method for estimating rainfall at sea surface during typhoon periods. These estimated rainfalls are then verified with the data from four rainfall stations located at Peng-Jia-Yu, Don-Gji-Dao, Lan-Yu, and Green Island, which are four small islands around Taiwan. From the results, the improved GP can generate sophisticated and accurate nonlinear mathematical equation through two-run learning procedures which outperforms the traditional multiple linear regression, empirical equations and back-propagated network

  16. Statistical downscaling of CMIP5 outputs for projecting future changes in rainfall in the Onkaparinga catchment

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Md. Mamunur, E-mail: mdmamunur.rashid@mymail.unisa.edu.au [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095 (Australia); Beecham, Simon, E-mail: simon.beecham@unisa.edu.au [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095 (Australia); Chowdhury, Rezaul K., E-mail: rezaulkabir@uaeu.ac.ae [Centre for Water Management and Reuse, School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA 5095 (Australia); Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, PO Box 15551 (United Arab Emirates)

    2015-10-15

    A generalized linear model was fitted to stochastically downscaled multi-site daily rainfall projections from CMIP5 General Circulation Models (GCMs) for the Onkaparinga catchment in South Australia to assess future changes to hydrologically relevant metrics. For this purpose three GCMs, two multi-model ensembles (one by averaging the predictors of GCMs and the other by regressing the predictors of GCMs against reanalysis datasets) and two scenarios (RCP4.5 and RCP8.5) were considered. The downscaling model was able to reasonably reproduce the observed historical rainfall statistics when the model was driven by NCEP reanalysis datasets. Significant bias was observed in the rainfall when downscaled from historical outputs of GCMs. Bias was corrected using the Frequency Adapted Quantile Mapping technique. Future changes in rainfall were computed from the bias corrected downscaled rainfall forced by GCM outputs for the period 2041–2060 and these were then compared to the base period 1961–2000. The results show that annual and seasonal rainfalls are likely to significantly decrease for all models and scenarios in the future. The number of dry days and maximum consecutive dry days will increase whereas the number of wet days and maximum consecutive wet days will decrease. Future changes of daily rainfall occurrence sequences combined with a reduction in rainfall amounts will lead to a drier catchment, thereby reducing the runoff potential. Because this is a catchment that is a significant source of Adelaide's water supply, irrigation water and water for maintaining environmental flows, an effective climate change adaptation strategy is needed in order to face future potential water shortages. - Highlights: • A generalized linear model was used for multi-site daily rainfall downscaling. • Rainfall was downscaled from CMIP5 GCM outputs. • Two multi-model ensemble approaches were used. • Bias was corrected using the Frequency Adapted Quantile Mapping

  17. The Unsaturated Hydromechanical Coupling Model of Rock Slope Considering Rainfall Infiltration Using DDA

    Directory of Open Access Journals (Sweden)

    Xianshan Liu

    2017-01-01

    Full Text Available Water flow and hydromechanical coupling process in fractured rocks is more different from that in general porous media because of heterogeneous spatial fractures and possible fracture-dominated flow; a saturated-unsaturated hydromechanical coupling model using a discontinuous deformation analysis (DDA similar to FEM and DEM was employed to analyze water movement in saturated-unsaturated deformed rocks, in which the Van-Genuchten model differently treated the rock and fractures permeable properties to describe the constitutive relationships. The calibrating results for the dam foundation indicated the validation and feasibility of the proposed model and are also in good agreement with the calculations based on DEM still demonstrating its superiority. And then, the rainfall infiltration in a reservoir rock slope was detailedly investigated to describe the water pressure on the fault surface and inside the rocks, displacement, and stress distribution under hydromechanical coupling conditions and uncoupling conditions. It was observed that greater rainfall intensity and longer rainfall time resulted in lower stability of the rock slope, and larger difference was very obvious between the hydromechanical coupling condition and uncoupling condition, demonstrating that rainfall intensity, rainfall time, and hydromechanical coupling effect had great influence on the saturated-unsaturated water flow behavior and mechanical response of the fractured rock slopes.

  18. Variability of rainfall over small areas

    Science.gov (United States)

    Runnels, R. C.

    1983-01-01

    A preliminary investigation was made to determine estimates of the number of raingauges needed in order to measure the variability of rainfall in time and space over small areas (approximately 40 sq miles). The literature on rainfall variability was examined and the types of empirical relationships used to relate rainfall variations to meteorological and catchment-area characteristics were considered. Relations between the coefficient of variation and areal-mean rainfall and area have been used by several investigators. These parameters seemed reasonable ones to use in any future study of rainfall variations. From a knowledge of an appropriate coefficient of variation (determined by the above-mentioned relations) the number rain gauges needed for the precise determination of areal-mean rainfall may be calculated by statistical estimation theory. The number gauges needed to measure the coefficient of variation over a 40 sq miles area, with varying degrees of error, was found to range from 264 (10% error, mean precipitation = 0.1 in) to about 2 (100% error, mean precipitation = 0.1 in).

  19. Madagascar corals reveal a multidecadal signature of rainfall and river runoff since 1708

    Directory of Open Access Journals (Sweden)

    C. A. Grove

    2013-03-01

    Full Text Available Pacific Ocean sea surface temperatures (SST influence rainfall variability on multidecadal and interdecadal timescales in concert with the Pacific Decadal Oscillation (PDO and Interdecadal Pacific Oscillation (IPO. Rainfall variations in locations such as Australia and North America are therefore linked to phase changes in the PDO. Furthermore, studies have suggested teleconnections exist between the western Indian Ocean and Pacific Decadal Variability (PDV, similar to those observed on interannual timescales related to the El Niño Southern Oscillation (ENSO. However, as instrumental records of rainfall are too short and sparse to confidently assess multidecadal climatic teleconnections, here we present four coral climate archives from Madagascar spanning up to the past 300 yr (1708–2008 to assess such decadal variability. Using spectral luminescence scanning to reconstruct past changes in river runoff, we identify significant multidecadal and interdecadal frequencies in the coral records, which before 1900 are coherent with Asian-based PDO reconstructions. This multidecadal relationship with the Asian-based PDO reconstructions points to an unidentified teleconnection mechanism that affects Madagascar rainfall/runoff, most likely triggered by multidecadal changes in North Pacific SST, influencing the Asian Monsoon circulation. In the 20th century we decouple human deforestation effects from rainfall-induced soil erosion by pairing luminescence with coral geochemistry. Positive PDO phases are associated with increased Indian Ocean temperatures and runoff/rainfall in eastern Madagascar, while precipitation in southern Africa and eastern Australia declines. Consequently, the negative PDO phase that started in 1998 may contribute to reduced rainfall over eastern Madagascar and increased precipitation in southern Africa and eastern Australia. We conclude that multidecadal rainfall variability in Madagascar and the western Indian Ocean needs to be

  20. Effect of monthly areal rainfall uncertainty on streamflow simulation

    Science.gov (United States)

    Ndiritu, J. G.; Mkhize, N.

    2017-08-01

    Areal rainfall is mostly obtained from point rainfall measurements that are sparsely located and several studies have shown that this results in large areal rainfall uncertainties at the daily time step. However, water resources assessment is often carried out a monthly time step and streamflow simulation is usually an essential component of this assessment. This study set out to quantify monthly areal rainfall uncertainties and assess their effect on streamflow simulation. This was achieved by; i) quantifying areal rainfall uncertainties and using these to generate stochastic monthly areal rainfalls, and ii) finding out how the quality of monthly streamflow simulation and streamflow variability change if stochastic areal rainfalls are used instead of historic areal rainfalls. Tests on monthly rainfall uncertainty were carried out using data from two South African catchments while streamflow simulation was confined to one of them. A non-parametric model that had been applied at a daily time step was used for stochastic areal rainfall generation and the Pitman catchment model calibrated using the SCE-UA optimizer was used for streamflow simulation. 100 randomly-initialised calibration-validation runs using 100 stochastic areal rainfalls were compared with 100 runs obtained using the single historic areal rainfall series. By using 4 rain gauges alternately to obtain areal rainfall, the resulting differences in areal rainfall averaged to 20% of the mean monthly areal rainfall and rainfall uncertainty was therefore highly significant. Pitman model simulations obtained coefficient of efficiencies averaging 0.66 and 0.64 in calibration and validation using historic rainfalls while the respective values using stochastic areal rainfalls were 0.59 and 0.57. Average bias was less than 5% in all cases. The streamflow ranges using historic rainfalls averaged to 29% of the mean naturalised flow in calibration and validation and the respective average ranges using stochastic

  1. Probabilistic clustering of rainfall condition for landslide triggering

    Science.gov (United States)

    Rossi, Mauro; Luciani, Silvia; Cesare Mondini, Alessandro; Kirschbaum, Dalia; Valigi, Daniela; Guzzetti, Fausto

    2013-04-01

    Landslides are widespread natural and man made phenomena. They are triggered by earthquakes, rapid snow melting, human activities, but mostly by typhoons and intense or prolonged rainfall precipitations. In Italy mostly they are triggered by intense precipitation. The prediction of landslide triggered by rainfall precipitations over large areas is commonly based on the exploitation of empirical models. Empirical landslide rainfall thresholds are used to identify rainfall conditions for the possible landslide initiation. It's common practice to define rainfall thresholds by assuming a power law lower boundary in the rainfall intensity-duration or cumulative rainfall-duration space above which landslide can occur. The boundary is defined considering rainfall conditions associated to landslide phenomena using heuristic approaches, and doesn't consider rainfall events not causing landslides. Here we present a new fully automatic method to identify the probability of landslide occurrence associated to rainfall conditions characterized by measures of intensity or cumulative rainfall and rainfall duration. The method splits the rainfall events of the past in two groups: a group of events causing landslides and its complementary, then estimate their probabilistic distributions. Next, the probabilistic membership of the new event to one of the two clusters is estimated. The method doesn't assume a priori any threshold model, but simple exploits the real empirical distribution of rainfall events. The approach was applied in the Umbria region, Central Italy, where a catalogue of landslide timing, were obtained through the search of chronicles, blogs and other source of information in the period 2002-2012. The approach was tested using rain gauge measures and satellite rainfall estimates (NASA TRMM-v6), allowing in both cases the identification of the rainfall condition triggering landslides in the region. Compared to the other existing threshold definition methods, the prosed

  2. Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird.

    Science.gov (United States)

    Öberg, Meit; Arlt, Debora; Pärt, Tomas; Laugen, Ane T; Eggers, Sönke; Low, Matthew

    2015-01-01

    Adverse weather conditions during parental care may have direct consequences for offspring production, but longer-term effects on juvenile and parental survival are less well known. We used long-term data on reproductive output, recruitment, and parental survival in northern wheatears (Oenanthe oenanthe) to investigate the effects of rainfall during parental care on fledging success, recruitment success (juvenile survival), and parental survival, and how these effects related to nestling age, breeding time, habitat quality, and parental nest visitation rates. While accounting for effects of temperature, fledging success was negatively related to rainfall (days > 10 mm) in the second half of the nestling period, with the magnitude of this effect being greater for breeding attempts early in the season. Recruitment success was, however, more sensitive to the number of rain days in the first half of the nestling period. Rainfall effects on parental survival differed between the sexes; males were more sensitive to rain during the nestling period than females. We demonstrate a probable mechanism driving the rainfall effects on reproductive output: Parental nest visitation rates decline with increasing amounts of daily rainfall, with this effect becoming stronger after consecutive rain days. Our study shows that rain during the nestling stage not only relates to fledging success but also has longer-term effects on recruitment and subsequent parental survival. Thus, if we want to understand or predict population responses to future climate change, we need to consider the potential impacts of changing rainfall patterns in addition to temperature, and how these will affect target species' vital rates.

  3. Modeling rainfall infiltration on hillslopes using Flux-concentration relation and time compression approximation

    Science.gov (United States)

    Wang, Jie; Chen, Li; Yu, Zhongbo

    2018-02-01

    Rainfall infiltration on hillslopes is an important issue in hydrology, which is related to many environmental problems, such as flood, soil erosion, and nutrient and contaminant transport. This study aimed to improve the quantification of infiltration on hillslopes under both steady and unsteady rainfalls. Starting from Darcy's law, an analytical integral infiltrability equation was derived for hillslope infiltration by use of the flux-concentration relation. Based on this equation, a simple scaling relation linking the infiltration times on hillslopes and horizontal planes was obtained which is applicable for both small and large times and can be used to simplify the solution procedure of hillslope infiltration. The infiltrability equation also improved the estimation of ponding time for infiltration under rainfall conditions. For infiltration after ponding, the time compression approximation (TCA) was applied together with the infiltrability equation. To improve the computational efficiency, the analytical integral infiltrability equation was approximated with a two-term power-like function by nonlinear regression. Procedures of applying this approach to both steady and unsteady rainfall conditions were proposed. To evaluate the performance of the new approach, it was compared with the Green-Ampt model for sloping surfaces by Chen and Young (2006) and Richards' equation. The proposed model outperformed the sloping Green-Ampt, and both ponding time and infiltration predictions agreed well with the solutions of Richards' equation for various soil textures, slope angles, initial water contents, and rainfall intensities for both steady and unsteady rainfalls.

  4. Association of Taiwan’s Rainfall Patterns with Large-Scale Oceanic and Atmospheric Phenomena

    Directory of Open Access Journals (Sweden)

    Yi-Chun Kuo

    2016-01-01

    Full Text Available A 50-year (1960–2009 monthly rainfall gridded dataset produced by the Taiwan Climate Change Projection and Information Platform Project was presented in this study. The gridded data (5 × 5 km displayed influence of topography on spatial variability of rainfall, and the results of the empirical orthogonal functions (EOFs analysis revealed the patterns associated with the large-scale sea surface temperature variability over Pacific. The first mode (65% revealed the annual peaks of large rainfall in the southwestern mountainous area, which is associated with southwest monsoons and typhoons during summertime. The second temporal EOF mode (16% revealed the rainfall variance associated with the monsoon and its interaction with the slopes of the mountain range. This pattern is the major contributor to spatial variance of rainfall in Taiwan, as indicated by the first mode (40% of spatial variance EOF analysis. The second temporal EOF mode correlated with the El Niño Southern Oscillation (ENSO. In particular, during the autumn of the La Niña years following the strong El Niño years, the time-varying amplitude was substantially greater than that of normal years. The third temporal EOF mode (7% revealed a north-south out-of-phase rainfall pattern, the slowly evolving variations of which were in phase with the Pacific Decadal Oscillation. Because of Taiwan’s geographic location and the effect of local terrestrial structures, climate variability related to ENSO differed markedly from other regions in East Asia.

