WorldWideScience

Sample records for surface radius experiments

  1. The PRad experiment and the proton radius puzzle

    Directory of Open Access Journals (Sweden)

    Gasparian Ashot

    2014-06-01

    Full Text Available New results from the recent muonic hydrogen experiments seriously questioned our knowledge of the proton charge radius, rp. The new value, with its unprecedented less than sub-percent precision, is currently up to eight standard deviation smaller than the average value from all previous experiments, triggering the well-known “proton charge radius puzzle” in nuclear and atomic physics. The PRad collaboration is currently preparing a novel, magnetic-spectrometer-free ep scattering experiment in Hall B at JLab for a new independent rp measurement to address this growing “puzzle” in physics.

  2. Investigating the Effect of Approach Angle and Nose Radius on Surface Quality of Inconel 718

    Science.gov (United States)

    Kumar, Sunil; Singh, Dilbag; Kalsi, Nirmal S.

    2017-11-01

    This experimental work presents a surface quality evaluation of a Nickel-Cr-Fe based Inconel 718 superalloy, which has many applications in the aero engine and turbine components. However, during machining, the early wear of tool leads to decrease in surface quality. The coating on cutting tool plays a significant role in increasing the wear resistance and life of the tool. In this work, the aim is to study the surface quality of Inconel 718 with TiAlN-coated carbide tools. Influence of various geometrical parameters (tool nose radius, approach angle) and machining variables (cutting velocity, feed rate) on the quality of machined surface (surface roughness) was determined by using central composite design (CCD) matrix. The mathematical model of the same was developed. Analysis of variance was used to find the significance of the parameters. Results showed that the tool nose radius and feed were the main active factors. The present experiment accomplished that TiAlN-coated carbide inserts result in better surface quality as compared with uncoated carbide inserts.

  3. Experimental and numerical investigation of laser forming of cylindrical surfaces with arbitrary radius of curvature

    Directory of Open Access Journals (Sweden)

    Mehdi Safari

    2016-09-01

    Full Text Available In this work, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated experimentally and numerically. For laser forming of cylindrical surfaces with arbitrary radius of curvature, a new and comprehensive method is proposed in this paper. This method contains simple linear irradiating lines and using an analytical method, required process parameters for laser forming of a cylindrical surface with a specific radius of curvature is proposed. In this method, laser output power, laser scanning speed and laser beam diameter are selected based on laser machine and process limitations. As in the laser forming of a cylindrical surface, parallel irradiating lines are needed; therefore key parameter for production of a cylindrical surface with a specific radius of curvature is the number of irradiating lines. Hence, in the proposed analytical method, the required number of irradiating lines for production of a cylindrical surface with a specific radius of curvature is suggested. Performance of the proposed method for production of cylindrical surface with a specific radius of curvature is verified with experimental tests. The results show that using proposed analytical method, cylindrical surfaces with any radius of curvature can be produced successfully.

  4. Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Chao, Bo-Kai; Lin, Shih-Che; Nien, Li-Wei; Hsueh, Chun-Hway; Li, Jia-Han

    2015-01-01

    Corner radius is a concept to approximate the fabrication limitation due to the effective beam broadening at the corner in using electron-beam lithography. The purpose of the present study is to investigate the effects of corner radius on the electromagnetic field enhancement and resonance wavelength for three periodic polygon dimers of bowtie, twin square, and twin pentagon. The enhancement factor of surface-enhanced Raman spectroscopy due to the localized surface plasmon resonances in fabricated gold bowtie nanostructures was investigated using both Raman spectroscopy and finite-difference time-domain simulations. The simulated enhancement factor versus corner radius relation was in agreement with measurements and it could be fitted by a power-law relation. In addition, the resonance wavelength showed blue shift with the increasing corner radius because of the distribution of concentrated charges in a larger area. For different polygons, the corner radius instead of the tip angle is the dominant factor of the electromagnetic field enhancement because the surface charges tend to localize at the corner. Greater enhancements can be obtained by having both the smaller gap and sharper corner although the corner radius effect on intensity enhancement is less than the gap size effect. (paper)

  5. Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection

    Science.gov (United States)

    Abdelsalam, D. G.; Shaalan, M. S.; Eloker, M. M.; Kim, Daesuk

    2010-06-01

    In this paper a method is presented to accurately measure the radius of curvature of different types of curved surfaces of different radii of curvatures of 38 000,18 000 and 8000 mm using multiple-beam interference fringes in reflection. The images captured by the digital detector were corrected by flat fielding method. The corrected images were analyzed and the form of the surfaces was obtained. A 3D profile for the three types of surfaces was obtained using Zernike polynomial fitting. Some sources of uncertainty in measurement were calculated by means of ray tracing simulations and the uncertainty budget was estimated within λ/40.

  6. Influence of edge radius of sintered-carbide tip on roughness of machined surface

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-01-01

    Full Text Available Increasing of cutting speed and thus increasing labour productivity is observed as a current trend in engineering production. This effort results to development of new cutting materials which are more capable to resist increased requirements on machined surface as well as operating life of the instrument. Nowadays, the most widely used materials used for cutting instruments are sintered carbides which are alloyed by other metals. The goal of this paper is to analyse change in quality of machined surface depending on the change of cutting conditions. For cutting operation, there were used a milling cutter high-speed steel 90 (HSS and removable sintered-carbide tips with different radius. Steel 12 050 hardened for 17 HRC was used as a machined material. Firstly, hardness of machined as well as machining materials was analysed. Further, metallographic analysis and measurement of microhardness of the individual structure phases was processed. Cutting conditions of both instruments were selected depending on the machined material. Surface roughness indicates the quality of machined surface.

  7. LH2 Target Design & Position Survey Techniques for the MUSE experiment for Precise Proton Radius Measurement

    Science.gov (United States)

    Le Pottier, Luc; Roy, Pryiashee; Lorenzon, Wolfgang; Raymond, Richard; Steinberg, Noah; Rossi de La Fuente, Erick; MUSE (MUon proton Scattering Experiment) Collaboration

    2017-09-01

    The proton radius puzzle is a currently unresolved problem which has intrigued the scientific community, dealing with a 7 σ discrepancy between the proton radii determined from muonic hydrogen spectroscopy and electron scattering measurements. The MUon Scattering Experiment (MUSE) aims to resolve this puzzle by performing the first simultaneous elastic scattering measurements of both electrons and muons on the proton, which will allow the comparison of the radii from the two interactions with reduced systematic uncertainties. The data from this experiment is expected to provide the best test of lepton universality to date. The experiment will take place at the Paul Scherrer Institute in Switzerland in 2018. An essential component of the experiment is a liquid hydrogen (LH2) cryotarget system. Our group at the University of Michigan is responsible for the design, fabrication and installation of this system. Here we present our LH2 target cell design and fabrication techniques for successful operation at 20 K and 1 atm, and our computer vision-based target position survey system which will determine the position of the target, installed inside a vacuum chamber, with 0.01 mm or better precision at the height of the liquid hydrogen target and along the beam direction during the experiment.

  8. THE IMPACT OF SURFACE TEMPERATURE INHOMOGENEITIES ON QUIESCENT NEUTRON STAR RADIUS MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Elshamouty, K. G.; Heinke, C. O.; Morsink, S. M.; Stevens, A. L. [Department of Physics, University of Alberta, CCIS 4-181, Edmonton, AB T6G 2E1 (Canada); Bogdanov, S., E-mail: alshamou@ualberta.ca [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, NY 10027 (United States)

    2016-08-01

    Fitting the thermal X-ray spectra of neutron stars (NSs) in quiescent X-ray binaries can constrain the masses and radii of NSs. The effect of undetected hot spots on the spectrum, and thus on the inferred NS mass and radius, has not yet been explored for appropriate atmospheres and spectra. A hot spot would harden the observed spectrum, so that spectral modeling tends to infer radii that are too small. However, a hot spot may also produce detectable pulsations. We simulated the effects of a hot spot on the pulsed fraction and spectrum of the quiescent NSs X5 and X7 in the globular cluster 47 Tucanae, using appropriate spectra and beaming for hydrogen atmosphere models, incorporating special and general relativistic effects, and sampling a range of system angles. We searched for pulsations in archival Chandra HRC-S observations of X5 and X7, placing 90% confidence upper limits on their pulsed fractions below 16%. We use these pulsation limits to constrain the temperature differential of any hot spots, and to then constrain the effects of possible hot spots on the X-ray spectrum and the inferred radius from spectral fitting. We find that hot spots below our pulsation limit could bias the spectroscopically inferred radius downward by up to 28%. For Cen X-4 (which has deeper published pulsation searches), an undetected hot spot could bias its inferred radius downward by up to 10%. Improving constraints on pulsations from quiescent LMXBs may be essential for progress in constraining their radii.

  9. THE IMPACT OF SURFACE TEMPERATURE INHOMOGENEITIES ON QUIESCENT NEUTRON STAR RADIUS MEASUREMENTS

    International Nuclear Information System (INIS)

    Elshamouty, K. G.; Heinke, C. O.; Morsink, S. M.; Stevens, A. L.; Bogdanov, S.

    2016-01-01

    Fitting the thermal X-ray spectra of neutron stars (NSs) in quiescent X-ray binaries can constrain the masses and radii of NSs. The effect of undetected hot spots on the spectrum, and thus on the inferred NS mass and radius, has not yet been explored for appropriate atmospheres and spectra. A hot spot would harden the observed spectrum, so that spectral modeling tends to infer radii that are too small. However, a hot spot may also produce detectable pulsations. We simulated the effects of a hot spot on the pulsed fraction and spectrum of the quiescent NSs X5 and X7 in the globular cluster 47 Tucanae, using appropriate spectra and beaming for hydrogen atmosphere models, incorporating special and general relativistic effects, and sampling a range of system angles. We searched for pulsations in archival Chandra HRC-S observations of X5 and X7, placing 90% confidence upper limits on their pulsed fractions below 16%. We use these pulsation limits to constrain the temperature differential of any hot spots, and to then constrain the effects of possible hot spots on the X-ray spectrum and the inferred radius from spectral fitting. We find that hot spots below our pulsation limit could bias the spectroscopically inferred radius downward by up to 28%. For Cen X-4 (which has deeper published pulsation searches), an undetected hot spot could bias its inferred radius downward by up to 10%. Improving constraints on pulsations from quiescent LMXBs may be essential for progress in constraining their radii.

  10. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi; Hou, Juan; Yin, ManLi [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang, Jing, E-mail: biomatwj@163.com [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, ChangSheng, E-mail: csliu@sh163.net [Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2014-11-01

    Large osseous defects remain a difficult clinical problem in orthopedic surgery owing to the limited effective therapeutic options, and bone morphogenetic protein-2 (BMP-2) is useful for its potent osteoinductive properties in bone regeneration. Here we build a strategy to achieve prolonged duration time and help inducting new bone formation by using water-soluble polymers as a protective film. In this study, calcium phosphate cement (CPC) scaffolds were prepared as the matrix and combined with sodium carboxymethyl cellulose (CMC-Na), hydroxypropylmethyl cellulose (HPMC), and polyvinyl alcohol (PVA) respectively to protect from the digestion of rhBMP-2. After being implanted in the mouse thigh muscles, the surface-modified composite scaffolds evidently induced ectopic bone formation. In addition, we further evaluated the in vivo effects of surface-modified scaffolds in a rabbit radius critical defect by radiography, three dimensional micro-computed tomographic (μCT) imaging, synchrotron radiation-based micro-computed tomographic (SRμCT) imaging, histological analysis, and biomechanical measurement. The HPMC-modified CPC scaffold was regarded as the best combination for segmental bone regeneration in rabbit radius. - Highlights: • A simple surface-coating method was used to fabricate composite scaffolds. • Growth factor was protected from rapid depletion via superficial coating. • Significant promotion of bone regeneration was achieved. • HPMC-modification displayed optimal effect of bone regeneration.

  11. Radius ratio rule for surface hydrophilization of polydimethyl siloxane and silica nanoparticle composite

    Energy Technology Data Exchange (ETDEWEB)

    Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Jain, Puneet; Sharma, Rina [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Bathula, Sivaiah; Dhar, Ajay [Material Physics and Engineering Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India)

    2015-09-15

    Graphical abstract: - Highlights: • Binary hard sphere silica nanoparticle system based PDMS composite. • Enhanced hydrophilization and retainability of the composite. • Restriction of uncured PDMS from diffusion. • Increased Debye length of electrostatic double layer, measured by F-D Spectroscopy. - Abstract: Polydimethyl siloxane (PDMS) and Silica (SiO{sub 2}) nanoparticle composite blocks of three different batches (CB1–CB3) made by varying the size of SiO{sub 2} nanoparticles (NP), are studied for the degree of hydrophilization and retainability after oxidation by contact angle measurements (CA) and force distance spectroscopy (FDS) using Atomic Force Microscope (AFM). While CA measurements have shown high hydrophilization and retainability for CB3, F-D spectroscopy has reiterated the observation and has shown long range interactive forces and high Debye length of the electrostatic double layer formed. These results are in agreement with the radius ratio rule of binary sphere system for high density packing in the composite and thereby for strong hydrophilization and retainability due to reinforcement and restricted diffusion of uncured polymer.

  12. Fiber Z-pinch experiments and calculations in the finite Larmor radius regime

    International Nuclear Information System (INIS)

    Haines, M.G.; Dangor, A.E.; Coppins, M.

    1996-01-01

    The dense Z-pinch project at Imperial College is aimed at achieving radiative collapse to high density in a hydrogen plasma, and also to study plasmas close to controlled fusion conditions. To this end, the MAGPIE generator (2.4 MV, 1.25 Ω, and 200 ns) has been built and tested, and is now giving preliminary experimental data at 60% of full voltage for carbon and CD 2 fibers. These discharges are characterized by an initial radial expansion followed by the occurrence of m = 0 structures with transient X-ray emission from bright spots. Late in the discharge a disruption can occur, accompanied by hard X-ray emission from the anode due to an energetic electron beam and, in the case of CD 2 fibers, a neutron burst. Concomitant theoretical studies have solved the linear stability problem for a Z-pinch with large ion Larmor radii, showing that a reduction in growth rate of m = 0 and m = 1 modes to about 20% of the magnetohydrodynamic (MHD) value can occur for a parabolic density profile when the Larmor radius is optimally 20% of the pinch radius. Two-dimensional MHD simulations of Z-pinches in two extremes of focussed short-pulse laser-plasma interactions and of galactic jets reveal a nonlinear stabilizing effect in the presence of sheared flow. One-dimensional simulations show that at low line density the lower hybrid drift instability can lead to coronal radial expansion of a Z-pinch plasma. (Author)

  13. Measurements of the toroidal plasma rotation velocity in TFTR major-radius compression experiments with auxiliary neutral beam heating

    International Nuclear Information System (INIS)

    Bitter, M.; Wong, K.L.; Scott, S.; Hsuan, H.; Grek, B.; Johnson, D.; Tait, G.

    1990-01-01

    The time history of the central toroidal plasma rotation velocity in Tokamak Fusion Test Reactor (TFTR) experiments [Phys. Rev. Lett. 55, 2587 (1985)] with auxiliary heating by neutral deuterium beam injection and major-radius compression has been measured from the Doppler shift of the emitted Ti XXI Kα line radiation. The experiments were conducted for neutral beam powers in the range 2.1--3.8 MW and line-averaged densities in the range 1.8--3.0x10 19 m -2 . The observed rotation velocity increase during compression is consistent with theoretical estimates

  14. Scanning and/or treating surface device for weak bending radius cylindrical airlock

    International Nuclear Information System (INIS)

    Gemma, A.

    1988-01-01

    The device for scanning or treating the surface of a weak bending cylindrical airlock has a support mounted on the airlock outside flange, a central mast perpendicular to the support mounted to rotate about its axis, a geared motor turning the mast, an exploration or treatment tool fixed to the mast and a controller for the motor and the tool [fr

  15. Short-radius horizontal well re-entry learning curve: prize, cost and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Boote, K. [Ocelot Energy Inc., Calgary, AB (Canada); MacDonald, R. [Lauron Engineering Ltd, Calgary, AB (Canada)

    1997-12-01

    Six mature vertical wells in Alberta belonging to Ocelot Energy Inc., were reentered and drilled horizontally. Experiences gained, the modifications made to the drilling program and the rewards in the form of incremental oil, were discussed. Details of pre- and post-performance, operational experiences with exiting the casing, building the curve, overbalance versus underbalanced drilling, motors, directional equipment, setting liners, remedial workovers and the cost of the operation were part of the discussion.

  16. Measurements of the toroidal plasma rotation velocity in TFTR major-radius compression experiments with auxiliary neutral beam heating

    International Nuclear Information System (INIS)

    Bitter, M.; Scott, S.; Wong, K.L.

    1986-07-01

    The time history of the central toroidal plasma rotation velocity in Tokamak Fusion Test Reactor (TFTR) experiments with auxiliary heating by neutral deuterium beam injection and major-radius compression has been measured from the Doppler shift of the emitted TiXXI-Kα line radiation. The experiments were conducted for neutral beam powers in the range from 2.1 to 3.8 MW and line-averaged densities in the range from 1.8 to 3.0 x 10 19 m -2 . The observed rotation velocity increase during compression is in agreement with results from modeling calculations which assume classical slowing-down of the injected fast deuterium ions and momentum damping at the rate established in the precompression plasma

  17. Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles

    Science.gov (United States)

    Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.

    2006-12-01

    Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.

  18. Configuration design and accuracy analysis of a novel magneto rheological finishing machine tool for concave surfaces with small radius of curvature

    International Nuclear Information System (INIS)

    Liu, Henan; Chen, Mingjun; Yu, Bo; Zhen, Fang

    2016-01-01

    Magnetorheological finishing (MRF) is a computer-controlled deterministic polishing technique that is widely used in the production of high-quality optics. In order to overcome the defects of existing MRF processes that are unable to achieve concave surfaces with small radius of curvature, a configuration method of a novel structured MRF machine tool using small ball-end permanent-magnet polishing head is proposed in this paper. The preliminary design focuses on the structural configuration of the machine, which includes the machine body, motion units and accessory equipment, and so on. Structural deformation and fabrication accuracy of the machine are analyzed theoretically, in which the reasonable structure sizes, manufacturing errors and assembly errors of main structural components are given for configuration optimization. Based on the theoretical analysis, a four-axes linkage MRF machine tool is developed. Preliminary experiments of spot polishing are carried out and the results indicate that the proposed MRF process can achieve stable polishing area which meets requirement of deterministic polishing. A typical small-bore complex component is polished on the developed device and fine surface quality is obtained with sphericity of the finished spherical surfaces 1.3 μm and surface roughness Ra less than 0.018 μm.

  19. Experiments in the accelerator beam: change in the charge radius of 2+ rotational levels

    International Nuclear Information System (INIS)

    Hanna, S.S.

    1977-01-01

    The method of in-beam implantation is discussed and illustrated by implantation of 57 Fe into single crystals of semiconductors. The application to isotopes which cannot be produced by radioactive sources is illustrated by a study of the isomer shifts in isotopic series of rotational nuclei. Spectra obtained for implantation of 57 Fe into single crystals of germanium as a function of temperature are shown. Two well defined sites are observed. The right hand resonance can be identified with a substitutional site, while the left hand resonance is produced by either an interstitial or a ''damage'' site. A series of experiments are considered which illustrate the use of in-beam implantation to produce high-quality, single-line sources of nuclei which cannot be produced by radioactive parents. In particular, these experiments measure the isomer shifts in a complete series of isotopes. Usually only the proton-rich isotopes can be measured with radioactive sources; in-beam implantation can then be used to complete the series. The Gd and Yb series are completed in this way. 10 references

  20. Expressions of the radius and the surface tension of surface of tension in terms of the pressure distribution for nanoscale liquid threads

    International Nuclear Information System (INIS)

    Yan Hong; Wei Jiu-An; Cui Shu-Wen; Zhu Ru-Zeng

    2013-01-01

    The expressions of the radius and the surface tension of surface of tension R s and γ s in terms of the pressure distribution for nanoscale liquid threads are of great importance for molecular dynamics (MD) simulations of the interfacial phenomena of nanoscale fluids; these two basic expressions are derived in this paper. Although these expressions were derived first in the literature [Kim B G, Lee J S, Han M H, and Park S, 2006 Nanoscale and Microscale Thermophysical Engineering, 10, 283] and used widely thereafter, the derivation is wrong both in logical structure and physical thought. In view of the importance of these basic expressions, the logic and physical mistakes appearing in that derivation are pointed out. (condensed matter: structural, mechanical, and thermal properties)

  1. On the neutron charge radius and the new experiments proposed for the precise (n,e) - scattering length measurement

    International Nuclear Information System (INIS)

    Enik, T.L.; Mitsyna, L.V.; Nikolenko, V.G.; Oprea, I.A.; Parzhitsky, S.S.; Popov, A.B.; Samosvat, G.S.; Vtiuryn, V.A.

    1999-01-01

    Relationship between the n,e scattering length, b ne , the neutron mean square charge radius n 2 > and anomalous magnetic moment μ n , the quantities which characterize the internal structure of the neutron, was investigated. The performed analysis showed that in the framework of the modern cloudy bag model (CBM) of the nucleon the values of b ne is determined by the value of n 2 > without the so-called Foldy term being taken into account, while in the framework of the phenomenological Foldy approach the experimental values of ne > obtained up to date can be described only by this Foldy term within an accuracy of about 10%, i.e. by the anomalous magnetic moment of the neutron, μ n . Then a necessity is obvious to obtain b ne with higher accuracy than in previous experiments. To remove the contradictions in the experimental b ne estimates, new experiments to measure the energy dependence of the slow neutron scattering cross section by 86 Kr and scattering anisotropy on Xe isotopes, have been proposed. The investigation has been performed at Frank Laboratory of Neutron Physics, JINR. (authors)

  2. Effect of cutting edge radius on surface roughness in diamond tool turning of transparent MgAl2O4 spinel ceramic

    Science.gov (United States)

    Yue, Xiaobin; Xu, Min; Du, Wenhao; Chu, Chong

    2017-09-01

    Transparent magnesium aluminate spinel (MgAl2O4) ceramic is one of an important optical materials. However, due to its pronounced hardness and brittleness, the optical machining of this material is very difficult. Diamond turning has advantages over the grinding process in flexibility and material removal rate. However, there is a lack of research that could support the use of diamond turning technology in the machining of MgAl2O4 spinel ceramic. Using brittle-ductile transition theory of brittle material machining, this work provides critical information that may help to realize ductile-regime turning of MgAl2O4 spinel ceramic. A characterization method of determination the cutting edge radius is introduced here. Suitable diamond tools were measured for sharpness and then chosen from a large number of candidate tools. The influence of rounded cutting edges on surface roughness of the MgAl2O4 spinel ceramic is also investigated. These results indicate that surface quality of MgAl2O4 spinel is relate to the radius of diamond tool's cutting edge, cutting speed, and feed rate. Sharp diamond tools (small radius of cutting edge) facilitated ductile-regime turning of MgAl2O4 spinel and shows great potential to reduce surface roughness and produce smoother final surface.

  3. A Method to Estimate the Probability That Any Individual Lightning Stroke Contacted the Surface Within Any Radius of Any Point

    Science.gov (United States)

    Huddleston, Lisa L.; Roeder, William; Merceret, Francis J.

    2010-01-01

    A technique has been developed to calculate the probability that any nearby lightning stroke is within any radius of any point of interest. In practice, this provides the probability that a nearby lightning stroke was within a key distance of a facility, rather than the error ellipses centered on the stroke. This process takes the current bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to get the probability that the stroke is inside any specified radius. This new facility-centric technique will be much more useful to the space launch customers and may supersede the lightning error ellipse approach discussed in [5], [6].

  4. The etching property of the surface of CR-39 and the track core radius of fission fragment

    CERN Document Server

    Mineyama, D; Yamauchi, T; Oda, K; El-Rahman, A

    2002-01-01

    The etch pits of fission fragments in CR-39 detector have been observed carefully using an atomic force microscope (AFM) after extremely short chemical etching in stirred 6N KOH solution kept at 70degC. It was found that there existed a thin layer where the bulk etch rate is relativity from large the etch-pit growth curve for the etching duration between 10 and 1800 seconds. The track core radius of fission fragment was evaluated to be about 6 nm from the extrapolation of the growth curve in a thinner region. (author)

  5. The proton radius puzzle

    Science.gov (United States)

    Bonesini, Maurizio

    2017-12-01

    The FAMU (Fisica degli Atomi Muonici) experiment has the goal to measure precisely the proton Zemach radius, thus contributing to the solution of the so-called proton radius "puzzle". To this aim, it makes use of a high-intensity pulsed muon beam at RIKEN-RAL impinging on a cryogenic hydrogen target with an high-Z gas admixture and a tunable mid-IR high power laser, to measure the hyperfine (HFS) splitting of the 1S state of the muonic hydrogen. From the value of the exciting laser frequency, the energy of the HFS transition may be derived with high precision ( 10-5) and thus, via QED calculations, the Zemach radius of the proton. The experimental apparatus includes a precise fiber-SiPMT beam hodoscope and a crown of eight LaBr3 crystals and a few HPGe detectors for detection of the emitted characteristic X-rays. Preliminary runs to optimize the gas target filling and its operating conditions have been taken in 2014 and 2015-2016. The final run, with the pump laser to drive the HFS transition, is expected in 2018.

  6. Do the contact angle and line tension of surface-attached droplets depend on the radius of curvature?

    Science.gov (United States)

    Das, Subir K; Egorov, Sergei A; Virnau, Peter; Winter, David; Binder, Kurt

    2018-06-27

    Results from Monte Carlo simulations of wall-attached droplets in the three-dimensional Ising lattice gas model and in a symmetric binary Lennard-Jones fluid, confined by antisymmetric walls, are analyzed, with the aim to estimate the dependence of the contact angle [Formula: see text] on the droplet radius [Formula: see text] of curvature. Sphere-cap shape of the wall-attached droplets is assumed throughout. An approach, based purely on 'thermodynamic' observables, e.g. chemical potential, excess density due to the droplet, etc, is used, to avoid ambiguities in the decision which particles belong (or do not belong, respectively) to the droplet. It is found that the results are compatible with a variation [Formula: see text], [Formula: see text] being the contact angle in the thermodynamic limit ([Formula: see text]). The possibility to use such results to estimate the excess free energy related to the contact line of the droplet, namely the line tension, at the wall, is discussed. Various problems that hamper this approach and were not fully recognized in previous attempts to extract the line tension are identified. It is also found that the dependence of wall tensions on the difference of chemical potential of the droplet from that at the bulk coexistence provides effectively a change of the contact angle of similar magnitude. The simulation approach yields precise estimates for the excess density due to wall-attached droplets and the corresponding free energy excess, relative to a system without a droplet at the same chemical potential. It is shown that this information suffices to estimate nucleation barriers, not affected by ambiguities on droplet shape, contact angle and line tension.

  7. Ever-changing proton radius?

    Energy Technology Data Exchange (ETDEWEB)

    Mihovilovic, Miha [Institut fuer Kernphysik, Johannes-Gutenberg-Universitaet, Mainz (Germany)

    2016-07-01

    The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the presently best value obtained from elastic scattering experiments remains unexplained and represents a burning problem of today's nuclear physics. Therefore, several new experiments are underway, committed to provide new insight into the problem. High-precision electron scattering experiments are in progress at the Jefferson Lab and the Mainz Microtron. As a counterpart to these measurements, a muon-proton scattering experiment is envisioned at the Paul Scherrer Institute. Together with the nuclear scattering experiments, new atomic measurements are underway at the Max Planck Institute in Garching, which aim to further improve also the spectroscopic results on electronic hydrogen. These experiments are complemented by extensive theoretical efforts focused on studying various processes contributing to the atomic Lamb shift measurements that could explain the difference, as well as on pursuing different ways to interpret nuclear form-factor measurements, which could lead to a consistent value of the radius. In this presentation the currently best proton radius measurements are summarized, and the importance of the observed inconsistency between the hydrogen and the muonic-hydrogen data is discussed. Selected new experiments dedicated to remeasuring the radius are described, and the results of the MAMI experiment are presented.

  8. A Laboratory Experiment to Demonstrate the Principles of Sedimentation in a Centrifuge: Estimation of Radius and Settling Velocity of Bacteria

    Science.gov (United States)

    Riley, Erin; Felse, P. Arthur

    2017-01-01

    Centrifugation is a major unit operation in chemical and biotechnology industries. Here we present a simple, hands-on laboratory experiment to teach the basic principles of centrifugation and to explore the shear effects of centrifugation using bacterial cells as model particles. This experiment provides training in the use of a bench-top…

  9. Puzzling out the proton radius puzzle

    Directory of Open Access Journals (Sweden)

    Mihovilovič Miha

    2014-01-01

    Full Text Available The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the best present value obtained from the elastic scattering experiments, remains unexplained and represents a burning problem of today’s nuclear physics: after more than 50 years of research the radius of a basic constituent of matter is still not understood. This paper presents a summary of the best existing proton radius measurements, followed by an overview of the possible explanations for the observed inconsistency between the hydrogen and the muonic-hydrogen data. In the last part the upcoming experiments, dedicated to remeasuring the proton radius, are described.

  10. Puzzling out the proton radius puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Mihovilovič, M.; Merkel, H.; Weber, A. [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 45, 55128 Mainz (Germany)

    2016-01-22

    The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the best present value obtained from the elastic scattering experiments, remains unexplained and represents a burning problem of today’s nuclear physics: after more than 50 years of research the radius of a basic constituent of matter is still not understood. This paper presents a summary of the best existing proton radius measurements, followed by an overview of the possible explanations for the observed inconsistency between the hydrogen and the muonic-hydrogen data. In the last part the upcoming experiments, dedicated to remeasuring the proton radius, are described.

  11. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.

    Science.gov (United States)

    Onischuk, A A; Purtov, P A; Baklanov, A M; Karasev, V V; Vosel, S V

    2006-01-07

    Zinc and silver vapor homogeneous nucleations are studied experimentally at the temperature from 600 to 725 and 870 K, respectively, in a laminar flow diffusion chamber with Ar as a carrier gas at atmospheric pressure. The size, shape, and concentration of aerosol particles outcoming the diffusion chamber are analyzed by a transmission electron microscope and an automatic diffusion battery. The wall deposit is studied by a scanning electron microscope (SEM). Using SEM data the nucleation rate for both Zn and Ag is estimated as 10(10) cm(-3) s(-1). The dependence of critical supersaturation on temperature for Zn and Ag measured in this paper as well as Li, Na, Cs, Ag, Mg, and Hg measured elsewhere is analyzed. To this aim the classical nucleation theory is extended by the dependence of surface tension on the nucleus radius. The preexponent in the formula for the vapor nucleation rate is derived using the formula for the work of formation of noncritical embryo [obtained by Nishioka and Kusaka [J. Chem. Phys. 96, 5370 (1992)] and later by Debenedetti and Reiss [J. Chem. Phys. 108, 5498 (1998)

  12. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  13. Detecting surface events at the COBRA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tebruegge, Jan [Exp. Physik IV, TU Dortmund (Germany); Collaboration: COBRA-Collaboration

    2015-07-01

    The aim of the COBRA experiment is to prove the existence of neutrinoless double-beta-decay and to measure its half-life. For this purpose the COBRA demonstrator, a prototype for a large-scale experiment, is operated at the Gran Sasso Underground Laboratory (LNGS) in Italy. The demonstrator is a detector array made of 64 Cadmium-Zinc-Telluride (CdZnTe) semiconductor detectors in the coplanar grid anode configuration. Each detector is 1**1 ccm in size. This setup is used to investigate the experimental issues of operating CdZnTe detectors in low background mode and identify potential background components. As the ''detector=source'' principle is used, the neutrinoless double beta decay COBRA searches for happens within the whole detector volume. Consequently, events on the surface of the detectors are considered as background. These surface events are a main background component, stemming mainly from the natural radioactivity, especially radon. This talk explains to what extent surface events occur and shows how these are recognized and vetoed in the analysis using pulse shape discrimination algorithms.

  14. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    International Nuclear Information System (INIS)

    Srinivasulu, M.; Komaraiah, M.; Rao, C. S. Krishna Prasada

    2013-01-01

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  15. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M. [Government Polytechnic for Women Badangpet, Hyderabad (India); Komaraiah, M. [Sreenidhi Institute of Science and Technology, Hyderabad (India); Rao, C. S. Krishna Prasada [Bharat Dynamics Limited, Hyderabad (India)

    2013-06-15

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  16. A Maximum Radius for Habitable Planets.

    Science.gov (United States)

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.

  17. Theory and experiments on surface diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Silvestri, W.L.

    1998-11-01

    The following topics were dealt with: adatom formation and self-diffusion on the Ni(100) surface, helium atom scattering measurements, surface-diffusion parameter measurements, embedded atom method calculations.

  18. Effect of liquid surface tension on circular and linear hydraulic jumps; theory and experiments

    Science.gov (United States)

    Bhagat, Rajesh Kumar; Jha, Narsing Kumar; Linden, Paul F.; Wilson, David Ian

    2017-11-01

    The hydraulic jump has attracted considerable attention since Rayleigh published his account in 1914. Watson (1964) proposed the first satisfactory explanation of the circular hydraulic jump by balancing the momentum and hydrostatic pressure across the jump, but this solution did not explain what actually causes the jump to form. Bohr et al. (1992) showed that the hydraulic jump happens close to the point where the local Froude number equals to one, suggesting a balance between inertial and hydrostatic contributions. Bush & Aristoff (2003) subsequently incorporated the effect of surface tension and showed that this is important when the jump radius is small. In this study, we propose a new account to explain the formation and evolution of hydraulic jumps under conditions where the jump radius is strongly influenced by the liquid surface tension. The theory is compared with experiments employing liquids of different surface tension and different viscosity, in circular and linear configurations. The model predictions and the experimental results show excellent agreement. Commonwealth Scholarship Commission, St. John's college, University of Cambridge.

  19. Anatomic relationships of the distal and proximal radioulnar joints articulating surface areas, and of the radius and ulna bone volumes – implications for biomechanical studies of the distal and proximal radioulnar joints and forearm bones

    Directory of Open Access Journals (Sweden)

    Paul S C Malone

    2016-07-01

    Full Text Available BackgroundPrevious work from this laboratory has evidenced the biomechanical role of forearm osseoligamentous structures in load transfer of applied forces. It has shown that transmitted forces across the distal radioulnar joint (DRUJ and proximal radioulnar joint (PRUJ are similar though not identical under axial loading conditions. The purpose of the study was to assess the articulating surface areas of the radioulnar joints and the volumes of the forearm bones addressing the hypothesis that there may be anatomic adaptations that reflect the biomechanical function of the integrated forearm unit.MethodsThe articulating surface areas of PRUJ and DRUJ were assessed using a laser scanner in 24 cadaver forearms. The articulating joint surfaces were additionally delineated from standardized photographs assessed by three observers. The surface areas of matched pairs of joints were compared on the null hypothesis that these were the same within a given forearm specimen. An additional 44 pairs of matched forearm bone volumes were measured using water displacement technique and again compared through statistical analysis (paired sample t-test, and Bland Altman analysis.ResultsThe findings of this study are that the articulating surface areas of the DRUJ and PRUJ as well as the bone volumes are significantly different and yet strongly correlated. The paired sample t-test showed a significant difference between the surface areas of the DRUJ and PRUJ (p<0.05. The PRUJ articulating surface area was marginally larger than the DRUJ with a PRUJ : DRUJ ratio of 1.02. Paired sample t-test showed a significant difference between the two bone volumes (p<0.01 with a radius to ulna bone volume ratio of 0.81. When the olecranon was disregarded, radius volume was on average 4% greater than ulna volume.ConclusionsThis study demonstrated defines the anatomical relationships between the two forearm bones and their articulating joints when matched for specimen. The data

  20. On the proton radius problem

    OpenAIRE

    Giannini, M. M.; Santopinto, E.

    2013-01-01

    The recent values of the proton charge radius obtained by means of muonic-hydrogen laser spectroscopy are about $4\\%$ different from the electron scattering data. It has been suggested that the proton radius is actually measured in different frames and that, starting from a non relativistic quark model calculation, the Lorentz transformation of the form factors accounts properly for the discepancy. We shall show that the relation between the charge radii measured in different frames can be de...

  1. Lunar surface engineering properties experiment definition

    Science.gov (United States)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  2. Antimonene: Experiments and theory of surface conductivity

    Science.gov (United States)

    Palacios, Juan Jose; Ares, Pablo; Pakdel, Sahar; Paz, Wendel; Zamora, Felix; Gomez-Herrero, Julio

    Very recently antimony has been demonstrated to be amenable to standard exfoliation procedures opening the possibility of studying the electronic properties of isolated few-layers flakes of this material, a.k.a. antimonene. Antimony is a topological semimetal, meaning that its electronic structure presents spin-split helical states (or Dirac cones) on the surface, but it is still trivially metallic in bulk. Antimonene, on the other hand, may present a much reduced electronic bulk contribution for a small number of layers. A novel technique to make electrical contacts on the surface of individual thin flakes (5-10 monolayers) has allowed us to measure the (surface) conductivity of these in ambient conditions. Our measurements show a high conductivity in the range of 1 - 2e2 / h , which we attribute to the surface Dirac electrons. We have also carried out theoretical work to address the origin of this value, in particular, the importance of scattering between the Dirac electrons and the bulk bands. Our calculations are based on density functional theory for the electronic structure and Kubo formalism for the conductivity, the latter considering random disorder and the presence of water. Ministerio de Economia y Competitividad, Grant FIS2016-80434-P.

  3. Experiments on seismic metamaterials: molding surface waves.

    Science.gov (United States)

    Brûlé, S; Javelaud, E H; Enoch, S; Guenneau, S

    2014-04-04

    Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.

  4. The New Horizons Radio Science Experiment: Performance and Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Surface Temperature

    Science.gov (United States)

    Linscott, I.; Hinson, D. P.; Bird, M. K.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Young, L. A.; Ennico Smith, K.

    2015-12-01

    The New Horizons (NH) spacecraft payload contained the Radio Science Experiment (REX) for determining key characteristics of Pluto and Charon during the July 14, 2015, flyby of the Pluto/Charon system. The REX flight equipment augments the NH X-band radio transceiver by providing a high precision, narrow band recording of high power uplink transmissions from Earth stations, as well as a record of broadband radiometric power. This presentation will review the performance and initial results of two high- priority observations. First, REX received two pair of 20-kW signals, one pair per polarization, transmitted from the DSN at 4.2-cm wavelength during a diametric radio occultation by Pluto. REX recorded these uplink signals and determined precise measurement of the surface pressure, the temperature structure of the lower atmosphere, and the surface radius of Pluto. The ingress portion of one polarization was played back from the spacecraft in July and processed to obtain the pressure and temperature structure of Pluto's atmosphere. Second, REX measured the thermal emission from Pluto at 4.2- cm wavelength during two linear scans across the disk at close range when both the dayside and the night side are visible. Both scans extend from limb to limb with a resolution of one-tenth Pluto's disk and temperature resolution of 0.1 K. Occultation and radiometric temperature results presented here will encompass additional data scheduled for playback in September.

  5. Large Radius Tracking at the ATLAS Experiment

    CERN Document Server

    Lutz, Margaret Susan; The ATLAS collaboration

    2017-01-01

    Many exotics and SUSY models include particles which are long lived resulting in decays which are highly displaced from the proton-proton interaction point (IP). The standard track reconstruction algorithm used by the ATLAS collaboration is optimized for tracks from “primary” particles, which originate close to the IP. Thus, tight restrictions on the transverse and longitudinal impact parameters, as well as on several other tracking variables, are applied to improve the track reconstruction performance and to reduce the fake rate. This track reconstruction is very efficient for primary particles, but not for the non-prompt particles mentioned above.  In order to reconstruct tracks with large impact parameters due to displaced decays, a tracking algorithm has been optimized to re-run with loosened requirements over the hits left over after standard track reconstruction has finished. Enabling this “retracking” has significantly increased the efficiency of reconstructing tracks from displaced decays, wh...

  6. Electric arc radius and characteristics

    International Nuclear Information System (INIS)

    Fang, T.M.

    1980-01-01

    The heat transfer equation of an arc discharge has been solved. The arc is assumed to be a cylinder with negligible axial variation and the dominant heat transfer process is conduction radially inside the column and radiation/convection at the outside edge. The symmetric consideration allows a simple one-dimensional formulation. By taking into account proper variation of the electrical conductivity as function of temperature, the heat balance equation has been solved analytically. The radius of the arc and its current-field characteristics have also been obtained. The conventional results that E approx. I 0 5385 and R approx. I 0 7693 with E being the applied field, I the current, and R the radius of the cylindrical arc, have been proved to be simply limiting cases of our more general characteristics. The results can be applied quite widely including, among others, the neutral beam injection project in nuclear fusion and MHD energy conversion

  7. The New Horizons Radio Science Experiment: Expected Performance in Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Surface Temperature

    Science.gov (United States)

    Hinson, D. P.; Linscott, I.; Woods, W. W.; Tyler, G. L.; Bird, M. K.; Paetzold, M.; Strobel, D. F.

    2014-12-01

    The New Horizons (NH) payload includes a Radio Science Experiment (REX) for investigating key characteristics of Pluto and Charon during the upcoming flyby in July 2015. REX flight equipment augments the NH radio transceiver used for spacecraft communications and tracking. The REX hardware implementation requires 1.6 W and 160 g. This presentation will focus on the final design and the predicted performance of two high-priority observations. First, REX will receive signals from a pair of 70-m antennas on Earth - each transmitting 20 kW at 4.2-cm wavelength - during a diametric radio occultation by Pluto. The data recorded by REX will reveal the surface pressure, the temperature structure of the lower atmosphere, and the surface radius. Second, REX will measure the thermal emission from Pluto at 4.2-cm wavelength during two linear scans across the disk at close range when both the dayside and the nightside are visible, allowing the surface temperature and its spatial variations to be determined. Both scans extend from limb to limb with a resolution of about 10 pixels; one bisects Pluto whereas the second crosses the winter pole. We will illustrate the capabilities of REX by reviewing the method of analysis and the precision achieved in a lunar occultation observed by New Horizons in May 2011. Re-analysis of radio occultation measurements by Voyager 2 at Triton is also under way. More generally, REX objectives include a radio occultation search for Pluto's ionosphere; examination of Charon through both radio occultation and radiometry; a search for a radar echo from Pluto's surface; and improved knowledge of the Pluto system mass and the Pluto-Charon mass ratio from a combination of two-way and one-way Doppler frequency measurements.