  5. Characteristic and Behavior of Rainfall Induced Landslides in Java Island, Indonesia : an Overview

    Science.gov (United States)

    Christanto, N.; Hadmoko, D. S.; Westen, C. J.; Lavigne, F.; Sartohadi, J.; Setiawan, M. A.

    2009-04-01

    Landslides are important natural hazards occurring on mountainous area situated in the wet tropical climate like in Java, Indonesia. As a central of economic and government activity, Java become the most populated island in Indonesia and is increasing every year. This condition create population more vulnerable to hazard. Java is populated by 120 million inhabitants or equivalent with 60% of Indonesian population in only 6,9% of the total surface of Indonesia. Due to its geological setting, its topographical characteristics, and its climatic characteristics, Java is the most exposed regions to landslide hazard and closely related to several factors: (1) located on a subduction zone, 60% of Java is mountainous, with volcano-tectonic mountain chains and 36 active volcanoes out of the 129 in Indonesia, and these volcanic materials are intensively weathered (2) Java is under a humid tropical climate associated with heavy rainfall during the rainy season from October to April. On top of these "natural" conditions, the human activity is an additional factor of landslide occurrence, driven by a high demographic density The purpose of this paper was to collect and analyze spatial and temporal data concerning landslide hazard for the period 1981-2007 and to evaluate and analyze the characteristic and the behavior of landslide in Java. The results provides a new insight into our understanding of landslide hazard and characteristic in the humid tropics, and a basis for predicting future landslides and assessing related hazards at a regional scale. An overview of characteristic and behavior of landslides in Java is given. The result of this work would be valuable for decision makers and communities in the frame of future landslide risk reduction programs. Landslide inventory data was collected from internal database at the different institutions. The result is then georefenced. The temporal changes of landslide activities was done by examining the changes in number and

  6. Evaluation of rainfall structure on hydrograph simulation: Comparison of radar and interpolated methods, a study case in a tropical catchment

    Science.gov (United States)

    Velasquez, N.; Ochoa, A.; Castillo, S.; Hoyos Ortiz, C. D.

    2017-12-01

    The skill of river discharge simulation using hydrological models strongly depends on the quality and spatio-temporal representativeness of precipitation during storm events. All precipitation measurement strategies have their own strengths and weaknesses that translate into discharge simulation uncertainties. Distributed hydrological models are based on evolving rainfall fields in the same time scale as the hydrological simulation. In general, rainfall measurements from a dense and well maintained rain gauge network provide a very good estimation of the total volume for each rainfall event, however, the spatial structure relies on interpolation strategies introducing considerable uncertainty in the simulation process. On the other hand, rainfall retrievals from radar reflectivity achieve a better spatial structure representation but with higher uncertainty in the surface precipitation intensity and volume depending on the vertical rainfall characteristics and radar scan strategy. To assess the impact of both rainfall measurement methodologies on hydrological simulations, and in particular the effects of the rainfall spatio-temporal variability, a numerical modeling experiment is proposed including the use of a novel QPE (Quantitative Precipitation Estimation) method based on disdrometer data in order to estimate surface rainfall from radar reflectivity. The experiment is based on the simulation of 84 storms, the hydrological simulations are carried out using radar QPE and two different interpolation methods (IDW and TIN), and the assessment of simulated peak flow. Results show significant rainfall differences between radar QPE and the interpolated fields, evidencing a poor representation of storms in the interpolated fields, which tend to miss the precise location of the intense precipitation cores, and to artificially generate rainfall in some areas of the catchment. Regarding streamflow modelling, the potential improvement achieved by using radar QPE depends on

  7. Analytical solutions to sampling effects in drop size distribution measurements during stationary rainfall: Estimation of bulk rainfall variables

    NARCIS (Netherlands)

    Uijlenhoet, R.; Porrà, J.M.; Sempere Torres, D.; Creutin, J.D.

    2006-01-01

    A stochastic model of the microstructure of rainfall is used to derive explicit expressions for the magnitude of the sampling fluctuations in rainfall properties estimated from raindrop size measurements in stationary rainfall. The model is a marked point process, in which the points represent the

  8. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    user1

    extreme frequency); the average intensity of rainfall from extreme events ... frequency and extreme intensity indices, suggesting that extreme events are more frequent and intense during years with high rainfall. The proportion of total rainfall from ...

  9. Changes in the interannual SST-forced signals on West African rainfall. AGCM intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Mohino, Elsa [LOCEAN/IPSL, Universite Pierre et Marie Curie, Paris Cedex 05 (France); Universidad de Sevilla, Sevilla (Spain); Rodriguez-Fonseca, Belen [Universidad Complutense de Madrid, Dpto. Geofisica y Meteorologia, Madrid (Spain); Instituto de Geociencias (CSIC-UCM), Madrid (Spain); Losada, Teresa [Universidad Complutense de Madrid, Dpto. Geofisica y Meteorologia, Madrid (Spain); Gervois, Sebastien [LOCEAN/IPSL, Universite Pierre et Marie Curie, Paris Cedex 05 (France); Janicot, Serge [LOCEAN/IPSL, IRD, Universite Pierre et Marie Curie, Paris (France); Bader, Juergen [Bjerknes Centre for Climate Research, Bergen (Norway); Ruti, Paolo [Progetto Speciale Clima Globale, Ente Nazionale per le Nuove Tecnologie, l' Energia e l' Ambiente, Rome (Italy); Chauvin, Fabrice [GAME/CNRM, Meteo-France/CNRS, Toulouse (France)

    2011-11-15

    Rainfall over West Africa shows strong interannual variability related to changes in Sea Surface Temperature (SST). Nevertheless, this relationship seem to be non-stationary. A particular turning point is the decade of the 1970s, which witnessed a number of changes in the climatic system, including the climate shift of the late 1970s. The first aim of this study is to explore the change in the interannual variability of West African rainfall after this shift. The analysis indicates that the dipolar features of the rainfall variability over this region, related to changes in the Atlantic SST, disappear after this period. Also, the Pacific SST variability has a higher correlation with Guinean rainfall in the recent period. The results suggest that the current relationship between the Atlantic and Pacific El Nino phenomena is the principal responsible for these changes. A fundamental goal of climate research is the development of models simulating a realistic current climate. For this reason, the second aim of this work is to test the performance of Atmospheric General Circulation models in simulating rainfall variability over West Africa. The models have been run with observed SSTs for the common period 1957-1998 as part of an intercomparison exercise. The results show that the models are able to reproduce Guinean interannual variability, which is strongly related to SST variability in the Equatorial Atlantic. Nevertheless, problems in the simulation of the Sahelian interannual variability appear: not all models are able to reproduce the observed negative link between rainfall over the Sahel and El Nino-like anomalies in the Pacific, neither the positive correlation between Mediterranean SSTs and Sahelian rainfall. (orig.)

  10. Impacts of Rainfall Variability and Expected Rainfall Changes on Cost-Effective Adaptation of Water Systems to Climate Change

    NARCIS (Netherlands)

    Pol, van der T.D.; Ierland, van E.C.; Gabbert, S.G.M.; Weikard, H.P.; Hendrix, E.M.T.

    2015-01-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change

  11. Extreme value analysis of rainfall data for Kalpakkam

    International Nuclear Information System (INIS)

    Sharma, Pramod Kumar; John Arul, A.; Ramkrishnan, M.; Bhuvana, V.

    2016-01-01

    Flood hazard evaluation is an important safety study for a Nuclear Power Plant. In the present study flood hazard at PFBR site due to rainfall is evaluated. Hazard estimation is a statistical procedure by which rainfall intensity versus occurrence frequency is estimated from historical records of rainfall data and extrapolated with asymptotic extreme value distribution. Rainfall data needed for flood hazard assessment is daily annual maximum rainfall (24 hrs data). The observed data points have been fitted using Gumbel, power law, and exponential distribution and return period has been estimated. The predicted 100 yrs return period rainfall for Kalpakkam ranges from 240 mm to 365 mm in a day and 1000 yrs return period rainfall ranges from 320 mm to 790 min in a day. To study the stationarity of rainfall data a moving window estimate of the parameters (exponential distribution) have also been performed. (author)

  12. Soil aggregate stability and rainfall-induced sediment transport on field plots as affected by amendment with organic matter inputs

    Science.gov (United States)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-04-01

    Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport

  13. Infiltration and Runoff Measurements on Steep Burned Hillslopes Using a Rainfall Simulator with Variable Rain Intensities

    Science.gov (United States)

    Kinner, David A.; Moody, John A.

    2008-01-01

    Multiple rainfall intensities were used in rainfall-simulation experiments designed to investigate the infiltration and runoff from 1-square-meter plots on burned hillslopes covered by an ash layer of varying thickness. The 1-square-meter plots were on north- and south-facing hillslopes in an area burned by the Overland fire northwest of Boulder near Jamestown on the Front Range of Colorado. A single-nozzle, wide-angle, multi-intensity rain simulator was developed to investigate the infiltration and runoff on steep (30- to 40-percent gradient) burned hillslopes covered with ash. The simulated rainfall was evaluated for spatial variability, drop size, and kinetic energy. Fourteen rainfall simulations, at three intensities (about 20 millimeters per hour [mm/h], 35 mm/h, and 50 mm/h), were conducted on four plots. Measurements during and after the simulations included runoff, rainfall, suspended-sediment concentrations, surface ash layer thickness, soil moisture, soil grain size, soil lost on ignition, and plot topography. Runoff discharge reached a steady state within 7 to 26 minutes. Steady infiltration rates with the 50-mm/h application rainfall intensity approached 20?35 mm/h. If these rates are projected to rainfall application intensities used in many studies of burned area runoff production (about 80 mm/h), the steady discharge rates are on the lower end of measurements from other studies. Experiments using multiple rainfall intensities (three) suggest that runoff begins at rainfall intensities around 20 mm/h at the 1-square-meter scale, an observation consistent with a 10-mm/h rainfall intensity threshold needed for runoff initiation that has been reported in the literature.

  14. Potential Predictability and Prediction Skill for Southern Peru Summertime Rainfall

    Science.gov (United States)

    WU, S.; Notaro, M.; Vavrus, S. J.; Mortensen, E.; Block, P. J.; Montgomery, R. J.; De Pierola, J. N.; Sanchez, C.

    2016-12-01

    The central Andes receive over 50% of annual climatological rainfall during the short period of January-March. This summertime rainfall exhibits strong interannual and decadal variability, including severe drought events that incur devastating societal impacts and cause agricultural communities and mining facilities to compete for limited water resources. An improved seasonal prediction skill of summertime rainfall would aid in water resource planning and allocation across the water-limited southern Peru. While various underlying mechanisms have been proposed by past studies for the drivers of interannual variability in summertime rainfall across southern Peru, such as the El Niño-Southern Oscillation (ENSO), Madden Julian Oscillation (MJO), and extratropical forcings, operational forecasts continue to be largely based on rudimentary ENSO-based indices, such as NINO3.4, justifying further exploration of predictive skill. In order to bridge this gap between the understanding of driving mechanisms and the operational forecast, we performed systematic studies on the predictability and prediction skill of southern Peru summertime rainfall by constructing statistical forecast models using best available weather station and reanalysis datasets. At first, by assuming the first two empirical orthogonal functions (EOFs) of summertime rainfall are predictable, the potential predictability skill was evaluated for southern Peru. Then, we constructed a simple regression model, based on the time series of tropical Pacific sea-surface temperatures (SSTs), and a more advanced Linear Inverse Model (LIM), based on the EOFs of tropical ocean SSTs and large-scale atmosphere variables from reanalysis. Our results show that the LIM model consistently outperforms the more rudimentary regression models on the forecast skill of domain averaged precipitation index and individual station indices. The improvement of forecast correlation skill ranges from 10% to over 200% for different

  15. Satellite-based estimation of rainfall erosivity for Africa

    NARCIS (Netherlands)

    Vrieling, A.; Sterk, G.; Jong, S.M. de

    2010-01-01

    Rainfall erosivity is a measure for the erosive force of rainfall. Rainfall kinetic energy determines the erosivity and is in turn greatly dependent on rainfall intensity. Attempts for its large-scale mapping are rare. Most are based on interpolation of erosivity values derived from rain gauge

  16. Temporal and spatial variability of rainfall distribution and ...

    African Journals Online (AJOL)

    Rainfall and evapotranspiration are the two major climatic factors affecting agricultural production. This study examined the extent and nature of rainfall variability from measured data while estimation of evapotranspiration was made from recorded weather data. Analysis of rainfall variability is made by the rainfall anomaly ...

  17. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    Science.gov (United States)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread

  18. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials

    Science.gov (United States)

    Meng, Xianqiang; Liu, Lianwen; Wang, Xingchen T.; Balsam, William; Chen, Jun; Ji, Junfeng

    2018-03-01

    The East Asian summer monsoon (EASM) is an important component of the global climate system. A better understanding of EASM rainfall variability in the past can help constrain climate models and better predict the response of EASM to ongoing global warming. The warm early Pleistocene, a potential analog of future climate, is an important period to study EASM dynamics. However, existing monsoon proxies for reconstruction of EASM rainfall during the early Pleistocene fail to disentangle monsoon rainfall changes from temperature variations, complicating the comparison of these monsoon records with climate models. Here, we present three 2.6 million-year-long EASM rainfall records from the Chinese Loess Plateau (CLP) based on carbonate dissolution, a novel proxy for rainfall intensity. These records show that the interglacial rainfall on the CLP was lower during the early Pleistocene and then gradually increased with global cooling during the middle and late Pleistocene. These results are contrary to previous suggestions that a warmer climate leads to higher monsoon rainfall on tectonic timescales. We propose that the lower interglacial EASM rainfall during the early Pleistocene was caused by reduced sea surface temperature gradients across the equatorial Pacific, providing a testable hypothesis for climate models.

  19. How East Asian westerly jet's meridional position affects the summer rainfall in Yangtze-Huaihe River Valley?

    Science.gov (United States)

    Wang, Shixin; Zuo, Hongchao; Zhao, Shuman; Zhang, Jiankai; Lu, Sha

    2017-03-01

    Existing studies show that the change in the meridional position of East Asian westerly jet (EAWJ) is associated with rainfall anomalies in Yangtze-Huaihe River Valley (YHRV) in summer. However, the dynamic mechanism has not been resolved yet. The present study reveals underlying mechanisms for this impact for early summer and midsummer, separately. Mechanism1: associated with EAWJ's anomalously southward displacement, the 500-hPa westerly wind over YHRV is strengthened through midtropospheric horizontal circulation anomalies; the westerly anomalies are related to the formation of warm advection anomalies over YHRV, which cause increased rainfall through adiabatic ascent motion and convective activities; the major difference in these processes between early summer and midsummer is the midtropospheric circulation anomaly pattern. Mechanism 2: associated with EAWJ's anomalously southward displacement, the large day-to-day variability of midtropospheric temperature advection in midlatitudes is displaced southward by the jet's trapping transient eddies; this change enhances the day-to-day variability of temperature advection over YHRV, which in turn causes the increased rainfall in most part of YHRV through "lower-bound effect" (rainfall amount can not become negative); there is not much difference in these processes between early summer and midsummer.

  20. Assessment of Rainfall-induced Landslide Potential and Spatial Distribution

    Science.gov (United States)

    Chen, Yie-Ruey; Tsai, Kuang-Jung; Chen, Jing-Wen; Chiang, Jie-Lun; Hsieh, Shun-Chieh; Chue, Yung-Sheng

    2016-04-01

    Recently, due to the global climate change, most of the time the rainfall in Taiwan is of short duration but with high intensity. Due to Taiwan's steep terrain, rainfall-induced landslides often occur and lead to human causalities and properties loss. Taiwan's government has invested huge reconstruction funds to the affected areas. However, after rehabilitation they still face the risk of secondary sediment disasters. Therefore, this study assesses rainfall-induced (secondary) landslide potential and spatial distribution in watershed of Southern Taiwan under extreme climate change. The study areas in this research are Baolai and Jianshan villages in the watershed of the Laonongxi River Basin in the Southern Taiwan. This study focused on the 3 years after Typhoon Morakot (2009 to 2011). During this period, the study area experienced six heavy rainfall events including five typhoons and one heavy rainfall. The genetic adaptive neural network, texture analysis and GIS were implemented in the analysis techniques for the interpretation of satellite images and to obtain surface information and hazard log data and to analyze land use change. A multivariate hazards evaluation method was applied to quantitatively analyze the weights of various natural environmental and slope development hazard factors. Furthermore, this study established a slope landslide potential assessment model and depicted a slope landslide potential diagram by using the GIS platform. The interaction between (secondary) landslide mechanism, scale, and location was analyzed using association analysis of landslide historical data and regional environmental characteristics. The results of image classification before and after six heavy rainfall events show that the values of coefficient of agreement are at medium-high level. By multivariate hazards evaluation method, geology and the effective accumulative rainfall (EAR) are the most important factors. Slope, distance from fault, aspect, land disturbance

  1. Comparative influence of land and sea surfaces on the Sahelian drought: a numerical study

    Directory of Open Access Journals (Sweden)

    Arona Diedhiou

    Full Text Available The aim of this work is to compare the relative impact of land and sea surface anomalies on Sahel rainfall and to describe the associated anomalies in the atmospheric general circulation. This sensitivity study was done with the Météo-France climate model: ARPEGE. The sensitivity to land surface conditions consists of changes in the management of water and heat exchanges by vegetation cover and bare soil. The sensitivity to ocean surfaces consists in forcing the lower boundary of the model with worldwide composite sea surface temperature (SST anomalies obtained from the difference between 4 dry Sahel years and 4 wet Sahel years observed since 1970. For each case, the spatiotemporal variability of the simulated rainfall anomaly and changes in the modelled tropical easterly jet (TEJ and African easterly jet (AEJ are discussed. The global changes in land surface evaporation have caused a rainfall deficit over the Sahel and over the Guinea Coast. No significant changes in the simulated TEJ and an enhancement of the AEJ are found; at the surface, the energy budget and the hydrological cycle are substantially modified. On the other hand, SST anomalies induce a negative rainfall anomaly over the Sahel and a positive rainfall anomaly to the south of this area. The rainfall deficit due to those anomalies is consistent with previous diagnostic and sensitivity studies. The TEJ is weaker and the AEJ is stronger than in the reference. The composite impact of SST and land surfaces anomalies is also analyzed: the simulated rainfall anomaly is similar to the observed mean African drought patterns. This work suggests that large-scale variations of surface conditions may have a substantial influence on Sahel rainfall and shows the importance of land surface parameterization in climate change modelling. In addition, it points out the interest in accurately considering the land and sea surfaces conditions in sensitivity studies on Sahel rainfall.

  2. Comparative influence of land and sea surfaces on the Sahelian drought: a numerical study

    Directory of Open Access Journals (Sweden)

    A. Diedhiou

    1996-01-01

    Full Text Available The aim of this work is to compare the relative impact of land and sea surface anomalies on Sahel rainfall and to describe the associated anomalies in the atmospheric general circulation. This sensitivity study was done with the Météo-France climate model: ARPEGE. The sensitivity to land surface conditions consists of changes in the management of water and heat exchanges by vegetation cover and bare soil. The sensitivity to ocean surfaces consists in forcing the lower boundary of the model with worldwide composite sea surface temperature (SST anomalies obtained from the difference between 4 dry Sahel years and 4 wet Sahel years observed since 1970. For each case, the spatiotemporal variability of the simulated rainfall anomaly and changes in the modelled tropical easterly jet (TEJ and African easterly jet (AEJ are discussed. The global changes in land surface evaporation have caused a rainfall deficit over the Sahel and over the Guinea Coast. No significant changes in the simulated TEJ and an enhancement of the AEJ are found; at the surface, the energy budget and the hydrological cycle are substantially modified. On the other hand, SST anomalies induce a negative rainfall anomaly over the Sahel and a positive rainfall anomaly to the south of this area. The rainfall deficit due to those anomalies is consistent with previous diagnostic and sensitivity studies. The TEJ is weaker and the AEJ is stronger than in the reference. The composite impact of SST and land surfaces anomalies is also analyzed: the simulated rainfall anomaly is similar to the observed mean African drought patterns. This work suggests that large-scale variations of surface conditions may have a substantial influence on Sahel rainfall and shows the importance of land surface parameterization in climate change modelling. In addition, it points out the interest in accurately considering the land and sea surfaces conditions in sensitivity studies on Sahel rainfall.

  3. Mixing the Green-Ampt model and Curve Number method as an empirical tool for rainfall excess estimation in small ungauged catchments.

    Science.gov (United States)

    Grimaldi, S.; Petroselli, A.; Romano, N.

    2012-04-01

    The Soil Conservation Service - Curve Number (SCS-CN) method is a popular rainfall-runoff model that is widely used to estimate direct runoff from small and ungauged basins. The SCS-CN is a simple and valuable approach to estimate the total stream-flow volume generated by a storm rainfall, but it was developed to be used with daily rainfall data. To overcome this drawback, we propose to include the Green-Ampt (GA) infiltration model into a mixed procedure, which is referred to as CN4GA (Curve Number for Green-Ampt), aiming to distribute in time the information provided by the SCS-CN method so as to provide estimation of sub-daily incremental rainfall excess. For a given storm, the computed SCS-CN total net rainfall amount is used to calibrate the soil hydraulic conductivity parameter of the Green-Ampt model. The proposed procedure was evaluated by analyzing 100 rainfall-runoff events observed in four small catchments of varying size. CN4GA appears an encouraging tool for predicting the net rainfall peak and duration values and has shown, at least for the test cases considered in this study, a better agreement with observed hydrographs than that of the classic SCS-CN method.

  4. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis.

    Science.gov (United States)

    Brienen, Roel J W; Zuidema, Pieter A

    2005-11-01

    Many tropical regions show one distinct dry season. Often, this seasonality induces cambial dormancy of trees, particularly if these belong to deciduous species. This will often lead to the formation of annual rings. The aim of this study was to determine whether tree species in the Bolivian Amazon region form annual rings and to study the influence of the total amount and seasonal distribution of rainfall on diameter growth. Ring widths were measured on stem discs of a total of 154 trees belonging to six rain forest species. By correlating ring width and monthly rainfall data we proved the annual character of the tree rings for four of our study species. For two other species the annual character was proved by counting rings on trees of known age and by radiocarbon dating. The results of the climate-growth analysis show a positive relationship between tree growth and rainfall in certain periods of the year, indicating that rainfall plays a major role in tree growth. Three species showed a strong relationship with rainfall at the beginning of the rainy season, while one species is most sensitive to the rainfall at the end of the previous growing season. These results clearly demonstrate that tree ring analysis can be successfully applied in the tropics and that it is a promising method for various research disciplines.

  5. A modular class of multisite monthly rainfall generators for water resource management and impact studies

    Science.gov (United States)

    Serinaldi, Francesco; Kilsby, Chris G.

    2012-09-01

    SummaryThis study introduces a class of stochastic multisite monthly rainfall generators devised for application in water resources management problems, such as the sensitivity analysis of droughts and extreme rainfall scenarios under external climatic and non-climatic forcing mechanisms. The modelling framework relies on three elements: (1) a classical deseasonalisation scheme based on log-transformed observations, (2) the nonparametric bootstrap resampling approach and (3) parametric Generalized Additive Models for Location, Scale and Shape (GAMLSS). As the bootstrap and GAMLSS modules are alternative techniques for simulating each month, the free choice between them makes the structure of the model modular and flexible, so that it can be easily adapted to different climatic conditions, and can be customized based on the specific water resource problem. The model was set up and calibrated to simulate monthly rainfall from six locations in England and Wales to produce a suitable input for drought analysis. The results of the case study point out that the model can capture several characteristics of the rainfall series. In particular, it enables the simulation of low and high rainfall scenarios more extreme than those observed as well as the reproduction of the distribution of the annual accumulated rainfall, and of the relationship between the rainfall and circulation indices such as North Atlantic Oscillation (NAO) and Sea Surface Temperature (SST), thus making the framework well-suited for sensitivity analysis under alternative climate scenarios and additional forcing variables.

  6. Evolution of rainfall in the Sahel

    International Nuclear Information System (INIS)

    Diallo, M.A.

    1995-09-01

    In this note, a number of main meteorological stations has been chosen to analyse the rainfall during the last 30 years in the Sahel (1961 to 1990). Reliable climatological data have been used for this study. The concerned area is limited by the 200 mm isohyet in the north and 600 mm isohyet in the south in the Sahel countries (Senegal, Mauritania, Mali, Burkina Faso, Niger and Chad). The evolution of rainfall has pointed out some similar and significant aspects for all stations studied. Established criteria have been used to characterize the annual rainfall and to determine the years with good rainfall and years of drought in the Sahel. (author). 6 refs, 3 figs

  7. Convective and nonconvective rainfall partitioning over a mixed Sudanian Savanna Agriculture Catchment: Use of a distributed sensor network

    Science.gov (United States)

    Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Repetti, A.; Yacouba, H.; Tyler, S. W.; Parlange, M. B.

    2011-12-01

    A hydro-meteorological field campaign (joint EPFL-2iE) in a mixed agricultural and forest region in the southern Burkina Faso Savanna aims to identify and understand convective rainfall processes and the link to soil moisture. A simple slab Mixed Layer and Lifting Condensation Level model is implemented to separate convective and nonconvective rainfall. Data for this research were acquired during the 2010 rainy season using an array of wireless weather stations (SensorScope) as well as surface energy balance stations that based upon eddy correlation heat flux measurements. The precipitation was found to be variable over the basin with some 200 mm of difference in total seasonal rainfall between agricultural fields and savanna forest. Convective rainfall represents more than 30% of the total rainfall. The convective rainfall events are short (less than hour), intense (greater than 3 mm/minute) and occur both in the early morning and in the afternoons. These events can have an important impact on soil erosion, which we discuss in more detail along with seasonal stream-aquifer interactions.

  8. Determining rainfall thresholds that trigger landslides in Colombia

    International Nuclear Information System (INIS)

    Mayorga Marquez, Ruth

    2003-01-01

    Considering that rainfall is the natural event that more often triggers landslides, it is important to study the relationship between this phenomenon and the occurrence of earth mass movements, by determining rainfall thresholds that trigger landslides in different zones of Colombia. The research presents a methodology that allows proposing rainfall thresholds that trigger landslides in Colombia, by means of a relationship between the accumulated rain in the soil (antecedent rainfall) and the rain that falls the day of the landslide occurrence (event rainfall)

  9. A study on a instability slope in Taiwan subjected to rainfalls

    Science.gov (United States)

    Hsiao, D. H.; Hsieh, C. S.; Yeh, L. C.; Lin, D. Y.; T-A Phan, V.

    2018-04-01

    After the long-term monitoring on the Chaishan area in Taiwan from 2005 to 2012 by Kaohsiung City Government, the obtained results showed that annual lateral displacements in the region are about 7-8cm to the Taiwan Strait. The geological surface profiles of Chaishan area are in sequence weathered limestone, clay layer, limestone and mudstone layer, respectively. Thus the frictional resistance between weathered soils and rock layer could decrease after infiltration of rainwater due to impervious to water of the lowest mudstone layer. Typhoon invades often Taiwan each year, resulting in rainfall infiltration and rising groundwater level, as well as increased pore water pressure within the soil mass, causing the earth movements in some parts of Chaishan, especially in the Temple A (Shan Hai Temple) accompanied with cracking phenomenon. In this paper, limit equilibrium (LE) and finite element method (FEM) are used for slope analysis, in which the slope is considered as unsaturated soil. Results showed groundwater amounts are easy to accumulate and increasing pore water pressure give resulting in decreased safety factor. Both of groundwater level and rain durations were also considered in this study.

  10. The development rainfall forecasting using kalman filter

    Science.gov (United States)

    Zulfi, Mohammad; Hasan, Moh.; Dwidja Purnomo, Kosala

    2018-04-01

    Rainfall forecasting is very interesting for agricultural planing. Rainfall information is useful to make decisions about the plan planting certain commodities. In this studies, the rainfall forecasting by ARIMA and Kalman Filter method. Kalman Filter method is used to declare a time series model of which is shown in the form of linear state space to determine the future forecast. This method used a recursive solution to minimize error. The rainfall data in this research clustered by K-means clustering. Implementation of Kalman Filter method is for modelling and forecasting rainfall in each cluster. We used ARIMA (p,d,q) to construct a state space for KalmanFilter model. So, we have four group of the data and one model in each group. In conclusions, Kalman Filter method is better than ARIMA model for rainfall forecasting in each group. It can be showed from error of Kalman Filter method that smaller than error of ARIMA model.