  8. On joint numerical radius II

    Czech Academy of Sciences Publication Activity Database

    Drnovšek, R.; Müller, Vladimír

    2014-01-01

    Roč. 62, č. 9 (2014), s. 1197-1204 ISSN 0308-1087 R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : joint numerical range * numerical radius Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2014 http://www.tandfonline.com/doi/abs/10.1080/03081087.2013.816303

  9. The surface detector array of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zayyad, T. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Allen, M.; Anderson, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Azuma, R. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Cheon, B.G. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Kinki University, Higashi Osaka, Osaka (Japan); Cho, E.J. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Cho, W.R. [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Osaka City University, Osaka, Osaka (Japan); Fukuda, T. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); University of Tokyo, Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); Gorbunov, D. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); and others

    2012-10-11

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  10. The surface detector array of the Telescope Array experiment

    International Nuclear Information System (INIS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; Cheon, B.G.; Chiba, J.; Chikawa, M.; Cho, E.J.; Cho, W.R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Gorbunov, D.

    2012-01-01

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  11. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  12. Thermal control surfaces on the MSFC LDEF experiments

    International Nuclear Information System (INIS)

    Wilkes, D.R.; Whitaker, A.F.; Zwiener, J.M.; Linton, R.C.; Shular, D.; Peters, P.N.; Gregory, J.C.

    1992-01-01

    There were five Marshall Space Flight Center (MSFC) experiments on the LDEF. Each of those experiments carried thermal control surfaces either as test samples or as operational surfaces. These materials experienced varying degrees of mechanical and optical damage. Some materials were virtually unchanged by the extended exposure while others suffered extensive degradation. The synergistic effects due to the constituents of the space environment are evident in the diversity of these material changes. The sample complement for the MSFC experiments is described along with results of the continuing analyses efforts

  13. Surface deposition measurements of the TMI-2 gross decontamination experiment

    International Nuclear Information System (INIS)

    McIssac, C.V.; Hetzer, D.C.

    1982-01-01

    In order to measure the effectiveness of the gross decontamination experiment (principally a water spray technique) performed in the TMI-2 reactor building, the Technical Information and Examination Program's Radiation and Environment personnel made surface activity measurements before and after the experiment. In conjunction with surface sampling, thermoluminescent dosimeter (TLD) and gamma spectrometry measurements were also performed to distinguish between radiation fields and contamination. The surface sampler used to collect samples from external surfaces within the reactor building is a milling tool having four major components: a 1.27-cm constant-speed drill; a drill support assembly that allows setting sample penetration depth; filter cartridges for intake air purification and sample collection; and an air pump that forces air across the surface being sampled and through the sample filter cartridge

  14. Diffraction experiments of argon or helium on polluted surfaces

    International Nuclear Information System (INIS)

    Berthier, J.P.; Constans, A.; Daury, G.; Lostis, P.

    1975-01-01

    Scattering patterns of molecular beams of argon or helium from metal surfaces (bulk metal or thin films) are reported. The pressure in the scattering chamber is about 10 -6 torr. So, the surfaces are polluted. Diffraction peaks are observed which can be interpreted very well by assuming that nitrogen, oxygen or carbon atoms are adsorbed of the surface. On the other hand, diffraction peaks from a silicon crystal have been observed which can be reproduced very well by using silicon crystal lattice. These experiments are not interpreted accurately, but show that molecular reflection can be used for some surface studies [fr

  15. The radius of RX Eridani

    International Nuclear Information System (INIS)

    Woolley, R.; Dean, J.

    1976-01-01

    Photoelectric observations of the light curves of RX Eri obtained in B, V and I, and radial velocity determinations, are combined to determine the radius by a method originally proposed by van Hoof which avoids matching colours in the rising and falling branches of the light curve and concentrates on the falling branch. The results agree well with those from other stars determined by the normal Baade-Wesselink method, but the method is easier to apply if the colour curve is flat in the falling branch. The parameters found for the star are r 0 = 5.5 Sun, mass = 0.45 Sun, and Msub(v) = + 0sup(m).54. (author)

  16. Nuclear charge radius of {sup 11}Li

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Rodolfo, E-mail: R.Sanchez@GSI.de; Noertershaeuser, Wilfried [Gesellschaft fuer Schwerionenforschung (Germany); Dax, Andreas [CERN(Switzerland); Ewald, Guido; Goette, Stefan; Kirchner, Reinhard; Kluge, H.-Juergen; Kuehl, Thomas [Gesellschaft fuer Schwerionenforschung (Germany); Wojtaszek, Agnieszka [Swietokrzyska Academy, Institute of Physics (Poland); Bushaw, Bruce A. [Pacific Northwest National Laboratory (United States); Drake, Gordon W. F. [University of Windsor, Department of Physics (Canada); Yan Zongchao [University of New Brunswick, Department of Physics (Canada); Zimmermann, Claus [Physikalisches Institut, Eberhard Karls Universitaet Tuebingen (Germany); Albers, Daniel; Behr, John; Bricault, Pierre; Dilling, Jens; Dombsky, Marik; Lassen, Jens; Phil Levy, C. D. [Tri-University Meson Facility (Canada)

    2006-07-15

    We have determined the nuclear charge radius of {sup 11}Li by high-precision laser spectroscopy. The experiment was performed at the TRIUMF-ISAC facility where the {sup 7}Li-{sup 11}Li isotope shift (IS) was measured in the 2s{yields}3s electronic transition using Doppler-free two-photon spectroscopy with a relative accuracy better than 10{sup -5}. The accuracy for the IS of the other lithium isotopes was also improved. IS's are mainly caused by differences in nuclear mass, but changes in proton distribution also give small contributions. Comparing experimentally measured IS with advanced atomic calculation of purely mass-based shifts, including QED and relativistic effects, allows derivation of the nuclear charge radii. The radii are found to decrease monotonically from {sup 6}Li to {sup 9}Li, and then increase with {sup 11}Li about 11% larger than {sup 9}Li. These results are a benchmark for the open question as to whether nuclear core excitation by halo neutrons is necessary to explain the large nuclear matter radius of {sup 11}Li; thus, the results are compared with a number of nuclear structure models.

  17. Nuclear charge radius of 11Li

    International Nuclear Information System (INIS)

    Sanchez, Rodolfo; Noertershaeuser, Wilfried; Dax, Andreas; Ewald, Guido; Goette, Stefan; Kirchner, Reinhard; Kluge, H.-Juergen; Kuehl, Thomas; Wojtaszek, Agnieszka; Bushaw, Bruce A.; Drake, Gordon W. F.; Yan Zongchao; Zimmermann, Claus; Albers, Daniel; Behr, John; Bricault, Pierre; Dilling, Jens; Dombsky, Marik; Lassen, Jens; Phil Levy, C. D.

    2006-01-01

    We have determined the nuclear charge radius of 11 Li by high-precision laser spectroscopy. The experiment was performed at the TRIUMF-ISAC facility where the 7 Li- 11 Li isotope shift (IS) was measured in the 2s → 3s electronic transition using Doppler-free two-photon spectroscopy with a relative accuracy better than 10 -5 . The accuracy for the IS of the other lithium isotopes was also improved. IS's are mainly caused by differences in nuclear mass, but changes in proton distribution also give small contributions. Comparing experimentally measured IS with advanced atomic calculation of purely mass-based shifts, including QED and relativistic effects, allows derivation of the nuclear charge radii. The radii are found to decrease monotonically from 6 Li to 9 Li, and then increase with 11 Li about 11% larger than 9 Li. These results are a benchmark for the open question as to whether nuclear core excitation by halo neutrons is necessary to explain the large nuclear matter radius of 11 Li; thus, the results are compared with a number of nuclear structure models.

  18. Test results and supporting analysis of a near-surface heater experiment in the Eleana argillite

    International Nuclear Information System (INIS)

    McVey, D.F.; Lappin, A.R.; Thomas, R.K.

    1979-01-01

    A preliminary evaluation of the in-situ thermomechanical response of argillite to heating was obtained from a near-surface heater test in the Eleana Formation, at the United States Department of Energy, Nevada Test Site. The experiment consisted of a 3.8 kW, 3-m long x 0.3-m diameter electrical heater in a central hole surrounded by peripheral holes containing instrumentation to measure temperature, gas pressures, and vertical displacement. A thermal model of the experiment agreed well with experimental results; a comparison of measured and predicted temperatures indicates that some nonmodeled vertical transport of water and water vapor occurred near the heater, especially at early times. A mechanical model indicated that contraction of expandable clays in the argillite produced a region 1.5 - 2.0 m in radius, in which opening of preexisting joints occurred as a result of volumetric contraction. Results of thermal and mechanical modeling, laboratory property measurements, experimental temperature measurements, and post-test observations are all self-consistent and provide preliminary information on the in-situ response of argillaceous rocks to the emplacement of heat-producing nuclear waste

  19. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    International Nuclear Information System (INIS)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-01-01

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field

  20. Tracer experiment by using radioisotope in surface water environment

    International Nuclear Information System (INIS)

    Suh, K.S.; Kim, K.C.; Chun, I.Y.; Jung, S.H.; Lee, C.W.

    2007-01-01

    Complete text of publication follows. 1. Objective An expansion of industrial activities and urbanization result in still increasing amount of pollutants discharged into surface water. Discharged pollutants in surface water have harmful effects on the ecology of a river system and human beings. Pollutants discharged into surface water is transported and dispersed under conditions characteristic to particular natural water receiver. Radiotracer method is a useful tool for monitoring the pollutant dispersion and description of mixing process taking place in natural streams. A tracer experiment using radioisotope was carried out to investigate the characteristics of a pollutant transport and a determination of the diffusion coefficients in a river system. 2. Methods The upper area of the Keum river was selected for the tracer experiment, which is located in a mid west of Korea. The measurements of the velocity and bathymetry before a tracer experiment were performed to select the sampling lines for a detection of the radioisotope. The radioisotope was instantaneously injected into a flow as a point source by an underwater glass-vial crusher. The detection was made with 60 2inch NaI(Tl) scintillation detectors at 3 transverse lines at a downstream position. The multi-channel data acquisition systems were used to collect and process the signals transmitted from the detectors. Two-dimensional numerical models were used to simulate the hydraulic parameters and the concentration distributions of the radioisotope injected into the river. 3. Results and Conclusion The calculated results such as velocity and concentrations were compared with the measured ones. The dispersion characteristics of the radioisotope were analyzed according to a variation of the flow rate, water level and diffusion coefficients. Also, the diffusion coefficients were calculated by using the measured concentrations and the coefficients obtained from the field experiment were compared with the ones

  1. Critical cladding radius for hybrid cladding modes

    Science.gov (United States)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  2. Acceleration of beam ions during major radius compression in TFTR

    International Nuclear Information System (INIS)

    Wong, K.L.; Bitter, M.; Hammett, G.W.

    1985-09-01

    Tangentially co-injected deuterium beam ions were accelerated from 82 keV up to 150 keV during a major radius compression experiment in TFTR. The ion energy spectra and the variation in fusion yield were in good agreement with Fokker-Planck code simulations. In addition, the plasma rotation velocity was observed to rise during compression

  3. Ultrasonic pattern recognition study of feedwater nozzle inner radius indication

    International Nuclear Information System (INIS)

    Yoneyama, H.; Takama, S.; Kishigami, M.; Sasahara, T.; Ando, H.

    1983-01-01

    A study was made to distinguish defects on feed-water nozzle inner radius from noise echo caused by stainless steel cladding by using ultrasonic pattern recognition method with frequency analysis technique. Experiment has been successfully performed on flat clad plates and nozzle mock-up containing fatigue cracks and the following results which shows the high capability of frequency analysis technique are obtained

  4. Artificial gravity: head movements during short-radius centrifugation

    NARCIS (Netherlands)

    Young, L. R.; Hecht, H.; Lyne, L. E.; Sienko, K. H.; Cheung, C. C.; Kavelaars, J.

    2001-01-01

    Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects

  5. Understanding colloidal charge renormalization from surface chemistry: Experiment and theory

    Science.gov (United States)

    Gisler, T.; Schulz, S. F.; Borkovec, M.; Sticher, H.; Schurtenberger, P.; D'Aguanno, B.; Klein, R.

    1994-12-01

    In this paper we report on the charging behavior of latex particles in aqueous suspensions. We use static light scattering and acid-base titrations as complementary techniques to observe both effective and bare particle charges. Acid-base titrations at various ionic strengths provide the pH dependent charging curves. The surface chemical parameters (dissociation constant of the acidic carboxylic groups, total density of ionizable sites and Stern capacitance) are determined from fits of a Stern layer model to the titration data. We find strong evidence that the dissociation of protons is the only specific adsorption process. Effective particle charges are determined by fits of integral equation calculations of the polydisperse static structure factor to the static light scattering data. A generalization of the Poisson-Boltzmann cell model including the dissociation of the acidic surface groups and the autodissociation of water is used to predict effective particle charges from the surface chemical parameters determined by the titration experiments. We find that the light scattering data are best described by a model where a small fraction of the ionizable surface sites are sulfate groups which are completely dissociated at moderate pH. These effective charges are comparable to the predictions by a basic cell model where charge regulation is absent.

  6. Conversion of radius of curvature to power (and vice versa)

    Science.gov (United States)

    Wickenhagen, Sven; Endo, Kazumasa; Fuchs, Ulrike; Youngworth, Richard N.; Kiontke, Sven R.

    2015-09-01

    Manufacturing optical components relies on good measurements and specifications. One of the most precise measurements routinely required is the form accuracy. In practice, form deviation from the ideal surface is effectively low frequency errors, where the form error most often accounts for no more than a few undulations across a surface. These types of errors are measured in a variety of ways including interferometry and tactile methods like profilometry, with the latter often being employed for aspheres and general surface shapes such as freeforms. This paper provides a basis for a correct description of power and radius of curvature tolerances, including best practices and calculating the power value with respect to the radius deviation (and vice versa) of the surface form. A consistent definition of the sagitta is presented, along with different cases in manufacturing that are of interest to fabricators and designers. The results make clear how the definitions and results should be documented, for all measurement setups. Relationships between power and radius of curvature are shown that allow specifying the preferred metric based on final accuracy and measurement method. Results shown include all necessary equations for conversion to give optical designers and manufacturers a consistent and robust basis for decision-making. The paper also gives guidance on preferred methods for different scenarios for surface types, accuracy required, and metrology methods employed.

  7. Preliminary results report: Conasauga near-surface heater experiment

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1979-06-01

    From November 1977 to August 1978, two near-surface heater experiments were operated in two somewhat different stratigraphic sequences within the Conasauga formation which consist predominantly of shale. Specific phenomena investigated were the thermal and mechanical responses of the formation to an applied heat load, as well as the mineralogical changes induced by heating. Objective was to provide a minimal integrated field and laboratory study that would supply a data base which could be used in planning more expensive and complex vault-type experiments in other localities. The experiments were operated with heater power levels of between 6 and 8 kW for heater mid-plane temperatures of 385 0 C. The temperature fields within the shale were measured and analysis is in progress. Steady state conditions were achieved within 90 days. Conduction appears to be the principal mechanism of heat transport through the formation. Limited mechanical response measurements consisting of vertical displacement and stress data indicate general agreement with predictions. Posttest data, collection of which await experiment shutdown and cooling of the formation, include the mineralogy of posttest cores, posttest transmissivity measurements and corrosion data on metallurgical samples

  8. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    Science.gov (United States)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  9. Kinetic theory of plasma adiabatic major radius compression in tokamaks

    International Nuclear Information System (INIS)

    Gorelenkova, M.V.; Gorelenkov, N.N.; Azizov, E.A.; Romannikov, A.N.; Herrmann, H.W.

    1998-01-01

    In order to understand the individual charged particle behavior as well as plasma macroparameters (temperature, density, etc.) during the adiabatic major radius compression (R-compression) in a tokamak, a kinetic approach is used. The perpendicular electric field from the Ohm close-quote s law at zero resistivity is made use of in order to describe particle motion during the R-compression. Expressions for both passing and trapped particle energy and pitch angle change are derived for a plasma with high aspect ratio and circular magnetic surfaces. The particle behavior near the passing trapped boundary during the compression is studied to simulate the compression-induced collisional losses of alpha particles. Qualitative agreement is obtained with the alphas loss measurements in deuterium-tritium (D-T) experiments in the Tokamak Fusion Test Reactor (TFTR) [World Survey of Activities in Controlled Fusion Research [Nucl. Fusion special supplement (1991)] (International Atomic Energy Agency, Vienna, 1991)]. The plasma macroparameters evolution at the R-compression is calculated by solving the gyroaveraged drift kinetic equation. copyright 1998 American Institute of Physics

  10. Nuclear charge radius of $^{12}$Be

    CERN Document Server

    Krieger, Andreas; Bissell, Mark L; Frömmgen, Nadja; Geppert, Christopher; Hammen, Michael; Kreim, Kim; Kowalska, Magdalena; Krämer, Jörg; Neff, Thomas; Neugart, Rainer; Neyens, Gerda; Nörtershäuser, Wilfried; Novotny, Christian; Sanchez, Rodolfo; Yordanov, Deyan T

    2012-01-01

    The nuclear charge radius of $^{12}$Be was precisely determined using the technique of collinear laser spectroscopy on the $2s_{1/2}\\rightarrow 2p_{1/2, 3/2}$ transition in the Be$^{+}$ ion. The mean square charge radius increases from $^{10}$Be to $^{12}$Be by $\\delta ^{10,12} = 0.69(5)$ fm$^{2}$ compared to $\\delta ^{10,11} = 0.49(5)$ fm$^{2}$ for the one-neutron halo isotope $^{11}$Be. Calculations in the fermionic molecular dynamics approach show a strong sensitivity of the charge radius to the structure of $^{12}$Be. The experimental charge radius is consistent with a breakdown of the N=8 shell closure.

  11. Experiment on Physical Desalinisation of Uranium-contaminated Gravel Surface

    International Nuclear Information System (INIS)

    Park, Uk-Ryang; Kim, Gye-Nam; Kim, Seung-Soo; Han, Gyu-Seong; Moon, Jai-Kwon

    2014-01-01

    As a result, the method to wash uranium-contaminated gravels could not get satisfactory desalinization rate. During the long oxidization process it was judged that uranium penetrated inside the gravels, so we tried to increase the desalinization rate by fragmentizing them into pieces and then washing them. The desalinization rate after fragmentizing the gravels into pieces and washing them brought a satisfactory result.. However, we could obtain desired concentration for gravels with high uranium concentration by fragmentizing them and breaking them further into even smaller pieces. Likewise, desalinization using soil washing process is complicated and has to go through multiple washing steps, resulting in too much of waste fluid generated accordingly. The increase of waste fluid generated leads to the increase in by-products of the final disposal process later on, bringing a not good economic result. Furthermore, taking into account that the desalinization rate is 65% during soil washing process, it is expected that gravel washing will show a similar desalinization result; it is considered uneasy to have a perfect desalinization only by soil washing. The grinding method is actually used in the primary desalinization process in order to desalinize radioactivity-contaminated concrete. This method does desalinization by grinding the radioactivity-contaminated area of the concrete surface with desalinization equipment, which enables a near-to-perfect desalinization for relatively thinly contaminated surface. Likewise, this research verified the degree of desalinization by applying the grinding method and comparing it to the fragmentizing-washing method, and attempted to find a method to desalinize uranium-contaminated gravels more effectively. In order to desalinize uranium-contaminated gravels more effectively and compare to the existing washing-desalinization method, we conducted a desalinization experiment with grinding method that grinds gravel surface. As a

  12. Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment

    Science.gov (United States)

    Castro, V. A.; Ott, C. M.; Pierson, D. L.

    2012-01-01

    The determination of risk from infectious disease during spaceflight missions is composed of several factors including both the concentration and characteristics of the microorganisms to which the crew are exposed. Thus, having a good understanding of the microbial ecology aboard spacecraft provides the necessary information to mitigate health risks to the crew. While preventive measures are taken to minimize the presence of pathogens on spacecraft, medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a specific culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. To address this bias in our understanding of the ISS environment, the Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment was designed to investigate and develop monitoring technology to provide better microbial characterization. For the SWAB flight experiment, we hypothesized that environmental analysis using non-culture-based technologies would reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. Key findings during this experiment included: a) Generally, advanced molecular techniques were able to reveal a few organisms not recovered using culture-based methods; however, there is no indication that current monitoring is "missing" any medically significant bacteria or fungi. b) Molecular techniques have tremendous potential for microbial monitoring, however, sample preparation and data analysis present challenges for spaceflight hardware. c) Analytical results indicate that some molecular techniques, such as denaturing gradient gel electrophoresis (DGGE), can

  13. Localized electronic states: the small radius potential approximation

    International Nuclear Information System (INIS)

    Steslicka, M.; Jurczyszyn, L.

    1984-09-01

    Using a quasi three-dimensional crystal model we investigate the localized electronic states, generated by the crystal surface covered by foreign atoms. Two such states are found in the first forbidden energy gap and, because of their localization properties, called the Tamm-like and adsorption-like states. Using the small radius potential approximation, the properties of both types of states were discussed in detail. (author)

  14. Studying the proton 'radius' puzzle with μp elastic scattering

    International Nuclear Information System (INIS)

    Gilman, R.

    2013-01-01

    The disagreement between the proton radius determined from muonic hydrogen and from electronic measurements is called the proton radius puzzle. The resolution of the puzzle remains unclear and appears to require new experimental results. An experiment to measure muon-proton elastic scattering is presented here

  15. Nonlinear buckling analyses of a small-radius carbon nanotube

    International Nuclear Information System (INIS)

    Liu, Ning; Li, Min; Jia, Jiao; Wang, Yong-Gang

    2014-01-01

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained

  16. Nonlinear buckling analyses of a small-radius carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ning, E-mail: liuxiao@ase.buaa.edu.cn; Li, Min; Jia, Jiao [School of Aeronautic Science and Engineering, Beihang University, Beijing 100091 (China); Wang, Yong-Gang [Department of Applied Mechanics, China Agricultural University, Beijing 100083 (China)

    2014-04-21

    Carbon nanotube (CNT) was first discovered by Sumio Iijima. It has aroused extensive attentions of scholars from all over the world. Over the past two decades, we have acquired a lot of methods to synthesize carbon nanotubes and learn their many incredible mechanical properties such as experimental methods, theoretical analyses, and computer simulations. However, the studies of experiments need lots of financial, material, and labor resources. The calculations will become difficult and time-consuming, and the calculations may be even beyond the realm of possibility when the scale of simulations is large, as for computer simulations. Therefore, it is necessary for us to explore a reasonable continuum model, which can be applied into nano-scale. This paper attempts to develop a mathematical model of a small-radius carbon nanotube based on continuum theory. An Isotropic circular cross-section, Timoshenko beam model is used as a simplified mechanical model for the small-radius carbon nanotube. Theoretical part is mainly based on modified couple stress theory to obtain the numerical solutions of buckling deformation. Meanwhile, the buckling behavior of the small radius carbon nanotube is simulated by Molecular Dynamics method. By comparing with the numerical results based on modified couple stress theory, the dependence of the small-radius carbon nanotube mechanical behaviors on its elasticity constants, small-size effect, geometric nonlinearity, and shear effect is further studied, and an estimation of the small-scale parameter of a CNT (5, 5) is obtained.

  17. Effect of finite edge radius on ductile fracture ahead of the cutting tool edge in micro-cutting of Al2024-T3

    International Nuclear Information System (INIS)

    Subbiah, Sathyan; Melkote, Shreyes N.

    2008-01-01

    Evidence of ductile fracture leading to material separation has been reported recently in ductile metal cutting [S. Subbiah, S.N. Melkote, ASME J. Manuf. Sci. Eng. 28(3) (2006)]. This paper investigates the effect of finite edge radius on such ductile fracture. The basic question of whether such ductile fracture occurs in the presence of a finite edge radius is explored by performing a series of experiments with inserts of different edge radii at various uncut chip thickness values ranging from 15 to 105 μm. Chip-roots are obtained in these experiments using a quick-stop device and examined in a scanning electron microscope. Clear evidence of material separation is seen at the interface zone between the chip and machined surface even when the edge radius is large compared to the uncut chip thickness. Failure is seen to occur at the upper, middle, and/or the lower edges of the interface zone. Based on these observations, a hypothesis is presented for the events leading to the occurrence of this failure when cutting with an edge radius tool. Finite element simulations are performed to study the nature of stress state ahead of the tool edge with and without edge radius. Hydrostatic stress is seen to be tensile in front of the tool and hence favors the occurrence of ductile fracture leading to material separation. The stress components are, however lower than those seen with a sharp tool

  18. Local Convergence and Radius of Convergence for Modified Newton Method

    Directory of Open Access Journals (Sweden)

    Măruşter Ştefan

    2017-12-01

    Full Text Available We investigate the local convergence of modified Newton method, i.e., the classical Newton method in which the derivative is periodically re-evaluated. Based on the convergence properties of Picard iteration for demicontractive mappings, we give an algorithm to estimate the local radius of convergence for considered method. Numerical experiments show that the proposed algorithm gives estimated radii which are very close to or even equal with the best ones.

  19. Radius crossover sign: an indication of malreduced radius shaft greenstick fractures.

    Science.gov (United States)

    Wright, Patrick B; Crepeau, Allison E; Herrera-Soto, José A; Price, Charles T

    2012-06-01

    Radius shaft greenstick fractures in children can be a challenging injury to treat because angulation and rotational alignment are difficult to assess. In this report, we describe a simple method for analyzing the deformity and identifying rotational and angular malalignment. This technique involves analyzing the forearm radiographs as 2 segments, proximal and distal, and assuring that the rotational position of each matches the other. We present 3 cases of proximal radius greenstick fractures in malalignment to demonstrate the radius crossover sign. Identifying the radius crossover sign, and proceeding with further closed reduction may prevent deformity that could otherwise result in a significant loss of forearm motion. Level V.

  20. Influence of asymmetrical drawing radius deviation in micro deep drawing

    Science.gov (United States)

    Heinrich, L.; Kobayashi, H.; Shimizu, T.; Yang, M.; Vollertsen, F.

    2017-09-01

    Nowadays, an increasing demand for small metal parts in electronic and automotive industries can be observed. Deep drawing is a well-suited technology for the production of such parts due to its excellent qualities for mass production. However, the downscaling of the forming process leads to new challenges in tooling and process design, such as high relative deviation of tool geometry or blank displacement compared to the macro scale. FEM simulation has been a widely-used tool to investigate the influence of symmetrical process deviations as for instance a global variance of the drawing radius. This study shows a different approach that allows to determine the impact of asymmetrical process deviations on micro deep drawing. In this particular case the impact of an asymmetrical drawing radius deviation and blank displacement on cup geometry deviation was investigated for different drawing ratios by experiments and FEM simulation. It was found that both variations result in an increasing cup height deviation. Nevertheless, with increasing drawing ratio a constant drawing radius deviation has an increasing impact, while blank displacement results in a decreasing offset of the cups geometry. This is explained by different mechanisms that result in an uneven cup geometry. While blank displacement leads to material surplus on one side of the cup, an unsymmetrical radius deviation on the other hand generates uneven stretching of the cups wall. This is intensified for higher drawing ratios. It can be concluded that the effect of uneven radius geometry proves to be of major importance for the production of accurately shaped micro cups and cannot be compensated by intentional blank displacement.

  1. THE SIZE-VIRIAL RADIUS RELATION OF GALAXIES

    International Nuclear Information System (INIS)

    Kravtsov, Andrey V.

    2013-01-01

    I use the abundance matching ansatz, which has proven to be successful in reproducing galaxy clustering and other statistics, to derive estimates of the virial radius, R 200 , for galaxies of different morphological types and a wide range of stellar masses. I show that over eight orders of magnitude in stellar mass galaxies of all morphological types follow an approximately linear relation between half-mass radius of their stellar distribution, r 1/2 , and virial radius, r 1/2 ≈ 0.015 R 200 , with scatter of ≈0.2 dex. Such scaling is in remarkable agreement with the expectation of models that assume that galaxy sizes are controlled by halo angular momentum, r 1/2 ∝λR 200 , where λ is the spin of galaxy parent halo. The scatter about the relation is comparable with the scatter expected from the distribution of λ. Moreover, I show that when the stellar and gas surface density profiles of galaxies of different morphological types are rescaled by the radius r n = 0.015 R 200 , the rescaled profiles follow approximately universal exponential (for late types) and de Vaucouleurs (for early types) form with scatter of only ≈30%-50% at R ≈ 1-3r n . Remarkably, both late- and early-type galaxies have similar mean stellar surface density profiles at R ∼> 1r n . The main difference between their stellar distributions is thus at R n . The results of this study imply that galaxy sizes and radial distribution of baryons are shaped primarily by properties of their parent halos and that the sizes of both late-type disks and early-type spheroids are controlled by halo angular momentum.

  2. Study Application of RADIUS Protocol on Ethernet

    Institute of Scientific and Technical Information of China (English)

    GUO Fang; YANG Huan-yu; LI Hong

    2004-01-01

    This paper presents how to apply the RADIUS (Remote Authentication Dial In User Service)protocol ,which is generally applied to dial-up network, to the authentication & charge of Broad Band accessing control system on Ethernet. It is provided that the Broad Band accessing control system included a self-designed communication protocol is used in communicating between an terminal user and Network Access Server .The interface module on the servers side and the Radius system is also given in this article.

  3. The earth's radius and the G variation

    International Nuclear Information System (INIS)

    Canuto, V.M.; City Coll., New York

    1981-01-01

    It has been assumed that if the gravitational constant G was larger in the past, the Earth's radius had to be smaller. The assertion holds provided the input from microphysics (in particular the equation of state) is independent of G. While this is true for some theories of gravity with variable G it is not so in the scale covariant theory, where the pressure can be affected by a variable G in a way that, for a constant mass of the Earth, a larger G in the past implies a larger Earth's radius. Comparison with recent palaeomagnetic data is presented. (author)

  4. Spectral Radius and Hamiltonicity of Graphs

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav; Nikiforov, V.

    2010-01-01

    Roč. 432, č. 9 (2010), s. 2170-2173 ISSN 0024-3795 Institutional research plan: CEZ:AV0Z10300504 Keywords : Hamiltonian cycle * Hamiltonian path * spectral radius Subject RIV: BA - General Mathematics Impact factor: 1.005, year: 2010

  5. Precipitation Sensitivity to the Mean Radius of Drop Spectra: Comparison of Single- and Double-Moment Bulk Microphysical Schemes

    Directory of Open Access Journals (Sweden)

    Nemanja Kovačević

    2015-04-01

    Full Text Available In this study, two bulk microphysical schemes were compared across mean radius values of the entire drop spectra. A cloud-resolving mesoscale model was used to analyze surface precipitation characteristics. The model included the following microphysical categories: water vapour, cloud droplets, raindrops, ice crystals, snow, graupel, frozen raindrops and hail. Two bulk schemes were used: a single-moment scheme in which the mean radius was specified as a parameter and a double-moment scheme in which the mean radius of drops was calculated diagnostically with a fixed value for the cloud droplet number concentration. Experiments were conducted out for three values of the mean radius (in the single-moment scheme and two cloud droplet number concentrations (in the double-moment scheme. There were large differences in the surface precipitation for the two schemes, the simulated precipitation generated by the double-moment scheme had a higher sensitivity. The single-moment scheme generated an unrealistic collection rate of cloud droplets by raindrops and hail as well as unrealistic evaporation of rain and melting of solid hydrometeors; these processes led to inaccurate timing and amounts of surface precipitation.

  6. Plasma facing surface composition during NSTX Li experiments

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H., E-mail: cskinner@pppl.gov [Princeton Plasma Physics Laboratory, POB 451, Princeton, NJ 08543 (United States); Sullenberger, R. [Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08540 (United States); Koel, B.E. [Department of Chemical and Biological Engineering, Princeton University, NJ 08540 (United States); Jaworski, M.A.; Kugel, H.W. [Princeton Plasma Physics Laboratory, POB 451, Princeton, NJ 08543 (United States)

    2013-07-15

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices. However, the nature of the plasma–lithium surface interaction has been obscured by the difficulty of in-tokamak surface analysis. We report laboratory studies of the chemical composition of lithium surfaces exposed to typical residual gases found in tokamaks. Solid lithium and a molybdenum alloy (TZM) coated with lithium have been examined using X-ray photoelectron spectroscopy, temperature programmed desorption, and Auger electron spectroscopy both in ultrahigh vacuum conditions and after exposure to trace gases. Lithium surfaces near room temperature were oxidized after exposure to 1–2 Langmuirs of oxygen or water vapor. The oxidation rate by carbon monoxide was four times less. Lithiated PFC surfaces in tokamaks will be oxidized in about 100 s depending on the tokamak vacuum conditions.

  7. Variable radius cartography - History and perspectives of a new discipline

    Science.gov (United States)

    Scalera, Giancarlo

    2014-05-01

    is now possible to represent paleopoles, their uncertainty ellipses, and site-pole segments of meridian (Scalera, 1988, 1990). In all paleogeographic reconstructions of the different authors, variable radius cartography is used in a way more or less complex, more or less intertwined with other disciplines and databases, not as pure representation or in the spirit of the simple fits that supported plate tectonics, but as experiments of greater complexity with a value of proof in favor of the planet expansion. Today a common feeling is that is now necessary to develop an interactive and user friendly program code, which could be distributed or used in the web. The use of variable radius mapping would be a profitable tool in the field of geodesy, where a full treatment without subtle vicious loops of an expanding globe has yet to be developed.

  8. Supersonic molecular beam experiments on surface chemical reactions.

    Science.gov (United States)

    Okada, Michio

    2014-10-01

    The interaction of a molecule and a surface is important in various fields, and in particular in complex systems like biomaterials and their related chemistry. However, the detailed understanding of the elementary steps in the surface chemistry, for example, stereodynamics, is still insufficient even for simple model systems. In this Personal Account, I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams demonstrate a significant role of the translational energy of the incident molecules. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths specific for the hyperthermal energy region, and to develop new methods for the fabrication of thin films. On the other hand, oriented molecular beams also demonstrate the possibility of understanding surface chemical reactions in detail by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for finely monitoring the elementary step of the surface chemical reactions and creating new materials on surfaces. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Correction of the exciton Bohr radius in monolayer transition metal dichalcogenides

    Science.gov (United States)

    Li, Run-Ze; Dong, Xi-Ying; Li, Zhi-Qing; Wang, Zi-Wu

    2018-07-01

    We theoretically investigate the correction of exciton Bohr radius in monolayer transition metal dichalcogenides (TMDCs) on different polar substrates arising from the exciton-optical phonon coupling, in which both the intrinsic longitudinal optical phonon and surface optical phonon modes couple with the exciton are taken into account. We find that the exciton Bohr radius is enlarged markedly due to these coupling. Moreover, it can be changed on a large scale by modulating the polarizability of polar substrate and the internal distance between the monolayer TMDCs and polar substrate. Theoretical result provides a potential explanation for the variation of the exciton Bohr radius in experimental measurement.

  10. Trajectory Calculator for Finite-Radius Cutter on a Lathe

    Science.gov (United States)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan

    2009-01-01

    A computer program calculates the two-dimensional trajectory (radial vs. axial position) of a finite-radius-of-curvature cutting tool on a lathe so as to cut a workpiece to a piecewise-continuous, analytically defined surface of revolution. (In the original intended application, the tool is a diamond cutter, and the workpiece is made of a crystalline material and is to be formed into an optical resonator disk.) The program also calculates an optimum cutting speed as F/L, where F is a material-dependent empirical factor and L is the effective instantaneous length of the cutting edge.

  11. Finite-Larmor-radius effects on z-pinch stability

    Science.gov (United States)

    Scheffel, Jan; Faghihi, Mostafa

    1989-06-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the incompressible FLR MHD model; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2r dp/dr + m2B2/μ0 ≥ 0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but not absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the crosssection for wavelengths λ/a ≤ 1, where a denotes the pinch radius. As a general z-pinch result a critical line-density limit Nmax = 5 × 1018 m-1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 1020 m-1.

  12. Finite-Larmor-radius effects on z-pinch stability

    Energy Technology Data Exchange (ETDEWEB)

    Scheffel, J.; Faghihi, M. (Royal Inst. of Tech., Stockholm (Sweden))

    1989-06-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. The incompressible FLR MHD model is used; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2rdp/dr+m{sup 2}B{sup 2}/{mu}{sub 0}{ge}0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the LFR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but no absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the cross-section for wavelengths {lambda}/{alpha}{le}1, where {alpha} denotes the pinch radius. As a general z-pinch result a critical line-density limit ''N''{sub max}=5x10{sup 18}m{sup -1} is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 10{sup 20} m{sup -1}. (author).

  13. Finite-Larmor-radius effects on z-pinch stability

    International Nuclear Information System (INIS)

    Scheffel, J.; Faghihi, M.

    1989-01-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. The incompressible FLR MHD model is used; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2rdp/dr+m 2 B 2 /μ 0 ≥0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the LFR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but no absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the cross-section for wavelengths λ/α≤1, where α denotes the pinch radius. As a general z-pinch result a critical line-density limit ''N'' max =5x10 18 m -1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 10 20 m -1 . (author)

  14. Cost Effective RADIUS Authentication for Wireless Clients

    Directory of Open Access Journals (Sweden)

    Alexandru ENACEANU

    2010-12-01

    Full Text Available Network administrators need to keep administrative user information for each network device, but network devices usually support only limited functions for user management. WLAN security is a modern problem that needs to be solved and it requires a lot of overhead especially when applied to corporate wireless networks. Administrators can set up a RADIUS server that uses an external database server to handle authentication, authorization, and accounting for network security issues.

  15. Upper pinch radius limit in EXTRAP

    International Nuclear Information System (INIS)

    Lehnert, B.

    1989-12-01

    A simple static equilibrium model of the Z-pinch is considered where a hot plasma core is surrounded by a cold-mantle (gas blanket). The pinch radius, defined as the radial extension of the fully ionized plasma core, is uniquely determined by the plasma particle. momentum and heat balance equations. In Extrap configurations an octupole field is introduced which imposes a magnetic separatrix on Z-pinch geometry. This makes the conditions for Extrap equilibrium 'overdetermined' when the characteristic pinch radium given by the plasma parameters tends to exceed the characteristic radius of the magnetic separatrix. In this case no conventional pinch equilibrium can exist, and part of the current which is forced into the plasma discharge by external sources must be channelled outside of the separatrix, i.e. into the surrounding support structure of the Extrap conductors and the vessel walls. A possibly existing bootstrap current in the plasma boundary layer is further expected to be 'scraped off' in this case. The present paper gives some illustrations of the marginal case of this upper pinch radius limit, in a state where the pinch current is antiparallel to the external rod currents which generate the octupole field. (authors)

  16. Mass-Radius diagram for compact stars

    International Nuclear Information System (INIS)

    Carvalho, G A; Jr, R M Marinho; Malheiro, M

    2015-01-01

    The compact stars represent the final stage in the evolution of ordinary stars, they are formed when a star ceases its nuclear fuel, in this point the process that sustain its stability will stop. After this, the internal pressure can no longer stand the gravitational force and the star colapses [2]. In this work we investigate the structure of these stars which are described by the equations of Tolman-Openheimer-Volkof (TOV) [1]. These equations show us how the pressure varies with the mass and radius of the star. We consider the TOV equations for both relativistic and non-relativistic cases. In the case of compact stars (white dwarfs and neutron stars) the internal pressure that balances the gravitational pressure is essentialy the pressure coming from the degeneracy of fermions. To have solved the TOV equations we need a equation of state that shows how this internal pressure is related to the energy density or mass density. Instead of using politropic equations of state we have solved the equations numericaly using the exact relativistic energy equation for the model of fermion gas at zero temperature. We obtain results for the mass-radius relation for white dwarfs and we compared with the results obtained using the politropic equations of state. In addition we discussed a good fit for the mass-radius relation. (paper)

  17. Solar radius change between 1925 and 1979

    Science.gov (United States)

    Sofia, S.; Dunham, D. W.; Dunham, J. B.; Fiala, A. D.

    1983-01-01

    From an analysis of numerous reports from different locations on the duration of totality of the solar eclipses on January 24, 1925, and February 26, 1979, it is found that the solar radius at the earlier date was 0.5 arcsec (or 375 km) larger than at the later date. The correction to the standard solar radius found for each eclipse is different when different subsets of the observations are used (for example, edge of path of totality timings compared with central timings). This is seen as suggesting the existence of systematic inaccuracies in our knowledge of the lunar figure. The differences between the corrections for both eclipses, however, are very similar for all subsets considered, indicating that changes of the solar size may be reliably inferred despite the existence of the lunar figure errors so long as there is proper consideration of the distribution of the observations. These results are regarded as strong evidence in support of the occurrence of solar radius changes on shorter than evolutionary time scales.

  18. Solar radius change between 1925 and 1979

    International Nuclear Information System (INIS)

    Sofia, S.; Fiala, A.D.