  11. Probabilistic Analysis of Cut-Slope Stability for Tropical Red Clay of Depok, West Java as an Effect of Rainfall Duration and Intensity

    Directory of Open Access Journals (Sweden)

    Hakim Sagitaningrum Fathiyah

    2018-01-01

    Full Text Available Landslide in Indonesia, specifically in Java island, occurs during rainy seasons. In Java island, it is known that the tropical red clay has the ability to stand at steep angles, while in stability analysis due to rainfall, practitioners only consider the rise of groundwater table. Previous studies states that one of the factor affecting factor of safety (FS for tropical red clay slopes is the formation of saturated zones due to matric suction. This research studies the effect of rainfall intensity and duration to FS of cut-slopes as parametric study with probabilistic analysis for different height of 10m, 20m, and 30m also slope angles of 27°, 45°, 55°, and 70°. Rainfall parameter are taken from FTUI rainfall station for advanced pattern and three-days duration of rain. Analysis of seepage uses SEEP/W and slope stability uses SLOPE/W. It is known that the significant increase of probability of failure due to the three-days rainfall is achieved at the 10m height and 70°-angled slope. Increase of the probability of failure is mainly due to rainfall infiltration which saturates the surface and pore water pressure increase until certain time where infiltration stops and turn into surface run-off.

  12. Comparison study between traditional and finite element methods for slopes under heavy rainfall

    Directory of Open Access Journals (Sweden)

    M. Rabie

    2014-08-01

    Moreover, slope stability concerning rainfall and infiltration is analyzed. Specially, two kinds of infiltrations (saturated and unsaturated are considered. Many slopes become saturated during periods of intense rainfall or snowmelt, with the water table rising to the ground surface, and water flowing essentially parallel to the direction of the “slope” and “Influence” of the change in shear strength, density, pore-water pressure and seepage force in soil slices on the slope stability is explained. Finally, it is found that classical limit equilibrium methods are highly conservative compared to the finite element approach. For assessment the factor of safety for slope using the later technique, no assumption needs to be made in advance about the shape or location of the failure surface, slice side forces and their directions. This document outlines the capabilities of the finite element method in the analysis of slope stability problems.

  13. Surface water storage capacity of twenty tree species in Davis, California

    Science.gov (United States)

    Qingfu Xiao; E. Gregory. McPherson

    2016-01-01

    Urban forestry is an important green infrastructure strategy because healthy trees can intercept rainfall, reducing stormwater runoff and pollutant loading. Surface saturation storage capacity, defined as the thin film of water that must wet tree surfaces before flow begins, is the most important variable influencing rainfall interception processes. Surface storage...

  14. Raingauge-Based Rainfall Nowcasting with Artificial Neural Network

    Science.gov (United States)

    Liong, Shie-Yui; He, Shan

    2010-05-01

    Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.

  15. Censored rainfall modelling for estimation of fine-scale extremes

    Science.gov (United States)

    Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro

    2018-01-01

    Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.

  16. Does GPM-based multi-satellite precipitation enhance rainfall estimates over Pakistan and Bolivia arid regions?

    Science.gov (United States)

    Hussain, Y.; Satgé, F.; Bonnet, M. P.; Pillco, R.; Molina, J.; Timouk, F.; Roig, H.; Martinez-Carvajal, H., Sr.; Gulraiz, A.

    2016-12-01

    Arid regions are sensitive to rainfall variations which are expressed in the form of flooding and droughts. Unfortunately, those regions are poorly monitored and high quality rainfall estimates are still needed. The Global Precipitation Measurement (GPM) mission released two new satellite rainfall products named Integrated Multisatellite Retrievals GPM (IMERG) and Global Satellite Mapping of Precipitation version 6 (GSMaP-v6) bringing the possibility of accurate rainfall monitoring over these countries. This study assessed both products at monthly scale over Pakistan considering dry and wet season over the 4 main climatic zones from 2014 to 2016. With similar climatic conditions, the Altiplano region of Bolivia is considered to quantify the influence of big lakes (Titicaca and Poopó) in rainfall estimates. For comparison, the widely used TRMM-Multisatellite Precipitation Analysis 3B43 (TMPA-3B43) version 7 is also involved in the analysis to observe the potential enhancement in rainfall estimate brought by GPM products. Rainfall estimates derived from 110 rain-gauges are used as reference to compare IMERG, GSMaP-v6 and TMPA-3B43 at the 0.1° and 0.25° spatial resolution. Over both regions, IMERG and GSMaP-v6 capture the spatial pattern of precipitation as well as TMPA-3B43. All products tend to over estimates rainfall over very arid regions. This feature is even more marked during dry season. However, during this season, both reference and estimated rainfall remain very low and do not impact seasonal water budget computation. On a general way, IMERG slightly outperforms TMPA-3B43 and GSMaP-v6 which provides the less accurate rainfall estimate. The TMPA-3B43 rainfall underestimation previously found over Lake Titicaca is still observed in IMERG estimates. However, GSMaP-v6 considerably decreases the underestimation providing the most accurate rainfall estimate over the lake. MOD11C3 Land Surface Temperature (LST) and ASTER Global Emissivity Dataset reveal strong

  17. Effect of radar rainfall time resolution on the predictive capability of a distributed hydrologic model

    Science.gov (United States)

    Atencia, A.; Llasat, M. C.; Garrote, L.; Mediero, L.

    2010-10-01

    The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.

  18. Radar rainfall estimation of stratiform winter precipitation in the Belgian Ardennes

    Science.gov (United States)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.

    2011-02-01

    Radars are known for their ability to obtain a wealth of information about spatial storm field characteristics. Unfortunately, rainfall estimates obtained by this instrument are known to be affected by multiple sources of error. Especially for stratiform precipitation systems, the quality of radar rainfall estimates starts to decrease at relatively close ranges. In the current study, the hydrological potential of weather radar is analyzed during a winter half-year for the hilly region of the Belgian Ardennes. A correction algorithm is proposed which corrects the radar data for errors related to attenuation, ground clutter, anomalous propagation, the vertical profile of reflectivity (VPR), and advection. No final bias correction with respect to rain gauge data was implemented because such an adjustment would not add to a better understanding of the quality of the radar data. The impact of the different corrections is assessed using rainfall information sampled by 42 hourly rain gauges. The largest improvement in the quality of the radar data is obtained by correcting for ground clutter. The impact of VPR correction and advection depends on the spatial variability and velocity of the precipitation system. Overall during the winter period, the radar underestimates the amount of precipitation as compared to the rain gauges. Remaining differences between both instruments can be attributed to spatial and temporal variability in the type of precipitation, which has not been taken into account.

  19. Rainfall thresholds for the initiation of debris flows at La Honda, California

    Science.gov (United States)

    Wilson, R.C.; Wieczorek, G.F.

    1995-01-01

    A simple numerical model, based on the physical analogy of a leaky barrel, can simulate significant features of the interaction between rainfall and shallow-hillslope pore pressures. The leaky-barrel-model threshold is consistent with, but slightly higher than, an earlier, purely empirical, threshold. The number of debris flows triggered by a storm can be related to the time and amount by which the leaky-barrel-model response exceeded the threshold during the storm. -from Authors

  20. The Spatial Scaling of Global Rainfall Extremes

    Science.gov (United States)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  1. Transport of three veterinary antimicrobials from feedlot pens via simulated rainfall runoff.

    Science.gov (United States)

    Sura, Srinivas; Degenhardt, Dani; Cessna, Allan J; Larney, Francis J; Olson, Andrew F; McAllister, Tim A

    2015-07-15

    Veterinary antimicrobials are introduced to wider environments by manure application to agricultural fields or through leaching or runoff from manure storage areas (feedlots, stockpiles, windrows, lagoons). Detected in manure, manure-treated soils, and surface and ground water near intensive cattle feeding operations, there is a concern that environmental contamination by these chemicals may promote the development of antimicrobial resistance in bacteria. Surface runoff and leaching appear to be major transport pathways by which veterinary antimicrobials eventually contaminate surface and ground water, respectively. A study was conducted to investigate the transport of three veterinary antimicrobials (chlortetracycline, sulfamethazine, tylosin), commonly used in beef cattle production, in simulated rainfall runoff from feedlot pens. Mean concentrations of veterinary antimicrobials were 1.4 to 3.5 times higher in surface material from bedding vs. non-bedding pen areas. Runoff rates and volumetric runoff coefficients were similar across all treatments but both were significantly higher from non-bedding (0.53Lmin(-1); 0.27) than bedding areas (0.40Lmin(-1); 0.19). In keeping with concentrations in pen surface material, mean concentrations of veterinary antimicrobials were 1.4 to 2.5 times higher in runoff generated from bedding vs. non-bedding pen areas. Water solubility and sorption coefficient of antimicrobials played a role in their transport in runoff. Estimated amounts of chlortetracycline, sulfamethazine, and tylosin that could potentially be transported to the feedlot catch basin during a one in 100-year precipitation event were 1.3 to 3.6ghead(-1), 1.9ghead(-1), and 0.2ghead(-1), respectively. This study demonstrates the magnitude of veterinary antimicrobial transport in feedlot pen runoff and supports the necessity of catch basins for runoff containment within feedlots. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  2. Linking landscape structure and rainfall runoff behaviour in a thermodynamic optimality context

    Science.gov (United States)

    Zehe, Erwin; Ehret, Uwe; Blume, Theresa; Kleidon, Axel; Scherer, Ulrike; Westhoff, Martijn

    2015-04-01

    The fact that persistent spatial organization in catchments exists has inspired many scientists to speculate whether this is the manifestation of an underlying organizing principle. In line with these studies we developed and tested a thermodynamic framework to link rainfall runoff generation and self-organization in catchments. From a thermodynamic perspective any water mass flux is equal to a "potential gradient" divided by a "resistance", and fluxes deplete due to the second law of thermodynamics their driving gradients. Relevant potentials controlling rainfall runoff are soil water potentials, piezometric heads and surface water levels and their gradients are associated with spatial differences in associated forms of free energy. Rainfall runoff processes thus are associated with conversions of capillary binding energy, potential energy and kinetic energy. These conversions reflect energy conservation and irreversibility as they imply small amounts of dissipation of free energy into heat and thus production of entropy. Energy conversions during rainfall runoff transformation are, though being small, nevertheless of key importance, because they are related to the partitioning of incoming rainfall mass into runoff components and storage dynamics. This splitting and the subsequent subsurface dynamics is strongly controlled by preferential flow paths, which in turn largely influence hydrologically relevant resistance fields in larger control volumes. The field of subsurface flow resistances depends for instance on soil hydraulic conductivity, its spatial covariance and soil moisture. Apparent preferential pathways reduce, depending on their density, topology and spatial extent, subsurface flow resistances along their main extent, resulting in accelerated fluxes against the driving gradient. This implies an enlarged power in the subsurface flux thereby either an enlarged free energy export from the control volume or an increased depletion of internal driving

  3. Attribution of extreme rainfall from Hurricane Harvey, August 2017

    Science.gov (United States)

    van Oldenborgh, Geert Jan; van der Wiel, Karin; Sebastian, Antonia; Singh, Roop; Arrighi, Julie; Otto, Friederike; Haustein, Karsten; Li, Sihan; Vecchi, Gabriel; Cullen, Heidi

    2017-12-01

    During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation, particularly over Houston and the surrounding area on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return period of the highest observed three-day precipitation amount, 1043.4 mm 3dy-1 at Baytown, is more than 9000 years (97.5% one-sided confidence interval) and return periods exceeded 1000 yr (750 mm 3dy-1) over a large area in the current climate. Observations since 1880 over the region show a clear positive trend in the intensity of extreme precipitation of between 12% and 22%, roughly two times the increase of the moisture holding capacity of the atmosphere expected for 1 °C warming according to the Clausius-Clapeyron (CC) relation. This would indicate that the moisture flux was increased by both the moisture content and stronger winds or updrafts driven by the heat of condensation of the moisture. We also analysed extreme rainfall in the Houston area in three ensembles of 25 km resolution models. The first also shows 2 × CC scaling, the second 1 × CC scaling and the third did not have a realistic representation of extreme rainfall on the Gulf Coast. Extrapolating these results to the 2017 event, we conclude that global warming made the precipitation about 15% (8%-19%) more intense, or equivalently made such an event three (1.5-5) times more likely. This analysis makes clear that extreme rainfall events along the Gulf Coast are on the rise. And while fortifying Houston to fully withstand the impact of an event as extreme as Hurricane Harvey may not be economically feasible, it is critical that information regarding the increasing risk of extreme rainfall events in general should be part of the discussion about future improvements to Houston’s flood protection system.

  4. Observations of cloud and rainfall enhancement over irrigated agriculture in an arid environment

    Science.gov (United States)

    Garcia-Carreras, Luis; Marsham, John H.; Spracklen, Dominick V.

    2017-04-01

    The impact of irrigated agriculture on clouds and rainfall remains uncertain, particularly in less studied arid regions. Irrigated crops account for 20% of global cropland area, and non-renewable groundwater accounts for 20% of global irrigation water demand. Quantifying the feedbacks between agriculture and the atmosphere are therefore not only necessary to better understand the climate impacts of land-use change, but are also crucial for predicting long-term water use in water-scarce regions. Here we use high spatial-resolution satellite data to show the impact of irrigated crops in the arid environment of northern Saudi Arabia on cloud cover and rainfall patterns. Land surface temperatures over the crops are 5-10 K lower than their surroundings, linked to evapotranspiration rates of up to 20 mm/ month. Daytime cloud cover is up to 30% higher over the cropland compared to its immediate surroundings, and this enhancement is highly correlated with the seasonal variability in leaf area index. The cloud enhancement is associated with a much more rapid cloud cloud development during the morning. Afternoon rainfall is 85% higher over, and just downwind, of the cropland during the growing season, although rainfall remains very low in absolute terms. The feedback sign we find is the opposite to what has been observed in tropical and semiarid regions, where temperature gradients promote convergence and clouds on the warmer side of land-surface type discontinuities. This suggests that different processes are responsible for the land-atmosphere feedback in very dry environments, where lack of moisture may be a stronger constraint. Increased cloud and rainfall, and associated increases in diffuse radiation and reductions in temperature, can affect vegetation growth thus producing an internal feedback. These effects will therefore need to be taken into account to properly assess the impact of climate change on crop productivity and water use, as well as how global land

  5. Hydrologic and Erosional Response to Natural Rainfall and Effects of Conservation and Rehabilitation Measures in a Degraded Dry Sub-Humid Watershed of the Ethiopian Highlands

    Science.gov (United States)

    McHugh, O. V.; Liu, B. M.; Steenhuis, T. S.

    2005-12-01

    A good understanding of runoff and erosion under actual field conditions is essential for effective planning of land conservation in the Ethiopian highlands. Hydrologic and sediment yield response to natural rainfall was measured during 3 rainy seasons (2003-2004) at plot and catchment scales with and without conservation practices. Results show that as expected surface runoff generation and erosion rates are significantly influenced by rainfall intensity, land use, scale of measurement, land slope, and the presence or not of conservation measures. Seasonal runoff coefficient and sediment yield were significantly better correlated to number of storms with high 30-minute maximum rainfall intensity (I30 > 20 mm h-1) than to total seasonal rainfall depth. Under conventional management systems cropland on slopes greater than 3 % generated significantly more (over twice) surface runoff and sediment yield compared with shrub and open forest grazing land on steep slopes (34 %). Plot measured surface runoff coefficients (for crop and grazing land uses which cover over 90 % of the catchment area) exceeded total catchment streamflow discharge demonstrating a scale effect. The observed scale effect, a stronger correlation of runoff with maximum rainfall intensity than rainfall depth and average rainfall intensity, and observed significant increases in runoff with steeper land slopes indicate that Hortonian overland flow is the primary runoff generation mechanism in the study zone. Concerning slope effects, cropland on mild slopes produced relatively low seasonal sediment yields (hillside conservation (areas with bench terracing, planted tree seedlings, and small area closure from livestock grazing) resulted in significantly lower catchment peak streamflow discharge and longer duration streamflow compared to a catchment in the same watershed without these measures. Cropland tied ridge and no till conservation practices reduced surface runoff and soil loss during seasons with

  6. [Runoff and sediment yielding processes on red soil engineering accumulation containing gravels by a simulated rainfall experiment].

    Science.gov (United States)

    Shi, Qian-hua; Wang, Wen-long; Guo, Ming-ming; Bai, Yun; Deng, Li-qiang; Li, Jian-ming; Li, Yao-lin

    2015-09-01

    Engineering accumulation formed in production and construction projects is characterized by unique structure and complex material composition. Characteristics of soil erosion on the engineering accumulation significantly differ from those on farmland. An artificially simulated rainfall experiment was carried out to investigate the effects of rainfall intensity on the processes of runoff and sediment yielding on the engineering accumulation of different gravel contents (0%, 10%, 20% and 30%) in red soil regions. Results showed that the initial time of runoff generation decreased with increases in rainfall intensity and gravel content, the decreased amplitudes being about 48.5%-77.9% and 4.2%-34.2%, respectively. The initial time was found to be a power function of rainfall intensity. Both runoff velocity and runoff rate manifested a trend of first rising and then in a steady state with runoff duration. Rainfall intensity was found to be the main factor influencing runoff velocity and runoff rate, whereas the influence of gravel content was not significant. About 10% of gravel content was determined to be a critical value in the influence of gravel content on runoff volume. For the underlying surface of 10% gravel content, the runoff volume was least at rainfall intensity of 1.0 mm · min(-1) and maximum at rainfall intensity of greater than 1.0 mm · min(-1). The runoff volume in- creased 10%-60% with increase in rainfall intensity. Sediment concentration showed a sharp decline in first 6 min and then in a stable state in rest of time. Influence of rainfall intensity on sediment concentration decreased as gravel content increased. Gravels could reduce sediment yield significantly at rainfall intensity of greater than 1.0 mm · min(-1). Sediment yield was found to be a linear function of rainfall intensity and gravel content.

  7. Radioactivity in surface waters and its effects

    International Nuclear Information System (INIS)

    Stoeber, I.

    1987-01-01

    In consequence of the reactor accident in Chernobyl, the State Office for Water and Waste Disposal of North-Rhine Westphalia implemented immediate programmes for monitoring radioactivity in surface waters, including their sediments and organisms. Of the initially-measured radionuclides, only cesium-137, with its long half-life of 30 years, is of interest. Only trace amounts of the almost equally long-lived strontium 90 (half-life 28 years) were present in rainfall. Cs-137 is a non-natural-radionuclide, occurring solely as a by-product of nuclear installations and atomic bomb tests. Following the ban on surface testing of nuclear weapons, the Cs-137 content of surface waters had fallen significantly up to April 1986. The load due to the reactor disaster is of the same order of magnitude as that produced by atomic testing at the end of the nineteen-sixties. The paper surveys radioactive pollution of surface waters in North-Rhine Westphalia and its effects on water use, especially in regard to potable water supplies and the fish population. (orig./HSCH) [de

  8. Constraining continuous rainfall simulations for derived design flood estimation

    Science.gov (United States)

    Woldemeskel, F. M.; Sharma, A.; Mehrotra, R.; Westra, S.

    2016-11-01

    Stochastic rainfall generation is important for a range of hydrologic and water resources applications. Stochastic rainfall can be generated using a number of models; however, preserving relevant attributes of the observed rainfall-including rainfall occurrence, variability and the magnitude of extremes-continues to be difficult. This paper develops an approach to constrain stochastically generated rainfall with an aim of preserving the intensity-durationfrequency (IFD) relationships of the observed data. Two main steps are involved. First, the generated annual maximum rainfall is corrected recursively by matching the generated intensity-frequency relationships to the target (observed) relationships. Second, the remaining (non-annual maximum) rainfall is rescaled such that the mass balance of the generated rain before and after scaling is maintained. The recursive correction is performed at selected storm durations to minimise the dependence between annual maximum values of higher and lower durations for the same year. This ensures that the resulting sequences remain true to the observed rainfall as well as represent the design extremes that may have been developed separately and are needed for compliance reasons. The method is tested on simulated 6 min rainfall series across five Australian stations with different climatic characteristics. The results suggest that the annual maximum and the IFD relationships are well reproduced after constraining the simulated rainfall. While our presentation focusses on the representation of design rainfall attributes (IFDs), the proposed approach can also be easily extended to constrain other attributes of the generated rainfall, providing an effective platform for post-processing of stochastic rainfall generators.

  9. Assessing Intelligent Models in Forecasting Monthly Rainfall by Means of Teleconnection Patterns (Case Study: Khorasan Razavi Province

    Directory of Open Access Journals (Sweden)

    Farzaneh Nazarieh

    2016-02-01

    Full Text Available Introduction: Rainfall is affected by changes in the global sea level change, especially changes in sea surface temperature SST Sea Surface Temperature and sea level pressure SLP Sea level Pressure. Climate anomalies being related to each other at large distance is called teleconnection. As physical relationships between rainfall and teleconnection patterns are not defined clearly, we used intelligent models for forecasting rainfall. The intelligent models used in this study included Fuzzy Inference Systems, neural network and Neuro-fuzzy. In this study, first the teleconnection indices that could affect rainfall in the study area were identified. Then intelligent models were trained for rainfall forecasting. Finally, the most capable model for forecasting rainfall was presented. The study area for this research is the Khorasan Razavi Province. In order to present a model for rainfall forecasting, rainfall data of seven synoptic stations including Mashhad, Golmakan, Nishapur, Sabzevar, Kashmar, Torbate and Sharks since 1991 to 2010 were used. Materials and Methods: Based on previous studies about Teleconnection Patterns in the study area, effective Teleconnection indexes were identified. After calculating the correlation between the identified teleconnection indices and rainfall in one, two and three months ahead for all stations, fourteen teleconnection indices were chosen as inputs for intelligent models. These indices include, SLP Adriatic , SLP northern Red Sea, SLP Mediterranean Sea, SLP Aral sea, SST Sea surface temperature Labrador sea, SST Oman Sea, SST Caspian Sea, SST Persian Gulf, North Pacific pattern, SST Tropical Pacific in NINO12 and NINO3 regions, North Pacific Oscillation, Trans-Nino Index, Multivariable Enso Index. Inputs of the intelligent models include fourteen teleconnection indices, latitude and altitude of each station and their outputs are the prediction of rainfall for one, two and three months ahead. For calibration of

  10. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...... necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall...... estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...

  11. Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model

    Directory of Open Access Journals (Sweden)

    Dong-mei Sun

    2016-07-01

    Full Text Available Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase, and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes, TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC3D, which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.

  12. A hydro-mechanical framework for early warning of rainfall-induced landslides (Invited)

    Science.gov (United States)

    Godt, J.; Lu, N.; Baum, R. L.

    2013-12-01

    Landslide early warning requires an estimate of the location, timing, and magnitude of initial movement, and the change in volume and momentum of material as it travels down a slope or channel. In many locations advance assessment of landslide location, volume, and momentum is possible, but prediction of landslide timing entails understanding the evolution of rainfall and soil-water conditions, and consequent effects on slope stability in real time. Existing schemes for landslide prediction generally rely on empirical relations between landslide occurrence and rainfall amount and duration, however, these relations do not account for temporally variable rainfall nor the variably saturated processes that control the hydro-mechanical response of hillside materials to rainfall. Although limited by the resolution and accuracy of rainfall forecasts and now-casts in complex terrain and by the inherent difficulty in adequately characterizing subsurface materials, physics-based models provide a general means to quantitatively link rainfall and landslide occurrence. To obtain quantitative estimates of landslide potential from physics-based models using observed or forecasted rainfall requires explicit consideration of the changes in effective stress that result from changes in soil moisture and pore-water pressures. The physics that control soil-water conditions are transient, nonlinear, hysteretic, and dependent on material composition and history. In order to examine the physical processes that control infiltration and effective stress in variably saturated materials, we present field and laboratory results describing intrinsic relations among soil water and mechanical properties of hillside materials. At the REV (representative elementary volume) scale, the interaction between pore fluids and solid grains can be effectively described by the relation between soil suction, soil water content, hydraulic conductivity, and suction stress. We show that these relations can be

  13. Flooding from Intense Rainfall: an overview of project SINATRA

    Science.gov (United States)

    Cloke, Hannah

    2014-05-01

    Project SINATRA (Susceptibility of catchments to INTense RAinfall and flooding) is part of the UK NERC's Flooding From Intense Rainfall (FFIR) research programme which aims to reduce the risks of damage and loss of life caused by surface water and flash floods through improved identification, characterisation and prediction of interacting meteorological, hydrological and hydro-morphological processes that contribute to flooding associated with high-intensity rainfall events. Extreme rainfall events may only last for a few hours at most, but can generate terrifying and destructive floods. Their impact can be affected by a wide range factors (or processes) such as the location and intensity of the rainfall, the shape and steepness of the catchment it falls on, how much sediment is moved by the water and the vulnerability of the communities in the flood's path. Furthermore, FFIR are by their nature rapid, making it very difficult for researchers to 'capture' measurements during events. The complexity, speed and lack of field measurements on FFIR make it difficult to create computer models to predict flooding and often we are uncertain as to their accuracy. In addition there is no consensus on how to identify how particular catchments may be vulnerable to FFIR, due to factors such as catchment area, shape, geology and soil type as well as land-use. Additionally, the catchments most susceptible to FFIR are often small and un-gauged. Project SINATRA will: (1) Increase our understanding of what factors cause FFIR and gathering new, high resolution measurements of FFIR by: assembling an archive of past FFIR events in Britain and their impacts, as a prerequisite for improving our ability to predict future occurrences of FFIR; making real time observations of flooding during flood events as well as post-event surveys and historical event reconstruction, using fieldwork and crowd-sourcing methods; and characterizing the physical drivers for UK summer flooding events by

  14. Urbanization Induces Nonstationarity in Extreme Rainfall Characteristics over Contiguous United States

    Science.gov (United States)

    Singh, J.; Paimazumder, D.; Mohanty, M. P.; Ghosh, S.; Karmakar, S.

    2017-12-01

    The statistical assumption of stationarity in hydrologic extreme time/event series has been relied heavily in frequency analysis. However, due to the perceivable impacts of climate change, urbanization and land use pattern, assumption of stationarity in hydrologic time series will draw erroneous results, which in turn may affect the policy and decision-making. Also, it may no longer be reasonable to model rainfall extremes as a stationary process, yet nearly all-existing infrastructure design, water resource planning methods assume that historical extreme rainfall events will remain unchanged in the future. Therefore, a comprehensive multivariate nonstationary frequency analysis has been conducted for the CONUS to identify the precipitation characteristics (intensity, duration and depth) responsible for significant nonstationarity. We use 0.250 resolution of precipitation data for a period of 1948-2006, in a Generalized Additive Model for Location, Scale and Shape (GAMLSS) framework. A cluster of 74 GAMLSS models has been developed by considering nonstationarity in different combinations of distribution parameters through different regression techniques, and the best-fit model is further applied for bivariate analysis. Next, four demographic variables i.e. population density, housing unit, low income population and population below poverty line, have been utilized to identify the urbanizing regions through developing urbanization index. Furthermore to strengthen the analysis, Land cover map for 1992, 2001 and 2006 have been utilized to identify the location with the high change in impervious surface. The results show significant differences in the 50- and 100-year intensity, volume and duration estimated under the both stationary and nonstationary condition in urbanizing regions. Further results exhibit that rainfall duration has been decreased while, rainfall volume has been increased under nonstationary condition, which indicates increasing flood potential of

  15. Hydraulic properties for interrill erosion on steep slopes using a portable rainfall simulator

    Science.gov (United States)

    Shin, Seung Sook; Hwang, Yoonhee; Deog Park, Sang; Yun, Minu; Park, Sangyeon

    2017-04-01

    The hydraulic parameters for sheet flow on steep slopes have been not frequently measured because the shallow flow depth and slow flow velocity are difficult to measure. In this study hydraulic values of sheet flow were analyzed to evaluate interrill erosion on steep slopes. A portable rainfall simulator was used to conduct interrill erosion test. The kinetic energy of rainfall simulator was obtained by disdrometer being capable of measuring the drop size distribution and velocity of falling raindrops. The sheet flow velocity was determined by the taken time for a dye transferring fixed points using video images. Surface runoff discharge and sediment yield increased with increase of rainfall intensity and kinetic energy and slope steepness. Especially sediment yield was strongly correlated with sheet flow velocity. The maximum velocity of sheet flow was 2.3cm/s under rainfall intensity of 126.8mm/h and slope steepness of 53.2%. The sheet flow was laminar and subcritical flow as the flow Reynolds number and Froude number are respectively the ranges of 10 22 and 0.05 0.25. The roughness coefficient (Manning's n) for sheet flow on steep slopes was relatively large compared to them on the gentle slope. Keywords: Sheet flow velocity; Rainfall simulator; Interrill erosion; Steep slope This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1C1A2A01055469).