    1983-01-01

    By analysing numerous reports, from different locations, on the duration of totality of the solar eclipses on 24 January 1925, and on 26 February 1979, it was found that the solar radius at the earlier date was 0.5 arc s, or 375 km larger than at the later date. The correction to the standard solar radius found for each eclipse was different when different subsets of the observations were used (for example, edge of path of totality timings compared with central timings), suggesting the existence of systematic inaccuracies in our knowledge of the lunar figure. However, the differences between the corrections for both eclipses were very similar for all subsets considered, indicating that changes of the solar size may be reliably inferred despite the existence of the lunar figure errors, as long as the proper consideration is made of the distribution of the observations. It is considered that these results are strong evidence in support of the occurrence of solar radius changes on shorter than evolutionary time scales. (author)

  19. Venus Surface Composition Constrained by Observation and Experiment

    Science.gov (United States)

    Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne

    2017-11-01

    New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to

  20. Charge Radius Measurement of the Halo Nucleus $^{11}$Li

    CERN Multimedia

    Kluge, H-J; Kuehl, T; Simon, H; Wang, Haiming; Zimmermann, C; Onishi, T; Tanihata, I; Wakasugi, M

    2002-01-01

    %IS385 %title\\\\ \\\\The root-mean-square charge radius of $^{11}$Li will be determined by measuring the isotope shift of a suitable atomic transition in a laser spectroscopic experiment. Comparing the charge radii of the lithium isotopes obtained by this nuclear-model-independent method with the relevant mass radii obtained before will help to answer the question whether the proton distribution in halo nuclei at the neutron drip-line is decoupled to the first order from their neutron distribution. The necessary experimental sensitivity requires the maximum possible rate of $^{11}$Li nuclei in a beam of low emittance which can only be provided by ISOLDE.

  1. Understanding colloidal charge renormilization from surface chemistry : experiment and theory

    OpenAIRE

    Gisler, Thomas; Schulz, S. F.; Borkovec, Michal; Sticher, Hans; Schurtenberger, Peter; D'Aguanno, Bruno; Klein, Rudolf

    1994-01-01

    In this paper we report on the charging behavior of latex particles in aqueous suspensions. We use static light scattering and acid-base titrations as complementary techniques to observe both effective and bare particle charges. Acid-base titrations at various ionic strengths provide the pH dependent charging curves. The surface chemical parameters (dissociation constant of the acidic carboxylic groups, total density of ionizable sites and Stem capacitance) are determined from tits of a Stem ...

  2. Inductive voltage adder (IVA) for submillimeter radius electron beam

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    1996-01-01

    The authors have already demonstrated the utility of inductive voltage adder accelerators for production of small-size electron beams. In this approach, the inductive voltage adder drives a magnetically immersed foilless diode to produce high-energy (10--20 MeV), high-brightness pencil electron beams. This concept was first demonstrated with the successful experiments which converted the linear induction accelerator RADLAC II into an IVA fitted with a small 1-cm radius cathode magnetically immersed foilless diode (RADLAC II/SMILE). They present here first validations of extending this idea to mm-scale electron beams using the SABRE and HERMES-III inductive voltage adders as test beds. The SABRE experiments are already completed and have produced 30-kA, 9-MeV electron beams with envelope diameter of 1.5-mm FWHM. The HERMES-III experiments are currently underway

  3. Agoras: Towards Collaborative Game-Based Learning Experiences on Surfaces

    Science.gov (United States)

    Catala, Alejandro; Garcia-Sanjuan, Fernando; Pons, Patricia; Jaen, Javier; Mocholi, Jose A.

    2012-01-01

    Children nowadays consume and manage lots of interactive digital software. This makes it more interesting and powerful to use digital technologies and videogames supporting learning experiences. However, in general, current digital proposals lack of in-situ social interaction supporting natural exchange and discussion of ideas in the course of…

  4. A measurement of the pion charge radius

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Badelek, B.; Batignani, G.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Scribano, A.; Tonelli, G.; Codino, A.; Fabbri, F.L.; Laurelli, P.; Satta, L.; Spillantini, P.; Zallo, A.; Counihan, M.J.; Frank, S.G.F.; Harvey, J.; Storey, D.; Menasce, D.; Meroni, E.; Moroni, L.

    1984-01-01

    We report a measurement of the negative pion electromagnetic form factor in the range of space-like four-momentum transfer 0.014 2 2 . The measurement was made by the NA7 collaboration at the CERN SPS, by observing the interaction of 300 GeV pions with the electrons of a liquid hydrogen target. The form factor is fitted by a pole form with a pion radius of (rho 2 )sup(1/2) = 0.657 +- 0.012 fm. (orig.)

  5. A measurement of the kaon charge radius

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Gianetti, P.; Giazzotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Scribano, A.; Tonelli, G.; Triggiani, G.; Beck, G.A.; Bologna, G.; D'Ettorre Piazzoli, B.; Mannocchi, G.; Picchi, P.; Budinich, M.; Liello, F.; Ragusa, F.; Rolandi, L.; Stefanini, A.; Fabbri, F.L.; Laurelli, P.; Zallo, A.; Gren, M.G.; Landon, M.P.J.; March, P.V.; Strong, J.A.; Tenchini, R.; Meroni, E.

    1986-01-01

    The negative kaon electromagnetic form factor has been measured in the space-like q 2 range 0.015-0.10 (GeV/c) 2 by the direct scattering of 250 GeV kaons from electrons at the CERN SPS. It is found that the kaon mean square charge radius K 2 >=0.34±0.05 fm 2 . From data collected simultaneously for πe scattering, the difference between the charged pion and kaon mean square radii (which is less sensitive to systematic errors) is found to be π 2 >- K 2 >=0.10±0.045 fm 2 . (orig.)

  6. Small-radius jets to all orders

    CERN Document Server

    Cacciari, Matteo; Soyez, Gregory; Salam, Gavin; Dasgupta, Mrinal

    2015-01-01

    With hadron colliders continuing to push the boundaries of precision, it is becoming increas­ ingly important to have a detailed understanding of the subtleties appearing at smaller values of the jet radius R. We present a method to resum all leading logarithmic terms, a'.; Inn R, using a generating functional approach, as was recently discussed in Ref. 1. We study a variety of observables, such as the inclusive jet spectrum and jet vetoes for Higgs physics, and show that small-R effects can be sizeable. Finally, we compare our calculations to existing ALICE data, and show good agreement.

  7. Linear intra-bone geometry dependencies of the radius: Radius length determination by maximum distal width

    International Nuclear Information System (INIS)

    Baumbach, S.F.; Krusche-Mandl, I.; Huf, W.; Mall, G.; Fialka, C.

    2012-01-01

    Purpose: The aim of the study was to investigate possible linear intra-bone geometry dependencies by determining the relation between the maximum radius length and maximum distal width in two independent populations and test for possible gender or age effects. A strong correlation can help develop more representative fracture models and osteosynthetic devices as well as aid gender and height estimation in anthropologic/forensic cases. Methods: First, maximum radius length and distal width of 100 consecutive patients, aged 20–70 years, were digitally measured on standard lower arm radiographs by two independent investigators. Second, the same measurements were performed ex vivo on a second cohort, 135 isolated, formalin fixed radii. Standard descriptive statistics as well as correlations were calculated and possible gender age influences tested for both populations separately. Results: The radiographic dataset resulted in a correlation of radius length and width of r = 0.753 (adj. R 2 = 0.563, p 2 = 0.592) and side no influence on the correlation. Radius length–width correlation for the isolated radii was r = 0.621 (adj. R 2 = 0.381, p 2 = 0.598). Conclusion: A relatively strong radius length–distal width correlation was found in two different populations, indicating that linear body proportions might not only apply to body height and axial length measurements of long bones but also to proportional dependency of bone shapes in general.

  8. Earthquake Energy Distribution along the Earth Surface and Radius

    International Nuclear Information System (INIS)

    Varga, P.; Krumm, F.; Riguzzi, F.; Doglioni, C.; Suele, B.; Wang, K.; Panza, G.F.

    2010-07-01

    The global earthquake catalog of seismic events with M W ≥ 7.0, for the time interval from 1950 to 2007, shows that the depth distribution of earthquake energy release is not uniform. The 90% of the total earthquake energy budget is dissipated in the first ∼30km, whereas most of the residual budget is radiated at the lower boundary of the transition zone (410 km - 660 km), above the upper-lower mantle boundary. The upper border of the transition zone at around 410 km of depth is not marked by significant seismic energy release. This points for a non-dominant role of the slabs in the energy budged of plate tectonics. Earthquake number and energy release, although not well correlated, when analysed with respect to the latitude, show a decrease toward the polar areas. Moreover, the radiated energy has the highest peak close to (±5 o ) the so-called tectonic equator defined by Crespi et al. (2007), which is inclined about 30 o with respect to the geographic equator. At the same time the presence of a clear axial co- ordination of the radiated seismic energy is demonstrated with maxima at latitudes close to critical (±45 o ). This speaks about the presence of external forces that influence seismicity and it is consistent with the fact that Gutenberg-Richter law is linear, for events with M>5, only when the whole Earth's seismicity is considered. These data are consistent with an astronomical control on plate tectonics, i.e., the despinning (slowing of the Earth's angular rotation) of the Earth's rotation caused primarily by the tidal friction due to the Moon. The mutual position of the shallow and ∼660 km deep earthquake energy sources along subduction zones allows us to conclude that they are connected with the same slab along the W-directed subduction zones, but they may rather be disconnected along the opposed E-NE-directed slabs, being the deep seismicity controlled by other mechanisms. (author)

  9. Radius scaling of titanium wire arrays on the Z accelerator

    International Nuclear Information System (INIS)

    Coverdale, C.A.; Denney, C.; Spielman, R.B.

    1999-01-01

    The 20 MA Z accelerator has made possible the generation of substantial radiation (> 100 kJ) at higher photon energies (4.8 keV) through the use of titanium wire arrays. In this paper, the results of experiments designed to study the effects of initial load radius variations of nickel-clad titanium wire arrays will be presented. The load radius was varied from 17.5 mm to 25 mm and titanium K-shell (4.8 keV) yields of greater than 100 kJ were measured. The inclusion of the nickel cladding on the titanium wires allows for higher wire number loads and increases the spectral broadness of the source; kilovolt emissions (nickel plus titanium L-shell) of 400 kJ were measured in these experiments. Comparisons of the data to calculations will be made to estimate pinched plasma parameters such as temperature and participating mass fraction. These results will also be compared with previous pure titanium wire array results

  10. Rocket Engine Turbine Blade Surface Pressure Distributions Experiment and Computations

    Science.gov (United States)

    Hudson, Susan T.; Zoladz, Thomas F.; Dorney, Daniel J.; Turner, James (Technical Monitor)

    2002-01-01

    Understanding the unsteady aspects of turbine rotor flow fields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with miniature surface mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in two respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. A three-dimensional unsteady Navier-Stokes analysis was also used to blindly predict the unsteady flow field in the turbine at the design operating conditions and at +15 degrees relative incidence to the first-stage rotor. The predicted time-averaged and unsteady pressure distributions show good agreement with the experimental data. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools are contributing significantly to current Space Launch Initiative turbine airflow test and blade surface pressure prediction efforts.

  11. On the charge radius of the neutrino

    CERN Document Server

    Bernabeu, J; Papavassiliou, J; Vidal, J

    2000-01-01

    Using the pinch technique we construct at one-loop order a neutrino charge radius, which is finite, depends neither on the gauge-fixing parameter nor on the gauge-fixing scheme employed, and is process-independent. This definition stems solely from an effective proper photon-neutrino one-loop vertex, with no reference to box or self-energy contributions. The role of the $WW$ box in this construction is critically examined. In particular it is shown that the exclusion of the effective WW box from the definition of the neutrino charge radius is not a matter of convention but is in fact dynamically realized when the target-fermions are right-handedly polarized. In this way we obtain a unique decomposition of effective self-energies, vertices, and boxes, which separately respect electroweak gauge invariance. We elaborate on the tree-level origin of the mechanism which enforces at one-loop level massive cancellations among the longitudinal momenta appearing in the Feynman diagrams, and in particular those associat...

  12. QED confronts the radius of the proton

    CERN Document Server

    De Rujula, A

    2011-01-01

    Recent results on muonic hydrogen [1] and the ones compiled by CODATA on ordinary hydrogen and $ep$-scattering [2] are $5\\sigma$ away from each other. Two reasons justify a further look at this subject: 1) One of the approximations used in [1] is not valid for muonic hydrogen. This amounts to a shift of the proton's radius by $\\sim 3$ of the standard deviations of [1], in the "right" direction of data-reconciliation. In field-theory terms, the error is a mismatch of renormalization scales. Once corrected, the proton radius "runs", much as the QCD coupling "constant" does. 2) The result of [1] requires a choice of the "third Zemach moment". Its published independent determination is based on an analysis with a $p$-value --the probability of obtaining data with equal or lesser agreement with the adopted (fit form-factor) hypothesis-- of $3.92\\times 10^{-12}$. In this sense, this quantity is not empirically known. Its value would regulate the level of "tension" between muonic- and ordinary-hydrogen results, curr...

  13. Finite Larmor radius stabilization of ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Tsang, K.T.

    1980-07-01

    A ballooning mode equation that includes full finite Larmor radius effects has been derived from the Vlasov equation for a circular tokamak equilibrium. Numerical solution of this equation shows that finite Larmor radius effects are stabilizing

  14. HABITABILITY OF EXOMOONS AT THE HILL OR TIDAL LOCKING RADIUS

    Energy Technology Data Exchange (ETDEWEB)

    Hinkel, Natalie R.; Kane, Stephen R., E-mail: natalie.hinkel@gmail.com [NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

    2013-09-01

    Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. We have examined the flux phase profile of a simulated, hypothetical moon orbiting at a distant radius around the confirmed exoplanets {mu} Ara b, HD 28185 b, BD +14 4559 b, and HD 73534 b. The irradiated flux on a moon at its furthest, stable distance from the planet achieves its largest flux gradient, which places a limit on the flux ranges expected for subsequent (observed) moons closer in orbit to the planet. We have also analyzed the effect of planetary eccentricity on the flux on the moon, examining planets that traverse the habitable zone either fully or partially during their orbit. Looking solely at the stellar contributions, we find that moons around planets that are totally within the habitable zone experience thermal equilibrium temperatures above the runaway greenhouse limit, requiring a small heat redistribution efficiency. In contrast, exomoons orbiting planets that only spend a fraction of their time within the habitable zone require a heat redistribution efficiency near 100% in order to achieve temperatures suitable for habitability. This means that a planet does not need to spend its entire orbit within the habitable zone in order for the exomoon to be habitable. Because the applied systems comprise giant planets around bright stars, we believe that the transit detection method is most likely to yield an exomoon discovery.

  15. HABITABILITY OF EXOMOONS AT THE HILL OR TIDAL LOCKING RADIUS

    International Nuclear Information System (INIS)

    Hinkel, Natalie R.; Kane, Stephen R.

    2013-01-01

    Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. We have examined the flux phase profile of a simulated, hypothetical moon orbiting at a distant radius around the confirmed exoplanets μ Ara b, HD 28185 b, BD +14 4559 b, and HD 73534 b. The irradiated flux on a moon at its furthest, stable distance from the planet achieves its largest flux gradient, which places a limit on the flux ranges expected for subsequent (observed) moons closer in orbit to the planet. We have also analyzed the effect of planetary eccentricity on the flux on the moon, examining planets that traverse the habitable zone either fully or partially during their orbit. Looking solely at the stellar contributions, we find that moons around planets that are totally within the habitable zone experience thermal equilibrium temperatures above the runaway greenhouse limit, requiring a small heat redistribution efficiency. In contrast, exomoons orbiting planets that only spend a fraction of their time within the habitable zone require a heat redistribution efficiency near 100% in order to achieve temperatures suitable for habitability. This means that a planet does not need to spend its entire orbit within the habitable zone in order for the exomoon to be habitable. Because the applied systems comprise giant planets around bright stars, we believe that the transit detection method is most likely to yield an exomoon discovery

  16. Design of roundness measurement model with multi-systematic error for cylindrical components with large radius.

    Science.gov (United States)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Tang, Yangchao

    2016-02-01

    The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 μm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius.

  17. Proton radius, Darwin-Foldy term and radiative corrections

    International Nuclear Information System (INIS)

    Jentschura, U.D.

    2011-01-01

    We discuss the role of the so-called Darwin-Foldy term in the evaluation of the proton and deuteron charge radii from atomic hydrogen spectroscopy and nuclear scattering data. The question of whether this term should be included or excluded from the nuclear radius has been controversially discussed in the literature. We attempt to clarify which literature values correspond to which conventions. A detailed discussion of the conventions appears useful because a recent experiment [R. Pohl et al., Nature 466, 213 (2010)] has indicated that there is a discrepancy between the proton charge radii inferred from ordinary ('electronic') atomic hydrogen and muonic hydrogen. We also investigate the role of quantum electrodynamic radiative corrections in the determination of nuclear radii from scattering data, and propose a definition of the nuclear self energy which is compatible with the subtraction of the radiative corrections in scattering experiments. (author)

  18. Calculation of nuclear radius using alpha decay

    International Nuclear Information System (INIS)

    Castro, R.B. de.

    1988-01-01

    Using a Quantum Theory approach for the Alpha-Decay process, a formula is deduced for determination of the nuclear radius of the s-state, that is, a nuclear model with a spherical shell. The hypothesis that it is possible to individualize the alpha particle and the daughter nucleus at the moment of the alpha particle emission is considered. In considered in these conditions, the treatment of a two body problem considered as point particles, repelling each other by Coulomb's Law. Using the new values of the fundamental physical constants, experimentally determinated, by substitution of their numerical values in the proposed, new values of nuclear radii are obtained. These values are compared with those found in the literature. (author) [pt

  19. Research of Precataclysmic Variables with Radius Excesses

    Science.gov (United States)

    Deminova, N. R.; Shimansky, V. V.; Borisov, N. V.; Gabdeev, M. M.; Shimanskaya, N. N.

    2017-06-01

    The results of spectroscopic observations of the pre-cataclysmic variable NSVS 14256825, which is a HW Vir binary system, were analyzed. The chemical composition is determined, the radial velocities and equivalent widths of a given star are measured. The fundamental parameters of the components were determined (R1 = 0.166 R⊙ , M2 = 0.100 M⊙ , R2 = 0.122 R⊙). It is shown that the secondary component has a mass close to the mass of brown dwarfs. A comparison of two close binary systems is made: HS 2333 + 3927 and NSVS 14256825. A radius-to-mass relationship for the secondary components of the studied pre-cataclysmic variables is constructed. It is concluded that an excess of radii relative to model predictions for MS stars is observed in virtually all systems.

  20. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-09-01

    Transiting planet surveys like Kepler have provided a wealth of information on the distribution of planetary radii, particularly for the new populations of super-Earth- and sub-Neptune-sized planets. In order to aid in the physical interpretation of these radii, we compute model radii for low-mass rocky planets with hydrogen-helium envelopes. We provide model radii for planets 1-20 M {sub ⊕}, with envelope fractions 0.01%-20%, levels of irradiation 0.1-1000 times Earth's, and ages from 100 Myr to 10 Gyr. In addition we provide simple analytic fits that summarize how radius depends on each of these parameters. Most importantly, we show that at fixed H/He envelope fraction, radii show little dependence on mass for planets with more than ∼1% of their mass in their envelope. Consequently, planetary radius is to a first order a proxy for planetary composition, i.e., H/He envelope fraction, for Neptune- and sub-Neptune-sized planets. We recast the observed mass-radius relationship as a mass-composition relationship and discuss it in light of traditional core accretion theory. We discuss the transition from rocky super-Earths to sub-Neptune planets with large volatile envelopes. We suggest ∼1.75 R {sub ⊕} as a physically motivated dividing line between these two populations of planets. Finally, we discuss these results in light of the observed radius occurrence distribution found by Kepler.

  1. Conasauga near-surface heater experiment. Final report

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1979-11-01

    The Conasauga Experiment was undertaken to begin assessment of the thermomechanical and chemical response of a specific shale to the heat resulting from emplacement of high-level nuclear wastes. Canister-size heaters were implanted in Conasauga shale in Tennessee. Instrumentation arrays wee placed at various depths in drill holes around each heater. The heaters operated for 8 months and, after the first 4 days, were maintained at 385 0 C. Emphasis was on characterizing the thermal and mechanical response of the formation. Conduction was the major mode of heat transport; convection was perceptible only at temperatures above the boiling point of water. Despite dehydration of the shale at higher temperatures, in situ thermal conductivity was essentially constant and not a function of temperature. The mechanical response of the formation was a slight overall expansion, apparently resulting in a general decrease in permeability. Metallurgical observations were made, the stability of a borosilicate glass wasteform simulant was assessed, and changes in formation mineralogy and groundwater composition were documented. In each of these areas, transient nonequilibrium processes occur that affect material stability and may be important in determining the integrity of a repository. In general, data from the test reflect favorably on the use of shale as a disposal medium for nuclear waste

  2. Finite Larmor radius effects on Z-pinch stability

    International Nuclear Information System (INIS)

    Scheffel, J.; Faghihi, M.

    1987-10-01

    The effect of finite Larmor radius (FLR) on the stability of m=1 small axial wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the Incompressible FLR MHD model; a collisionless fluid model which consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD 2rdp/dr+m 2 B 2 /μ 0 >=0 predicts instability for internal modes unless the current density becomes singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall terms have a damping, however not stabilizing, effect, in agreement with earlier work. Specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m=1 modes are then fully stabilized over the cross-section for wavelengths λ/a max =3-5x10 18 m -1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 10 20 m -1 . (authors)

  3. Hydroforming Process for an Ultrasmall Bending Radius Elbow

    Directory of Open Access Journals (Sweden)

    Shangwen Ruan

    2018-01-01

    Full Text Available Bent pipes are widely used in automotive, aviation, and aerospace industries for delivering fluids. Parts having small relative bending radiuses are called elbows. However, fabricating a thin-walled elbow part using the simple bending process poses many challenges. One possible way to manufacture elbows is with the stamping-welding process. The major drawbacks of this method include the decline in sealing performance and the addition in weight attributed to the lap welding process. Tube hydroforming (THF is considered as a feasible solution to these problems. However, the forming process could be quite complex, and multistep forming is necessary. This study investigates the effects of preliminary processes on elbow forming such as bending, partition forming, and heat treatment and presents a high-performance optimized process design to achieve an ultrasmall radius elbow. The effects of multistep forming on the thickness distribution and the heat treatment on the microstructure have been evaluated. The results obtained from simulations show a reasonable agreement with those from the experiments.

  4. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    International Nuclear Information System (INIS)

    Longcai, Zhang

    2014-01-01

    Highlights: • The guidance force was decayed by the application of the AC external magnetic field. • The guidance force was higher for the bulk with bigger radius. • The guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. - Abstract: Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius

  5. Solar Radius at Subterahertz Frequencies and Its Relation to Solar Activity

    Science.gov (United States)

    Menezes, Fabian; Valio, Adriana

    2017-12-01

    The Sun emits radiation at several wavelengths of the electromagnetic spectrum. In the optical band, the solar radius is 695 700 km, and this defines the photosphere, which is the visible surface of the Sun. However, as the altitude increases, the electromagnetic radiation is produced at other frequencies, causing the solar radius to change as a function of wavelength. These measurements enable a better understanding of the solar atmosphere, and the radius dependence on the solar cycle is a good indicator of the changes that occur in the atmospheric structure. We measure the solar radius at the subterahertz frequencies of 0.212 and 0.405 THz, which is the altitude at which these emissions are primarily generated, and also analyze the radius variation over the 11-year solar activity cycle. For this, we used radio maps of the solar disk for the period between 1999 and 2017, reconstructed from daily scans made by the Solar Submillimeter-wave Telescope (SST), installed at El Leoncito Astronomical Complex (CASLEO) in the Argentinean Andes. Our measurements yield radii of 966.5'' ±2.8'' for 0.2 THz and 966.5'' ±2.7'' for 0.4 THz. This implies a height of 5.0 ±2.0 ×106 m above the photosphere. Furthermore, we also observed a strong anticorrelation between the radius variation and the solar activity at both frequencies.

  6. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Longcai, Zhang, E-mail: zhlcai2000@163.com

    2014-07-15

    Highlights: • The guidance force was decayed by the application of the AC external magnetic field. • The guidance force was higher for the bulk with bigger radius. • The guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. - Abstract: Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  7. French surface disposal experience. The disposal of large waste

    International Nuclear Information System (INIS)

    Dutzer, Michel; Lecoq, Pascal; Duret, Franck; Mandoki, Robert

    2006-01-01

    More than 90 percent of the volume of radioactive waste that are generated in France can be managed in surface disposal facilities. Two facilities are presently operated by ANDRA: the Centre de l'Aube disposal facility that is dedicated to low and intermediate short lived waste and the Morvilliers facility for very low level waste. The Centre de l'Aube facility was designed at the end of the years 1980 to replace the Centre de la Manche facility that ended operation in 1994. In order to achieve as low external exposure as possible for workers it was decided to use remote handling systems as much as possible. Therefore it was necessary to standardize the types of waste containers. But taking into account the fact that these waste were conditioned in existing facilities, it was not possible to change a major part of existing packages. As a consequence, 6 mobile roofs were constructed to handle 12 different types of waste packages in the disposal vaults. The scope of Centre de l'Aube was mainly to dispose operational waste. However some packages, as 5 or 10 m 3 metallic boxes, could be used for larger waste generated by decommissioning activities. The corresponding flow was supposed to be small. After the first years of operations, it appeared interesting to develop special procedures to dispose specific large waste in order to avoid external exposure costly cutting works in the generating facilities. A 40 m 3 box and a large remote handling device were disposed in vaults that were currently used for other types of packages. Such a technique could not be used for the disposal of vessel heads that were replaced in 55 pressurised water power reactors. The duration of disposal and conditioning operation was not compatible with the flow of standard packages that were delivered in the vaults. Therefore a specific type of vault was designed, including handling and conditioning equipment. The first pressure vessel head was delivered on the 29 of July 2004, 6 heads have been

  8. Major Successes of Theory-and-Experiment-Combined Studies in Surface Chemistry and Heterogeneous Catalysis.

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Li, Yimin

    2009-11-21

    Experimental discoveries followed by theoretical interpretations that pave the way of further advances by experimentalists is a developing pattern in modern surface chemistry and catalysis. The revolution of modern surface science started with the development of surface-sensitive techniques such as LEED, XPS, AES, ISS and SIMS, in which the close collaboration between experimentalists and theorists led to the quantitative determination of surface structure and composition. The experimental discovery of the chemical activity of surface defects and the trends in the reactivity of transitional metals followed by the explanations from the theoretical studies led to the molecular level understanding of active sites in catalysis. The molecular level knowledge, in turn, provided a guide for experiments to search for new generation of catalysts. These and many other examples of successes in experiment-and-theory-combined studies demonstrate the importance of the collaboration between experimentalists and theorists in the development of modern surface science.

  9. Relation between radius and expansion velocity in planetary nebulae

    International Nuclear Information System (INIS)

    Chu, Y.H.; Kwitter, K.B.; Kaler, J.B.

    1984-01-01

    The expansion velocity-radius (R-V) relation for planetary nebulae is examined using the existing measurements of expansion velocities and recent calculations of radii. It is found that some of the previously alleged R-V relations for PN are not convincingly established. The scatter in the R-V plots may be due largely to stratification of ions in individual nebulae and to heterogeneity in the planetary nebula population. In addition, from new echelle/CCD observations of planetary nebulae, it is found that spatial information is essential in deriving the internal kinematic properties. Future investigations of R-V relations should be pursued separately for groups of planetaries with similar physical properties, and they should employ observations of appropriate low excitation lines in order to measure the expansion velocity at the surface of the nebula. 26 references

  10. The "Chocolate Experiment"--A Demonstration of Radiation Absorption by Different Colored Surfaces

    Science.gov (United States)

    Fung, Dennis

    2015-01-01

    In the typical "cookbook" experiment comparing the radiation absorption rates of different colored surfaces, students' hands are commonly used as a measurement instrument to demonstrate that dull black and silvery surfaces are good and poor absorbers of radiation, respectively. However, college students are often skeptical about using…

  11. Reflight of the Solid Surface Combustion Experiment: Opposed-Flow Flame Spread Over Cylindrical Fuels

    Science.gov (United States)

    Bhattacharjee, Subrata; Altenkirch, Robert A.; Worley, Regis; Tang, Lin; Bundy, Matt; Sacksteder, Kurt; Delichatsios, Michael A.

    1997-01-01

    The effort described here is a reflight of the Solid Surface Combustion Experiment (SSCE), with extension of the flight matrix first and then experiment modification. The objectives of the reflight are to extend the understanding of the interplay of the radiative processes that affect the flame spread mechanisms.

  12. Nitrate Accumulation and Leaching in Surface and Ground Water Based on Simulated Rainfall Experiments

    Science.gov (United States)

    Wang, Hong; Gao, Jian-en; Li, Xing-hua; Zhang, Shao-long; Wang, Hong-jie

    2015-01-01

    To evaluate the process of nitrate accumulation and leaching in surface and ground water, we conducted simulated rainfall experiments. The experiments were performed in areas of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high (22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with. From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uniformly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments, the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L before the 5th experiment, and after the 7th experiment, these nitrate concentrations were greater than 10 mg/L throughout the process. The time-series process of the changing concentration in the groundwater flow exhibited the same parabolic trend for each fertilizer experiment. However, the time at which the nitrate concentration began to change lagged behind the start time of groundwater flow by approximately 0.94 hours on average. The experiments were also performed with no fertilizer. In these experiments, the mean nitrate concentration of groundwater initially increased continuously, and then, the process exhibited the same parabolic trend as the results of the fertilization experiments. The nitrate concentration decreased in the subsequent experiments. Eight days after the 12 rainfall experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate residues mainly existed at the surface and in the bottom soil layers, which represents a

  13. Nuclear charge radius measurements of radioactive beryllium isotopes

    CERN Multimedia

    2002-01-01

    We propose to measure the nuclear charge radii of the beryllium isotopes $^{7,9,10}$Be and the one-neutron halo isotope $^{11}$Be using laser spectroscopy of trapped ions. Ions produced at ISOLDE and ionized with the laser ion source will be cooled and bunched in the radio-frequency buncher of the ISOLTRAP experiment and then transferred into a specially designed Paul trap. Here, they will be cooled to temperatures in the mK range employing sympathetic and direct laser cooling. Precision laser spectroscopy of the isotope shift on the cooled ensemble in combination with accurate atomic structure calculations will provide nuclear charge radii with a precision of better than 3%. This will be the first model-independent determination of a one-neutron halo nuclear charge radius.

  14. Experimental study of finite Larmor radius effects

    International Nuclear Information System (INIS)

    Struve, K.W.

    1980-08-01

    Linear Z-pinches in Ar, Kr, Xe, N 2 , and He are experimentally studied in regimes where strong finite Larmor radius effects could provide a significant stabilizing effect. Scaling arguments show that for deuterium such a pinch has an electron line density of order 2 x 10 15 /cm. For higher Z plasmas a higher line density is allowed, the exact value of which depends on the average ion charge. The pinch is formed by puffing gas axially through the cathode towards the anode of an evacuated pinch chamber. When the gas reaches the anode, the pinch bank is fired. The pinch current rises in 2 to 3 μsec to a maximum of 100 to 200 kA. The pinch bank capacitance is 900 μF, and the external inductance is 100 nH. Additionally, the bank is fused to increase dI/dt. The primary diagnostics are a framing camera, a spatially resolved Mach-Zehnder interferometer, and X-ray absorption

  15. Theoretical model of droplet wettability on a low-surface-energy solid under the influence of gravity.

    Science.gov (United States)

    Yonemoto, Yukihiro; Kunugi, Tomoaki

    2014-01-01

    The wettability of droplets on a low surface energy solid is evaluated experimentally and theoretically. Water-ethanol binary mixture drops of several volumes are used. In the experiment, the droplet radius, height, and contact angle are measured. Analytical equations are derived that incorporate the effect of gravity for the relationships between the droplet radius and height, radius and contact angle, and radius and liquid surface energy. All the analytical equations display good agreement with the experimental data. It is found that the fundamental wetting behavior of the droplet on the low surface energy solid can be predicted by our model which gives geometrical information of the droplet such as the contact angle, droplet radius, and height from physical values of liquid and solid.

  16. Construction and performance test of apparatus for permeation experiments with controlled surfaces

    International Nuclear Information System (INIS)

    Hatano, Yuji; Nomura, Mamoru; Watanabe, Kuniaki; Livshits, Alexander I.; Busnyuk, Andrei O.; Nakamura, Yukio; Ohyabu, Nobuyoshi

    2003-01-01

    A new apparatus was constructed to examine gas-, atom- and plasma-driven permeation of hydrogen isotopes through group VA metal membranes with precisely controlled surface states. Absorption and desorption experiments are also possible. The new apparatus consists of two vacuum chambers, an upstream chamber and a downstream chamber, separated by a specimen membrane. Both chambers are evacuated by turbo-molecular pumps and sputter-ion pumps. The upstream chamber is equipped with Ta filaments serving as atomizers in atom-driven permeation experiments and cathodes in plasma-driven permeation experiments. The specimen membrane is formed into a tubular shape and electrically isolated from the chamber. Hence, ohmic heating of the membrane is possible, and this feature of the membrane is suitable for surface cleaning by high-temperature heating an impurity doping for the control of surface chemical composition through surface segregation. Both chambers were evacuated to 1 x 10 -7 Pa after baking. The main component of residual gas was H 2 , and the partial pressures of impurity gases other than H 2 were ca. 1 x 10 -8 Pa. Gas- and atom-driven permeation experiments were successfully carried out with hydrogen gas for Nb membrane activated by heating in vacuum at 1173 K. Superpermeation was observed in the atom-driven permeation experiments. Absorption experiments with a clean surface were also carried out. The surface was, however, cleaned only partially, because the temperature distribution was not uniform during high-temperature heating. Nevertheless, surface cleanliness was retained during absorption experiments under the present vacuum conditions. A new membrane assembly that will enable a uniform temperature distribution is now under construction. (author)

  17. STUDY OF REFLECTION COEFFICIENT DISTRIBUTION FOR ANTI-REFLECTION COATINGS ON SMALL-RADIUS OPTICAL PARTS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2015-03-01

    Full Text Available The paper deals with findings for the energy reflection coefficient distribution of anti- reflection coating along the surface of optical elements with a very small radius (2-12 mm. The factors influencing the magnitude of the surface area of the optical element, in which the energy reflection coefficient is constant, were detected. The main principles for theoretical models that describe the spectral characteristics of the multilayer interference coatings were used to achieve these objectives. The relative size of the enlightenment area is defined as the ratio of the radius for the optical element surface, where the reflection is less than a certain value, to its radius (ρ/r. The result of research is the following: this size is constant for a different value of the curvature radius for the optical element made of the same material. Its value is determined by the refractive index of material (nm, from which the optical element was made, and the design of antireflection coatings. For single-layer coatings this value is ρ/r = 0.5 when nm = 1.51; and ρ/r = 0.73 when nm = 1.75; for two-layer coatings ρ/r = 0.35 when nm = 1.51 and ρ/r = 0.41 when nm = 1.75. It is shown that with increasing of the material refractive index for the substrate size, the area of minimum reflection coefficient is increased. The paper considers a single-layer, two-layer, three-layer and five-layer structures of antireflection coatings. The findings give the possibility to conclude that equal thickness coverings formed on the optical element surface with a small radius make no equal reflection from the entire surface, and distribution of the layer thickness needs to be looked for, providing a uniform radiation reflection at all points of the spherical surface.

  18. The effect of adhesion on the contact radius in atomic force microscopy indentation

    International Nuclear Information System (INIS)

    Sirghi, L; Rossi, F

    2009-01-01

    The effect of adhesion on nanoscale indentation experiments makes the interpretation of force-displacement curves acquired in these experiments very difficult. The indentation force results from the addition of adhesive and elastic forces at the indenter-sample contact. The evolution of the two forces during the indentation is determined by the variation of the indenter-sample contact radius. In the present work the variation of contact radius during atomic force microscopy (AFM) indentation of elastic and adhesive samples with conical indenters (AFM tips) is indirectly determined by measurements of the contact dynamic stiffness. For weak sample deformations, the contact radius is determined mainly by the adhesion force and indenter apex radius. For strong sample deformations, the contact radius increases linearly with the increase of the indenter displacement, the slope of this linear dependence being in agreement with Sneddon's theory of indentation (Sneddon 1965 Int. J. Eng. Sci. 3 47). Based on these results, a theoretical expression of indentation force dependence on displacement is found. This expression allows for determination of the thermodynamic work of adhesion at the indenter-sample interface and the sample elasticity modulus.

  19. An iterative algorithm for calculating stylus radius unambiguously

    International Nuclear Information System (INIS)

    Vorburger, T V; Zheng, A; Renegar, T B; Song, J-F; Ma, L

    2011-01-01

    The stylus radius is an important specification for stylus instruments and is commonly provided by instrument manufacturers. However, it is difficult to measure the stylus radius unambiguously. Accurate profiles of the stylus tip may be obtained by profiling over an object sharper than itself, such as a razor blade. However, the stylus profile thus obtained is a partial arc, and unless the shape of the stylus tip is a perfect sphere or circle, the effective value of the radius depends on the length of the tip profile over which the radius is determined. We have developed an iterative, least squares algorithm aimed to determine the effective least squares stylus radius unambiguously. So far, the algorithm converges to reasonable results for the least squares stylus radius. We suggest that the algorithm be considered for adoption in documentary standards describing the properties of stylus instruments.

  20. Finite-Larmor-radius stability theory of EBT plasmas

    International Nuclear Information System (INIS)

    Berk, H.L.; Cheng, C.Z.; Rosenbluth, M.N.; Van Dam, J.W.

    1982-11-01

    An eikonal ballooning-mode formalism is developed to describe curvature-driven modes of hot electron plasmas in bumpy tori. The formalism treats frequencies comparable to the ion-cyclotron frequency, as well as arbitrary finite Larmor radius and field polarization, although the detailed analysis is restricted to E/sub parallel/ = 0. Moderate hot-electron finite-Larmor-radius effects are found to lower the background beta core limit, whereas strong finite-Lamor-radius effects produce stabilization

  1. Comparison between assimilated and non-assimilated experiments of the MACCii global reanalysis near surface ozone

    Science.gov (United States)

    Tsikerdekis, Athanasios; Katragou, Eleni; Zanis, Prodromos; Melas, Dimitrios; Eskes, Henk; Flemming, Johannes; Huijnen, Vincent; Inness, Antje; Kapsomenakis, Ioannis; Schultz, Martin; Stein, Olaf; Zerefos, Christos

    2014-05-01

    In this work we evaluate near surface ozone concentrations of the MACCii global reanalysis using measurements from the EMEP and AIRBASE database. The eight-year long reanalysis of atmospheric composition data covering the period 2003-2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system (Inness et al., 2013). The study mainly focuses in the differences between the assimilated and the non-assimilated experiments and aims to identify and quantify any improvements achieved by adding data assimilation to the system. Results are analyzed in eight European sub-regions and region-specific Taylor plots illustrate the evaluation and the overall predictive skill of each experiment. The diurnal and annual cycles of near surface ozone are evaluated for both experiments. Furthermore ozone exposure indices for crop growth (AOT40), human health (SOMO35) and the number of days that 8-hour ozone averages exceeded 60ppb and 90ppb have been calculated for each station based on both observed and simulated data. Results indicate mostly improvement of the assimilated experiment with respect to the high near surface ozone concentrations, the diurnal cycle and range and the bias in comparison to the non-assimilated experiment. The limitations of the comparison between assimilated and non-assimilated experiments for near surface ozone are also discussed.

  2. Water experiment of high-speed, free-surface, plane jet along concave wall

    International Nuclear Information System (INIS)

    Nakamura, Hideo; Ida, Mizuho; Kato, Yoshio; Maekawa, Hiroshi; Itoh, Kazuhiro; Kukita, Yutaka

    1997-01-01

    In the International Fusion Materials Irradiation Facility (IFMIF), an intense 14 MeV neutron beam will be generated in the high-speed liquid lithium (Li) plane jet target flowing along concave wall in vacuum. As part of the conceptual design activity (CDA) of the IFMIF, the stability of the plane liquid jet flow was studied experimentally with water in a well-defined channel geometry for non-heating condition. A two-dimensional double-reducer nozzle being newly proposed for the IFMIF target successfully provided a high-speed (≤ 17 m/s) stable water jet with uniform velocity distribution at the nozzle exit without flow separation in the nozzle. The free surface of the jet was covered by two-dimensional and/or three-dimensional waves, the size of which did not change much over the tested jet length of ∼130 mm. The jet velocity profile changed around the nozzle exit from uniform to that of free-vortex flow where the product of the radius of stream line and local velocity is constant in the jet thickness. The jet thickness increased immediately after exiting the nozzle because of the velocity profile change. The predicted jet thickness by a modified one-dimensional momentum model agreed with the data well. (author)

  3. Coevolution of bed surface patchiness and channel morphology: 2. Numerical experiments

    Science.gov (United States)

    Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.

    2015-01-01

    In gravel bed rivers, bed topography and the bed surface grain size distribution evolve simultaneously, but it is not clear how feedbacks between topography and grain sorting affect channel morphology. In this, the second of a pair of papers examining interactions between bed topography and bed surface sorting in gravel bed rivers, we use a two-dimensional morphodynamic model to perform numerical experiments designed to explore the coevolution of both free and forced bars and bed surface patches. Model runs were carried out on a computational grid simulating a 200 m long, 2.75 m wide, straight, rectangular channel, with an initially flat bed at a slope of 0.0137. Over five numerical experiments, we varied (a) whether an obstruction was present, (b) whether the sediment was a gravel mixture or a single size, and (c) whether the bed surface grain size feeds back on the hydraulic roughness field. Experiments with channel obstructions developed a train of alternate bars that became stationary and were connected to the obstruction. Freely migrating alternate bars formed in the experiments without channel obstructions. Simulations incorporating roughness feedbacks between the bed surface and flow field produced flatter, broader, and longer bars than simulations using constant roughness or uniform sediment. Our findings suggest that patches are not simply a by-product of bed topography, but they interact with the evolving bed and influence morphologic evolution.