  16. A Canonical Response in Rainfall Characteristics to Global Warming: Projections by IPCC CMIP5 Models

    Science.gov (United States)

    Lau, William K. M.; Wu, H. T.; Kim, K. M.

    2012-01-01

    Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (>10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.

  17. Contribution of tropical cyclones to global rainfall

    Science.gov (United States)

    Khouakhi, Abdou; Villarini, Gabriele; Vecchi, Gabriel; Smith, James

    2016-04-01

    Rainfall associated with tropical cyclones (TCs) can have both devastating and beneficial impacts in different parts of the world. In this work, daily precipitation and historical six-hour best track TC datasets are used to quantify the contribution of TCs to global rainfall. We select 18607 rain gauge stations with at least 25 complete (at least 330 measurements per year) years between 1970 and 2014. We consider rainfall associated with TCs if the center of circulation of the storm passed within a given distance from the rain gauge and within a given time window. Spatial and temporal sensitivity analyses are performed with varying time windows (same day, ±1 day) and buffer radii (400 km and 500 km) around each rain gauge. Results highlight regional differences in TC-induced rainfall. The highest TC-induced precipitation totals (400 to 600+ mm/year) are prevalent along eastern Asia, western and northeastern Australia, and in the western Pacific islands. Stations along the southeast of the U.S. coast and surrounding the Gulf of Mexico receive up to 200 mm/year of TC rainfall. The highest annual fractional contributions of TCs to total rainfall (from 35 to 50%) are recorded in stations located in northwestern Australia, southeastern China, the northern Philippines and the southern Mexico peninsula. Seasonally, the highest proportions (40 to 50%) are recorded along eastern Australia and Mauritius in winter, and in eastern Asia and Mexico in summer and autumn. Analyses of the relative contribution of TCs to extreme rainfall using annual maximum (AM) and peaks-over-threshold (POT) approaches indicate notable differences among regions. The highest TC-AM rainfall proportions (45 to 60%) are found in stations located in Japan, eastern China, the Philippines, eastern and western Australia. Substantial contributions (25 to 40% of extreme rainfall) are also recorded in stations located along the U.S. East Coast, the Gulf of Mexico, and the Mexico peninsula. We find similar

  18. Regimes of Diurnal Variation of Summer Rainfall over Subtropical East Asia

    Energy Technology Data Exchange (ETDEWEB)

    Yuan W.; Lin W.; Yu, R.; Zhang, M.; Chen, H.; Li, J.

    2012-05-01

    Using hourly rain gauge records and Tropical Rainfall Measuring Mission 3B42 from 1998 to 2006, the authors present an analysis of the diurnal characteristics of summer rainfall over subtropical East Asia. The study shows that there are four different regimes of distinct diurnal variation of rainfall in both the rain gauge and the satellite data. They are located over the Tibetan Plateau with late-afternoon and midnight peaks, in the western China plain with midnight to early-morning peaks, in the eastern China plain with double peaks in late afternoon and early morning, and over the East China Sea with an early-morning peak. No propagation of diurnal phases is found from the land to the ocean across the coastlines. The different diurnal regimes are highly correlated with the inhomogeneous underlying surface, such as the plateau, plain, and ocean, with physical mechanisms consistent with the large-scale 'mountain-valley' and 'land-sea' breezes and convective instability. These diurnal characteristics over subtropical East Asia can be used as diagnostic metrics to evaluate the physical parameterization and hydrological cycle of climate models over East Asia.

  19. The wildgeographer avatar shows how to measure soil erosion rates by means of a rainfall simulator

    Science.gov (United States)

    Cerdà, Artemi; González Pelayo, Óscar; Pereira, Paulo; Novara, Agata; Iserloh, Thomas; Prosdocimi, Massimo

    2015-04-01

    This contribution to the immersed worlds wish to develop the avatar that will teach the students and other scientists how to develop measurements of soil erosion, surface runoff and wetting fronts by means of simulated rainfall experiments. Rainfall simulation is a well established and knows methodology to measure the soil erosion rates and soil hydrology under controlled conditions (Cerdà 1998a; Cerdà, 1998b; Cerdà and Jurgensen, 2011; Dunkerley, 2012; Iserloh et al., 2012; Iserloh et al., 2013; Ziadat and Taimeh, 2013; Butzen et al., 2014). However, is a method that requires a long training and expertise to avoid mismanagement and mistaken. To use and avatar can help in the teaching of the technique and the dissemination of the findings. This contribution will show to other avatars how to develop an experiment with simulated rainfall and will help to take the right decision in the design of the experiments. Following the main parts of the experiments and measurements the Wildgeographer avatar must develop: 1. Determine the objectives and decide which rainfall intensity and distribution, and which plot size to be used. Choose between a laboratory or a field rainfall simulation. 2. Design of the rainfall simulator to achieve the objectives: type of rainfall simulator (sprayer or drop former) and calibrate. 3. The experiments are carried out. 4. The results are show. Acknowledgements To the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Mueller, C., Casper, M., Ries, J. B. 2014. Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. Catena, 113, 202-212. Cerdà, A

  20. Chase the direct impact of rainfall into groundwater in Mt. Fuji from multiple analyses including microbial DNA

    Science.gov (United States)

    Kato, Kenji; Sugiyama, Ayumi; Nagaosa, Kazuyo; Tsujimura, Maki

    2016-04-01

    A huge amount of groundwater is stored in subsurface environment of Mt. Fuji, the largest volcanic mountain in Japan. Based on the concept of piston flow transport of groundwater an apparent residence time was estimated to ca. 30 years by 36Cl/Cl ratio (Tosaki et al., 2011). However, this number represents an averaged value of the residence time of groundwater which had been mixed before it flushes out. We chased signatures of direct impact of rainfall into groundwater to elucidate the routes of groundwater, employing three different tracers; stable isotopic analysis (delta 18O), chemical analysis (concentration of silica) and microbial DNA analysis. Though chemical analysis of groundwater shows an averaged value of the examined water which was blended by various water with different sources and routes in subsurface environment, microbial DNA analysis may suggest the place where they originated, which may give information of the source and transport routes of the water examined. Throughout the in situ observation of four rainfall events showed that stable oxygen isotopic ratio of spring water and shallow groundwater obtained from 726m a.s.l. where the average recharge height of rainfall was between 1500 and 1800 m became higher than the values before a torrential rainfall, and the concentration of silica decreased after this event when rainfall exceeded 300 mm in precipitation of an event. In addition, the density of Prokaryotes in spring water apparently increased. Those changes did not appear when rainfall did not exceed 100 mm per event. Thus, findings shown above indicated a direct impact of rainfall into shallow groundwater, which appeared within a few weeks of torrential rainfall in the studied geological setting. In addition, increase in the density of Archaea observed at deep groundwater after the torrential rainfall suggested an enlargement of the strength of piston flow transport through the penetration of rainfall into deep groundwater. This finding was

  1. Commercial application of rainfall simulation

    Science.gov (United States)

    Loch, Rob J.

    2010-05-01

    Landloch Pty Ltd is a commercial consulting firm, providing advice on a range of land management issues to the mining and construction industries in Australia. As part of the company's day-to-day operations, rainfall simulation is used to assess material erodibility and to investigate a range of site attributes. (Landloch does carry out research projects, though such are not its core business.) When treated as an everyday working tool, several aspects of rainfall simulation practice are distinctively modified. Firstly, the equipment used is regularly maintained, and regularly upgraded with a primary focus on ease, safety, and efficiency of use and on reliability of function. As well, trained and experienced technical support is considered essential. Landloch's chief technician has over 10 years experience in running rainfall simulators at locations across Australia and in Africa and the Pacific. Secondly, the specific experimental conditions established for each set of rainfall simulator runs are carefully considered to ensure that they accurately represent the field conditions to which the data will be subsequently applied. Considerations here include: • wetting and drying cycles to ensure material consolidation and/or cementation if appropriate; • careful attention to water quality if dealing with clay soils or with amendments such as gypsum; • strong focus on ensuring that the erosion processes considered are those of greatest importance to the field situation of concern; and • detailed description of both material and plot properties, to increase the potential for data to be applicable to a wider range of projects and investigations. Other important company procedures include: • For each project, the scientist or engineer responsible for analysing and reporting rainfall simulator data is present during the running of all field plots, as it is essential that they be aware of any specific conditions that may have developed when the plots were subjected

  2. Rainfall Simulator Experiments to Investigate Macropore Impacts on Hillslope Hydrological Response

    Directory of Open Access Journals (Sweden)

    Yvonne Smit

    2016-11-01

    Full Text Available Understanding hillslope runoff response to intense rainfall is an important topic in hydrology, and is key to correct prediction of extreme stream flow, erosion and landslides. Although it is known that preferential flow processes activated by macropores are an important phenomena in understanding runoff processes inside a hillslope, hydrological models have generally not embraced the concept of an extra parameter that represents ‘macropores’ because of the complexity of the phenomenon. Therefore, it is relevant to investigate the influence of macropores on runoff processes in an experimental small artificial hillslope. Here, we report on a controlled experiment where we could isolate the influence of macropores without the need for assumptions regarding their characteristics. Two identical hillslopes were designed, of which one was filled with artificial macropores. Twelve artificial rainfall events were applied to the two hillslopes and results of drainage and soil moisture were investigated. After the experiments, it could be concluded that the influence of macropores on runoff processes was minimal. The S90 sand used for this research caused runoff to respond fast to rainfall, leading to little or no development of saturation near the macropores. In addition, soil moisture data showed a large amount of pendular water in the hillslopes, which implies that the soil has a low air entry value, and, in combination with the lack of vertical flow, could have caused the pressure difference between the matrix and the macropores to vanish sooner and result in equilibrium being reached in a relatively short time. Nevertheless, a better outline is given to determine a correct sand type for these types of experiments and, by using drainage recession analysis to investigate the influences of macropores on runoff, heterogeneity in rainfall intensity can be overcome. This study is a good point of reference to start future experiments from concerning

  3. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    Science.gov (United States)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  4. On the Relationship of Rainfall and Temperature across Amazonia

    Science.gov (United States)

    Ribeiro Lima, C. H.; AghaKouchak, A.

    2017-12-01

    Extreme droughts in Amazonia seem to become more frequent and have been associated with local and global impacts on society and the ecosystem. The understanding of the dynamics and causes of Amazonia droughts have attracted some attention in the last years and pose several challenges for the scientific community. For instance, in previous work we have identified, based on empirical data, a compounding effect during Amazonia droughts: periods of low rainfall are always associated with positive anomalies of near surface air temperature. This inverse relationship of temperature and rainfall appears at multiple time scales and its intensity varies across Amazonia. To our knowledge, these findings have not been properly addressed in the literature, being not clear whether there is a causal relationship between these two variables, and in this case, which one leads the other one, or they are just responding to the same causal factor. Here we investigate the hypothesis that high temperatures during drought periods are a major response to an increase in the shortwave radiation (due to the lack of clouds) not compensating by an expected increase in the evapotranspiration from the rainforest. Our empirical analysis is based on observed series of daily temperature and rainfall over the Brazilian Amazonia and reanalysis data of cloud cover, outgoing longwave radiation (OLR) and moisture fluxes. The ability of Global Circulation Models (GCMs) to reproduce such compounding effect is also investigated for the historical period and for future RCP scenarios of global climate change. Preliminary results show that this is a plausible hypothesis, despite the complexity of land-atmosphere processes of mass and energy fluxes in Amazonia. This work is a step forward in better understanding the compounding effects of rainfall and temperature on Amazonia droughts, and what changes one might expect in a future warming climate.

  5. Analysis of one dimension migration law from rainfall runoff on urban roof

    Science.gov (United States)

    Weiwei, Chen

    2017-08-01

    Research was taken on the hydrology and water quality process in the natural rain condition and water samples were collected and analyzed. The pollutant were included SS, COD and TN. Based on the mass balance principle, one dimension migration model was built for the rainfall runoff pollution in surface. The difference equation was developed according to the finite difference method, by applying the Newton iteration method for solving it. The simulated pollutant concentration process was in consistent with the measured value on model, and Nash-Sutcliffe coefficient was higher than 0.80. The model had better practicability, which provided evidence for effectively utilizing urban rainfall resource, non-point source pollution of making management technologies and measures, sponge city construction, and so on.

  6. Rainfall variation and child health: effect of rainfall on diarrhea among under 5 children in Rwanda, 2010.

    Science.gov (United States)

    Mukabutera, Assumpta; Thomson, Dana; Murray, Megan; Basinga, Paulin; Nyirazinyoye, Laetitia; Atwood, Sidney; Savage, Kevin P; Ngirimana, Aimable; Hedt-Gauthier, Bethany L

    2016-08-05

    Diarrhea among children under 5 years of age has long been a major public health concern. Previous studies have suggested an association between rainfall and diarrhea. Here, we examined the association between Rwandan rainfall patterns and childhood diarrhea and the impact of household sanitation variables on this relationship. We derived a series of rain-related variables in Rwanda based on daily rainfall measurements and hydrological models built from daily precipitation measurements collected between 2009 and 2011. Using these data and the 2010 Rwanda Demographic and Health Survey database, we measured the association between total monthly rainfall, monthly rainfall intensity, runoff water and anomalous rainfall and the occurrence of diarrhea in children under 5 years of age. Among the 8601 children under 5 years of age included in the survey, 13.2 % reported having diarrhea within the 2 weeks prior to the survey. We found that higher levels of runoff were protective against diarrhea compared to low levels among children who lived in households with unimproved toilet facilities (OR = 0.54, 95 % CI: [0.34, 0.87] for moderate runoff and OR = 0.50, 95 % CI: [0.29, 0.86] for high runoff) but had no impact among children in household with improved toilets. Our finding that children in households with unimproved toilets were less likely to report diarrhea during periods of high runoff highlights the vulnerabilities of those living without adequate sanitation to the negative health impacts of environmental events.

  7. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico.