  4. Radon-induced surface contaminations in neutrinoless double beta decay and dark matter experiments

    International Nuclear Information System (INIS)

    Pattavina, L.

    2011-01-01

    In experiments looking for rare events, like neutrinoless double beta decay (DBD0ν) and dark matter search (DM), one of the main issues is to increase the experimental sensitivity through the material selection and production. The background contribution coming from the materials used for the detector realization has to be minimized. Moreover the net reduction of the background produced by the bulk part of the apparatus has raised concerns about the background contribution coming from the surfaces. Many procedures and techniques were developed during the last years in order to remove and to minimize the presence of possible contaminants on detector surfaces. To succeed in this strategy a big effort was put in defining all possible mechanisms that lead to surface contaminations, as well as specific cleaning procedures, which are able to reduce and control the surface radioactivity. The presence in air and gases of possible radioactive elements that can stick on the detector surfaces can lead to a recontamination process that will vanish all the applied cleaning procedures. Here is presented and analyzed the contribution to the background of rare events experiments like CUORE experiment (DBD0ν) and EDELWEISS experiment (DM) produced by an exposure of their detector components to a big activity of 222 Rn, radioactive daughter isotope from the 238 U chain. (author)

  5. Experiment and model for the surface tension of amine–ionic liquids aqueous solutions

    International Nuclear Information System (INIS)

    Zhang, Pan; Du, LeiXia; Fu, Dong

    2014-01-01

    Highlights: • The surface tensions of MEA/DEA–ionic liquids aqueous solutions were measured. • The experiments were modeled satisfactorily by using a thermodynamic equation. • The temperature dependence of the surface tension was illustrated. • The effects of the mass fractions of MEA/DEA and ionic liquids were demonstrated. - Abstract: The surface tension (γ) of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF 4 ])–monoethanolamine (MEA), 1-butyl-3-methylimidazolium bromide ([Bmim][Br])–MEA, [Bmim][BF 4 ]–diethanolamine (DEA) and [Bmim][Br]–DEA aqueous solutions was measured by using the BZY-1 surface tension meter. The temperature ranged from (293.2 to 323.2) K. The mass fraction of amines and ionic liquids (ILS) respectively ranged from 0.15 to 0.30 and 0.05 to 0.10. A thermodynamic equation was proposed to model the surface tension of amines–ILS aqueous solutions and the calculated results agreed well with the experiments. The effects of temperature, mass fraction of amines and ILS on the surface tension were demonstrated on the basis of experiments and calculations

  6. A Non-Interfering Beam Radius Diagnostic Suitable For Induction Linacs

    International Nuclear Information System (INIS)

    Nexsen, W E

    2005-01-01

    High current electron induction linacs operate in a parameter regime that allows the use of a diamagnetic loop (DML) to measure the beam magnetic moment. Under certain easily met conditions the beam radius can be derived from the moment measurement. The DML has the advantage over the present methods of measuring beam radius in that it is an electrical measurement with good time resolution that does not interfere with the beam transport. I describe experiments on the LLNL accelerators, ETA-II and FXR that give confidence in the use of a DML as a beam diagnostic

  7. The Radius and Entropy of a Magnetized, Rotating, Fully Convective Star: Analysis with Depth-dependent Mixing Length Theories

    Science.gov (United States)

    Ireland, Lewis G.; Browning, Matthew K.

    2018-04-01

    Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter α MLT. We provide formulae linking changes in α MLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent α MLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable α MLT to these putative MLT reformulations.

  8. Numerical Radius Inequalities for Finite Sums of Operators

    Directory of Open Access Journals (Sweden)

    Mirmostafaee Alireza Kamel

    2014-12-01

    Full Text Available In this paper, we obtain some sharp inequalities for numerical radius of finite sums of operators. Moreover, we give some applications of our result in estimation of spectral radius. We also compare our results with some known results.

  9. Control of first-wall surface conditions in the 2XIIB Magnetic Mirror Plasma Confinement experiment

    International Nuclear Information System (INIS)

    Simonen, T.C.; Bulmer, R.H.; Coensgen, F.H.

    1976-01-01

    The control of first-wall surface conditions in the 2XIIB Magnetic Mirror Plasma Confinement experiment is described. Before each plasma shot, the first wall is covered with a freshly gettered titanium surface. Up to 5 MW of neutral beam power has been injected into 2XIIB, resulting in first-wall bombardment fluxes of 10 17 atoms . cm -2 . s -1 of 13-keV mean energy deuterium atoms for several ms. The background gas flux is measured with a calibrated, 11-channel, fast-atom detector. Background gas levels are found to depend on surface conditions, injected beam current, and beam pulse duration. For our best operating conditions, an efective reflex coefficient of 0.3 can be inferred from the measurements. Experiments with long-duration and high-current beam injection are limited by charge exchange; however, experiments with shorter beam duration are not limited by first-wall surface conditions. It is concluded that surface effects will be reduced further with smoother walls. (Auth.)

  10. Preliminary findings of the Viking gas exchange experiment and a model for Martian surface chemistry

    International Nuclear Information System (INIS)

    Oyama, V.I.; Berdahl, B.J.; Carle, G.C.

    1977-01-01

    It is stated that O 2 and CO 2 were evolved from humidified Martian soil in the gas exchange experiment on Viking Lander 1. Small changes in N 2 gas were also recorded. A model of the morphology and a hypothesis of the mechanistics of the Martian surface are proposed. (author)

  11. Doodling the Nerves: Surfacing Language Anxiety Experiences in an English Language Classroom

    Science.gov (United States)

    Siagto-Wakat, Geraldine

    2017-01-01

    This qualitative study explored the use of doodling to surface experiences in the psychological phenomenon of language anxiety in an English classroom. It treated the doodles of 192 freshmen from a premier university in Northern Luzon, Philippines. Further, it made use of phenomenological reduction in analysing the data gathered. Findings reveal…

  12. Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass variations

    NARCIS (Netherlands)

    Schrama, E.J.O.; Wouters, B.; Lavallée, D.A.

    2007-01-01

    The Gravity Recovery and Climate Experiment (GRACE) product used for this study consists of 43 monthly potential coefficient sets released by the GRACE science team which are used to generate surface mass thickness grids expressed as equivalent water heights (EQWHs). We optimized both the smoothing

  13. A new technique for the identification of surface contamination in low temperature bolometric experiments

    International Nuclear Information System (INIS)

    Sangiorgio, S.; Arnaboldi, C.; Brofferio, C.; Bucci, C.; Capelli, S.; Carbone, L.; Clemenza, M.; Cremonesi, O.; Fiorini, E.; Foggetta, L.; Giuliani, A.; Gorla, P.; Nones, C.; Nucciotti, A.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Salvioni, C.

    2011-01-01

    In the framework of the bolometric experiment CUORE, a new and promising technique has been developed in order to control the dangerous contamination coming from the surfaces close to the detector. In fact, by means of a composite bolometer, it is possible to partially overcome the loss of spatial resolution of the bolometer itself and to clearly identify events coming from outside.

  14. Attenuation of surface waves in porous media: Shock wave experiments and modelling

    NARCIS (Netherlands)

    Chao, G.E; Smeulders, D.M.J.; Dongen, van M.E.H.

    2005-01-01

    In this project we conduct experimental and numerical investigations on the attenuation mechanisms of surface waves in poroelastic materials. Viscous dissipation effects are modelled in the framework of Biot's theory. The experiments are performed using a shock tube technique. Quantitative agreement

  15. Experiments on bubble dynamics between a free surface and a rigid wall

    Science.gov (United States)

    Zhang, A. M.; Cui, P.; Wang, Y.

    2013-10-01

    Experiments were conducted where the underwater bubble oscillates between two boundaries, a free surface and a horizontal rigid wall. The motion features of both the bubble and the free surface were investigated, via the consideration of two key factors, i.e., the non-dimensional distances from the bubble to the two boundaries. To support the investigation, experiments were conducted in the first place where the bubble oscillates near only one of the two boundaries. Then the other boundary was inserted at different positions to observe the changes in the motion features, including the types, maximum speed and height of the water spike and skirt, the form and speed of the jets, and bubble shapes. Correspondence is found between the motion features of the free surface and different stages of bubble oscillation. Intriguing details such as gas torus around the jet, double jets, bubble entrapment, and microjet of the water spike, etc., are observed.

  16. Testing the white dwarf mass-radius relationship with eclipsing binaries

    Science.gov (United States)

    Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Ashley, R. P.; Bours, M. C. P.; Breedt, E.; Burleigh, M. R.; Copperwheat, C. M.; Dhillon, V. S.; Green, M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Rebassa-Mansergas, A.; Sahman, D. I.; Schreiber, M. R.

    2017-10-01

    We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass-radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48 M⊙ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon-oxygen core models. In contrast, white dwarfs with masses larger than 0.52 M⊙ all have radii consistent with carbon-oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes (10-5 ≥ MH/MWD ≥ 10-4), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution.

  17. Factors Affecting Optimal Surface Roughness of AISI 4140 Steel in Turning Operation Using Taguchi Experiment

    Science.gov (United States)

    Novareza, O.; Sulistiyarini, D. H.; Wiradmoko, R.

    2018-02-01

    This paper presents the result of using Taguchi method in turning process of medium carbon steel of AISI 4140. The primary concern is to find the optimal surface roughness after turning process. The taguchi method is used to get a combination of factors and factor levels in order to get the optimum surface roughness level. Four important factors with three levels were used in experiment based on Taguchi method. A number of 27 experiments were carried out during the research and analysed using analysis of variance (ANOVA) method. The result of surface finish was determined in Ra type surface roughness. The depth of cut was found to be the most important factors for reducing the surface roughness of AISI 4140 steel. On the contrary, the other important factors i.e. spindle speed and rake side angle of the tool were proven to be less factors that affecting the surface finish. It is interesting to see the effect of coolant composition that gained the second important factors to reduce the roughness. It may need further research to explain this result.

  18. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment

    Science.gov (United States)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman

    2017-12-01

    Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity

  19. The `Chocolate Experiment' - A Demonstration of Radiation Absorption by Different Colored Surfaces

    Science.gov (United States)

    Fung, Dennis

    2015-12-01

    In the typical "cookbook" experiment comparing the radiation absorption rates of different colored surfaces, students' hands are commonly used as a measurement instrument to demonstrate that dull black and silvery surfaces are good and poor absorbers of radiation, respectively. However, college students are often skeptical about using their bare hands in this experiment because they learned in early science lessons that skin is not a reliable detector of heat transfer. Moreover, when the experiment is conducted in a school laboratory, it is often difficult for students to perceive the slight differences in heat transfer on the dull black and silvery aluminum leaves attached to their hands. Rather than replacing students' bare hands with such sophisticated apparatus as a data logger and temperature probe, I suggest using a simple (and delicious!) low-cost instrument, i.e., chocolate, which simply melts when it receives radiation.

  20. An experiment on the dynamics of ion implantation and sputtering of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B. [Plasma Science and Fusion Center, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2014-02-15

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.

  1. An experiment on the dynamics of ion implantation and sputtering of surfaces

    International Nuclear Information System (INIS)

    Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B.

    2014-01-01

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface

  2. Evidence of circular Rydberg states in beam-foil experiments: Role of the surface wake field

    Science.gov (United States)

    Sharma, Gaurav; Puri, Nitin K.; Kumar, Pravin; Nandi, T.

    2017-12-01

    We have employed the concept of the surface wake field to model the formation of the circular Rydberg states in the beam-foil experiments. The experimental studies of atomic excitation processes show the formation of circular Rydberg states either in the bulk of the foil or at the exit surface, and the mechanism is explained by several controversial theories. The present model is based on the interesting fact that the charge state fraction as well as the surface wake field depend on the foil thickness and it resolves a long-standing discrepancy on the mechanism of the formation of circular Rydberg states. The influence of exit layers is twofold. Initially, the high angular momentum Rydberg states are produced in the last layers of the foil by the Stark switching due to the bulk wake field and finally, they are transferred to the circular Rydberg states as a single multiphoton process due to the influence of the surface wake field.

  3. Mercury's radius change estimates revisited using high incidence angle MESSENGER data

    Science.gov (United States)

    Di Achille, G.; Popa, C.; Massironi, M.; Ferrari, S.; Mazzotta Epifani, E.; Zusi, M.; Cremonese, G.; Palumbo, P.

    2012-04-01

    Estimates of Mercury's radius decrease obtained using the amount of strain recorded by tectonics on the planet range from 0.5 km to 2 km. These latter figures appear too low with respect to the radius contraction (up to 5-6 km) predicted by the most accredited studies based on thermo-mechanical evolution models. For this reason, it has been suggested that there may be hidden strain accommodated by features yet unseen on Mercury. Indeed, as it has been already cautioned by previous studies, the identification of tectonic features on Mercury might be largely biased by the lighting geometry of the used basemaps. This limitation might have affected the results of the extrapolations for estimating the radius change. In this study, we mapped tectonic features at the terminator thus using images acquired at high sun incidence angle (>50°) that represents the optimal condition for their observation. In fact, images with long shadows enhance the topography and texture of the surface and are ideal to detect tectonic structures. This favorable illumination conditions allowed us to infer reliable measurements of spatial distribution (i.e. frequency, orientation, and areal density) of tectonic features which can be used to estimate the average contractional strain and planetary radius decrease. We digitized tectonic structures within a region extending for an area of about 12 million sq. km (~16% of planet's surface). More than 1300 tectonic lineaments were identified and interpreted to be compressional features (i.e. lobate scarps, wrinkle ridges, and high relief ridges) with a total length of more than 12300 km. Assuming that the extensional strain is negligible within the area, the average contractional strain calculated for the survey area is ~0.21-0.28% (~0.24% for θ=30°). This strain, extrapolated to the entire surface, corresponds to a contraction in radius of about 2.5-3.4 km (~2.9 km for θ=30°). Interestingly, the values of contractional strain and radius decrease

  4. Variational principles for the spectral radius of functional operators

    International Nuclear Information System (INIS)

    Antonevich, A B; Zajkowski, K

    2006-01-01

    The spectral radius of a functional operator with positive coefficients generated by a set of maps (a dynamical system) is shown to be a logarithmically convex functional of the logarithms of the coefficients. This yields the following variational principle: the logarithm of the spectral radius is the Legendre transform of a convex functional T defined on a set of vector-valued probability measures and depending only on the original dynamical system. A combinatorial construction of the functional T by means of the random walk process corresponding to the dynamical system is presented in the subexponential case. Examples of the explicit calculation of the functional T and the spectral radius are presented.

  5. The reliability of AO classification for distal radius fracture, using CT findings

    International Nuclear Information System (INIS)

    Nakanishi, Yasuaki; Ono, Hiroshi; Furuta, Kazuhiko; Fujitani, Ryoutarou; Ota, Hiroyoshi

    2006-01-01

    The purpose of this study was to assess the reliability of the AO (Association for the Study of Internal Fixation) classification of distal radius fracture, using plain radiographs and 2 cross-sectional computed tomographic (CT) surface images. Five observers independently classified 32 distal radius fractures into 9 groups under AO classification. We established 4 methods for observation. First, using only two-directional radiographs; second, four-directional radiographs; third, CT (axial view) with four-directional radiographs; and fourth, CT (axial and sagittal views) with four-directional radiographs. Kappa statistics were used to establish the relative level of agreement between the observers. Interobserver reliability was poor in both first and second methods in which only plain radiographs were used (κ=0.30 and 0.23, respectively). Furthermore, reliability did not increase in the third method with the addition of 1 CT surface image (κ=0.29). In the fourth method, with the addition of 2 cross-sectional CT surface images, the reliability increased to a moderate level (κ=0.44). Interobserver reliability of the AO system of the classification of distal radius fractures was observed on using 2 cross-sectional CT surface images with four-directional radiographs. (author)

  6. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von [RD Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  7. A simple laboratory experiment to measure the surface tension of a liquid in contact with air

    International Nuclear Information System (INIS)

    Riba, Jordi-Roger; Esteban, Bernat

    2014-01-01

    A simple and accurate laboratory experiment to measure the surface tension of liquids has been developed, which is well suited to teach the behaviour of liquids to first- or second-year students of physics, engineering or chemistry. The experimental setup requires relatively inexpensive equipment usually found in physics and chemistry laboratories, since it consists of a used or recycled burette, an analytical balance and a stereoscopic microscope or a micrometer. Experimental data and error analysis show that the surface tension of distilled water, 1-butanol and glycerol can be determined with accuracy better than 1.4%. (paper)

  8. Lower pinch radius limit in EXTRAP

    International Nuclear Information System (INIS)

    Lehnert, B.

    1989-01-01

    In an Extrap pinch there is a superimposed magnetic octupole field which forms a magnetic separatrix with the field generated by the pinch current. Earlier experiments have shown that the octupole field has a stabilizing influence on the plasma. Regardless of the details of this stabilizing mechanism, it is expected that the influence of the octupole field should become negligible for a sufficiently small ratio between the characteristic pinch and separatrix radii. In other words, there should exist a lower limit of this ratio below which the system approaches the state of an ordinary unstabilized Z-pinch. The present paper presents an extended version of an earlier theoretical model of this lower limit, and its relation to the corresponding critical ratio between the external conductor and pinch currents. This ratio is found to vary substantially with the plasma parameters. (authors)

  9. Fracture heuristics: surgical decision for approaches to distal radius fractures. A surgeon's perspective.

    Science.gov (United States)

    Wichlas, Florian; Tsitsilonis, Serafim; Kopf, Sebastian; Krapohl, Björn Dirk; Manegold, Sebastian

    2017-01-01

    Introduction: The aim of the present study is to develop a heuristic that could replace the surgeon's analysis for the decision on the operative approach of distal radius fractures based on simple fracture characteristics. Patients and methods: Five hundred distal radius fractures operated between 2011 and 2014 were analyzed for the surgeon's decision on the approach used. The 500 distal radius fractures were treated with open reduction and internal fixation through palmar, dorsal, and dorsopalmar approaches with 2.4 mm locking plates or underwent percutaneous fixation. The parameters that should replace the surgeon's analysis were the fractured palmar cortex, and the frontal and the sagittal split of the articular surface of the distal radius. Results: The palmar approach was used for 422 (84.4%) fractures, the dorsal approach for 39 (7.8%), and the combined dorsopalmar approach for 30 (6.0%). Nine (1.8%) fractures were treated percutaneously. The correlation between the fractured palmar cortex and the used palmar approach was moderate (r=0.464; p<0.0001). The correlation between the frontal split and the dorsal approach, including the dorsopalmar approach, was strong (r=0.715; p<0.0001). The sagittal split had only a weak correlation for the dorsal and dorsopalmar approach (r=0.300; p<0.0001). Discussion: The study shows that the surgical decision on the preferred approach is dictated through two simple factors, even in the case of complex fractures. Conclusion: When the palmar cortex is displaced in distal radius fractures, a palmar approach should be used. When there is a displaced frontal split of the articular surface, a dorsal approach should be used. When both are present, a dorsopalmar approach should be used. These two simple parameters could replace the surgeon's analysis for the surgical approach.

  10. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    Science.gov (United States)

    Lucia, Matthew James

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experiment (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (dLi ˜ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2 O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H 2 within minutes. For impurity sequestration, LTX plasma performance

  11. Cogging torque optimization in surface-mounted permanent-magnet motors by using design of experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abbaszadeh, K., E-mail: Abbaszadeh@kntu.ac.ir [Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Rezaee Alam, F.; Saied, S.A. [Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Graphical abstract: Magnet segment arrangement in cross section view of one pole for PM machine. Display Omitted Highlights: {yields} Magnet segmentation is an effective method for the cogging torque reduction. {yields} We have used the magnet segmentation method based on the design of experiment. {yields} We have used the RSM design of the design of experiment method. {yields} We have solved optimization via surrogate models like the polynomial regression. {yields} A significant reduction of the cogging torque is obtained by using RSM. - Abstract: One of the important challenges in design of the PM electrical machines is to reduce the cogging torque. In this paper, in order to reduce the cogging torque, a new method for designing of the motor magnets is introduced to optimize of a six pole BLDC motor by using design of experiment (DOE) method. In this method the machine magnets consist of several identical segments which are shifted to a definite angle from each other. Design of experiment (DOE) methodology is used for a screening of the design space and for the generation of approximation models using response surface techniques. In this paper, optimization is often solved via surrogate models, that is, through the construction of response surface models (RSM) like polynomial regression. The experiments were performed based on the response surface methodology (RSM), as a statistical design of experiment approach, in order to investigate the effect of parameters on the response variations. In this investigation, the optimal shifting angles (factors) were identified to minimize the cogging torque. A significant reduction of cogging torque can be achieved with this approach after only a few evaluations of the coupled FE model.

  12. Cogging torque optimization in surface-mounted permanent-magnet motors by using design of experiment

    International Nuclear Information System (INIS)

    Abbaszadeh, K.; Rezaee Alam, F.; Saied, S.A.

    2011-01-01

    Graphical abstract: Magnet segment arrangement in cross section view of one pole for PM machine. Display Omitted Highlights: → Magnet segmentation is an effective method for the cogging torque reduction. → We have used the magnet segmentation method based on the design of experiment. → We have used the RSM design of the design of experiment method. → We have solved optimization via surrogate models like the polynomial regression. → A significant reduction of the cogging torque is obtained by using RSM. - Abstract: One of the important challenges in design of the PM electrical machines is to reduce the cogging torque. In this paper, in order to reduce the cogging torque, a new method for designing of the motor magnets is introduced to optimize of a six pole BLDC motor by using design of experiment (DOE) method. In this method the machine magnets consist of several identical segments which are shifted to a definite angle from each other. Design of experiment (DOE) methodology is used for a screening of the design space and for the generation of approximation models using response surface techniques. In this paper, optimization is often solved via surrogate models, that is, through the construction of response surface models (RSM) like polynomial regression. The experiments were performed based on the response surface methodology (RSM), as a statistical design of experiment approach, in order to investigate the effect of parameters on the response variations. In this investigation, the optimal shifting angles (factors) were identified to minimize the cogging torque. A significant reduction of cogging torque can be achieved with this approach after only a few evaluations of the coupled FE model.

  13. Correlation between quarter-point angle and nuclear radius

    Science.gov (United States)

    Ma, Wei-Hu; Wang, Jian-Song; Mukherjee, S.; Wang, Qi; Patel, D.; Yang, Yan-Yun; Ma, Jun-Bing; Ma, Peng; Jin, Shi-Lun; Bai, Zhen; Liu, Xing-Quan

    2017-04-01

    The correlation between quarter-point angle of elastic scattering and nuclear matter radius is studied systematically. Various phenomenological formulae with parameters for nuclear radius are adopted and compared by fitting the experimental data of quarter point angle extracted from nuclear elastic scattering reaction systems. A parameterized formula related to binding energy is recommended, which gives a good reproduction of nuclear matter radii of halo nuclei. It indicates that the quarter-point angle of elastic scattering is quite sensitive to the nuclear matter radius and can be used to extract the nuclear matter radius. Supported by National Natural Science Foundation of China (U1432247, 11575256), National Basic Research Program of China (973 Program)(2014CB845405 and 2013CB83440x) and (SM) Chinese Academy of Sciences President’s International Fellowship Initiative (2015-FX-04)

  14. Spectroscopy of muonic atoms and the proton radius puzzle

    Science.gov (United States)

    Antognini, Aldo

    2017-09-01

    We have measured several 2 S -2 P transitions in muonic hydrogen (μp), muonic deuterium (μd) and muonic helium ions (μ3He, μ4He). From muonic hydrogen we extracted a proton charge radius 20 times more precise than obtained from electron-proton scattering and hydrogen high-precision laser spectroscopy but at a variance of 7 σ from these values. This discrepancy is nowadays referred to as the proton radius puzzle. New insight has been recently provided by the first determination of the deuteron charge radius from laser spectroscopy of μd. The status of the proton charge radius puzzle including the new insights obtained by μd spectroscopy will be discussed. Work supported by the Swiss National Science Foundation SNF-200021-165854 and the ERC CoG. #725039.

  15. Human Fertility Increases with the Marital-radius

    DEFF Research Database (Denmark)

    Labouriau, Rodrigo; Amorim, António

    2008-01-01

    We report a positive association between marital radius (distance between mates' birthplaces) and fertility detected in a large population. Spurious association due to socioeconomic factors is discarded by a conditional analysis involving income, education, and urbanicity. Strong evidence...

  16. Frictional coefficient depending on active friction radius with BPV ...

    African Journals Online (AJOL)

    Frictional coefficient depending on active friction radius with BPV and BTV in automobile disc braking system. ... International Journal of Engineering, Science and Technology. Journal Home · ABOUT ... AJOL African Journals Online. HOW TO ...

  17. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien

    2014-01-01

    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  18. An Experiment Study on Surface Roughness in High Speed Milling NAK80 Die Steel

    Directory of Open Access Journals (Sweden)

    Su Fa

    2016-01-01

    Full Text Available The paper introduces that the high speed milling experiments on NAK80 die steel was carried out on the DMU 60 mono BLOCK five axis linkage high speed CNC machining center tool by the TiAlN coated tools, in order to research the effect of milling parameters on surface roughness Ra. The results showed that the Ra value increased with the decrease of milling speed vc, increased with the axial depth of milling ap, and feed per tooth fz and radial depth of milling ae. On the basis of the single factor experiment results, the mathematics model for between surface roughness and milling parameters were established by linear regression analysis.

  19. DML and Foil Measurements of ETA Beam Radius

    International Nuclear Information System (INIS)

    Nexsen, W; Weir, J

    2005-01-01

    Simultaneous measurements of the ETA beam radius have been made with a quartz foil and a diamagnetic loop (DML). While the measurements agreed at some settings they diverged at others. While the DML measures the rms radius of the total beam, the foil measures mainly the core and the divergence can be explained by the presence of a low density halo. Evidence of such a halo from other measurements is presented

  20. Generalized spectral radius and its max algebra version

    Czech Academy of Sciences Publication Activity Database

    Müller, Vladimír; Peperko, A.

    2013-01-01

    Roč. 439, č. 4 (2013), s. 1006-1016 ISSN 0024-3795 R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : generalized spectral radius * joint spectral radius * Berger-Wang formula Subject RIV: BA - General Mathematics Impact factor: 0.983, year: 2013 http://www.sciencedirect.com/science/article/pii/S0024379512007380

  1. Constraining the mass and radius of neutron stars in globular clusters

    Science.gov (United States)

    Steiner, A. W.; Heinke, C. O.; Bogdanov, S.; Li, C. K.; Ho, W. C. G.; Bahramian, A.; Han, S.

    2018-05-01

    We analyse observations of eight quiescent low-mass X-ray binaries in globular clusters and combine them to determine the neutron star mass-radius curve and the equation of state of dense matter. We determine the effect that several uncertainties may have on our results, including uncertainties in the distance, the atmosphere composition, the neutron star maximum mass, the neutron star mass distribution, the possible presence of a hotspot on the neutron star surface, and the prior choice for the equation of state of dense matter. The distance uncertainty is implemented in a new Gaussian blurring method that can be directly applied to the probability distribution over mass and radius. We find that the radius of a 1.4 solar mass neutron star is most likely from 10 to 14 km and that tighter constraints are only possible with stronger assumptions about the nature of the neutron stars, the systematics of the observations, or the nature of dense matter. Strong phase transitions in the equation of state are preferred, and in this case, the radius is likely smaller than 12 km. However, radii larger than 12 km are preferred if the neutron stars have uneven temperature distributions.

  2. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Science.gov (United States)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  3. Pole-strength of the earth from Magsat and magnetic determination of the core radius

    Science.gov (United States)

    Voorhies, G. V.; Benton, E. R.

    1982-01-01

    A model based on two days of Magsat data is used to numerically evaluate the unsigned magnetic flux linking the earth's surface, and a comparison of the 16.054 GWb value calculated with values from earlier geomagnetic field models reveals a smooth, monotonic, and recently-accelerating decrease in the earth's pole strength at a 50-year average rate of 8.3 MWb, or 0.052%/year. Hide's (1978) magnetic technique for determining the radius of the earth's electrically-conducting core is tested by (1) extrapolating main field models for 1960 and 1965 downward through the nearly-insulating mantle, and then separately comparing them to equivalent, extrapolated models of Magsat data. The two unsigned fluxes are found to equal the Magsat values at a radius which is within 2% of the core radius; and (2) the 1960 main field and secular variation and acceleration coefficients are used to derive models of 1930, 1940 and 1950. The same core magnetic radius value, within 2% of the seismic value, is obtained. It is concluded that the mantle is a nearly-perfect insulator, while the core is a perfect conductor, on the decade time scale.

  4. Ion bombardment induced smoothing of amorphous metallic surfaces: Experiments versus computer simulations

    International Nuclear Information System (INIS)

    Vauth, Sebastian; Mayr, S. G.

    2008-01-01

    Smoothing of rough amorphous metallic surfaces by bombardment with heavy ions in the low keV regime is investigated by a combined experimental-simulational study. Vapor deposited rough amorphous Zr 65 Al 7.5 Cu 27.5 films are the basis for systematic in situ scanning tunneling microscopy measurements on the smoothing reaction due to 3 keV Kr + ion bombardment. The experimental results are directly compared to the predictions of a multiscale simulation approach, which incorporates stochastic rate equations of the Langevin type in combination with previously reported classical molecular dynamics simulations [Phys. Rev. B 75, 224107 (2007)] to model surface smoothing across length and time scales. The combined approach of experiments and simulations clearly corroborates a key role of ion induced viscous flow and ballistic effects in low keV heavy ion induced smoothing of amorphous metallic surfaces at ambient temperatures

  5. Experiments on the rf surface resistance of the perovskite superconductors at 3 GHz

    International Nuclear Information System (INIS)

    Hein, M.; Klein, N.; Mueller, G.; Piel, H.; Roeth, R.W.

    1988-01-01

    Since the discovery of the perovskite superconductors many experiments to explore their physical properties have been performed and various potential applications have been considered. The high critical temperature of more than 90 K obtained with Y 1 Ba 2 Cu 3 O/sub 7-δ/ (Y may be substituted by other rare earth elements) makes these superconductors interesting for applications in microwave technology. This has focused the authors interest on the investigation of their rf properties. Due to the sensitivity of the rf surface resistance to surface impurities and remaining non superconducting phases rf measurements are a good means to provide useful information about the quality of sample preparation and about physical properties of the superconductor itself. This contribution reports on the experimental determination of the rf surface resistance of Y 1 Ba 2 Cu 3 O/sub 7-δ/ and Eu 1 Ba 2 Cu 3 O/sub 7-δ/ in the normal and superconducting state at 3 GHz. In the first chapter the preparation of the ceramic samples and initial dc experiments are described. The main part of the paper describes the rf measurements which are performed in a superconducting niobium host cavity. The obtained results for both the surface resistance and the high field performance are discussed with respect to the preparation of the samples and regarding possible applications. 7 references, 7 figures, 2 tables

  6. Sectio Aurea Conditions for Mityuk's Radius of Two-Connected Domains

    Directory of Open Access Journals (Sweden)

    A.V. Kazantsev

    2017-03-01

    Full Text Available Connection of an exterior inverse boundary value problem with the critical points of some surface is one of the central themes in the theory of exterior inverse boundary value problems for analytic functions. In the simply connected case, such a surface is defined by the inner mapping radius; in the multiply connected one, by the function Ω(w such that M(w = (2π–1ln Ω(w is Mityuk's version of a generalized reduced module. In the present paper, the relation between the curvature of the surface Ω = Ω(w with the Schwarzian derivatives of the mapping functions and with the Bergman kernel functions k0(w,ω and l0(w,ω is established for an arbitrary multiply connected domain. When passing to two-connected domains, due to the choice of the ring as a canonical domain, we construct the conditions for the critical points of Mityuk's radius to concentrate on the golden section circle of the ring. Finally, we show that the minimal collection of the critical points of the Mityuk radius in the two-connected case, consisting of one maximum and one saddle, is attained for the linear-fractional solution of the exterior inverse boundary value problem.

  7. Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors

    Science.gov (United States)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria

    2018-03-01

    Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.

  8. Preliminary analysis of surface displacement results in the creepdown irradiation experiment HOBBIE-1

    International Nuclear Information System (INIS)

    Hobson, D.O.

    1979-01-01

    This report presents the results of the eddy-current surface displacement measurements of Zircaloy cladding obtained during the HOBBIE-1 irradiation experiment in the HFR at ECN-Petten, the Netherlands. Raw creepdown data from the test were corrected through the use of reference coils incorporated in the eddy-current coil block in the experiment capsule. The corrected displacement results are compared with out-of-reactor results obtained under nominally identical conditions of pressure and temperature. Experiment HOBBIE-1 was run at 371 0 C and 13.1 MPa specimen external pressure for a total time of approximately 950 h. No gross cladding ovalization was obtained. This result differed from the relatively simple ovality found in the out-of-reactor test. Contact with the internal mandrel occurred between 400 and 500 h, compared with 375 h for a comparable out-of-reactor test. Average diameter decreases for both tests were similar. These results are discussed in detail

  9. The creep bending of short radius pipe bends

    International Nuclear Information System (INIS)

    Spence, John

    1975-01-01

    In existing and proposed liquid metal fast breeder reactor design the pipework has considerable importance. Parts of the LMFBR include thin walled short radius bends which are expected to operate in the creep regime. In linear elasticity it is known that the assumption of long radius bends is not too severe as far as the flexibility characteristics are concerned although some modifications are necessary for accurate determination of the stresses. No data exists for nonlinear creep. Current work is aimed at elucidating the effect of the various assumptions common to linear elastic theory in so far as they affect the creep characteristics of bends on systems. Herein an energy based analysis using a simple n power constitutive law for stationary creep is employed to derive basic design data for flexibilities and stresses which will be necessary before complete systems can be assessed for creep. The analysis shows on comparison with the long radius work that the assumption of R>r is not much more restrictive in creep than for linear elasticity. Flexibilities for short radius bends appear to be well approximated by the long radius values. Thus the attractive reference stress information already derived may be used directly to find deformations without a complete knowledge of the constitutive relationship. However, stresses are somewhat different. Fortunately the maximum deviation occurs at relatively low levels of stress, the peak stresses being in fair agreement. When n=1 the present results reduce essentially to those obtained from existing linear elastic theory

  10. Optimal color design of psychological counseling room by design of experiments and response surface methodology.

    Science.gov (United States)

    Liu, Wenjuan; Ji, Jianlin; Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients' perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients' impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the 'central point', and three color attributes were optimized to maximize the patients' satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room.

  11. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  12. Ground-based PIV and numerical flow visualization results from the Surface Tension Driven Convection Experiment

    Science.gov (United States)

    Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  13. An Overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE)

    Science.gov (United States)

    Sellers, P. J.; Hall, F. G.; Asrar, G.; Strebel, D. E.; Murphy, R. E.

    1992-11-01

    In the summer of 1983 a group of scientists working in the fields of meteorology, biology, and remote sensing met to discuss methods for modeling and observing land-surface—atmosphere interactions on regional and global scales. They concluded, first, that the existing climate models contained poor representations of the processes controlling the exchanges of energy, water, heat, and carbon between the land surface and the atmosphere and, second, that satellite remote sensing had been underutilized as a means of specifying global fields of the governing biophysical parameters. Accordingly, a multiscale, multidisciplinary experiment, FIFE, was initiated to address these two issues. The objectives of FIFE were specified as follows: (1) Upscale integration of models: The experiment was designed to test the soil-plant-atmosphere models developed by biometeorologists for small-scale applications (millimeters to meters) and to develop methods to apply them at the larger scales (kilometers) appropriate to atmospheric models and satellite remote sensing. (2) Application of satellite remote sensing: Even if the first goal were achieved to yield a "perfect" model of vegetation-atmosphere exchanges, it would have very limited applications without a global observing system for initialization and validation. As a result, the experiment was tasked with exploring methods for using satellite data to quantify important biophysical states and rates for model input. The experiment was centered on a 15 × 15 km grassland site near Manhattan, Kansas. This area became the focus for an extended monitoring program of satellite, meteorological, biophysical, and hydrological data acquisition from early 1987 through October 1989 and a series of 12- to 20-day intensive field campaigns (IFCs), four in 1987 and one in 1989. During the IFCs the fluxes of heat, moisture, carbon dioxide, and radiation were measured with surface and airborne equipment in coordination with measurements of surface

  14. The Assessment of Left Ventricular Time-Varying Radius Using Tissue Doppler Imaging

    Directory of Open Access Journals (Sweden)

    Fardin Mirbolouk

    2012-03-01

    Full Text Available Background: Left ventricular twist/torsion is believed to be a sensitive indicator of systolic and diastolic performance. To obtain circumferential rotation using tissue Doppler imaging, we need to estimate the time-varying radius of the left ventricle throughout the cardiac cycle to convert the tangential velocity into angular velocity. Objectives: The aim of this study was to investigate accuracy of measured LV radius using tissue Doppler imaging throughout the cardiac cycle compared to two-dimensional (2D imaging. Methods: A total of 35 subjects (47±12 years old underwent transthoracic echocardiographic standard examinations. Left ventricular radius during complete cardiac cycle measured using tissue Doppler and 2D-imaging at basal and apical short axis levels. For this reason, the 2D-images and velocity-time data derived and transferred to a personal computer for off-line analysis. 2D image frames analyzed via a program written in the MATLAB software. Velocity-time data from anteroseptal at basal level (or anterior wall at apical level and posterior walls transferred to a spreadsheet Excel program for the radius calculations. Linear correlation and Bland-Altman analysis were calculated to assess the relationships and agreements between the tissue Doppler and 2D-measured radii throughout the cardiac cycle. Results: There was significant correlation between tissue Doppler and 2D-measured radii and the Pearson correlation coefficients were 0.84 to 0.97 (P<0.05. Bland-Altman analysis by constructing the 95% limits of agreement showed that the good agreements existed between the two methods. Conclusion: It can be concluded from our experience that the tissue Doppler imaging can reasonably estimate radius of the left ventricle throughout the cardiac cycle.

  15. Mesoscale model response to random, surface-based perturbations — A sea-breeze experiment

    Science.gov (United States)

    Garratt, J. R.; Pielke, R. A.; Miller, W. F.; Lee, T. J.

    1990-09-01

    The introduction into a mesoscale model of random (in space) variations in roughness length, or random (in space and time) surface perturbations of temperature and friction velocity, produces a measurable, but barely significant, response in the simulated flow dynamics of the lower atmosphere. The perturbations are an attempt to include the effects of sub-grid variability into the ensemble-mean parameterization schemes used in many numerical models. Their magnitude is set in our experiments by appeal to real-world observations of the spatial variations in roughness length and daytime surface temperature over the land on horizontal scales of one to several tens of kilometers. With sea-breeze simulations, comparisons of a number of realizations forced by roughness-length and surface-temperature perturbations with the standard simulation reveal no significant change in ensemble mean statistics, and only small changes in the sea-breeze vertical velocity. Changes in the updraft velocity for individual runs, of up to several cms-1 (compared to a mean of 14 cms-1), are directly the result of prefrontal temperature changes of 0.1 to 0.2K, produced by the random surface forcing. The correlation and magnitude of the changes are entirely consistent with a gravity-current interpretation of the sea breeze.

  16. Surface Deformation by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael E.

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The scientific aims are to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat transfer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. Correlations for the effective contact angle and the heat transfer coefficient shall be delivered as a function of the relevant dimensionsless parameters. The data will be used for benchmarking of commercial CFD codes and the tank design

  17. Observations of the severity of notch-root radius in initiation of subcritical crack growth

    International Nuclear Information System (INIS)

    Reuter, W.G.; Eiholzer, C.R.; Tupper, M.A.

    1981-01-01

    Slow bend tests were conducted on Charpy specimens containing precracks or machined notches of 0.10 or 0.25 mm radius. The test specimens were fabricated from three heats of annealed Type 304 stainless steel. The purpose of these tests was to examine the effects of notch root radius, in very ductile materials, on initiation of subcritical crack growth. In addition, it was intended to establish the critical values of J, COD, etc. for the single-edge notch specimen for comparison with results obtained from specimens containing surface flaws. This paper will briefly describe only those results of the calculation for J. The tests were monitored by acoustic emission to identify the load corresponding to initiation of subcritical crack growth, by a crack-opening displacement gage (COD), by cross-head displacement, and by stop-action photography

  18. Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Nachman, Benjamin; Nef, Pascal; Schwartzman, Ariel; Swiatlowski, Maximilian [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Wanotayaroj, Chaowaroj [Center for High Energy Physics, University of Oregon,1371 E. 13th Ave, Eugene, OR 97403 (United States)

    2015-02-12

    Jets with a large radius R≳1 and grooming algorithms are widely used to fully capture the decay products of boosted heavy particles at the Large Hadron Collider (LHC). Unlike most discriminating variables used in such studies, the jet radius is usually not optimized for specific physics scenarios. This is because every jet configuration must be calibrated, insitu, to account for detector response and other experimental effects. One solution to enhance the availability of large-R jet configurations used by the LHC experiments is jet re-clustering. Jet re-clustering introduces an intermediate scale rradius jets. In this paper we systematically study and propose new jet re-clustering configurations and show that re-clustered large radius jets have essentially the same jet mass performance as large radius groomed jets. Jet re-clustering has the benefit that no additional large-R calibration is necessary, allowing the re-clustered large radius parameter to be optimized in the context of specific precision measurements or searches for new physics.

  19. Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

    International Nuclear Information System (INIS)

    Nachman, Benjamin; Nef, Pascal; Schwartzman, Ariel; Swiatlowski, Maximilian; Wanotayaroj, Chaowaroj

    2015-01-01

    Jets with a large radius R≳1 and grooming algorithms are widely used to fully capture the decay products of boosted heavy particles at the Large Hadron Collider (LHC). Unlike most discriminating variables used in such studies, the jet radius is usually not optimized for specific physics scenarios. This is because every jet configuration must be calibrated, insitu, to account for detector response and other experimental effects. One solution to enhance the availability of large-R jet configurations used by the LHC experiments is jet re-clustering. Jet re-clustering introduces an intermediate scale rradius jets. In this paper we systematically study and propose new jet re-clustering configurations and show that re-clustered large radius jets have essentially the same jet mass performance as large radius groomed jets. Jet re-clustering has the benefit that no additional large-R calibration is necessary, allowing the re-clustered large radius parameter to be optimized in the context of specific precision measurements or searches for new physics.