    Science.gov (United States)

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-12-01

    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings ( δ 18 O tr ). Interannual variation in δ 18 O tr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ 13 C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ 18 O tr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18 O-depleted rain in the region and seem to have affected the δ 18 O tr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ 18 O tr of M . acantholoba can be used as a proxy for source water δ 18 O and that interannual variation in δ 18 O prec is caused by a regional amount effect. This contrasts with δ 18 O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in

  8. Heavy daily-rainfall characteristics over the Gauteng Province

    African Journals Online (AJOL)

    2009-02-09

    Feb 9, 2009 ... the lowest number of heavy and very heavy rainfall days. The highest 24-h ... With regard to seasonal rainfall, the 1995/96 summer rainfall season had ..... The Gauteng Province is approximately 16 500 km2 in size. When the ...

  9. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    Science.gov (United States)

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide

  10. Rainfall intensity effects on removal of fecal indicator bacteria from solid dairy manure applied over grass-covered soil

    Energy Technology Data Exchange (ETDEWEB)

    Blaustein, Ryan A., E-mail: rblauste@ufl.edu [USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Beltsville, MD (United States); Department of Environmental Science and Technology, University of Maryland, College Park, MD (United States); Hill, Robert L. [Department of Environmental Science and Technology, University of Maryland, College Park, MD (United States); Micallef, Shirley A. [Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD (United States); Center for Food Safety and Security Systems, University of Maryland, College Park, MD (United States); Shelton, Daniel R.; Pachepsky, Yakov A. [USDA-ARS Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Beltsville, MD (United States)

    2016-01-01

    The rainfall-induced release of pathogens and microbial indicators from land-applied manure and their subsequent removal with runoff and infiltration precedes the impairment of surface and groundwater resources. It has been assumed that rainfall intensity and changes in intensity during rainfall do not affect microbial removal when expressed as a function of rainfall depth. The objective of this work was to test this assumption by measuring the removal of Escherichia coli, enterococci, total coliforms, and chloride ion from dairy manure applied in soil boxes containing fescue, under 3, 6, and 9 cm h{sup −1} of rainfall. Runoff and leachate were collected at increasing time intervals during rainfall, and post-rainfall soil samples were taken at 0, 2, 5, and 10 cm depths. Three kinetic-based models were fitted to the data on manure-constituent removal with runoff. Rainfall intensity appeared to have positive effects on rainwater partitioning to runoff, and removal with this effluent type occurred in two stages. While rainfall intensity generally did not impact the parameters of runoff-removal models, it had significant, inverse effects on the numbers of bacteria remaining in soil after rainfall. As rainfall intensity and soil profile depth increased, the numbers of indicator bacteria tended to decrease. The cumulative removal of E. coli from manure exceeded that of enterococci, especially in the form of removal with infiltration. This work may be used to improve the parameterization of models for bacteria removal with runoff and to advance estimations of depths of bacteria removal with infiltration, both of which are critical to risk assessment of microbial fate and transport in the environment. - Highlights: • Release and removal of indicator bacteria from manure was evaluated in soil boxes. • Rainfall intensity did not impact runoff-removal kinetics in three tested models. • Rainfall intensity had positive/inverse effects on bacterial release to runoff

  11. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin

    Science.gov (United States)

    Chawla, Ila; Osuri, Krishna K.; Mujumdar, Pradeep P.; Niyogi, Dev

    2018-02-01

    Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15-18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor-Yamada-Janjic PBL and Betts-Miller-Janjic CU scheme is found to perform best in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation

  12. Rainfall threshold definition using an entropy decision approach and radar data

    Directory of Open Access Journals (Sweden)

    V. Montesarchio

    2011-07-01

    Full Text Available Flash flood events are floods characterised by a very rapid response of basins to storms, often resulting in loss of life and property damage. Due to the specific space-time scale of this type of flood, the lead time available for triggering civil protection measures is typically short. Rainfall threshold values specify the amount of precipitation for a given duration that generates a critical discharge in a given river cross section. If the threshold values are exceeded, it can produce a critical situation in river sites exposed to alluvial risk. It is therefore possible to directly compare the observed or forecasted precipitation with critical reference values, without running online real-time forecasting systems. The focus of this study is the Mignone River basin, located in Central Italy. The critical rainfall threshold values are evaluated by minimising a utility function based on the informative entropy concept and by using a simulation approach based on radar data. The study concludes with a system performance analysis, in terms of correctly issued warnings, false alarms and missed alarms.

  13. Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: The goyang case

    Science.gov (United States)

    Choi, Hyun-Young; Ha, Ji-Hyun; Lee, Dong-Kyou; Kuo, Ying-Hwa

    2011-05-01

    We investigated a torrential rainfall case with a daily rainfall amount of 379 mm and a maximum hourly rain rate of 77.5 mm that took place on 12 July 2006 at Goyang in the middlewestern part of the Korean Peninsula. The heavy rainfall was responsible for flash flooding and was highly localized. High-resolution Doppler radar data from 5 radar sites located over central Korea were analyzed. Numerical simulations using the Weather Research and Forecasting (WRF) model were also performed to complement the high-resolution observations and to further investigate the thermodynamic structure and development of the convective system. The grid nudging method using the Global Final (FNL) Analyses data was applied to the coarse model domain (30 km) in order to provide a more realistic and desirable initial and boundary conditions for the nested model domains (10 km, 3.3 km). The mesoscale convective system (MCS) which caused flash flooding was initiated by the strong low level jet (LLJ) at the frontal region of high equivalent potential temperature (θe) near the west coast over the Yellow Sea. The ascending of the warm and moist air was induced dynamically by the LLJ. The convective cells were triggered by small thermal perturbations and abruptly developed by the warm θe inflow. Within the MCS, several convective cells responsible for the rainfall peak at Goyang simultaneously developed with neighboring cells and interacted with each other. Moist absolutely unstable layers (MAULs) were seen at the lower troposphere with the very moist environment adding the instability for the development of the MCS.

  14. Significant influences of global mean temperature and ENSO on extreme rainfall over Southeast Asia

    Science.gov (United States)

    Villafuerte, Marcelino, II; Matsumoto, Jun

    2014-05-01

    Along with the increasing concerns on the consequences of global warming, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (ENSO), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and ENSO. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced ENSO influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global warming, particularly on extreme rainfall and its associated flood risk over the region

  15. Temporal rainfall estimation using input data reduction and model inversion

    Science.gov (United States)

    Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.

    2016-12-01

    Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a

  16. Rainfall interception of three trees in Oakland, California

    Science.gov (United States)

    Qingfu Xiao; E. Gregory McPherson

    2011-01-01

    A rainfall interception study was conducted in Oakland, California to determine the partitioning of rainfall and the chemical composition of precipitation, throughfall, and stemflow. Rainfall interception measurements were conducted on a gingko (Ginkgo biloba) (13.5 m tall deciduous tree), sweet gum (Liquidambar styraciflua) (8...

  17. Surface runoff and phosphorus (P) loss from bamboo (Phyllostachys ...

    African Journals Online (AJOL)

    Jane

    2011-08-24

    Aug 24, 2011 ... Key words: Phyllostachys pubescens, ecosystem, surface runoff, phosphorus (P) loss. .... targets and corresponding nutrient demand, nutrient balance and nutrient use .... rainfall, rainfall intensity as well as solar radiation and.

  18. Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Singaiah Chintalapudi

    2014-05-01

    Full Text Available In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km2 watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze the precipitation products. Comparison with rain gauge observations reveals that there were significant biases in the satellite rainfall products and large variations in the estimated amounts. The radar basin average precipitation compared very well with the rain gauge product while the gauge-adjusted TRMM 3B42V7 precipitation compared best with observed rainfall among all satellite precipitation products. The NEXRAD MPE simulated streamflows matched the observed ones the best yielding the highest Nash-Sutcliffe Efficiency correlation coefficient values for both the July and August 2007 events. Simulations driven by TRMM 3B42V7 matched the observed streamflow better than other satellite products for both events. The PERSIANN coarse resolution product yielded better runoff results than the higher resolution product. The study reveals that satellite rainfall products are viable alternatives when rain gauge or ground radar observations are sparse or non-existent.

  19. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea

    Directory of Open Access Journals (Sweden)

    Muhammad Shafique

    2018-03-01

    Full Text Available This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas.

  20. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea.

    Science.gov (United States)

    Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon

    2018-03-16

    This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas.

  1. Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics

    Science.gov (United States)

    Rakesh, V.; Kantharao, B.

    2017-03-01

    Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events

  2. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea

    Science.gov (United States)

    Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon

    2018-01-01

    This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas. PMID:29547567

  3. Asian Summer Monsoon Rainfall associated with ENSO and its Predictability

    Science.gov (United States)

    Shin, C. S.; Huang, B.; Zhu, J.; Marx, L.; Kinter, J. L.; Shukla, J.

    2015-12-01

    The leading modes of the Asian summer monsoon (ASM) rainfall variability and their seasonal predictability are investigated using the CFSv2 hindcasts initialized from multiple ocean analyses over the period of 1979-2008 and observation-based analyses. It is shown that the two leading empirical orthogonal function (EOF) modes of the observed ASM rainfall anomalies, which together account for about 34% of total variance, largely correspond to the ASM responses to the ENSO influences during the summers of the developing and decaying years of a Pacific anomalous event, respectively. These two ASM modes are then designated as the contemporary and delayed ENSO responses, respectively. It is demonstrated that the CFSv2 is capable of predicting these two dominant ASM modes up to the lead of 5 months. More importantly, the predictability of the ASM rainfall are much higher with respect to the delayed ENSO mode than the contemporary one, with the predicted principal component time series of the former maintaining high correlation skill and small ensemble spread with all lead months whereas the latter shows significant degradation in both measures with lead-time. A composite analysis for the ASM rainfall anomalies of all warm ENSO events in this period substantiates the finding that the ASM is more predictable following an ENSO event. The enhanced predictability mainly comes from the evolution of the warm SST anomalies over the Indian Ocean in the spring of the ENSO maturing phases and the persistence of the anomalous high sea surface pressure over the western Pacific in the subsequent summer, which the hindcasts are able to capture reasonably well. The results also show that the ensemble initialization with multiple ocean analyses improves the CFSv2's prediction skill of both ENSO and ASM rainfall. In fact, the skills of the ensemble mean hindcasts initialized from the four different ocean analyses are always equivalent to the best ones initialized from any individual ocean

  4. Self-Organized Criticality of Rainfall in Central China

    Directory of Open Access Journals (Sweden)

    Zhiliang Wang

    2012-01-01

    Full Text Available Rainfall is a complexity dynamics process. In this paper, our objective is to find the evidence of self-organized criticality (SOC for rain datasets in China by employing the theory and method of SOC. For this reason, we analyzed the long-term rain records of five meteorological stations in Henan, a central province of China. Three concepts, that is, rain duration, drought duration, accumulated rain amount, are proposed to characterize these rain events processes. We investigate their dynamics property by using scale invariant and found that the long-term rain processes in central China indeed exhibit the feature of self-organized criticality. The proposed theory and method may be suitable to analyze other datasets from different climate zones in China.

  5. Satellite and gauge rainfall merging using geographically weighted regression

    Directory of Open Access Journals (Sweden)

    Q. Hu

    2015-05-01

    Full Text Available A residual-based rainfall merging scheme using geographically weighted regression (GWR has been proposed. This method is capable of simultaneously blending various satellite rainfall data with gauge measurements and could describe the non-stationary influences of geographical and terrain factors on rainfall spatial distribution. Using this new method, an experimental study on merging daily rainfall from the Climate Prediction Center Morphing dataset (CMOROH and gauge measurements was conducted for the Ganjiang River basin, in Southeast China. We investigated the capability of the merging scheme for daily rainfall estimation under different gauge density. Results showed that under the condition of sparse gauge density the merging rainfall scheme is remarkably superior to the interpolation using just gauge data.

  6. Rainfall recharge estimation on a nation-wide scale using satellite information in New Zealand

    Science.gov (United States)

    Westerhoff, Rogier; White, Paul; Moore, Catherine

    2015-04-01

    surface, and not only the known aquifers, the model also identifies other zones that could potentially recharge aquifers, including large areas (e.g., mountains) that are currently regarded as impervious. The resulting rainfall recharge data have also been downscaled in a 200 m x 200 m calculation of a national monthly water table. This will lead to better estimation of hydraulic conductivity, which holds considerable potential for further research in unconfined aquifers in New Zealand.

  7. Vertical Motion Changes Related to North-East Brazil Rainfall Variability: a GCM Simulation

    Science.gov (United States)

    Roucou, Pascal; Oribe Rocha de Aragão, José; Harzallah, Ali; Fontaine, Bernard; Janicot, Serge

    1996-08-01

    The atmospheric structure over north-east Brazil during anomalous rainfall years is studied in the 11 levels of the outputs of the Laboratoire de Météorologie Dynamique atmospheric general circulation model (LMD AGCM). Seven 19-year simulations were performed using observed sea-surface temperature (SST) corresponding to the period 1970- 1988. The ensemble mean is calculated for each month of the period, leading to an ensemble-averaged simulation. The simulated March-April rainfall is in good agreement with observations. Correlations of simulated rainfall and three SST indices relative to the equatorial Pacific and northern and southern parts of the Atlantic Ocean exhibit stronger relationships in the simulation than in the observations. This is particularly true with the SST gradient in the Atlantic (Atlantic dipole). Analyses on 200 ;hPa velocity potential, vertical velocity, and vertical integral of the zonal component of mass flux are performed for years of abnormal rainfall and positive/negative SST anomalies in the Pacific and Atlantic oceans in March-April during the rainy season over the Nordeste region. The results at 200 hPa show a convergence anomaly over Nordeste and a divergence anomaly over the Pacific concomitant with dry seasons associated with warm SST anomalies in the Pacific and warm (cold) waters in the North (South) Atlantic. During drought years convection inside the ITCZ indicated by the vertical velocity exhibits a displacement of the convection zone corresponding to a northward migration of the ITCZ. The east-west circulation depicted by the zonal divergent mass flux shows subsiding motion over Nordeste and ascending motion over the Pacific in drought years, accompanied by warm waters in the eastern Pacific and warm/cold waters in northern/southern Atlantic. Rainfall variability of the Nordeste rainfall is linked mainly to vertical motion and SST variability through the migration of the ITCZ and the east-west circulation.

  8. Automated reconstruction of rainfall events responsible for shallow landslides

    Science.gov (United States)

    Vessia, G.; Parise, M.; Brunetti, M. T.; Peruccacci, S.; Rossi, M.; Vennari, C.; Guzzetti, F.