  20. On tidal radius determination for a globular cluster

    International Nuclear Information System (INIS)

    Ninkovic, S.

    1985-01-01

    A tidal radius determination for a globular cluster based on its density minimum, which is caused by the galactic tidal forces and derivable from a model of the Galaxy, is proposed. Results obtained on the basis of the Schmidt model for two clusters are in a satisfactory agreement with those obtained earlier by means of other methods. A mass determination for the clusters through the tidal radius, when the latter one is identified with the cluster perigalactic distance, yields unusually large mass values. Probably, the tidal radius should be identified with the instantaneous galactocentric distance. Use of models more recent than the Schmidt one indicates that a globular cluster may contain a significant portion of an invisible interstellar matter. (author)

  1. Rational functions with maximal radius of absolute monotonicity

    KAUST Repository

    Loczi, Lajos

    2014-05-19

    We study the radius of absolute monotonicity R of rational functions with numerator and denominator of degree s that approximate the exponential function to order p. Such functions arise in the application of implicit s-stage, order p Runge-Kutta methods for initial value problems and the radius of absolute monotonicity governs the numerical preservation of properties like positivity and maximum-norm contractivity. We construct a function with p=2 and R>2s, disproving a conjecture of van de Griend and Kraaijevanger. We determine the maximum attainable radius for functions in several one-parameter families of rational functions. Moreover, we prove earlier conjectured optimal radii in some families with 2 or 3 parameters via uniqueness arguments for systems of polynomial inequalities. Our results also prove the optimality of some strong stability preserving implicit and singly diagonally implicit Runge-Kutta methods. Whereas previous results in this area were primarily numerical, we give all constants as exact algebraic numbers.

  2. UCN storage experiment for the investigation of the anomalous interaction with wall surfaces

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Utsuro, Masahiko; Steyerl, A.; Malik, S.S.; Geltenbort, P.; Neumair, S.; Nesvizhevsky, V.V.

    1997-01-01

    The UCN experiment for the investigation of the anomalous interaction with wall surfaces was performed in the ILL UCN source. UCN is monochromated by the gravity and stored in the spectrometer with rectangular trap which is the Fombrin-grease coated box of 67x67cm 2 cross section and 20cm height. The measured energy distribution of stored UCN shows the indication of 'initial micro-heating'. The order of energy gain is ∼ 10 -10 eV in the initial several 100sec of storage. (author)

  3. Plot-scale field experiment of surface hydrologic processes with EOS implications

    Science.gov (United States)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  4. Magnetic moments in calcium isotopes via a surface-interaction experiment

    International Nuclear Information System (INIS)

    Niv, Y.; Hass, M.; Zemel, A.; Goldring, G.

    1979-01-01

    A rotation of the angular correlation of de-excitation γ-rays from 40 Ca and 44 Ca was observed in a tilted foil geometry. The signs and magnitudes of the magnetic moments of the 2 1 + of 44 Ca and of the 3 1 - level of 40 Ca were determined to be g = -0.28+-0.11 and g = +0.52+-0.18, respectively. This experiment provides further information regarding the polarization of deeply bound electronic configurations produced by a surface-interaction mechanism and demonstrates the feasibility of the present technique for measuring signs and magnitudes of magnetic moments of picosecond nuclear levels. (author)

  5. A possible experiment at LEUTL to characterize surface roughness Wakefield effects

    International Nuclear Information System (INIS)

    Biedron, S.G.; Dattoli, G.; Fawley, W.M.; Freund, H.P.; Huang, Zhirong; Lewellen, J.W.; Milton, S.V.; Nuhn, H.D.

    2001-01-01

    Wakefield effects due to internal vacuum chamber roughness may increase the electron beam energy spread and so have become an immediate concern for future x-ray free-electron laser (FEL) project developments such as the SLAC Linac Coherent Light Source (LCLS) and the DESY TESLA x-ray FEL. We describe a possible experiment to characterize the effects of surface roughness on an FEL driven by self-amplified spontaneous emission (SASE) operation. Although the specific system described is not completely identical to the above-proposed projects, much useful scaling information could be obtained and applied to shorter wavelength systems

  6. Quasi-elastic helium-atom scattering from surfaces: experiment and interpretation

    International Nuclear Information System (INIS)

    Jardine, A.P.; Ellis, J.; Allison, W.

    2002-01-01

    Diffusion of an adsorbate is affected both by the adiabatic potential energy surface in which the adsorbate moves and by the rate of thermal coupling between the adsorbate and substrate. In principle both factors are amenable to investigation through quasi-elastic broadening in the energy spread of a probing beam of helium atoms. This review provides a topical summary of both the quasi-elastic helium-atom scattering technique and the available data in relation to the determination of diffusion parameters. In particular, we discuss the activation barriers deduced from experiment and their relation to the adiabatic potential and the central role played by the friction parameter, using the CO/Cu(001) system as a case study. The main issues to emerge are the need for detailed molecular dynamics simulations in the interpretation of data and the desirability of significantly greater energy resolution in the experiments themselves. (author)

  7. Technical note: Influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies

    Directory of Open Access Journals (Sweden)

    G. Li

    2018-02-01

    Full Text Available Coated-wall flow tube reactors are frequently used to investigate gas uptake and heterogeneous or multiphase reaction kinetics under laminar flow conditions. Coating surface roughness may potentially distort the laminar flow pattern, induce turbulence and introduce uncertainties in the calculated uptake coefficient based on molecular diffusion assumptions (e.g., Brown/Cooney–Kim–Davis (CKD/Knopf–Pöschl–Shiraiwa (KPS methods, which has not been fully resolved in earlier studies. Here, we investigate the influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies. According to laminar boundary theory and considering the specific flow conditions in a coated-wall flow tube, we derive and propose a critical height δc to evaluate turbulence effects in the design and analysis of coated-wall flow tube experiments. If a geometric coating thickness δg is larger than δc, the roughness elements of the coating may cause local turbulence and result in overestimation of the real uptake coefficient (γ. We further develop modified CKD/KPS methods (i.e., CKD-LT/KPS-LT to account for roughness-induced local turbulence effects. By combination of the original methods and their modified versions, the maximum error range of γCKD (derived with the CKD method or γKPS (derived with the KPS method can be quantified and finally γ can be constrained. When turbulence is generated, γCKD or γKPS can bear large difference compared to γ. Their difference becomes smaller for gas reactants with lower uptake (i.e., smaller γ and/or for a smaller ratio of the geometric coating thickness to the flow tube radius (δg ∕ R0. On the other hand, the critical height δc can also be adjusted by optimizing flow tube configurations and operating conditions (i.e., tube diameter, length, and flow velocity, to ensure not only unaffected laminar flow patterns but also other specific requirements for an

  8. INDICATIONS OF INTERMEDIATE-SCALE ANISOTROPY OF COSMIC RAYS WITH ENERGY GREATER THAN 57 EeV IN THE NORTHERN SKY MEASURED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W. [High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, UT (United States); Abe, M. [The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama (Japan); Azuma, R. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Chae, M. J. [Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul (Korea, Republic of); Cheon, B. G. [Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Department of Physics, Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Department of Physics, Kinki University, Higashi Osaka, Osaka (Japan); Cho, W. R. [Department of Physics, Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, T.; Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); Goto, T. [Graduate School of Science, Osaka City University, Osaka, Osaka (Japan); and others

    2014-08-01

    We have searched for intermediate-scale anisotropy in the arrival directions of ultrahigh-energy cosmic rays with energies above 57 EeV in the northern sky using data collected over a 5 yr period by the surface detector of the Telescope Array experiment. We report on a cluster of events that we call the hotspot, found by oversampling using 20° radius circles. The hotspot has a Li-Ma statistical significance of 5.1σ, and is centered at R.A. = 146.°7, decl. = 43.°2. The position of the hotspot is about 19° off of the supergalactic plane. The probability of a cluster of events of 5.1σ significance, appearing by chance in an isotropic cosmic-ray sky, is estimated to be 3.7 × 10{sup –4} (3.4σ)

  9. Thoughts on the so-called 'radius-capitellum axis'

    International Nuclear Information System (INIS)

    Schild, H.; Mueller, H.A.; Wagner, H.; Baetz, W.; Mainz Univ.

    1982-01-01

    We have studied 438 patients radiologically in order to observe the so-called 'radius-capitellum axis'. In about a quarter of people with normal elbows the axis passes lateral to the middle portion of the capitellum, so that even when there is marked deviation, there is no certainty that the humero-radial joint is abnormal. Deviation of the axis can be caused by changes in the shape of the capitellum or of the radius, or by distension of the capsule of the elbow joint, or by various changes in muscular pull. (orig.) [de

  10. Thoughts on the so-called radius-capitellum axis

    Energy Technology Data Exchange (ETDEWEB)

    Schild, H; Mueller, H A; Wagner, H; Baetz, W

    1982-02-01

    We have studied 438 patients radiologically in order to observe the so-called 'radius-capitellum axis'. In about a quarter of people with normal elbows the axis passes lateral to the middle portion of the capitellum, so that even when there is marked deviation, there is no certainty that the humero-radial joint is abnormal. Deviation of the axis can be caused by changes in the shape of the capitellum or of the radius, or by distension of the capsule of the elbow joint, or by various changes in muscular pull.

  11. Underground nuclear explosions. Study of the cavity radius

    International Nuclear Information System (INIS)

    Michaud, L.

    1968-11-01

    An underground nuclear explosion creates a cavity due to the expansion of the surrounding medium vaporized by the shot. The cavity radius is related to the energy of explosion and to the overburden pressure of the medium. The introduction of new elements such as the environment of the device (in a deep hole or in a tunnel) and the cohesion of the medium leads to a relationship which determines this radius. The known French and American underground explosions performed in various media, energy and overburden conditions, satisfy this relationship with a good precision. (author) [fr

  12. Surface complexation modelling: Experiments on the sorption of nickel on quartz

    International Nuclear Information System (INIS)

    Puukko, E.; Hakanen, M.

    1995-10-01

    Assessing the safety of a final repository for nuclear wastes requires knowledge concerning the way in which the radionuclides released are retarded in the geosphere. The aim of the work is to aquire knowledge of empirical methods repeating the experiments on the sorption of nickel on quartz described in the reports published by the British Geological Survey (BGS). The experimental results were modelled with computer models at the Technical Research Centre of Finland (VTT Chemical Technology). The results showed that the experimental knowledge of the sorption of Ni on quartz have been acheved by repeating the experiments of BGS. Experiments made with the two quartz types, Min-U-Sil 5 (MUS) and Nilsiae, showed the difference in sorption of Ni in the low ionic strength solution (0.001 M NaNO 3 ). The sorption of Ni on MUS was higher than predicted by the Surface Complexation Model (SCM). The phenomenon was also observed by the BGS, and may be due to the different amounts of inpurities in the MUS and in the NLS. In other respects, the results of the sorption experiments fitted quite well with those predicted by the SCM model. (8 refs., 8 figs., 11 tabs.)

  13. Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus

    2011-01-01

    The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite was stud......The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite...... of a high degree of super-saturation with respect to hydroxyapatite (SIHAP⩽7.83). The amount of phosphate adsorbed varied with the solution composition, in particular, adsorption increases as the CO32- activity decreases (at constant pH) and as pH increases (at constant CO32- activity). The primary effect...... of ionic strength on phosphate sorption onto calcite is its influence on the activity of the different aqueous phosphate species. The experimental results were modeled satisfactorily using the constant capacitance model with >CaPO4Ca0 and either >CaHPO4Ca+ or >CaHPO4- as the adsorbed surface species...

  14. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  15. Equivalent pore radius and velocity of elastic waves in shale. Skjold Flank-1 Well, Danish North Sea

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Oji, Collins O.

    2013-01-01

    and BET specific surface were obtained from these samples using kaolinite and smectite as reference. The cuttings samples were also characterized with respect to mineralogical composition, content of organic carbon and cation exchange capacity.Equivalent pore radius was calculated from porosity and BET...

  16. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    Science.gov (United States)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  17. DNA origami as biocompatible surface to match single-molecule and ensemble experiments

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-01-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements. PMID:22523083

  18. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  19. Coulomb corrections to scattering length and effective radius

    International Nuclear Information System (INIS)

    Mur, V.D.; Kudryavtsev, A.E.; Popov, V.S.

    1983-01-01

    The problem considered is extraction of the ''purely nuclear'' scattering length asub(s) (corresponding to the strong potential Vsub(s) at the Coulomb interaction switched off) from the Coulomb-nuclear scattering length asub(cs), which is an object of experimental measurement. The difference between asub(s) and asub(cs) is especially large if the potential Vsub(s) has a level (real or virtual) with an energy close to zero. For this case formulae are obtained relating the scattering lengths asub(s) and asub(cs), as well as the effective radii rsub(s) and rsub(cs). The results are extended to states with arbitrary angular momenta l. It is shown that the Coulomb correction is especially large for the coefficient with ksup(2l) in the expansion of the effective radius; in this case the correction contains a large logarithm ln(asub(B)/rsub(0)). The Coulomb renormalization of other terms in the effective radius espansion is of order (rsub(0)/asub(B)), where r 0 is the nuclear force radius, asub(B) is the Bohr radius. The obtained formulae are tried on a number of model potentials Vsub(s), used in nuclear physics

  20. Radius ratio effects on natural heat transfer in concentric annulus

    DEFF Research Database (Denmark)

    Alipour, M.; Hosseini, R.; Kolaei, Alireza Rezania

    2013-01-01

    This paper studies natural convection heat transfer in vertical and electrically heated annulus. The metallic cylinders mounted concentrically in a parallel tube. Measurements are carried out for four input electric powers and three radius ratios with an apparatus immersed in stagnant air...

  1. Social Support Contributes to Outcomes following Distal Radius Fractures

    Directory of Open Access Journals (Sweden)

    Caitlin J. Symonette

    2013-01-01

    Full Text Available Background. Distal radius fractures are the most common fracture of the upper extremity and cause variable disability. This study examined the role of social support in patient-reported pain and disability at one year following distal radius fracture. Methods. The Medical Outcomes Study Social Support Survey was administered to a prospective cohort of 291 subjects with distal radius fractures at their baseline visit. Pearson correlations and stepwise linear regression models (F-to-remove 0.10 were used to identify whether social support contributes to wrist fracture outcomes. The primary outcome of pain and disability at one year was measured using the Patient Rated Wrist Evaluation. Results. Most injuries were low energy (67.5% and were treated nonoperatively (71.9%. Pearson correlation analysis revealed that higher reported social support correlated with improved Patient Rated Wrist Evaluation scores at 1 year, r(n=181=-0.22, P<0.05. Of the subscales within the Social Support Survey, emotional/informational support explained a significant proportion of the variance in 1-year Patient Rated Wrist Evaluation scores, R2=4.7%, F (1, 181 = 9.98, P<0.05. Conclusion. Lower emotional/informational social support at the time of distal radius fracture contributes a small but significant percentage to patient-reported pain and disability outcomes.

  2. Finite Larmor radius flute mode theory with end loss

    International Nuclear Information System (INIS)

    Kotelnikov, I.A.; Berk, H.L.

    1993-08-01

    The theory of flute mode stability is developed for a two-energy- component plasma partially terminated by a conducting limiter. The formalism is developed as a preliminary study of the effect of end-loss in open-ended mirror machines where large Larmor radius effects are important

  3. Effect of limiter end loss in finite Larmor radius theory

    International Nuclear Information System (INIS)

    Berk, H.L.; Kotelnikov, I.A.

    1993-08-01

    We have examined the effect of incomplete line tying on the MHD flute mode with FLR (finite Larmor radius) effects. We show that the combination of line tying and FLR effects can slow down MHD instability, but cannot produce complete stabilization

  4. Effect of Hall Current and Finite Larmor Radius Corrections on ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 37; Issue 3. Effect of Hall Current and Finite Larmor Radius Corrections on Thermal Instability of Radiative Plasma for Star Formation in Interstellar Medium (ISM). Sachin Kaothekar. Research Article Volume 37 Issue 3 September 2016 Article ID 23 ...

  5. Axial Length/Corneal Radius of Curvature Ratio and Refractive ...

    African Journals Online (AJOL)

    2017-12-05

    Dec 5, 2017 ... variously described as determined by the ocular biometric variables. There have been many studies on the relationship between refractive error and ocular axial length (AL), anterior chamber depth, corneal radius of curvature (CR), keratometric readings as well as other ocular biometric variables such as ...

  6. Rational functions with maximal radius of absolute monotonicity

    KAUST Repository

    Loczi, Lajos; Ketcheson, David I.

    2014-01-01

    -Kutta methods for initial value problems and the radius of absolute monotonicity governs the numerical preservation of properties like positivity and maximum-norm contractivity. We construct a function with p=2 and R>2s, disproving a conjecture of van de Griend

  7. Thrombocytopenia-absent radius syndrome: a clinical genetic study.

    NARCIS (Netherlands)

    Greenhalgh, K.L.; Howell, R.; Bottani, A.; Ancliff, P.J.; Brunner, H.G.; Verschuuren-Bemelmans, C.C.; Vernon, E.; Brown, K.W.; Newbury-Ecob, R.

    2002-01-01

    The thrombocytopenia-absent radius (TAR) syndrome is a congenital malformation syndrome characterised by bilateral absence of the radii and a thrombocytopenia. The lower limbs, gastrointestinal, cardiovascular, and other systems may also be involved. Shaw and Oliver in 1959 were the first to

  8. Thrombocytopenia-absent radius syndrome : a clinical genetic study

    NARCIS (Netherlands)

    Greenhalgh, KL; Howell, RT; Bottani, A; Ancliff, PJ; Brunner, HG; Verschuuren-Bemelmans, CC; Vernon, E; Brown, KW; Newbury-Ecob, RA

    2002-01-01

    The thrombocytopenia-absent radius (TAR) syndrome is a congenital malformation syndrome characterised by bilateral absence of the radii and a thrombocytopenia. The lower limbs, gastrointestinal, cardiovascular, and other systems may also be involved. Shaw and Oliver in 1959 were the first to

  9. Individualist-Collectivist Culture and Trust Radius : A Multilevel Approach

    NARCIS (Netherlands)

    van Hoorn, André

    We apply a multilevel approach to examine empirically the nexus between individualist and collectivist culture on the one hand and people’s radius of trust on the other. People’s trust level (i.e., the intensity with which people trust other people) has been extensively studied. Increasingly,

  10. Study of a pulsed capillary discharge with a modulated radius

    NARCIS (Netherlands)

    Broks, B.H.P.; Dijk, van W.; Mullen, van der J.J.A.M.; Veldhuizen, van E.M.

    2005-01-01

    In this contribution, we present a plasma physical model of a pulsed capillary discharge with a modulated radius. Using a 2D time-dependent model, we have modeled the plasma and wall properties of this channel. It was found that properties of the central plasma are different than the properties of a

  11. Recognizing chaotic states in stadium billiard by calculating gyration radius

    Directory of Open Access Journals (Sweden)

    M. Barezi

    2006-12-01

    Full Text Available   Nowadays study of chaotic quantum billiards because of their relation to Nano technology. In this paper distribution of zeros of wave function on the boundary of two circular and stadium billiards are investigated. By calculating gyration radius for these points chaotic and non-chaotic states are distinguished.

  12. On finite larmor radius stabilization of Z-pinches

    International Nuclear Information System (INIS)

    Hellsten, T.

    1982-12-01

    Finite Larmor radius stabilization of Z-pinches is discussed. Stability criteria can be derived for a class of equilibria having constant mass and current density. The internal modes can be stabilized provided the line density not exceed a critical value of the order of 10 18 ions/m. (Author)

  13. 21 CFR 886.1450 - Corneal radius measuring device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal radius measuring device. 886.1450 Section 886.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... corneal size by superimposing the image of the cornea on a scale at the focal length of the lens of a...

  14. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    Science.gov (United States)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further

  15. Measurements of land surface features using an airborne laser altimeter: the HAPEX-Sahel experiment

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Menenti, M.; Weltz, M.A.

    1997-01-01

    An airborne laser profiling altimeter was used to measure surface features and properties of the landscape during the HAPEX-Sahel Experiment in Niger, Africa in September 1992. The laser altimeter makes 4000 measurements per second with a vertical resolution of 5 cm. Airborne laser and detailed field measurements of vegetation heights had similar average heights and frequency distribution. Laser transects were used to estimate land surface topography, gully and channel morphology, and vegetation properties ( height, cover and distribution). Land surface changes related to soil erosion and channel development were measured. For 1 km laser transects over tiger bush communities, the maximum vegetation height was between 4-5 and 6-5 m, with an average height of 21 m. Distances between the centre of rows of tiger bush vegetation averaged 100 m. For two laser transects, ground cover for tiger bush was estimated to be 225 and 301 per cent for vegetation greater than 0-5m tall and 190 and 25-8 per cent for vegetation greater than 10m tall. These values are similar to published values for tiger bush. Vegetation cover for 14 and 18 km transects was estimated to be 4 per cent for vegetation greater than 0-5 m tall. These cover values agree within 1-2 per cent with published data for short transects (⩾ 100 m) for the area. The laser altimeter provided quick and accurate measurements for evaluating changes in land surface features. Such information provides a basis for understanding land degradation and a basis for management plans to rehabilitate the landscape. (author)

  16. Surface wave effects in the NEMO ocean model: Forced and coupled experiments

    Science.gov (United States)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.

    2015-04-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  17. Atmospheric boundary layer response to sea surface temperatures during the SEMAPHORE experiment

    Science.gov (United States)

    Giordani, Hervé; Planton, Serge; Benech, Bruno; Kwon, Byung-Hyuk

    1998-10-01

    The sensitivity of the marine atmospheric boundary layer (MABL) subjected to sea surface temperatures (SST) during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in 1993 has been studied. Atmospheric analyses produced by the Action de Recherche, Petite Echelle, Grande Echelle (ARPEGE) operational model at the French meteorological weather service assimilated data sets collected between October 7 and November 17, 1993, merged with the Global Telecommunication System (GTS) data. Analyses were validated against independent data from aircraft instruments collected along a section crossing the Azores oceanic front, not assimilated into the model. The responses of the mean MABL in the aircraft cross section to changes in SST gradients of about 1°C/100 km were the presence of an atmospheric front with horizontal gradients of 1°C/100 km and an increase of the wind intensity from the cold to the warm side during an anticyclonic synoptic situation. The study of the spatiotemporal characteristics of the MABL shows that during 3 days of an anticyclonic synoptic situation the SST is remarkably stationary because it is principally controlled by the Azores ocean current, which has a timescale of about 10 days. However, the temperature and the wind in the MABL are influenced by the prevailing atmospheric conditions. The ocean does not appear to react to the surface atmospheric forcing on the timescale of 3 days, whereas the atmospheric structures are modified by local and synoptic-scale advection. The MABL response appears to be much quicker than that of the SSTs. The correlation between the wind and the thermal structure in the MABL is dominated by the ageostrophic and not by the geostrophic component. In particular, the enhancement of the wind on either side of the SST front is mainly due to the ageostrophic component. Although the surface heat fluxes are not the only cause of ageostrophy, the

  18. PPOOLEX experiments on the dynamics of free water surface in the blowdown pipe

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.; Raesaenen, A.

    2013-04-01

    This report summarizes the results of the thermal stratification and mixing experiments carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the vertical DN200 blowdown pipe to the condensation pool filled with sub-cooled water. The main objective of the experiments was to obtain verification data for the development of the Effective Momentum Source (EMS) and Effective Heat Source (EHS) models to be implemented in GOTHIC code by KTH. A detailed test matrix and procedure put together on the basis of pre-test calculations was provided by KTH before the experiments. Altogether six experiments were carried out. The experiments consisted of a small steam flow rate stratification period and of a higher flow rate mixing period. The dry well structures were heated up to approximately 130 deg. C before the stratification period was initiated. The initial water bulk temperature in the condensation pool was 13-16 deg. C. During the low steam flow rate (85-105 g/s) period steam condensed mainly inside the blowdown pipe. As a result temperatures remained constant below the blowdown pipe outlet while they increased towards the pool surface layers indicating strong thermal stratification of the wet well pool water. In the end of the stratification period the temperature difference between the pool bottom and surface was 15-30 deg. C depending on the test parameters and the duration of the low flow rate period. In the beginning of the mixing phase the steam flow rate was increased rapidly to 300-425 g/s to mix the pool water totally. Depending on the used steam flow rate and initial pool water temperature it took 150-500 s to achieve total mixing. If the test was continued long enough the water pool began to stratify again after the water bulk temperature had reached ∼50 deg. C despite of steam mass flux belonging to the chugging region of the

  19. PPOOLEX experiments on the dynamics of free water surface in the blowdown pipe

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. [Lappeenranta Univ. of Technology, Lappeenranta (Finland)

    2013-04-15

    This report summarizes the results of the thermal stratification and mixing experiments carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the vertical DN200 blowdown pipe to the condensation pool filled with sub-cooled water. The main objective of the experiments was to obtain verification data for the development of the Effective Momentum Source (EMS) and Effective Heat Source (EHS) models to be implemented in GOTHIC code by KTH. A detailed test matrix and procedure put together on the basis of pre-test calculations was provided by KTH before the experiments. Altogether six experiments were carried out. The experiments consisted of a small steam flow rate stratification period and of a higher flow rate mixing period. The dry well structures were heated up to approximately 130 deg. C before the stratification period was initiated. The initial water bulk temperature in the condensation pool was 13-16 deg. C. During the low steam flow rate (85-105 g/s) period steam condensed mainly inside the blowdown pipe. As a result temperatures remained constant below the blowdown pipe outlet while they increased towards the pool surface layers indicating strong thermal stratification of the wet well pool water. In the end of the stratification period the temperature difference between the pool bottom and surface was 15-30 deg. C depending on the test parameters and the duration of the low flow rate period. In the beginning of the mixing phase the steam flow rate was increased rapidly to 300-425 g/s to mix the pool water totally. Depending on the used steam flow rate and initial pool water temperature it took 150-500 s to achieve total mixing. If the test was continued long enough the water pool began to stratify again after the water bulk temperature had reached {approx}50 deg. C despite of steam mass flux belonging to the chugging region

  20. Comparison of sea surface flux measured by instrumented aircraft and ship during SOFIA and SEMAPHORE experiments

    Science.gov (United States)

    Durand, Pierre; Dupuis, HéLèNe; Lambert, Dominique; BéNech, Bruno; Druilhet, Aimé; Katsaros, Kristina; Taylor, Peter K.; Weill, Alain

    1998-10-01

    Two major campaigns (Surface of the Oceans, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE)) devoted to the study of ocean-atmosphere interaction were conducted in 1992 and 1993, respectively, in the Azores region. Among the various platforms deployed, instrumented aircraft and ship allowed the measurement of the turbulent flux of sensible heat, latent heat, and momentum. From coordinated missions we can evaluate the sea surface fluxes from (1) bulk relations and mean measurements performed aboard the ship in the atmospheric surface layer and (2) turbulence measurements aboard aircraft, which allowed the flux profiles to be estimated through the whole atmospheric boundary layer and therefore to be extrapolated toward the sea surface level. Continuous ship fluxes were calculated with bulk coefficients deduced from inertial-dissipation measurements in the same experiments, whereas aircraft fluxes were calculated with eddy-correlation technique. We present a comparison between these two estimations. Although momentum flux agrees quite well, aircraft estimations of sensible and latent heat flux are lower than those of the ship. This result is surprising, since aircraft momentum flux estimates are often considered as much less accurate than scalar flux estimates. The various sources of errors on the aircraft and ship flux estimates are discussed. For sensible and latent heat flux, random errors on aircraft estimates, as well as variability of ship flux estimates, are lower than the discrepancy between the two platforms, whereas the momentum flux estimates cannot be considered as significantly different. Furthermore, the consequence of the high-pass filtering of the aircraft signals on the flux values is analyzed; it is weak at the lowest altitudes flown and cannot therefore explain the discrepancies between the two platforms but becomes

  1. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-03-20

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter.

  2. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-01-01

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter

  3. Measurements of Physical Parameters of White Dwarfs: A Test of the Mass–Radius Relation

    Energy Technology Data Exchange (ETDEWEB)

    Bédard, A.; Bergeron, P.; Fontaine, G., E-mail: bedard@astro.umontreal.ca, E-mail: bergeron@astro.umontreal.ca, E-mail: fontaine@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7 (Canada)

    2017-10-10

    We present a detailed spectroscopic and photometric analysis of 219 DA and DB white dwarfs for which trigonometric parallax measurements are available. Our aim is to compare the physical parameters derived from the spectroscopic and photometric techniques, and then to test the theoretical mass–radius relation for white dwarfs using these results. The agreement between spectroscopic and photometric parameters is found to be excellent, especially for effective temperatures, showing that our model atmospheres and fitting procedures provide an accurate, internally consistent analysis. The values of surface gravity and solid angle obtained, respectively, from spectroscopy and photometry, are combined with parallax measurements in various ways to study the validity of the mass–radius relation from an empirical point of view. After a thorough examination of our results, we find that 73% and 92% of the white dwarfs are consistent within 1 σ and 2 σ confidence levels, respectively, with the predictions of the mass–radius relation, thus providing strong support to the theory of stellar degeneracy. Our analysis also allows us to identify 15 stars that are better interpreted in terms of unresolved double degenerate binaries. Atmospheric parameters for both components in these binary systems are obtained using a novel approach. We further identify a few white dwarfs that are possibly composed of an iron core rather than a carbon/oxygen core, since they are consistent with Fe-core evolutionary models.

  4. Dependence of yield of nuclear track-biosensors on track radius and analyte concentration

    Science.gov (United States)

    García-Arellano, H.; Muñoz H., G.; Fink, D.; Vacik, J.; Hnatowicz, V.; Alfonta, L.; Kiv, A.

    2018-04-01

    In swift heavy ion track-based polymeric biosensor foils with incorporated enzymes one exploits the correlation between the analyte concentration and the sensor current, via the enrichment of charged enzymatic reaction products in the track's confinement. Here we study the influence of the etched track radius on the biosensor's efficiency. These sensors are analyte-specific only if both the track radii and the analyte concentration exceed certain threshold values of ∼15 nm and ∼10-6 M (for glucose sensing), respectively. Below these limits the sensor signal stems un-specifically from any charge carrier. In its proper working regime, the inner track walls are smoothly covered by enzymes and the efficiency is practically radius independent. Theory shows that the measured current should be slightly sub-proportional to the analyte concentration; the measurements roughly reconfirm this. Narrower tracks (∼5-15 nm radius) with reduced enzyme coverage lead to decreasing efficiency. Tiny signals visible when the tracks are etched to effective radii between 0 and ∼5 nm are tentatively ascribed to enzymes bonded to surface-near nano-cracks in the polymer foil, resulting from its degradation due to aging, rather than to the tracks. Precondition for this study was the accurate determination of the etched track radii, which is possible only by a nanofluidic approach. This holds to some extent even for enzyme-covered tracks, though in this case most of the wall charges are compensated by enzyme bonding.

  5. Theoretical distribution of load in the radius and ulna carpal joint.

    Science.gov (United States)

    Márquez-Florez, Kalenia; Vergara-Amador, Enrique; de Las Casas, Estevam Barbosa; Garzón-Alvarado, Diego A

    2015-05-01

    The purpose of this study is to validate a model for the analysis of the load distribution through the wrist joint, subjected to forces on the axes of the metacarpals from distal to proximal for two different mesh densities. To this end, the Rigid Body Spring Model (RBSM) method was used on a three-dimensional model of the wrist joint, simulating the conditions when making a grip handle. The cartilage and ligaments were simulated as springs acting under compression and tension, respectively, while the bones were considered as rigid bodies. At the proximal end of the ulna the movement was completely restricted, and the radius was allowed to move only in the lateral/medial direction. With these models, we found the load distributions on each carpal articular surface of radius. Additionally, the results show that the percentage of the applied load transmitted through the radius was about 86% for one mesh and 88% for the coarser one; for the ulna it was 21% for one mesh and 18% for the coarser. The obtained results are comparable with previous outcomes reported in prior studies. The latter allows concluding that, in theory, the methodology can be used to describe the changes in load distribution in the wrist. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment

    Science.gov (United States)

    Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng

    2018-05-01

    Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.

  7. Ozone and nitrogen oxides in surface air in Russia: TROICA experiments.

    Science.gov (United States)

    Pankratova, N.; Elansky, N.; Belikov, I.; Shumskiy, R.

    2009-04-01

    The results of measurements of surface ozone and nitrogen oxides concentrations over the continental regions of Russia are discussed. The measurements were done during 10 TROICA experiments (Transcontinental Observations Into the Chemistry of the Atmosphere). The TROICA experiment started in 1995. By the present moment ten expeditions along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km) are carried out. We separate data sets into unpolluted and polluted areas to study temporal and spatial features. Moreover we analyzed cities (more then 100 cities). About 50% of all data corresponds to unpolluted conditions. The data collected are used in an analysis of the physical and chemical processes occurring over continental Russia. In this work the estimations of seasonal and daily ozone and NOx distribution were made. The seasonal distribution of ozone for TROICA experiments concentration considerably differs from ozone distribution at Mace Head (Ireland) and Hohenpeissenberg (Germany) stations and well agrees with the ozone distribution at Zotino (Russia, East Siberia). The same concerns also a daily variability. The ozone concentration gradient is presented. Ozone concentration gradually increases in the eastward direction. Its result of the air transport from polluted regions of Europe and ozone depletions, oxidations of CH4 in Siberia, forest fires in Siberia and around Baikal Lake, regional transport of burning products from Northern China. Significant factor of ozone increasing is stratospheric-tropospheric exchange. It appears in TROICA-3 experiment. During several hours ozone concentration was more then 60 ppbv. The areas of photochemical ozone generation in polluted air are also detected. We estimate anthropogenic and natural factors, which are responsible for sharp ozone concentration increasing. Acknowledgments. The work was supported by International Science and Technology Center (ISTC) under contract No. 2770 and by Russian Basic

  8. Effect of cutoff radius, long range interaction and temperature controller on thermodynamic properties of fluids: Methanol as an example

    Science.gov (United States)

    Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra; Abu-Ghazleh, Hind

    2018-04-01

    The best spherical cutoff radius, long range interaction and temperature controller were determined using surface tension, density, and diffusion coefficients of van Leeuwen and Smit methanol. A quite good range of cutoff radii from 0.75 to 1.45 nm has been studied on Coulomb cut-off and particle mesh Ewald (PME) long range interaction to determine the best cutoff radius and best long range interaction as well for four sets of temperature: 200, 230, 270 and 300 K. To determine the best temperature controller, the cutoff radius of 1.25 nm was fixed using PME long range interaction on calculating the above properties at low temperature range: 200-300 K.

  9. System upgradation for surface mode negative ion beam extraction experiments in ROBIN

    International Nuclear Information System (INIS)

    Pandya, Kaushal; Bansal, Gourab; Soni, Jignesh

    2015-01-01

    ROBIN (Replica Of BATMAN source in India) is a replica of BATMAN source of IPP, Garching. Plasma production (inductively coupled, RF produced plasma), plasma diagnostic (langmuir probe, optical emission spectroscopy), negative ion beam extraction in volume mode with reduced extraction area of 2 cm 2 (4 apertures) using small bench top type power supply (10kV, 400mA), with increase extraction area of 73 cm 2 (146 apertures) and using actual power supplies (Extraction Power Supply System, EPSS (11kV, 35A), and Accelerator Power Supply System, APSS (35kV, 15A)) and beam diagnostic etc have been performed successfully in ROBIN. This paper will describe the details of the system upgradation for surface mode negative ion experiments and its performance in ROBIN

  10. Surface based detection schemes for molecular interferometry experiments - implications and possible applications

    Science.gov (United States)

    Juffmann, Thomas; Milic, Adriana; Muellneritsch, Michael; Arndt, Markus

    2011-03-01

    Surface based detection schemes for molecular interferometry experiments might be crucial in the search for the quantum properties of larger and larger objects since they provide single particle sensitivity. Here we report on molecular interferograms of different biomolecules imaged using fluorescence microscopy. Being able to watch the build-up of an interferogram live and in situ reveals the matter-wave behavior of these complex molecules in an unprecedented way. We examine several problems encountered due to van-der-Waals forces between the molecules and the diffraction grating and discuss possible ways to circumvent these. Especially the advent of ultra-thin (1-100 atomic layers) diffraction masks might path the way towards molecular holography. We also discuss other possible applications such as coherent molecular microscopy.

  11. UO2 corrosion in high surface-area-to-volume batch experiments

    International Nuclear Information System (INIS)

    Bates, J. K.; Finch, R. J.; Hanchar, J. M.; Wolf, S. F.

    1997-01-01

    Unsaturated drip tests have been used to investigate the alteration of unirradiated UO 2 and spent UO 2 fuel in an unsaturated environment such as may be expected in the proposed repository at Yucca Mountain. In these tests, simulated groundwater is periodically injected onto a sample at 90 C in a steel vessel. The solids react with the dripping groundwater and water condensed on surfaces to form a suite of U(VI) alteration phases. Solution chemistry is determined from leachate at the bottom of each vessel after the leachate stops interacting with the solids. A more detailed knowledge of the compositional evolution of the leachate is desirable. By providing just enough water to maintain a thin film of water on a small quantity of fuel in batch experiments, we can more closely monitor the compositional changes to the water as it reacts to form alteration phases

  12. Understanding Coupled Earth-Surface Processes through Experiments and Models (Invited)

    Science.gov (United States)

    Overeem, I.; Kim, W.

    2013-12-01

    Traditionally, both numerical models and experiments have been purposefully designed to ';isolate' singular components or certain processes of a larger mountain to deep-ocean interconnected source-to-sink (S2S) transport system. Controlling factors driven by processes outside of the domain of immediate interest were treated and simplified as input or as boundary conditions. Increasingly, earth surface processes scientists appreciate feedbacks and explore these feedbacks with more dynamically coupled approaches to their experiments and models. Here, we discuss key concepts and recent advances made in coupled modeling and experimental setups. In addition, we emphasize challenges and new frontiers to coupled experiments. Experiments have highlighted the important role of self-organization; river and delta systems do not always need to be forced by external processes to change or develop characteristic morphologies. Similarly modeling f.e. has shown that intricate networks in tidal deltas are stable because of the interplay between river avulsions and the tidal current scouring with both processes being important to develop and maintain the dentritic networks. Both models and experiment have demonstrated that seemingly stable systems can be perturbed slightly and show dramatic responses. Source-to-sink models were developed for both the Fly River System in Papua New Guinea and the Waipaoa River in New Zealand. These models pointed to the importance of upstream-downstream effects and enforced our view of the S2S system as a signal transfer and dampening conveyor belt. Coupled modeling showed that deforestation had extreme effects on sediment fluxes draining from the catchment of the Waipaoa River in New Zealand, and that this increase in sediment production rapidly shifted the locus of offshore deposition. The challenge in designing coupled models and experiments is both technological as well as intellectual. Our community advances to make numerical model coupling more

  13. Laser confocal measurement system for curvature radius of lenses based on grating ruler

    Science.gov (United States)

    Tian, Jiwei; Wang, Yun; Zhou, Nan; Zhao, Weirui; Zhao, Weiqian

    2015-02-01

    In the modern optical measurement field, the radius of curvature (ROC) is one of the fundamental parameters of optical lens. Its measurement accuracy directly affects the other optical parameters, such as focal length, aberration and so on, which significantly affect the overall performance of the optical system. To meet the demand of measurement instruments for radius of curvature (ROC) with high accuracy in the market, we develop a laser confocal radius measurement system with grating ruler. The system uses the peak point of the confocal intensity curve to precisely identify the cat-eye and confocal positions and then measure the distance between these two positions by using the grating ruler, thereby achieving the high-precision measurement for the ROC. The system has advantages of high focusing sensitivity and anti-environment disturbance ability. And the preliminary theoretical analysis and experiments show that the measuring repeatability can be up to 0.8 um, which can provide an effective way for the accurate measurement of ROC.

  14. Novel Heuristics for Cell Radius Determination in WCDMA Systems and Their Application to Strategic Planning Studies

    Directory of Open Access Journals (Sweden)

    G. Esteve-Asensio

    2009-01-01

    Full Text Available We propose and compare three novel heuristics for the calculation of the optimal cell radius in mobile networks based on Wideband Code Division Multiple Access (WCDMA technology. The proposed heuristics solve the problem of the load assignment and cellular radius calculation. We have tested our approaches with experiments in multiservices scenarios showing that the proposed heuristics maximize the cell radius, providing the optimum load factor assignment. The main application of these algorithms is strategic planning studies, where an estimation of the number of Nodes B of the mobile operator, at a national level, is required for economic analysis. In this case due to the large number of different scenarios considered (cities, towns, and open areas other methods than simulation need to be considered. As far as we know, there is no other similar method in the literature and therefore these heuristics may represent a novelty in strategic network planning studies. The proposed heuristics are implemented in a strategic planning software tool and an example of their application for a case in Spain is presented. The proposed heuristics are used for telecommunications regulatory studies in several countries.

  15. Low beta rigid mode stability criterion for an arbitrary Larmor radius plasma

    International Nuclear Information System (INIS)

    Berk, H.L.; Wong, H.V.