    2014-04-01

    Over the last 40 years, many contributions have been devoted to identifying the empirical rainfall thresholds (e.g. intensity vs. duration ID, cumulated rainfall vs. duration ED, cumulated rainfall vs. intensity EI) for the initiation of shallow landslides, based on local as well as worldwide inventories. Although different methods to trace the threshold curves have been proposed and discussed in literature, a systematic study to develop an automated procedure to select the rainfall event responsible for the landslide occurrence has rarely been addressed. Nonetheless, objective criteria for estimating the rainfall responsible for the landslide occurrence (effective rainfall) play a prominent role on the threshold values. In this paper, two criteria for the identification of the effective rainfall events are presented: (1) the first is based on the analysis of the time series of rainfall mean intensity values over one month preceding the landslide occurrence, and (2) the second on the analysis of the trend in the time function of the cumulated mean intensity series calculated from the rainfall records measured through rain gauges. The two criteria have been implemented in an automated procedure written in R language. A sample of 100 shallow landslides collected in Italy by the CNR-IRPI research group from 2002 to 2012 has been used to calibrate the proposed procedure. The cumulated rainfall E and duration D of rainfall events that triggered the documented landslides are calculated through the new procedure and are fitted with power law in the (D,E) diagram. The results are discussed by comparing the (D,E) pairs calculated by the automated procedure and the ones by the expert method.

  9. Rainfall variation and child health: effect of rainfall on diarrhea among under 5 children in Rwanda, 2010

    Directory of Open Access Journals (Sweden)

    Assumpta Mukabutera

    2016-08-01

    Full Text Available Abstract Background Diarrhea among children under 5 years of age has long been a major public health concern. Previous studies have suggested an association between rainfall and diarrhea. Here, we examined the association between Rwandan rainfall patterns and childhood diarrhea and the impact of household sanitation variables on this relationship. Methods We derived a series of rain-related variables in Rwanda based on daily rainfall measurements and hydrological models built from daily precipitation measurements collected between 2009 and 2011. Using these data and the 2010 Rwanda Demographic and Health Survey database, we measured the association between total monthly rainfall, monthly rainfall intensity, runoff water and anomalous rainfall and the occurrence of diarrhea in children under 5 years of age. Results Among the 8601 children under 5 years of age included in the survey, 13.2 % reported having diarrhea within the 2 weeks prior to the survey. We found that higher levels of runoff were protective against diarrhea compared to low levels among children who lived in households with unimproved toilet facilities (OR = 0.54, 95 % CI: [0.34, 0.87] for moderate runoff and OR = 0.50, 95 % CI: [0.29, 0.86] for high runoff but had no impact among children in household with improved toilets. Conclusion Our finding that children in households with unimproved toilets were less likely to report diarrhea during periods of high runoff highlights the vulnerabilities of those living without adequate sanitation to the negative health impacts of environmental events.

  10. Forest amount affects soybean productivity in Brazilian agricultural frontier

    Science.gov (United States)

    Rattis, L.; Brando, P. M.; Marques, E. Q.; Queiroz, N.; Silverio, D. V.; Macedo, M.; Coe, M. T.

    2017-12-01

    Over the past three decades, large tracts of tropical forests have been converted to crop and pasturelands across southern Amazonia, largely to meet the increasing worldwide demand for protein. As the world's population continue to grow and consume more protein per capita, forest conversion to grow more crops could be a potential solution to meet such demand. However, widespread deforestation is expected to negatively affect crop productivity via multiple pathways (e.g., thermal regulation, rainfall, local moisture, pest control, among others). To quantify how deforestation affects crop productivity, we modeled the relationship between forest amount and enhanced vegetation index (EVI—a proxy for crop productivity) during the soybean planting season across southern Amazonia. Our hypothesis that forest amount causes increased crop productivity received strong support. We found that the maximum MODIS-based EVI in soybean fields increased as a function of forest amount across three spatial-scales, 0.5 km, 1 km, 2 km, 5 km, 10 km, 15 km and 20 km. However, the strength of this relationship varied across years and with precipitation, but only at the local scale (e.g., 500 meters and 1 km radius). Our results highlight the importance of considering forests to design sustainable landscapes.

  11. Experimental evidence of lateral flow in unsaturated homogeneous isotropic sloping soil due to rainfall

    NARCIS (Netherlands)

    Sinai, G.; Dirksen, C.

    2006-01-01

    This paper describes laboratory experimental evidence for lateral flow in the top layer of unsaturated sloping soil due to rainfall. Water was applied uniformly on horizontal and V-shaped surfaces of fine sand, at rates about 100 times smaller than the saturated hydraulic conductivity. Flow regimes

  12. Leaching variations of heavy metals in chelator-assisted phytoextraction by Zea mays L. exposed to acid rainfall.

    Science.gov (United States)

    Lu, Yayin; Luo, Dinggui; Liu, Lirong; Tan, Zicong; Lai, An; Liu, Guowei; Li, Junhui; Long, Jianyou; Huang, Xuexia; Chen, Yongheng

    2017-11-01

    Chelant-enhanced phytoextraction method has been put forward as an effective soil remediation method, whereas the heavy metal leaching could not be ignored. In this study, a cropping-leaching experiment, using soil columns, was applied to study the metal leaching variations during assisted phytoextraction of Cd- and Pb-polluted soils, using seedlings of Zea mays, applying three different chelators (EDTA, EDDS, and rhamnolipid), and artificial rainfall (acid rainfall or normal rainfall). It showed that artificial rainfall, especially artificial acid rain, after chelator application led to the increase of heavy metals in the leaching solution. EDTA increased both Cd and Pb concentrations in the leaching solution, obviously, whereas EDDS and rhamnolipid increased Cd concentration but not Pb. The amount of Cd and Pb decreased as the leaching solution increased, the patterns as well matched LRMs (linear regression models), with R-square (R 2 ) higher than 90 and 82% for Cd and Pb, respectively. The maximum cumulative Cd and Pb in the leaching solutions were 18.44 and 16.68%, respectively, which was amended by EDTA and acid rainwater (pH 4.5), and followed by EDDS (pH 4.5), EDDS (pH 6.5), rhamnolipid (0.5 g kg -1 soil, pH 4.5), and rhamnolipid (pH 6.5).

  13. A Method for Decreasing the Amount of the Drug Remaining on the Surfaces of the Mortar and Pestle after Grinding Small Amount of Tablets.

    Science.gov (United States)

    Kawakami, Miki; Kitada, Rika; Kurita, Takuro; Tokumura, Tadakazu

    2017-01-01

    The aim of the present study was to develop a method for grinding tablets with a mortar and pestle while reducing drug loss because grinding tablets is known to be associated with reductions in tablet weight and loss of the active drug. Seven kinds of tablets were subjected to grinding. The proportion (%) of the amount of the active drug in the powder remaining on the surfaces of the mortar and pestle relative to the total amount of the drug recovered (the recovery percent) was calculated. The recovery percent of the 7 kinds of tablets ranged from 17.2-35.9%, and the tablets' recovery percent decreased as the tablet weight increased. When the grinding was performed with 1 g of lactose monohydrate or 1 g of D-mannitol moistened with water, the recovery percent of the tablets decreased to 2.6-9.9% and 3.8-9.9%, respectively. The effects of the weight of lactose monohydrate on the recovery percent of Allegra ® 60 mg tablets were examined. It was found that at least 0.6 g of lactose monohydrate was required to have a sufficient effect on drug recovery. Therefore, additives that have stronger effects at lower amounts were sought. As a result, calcium monohydrogen phosphate was found to have the strongest effect on drug recovery. The addition of 0.4 g calcium monohydrogen phosphate resulted in the recovery percent of 5.1%, which was significantly lower than that of 15.0% observed after the addition of 0.4 g lactose monohydrate, and lower than the 6.8% of 1 g lactose monohydrate.

  14. Large-Scale Processes Associated with Inter-Decadal and Inter-Annual Early Spring Rainfall Variability in Taiwan

    Directory of Open Access Journals (Sweden)

    Jau-Ming Chen

    2016-02-01

    Full Text Available Early spring (March - April rainfall in Taiwan exhibits evident and distinct inter-annual and inter-decadal variability. The inter-annual varibility has a positive correlation with the El Niño/Southern Oscillation while the inter-decadal variability features a phase change beginning in the late 1970s, coherent with the major phase change in the Pacific decadal oscillation. Rainfall variability in both timescales is regulated by large-scale processes showing consistent dynamic features. Rainfall increases are associated with positive sea surface temperature (SST anomalies in the tropical eastern Pacific and negative SST anomalies in the tropical central Pacific. An anomalous lower-level divergent center appears in the tropical central Pacific. Via a Rossby-wave-like response, an anomalous lower-level anticyclone appears to the southeast of Taiwan over the Philippine Sea-tropical western Pacific region, which is accompanied by an anomalous cyclone to the north-northeast of Taiwan. Both circulation anomalies induce anomalous southwesterly flows to enhance moisture flux from the South China Sea onto Taiwan, resulting in significant moisture convergence nearby Taiwan. With enhanced moisture supplied by anomalous southwesterly flows, significant rainfall increases occur in both inter-annual and inter-decadal timescales in early spring rainfall on Taiwan.

  15. A Poisson Cluster Stochastic Rainfall Generator That Accounts for the Interannual Variability of Rainfall Statistics: Validation at Various Geographic Locations across the United States

    Directory of Open Access Journals (Sweden)

    Dongkyun Kim

    2014-01-01

    Full Text Available A novel approach for a Poisson cluster stochastic rainfall generator was validated in its ability to reproduce important rainfall and watershed response characteristics at 104 locations in the United States. The suggested novel approach, The Hybrid Model (THM, as compared to the traditional Poisson cluster rainfall modeling approaches, has an additional capability to account for the interannual variability of rainfall statistics. THM and a traditional approach of Poisson cluster rainfall model (modified Bartlett-Lewis rectangular pulse model were compared in their ability to reproduce the characteristics of extreme rainfall and watershed response variables such as runoff and peak flow. The results of the comparison indicate that THM generally outperforms the traditional approach in reproducing the distributions of peak rainfall, peak flow, and runoff volume. In addition, THM significantly outperformed the traditional approach in reproducing extreme rainfall by 2.3% to 66% and extreme flow values by 32% to 71%.

  16. Indian summer monsoon rainfall variability during 2014 and 2015 and associated Indo-Pacific upper ocean temperature patterns

    Science.gov (United States)

    Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.

    2018-02-01

    In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the

  17. Accuracy of rainfall measurement for scales of hydrological interest

    Directory of Open Access Journals (Sweden)

    S. J. Wood

    2000-01-01

    Full Text Available The dense network of 49 raingauges over the 135 km2 Brue catchment in Somerset, England is used to examine the accuracy of rainfall estimates obtained from raingauges and from weather radar. Methods for data quality control and classification of precipitation types are first described. A super-dense network comprising eight gauges within a 2 km grid square is employed to obtain a 'true value' of rainfall against which the 2 km radar grid and a single 'typical gauge' estimate can be compared. Accuracy is assessed as a function of rainfall intensity, for different periods of time-integration (15 minutes, 1 hour and 1 day and for two 8-gauge networks in areas of low and high relief. In a similar way, the catchment gauge network is used to provide the 'true catchment rainfall' and the accuracy of a radar estimate (an area-weighted average of radar pixel values and a single 'typical gauge' estimate of catchment rainfall evaluated as a function of rainfall intensity. A single gauge gives a standard error of estimate for rainfall in a 2 km square and over the catchment of 33% and 65% respectively, at rain rates of 4 mm in 15 minutes. Radar data at 2 km resolution give corresponding errors of 50% and 55%. This illustrates the benefit of using radar when estimating catchment scale rainfall. A companion paper (Wood et al., 2000 considers the accuracy of rainfall estimates obtained using raingauge and radar in combination. Keywords: rainfall, accuracy, raingauge, radar

  18. Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil.

    Science.gov (United States)

    Wu, Lei; Peng, Mengling; Qiao, Shanshan; Ma, Xiao-Yi

    2018-02-01

    Soil erosion is a universal phenomenon on the Loess Plateau but it exhibits complex and typical mechanism which makes it difficult to understand soil loss laws on slopes. We design artificial simulated rainfall experiments including six rainfall intensities (45, 60, 75, 90, 105, 120 mm/h) and five slopes (5°, 10°, 15°, 20°, 25°) to reveal the fundamental changing trends of runoff and sediment yield on bare loess soil. Here, we show that the runoff yield within the initial 15 min increased rapidly and its trend gradually became stable. Trends of sediment yield under different rainfall intensities are various. The linear correlation between runoff and rainfall intensity is obvious for different slopes, but the correlations between sediment yield and rainfall intensity are weak. Runoff and sediment yield on the slope surface both presents an increasing trend when the rainfall intensity increases from 45 mm/h to 120 mm/h, but the increasing trend of runoff yield is higher than that of sediment yield. The sediment yield also has an overall increasing trend when the slope changes from 5° to 25°, but the trend of runoff yield is not obvious. Our results may provide data support and underlying insights needed to guide the management of soil conservation planning on the Loess Plateau.

  19. Rainfall reliability, drought and flood vulnerability in Botswana ...

    African Journals Online (AJOL)

    Rainfall data from 14 stations (cities, towns and major villages) spanning 26 years (1970 to 1995) were used to calculate reliability and vulnerability of rainfall in Botswana. Time series data for 72 years were generated from the long-term rainfall gauging stations and the number of wet and dry years determined. Apart from ...

  20. Projected changes of rainfall event characteristics for the Czech Republic

    Directory of Open Access Journals (Sweden)

    Svoboda Vojtěch

    2016-12-01

    Full Text Available Projected changes of warm season (May–September rainfall events in an ensemble of 30 regional climate model (RCM simulations are assessed for the Czech Republic. Individual rainfall events are identified using the concept of minimum inter-event time and only heavy events are considered. The changes of rainfall event characteristics are evaluated between the control (1981–2000 and two scenario (2020–2049 and 2070–2099 periods. Despite a consistent decrease in the number of heavy rainfall events, there is a large uncertainty in projected changes in seasonal precipitation total due to heavy events. Most considered characteristics (rainfall event depth, mean rainfall rate, maximum 60-min rainfall intensity and indicators of rainfall event erosivity are projected to increase and larger increases appear for more extreme values. Only rainfall event duration slightly decreases in the more distant scenario period according to the RCM simulations. As a consequence, the number of less extreme heavy rainfall events as well as the number of long events decreases in majority of the RCM simulations. Changes in most event characteristics (and especially in characteristics related to the rainfall intensity depend on changes in radiative forcing and temperature for the future periods. Only changes in the number of events and seasonal total due to heavy events depend significantly on altitude.