    1987-05-01

    The low beta flute interchange dispersion relation for rigid displacement perturbation of axisymmetric plasma equilibria with arbitrary Larmor radius particles and field line curvature, large compared to the plasma radius, is derived. The equilibrium particle orbits are characterized by two constants of motion, energy and angular momentum, and a third adiabatic invariant derived from the rapid radial motion. The Vlasov equation is integrated, assuming that the mode frequency, axial ''bounce'' frequency, and particle drift frequency are small compared to the cyclotron frequency, and it is demonstrated that the plasma response to a rigid perturbation has a universal character independent of Larmor radius. As a result the interchange instability is the same as that predicted from conventional MHD theory. However, a new prediction, more optimistic than earlier work, is found for the low density threshold of systems like Migma, which are disc-shaped, that is, the axial extent Δz is less than the radial extent r 0 . For Δz/sub r 0 / much less than 1, the stability criterion is determined by the total particle number. Whereas the older theory (Δz/sub r 0 / much greater than 1) predicted instability at about the densities achieved in actual Migma experiments, the present theory (Δz/sub r 0 / much less than 1) indicates that the experimental results were for plasmas with particle number below the interchange threshold

  16. Road surface washing system for decontaminating radioactive substances. Experiment of radioactive decontamination

    International Nuclear Information System (INIS)

    Endo, Mitsuru; Endo, Mai; Kakizaki, Takao

    2015-01-01

    The Great East Japan Earthquake that occurred on March 11, 2011 resulted in the explosion of the TEPCO Fukushima 1st Nuclear Power Plant and the global dispersion of a large quantity of radioactive substances. A high radiation dose was particularly recorded in Fukushima prefecture several weeks after the accident, although the level is presently sufficiently low. However, considering that the adverse effects of low but extended exposure to radiation are yet to be negated, there is the urgent need for further decontamination. In our study, we focused on the efficient decontamination of radioactive substances in residential areas, for which we propose a high-pressure water jet system for washing road surfaces. The system differs from conventional systems of its type that were initially designed for use in the immediate environment of the nuclear reactors of the TEPCO Fukushima 1st Nuclear Power Plant. The proposed system consists of multiple washing, transporter, and server robots. The washing robots decontaminate the road surface using high-pressure water jets and are transported between washed and unwashed areas by the transporter robots. The server robots supply the water used for washing and absorb the polluted water together with ground dust. In this paper, we describe the concept of the system and present the results of decontamination experiments. Particular attention is given to the washing robot and its mechanism and control method. The results of the integration of the washing robot in an experimental system confirmed the feasibility of the proposed system. (author)

  17. Experiment for a measurement of the charge radius of the proton at the S-DALINAC and investigation of the fine structure of giant resonances in {sup 28}Si, {sup 48}Ca and {sup 166}Er with the help of the wavelet analysis; Experiment zur Messung des Ladungsradius des Protons am S-DALINAC und Untersuchung der Feinstruktur von Riesenresonanzen in {sup 28}Si, {sup 48}Ca und {sup 166}Er mit Hilfe der Waveletanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Pysmenetska, Inna

    2009-07-22

    The present thesis consists of two parts. In the first part a novel experimental method for the measurement of the proton root-mean-square radius at the S-DALINAC is presented. A setup based on semiconductor detectors is realized. In contrast to previous experiments it allows a simultaneous measurement of the momentum transfer dependence of the elastic electron scattering cross section. A possible suppression of the significant electron and bremsstrahlung background observed in a test experiment was investigated with the help of different methods, such as {delta}E-E telescopes, the time of flight method with a pulsed beam and pulse shape discrimination. The combination of these methods allows a reduction of the background at all scattering angles, which should allow a successful measurement. The response of the detector system was studied with the help of Monte-Carlo simulations with an emphasis on the dependence of the expected accuracy of different parameters. The second part of this work describes an investigation of the fine structure of giant resonances in {sup 28}Si, {sup 48}Ca and {sup 166}Er with the help of a wavelet analysis. The discrete wavelet transform was used for a background determination in spectra of the iso vector E1 and the M2 giant resonances in {sup 48}Ca. This allows the extraction of 1{sup -} und 2{sup -} level densities in the excitation energy region of the respective resonances with the help of a fluctuation analysis. A fluctuation analysis of the fine structure of the isoscalar E2 resonance in {sup 166}Er allows the extraction of the coherent widths of the 2{sup +} states. In the excitation energy region E{sub x}=10-16 MeV widths between 30 and 80 eV are found. The fine structure of the giant resonances is furthermore specified by characteristic scales. In this thesis scales in {sup 28}Si and {sup 48}Ca are extracted with the help of the above mentioned wavelet transform. In {sup 28}Si the isovector E1 and isoscalar E2 resonances were

  18. Influences of nuclear containment radius on the aircraft impact force based on the Riera function

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.; Wu, H., E-mail: abrahamhao@126.com; Fang, Q.; Gong, Z.M.

    2015-11-15

    Highlights: • A fine aircraft model of A320 was built and verified by available limited prototype impacting tests. • The influences of aircraft longitudinal crushing strength on the impact process were analyzed. • The influences of NPP containment radius on the impact force were numerically studied. • The Riera function was modified by considering the radius effect of NPP containment. - Abstract: The aircraft impact force directly influences the local failure and global response of the nuclear power plant (NPP) containment, while the existing theoretical models and the field tests were almost based on the flat target. In order to analyze the radius effect of the circular sectional containment on the impact force, a fine FE model of the commercial aircraft A320 was established and validated by the available limited full-scale F-4 Phantom impact experiment. In order to determine the force to crush the A320 FE model, the influences of aircraft longitudinal crushing strength on the impact process were analyzed based on the Riera function. Considering the containment decaying effect to aircraft impact velocity, the impact impulse was theoretically calculated, while the influences of the losses of mass and energy were not included. The numerical simulations of A320 aircrafts impacting on simplified NPP containments with different radii were conducted, which could well reproduce the airframe crushing and debris scattering. By comparison of the simulated impact impulses and the calculation values by the Riera function, the coefficients corresponding to different containment radii are derived and a fitting formula is obtained. Finally, an improved Riera function dependent on the dimensionless ratio of nuclear containment radius and aircraft wingspan is proposed.

  19. Characterization of Amylopectin irradiated by gamma rays using viscosity and radius gyration technique

    International Nuclear Information System (INIS)

    Ku Sarah Syahidah Ku Muhamad

    2012-01-01

    Food irradiation is one of the most applicable methods that have been used in food industry especially to preserve food. Besides preservation of food, irradiation can also reduce microorganism, inhibit budding and others. However, this method can be misused by some irresponsible organization or person such as irradiate the food over the dose limit value. Therefore, the detection method is important to detect any misused in irradiation method. The objective of this research is to identify any changes in the structure of amylopectin by using radius gyration technique. Besides that, the viscosity of the sample is also determined by using Rheometer. The last objective of this research is to find a relationship between radius gyration and irradiation dose can be determined. Amylopectin and cassava powder were the sample in this research. The samples were irradiated in the gamma-cell at 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, and 10.0 kGy doses. 0 kGy were the controlled sample. The sample were made into gel to analysed using Rheometer and Small Angle X-ray Scattering (SAXS). The viscosity of the sample were analysed by using Rheometer while the radius gyration of the sample were analysed by using SAXS. Hence, the result of this experiment is, the viscosity of amylopectin reduces as the doses increases. But, at 10 kGy, the viscosity of the cassava starch was increased significantly. For the SAXS analysis, it is shows that the graph for amylopectin were fluctuates. While, for cassava starch the radius gyration increases with doses. Hence, the rheometer technique is suitable to be develop as a detection method in food irradiation. Further research should be done to improve the detection technique in food irradiation. (author)

  20. Analyzing the effect of tool edge radius on cutting temperature in micro-milling process

    Science.gov (United States)

    Liang, Y. C.; Yang, K.; Zheng, K. N.; Bai, Q. S.; Chen, W. Q.; Sun, G. Y.

    2010-10-01

    Cutting heat is one of the important physical subjects in the cutting process. Cutting heat together with cutting temperature produced by the cutting process will directly have effects on the tool wear and the life as well as on the workpiece processing precision and surface quality. The feature size of the workpiece is usually several microns. Thus, the tiny changes of cutting temperature will affect the workpiece on the surface quality and accuracy. Therefore, cutting heat and temperature generated in micro-milling will have significantly different effect than the one in the traditional tools cutting. In this paper, a two-dimensional coupled thermal-mechanical finite element model is adopted to determine thermal fields and cutting temperature during the Micro-milling process, by using software Deform-2D. The effect of tool edge radius on effective stress, effective strain, velocity field and cutting temperature distribution in micro-milling of aluminum alloy Al2024-T6 were investigated and analyzed. Also, the transient cutting temperature distribution was simulated dynamically. The simulation results show that the cutting temperature in Micro-milling is lower than those occurring in conventional milling processes due to the small loads and low cutting velocity. With increase of tool edge radius, the maximum temperature region gradually occurs on the contact region between finished surfaced and flank face of micro-cutter, instead of the rake face or the corner of micro-cutter. And this phenomenon shows an obvious size effect.

  1. Experiments On Sublimating Carbon Dioxide Ice And Implications For Contemporary Surface Processes On Mars.

    Science.gov (United States)

    Mc Keown, L E; Bourke, M C; McElwaine, J N

    2017-10-27

    Carbon dioxide is Mars' primary atmospheric constituent and is an active driver of Martian surface evolution. CO 2 ice sublimation mechanisms have been proposed for a host of features that form in the contemporary Martian climate. However, there has been very little experimental work or quantitative modelling to test the validity of these hypotheses. Here we present the results of the first laboratory experiments undertaken to investigate if the interaction between sublimating CO 2 ice blocks and a warm, porous, mobile regolith can generate features similar in morphology to those forming on Martian dunes today. We find that CO 2 sublimation can mobilise grains to form (i) pits and (ii) furrows. We have documented new detached pits at the termini of linear gullies on Martian dunes. Based on their geomorphic similarity to the features observed in our laboratory experiments, and on scaling arguments, we propose a new hypothesis that detached pits are formed by the impact of granular jets generated by sublimating CO 2 . We also study the erosion patterns formed underneath a sublimating block of CO 2 ice and demonstrate that these resemble furrow patterns on Mars, suggesting similar formation mechanisms.

  2. Influences on the radius of the auroral oval

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2009-07-01

    Full Text Available We examine the variation in the radius of the auroral oval, as measured from auroral images gathered by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE spacecraft, in response to solar wind inputs measured by the Advanced Composition Explorer (ACE spacecraft for the two year interval June 2000 to May 2002. Our main finding is that the oval radius increases when the ring current, as measured by the Sym-H index, is intensified during geomagnetic storms. We discuss our findings within the context of the expanding/contracting polar cap paradigm, in terms of a modification of substorm onset conditions by the magnetic perturbation associated with the ring current.

  3. Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Surface Malignancy: Experience with 1,000 Patients

    Science.gov (United States)

    Levine, Edward A.; Stewart, John H.; Shen, Perry; Russell, Gregory B.; Loggie, Brian L.; Votanopoulos, Konstantinos I

    2014-01-01

    Background Peritoneal dissemination of abdominal malignancy (carcinomatosis) has a clinical course marked by bowel obstruction and death; it traditionally does not respond well to systemic therapy and has been approached with nihilism. To treat carcinomatosis, we utilize cytoreductive surgery (CS) with hyperthermic intraperitoneal chemotherapy (HIPEC). Methods A prospective database of patients has been maintained since 1992. Patients with biopsy proven peritoneal surface disease (PSD) were uniformly evaluated for, and treated with, CS and HIPEC. Patient demographics, performance status (ECOG), resection status (R), PSD was classified according to primary site. Univariate and multivariate analysis were performed. The experience was divided into quintiles and compared with outcomes. Results Between 1991 and 2013, 1,000 patients underwent 1,097 HIPEC procedures. Average age was 52.9 years and 53.1% were female. Primary tumor sites were: appendix 472(47.2%), colorectal 248(24.8%), mesothelioma 72(7.2%), ovary 69(6.9%), gastric 46(4.6%), others 97(9.7%). Thirty day mortality rate was 3.8% and median hospital stay was 8 days. Median overall survival (OS) was 29.4 months, with a 5 year survival of 32.5%. Factors correlating with improved survival on univariate and multivariate analysis (p≤.0001 for each) were preoperative performance status, primary tumor type, resection status, and experience quintile (p=.04). Over the 5 quintiles, the 1 and 5 year survival, as well as the complete cytoreduction score (R0,R1,R2a) have increased, while transfusions, stoma creations, and complications have all significantly decreased (p<.001 for all). Conclusions This largest reported single center experience with CS and HIPEC demonstrates that prognostic factors include primary site, performance status, completeness of resection, and institutional experience. The data shows that outcomes have improved over time with more complete cytoreduction and fewer serious complications

  4. Factors Associated with Infection Following Open Distal Radius Fractures

    OpenAIRE

    Glueck, Dane A.; Charoglu, Constantine P.; Lawton, Jeffrey N.

    2009-01-01

    Open fractures are often classified according to a system described by Gustilo and Anderson. However, this system was applied to open long bone factures, which may not predict the incidence of infection in open metaphyseal fractures of the upper extremity. Other studies have found that wound contamination and systemic illness were the best predictors of infections in open hand fractures. Our study assessed infection in open distal radius fractures and identifies factors that are associated wi...

  5. Fractures of the shafts of the radius and ulna

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C.

    1985-01-01

    Although the clinical presentation of fracture of the forearm bones is usually quite obvious, thorough radiologic examination of the radius and ulna and adjacent wrist and elbow joints is mandatory. Standard views of the forearm of the patient include the AP and lateral projections. The degree of shortening, angulation, rotation, and comminution should be noted. The selected films must be long enough to include the adjacent elbow and wrist joints

  6. Ion-nanostructure interaction. Comparing simulation and experiment towards surface structuring using nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Holland-Moritz, Henry

    2016-10-18

    Nanotechnology is a buzzword in context of the proceeding miniaturization of devices and their components. Nanoparticles (NPs) can nowadays easily be synthesized from different material compositions by different chemical and physical processes. However, most of these techniques work close to or at the thermal equilibrium. One subsequent approach to tune materials beyond equilibrium conditions is ion beam irradiation. An important effect of this approach is sputtering. Sputtering is enhanced in NPs compared to their bulk counterparts due to their large surface-to-volume ratio, especially when the ion range matches the NP size. In this work, the sputtering effects of Ar{sup +} and Ga{sup +} ion irradiated Au nanoparticles are investigated in detail by Monte Carlo (MC) and molecular dynamics (MD) simulations and a variety of experiments. The sputtering of Ar{sup +} and Ga{sup +} irradiated Au NPs was investigated as a function of ion energy, NP size and impact parameter by the MC code iradina and MD code parcas. The simulation results are directly compared to experiments using high resolution scanning electron microscopy (SEM) of Au NPs on top of Si, whereat the sputter yields are significantly enhanced compared to the MC simulations. Additionally, the interaction of NPs and substrate were investigated by Rutherford backscatter spectrometry (RBS), atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM). A new MC code was developed to study the redeposition of sputtered atoms of Ga{sup +} irradiated Au NP arrays on neighboring NPs. The redeposition can lead to growth of NPs with diameters of 1 nm in vicinity of ∝50 nm NP. These simulations are directly compared to an in situ experiment. Nanostructures, spherical NPs as well as nanowires (NWs) are used as irradiation masks to structure lithium niobate (LNO) using the ion beam enhanced etching (IBEE) technique. The aspect ratio of the obtained structures can be enhanced by a second IBEE step

  7. Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC

    Science.gov (United States)

    Nachman, Benjamin; Nef, Pascal; Schwartzman, Ariel; Swiatlowski, Maximilian; Wanotayaroj, Chaowaroj

    2015-02-01

    Jets with a large radius R ≳ 1 and grooming algorithms are widely used to fully capture the decay products of boosted heavy particles at the Large Hadron Collider (LHC). Unlike most discriminating variables used in such studies, the jet radius is usually not optimized for specific physics scenarios. This is because every jet configuration must be calibrated, insitu, to account for detector response and other experimental effects. One solution to enhance the availability of large- R jet configurations used by the LHC experiments is jet re-clustering. Jet re-clustering introduces an intermediate scale r groomed jets. Jet re-clustering has the benefit that no additional large-R calibration is necessary, allowing the re-clustered large radius parameter to be optimized in the context of specific precision measurements or searches for new physics.

  8. Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    Science.gov (United States)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.

    1993-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3

  9. Neutron charge radius and the neutron electric form factor

    International Nuclear Information System (INIS)

    Gentile, T. R.; Crawford, C. B.

    2011-01-01

    For nearly forty years, the Galster parametrization has been employed to fit existing data for the neutron electric form factor, G E n , vs the square of the four-momentum transfer, Q 2 . Typically this parametrization is constrained to be consistent with experimental data for the neutron charge radius. However, we find that the Galster form does not have sufficient freedom to accommodate reasonable values of the radius without constraining or compromising the fit. In addition, the G E n data are now at sufficient precision to motivate a two-parameter fit (or three parameters if we include thermal neutron data). Here we present a modified form of a two-dipole parametrization that allows this freedom and fits both G E n (including recent data at both low and high four-momentum transfer) and the charge radius well with simple, well-defined parameters. Analysis reveals that the Galster form is essentially a two-parameter approximation to the two-dipole form but becomes degenerate if we try to extend it naturally to three parameters.

  10. Is the proton radius puzzle evidence of extra dimensions?

    Energy Technology Data Exchange (ETDEWEB)

    Dahia, F.; Lemos, A.S. [Universidade Federal da Paraiba, Department of Physics, Joao Pessoa, PB (Brazil)

    2016-08-15

    The proton charge radius inferred from muonic hydrogen spectroscopy is not compatible with the previous value given by CODATA-2010, which, on its turn, essentially relies on measurements of the electron-proton interaction. The proton's new size was extracted from the 2S-2P Lamb shift in the muonic hydrogen, which showed an energy excess of 0.3 meV in comparison to the theoretical prediction, evaluated with the CODATA radius. Higher-dimensional gravity is a candidate to explain this discrepancy, since the muon-proton gravitational interaction is stronger than the electron-proton interaction and, in the context of braneworld models, the gravitational potential can be hugely amplified in short distances when compared to the Newtonian potential. Motivated by these ideas, we study a muonic hydrogen confined in a thick brane. We show that the muon-proton gravitational interaction modified by extra dimensions can provide the additional separation of 0.3 meV between the 2S and 2P states. In this scenario, the gravitational energy depends on the higher-dimensional Planck mass and indirectly on the brane thickness. Studying the behavior of the gravitational energy with respect to the brane thickness in a realistic range, we find constraints for the fundamental Planck mass that solve the proton radius puzzle and are consistent with previous experimental bounds. (orig.)

  11. Fractures of the distal radius in children: A retrospective evaluation

    Directory of Open Access Journals (Sweden)

    Selma Yazıcı

    2012-06-01

    Full Text Available Objectives: This study designed to evaluate the resultsof treatment, closed reduction and percutaneous wires, ofthe distal radius fractures in children.Materials and methods: A retrospective analysis wascarried out in children aged between 5-15 years who presentedwith a displaced fracture of the distal radius to ourhospital. They were initially treated with closed reductionand cast immobilization. If the fractures redisplaced treatedby percutaneous Kirschner (K- wire with scope undera general anaesthesia.Results: Totally 104 patients, who have distal radius fractureswere treated by closed reduction and immobilizationin a plaster cast. 13 patient who have distal radiusfractures were treated by closed reduction under generalanaesthesia and fixed by percutaneous Kirschner (K-wire. Patients with impaired the alignment of the fracturein late period were usually completely displaced fractures.(n=5, 4,3%, in early period, completely displaced fractures(n=5, 4,3% are superior to partial displaced fractures(n=2, 1,7%.Conclusion: In our study, when children with distal radiusfracture first come, they were treated by closed reductionand immobilization in a plaster cast. We thought that inredisplaced fractures patients were suitable for the closedreduction with percutaneous wire treatment.

  12. Characterizing SL2S galaxy groups using the Einstein radius

    DEFF Research Database (Denmark)

    Verdugo, T.; Motta, V.; Foex, G.

    2014-01-01

    Aims. We aim to study the reliability of RA (the distance from the arcs to the center of the lens) as a measure of the Einstein radius in galaxy groups. In addition, we want to analyze the possibility of using RA as a proxy to characterize some properties of galaxy groups, such as luminosity (L......) and richness (N). Methods. We analyzed the Einstein radius, θE, in our sample of Strong Lensing Legacy Survey (SL2S) galaxy groups, and compared it with RA, using three different approaches: 1) the velocity dispersion obtained from weak lensing assuming a singular isothermal sphere profile (θE,I); 2) a strong.......7 ± 0.2)RA, θE,II = (0.4 ± 1.5) + (1.1 ± 0.4)RA, and θE,III = (0.4 ± 1.5) + (0.9 ± 0.3)RA for each method respectively. We found weak evidence of anti-correlation between RA and z, with Log RA = (0.58 ± 0.06) − (0.04 ± 0.1)z, suggesting a possible evolution of the Einstein radius with z, as reported...

  13. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions

    International Nuclear Information System (INIS)

    Yamanaka, T.; Takeda, A.; Sugita, F.

    1997-01-01

    A physically based (i.e., nonempirical) representation of surface-moisture availability is proposed, and its applicability is investigated. This method is based on the surface-resistance approaches, and it uses the depth of evaporating surface rather than the water content of the surface soil as the determining factor of surface-moisture availability. A simple energy-balance model including this representation is developed and tested against wind tunnel experiments under various atmospheric conditions. This model can estimate not only the latent heat flux but also the depth of the evaporating surface simultaneously by solving the inverse problem of energy balance at both the soil surface and the evaporating surface. It was found that the depth of the evaporating surface and the latent heat flux estimated by the model agreed well with those observed. The agreements were commonly found out under different atmospheric conditions. The only limitation of this representation is that it is not valid under conditions of drastic change in the radiation input, owing to the influence of transient phase transition of water in the dry surface layer. The main advantage of the approach proposed is that it can determine the surface moisture availability on the basis of the basic properties of soils instead of empirical fitting, although further investigations on its practical use are needed

  14. Measurement Of Neutron Radius In Lead By Parity Violating Scattering Flash ADC DAQ

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Zafar [Christopher Newport Univ., Newport News, VA (United States)

    2012-06-01

    This dissertation reports the experiment PREx, a parity violation experiment which is designed to measure the neutron radius in 208Pb. PREx is performed in hall A of Thomas Jefferson National Accelerator Facility from March 19th to June 21st. Longitudionally polarized electrons at energy 1 GeV scattered at and angle of θlab = 5.8 ° from the Lead target. Beam corrected pairty violaing counting rate asymmetry is (Acorr= 594 ± 50(stat) ± 9(syst))ppb at Q2 = 0.009068GeV 2. This dissertation also presents the details of Flash ADC Data Acquisition(FADC DAQ) system for Moller polarimetry in Hall A of Thomas Jefferson National Accelerator Facility. The Moller polarimeter measures the beam polarization to high precision to meet the specification of the PREx(Lead radius experiment). The FADC DAQ is part of the upgrade of Moller polarimetery to reduce the systematic error for PREx. The hardware setup and the results of the FADC DAQ analysis are presented

  15. Study on the Calculation of Pebble-Bed Reactor Multiplication Factor As a Function of Fuel Kernel Radius at Various Enrichments

    International Nuclear Information System (INIS)

    Zuhair; Suwoto

    2009-01-01

    Main characteristics of PBR comes from utilization of coated particle fuels dispersed in pebble fuels . Because of vibration, fuel kernel can be grouped into cluster and in these cases, neutronic characteristics of pebble fuel significantly changes . In this study, cluster is modeled structural form consisting of uniform cubic cells with eight neighborhood TRISO particles . Neutronic characteristics was investigated by calculating pebble-bed reactor multiplication factor as a function of fuel kernel radius at various enrichments . The calculation results using MCNP5 code with ENDF/BVI neutron library show that k eff value depends on the average fuel radius and reaches its minimum when all kernels have the same radius, i.e. 0.0280 cm . With this radius, the total kernel surface area achieves maximum value . The dependence of k eff on fuel kernel radius decreases in relation to the increase in uranium enrichment . However, k eff value is not affected by fuel kernel radius when the uranium is 100% enriched . From these result, it can be concluded that, exception of uranium enrichment, the selection of fuel kernel radius should be considered thoroughly in designing a PBR, since this parameter provides significant influences on neutronic characteristics of the reactor. (author)

  16. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    Science.gov (United States)

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  17. The New Horizons Bistatic Radio Science Experiment to Measure Pluto's Surface Properties

    Science.gov (United States)

    Linscott, I.; Hinson, D. P.; Tyler, G. L.; Vincent, M.

    2014-12-01

    The New Horizons (NH) payload includes a Radio Science Experiment (REX) for principally occultation and radiometric measurement of Pluto and Charon during the flyby in July 2015. The REX subsystem is contained, together with the NH X-Band radio, in the Integrated Electronics Module (IEM) in the New Horizons spacecraft. REX samples and records in two polarizations both total RF power in a 4.5 MHz bandwidth, and radio signal waveforms in a narrow, 1.25 kHz band. During the encounter, and at closest approach to Pluto, the spacecraft's high gain antenna (HGA) will scan Pluto's equatorial latitudes, intercepting the specular zone, a region near Pluto's limb that geometrically favors reflection from the earth's direction. At the same time, a powerful 80 kW uplink beacon will have been transmitted from earth by the DSN to arrive at Pluto during spacecraft closest approach. Reflection from the specular zone is expected to be sufficiently strong to observe the bistatic uplink in the REX narrowband record. Measurements in both polarizations will then be combined to yield surface reflectivity, roughness and limits on the dielectric constant in the specular zone.

  18. SCO shipments from Rocky Flats - Experience and current practice [Surface Contaminated Object

    International Nuclear Information System (INIS)

    Bracken, Gary; Morris, Robert L.

    2001-01-01

    Decommissioning activities at Rocky Flats Environmental Technology Site (RFETS) are expected to generate approximately 251,000 cubic meters of low-level radioactive waste. Almost half of this will be characterized and shipped as the Department of Transportation ''Surface Contaminated Object'' (SCO) shipping class. In the 2 years since an SCO characterization method was implemented, almost 11,000 of the 18,000 cubic meters of low-level waste were SCO. RFETS experience to-date using an SCO waste characterization method has shown significant time and cost savings, reduced errors, and enhanced employee safety. SCO waste is characterized prior to packaging, near the point of generation, by any of the site's 300 Radiological Control Technicians using inexpensive radiological control survey instruments. This reduces on-site waste container moves and eliminates radiometric analysis at centrally located drum or crate counters. Containers too large for crate counters can also be characterized. Current instrumentation is not adequate to take full advantage of the SCO regulations. Future improvements in the SCO characterization and shipping process are focused on use of larger and/or reusable containers, extended-range instruments, and additional statistical methods, so that the full extent of the SCO regulations can be used

  19. Factors associated with infection following open distal radius fractures.

    Science.gov (United States)

    Glueck, Dane A; Charoglu, Constantine P; Lawton, Jeffrey N

    2009-09-01

    Open fractures are often classified according to a system described by Gustilo and Anderson. However, this system was applied to open long bone fractures, which may not predict the incidence of infection in open metaphyseal fractures of the upper extremity. Other studies have found that wound contamination and systemic illness were the best predictors of infections in open hand fractures. Our study assessed infection in open distal radius fractures and identifies factors that are associated with these infections. We hypothesize that contamination, rather than absolute wound size, is the best predictor of infection associated with open distal radius fractures. A review by CPT code yielded 42 patients with open distal radius fractures between 1997 and 2002 treated at a level one trauma center. Medical records and radiographic follow-up were reviewed to assess the time to irrigation and debridement, the number of debridements in initial treatment period, the method of operative stabilization, the Gustilo and Anderson type of fracture, the Swanson type of fracture, and description of wound contamination. Forty-two patients were followed up for an average of 15 months (range 4 to 68 months). Twenty-four fractures were classified as Gustilo and Anderson type I, ten were type II, and eight were type III, 30 were Swanson type I, and 12 were Swanson type II. Five of the 42 fractures were considered contaminated. Two were exposed to fecal contamination. The others were contaminated with tar, dirt/grass, and gravel, respectively. Three of 42 (7%) fractures developed infections. All three infected cases received a single irrigation and debridement. Two of five contaminated fractures (40%) developed a polymicrobial infection. Both were exposed to fecal contamination and, therefore, considered Swanson type II fractures. They were classified as Gustilo and Anderson type II and IIIB based solely upon the size of the wound. Both required multiple debridements and eventually wrist

  20. Measurement of Capillary Radius and Contact Angle within Porous Media.

    Science.gov (United States)

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  1. NEUTRON STAR MASS–RADIUS CONSTRAINTS USING EVOLUTIONARY OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. L.; Morsink, S. M. [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB, T6G 2E1 (Canada); Fiege, J. D. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Leahy, D. A. [Department of Physics, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4 (Canada)

    2016-12-20

    The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modeling pulse profiles of thermonuclear X-ray burst oscillations from hot spots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT , NICER , or a mission similar to LOFT . In this paper, we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determine the best-fit masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles, constructed with 1.6 million counts and no background, were fitted with the Ferret algorithm to analyze both statistical and degeneracy-related uncertainty and to explore how the goodness of fit depends on the input parameters. For the regions of parameter space sampled by our tests, the best-determined parameter is the projected velocity of the spot along the observer’s line of sight, with an accuracy of ≤3% compared to the true value and with ≤5% statistical uncertainty. The next best determined are the mass and radius; for a neutron star with a spin frequency of 600 Hz, the best-fit mass and radius are accurate to ≤5%, with respective uncertainties of ≤7% and ≤10%. The accuracy and precision depend on the observer inclination and spot colatitude, with values of ∼1% achievable in mass and radius if both the inclination and colatitude are ≳60°.

  2. Fractal analysis of bone architecture at distal radius

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Mimura, Hiroaki; Murase, Kenya; Sone, Teruki; Fukunaga, Masao

    2005-01-01

    Bone strength depends on bone quality (architecture, turnover, damage accumulation, and mineralization) as well as bone mass. In this study, human bone architecture was analyzed using fractal image analysis, and the clinical relevance of this method was evaluated. The subjects were 12 healthy female controls and 16 female patients suspected of having osteoporosis (age range, 22-70 years; mean age, 49.1 years). High-resolution CT images of the distal radius were acquired and analyzed using a peripheral quantitative computed tomography (pQCT) system. On the same day, bone mineral densities of the lumbar spine (L-BMD), proximal femur (F-BMD), and distal radius (R-BMD) were measured by dual-energy X-ray absorptiometry (DXA). We examined the correlation between the fractal dimension and six bone mass indices. Subjects diagnosed with osteopenia or osteoporosis were divided into two groups (with and without vertebral fracture), and we compared measured values between these two groups. The fractal dimension correlated most closely with L-BMD (r=0.744). The coefficient of correlation between the fractal dimension and L-BMD was very similar to the coefficient of correlation between L-BMD and F-BMD (r=0.783) and the coefficient of correlation between L-BMD and R-BMD (r=0.742). The fractal dimension was the only measured value that differed significantly between both the osteopenic and the osteoporotic subjects with and without vertebral fracture. The present results suggest that the fractal dimension of the distal radius can be reliably used as a bone strength index that reflects bone architecture as well as bone mass. (author)

  3. A Predictor Analysis Framework for Surface Radiation Budget Reprocessing Using Design of Experiments

    Science.gov (United States)

    Quigley, Patricia Allison

    Earth's Radiation Budget (ERB) is an accounting of all incoming energy from the sun and outgoing energy reflected and radiated to space by earth's surface and atmosphere. The National Aeronautics and Space Administration (NASA)/Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project produces and archives long-term datasets representative of this energy exchange system on a global scale. The data are comprised of the longwave and shortwave radiative components of the system and is algorithmically derived from satellite and atmospheric assimilation products, and acquired atmospheric data. It is stored as 3-hourly, daily, monthly/3-hourly, and monthly averages of 1° x 1° grid cells. Input parameters used by the algorithms are a key source of variability in the resulting output data sets. Sensitivity studies have been conducted to estimate the effects this variability has on the output data sets using linear techniques. This entails varying one input parameter at a time while keeping all others constant or by increasing all input parameters by equal random percentages, in effect changing input values for every cell for every three hour period and for every day in each month. This equates to almost 11 million independent changes without ever taking into consideration the interactions or dependencies among the input parameters. A more comprehensive method is proposed here for the evaluating the shortwave algorithm to identify both the input parameters and parameter interactions that most significantly affect the output data. This research utilized designed experiments that systematically and simultaneously varied all of the input parameters of the shortwave algorithm. A D-Optimal design of experiments (DOE) was chosen to accommodate the 14 types of atmospheric properties computed by the algorithm and to reduce the number of trials required by a full factorial study from millions to 128. A modified version of the algorithm was made

  4. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2008-01-01

    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...

  5. Paediatric post-traumatic cortical defects of the distal radius

    International Nuclear Information System (INIS)

    Roach, Richard T.; Summers, Bruce N.; Cassar-Pullicino, Victor

    2002-01-01

    Paediatric post-traumatic cortical defects, although rare, are predominately seen affecting the distal radius following a greenstick or torus fracture. We review the literature and present a further two cases supported by CT and MRI. Images from an acute greenstick fracture are also presented to help understand the pathogenesis. Defects are typically solitary on plain radiographs and are usually noticed late, proximal to the site of compression. They are non-expansile in an otherwise healthy child. CT and MRI may reveal smaller multiple subperiosteal defects. Typical defects require no further management other than reassurance and advice that they may occasionally cause discomfort but resolve with time. (orig.)

  6. The influence of chamfering and corner radiusing on the discharge coefficient of rotating axial orifices

    International Nuclear Information System (INIS)

    Idris, A; Pullen, K

    2013-01-01

    The effects of chamfering and corner radiusing on the discharge coefficient of rotating axial orifices are presented in this paper. Both experimental and CFD results show that chamfering and corner radiusing improve the discharge coefficient of rotating orifices. For non-inclined rotating orifices, the discharge coefficient reduces with increasing speed, but chamfered and radiused orifices manage to have higher discharge coefficient (C d ) than the straight edge orifices. Comparing between chamfering and corner radiusing, the radiused corner orifice has the highest C d at every rotational speed. This is because the inlet radius helps guiding the flow into the orifice and avoiding flow separation at the inlet.

  7. Detailed determination of the fusion nuclear radius in reactions involving weakly bound projectiles

    International Nuclear Information System (INIS)

    Gomez Camacho, A.; Aguilera, E. F.; Quiroz, E. M.

    2007-01-01

    A detailed determination of the fusion radius parameter is performed within the Distorted Wave Born Approximation for reactions involving weakly bound projectiles. Specifically, a simultaneous X 2- analysis of elastic and fusion cross section data is done using a Woods-Saxon potential with volume and surface parts. The volume part is assumed to be responsible for fusion reactions while the surface part for all other direct reactions. It is proved that in order to fit fusion data, particularly for energies below the Coulomb barrier where fusion is enhanced, it is necessary to have a value of around 1.4 fm for the fusion radial parameter of the fusion potential (W F ). This value is much higher than that frequently used in Barrier Penetration models (1.0 fm). The calculations are performed for reactions involving the weakly bound projectile 9 Be with several medium mass targets. (Author)

  8. Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, B; Persson, B N J [IFF, FZ-Juelich, D-52425 Juelich (Germany)

    2009-01-07

    We study the average separation between an elastic solid and a hard solid, with a nominally flat but randomly rough surface, as a function of the squeezing pressure. We present experimental results for a silicon rubber (PDMS) block with a flat surface squeezed against an asphalt road surface. The theory shows that an effective repulsive pressure acts between the surfaces of the form p{approx}exp(-u/u{sub 0}), where u is the average separation between the surfaces and u{sub 0} a constant of the order of the root-mean-square roughness, in good agreement with the experimental results.

  9. Stellar Initial Mass Function: Trends With Galaxy Mass And Radius

    Science.gov (United States)

    Parikh, Taniya

    2017-06-01

    There is currently no consensus about the exact shape and, in particular, the universality of the stellar initial mass function (IMF). For massive galaxies, it has been found that near-infrared (NIR) absorption features, which are sensitive to the ratio of dwarf to giant stars, deviate from a Milky Way-like IMF; their modelling seems to require a larger fraction of low mass stars. There are now increasing results looking at whether the IMF varies not only with galaxy mass, but also radially within galaxies. The SDSS-IV/MaNGA integral-field survey will provide spatially resolved spectroscopy for 10,000 galaxies at R 2000 from 360-1000nm. Spectra of early-type galaxies were stacked to achieve high S/N which is particularly important for features in the NIR. Trends with galaxy radius and mass were compared to stellar population models for a range of absorption features in order to separate degeneracies due to changes in stellar population parameters, such as age, metallicity and element abundances, with potential changes in the IMF. Results for 611 galaxies show that we do not require an IMF steeper than Kroupa as a function of galaxy mass or radius based on the NaI index. The Wing-Ford band hints towards a steeper IMF at large radii however we do not have reliable measurements for the most massive galaxies.

  10. Electromagnetic Charge Radius of the Pion at High Precision

    Science.gov (United States)

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta

    2017-09-01

    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for π π elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+e- annihilation and τ decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is rπ=(0.657 ±0.003 ) fm , which amounts to an increase in precision by a factor of about 2.7 compared to the Particle Data Group average.

  11. Maximum wind radius estimated by the 50 kt radius: improvement of storm surge forecasting over the western North Pacific

    Science.gov (United States)

    Takagi, Hiroshi; Wu, Wenjie

    2016-03-01

    Even though the maximum wind radius (Rmax) is an important parameter in determining the intensity and size of tropical cyclones, it has been overlooked in previous storm surge studies. This study reviews the existing estimation methods for Rmax based on central pressure or maximum wind speed. These over- or underestimate Rmax because of substantial variations in the data, although an average radius can be estimated with moderate accuracy. As an alternative, we propose an Rmax estimation method based on the radius of the 50 kt wind (R50). Data obtained by a meteorological station network in the Japanese archipelago during the passage of strong typhoons, together with the JMA typhoon best track data for 1990-2013, enabled us to derive the following simple equation, Rmax = 0.23 R50. Application to a recent strong typhoon, the 2015 Typhoon Goni, confirms that the equation provides a good estimation of Rmax, particularly when the central pressure became considerably low. Although this new method substantially improves the estimation of Rmax compared to the existing models, estimation errors are unavoidable because of fundamental uncertainties regarding the typhoon's structure or insufficient number of available typhoon data. In fact, a numerical simulation for the 2013 Typhoon Haiyan as well as 2015 Typhoon Goni demonstrates a substantial difference in the storm surge height for different Rmax. Therefore, the variability of Rmax should be taken into account in storm surge simulations (e.g., Rmax = 0.15 R50-0.35 R50), independently of the model used, to minimize the risk of over- or underestimating storm surges. The proposed method is expected to increase the predictability of major storm surges and to contribute to disaster risk management, particularly in the western North Pacific, including countries such as Japan, China, Taiwan, the Philippines, and Vietnam.

  12. Model complexity in carbon sequestration:A design of experiment and response surface uncertainty analysis

    Science.gov (United States)

    Zhang, Y.; Li, S.

    2014-12-01

    Geologic carbon sequestration (GCS) is proposed for the Nugget Sandstone in Moxa Arch, a regional saline aquifer with a large storage potential. For a proposed storage site, this study builds a suite of increasingly complex conceptual "geologic" model families, using subsets of the site characterization data: a homogeneous model family, a stationary petrophysical model family, a stationary facies model family with sub-facies petrophysical variability, and a non-stationary facies model family (with sub-facies variability) conditioned to soft data. These families, representing alternative conceptual site models built with increasing data, were simulated with the same CO2 injection test (50 years at 1/10 Mt per year), followed by 2950 years of monitoring. Using the Design of Experiment, an efficient sensitivity analysis (SA) is conducted for all families, systematically varying uncertain input parameters. Results are compared among the families to identify parameters that have 1st order impact on predicting the CO2 storage ratio (SR) at both end of injection and end of monitoring. At this site, geologic modeling factors do not significantly influence the short-term prediction of the storage ratio, although they become important over monitoring time, but only for those families where such factors are accounted for. Based on the SA, a response surface analysis is conducted to generate prediction envelopes of the storage ratio, which are compared among the families at both times. Results suggest a large uncertainty in the predicted storage ratio given the uncertainties in model parameters and modeling choices: SR varies from 5-60% (end of injection) to 18-100% (end of monitoring), although its variation among the model families is relatively minor. Moreover, long-term leakage risk is considered small at the proposed site. In the lowest-SR scenarios, all families predict gravity-stable supercritical CO2 migrating toward the bottom of the aquifer. In the highest

  13. The relationship between sea surface temperature anomalies and atmospheric circulation in general circulation model experiments

    International Nuclear Information System (INIS)

    Kharin, V.V.

    1994-01-01

    Several multi-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the sea surface temperature (SST) observed in the period 1970-1988 were examined to study the extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis was applied to the monthly means to find the best correlated patterns of SST anomalies in the Atlantic and Pacific Oceans and the Northern Hemisphere atmospheric flow. Contrary to expectation, the extratropical response in the GAGO run is not equal to the linear combination of the responses in the MOGA and TOGA runs. In the GAGO integration with globally prescribed SST the best correlated atmospheric pattern is global and is characterized by dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospheric response is more local with main centers in the North Atlantic and North Pacific, respectively. The atmospheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 mb winter climate of the control integration driven by the climatological SST. The normal modes with smallest eigenvalues are similar to the canonical patterns of 500 mb geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans. It was suggested that variability of storm tracks could play an important role in variability of the barotropic normal modes. (orig.)

  14. Adsorption of arsenic and phosphate onto the surface of calcite as revealed by batch experiments and surface complexation modelling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt

    different calcite-equilibrated solutions that varied in pH, PCO2, ionic strength and activity of Ca2+, CO3 2- and HCO3 -. To avoid the precipitation of phosphate or arsenic-containing minerals the experiments were conducted using a short reaction time (generally 3 h) and a low concentration of phosphate...... adsorption affinity for calcite is greater as compared to arsenate and the phosphate sorption isotherms are more strongly curved. However, the amount of both arsenate and phosphate adsorbed varied with the solution composition in the same manner. In particular, adsorption increased as the CO3 2- activity...... decreased (at constant pH) and as pH increased (at constant CO3 2- activity). The dependency on the carbonate activity indicates competition for sorption sites between carbonate and arsenate/phosphate, whereas the pH dependency is likely a response to changes in arsenate and phosphate speciation...

  15. Simulating surface oil transport during the Deepwater Horizon oil spill: Experiments with the BioCast system

    Science.gov (United States)

    Jolliff, Jason Keith; Smith, Travis A.; Ladner, Sherwin; Arnone, Robert A.

    2014-03-01

    The U.S. Naval Research Laboratory (NRL) is developing nowcast/forecast software systems designed to combine satellite ocean color data streams with physical circulation models in order to produce prognostic fields of ocean surface materials. The Deepwater Horizon oil spill in the Gulf of Mexico provided a test case for the Bio-Optical Forecasting (BioCast) system to rapidly combine the latest satellite imagery of the oil slick distribution with surface circulation fields in order to produce oil slick transport scenarios and forecasts. In one such sequence of experiments, MODIS satellite true color images were combined with high-resolution ocean circulation forecasts from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®) to produce 96-h oil transport simulations. These oil forecasts predicted a major oil slick landfall at Grand Isle, Louisiana, USA that was subsequently observed. A key driver of the landfall scenario was the development of a coastal buoyancy current associated with Mississippi River Delta freshwater outflow. In another series of experiments, longer-term regional circulation model results were combined with oil slick source/sink scenarios to simulate the observed containment of surface oil within the Gulf of Mexico. Both sets of experiments underscore the importance of identifying and simulating potential hydrodynamic conduits of surface oil transport. The addition of explicit sources and sinks of surface oil concentrations provides a framework for increasingly complex oil spill modeling efforts that extend beyond horizontal trajectory analysis.

  16. Achieving Very Low Levels of Detection: An Improved Surface-Enhanced Raman Scattering Experiment for the Physical Chemistry Teaching Laboratory

    Science.gov (United States)

    McMillan, Brian G.

    2016-01-01

    This experiment was designed and successfully introduced to complement the nanochemistry taught to undergraduate students in a useful and interesting way. Colloidal Ag nanoparticles were synthesized by a simple, room-temperature method, and the resulting suspension was then used to study the surface-enhanced Raman scattering (SERS) of methylene…

  17. Possible effect of static surface disorder on diffractive scattering of H2 from Ru(0001): Comparison between theory and experiment.

    Science.gov (United States)

    Kroes, G J; Wijzenbroek, Mark; Manson, J R

    2017-12-28

    Specific features of diffractive scattering of H 2 from metal surfaces can serve as fingerprints of the reactivity of the metal towards H 2 , and in principle theory-experiment comparisons for molecular diffraction can help with the validation of semi-empirical functionals fitted to experiments of sticking of H 2 on metals. However, a recent comparison of calculated and Debye-Waller (DW) extrapolated experimental diffraction probabilities, in which the theory was done on the basis of a potential energy surface (PES) accurately describing sticking to Ru(0001), showed substantial discrepancies, with theoretical and experimental probabilities differing by factors of 2 and 3. We demonstrate that assuming a particular amount of random static disorder to be present in the positions of the surface atoms, which can be characterized through a single parameter, removes most of the discrepancies between experiment and theory. Further improvement might be achievable by improving the accuracy of the DW extrapolation, the model of the H 2 rotational state distribution in the experimental beams, and by fine-tuning the PES. However, the question of whether the DW model is applicable to attenuation of diffractive scattering in the presence of a sizable van der Waals well (depth ≈ 50 meV) should also receive attention, in addition to the question of whether the amount of static surface disorder effectively assumed in the modeling by us could have been present in the experiments.

  18. Determination of Surface Tension of Surfactant Solutions through Capillary Rise Measurements: An Image-Processing Undergraduate Laboratory Experiment

    Science.gov (United States)

    Huck-Iriart, Cristia´n; De-Candia, Ariel; Rodriguez, Javier; Rinaldi, Carlos

    2016-01-01

    In this work, we described an image processing procedure for the measurement of surface tension of the air-liquid interface using isothermal capillary action. The experiment, designed for an undergraduate course, is based on the analysis of a series of solutions with diverse surfactant concentrations at different ionic strengths. The objective of…

  19. Experimental investigations of sensor-based surface following performed by a mobile manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Unseren, M.A.; Baker, J.E.; Pin, F.G.

    1994-10-01

    We discuss a series of surface following experiments using a range finder mounted on the end of an arm that is mounted on a vehicle. The goal is to keep the range finder at a fixed distance from an unknown surface and to keep the orientation of the range finder perpendicular to the surface. During the experiments, the vehicle moves along a predefined trajectory while planning software determines the position and orientation of the arm. To keep the range finder perpendicular to the surface, the planning software calculates the surface normal for the unknown surface. We assume that the unknown surface is a cylinder (the surface depends on x and y but does not depend on z). To calculate the surface normal, the planning software must calculate the locations (x,y) of points on the surface in world coordinates. The calculation requires data on the position and orientation of the vehicle, the position and orientation of the arm, and the distance from the range finder to the surface. We discuss four series of experiments. During the first series of experiments, the calculated surface normal values had large high frequency random variations. A filter was used to produce an average value for the surface normal and we limited the rate of change in the yaw angle target for the arm. We performed the experiment for a variety of concave and convex surfaces. While the experiments were qualitative successes, the measured distance to the surface was significantly different than the target. The distance errors were systematic, low frequency, and had magnitudes up to 25 mm. During the second series of experiments, we reduced the variations in the calculated surface normal values. While reviewing the data collected while following the surface of a barrel, we found that the radius of the calculated surface was significantly different than the measured radius of the barrel.

  20. Perbandingan Fungsi Extremitas Atas pada Fraktur Metafise Distal Radius Intraartikuler Usia Muda Antara Tindakan Operatif Dan Non Operatif dengan Penilaian Klinis Quickdash Score

    Directory of Open Access Journals (Sweden)

    Edi Burhan

    2014-01-01

    Full Text Available AbstrakFraktur metafise distal radius merupakan fraktur dengan insiden tertinggi kedua pada usia tua di luar fraktur daerah panggul. Di Rumah Sakit Dr. M. Djamil Padang terdapat 122 dari 612 kasus fraktur radius, antara Januari 2011 – Juni 2012. Tujuan utama terapi ini adalah pengembalian permukaan sendi ke posisi anatomis dengan fiksasi yang stabil dan pengembalian fungsi extremitas atas semaksimal mungkin. Metode: Penelitian ini berupa penelitian retrospektif yang dilakukan di poliklinik orthopaedi RSUP Dr M Djamil Padang pada bulan November-Desember 2012 pada pasien fraktur metafise distal radius intraartikuler usia muda yang mendapat tindakan operatif dibandingkan dengan kelompok non-operatif dengan penilaian klinis Quick DASH Score. Sampel yang digunakan sebanyak 30 orang dari 55 orang yang memenuhi kriteria inklusi. Hasil: Ada hubungan yang bermakna antara fungsi extremitas atas dengan penilaian Quick DASH Score antara tindakan operatif pada fraktur distal radius intraartikuler usia muda dengan tindakan non-operatif (p Fisher = 0,010. Tidak terdapat hubungan bermakna antara Quick DASH Score dengan jenis kelamin dan diagnosa kanan atau kiri. Pembahasan: Terdapat perbedaan yang bermakna antara pasien fraktur metafise distal radius intraartikuler pada usia muda yang mendapat tindakan operatif berupa ORIF dengan yang mendapatkan tindakan non-operatif berupa pemasangan Gips.Kata kunci: Fraktur Metafise Distal Radius, Tindakan Operatif dan Non Operatif, Quick Dash ScoreAbstractFracture metafise distal radius is fracture with second highest incident on old age besides a fracture in the pelvic area. In the Dr. M. Djamil Hospital found 122 from 612 cases fracture of radius from january 2011 to june 2012. The main purpose therapy is restore the joint in the surface position anatomically by fixation a stable and restore the function upper extremitas over their best. Method: This study is a retrospective conducted at the Orthopaedi clinic of Dr M

  1. [APPLICATION OF BUTTERFLY SHAPED LOCKING COMPRESSION PLATE IN COMPLEX DISTAL RADIUS FRACTURES].

    Science.gov (United States)

    Jiang, Zongyuan; Ma, Tao; Xia, Jiang; Hu, Caizhi; Xu, Lei

    2014-06-01

    To investigate the effectiveness of butterfly shaped locking compression plate for the treatment of complex distal radius fractures. Between June 2011 and January 2013, 20 cases of complex distal radius fractures were treated with butterfly shaped locking compression plate fixation. There were 11 males and 9 females with an average age of 54 years (range, 25-75 years). Injury was caused by falling in 10 cases, by traffic accident in 7 cases, and by falling from height in 3 cases. All of fractures were closed. According to AO classification system, there were 8 cases of type C1, 8 cases of type C2, and 4 cases of type C3. Of them, 9 cases had radial styloid process fracture, 4 cases had sigmoid notch fracture, and 7 cases had both radial styloid process fracture and sigmoid notch fracture. The mean interval between injury and operation was 5.2 days (range, 3-15 days). All incisions healed by first intention; no complications of infection and necrosis occurred. All cases were followed up 14 months on average (range, 10-22 months). All factures healed after 9.3 weeks on average (range, 6-11 weeks). No complications such as displacement of fracture, joint surface subsidence, shortening of the radius, and carpal tunnel syndrome were found during follow-up. At last follow-up, the mean palmar tilt angle was 10.2° (range, 7-15°), and the mean ulnar deviation angle was 21.8° (range, 17-24°). The mean range of motion of the wrist was 45.3° (range, 35-68°) in dorsal extension, 53.5° (range, 40-78°) in palmar flexion, 19.8° (range, 12-27°) in radial inclination, 26.6° (range, 18-31°) in ulnar inclination, 70.2° (range, 45-90°) in pronation, and 68.4° (range, 25-88°) in supination. According to the Dienst scoring system, the results were excellent in 8 cases, good in 10 cases, and fair in 2 cases, and the excellent and good rate was 90%. Treatment of complex distal radius fractures with butterfly shaped locking compression plate can reconstruct normal anatomic

  2. Scaling of energy confinement with minor radius, current and density in Doublet III Ohmically heated plasmas

    International Nuclear Information System (INIS)

    Ejima, S.; Petrie, T.W.; Riviere, A.C.

    1982-01-01

    The dependence of plasma energy confinement on minor radius, density and plasma current is described for Ohmically heated near-circular plasmas in Doublet III. A wide range of parameters is used for the study of scaling laws; the plasma minor radius defined by the flux surface in contact with limiter is varied by a factor of 2 (a = 44, 32, and 23 cm), the line average plasma density, nsub(e)-bar, is varied by a factor of 20 from 0.5 to 10 x 10 13 cm -3 (nsub(e)-bar R 0 /Bsub(T) = 0.3 to 6 x 10 14 cm -2 .kG -1 ) and the plasma current, I, is varied by a factor of 6 from 120 to 718 kA. The range of the limiter safety factor, qsub(L), is from 2 to 12. - For plasmas with a = 23 and 32 cm, the scaling law at low nsub(e)-bar for the gross electron energy confinement time can be written as (s, cm) tausub(Ee)sup(G) approx.= 3.6 x 10 -19 nsub(e)-bar a 2 qsub(c)sup(3/4), where qsub(c) = 2πa 2 Bsub(T)/μ 0 IR 0 . For the 44-cm plasmas, tausub(Ee)sup(G) is about 1.8 times less than predicted by this scaling, possibly owing to the change in limiter configuration and small plasma-wall separation and/or the aspect ratio change. At high nsub(e)-bar, tausub(Ee)sup(G) saturates and in many cases decreases with nsub(e)-bar but increases with I in a classical-like manner. The dependence of tausub(Ee)sup(G) on a is considerably weakened. The confinement behaviour can be explained by taking an ion thermal conductivity 2 to 7 times that given by Hinton-Hazeltine's neoclassical theory with a lumped-Zsub(eff) impurity model. Within this range the enhancement factor increases with a or a/R 0 . The electron thermal conductivity evaluated at half-temperature radius where most of the thermal insulation occurs sharply increases with average current density within that radius, but does not depend on a within the uncertainties of the measurements. (author)

  3. M DWARF LUMINOSITY, RADIUS, AND α-ENRICHMENT FROM I-BAND SPECTRAL FEATURES

    Energy Technology Data Exchange (ETDEWEB)

    Terrien, Ryan C.; Mahadevan, Suvrath; Bender, Chad F.; Deshpande, Rohit; Robertson, Paul, E-mail: rct151@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2015-03-20

    Despite the ubiquity of M dwarfs and their growing importance to studies of exoplanets, Galactic evolution, and stellar structure, methods for precisely measuring their fundamental stellar properties remain elusive. Existing techniques for measuring M dwarf luminosity, mass, radius, or composition are calibrated over a limited range of stellar parameters or require expensive observations. We find a strong correlation between the K{sub S}-band luminosity (M{sub K}), the observed strength of the I-band sodium doublet absorption feature, and [Fe/H] in M dwarfs without strong Hα emission. We show that the strength of this feature, coupled with [Fe/H] and spectral type, can be used to derive M dwarf M{sub K} and radius without requiring parallax. Additionally, we find promising evidence that the strengths of the I-band sodium doublet and the nearby I-band calcium triplet may jointly indicate α-element enrichment. The use of these I-band features requires only moderate-resolution near-infrared spectroscopy to provide valuable information about the potential habitability of exoplanets around M dwarfs, and surface gravity and distance for M dwarfs throughout the Galaxy. This technique has immediate applicability for both target selection and candidate planet–host system characterization for exoplanet missions such as TESS and K2.

  4. M DWARF LUMINOSITY, RADIUS, AND α-ENRICHMENT FROM I-BAND SPECTRAL FEATURES

    International Nuclear Information System (INIS)

    Terrien, Ryan C.; Mahadevan, Suvrath; Bender, Chad F.; Deshpande, Rohit; Robertson, Paul

    2015-01-01

    Despite the ubiquity of M dwarfs and their growing importance to studies of exoplanets, Galactic evolution, and stellar structure, methods for precisely measuring their fundamental stellar properties remain elusive. Existing techniques for measuring M dwarf luminosity, mass, radius, or composition are calibrated over a limited range of stellar parameters or require expensive observations. We find a strong correlation between the K S -band luminosity (M K ), the observed strength of the I-band sodium doublet absorption feature, and [Fe/H] in M dwarfs without strong Hα emission. We show that the strength of this feature, coupled with [Fe/H] and spectral type, can be used to derive M dwarf M K and radius without requiring parallax. Additionally, we find promising evidence that the strengths of the I-band sodium doublet and the nearby I-band calcium triplet may jointly indicate α-element enrichment. The use of these I-band features requires only moderate-resolution near-infrared spectroscopy to provide valuable information about the potential habitability of exoplanets around M dwarfs, and surface gravity and distance for M dwarfs throughout the Galaxy. This technique has immediate applicability for both target selection and candidate planet–host system characterization for exoplanet missions such as TESS and K2

  5. Power decoding Reed-Solomon codes up to the Johnson radius

    DEFF Research Database (Denmark)

    Rosenkilde, Johan Sebastian Heesemann

    2018-01-01

    Power decoding, or "decoding using virtual interleaving" is a technique for decoding Reed-Solomon codes up to the Sudan radius. Since the method's inception, it has been an open question if it is possible to use this approach to decode up to the Johnson radius - the decoding radius of the Guruswami...

  6. Second-harmonic generation from sub-monolayer molecular adsorbates using a c-w diode laser: Maui surface experiment

    International Nuclear Information System (INIS)

    Boyd, G.T.; Shen, Y.R.; Hansch, T.W.

    1985-06-01

    Optical second-harmonic generation (SHG) can be an extremely sensitive tool for surface studies. The technique is capable of probing adsorbed molecules at various interfaces. It is based on the idea that SHG is forbidden in a medium with inversion symmetry, but necessarily allowed at a surface. To see such a surface nonlinear optical effect, high laser intensity is often needed. Thus, in the experiments reported so far, pulsed lasers were used exclusively. From the consideration for practical applications, however, the technique would look much more attractive if the bulky pulsed laser can be replaced by a simple inexpensive c-w diode laser. This paper describes the first demonstration of surface SHG with a c-w laser. 3 refs., 1 fig

  7. Observing at-surface irradiance and albedo from space : The Tibet experiment

    NARCIS (Netherlands)

    Roupioz, L.

    2015-01-01

    Monitoring the solar radiation budget on a daily basis is a prerequisite to study land surface processes, especially in climatology and hydrology, and in derived applications like drought early warning. Current space-born radiometers can provide daily observations to derive surface radiative fluxes

  8. Low-energy electron diffraction experiment, theory and surface structure determination

    CERN Document Server

    Hove, Michel A; Chan, Chi-Ming

    1986-01-01

    Surface crystallography plays the same fundamental role in surface science which bulk crystallography has played so successfully in solid-state physics and chemistry. The atomic-scale structure is one of the most important aspects in the understanding of the behavior of surfaces in such widely diverse fields as heterogeneous catalysis, microelectronics, adhesion, lubrication, cor­ rosion, coatings, and solid-solid and solid-liquid interfaces. Low-Energy Electron Diffraction or LEED has become the prime tech­ nique used to determine atomic locations at surfaces. On one hand, LEED has yielded the most numerous and complete structural results to date (almost 200 structures), while on the other, LEED has been regarded as the "technique to beat" by a variety of other surface crystallographic methods, such as photoemission, SEXAFS, ion scattering and atomic diffraction. Although these other approaches have had impressive successes, LEED has remained the most productive technique and has shown the most versatility...

  9. Small-radius jets to all orders in QCD

    CERN Document Server

    Dasgupta, Mrinal; Salam, Gavin P.; Soyez, Gregory

    2015-01-01

    As hadron collider physics continues to push the boundaries of precision, it becomes increasingly important to have methods for predicting properties of jets across a broad range of jet radius values R, and in particular for small R. In this paper we resum all leading logarithmic terms, $\\alpha_s^n \\ln^n R$, in the limit of small R, for a wide variety of observables. These include the inclusive jet spectrum, jet vetoes for Higgs physics and jet substructure tools. Some of the quantities that we consider are relevant also for heavy-ion collisions. Furthermore, we examine and comment on the underlying order-by-order convergence of the perturbative series for different R values. Our results indicate that small-R effects can be substantial. Phenomenological studies will appear in a forthcoming companion paper.

  10. Inclusive jet spectrum for small-radius jets

    CERN Document Server

    Dasgupta, Mrinal; Salam, Gavin P.; Soyez, Gregory

    2016-01-01

    Following on our earlier work on leading-logarithmic (LLR) resummations for the properties of jets with a small radius, R, we here examine the phenomenological considerations for the inclusive jet spectrum. We discuss how to match the NLO predictions with small-R resummation. As part of the study we propose a new, physically-inspired prescription for fixed-order predictions and their uncertainties. We investigate the R-dependent part of the next-to-next-to-leading order (NNLO) corrections, which is found to be substantial, and comment on the implications for scale choices in inclusive jet calculations. We also examine hadronisation corrections, identifying potential limitations of earlier analytical work with regards to their $p_t$-dependence. Finally we assemble these different elements in order to compare matched (N)NLO+LLR predictions to data from ALICE and ATLAS, finding improved consistency for the R-dependence of the results relative to NLO predictions.

  11. Small-radius jets to all orders in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Mrinal [Consortium for Fundamental Physics, School of Physics & Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Dreyer, Frédéric [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Salam, Gavin P. [CERN, PH-TH, CH-1211 Geneva 23 (Switzerland); Soyez, Gregory [IPhT, CEA Saclay, CNRS URA 2306, F-91191 Gif-sur-Yvette (France)

    2015-04-08

    As hadron collider physics continues to push the boundaries of precision, it becomes increasingly important to have methods for predicting properties of jets across a broad range of jet radius values R, and in particular for small R. In this paper we resum all leading logarithmic terms, α{sub s}{sup n}ln{sup n} R{sup 2}, in the limit of small R, for a wide variety of observables. These include the inclusive jet spectrum, jet vetoes for Higgs physics and jet substructure tools. Some of the quantities that we consider are relevant also for heavy-ion collisions. Furthermore, we examine and comment on the underlying order-by-order convergence of the perturbative series for different R values. Our results indicate that small-R effects can be substantial. Phenomenological studies will appear in a forthcoming companion paper.

  12. Mass-radius relation for magnetized strange quark stars

    CERN Document Server

    Martinez, A Perez; Paret, D Manreza

    2010-01-01

    We review the stability of magnetized strange quark matter (MSQM) within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. A comparison with magnetized asymmetric quark matter in $\\beta$-equilibrium as well as with strange quark matter (SQM) is presented. We obtain that the energy per baryon for MSQM decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM, which implies that MSQM is more stable than non-magnetized SQM. The mass-radius relation for magnetized strange quark stars is also obtained in this framework.

  13. A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy

    International Nuclear Information System (INIS)

    Santos, Sergio; Guang Li; Souier, Tewfik; Gadelrab, Karim; Chiesa, Matteo; Thomson, Neil H.

    2012-01-01

    We provide a method to characterize the tip radius of an atomic force microscopy in situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the smaller the value of free amplitude required to observe a transition, the sharper the tip. This general behavior is remarkably independent of the properties of the sample and cantilever characteristics and shows the strong dependence of the transitions on the tip radius. The main advantage of this method is rapid in situ characterization. Rapid in situ characterization enables one to continuously monitor the tip size during experiments. Further, we show how to reproducibly shape the tip from a given initial size to any chosen larger size. This approach combined with the in situ tip size monitoring enables quantitative comparison of materials measurements between samples. These methods are set to allow quantitative data acquisition and make direct data comparison readily available in the community.

  14. Arthroscopic knotless anchor repair of triangular fibrocartilage in distal radius fracture.

    Science.gov (United States)

    García-Ruano, Á A; Najarro-Cid, F; Jiménez-Martín, A; Gómez de los Infantes-Troncoso, J G; Sicre-González, M

    2015-01-01

    Lesions of triangular fibrocartilage (TFC) are associated with distal radioulnar joint instability. Arthroscopic treatment of these lesions improves functional outcome of affected patients. The aim of the present work is to evaluate functional and occupational outcome of TCF repair using an arthroscopic knotless anchor device in patients with associated distal radius fracture. An observational, descriptive study was carried out between November 2011 and January 2014 including 21 patients with distal radius fracture and Palmer 1B lesions of TCF (Atzei class 2 and 3) that were treated by arthroscopic knotless anchor (PopLok® 2,8mm, ConMed, USA). Mean follow-up was 18 months. Functional (Mayo Wrist Score) and occupational outcome results were analyzed. Mean age of the group was 43.0±8.8 years, with 19% of the patients being female. There was an associated scapholunate lesion in 5 cases. Functional results reached a mean of 83.4±16.1 points onMayo Wrist Score. Mean sick-leave time was 153.16±48.5 days. Complete occupational reintegration was reached in 89.5% of cases. There were no postoperative complications. Arthroscopic knotless anchor repair of 1B TFC tears is a minimally invasive method of treatment that improves tension of fixation, avoiding subsequent loosen, in our experience, with few complications and good functional and occupational results. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  15. Laboratory experiments to investigate radionuclide enrichment in the sea-surface microlayer

    International Nuclear Information System (INIS)

    Hickmott, S.J.B.

    1982-02-01

    Samples of simulated seawater, and seawater from the Irish Sea, were contained in a plastic tank in the laboratory, and bubbles were passed through them to burst at the water surface. The emitted jet droplets, as representing the surface microlayer, were collected on filter papers. Such measurements are easier to perform than similar measurements at sea, and the lack of waves enables greater collection efficiencies to be obtained. The droplet samples were analysed for stable Na, 137 Cs and actinides, and compared with the concentrations in the bulk tank water, in order to examine possible concentration factors for radionuclides in the surface microlayer. (author)

  16. Oxide nanostructures on a Nb surface and related systems: experiments and ab initio calculations

    International Nuclear Information System (INIS)

    Kuznetsov, Mikhail V; Razinkin, A S; Ivanovskii, Alexander L

    2011-01-01

    This review discusses the state of the art in two related research areas: the surfaces of niobium and of its related group IV-VI transition metals, and surface (primarily oxide) nanostructures that form on niobium (and group IV-VI d-metals) due to gas adsorption or impurity diffusion from the bulk. Experimental (X-ray photoelectron spectroscopy, photoelectron diffraction, scanning tunneling microscopy) and theoretical (ab initio simulation) results on d-metal surfaces are summarized and reviewed. (reviews of topical problems)

  17. Application of high Tc superconductors as frequency selective surfaces: Experiment and theory

    International Nuclear Information System (INIS)

    Dawei Zhang; Yahya Rahmat-Samii; Fetterman, H.R.

    1993-01-01

    YBa 2 Cu 3 O 7-x and Tl 2 CaBa 2 Cu 2 O 8 high temperature superconducting thin films were utilized to fabricate frequency selective surfaces (FSS) at millimeter-wave frequencies (75--110 GHz). An analytical/numerical model was applied, using a Floquet expansion and the Method of Moments, to analyze bandstop superconducting frequency selective surfaces. Experimental results were compared with the model, and showed a good agreement with resonant frequency prediction with an accuracy of better than 1%. The use of the superconducting frequency selective surfaces as quasi-optical millimeter-wave bandpass filters was also demonstrated

  18. Optical characterization of gold chains and steps on the vicinal Si(557) surface: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Conor [Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia, via Fosso del Cavaliere 100, 00133 Rome (Italy); Department of Physics and European Theoretical Spectroscopy Facility (ETSF), University of Rome ' ' Tor Vergata' ' , Via della Ricerca Scientifica 1, 00133 Rome (Italy); McAlinden, Niall; McGilp, John F. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2012-06-15

    We present a joint experimental-theoretical study of the reflectance anisotropy of clean and gold-covered Si(557), a vicinal surface of Si(111) upon which gold forms quasi-one-dimensional (1D) chains parallel to the steps. By means of first-principles calculations, we analyse the close relationship between the various surface structural motifs and the optical properties. Good agreement is found between experimental and computed spectra of single-step models of both clean and Au-adsorbed surfaces. Spectral fingerprints of monoatomic gold chains and silicon step edges are identified. The role of spin-orbit coupling (SOC) on the surface optical properties is examined, and found to have little effect. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Rubber friction on road surfaces: Experiment and theory for low sliding speeds

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, B.; Persson, B. N. J. [PGI, FZ Jülich, 52425 Jülich (Germany); Oh, Y. R.; Nam, S. K.; Jeon, S. H. [Hankook Tire Co. LTD., 112 Gajeongbuk-ro, Yuseong-gu, Daejeon 305-725 (Korea, Republic of)

    2015-05-21

    We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, there is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.

  20. Virtual laparoscopy: Initial experience with three-dimensional ultrasonography to characterize hepatic surface features

    International Nuclear Information System (INIS)

    Sekimoto, Tadashi; Maruyama, Hitoshi; Kondo, Takayuki; Shimada, Taro; Takahashi, Masanori; Yokosuka, Osamu; Otsuka, Masayuki; Miyazaki, Masaru; Mine, Yoshitaka

    2013-01-01

    Objective: To examine the potential utility of 3D-reconstructed sonograms to distinguish cirrhotic from non-cirrhotic livers by demonstrating hepatic surface characteristics. Materials and methods: A preliminary phantom study was performed to examine the potential resolution of 3D images, recognizing surface irregularities as a difference in height. In a prospective clinical study of 31 consecutive patients with ascites (21 cirrhosis, 10 non-cirrhosis), liver volume data were acquired by transabdominal mechanical scanning. The hepatic surface features of cirrhotic and non-cirrhotic patients were compared by 2 independent reviewers. Intra- and inter-operator/reviewer agreements were also examined. Results: The phantom study revealed that 0.4 mm was the minimum recognizable difference in height on the 3D sonograms. The hepatic surface image was successfully visualized in 74% patients (23/31). Success depended on the amount of ascites; visualization was 100% with ascites of 10 mm or more between the hepatic surface and abdominal wall. The images showed irregularity of the hepatic surface in all cirrhotic patients. The surface appearance was confirmed as being very similar in 3 patients who had both 3D sonogram and liver resection for transplantation. The ability to distinguish cirrhotic liver from non-cirrhotic liver improved with the use of combination of 2D- and 3D-imaging versus 2D-imaging alone (sensitivity, p = 0.02; accuracy, p = 0.02) or 3D-imaging alone (sensitivity, p = 0.03). Intra-/inter-operator and inter-reviewer agreement were excellent (κ = 1.0). Conclusion: 3D-based sonographic visualization of the hepatic surface showed high reliability and reproducibility, acting as a virtual laparoscopy method, and the technique has the potential to improve the diagnosis of cirrhosis

  1. Study of atomic states in the vicinity of a massive surface - Application to the FORCA-G experiment

    International Nuclear Information System (INIS)

    Pelisson, Sophie

    2012-01-01

    This thesis presents the theoretical modeling of the experiment FORCA-G (FORce de CAsimir et Gravitation a courte distance) currently in progress at Paris Observatory. The purpose of this experiment is to measure short-range interactions between an atom and a massive surface. This interaction are of two kind: quantum electrodynamical (Casimir-Polder effect) and gravitational. The work presented here was to calculate the atomic states in the context of the experiment such that we can predict results and performances of the experiment. This has allowed to optimize the experimental scheme both for the high-precision measurement of the Casimir-Polder effect and for the search of deviation from the Newton's law of gravity predicted by unification theories. (author)

  2. Patterned gradient surface for spontaneous droplet transportation and water collection: simulation and experiment

    International Nuclear Information System (INIS)

    Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2016-01-01

    We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning. (paper)

  3. Surface activity and radiation field measurements of the TMI-2 reactor building gross decontamination experiment

    International Nuclear Information System (INIS)

    McIsaac, C.V.

    1983-10-01

    Surface samples were collected from concrete and metal surfaces within the Three Mile Island Unit 2 Reactor Building on December 15 and 17, 1981 and again on March 25 and 26, 1982. The Reactor Building was decontaminated by hydrolasing during the period between these dates. The collected samples were analyzed for radionuclide concentration at the Idaho National Engineering Laboratory. The sampling equipment and procedures, and the analysis methods and results are discussed. The measured mean surface concentrations of 137 Cs and 90 Sr on the 305-ft elevation floor before decontamination were, respectively, 3.6 +- 0.9 and 0.17 +- 0.04 μCi/cm 2 . Their mean concentrations on the 347-ft elevation floor were about the same. On both elevations, walls were found to be considerably less contaminated than floors. The fractions of the core inventories of 137 Cs, 90 Sr, and 129 I deposited on Reactor Building surfaces prior to decontamination were calculated using their mean concentrations on various types of surfaces. The calculated values for these three nuclides are 3.5 +- 0.4 E-4, 2.4 +- 0.8 E-5, and 5.7 +- 0.5 E-4, respectively. The decontamination operations reduced the 137 Cs surface activity on the 305- and 347-ft elevations by factors of 20 and 13, respectively. The 90 Sr surface activity reduction was the same for both floors, that being a factor of 30. On the whole, decontamination of vertical surfaces was not achieved. Beta and gamma exposure rates that were measured during surface sampling were examined to determine the degree to which they correlated with measured surface activities. The data were fit with power functions of the form y = ax/sup b/. As might be expected, the beta exposure rates showed the best correlation. Of the data sets fit with the power function, the set of December 1981 beta exposure exhibited the least scatter. The coefficient of determination for this set was calculated to be 0.915

  4. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Denney, Kelly D.; Vestergaard, Marianne; Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W.; Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Li Weidong; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-01-01

    We present an updated and revised analysis of the relationship between the Hβ broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hβ time lag, which is assumed to yield the average Hβ BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R BLR -L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of α= 0.533 +0.035 -0.033 , consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 ± 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R BLR -L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  5. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Denney, Kelly D.; Vestergaard, Marianne [Dark Cosmology Center, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Bennert, Vardha N. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Canalizo, Gabriela [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Filippenko, Alexei V.; Li Weidong [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Gates, Elinor L. [University of California Observatories/Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Peyton Hall - Ivy Lane, Princeton, NJ 08544 (United States); Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Treu, Tommaso [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Woo, Jong-Hak, E-mail: bentz@chara.gsu.edu [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of)

    2013-04-20

    We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  6. Effects of cutting parameters and machining environments on surface roughness in hard turning using design of experiment

    Science.gov (United States)

    Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan

    2016-07-01

    Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.

  7. Some final conclusions and supporting experiments related to the search for organic compounds on the surface of Mars

    International Nuclear Information System (INIS)

    Bemann, K.; Lavoie, J.M. Jr

    1979-01-01

    The Viking molecular analysis experiment has demonstrated the absence (within the detection limits which range from levels of parts per million to below parts per billion) of organic substances in the Martian surface soil at the two Viking landing sites. Laboratory experiments with sterile and nonsterile antarctic samples further demonstrate the capability and reliability of the instrument. The circimstances under which organic components could have escaped detection, such as inaccessibility or extreme thermal stability of organic polymers, are discussed but are found to be unlikely. The inability of the instrument to detect free oxygen evolved from soil samples is pointed out

  8. Modelling and analysis of flux surface mapping experiments on W7-X

    Science.gov (United States)

    Lazerson, Samuel; Otte, Matthias; Bozhenkov, Sergey; Sunn Pedersen, Thomas; Bräuer, Torsten; Gates, David; Neilson, Hutch; W7-X Team

    2015-11-01

    The measurement and compensation of error fields in W7-X will be key to the device achieving high beta steady state operations. Flux surface mapping utilizes the vacuum magnetic flux surfaces, a feature unique to stellarators and heliotrons, to allow direct measurement of magnetic topology, and thereby allows a highly accurate determination of remnant magnetic field errors. As will be reported separately at this meeting, the first measurements confirming the existence of nested flux surfaces in W7-X have been made. In this presentation, a synthetic diagnostic for the flux surface mapping diagnostic is presented. It utilizes Poincaré traces to construct an image of the flux surface consistent with the measured camera geometry, fluorescent rod sweep plane, and emitter beam position. Forward modeling of the high-iota configuration will be presented demonstrating an ability to measure the intrinsic error field using the U.S. supplied trim coil system on W7-X, and a first experimental assessment of error fields in W7-X will be presented. This work has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy.

  9. Fugitive dust control experiments using soil fixatives on vehicle traffic surfaces

    International Nuclear Information System (INIS)

    Winberg, M.R.; Wixom, V.E.

    1992-08-01

    This report presents the results of engineering scale dust control experiments using soil fixative for contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of soil fixatives to control generation of fugitive dusts during vehicle traffic operations. Previous experiments conducted in FY 1990 included testing of the soil fixative, ENTAC. These experiments showed that ENTAC was effective in controlling dust generation but had several undesirable properties such as slow cure times and clogged the pumps and application nozzles. Therefore, other products would have to be evaluated to find a suitable candidate. As a result, two soil fixatives were tested in these present experiments, COHEREX-PM, an asphalt emulsion product manufactured by Witco Corporation and FLAMBINDER, a calcium lignosulfonate product manufactured by Flambeau Corporation. The results of the experiments include product performance and recommended application methods for application in a field deployable contamination control unit to be built in FY 1993

  10. Reliability of radiographic measurements for acute distal radius fractures

    International Nuclear Information System (INIS)

    Watson, Narelle J.; Asadollahi, Saeed; Parrish, Frank; Ridgway, Jacqueline; Tran, Phong; Keating, Jennifer L.

    2016-01-01

    The management of distal radial fractures is guided by the interpretation of radiographic findings. The aim of this investigation was to determine the intra- and inter-observer reliability of eight traditionally reported anatomic radiographic parameters in adults with an acute distal radius fracture. Five observers participated. All were routinely involved in making treatment decisions based on distal radius fracture radiographs. Observers performed independent repeated measurements on 30 radiographs for eight anatomical parameters: dorsal shift (mm), intra-articular gap (mm), intra-articular step (mm), palmar tilt (degrees), radial angle (degrees), radial height (mm), radial shift (mm), ulnar variance (mm). Intraclass correlation coefficients (ICCs) and the magnitude of retest errors were calculated. Measurement reliability was summarised as high (ICC > 0.80), moderate (0.60–0.80) or low (<0.60). Intra-observer reliability was high for dorsal shift and palmar tilt; moderate for radial angle, radial height, ulnar variance and radial shift; and low for intra-articular gap and step. Inter-observer reliability was high for palmar tilt; moderate for dorsal shift, ulnar variance, radial angle and radial height; and low for radial shift, intra-articular gap and step. Error magnitude (95 % confidence interval) was within 1–2 mm for intra-articular gap and step, 2–4 mm for ulnar variance, 4–6 mm for radial shift, dorsal shift and radial height, and 6–8° for radial angle and palmar tilt. Based on previous reports of critical values for palmar tilt, ulnar variance and radial angle, error margins appear small enough for measurements to be useful in guiding treatment decisions. Our findings indicate that clinicians cannot reliably measure values ≤1 mm for intra-articular gap and step when interpreting radiographic parameters using the standardised methods investigated in this study. As a guide for treatment selection, palmar tilt, ulnar variance and radial angle

  11. Measurement of the Neutron Radius of 208Pb Through Parity Violation in Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saenboonruang, Kiadtisak [Univ. of Virginia, Charlottesville, VA (United States)

    2013-05-01

    In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, Rn, of a heavy nucleus and the proton radius, Rp, to be in the order of several percent. To accurately obtain the difference, Rn-Rp, which is essentially a neutron skin, the Jefferson Lab Lead (208Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 208Pb at an energy of 1.06 GeV and a scattering angle of 5° . Since Z0 boson couples mainly to neutrons, this asymmetry provides a clean measurement of Rn with respect to Rp. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x 107 helicity-window quadruplets. The measured parity-violating electroweak asymmetry APV = 0.656 ± 0.060 (stat) ± 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, Rn-Rp = 0.33+0.16-0.18 fm and provides the first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of 208Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.

  12. Micrometer-sized Water Ice Particles for Planetary Science Experiments: Influence of Surface Structure on Collisional Properties

    Energy Technology Data Exchange (ETDEWEB)

    Gärtner, S.; Fraser, H. J. [School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Gundlach, B.; Ratte, J.; Blum, J. [Institut für Geophysik und extraterrestrische Physik, TU Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig (Germany); Headen, T. F.; Youngs, T. G. A.; Bowron, D. T. [ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Oesert, J.; Gorb, S. N., E-mail: sabrina.gaertner@stfc.ac.uk, E-mail: helen.fraser@open.ac.uk [Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, D-24118 Kiel (Germany)

    2017-10-20

    Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet formation, which therefore is subject to many laboratory studies. However, the pressure–temperature gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in protoplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above ≈210 K. By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) proves increased molecular mobility at temperatures above ≈210 K. Because none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressure–temperature environment, may have a larger influence on collision outcomes than previously thought.

  13. MUREX: a land-surface field experiment to study the annual cycle of the energy and water budgets

    Directory of Open Access Journals (Sweden)

    J.-C. Calvet

    1999-06-01

    Full Text Available The MUREX (monitoring the usable soil reservoir experimentally experiment was designed to provide continuous time series of field data over a long period, in order to improve and validate the Soil-vegetation-Atmosphere Transfer (SVAT parameterisations employed in meteorological models. Intensive measurements were performed for more than three years over fallow farmland in southwestern France. To capture the main processes controlling land-atmosphere exchanges, the local climate was fully characterised, and surface water and energy fluxes, vegetation biomass, soil moisture profiles, surface soil moisture and surface and soil temperature were monitored. Additional physiological measurements were carried out during selected periods to describe the biological control of the fluxes. The MUREX data of 1995, 1996, and 1997 are presented. Four SVAT models are applied to the annual cycle of 1995. In general, they succeed in simulating the main features of the fallow functioning, although some shortcomings are revealed.Key words. Hydrology (evapotranspiration; soil moisture; water-energy interactions.

  14. System upgradation for surface mode negative ion beam extraction experiments in ROBIN

    International Nuclear Information System (INIS)

    Pandya, Kaushal; Bansal, Gourab; Gahlaut, Agrajit; Soni, Jignesh; Yadav, Ratnakar K.; Mahesh, Vuppugalla; Tyagi, Himanshu; Parmar, KanuG.; Mistri, Hiren; Bhagora, Jighesh; Prajapati, Bhavesh; Patel, Kartik; Bhuyan, Manas; Gouswami, Mehul; Bandyopadhyay, Mainak; Chakraborty, Arun K.

    2017-01-01

    Operational commissioning of ROBIN forms an important milestone in the Indian programme on the R&D on negative ion beams. The commissioning activity has been effected in sequence, in synchronisation with the availability of High voltage Power Supply (HVPS) systems and routine operation has now been established in the cesiated, surface mode. Significant efforts have been placed in upgrading the system to initiate the surface mode operation. These include incorporation of a temperature controlled Cesium (Cs) delivery system, spectroscopic diagnostics for detection of Cs lines, installation of plasma grid heating and closed loop warm water circuit for source components heating and Doppler Shift Spectroscopy (DSS) system. The specific design and integration features for these upgrades are discussed and preliminary results obtained from the operation of ROBIN in the surface mode are presented.

  15. Tile Surface Thermocouple Measurement Challenges from the Orbiter Boundary Layer Transition Flight Experiment

    Science.gov (United States)

    Campbell, Charles H.; Berger, Karen; Anderson, Brian

    2012-01-01

    Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.

  16. System upgradation for surface mode negative ion beam extraction experiments in ROBIN

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Kaushal, E-mail: kpandya@ipr.res.in [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, Gujarat (India); Bansal, Gourab; Gahlaut, Agrajit; Soni, Jignesh [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, Gujarat (India); Yadav, Ratnakar K. [ITER-India, Institute for Plasma Research, Gandhinagar, Gujarat (India); Mahesh, Vuppugalla [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, Gujarat (India); Tyagi, Himanshu [ITER-India, Institute for Plasma Research, Gandhinagar, Gujarat (India); Parmar, KanuG.; Mistri, Hiren [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, Gujarat (India); Bhagora, Jighesh [ITER-India, Institute for Plasma Research, Gandhinagar, Gujarat (India); Prajapati, Bhavesh; Patel, Kartik [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, Gujarat (India); Bhuyan, Manas [ITER-India, Institute for Plasma Research, Gandhinagar, Gujarat (India); Gouswami, Mehul [Bhakti Management Services, Gandhinagar, 382007, Gujarat (India); Bandyopadhyay, Mainak [ITER-India, Institute for Plasma Research, Gandhinagar, Gujarat (India); Chakraborty, Arun K. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, Gujarat (India)

    2017-01-15

    Operational commissioning of ROBIN forms an important milestone in the Indian programme on the R&D on negative ion beams. The commissioning activity has been effected in sequence, in synchronisation with the availability of High voltage Power Supply (HVPS) systems and routine operation has now been established in the cesiated, surface mode. Significant efforts have been placed in upgrading the system to initiate the surface mode operation. These include incorporation of a temperature controlled Cesium (Cs) delivery system, spectroscopic diagnostics for detection of Cs lines, installation of plasma grid heating and closed loop warm water circuit for source components heating and Doppler Shift Spectroscopy (DSS) system. The specific design and integration features for these upgrades are discussed and preliminary results obtained from the operation of ROBIN in the surface mode are presented.

  17. Anatomical study of the radius and center of curvature of the distal femoral condyle

    KAUST Repository

    Kosel, Jü rgen; Giouroudi, Ioanna; Scheffer, Cornie; Dillon, Edwin Mark; Erasmus, Pieter J.

    2010-01-01

    In this anatomical study, the anteroposterior curvature of the surface of 16 cadaveric distal femurs was examined in terms of radii and center point. Those two parameters attract high interest due to their significance for total knee arthroplasty. Basically, two different conclusions have been drawn in foregoing studies: (1) The curvature shows a constant radius and (2) the curvature shows a variable radius. The investigations were based on a new method combining three-dimensional laser-scanning and planar geometrical analyses. This method is aimed at providing high accuracy and high local resolution. The high-precision laser scanning enables the exact reproduction of the distal femurs - including their cartilage tissue - as a three-dimensional computer model. The surface curvature was investigated on intersection planes that were oriented perpendicularly to the surgical epicondylar line. Three planes were placed at the central part of each condyle. The intersection of either plane with the femur model was approximated with the help of a b-spline, yielding three b-splines on each condyle. The radii and center points of the circles, approximating the local curvature of the b-splines, were then evaluated. The results from all three b-splines were averaged in order to increase the reliability of the method. The results show the variation in the surface curvatures of the investigated samples of condyles. These variations are expressed in the pattern of the center points and the radii of the curvatures. The standard deviations of the radii for a 90 deg arc on the posterior condyle range from 0.6 mm up to 5.1 mm, with an average of 2.4 mm laterally and 2.2 mm medially. No correlation was found between the curvature of the lateral and medial condyles. Within the range of the investigated 16 samples, the conclusion can be drawn that the condyle surface curvature is not constant and different for all specimens when viewed along the surgical epicondylar axis. For the portion

  18. Fundamental Experiments at Liquid Helium Temperatures (Low Temperature Studies of Anomalous Surface Shielding and Related Phenomena).

    Science.gov (United States)

    1984-09-30

    study of the copper surface indicated that the copper oxide layer was approximately 20 Angstroms thick. Hanni and Madey 3 2 have evaluated the...REFERENCES 1. John Bardeen, "Comments on Shielding by Surface States," in Near Zero: New Frontiers of Physics, to be published. 2. R. S. Hanni and...Michel, H. E. Rorschach, and G. T. Trammel, Phys. Rev. 168 (1968), 737. 31. C. Herring, Phys. Rev. 171 (1968), 1361. 32. R. S. Hanni and J.M.J. Madey

  19. Nutrient Limitation in Surface Waters of the Oligotrophic Eastern Mediterranean Sea: an Enrichment Microcosm Experiment

    KAUST Repository

    Tsiola, A.; Pitta, P.; Fodelianakis, Stylianos; Pete, R.; Magiopoulos, I.; Mara, P.; Psarra, S.; Tanaka, T.; Mostajir, B.

    2015-01-01

    groups of the prokaryotic and eukaryotic (pico-, nano-, and micro-) plankton using a microcosm experiment during stratified water column conditions in the Cretan Sea (Eastern Mediterranean). Microcosms were enriched with N and P (either solely

  20. A Silicon detector system on carbon fiber support at small radius

    International Nuclear Information System (INIS)

    Johnson, Marvin E.

    2004-01-01

    The design of a silicon detector for a p(bar p) collider experiment will be described. The detector uses a carbon fiber support structure with sensors positioned at small radius with respect to the beam. A brief overview of the mechanical design is given. The emphasis is on the electrical characteristics of the detector. General principles involved in grounding systems with carbon fiber structures will be covered. The electrical characteristics of the carbon fiber support structure will be presented. Test results imply that carbon fiber must be regarded as a conductor for the frequency region of interest of 10 to 100 MHz. No distinction is found between carbon fiber and copper. Performance results on noise due to pick-up through the low mass fine pitch cables carrying the analogue signals and floating metal is discussed

  1. Radius anomaly in the diffraction model for heavy-ion elastic scattering

    Science.gov (United States)

    Pandey, L. N.; Mukherjee, S. N.

    1984-04-01

    The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.

  2. Inclusive jet spectrum for small-radius jets

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Mrinal [Consortium for Fundamental Physics, School of Physics & Astronomy, University of Manchester,Manchester M13 9PL (United Kingdom); Dreyer, Frédéric A. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE,F-75005, Paris (France); CNRS, UMR 7589, LPTHE,F-75005, Paris (France); CERN, Theoretical Physics Department,CH-1211 Geneva 23 (Switzerland); Salam, Gavin P. [CERN, Theoretical Physics Department,CH-1211 Geneva 23 (Switzerland); Soyez, Gregory [IPhT, CEA Saclay, CNRS UMR 3681,F-91191 Gif-sur-Yvette (France)

    2016-06-09

    Following on our earlier work on leading-logarithmic (LL{sub R}) resummations for the properties of jets with a small radius, R, we here examine the phenomenological considerations for the inclusive jet spectrum. We discuss how to match the NLO predictions with small-R resummation. As part of the study we propose a new, physically-inspired prescription for fixed-order predictions and their uncertainties. We investigate the R-dependent part of the next-to-next-to-leading order (NNLO) corrections, which is found to be substantial, and comment on the implications for scale choices in inclusive jet calculations. We also examine hadronisation corrections, identifying potential limitations of earlier analytical work with regards to their p{sub t}-dependence. Finally we assemble these different elements in order to compare matched (N)NLO+LL{sub R} predictions to data from ALICE and ATLAS, finding improved consistency for the R-dependence of the results relative to NLO predictions.

  3. AO Distal Radius Fracture Classification: Global Perspective on Observer Agreement

    Science.gov (United States)

    Jayakumar, Prakash; Teunis, Teun; Giménez, Beatriz Bravo; Verstreken, Frederik; Di Mascio, Livio; Jupiter, Jesse B.

    2016-01-01

    Background The primary objective of this study was to test interobserver reliability when classifying fractures by consensus by AO types and groups among a large international group of surgeons. Secondarily, we assessed the difference in inter- and intraobserver agreement of the AO classification in relation to geographical location, level of training, and subspecialty. Methods A randomized set of radiographic and computed tomographic images from a consecutive series of 96 distal radius fractures (DRFs), treated between October 2010 and April 2013, was classified using an electronic web-based portal by an invited group of participants on two occasions. Results Interobserver reliability was substantial when classifying AO type A fractures but fair and moderate for type B and C fractures, respectively. No difference was observed by location, except for an apparent difference between participants from India and Australia classifying type B fractures. No statistically significant associations were observed comparing interobserver agreement by level of training and no differences were shown comparing subspecialties. Intra-rater reproducibility was “substantial” for fracture types and “fair” for fracture groups with no difference accounting for location, training level, or specialty. Conclusion Improved definition of reliability and reproducibility of this classification may be achieved using large international groups of raters, empowering decision making on which system to utilize. Level of Evidence Level III PMID:28119795

  4. MASS-RADIUS RELATIONSHIPS FOR VERY LOW MASS GASEOUS PLANETS

    International Nuclear Information System (INIS)

    Batygin, Konstantin; Stevenson, David J.

    2013-01-01

    Recently, the Kepler spacecraft has detected a sizable aggregate of objects, characterized by giant-planet-like radii and modest levels of stellar irradiation. With the exception of a handful of objects, the physical nature, and specifically the average densities, of these bodies remain unknown. Here, we propose that the detected giant planet radii may partially belong to planets somewhat less massive than Uranus and Neptune. Accordingly, in this work, we seek to identify a physically sound upper limit to planetary radii at low masses and moderate equilibrium temperatures. As a guiding example, we analyze the interior structure of the Neptune-mass planet Kepler-30d and show that it is acutely deficient in heavy elements, especially compared with its solar system counterparts. Subsequently, we perform numerical simulations of planetary thermal evolution and in agreement with previous studies, show that generally, 10-20 M ⊕ , multi-billion year old planets, composed of high density cores and extended H/He envelopes can have radii that firmly reside in the giant planet range. We subject our results to stability criteria based on extreme ultraviolet radiation, as well as Roche-lobe overflow driven mass-loss and construct mass-radius relationships for the considered objects. We conclude by discussing observational avenues that may be used to confirm or repudiate the existence of putative low mass, gas-dominated planets.

  5. Theoretical analysis of leaky surface acoustic waves of point-focused acoustic lens and some experiments

    International Nuclear Information System (INIS)

    Ishikawa, Isao; Suzuki, Yoshiaki; Ogura, Yukio; Katakura, Kageyoshi

    1997-01-01

    When a point-focused acoustic lens in the scanning acoustic microscope (SAM) is faced to test specimen and defocused to some extent, two effective echoes can be obtained. One is the echo of longitudinal wave, which is normally incident upon the specimen of an on-axis beam in the central region of the lens and is reflected normal to the lens surface, hence detected by the transducer. The other is of leaky surface acoustic waves(LSAW), which are mode converted front a narrow beam of off-axis longitudinal wave, then propagate across the surface of the specimen and reradiate at angles normal to the lens surface, thus detected by the transducer. These two echoes are either interfered or separated with each other depending ell the defocused distance. It turned out theoretically that the LSAW have a narrow focal spot in the central region of the point-focused acoustic lens, whose size is approximately 40% of the LSAW wavelength. On top of that, a wavelength of LSAW is about 50% short as that of longitudinal wave. So, It is expected that high resolution images can be obtained provided LSAW are used in the scanning acoustic microscope.

  6. Optimizing the Immuno-Surface Characteristics for Bio-Sensors and Filters Through Modeling and Experiments

    Science.gov (United States)

    2005-06-01

    immobilization of antibodies o Adsorbed, aminophase, heterobifunctional crosslinkers (GMBS, BMPS, EMCS) o GMBS attaches the most antibodies o ProteinA ...play a role in getting the antigen close enough to the immuno-surface to potentially interact as well as the short range molecular forces that

  7. Surface meteorological conditions at benthic disturbance experiment site - INDEX area during austral winter 1997

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Murty, V.S.N.; RameshBabu, V.; Beena, B.S.

    latent heat flux of 220 W/m sup(2), leading to net surface heat loss (100 W/m sup(2)) in June and near heat balance in August. Temporal variation of weather elements and the heat budget parameters showed fluctuations of period 10-13 days in June and 7...

  8. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    International Nuclear Information System (INIS)

    Nakashima, Kenichi; Stoller, Roger E; Xu, Haixuan

    2015-01-01

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a 0 to 3.3a 0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a 0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster. (paper)

  9. Helium-burning flashes on accreting neutron stars: effects of stellar mass, radius, and magnetic field

    International Nuclear Information System (INIS)

    Joss, P.C.; Li, F.K.

    1980-01-01

    We have computed the evolution of the helium-burning shell in an accreting neutron star for various values of the stellar mass (M), radius (R), and surface magnetic fields strength (B). As shown in previous work, the helium-burning shell is often unstable and undergoes thermonuclear flashes that result in the emission of X-ray bursts from the neutron-star surface. The dependence of the properties of these bursts upon the values of M and R can be described by simple scaling relations. A strong magnetic field decreases the radiative and conductive opacities and inhibits convection in the neutron-star surface layers. For B 12 gauss, these effects are unimportant; for B> or approx. =10 13 gauss, the enhancement of the electron thermal conductivity is sufficiently large to stabilize the helium-burning shell against thermonuclear flashes. For intermediate values of B, the reduced opacities increase the recurrence intervals between bursts and the energy released per burst, while the inhibition of convection increases the burst rise times to about a few seconds. If the magnetic field funnels the accreting matter onto the magnetic polar caps, the instability of the helium-burning shell will be very strongly suppressed. These results suggest that it may eventually be possible to extract information on the macroscopic properties of neutron stars from the observed features of X-ray burst sources

  10. The role of soil moisture in land surface-atmosphere coupling: climate model sensitivity experiments over India

    Science.gov (United States)

    Williams, Charles; Turner, Andrew

    2015-04-01

    It is generally acknowledged that anthropogenic land use changes, such as a shift from forested land into irrigated agriculture, may have an impact on regional climate and, in particular, rainfall patterns in both time and space. India provides an excellent example of a country in which widespread land use change has occurred during the last century, as the country tries to meet its growing demand for food. Of primary concern for agriculture is the Indian summer monsoon (ISM), which displays considerable seasonal and subseasonal variability. Although it is evident that changing rainfall variability will have a direct impact on land surface processes (such as soil moisture variability), the reverse impact is less well understood. However, the role of soil moisture in the coupling between the land surface and atmosphere needs to be properly explored before any potential impact of changing soil moisture variability on ISM rainfall can be understood. This paper attempts to address this issue, by conducting a number of sensitivity experiments using a state-of-the-art climate model from the UK Meteorological Office Hadley Centre: HadGEM2. Several experiments are undertaken, with the only difference between them being the extent to which soil moisture is coupled to the atmosphere. Firstly, the land surface is fully coupled to the atmosphere, globally (as in standard model configurations); secondly, the land surface is entirely uncoupled from the atmosphere, again globally, with soil moisture values being prescribed on a daily basis; thirdly, the land surface is uncoupled from the atmosphere over India but fully coupled elsewhere; and lastly, vice versa (i.e. the land surface is coupled to the atmosphere over India but uncoupled elsewhere). Early results from this study suggest certain 'hotspot' regions where the impact of soil moisture coupling/uncoupling may be important, and many of these regions coincide with previous studies. Focusing on the third experiment, i

  11. Microbial analyses of groundwater and surfaces during the retrieval of experiment 3, A04, in MINICAN

    International Nuclear Information System (INIS)

    Hallbeck, Lotta; Edlund, Johanna; Eriksson, Lena

    2011-12-01

    The MINICAN project is located at the depth of 450 m in the Aespoe Hard Rock Laboratory (HRL) research tunnel. The aim of the project was to study corrosion of the cast iron inserts if a hole is introduced in the outer copper-canister. The experimental part of MINICAN started in 2007 and consists of five different experiment canisters (Table 1.1), denoted experiment A02-A06. Four of the MINICAN test copper canisters are surrounded by bentonite in a support steel cage, of which the bentonite in experiment A05 is fully compacted according to the KBS-3 approach (dry density 1,600 kg m -3 ) and experiments A02-A04 are compacted with bentonite to a lower density than will be used (dry density 1,300 kg m -3 ). Experiment A06 has no bentonite. In all the MINICAN copper canisters, holes with a diameter of 1 mm have been drilled to allow Aspo groundwater to come in contact with the interior cast iron inserts. This is done to mimic real accidental leakage during the KBS-3 type of long-time spent nuclear fuel storage. The project has been described in 1068871- Project Plan MINICAN, in AP TD F77.3-05-001, AP TD F77.3.08-44 and in AP TD F77.3

  12. Microbial analyses of groundwater and surfaces during the retrieval of experiment 3, A04, in MINICAN

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Edlund, Johanna; Eriksson, Lena [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2011-12-15

    The MINICAN project is located at the depth of 450 m in the Aespoe Hard Rock Laboratory (HRL) research tunnel. The aim of the project was to study corrosion of the cast iron inserts if a hole is introduced in the outer copper-canister. The experimental part of MINICAN started in 2007 and consists of five different experiment canisters (Table 1.1), denoted experiment A02-A06. Four of the MINICAN test copper canisters are surrounded by bentonite in a support steel cage, of which the bentonite in experiment A05 is fully compacted according to the KBS-3 approach (dry density 1,600 kg m{sup -3}) and experiments A02-A04 are compacted with bentonite to a lower density than will be used (dry density 1,300 kg m{sup -3}). Experiment A06 has no bentonite. In all the MINICAN copper canisters, holes with a diameter of 1 mm have been drilled to allow Aspo groundwater to come in contact with the interior cast iron inserts. This is done to mimic real accidental leakage during the KBS-3 type of long-time spent nuclear fuel storage. The project has been described in 1068871- Project Plan MINICAN, in AP TD F77.3-05-001, AP TD F77.3.08-44 and in AP TD F77.3.

  13. Development of Measurement Device of Working Radius of Crane Based on Single CCD Camera and Laser Range Finder

    Science.gov (United States)

    Nara, Shunsuke; Takahashi, Satoru

    In this paper, what we want to do is to develop an observation device to measure the working radius of a crane truck. The device has a single CCD camera, a laser range finder and two AC servo motors. First, in order to measure the working radius, we need to consider algorithm of a crane hook recognition. Then, we attach the cross mark on the crane hook. Namely, instead of the crane hook, we try to recognize the cross mark. Further, for the observation device, we construct PI control system with an extended Kalman filter to track the moving cross mark. Through experiments, we show the usefulness of our device including new control system of mark tracking.

  14. Airborne spectral measurements of surface-atmosphere anisotropy during the SCAR-A, Kuwait oil fire, and TARFOX experiments

    Science.gov (United States)

    Soulen, Peter F.; King, Michael D.; Tsay, Si-Chee; Arnold, G. Thomas; Li, Jason Y.

    2000-04-01

    During the SCAR-A, Kuwait Oil Fire Smoke Experiment, and TARFOX deployments, angular distributions of spectral reflectance for various surfaces were measured using the scanning Cloud Absorption Radiometer (CAR) mounted on the nose of the University of Washington C-131A research aircraft. The CAR contains 13 narrowband spectral channels between 0.47 and 2.3 μm with a 190° scan aperture (5° before zenith to 5° past nadir) and 1° instantaneous field of view. The bidirectional reflectance is obtained by flying a clockwise circular orbit above the surface, resulting in a ground track approximately 3 km in diameter within about 2 min. Spectral bidirectional reflectances of four surfaces are presented: the Great Dismal Swamp in Virginia with overlying haze layer, the Saudi Arabian Desert and the Persian Gulf in the Middle East, and the Atlantic Ocean measured east of Richmond, Virginia. Although the CAR measurements are contaminated by atmospheric effects, results show distinct spectral characteristics for various types of surface-atmosphere systems, including hot spots, limb brightening and darkening, and Sun glint. In addition, the hemispherical albedo of each surface-atmosphere system is calculated directly by integrating over all high angular-resolution CAR measurements for each spectral channel. Comparing the nadir reflectance with the overall hemispherical albedo of each surface, we find that using nadir reflectances as a surrogate for hemispherical albedo can cause albedos to be underestimated by as much as 95% and overestimated by up to 160%, depending on the type of surface and solar zenith angle.

  15. Mesopelagic Prokaryotes Alter Surface Phytoplankton Production during Simulated Deep Mixing Experiments in Eastern Mediterranean Sea Waters

    Directory of Open Access Journals (Sweden)

    Or Hazan

    2018-01-01

    Full Text Available Mesopelagic prokaryotes (archaea and bacteria, which are transported together with nutrient-rich intermediate-water to the surface layer by deep convection in the oceans (e.g., winter mixing, upwelling systems, can interact with surface microbial populations. This interaction can potentially affect production rates and biomass of surface microbial populations, and thus play an important role in the marine carbon cycle and oceanic carbon sequestration. The Eastern Mediterranean Sea (EMS is one of the most oligotrophic and warm systems in the world's oceans, with usually very shallow winter mixing (<200 m and lack of large-size spring algal blooms. In this study, we collected seawater (0–1,500 m in 9 different cruises at the open EMS during both the stratified and the mixed seasons. We show that the EMS is a highly oligotrophic regime, resulting in low autotrophic biomass and primary productivity and relatively high heterotrophic prokaryotic biomass and production. Further, we simulated deep water mixing in on-board microcosms using Levantine surface (LSW, ~0.5 m and intermediate (LIW, ~400 m waters at a 9:1 ratio, respectively and examined the responses of the microbial populations to such a scenario. We hypothesized that the LIW, being nutrient-rich (e.g., N, P and a “hot-spot” for microbial activity (due to the warm conditions that prevail in these depths, may supply the LSW with not only key-limiting nutrients but also with viable and active heterotrophic prokaryotes that can interact with the ambient surface microbial population. Indeed, we show that LIW heterotrophic prokaryotes negatively affected the surface phytoplankton populations, resulting in lower chlorophyll-a levels and primary production rates. This may be due to out-competition of phytoplankton by LIW populations for resources and/or by a phytoplankton cell lysis via viral infection. Our results suggest that phytoplankton in the EMS may not likely form blooms, even after

  16. Review of the near surface heater experiment at Oak Ridge, TN

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1977-01-01

    An experiment has been undertaken to assess the large scale effects that heat from a waste canister would have were the canister emplaced in shale. The experimental design includes a 10 foot long heater which will be buried at a depth of 55 feet and will run at 600 0 C for between six months and a year. The heater is surrounded by an array of thermocouples and stress gages. In addition, coupons of potential canister metals are affixed to the base of the heater. Before and after the experiment the permeability of the formation will be measured using a 85 Kr tracer. Laboratory tests supporting the field test are briefly reviewed

  17. Effect of glutamic acid on copper sorption onto kaolinite. Batch experiments and surface complexation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Karimzadeh, Lotfallah; Barthen, Robert; Gruendig, Marion; Franke, Karsten; Lippmann-Pipke, Johanna [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactive Transport; Stockmann, Madlen [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    In this work, we study the mobility behavior of Cu(II) under conditions related to an alternative, neutrophile biohydrometallurgical Cu(II) leaching approach. Sorption of copper onto kaolinite influenced by glutamic acid (Glu) was investigated in the presence of 0.01 M NaClO{sub 4} by means of binary and ternary batch adsorption measurements over a pH range of 4 to 9 and surface complexation modeling.

  18. Effect of glutamic acid on copper sorption onto kaolinite. Batch experiments and surface complexation modeling

    International Nuclear Information System (INIS)

    Karimzadeh, Lotfallah; Barthen, Robert; Gruendig, Marion; Franke, Karsten; Lippmann-Pipke, Johanna; Stockmann, Madlen

    2017-01-01

    In this work, we study the mobility behavior of Cu(II) under conditions related to an alternative, neutrophile biohydrometallurgical Cu(II) leaching approach. Sorption of copper onto kaolinite influenced by glutamic acid (Glu) was investigated in the presence of 0.01 M NaClO_4 by means of binary and ternary batch adsorption measurements over a pH range of 4 to 9 and surface complexation modeling.

  19. The lessons learned from Andra's Experiences on the Leachate Collection System of the Surface Disposal Facility

    International Nuclear Information System (INIS)

    Chang, Keunpack; Na, Hanjeong; Lee, Joonho; Lee, Dongjae

    2014-01-01

    This paper is based on the lessons learned from Andra's experiences especially on the drainage system which are given in the references. This paper also presents key items which need to be looked into for the local design which might be adopted at the second phase of LILW disposal facility at Wolsong. It is widely known that Andra has demonstrated that low and intermediate level of waste can be managed in a safe and efficient manner and disposed of surface level of ground. This paper has reviewed upgraded. EBSs evolved by Andra's many years of experiences, especially the measures to deal with drainage system which is available information online published to the public. Andra's Centre de I'Aube has been used as a reference model for the surface disposal of radioactive waste by many countries worldwide. But, the detail design of this type of facility needs to be improved and developed suitably for local characteristics taking into account the radioactive waste properties, local site environment and regulatory requirements in each country. The main design scenario to handle radioactive material in surface or near-surface radioactive nuclides are leached from waste by dissolving into rainwater passed through the disposal cover and concrete slab, and the infiltrated rainwater with radioactive nuclides flows to the aquifer through the concrete slab, and the infiltrated rainwater with radioactive nuclides flows to the aquifer through the concrete mat and the vadose zone, finally they are reached east sea through the aquifer or fault zone according to the hydro-geological characteristics of the site. The design concept to tackle this scenario and to deal with infiltrated and rain water in the surface disposal facility is described herein

  20. THE COSMIC-RAY ENERGY SPECTRUM OBSERVED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W. [High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Azuma, R.; Fukuda, T. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Cheon, B. G.; Cho, E. J. [Department of Physics and Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Department of Physics, Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Department of Physics, Kinki University, Higashi Osaka, Osaka (Japan); Cho, W. R. [Department of Physics, Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Graduate School of Science, Osaka City University, Osaka, Osaka (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); and others

    2013-05-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays (UHECRs) with primary energies above 1.6 Multiplication-Sign 10{sup 18} eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 Multiplication-Sign 10{sup 18} eV and a steepening at 5.4 Multiplication-Sign 10{sup 19} eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of UHECR surface detector data, that involves generating a complete simulation of UHECRs striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the ''thinning'' approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.

  1. Micrometer-sized Water Ice Particles for Planetary Science Experiments: Influence of Surface Structure on Collisional Properties

    Science.gov (United States)

    Gaertner, Sabrina; Gundlach, Bastian; Headen, Thomas F.; Ratte, Judy; Oesert, Joachim; Gorb, Stanislav N.; Youngs, Tristan G. A.; Bowron, Daniel T.; Blum, Jürgen; Fraser, Helen

    2018-06-01

    Models and observations suggest that particle aggregation at and beyond the snowline is aided by water ice. As icy particles play such a crucial role in the earliest stages of planet formation, many laboratory studies have exploited their collisional properties across a wide range of parameters (particle size, impact velocity, temperature T, and pressure P).However, not all of these parameters have always been varied systematically, leading to apparently contradictory results on collision outcomes. Previous experiments only agreed that a temperature dependence set in above ≈210 K. Open questions remain as to what extent the structural properties of the particles themselves dictate collision outcomes. The P–T gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. To understand how effectively collision experiments reproduce protoplanetary disk conditions, environmental impacts on particle structure need to be investigated.We characterized the bulk and surface structure of icy particles used in collision experiments, exploiting the unique capabilities of the NIMROD neutron scattering instrument. Varying temperature at a constant pressure of around 30 mbar, we studied structural alterations to determine which of the observed properties matches the temperature dependencies observed in collisional behaviour.Our icy grains are formed under liquid nitrogen and heated from 103 to 247 K. As a result, they undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) suggests increased molecular mobility at temperatures above ≈210 K.Because none of the other changes ties in with the temperature trends in collisional outcomes, we conclude that the diffuse interface plays a key role in collision experiments at these temperatures

  2. The Community Surface Dynamics Modeling System: Experiences on Building a Collaborative Modeling Platform

    Science.gov (United States)

    Overeem, I.; Hutton, E.; Kettner, A.; Peckham, S. D.; Syvitski, J. P.

    2012-12-01

    The Community Surface Dynamics Modeling System - CSDMS- develops a software platform with shared and coupled modules for modeling earth surface processes as a community resource. The framework allows prediction of water, sediment and nutrient transport through the landscape and seacape. The underlying paradigm is that the Earth surface we live on is a dynamic system; topography changes with seasons, with landslides and earthquakes, with erosion and deposition. The Earth Surface changes due to storms and floods, and important boundaries, like the coast, are ever-moving features. CSDMS sets out to make better predictions of these changes. Earth surface process modeling bridges the terrestrial, coastal and marine domains and requires understanding of the system over a range of time scales, which inherently needs interdisciplinarity. Members of CSDMS (~830 in July 2012) are largely from academic institutions (˜75%), followed by federal agencies (˜17%), and oil and gas companies (˜5%). Members and governmental bodies meet once annually and rely additionally on web-based information for communication. As an organization that relies on volunteer participation, CSDMS faces challenges to scientific collaboration. Encouraging volunteerism among its members to provide and adapt metadata and model code to be sufficiently standardized for coupling is crucial to building an integrated community modeling system. We here present CSDMS strategies aimed at providing the appropriate technical tools and cyberinfrastructure to support a variety of user types, ranging from advanced to novice modelers. Application of these advances in science is key, both into the educational realm and for managers and decision-makers. We discuss some of the implemented ideas to further organizational transparency and user engagement in small-scale governance, such as advanced trackers and voting systems for model development prioritization through the CSDMS wiki. We analyzed data on community

  3. Improved automatic optic nerve radius estimation from high resolution MRI

    Science.gov (United States)

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2017-02-01

    The optic nerve (ON) is a vital structure in the human visual system and transports all visual information from the retina to the cortex for higher order processing. Due to the lack of redundancy in the visual pathway, measures of ON damage have been shown to correlate well with visual deficits. These measures are typically taken at an arbitrary anatomically defined point along the nerve and do not characterize changes along the length of the ON. We propose a fully automated, three-dimensionally consistent technique building upon a previous independent slice-wise technique to estimate the radius of the ON and surrounding cerebrospinal fluid (CSF) on high-resolution heavily T2-weighted isotropic MRI. We show that by constraining results to be three-dimensionally consistent this technique produces more anatomically viable results. We compare this technique with the previously published slice-wise technique using a short-term reproducibility data set, 10 subjects, follow-up <1 month, and show that the new method is more reproducible in the center of the ON. The center of the ON contains the most accurate imaging because it lacks confounders such as motion and frontal lobe interference. Long-term reproducibility, 5 subjects, follow-up of approximately 11 months, is also investigated with this new technique and shown to be similar to short-term reproducibility, indicating that the ON does not change substantially within 11 months. The increased accuracy of this new technique provides increased power when searching for anatomical changes in ON size amongst patient populations.

  4. The strength of polyaxial locking interfaces of distal radius plates.

    Science.gov (United States)

    Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas

    2009-10-01

    Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.

  5. Contaminations of inner surface of magnesium fluoride windows in the `Expose-R' experiment on the International Space Station

    Science.gov (United States)

    Skurat, V. E.

    2017-10-01

    A series of experiments was carried out previously on board of the International Space Station in `EXPOSE-R', a multi-user expose facility, provided by European Space Agency attached to the external surface of the Russian Segment. In one experiment, spores of microorganisms and species of higher plant seeds, in heat-sealed polymer bags were irradiated by solar radiation passed through MgF2 windows in a high space vacuum. After sample exposure, it was found that in many cases the inner surfaces of windows were contaminated. Analysis of the contamination revealed the presence of chemical groups CH2, CH3, NH, OH, C═O, Si-CH3 (Demets et al. in 2015). Their presence in deposits was explained by photofixation of gaseous precursors - some of the vapours of glues and additives in polymeric materials in the core facility of `Expose-R'. Carbon-, oxygen- and silicon-containing groups may be deposited from outer intrinsic atmosphere. This atmosphere is connected with sample compartments and core facility. However, the presence of NH groups on inner surfaces of windows was not expected. This paper shows that the process responsible for carbon-, nitrogen- and oxygen-containing group formation can be a photopolymerization of caprolactam, which is released from the outer Nylon 6 layer of polymer bags under Solar vacuum ultraviolet radiation.

  6. On the determination of the proton RMS-radius from electron scattering data

    International Nuclear Information System (INIS)

    Borkowski, F.; Simon, G.G.; Walther, V.H.; Wendling, R.D.

    1975-01-01

    It is shown that the proton rms radius should be determined from fiting a polynomial of second order to the low-q 2 form factors. The commonly used polynomial of first yields radius values which are too small. The proton rms radius has been redetermined from an analysis of the electron scattering data measured at three laboratories. The best fit value is [r 2 sub(E)]sup(1/2) = 0.87 +- 0.02 fm. (orig.) [de

  7. Plume dispersion from the MVP field experiment. Analysis of surface concentration and its fluctuations

    Science.gov (United States)

    Ma, Yimin; Boybeyi, Zafer; Hanna, Steven; Chayantrakom, Kittisak

    Surface concentration and its fluctuations from plume dispersion under unstable conditions in a coastal environment are investigated using the model validation program field experimental data. The goal of this study is to better understand plume dispersion under such conditions. Procedures are described to derive the plume surface concentration from moving vehicle measurements. Convective boundary layer scalings are applied and cumulative density functions (CDF) are studied. The results indicate that the relative concentration fluctuation intensity ( σc/C(y)) decreases with the normalized downwind distance ( X) and that it is relatively small at the plume central line and largely increased at the plume edges, consistent with other field and laboratory results. The relation between σc/C(y) at the plume centerline ( σc/C) and X for elevated sources can be described by σc/C=a+b/X. The crosswind plume spread ( σy) is found to satisfy Deardorff and Willis's (J. Appl. Meteorol., 14 (1975) 1451) form of σy/h=a1X/(1+a2X) scaled with convective layer depth h. For elevated sources, the normalized crosswind integrated concentration ( Cy) is found to satisfy a relation of Cy=16X, with Yaglom's (Izr. Atmos. Oceanic Phys., 8 (1972) 333) scaling rule on the free convective layer being applied. Empirical CDFs based on the gamma and the clipped probability density functions show agreements with the experimental CDFs, with the former being better than the latter when (c-C)/σc>0.5. A new clipped-gamma CDF form is proposed based on the analysis of the present data, showing a better agreement. We suggest that a parameter u0*(12-0.5h/L), with combined efforts of surface friction velocity ( u0*), Monin-Obukhov stability length ( L) and unstable boundary layer height ( h), replace the convective velocity scale ( w*) under weak convective conditions in a coastal environment.

  8. SU-E-J-139: One Institution’s Experience with Surface Imaging in Proton Therapy

    International Nuclear Information System (INIS)

    Zhao, L; Singh, H; Zheng, Y

    2015-01-01

    Purpose: X-ray system is commonly used for IGRT in proton therapy, however image acquisition not only increases treatment time but also adds imaging dose. We studied a 3D surface camera system (AlignRT) performance for proton therapy. Methods: System accuracy was evaluated with rigid phantom under two different camera location configurations. For initial clinical applications, post mastectomy chest wall and partial breast treatments were studied. X-ray alignment was used as our ground truth. Our studies included: 1) comparison of daily patient setup shifts between X-ray alignment and SI calculation; 2) interfractional breast surface position variation when aligning to bony landmark on X-ray; 3) absolute positioning using planning CT DICOM data; 4) shifts for multi-isocenter treatment plan; 5) couch isocentric rotation accuracy. Results: Camera locations affected the system performance. After camera relocation, the accuracy of the system for the rigid phantom was within 1 mm (fixed couch), and 1.5 mm (isocentric rotation). For intrafractional patient positioning, X-ray and AlignRT shifts were highly correlated (r=0.99), with the largest difference (mean ± SD) in the longitudinal direction (2.14 ± 1.02 mm). For interfractional breast surface variation and absolute positioning, there were still larger disagreements between the two modalities due to different focus on anatomical landmarks, and 95% of the data lie within 5mm with some outliers at 7 mm–9 mm. For multi-isocenter shifts, the difference was 1 ± 0.56 mm over an 11 cm shift in longitudinal direction. For couch rotation study, the differences was 1.36 ± 1.0 mm in vertical direction, 3.04 ± 2.11 mm in longitudinal direction, and 2.10 ± 1.66 mm in lateral direction, with all rotation differences < 1.5 degree. Conclusion: Surface imaging is promising for intrafractional treatment application in proton therapy to reduce X-ray frequency. However the interfractional discrepancy between the X-ray and SI

  9. SU-E-J-139: One Institution’s Experience with Surface Imaging in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L; Singh, H; Zheng, Y [ProCure Proton Therapy Center, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: X-ray system is commonly used for IGRT in proton therapy, however image acquisition not only increases treatment time but also adds imaging dose. We studied a 3D surface camera system (AlignRT) performance for proton therapy. Methods: System accuracy was evaluated with rigid phantom under two different camera location configurations. For initial clinical applications, post mastectomy chest wall and partial breast treatments were studied. X-ray alignment was used as our ground truth. Our studies included: 1) comparison of daily patient setup shifts between X-ray alignment and SI calculation; 2) interfractional breast surface position variation when aligning to bony landmark on X-ray; 3) absolute positioning using planning CT DICOM data; 4) shifts for multi-isocenter treatment plan; 5) couch isocentric rotation accuracy. Results: Camera locations affected the system performance. After camera relocation, the accuracy of the system for the rigid phantom was within 1 mm (fixed couch), and 1.5 mm (isocentric rotation). For intrafractional patient positioning, X-ray and AlignRT shifts were highly correlated (r=0.99), with the largest difference (mean ± SD) in the longitudinal direction (2.14 ± 1.02 mm). For interfractional breast surface variation and absolute positioning, there were still larger disagreements between the two modalities due to different focus on anatomical landmarks, and 95% of the data lie within 5mm with some outliers at 7 mm–9 mm. For multi-isocenter shifts, the difference was 1 ± 0.56 mm over an 11 cm shift in longitudinal direction. For couch rotation study, the differences was 1.36 ± 1.0 mm in vertical direction, 3.04 ± 2.11 mm in longitudinal direction, and 2.10 ± 1.66 mm in lateral direction, with all rotation differences < 1.5 degree. Conclusion: Surface imaging is promising for intrafractional treatment application in proton therapy to reduce X-ray frequency. However the interfractional discrepancy between the X-ray and SI

  10. Investigation of helium plasma stream parameters in experiments on surface modification

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E.; Tsarenko, A.V. and eds.

    2005-01-01

    The main objection of this study is adjustment of plasma treatment regimes for different materials that allows achieving optimal thickness of modified layer with simultaneously minimal value of surface roughness. With use of optical spectroscopy, detailed information about the basic plasma parameters - electron density, electron and ion temperatures, plasma stream duration and velocity, was obtained. Integrated spectra of plasma radiation were analyzed. The majority of helium and impurity spectral lines were investigated on a subject of Stark broadening. Plasma pressure and energy density values measured with piezodetectors and calorimeters are in good agreement with plasma parameters obtained by optical techniques

  11. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    OpenAIRE

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01

    A new field facility was used to study CO2 migration processes and test techniques to detect and quantify potential CO2 leakage from geologic storage sites. For 10 days starting 9 July 2007, and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1, respectively, were released from a ~;100-m long, sub-water table (~;2.5-m depth) horizontal well. The spatio-temporal evolution of leakage was mapped through repeated grid measurements of soil CO2 flux (FCO2). The surface leakage onset...

  12. Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments

    Science.gov (United States)

    Gorham, P. W.; Allison, P.; Banerjee, O.; Beatty, J. J.; Belov, K.; Besson, D. Z.; Binns, W. R.; Bugaev, V.; Cao, P.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dailey, B.; Dasgupta, P.; Deaconu, C.; Cremonesi, L.; Dowkontt, P. F.; Fox, B. D.; Gordon, J.; Hill, B.; Hupe, R.; Israel, M. H.; Jain, P.; Kowalski, J.; Lam, J.; Learned, J. G.; Liewer, K. M.; Liu, T. C.; Matsuno, S.; Miki, C.; Mottram, M.; Mulrey, K.; Nam, J.; Nichol, R. J.; Novikov, A.; Oberla, E.; Prohira, S.; Rauch, B. F.; Romero-Wolf, A.; Rotter, B.; Ratzlaff, K.; Russell, J.; Saltzberg, D.; Seckel, D.; Schoorlemmer, H.; Stafford, S.; Stockham, J.; Stockham, M.; Strutt, B.; Tatem, K.; Varner, G. S.; Vieregg, A. G.; Wissel, S. A.; Wu, F.; Young, R.

    The primary science goal of the NASA-sponsored ANITA project is measurement of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency signals resulting from a neutrino or cosmic ray interaction with terrestrial matter (e.g. atmospheric or ice molecules). Accurate inference of the energies of these cosmic rays requires understanding the transmission/reflection of radio wave signals across the ice-air boundary. Satellite-based measurements of Antarctic surface reflectivity, using a co-located transmitter and receiver, have been performed more-or-less continuously for the last few decades. Our comparison of four different reflectivity surveys, at frequencies ranging from 2 to 45GHz and at near-normal incidence, yield generally consistent maps of high versus low reflectivity, as a function of location, across Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne radio-frequency antenna array as the RF receiver, we have also measured the surface reflectivity over the interval 200-1000MHz, at elevation angles of 12-30∘. Consistent with our previous measurement using ANITA-2, we find good agreement, within systematic errors (dominated by antenna beam width uncertainties) and across Antarctica, with the expected reflectivity as prescribed by the Fresnel equations. To probe low incidence angles, inaccessible to the Antarctic Solar technique and not probed by previous satellite surveys, a novel experimental approach (“HiCal-1”) was devised. Unlike previous measurements, HiCal-ANITA constitute a bi-static transmitter-receiver pair separated by hundreds of kilometers. Data taken with HiCal, between 200 and 600MHz shows a significant departure from the Fresnel equations, constant with frequency over that band, with the deficit increasing with obliquity of incidence, which we attribute to the combined effects of possible surface roughness, surface grain effects, radar clutter and/or shadowing of the reflection zone due to Earth

  13. Effect of temperature on the acid-base properties of the alumina surface: microcalorimetry and acid-base titration experiments.

    Science.gov (United States)

    Morel, Jean-Pierre; Marmier, Nicolas; Hurel, Charlotte; Morel-Desrosiers, Nicole

    2006-06-15

    Sorption reactions on natural or synthetic materials that can attenuate the migration of pollutants in the geosphere could be affected by temperature variations. Nevertheless, most of the theoretical models describing sorption reactions are at 25 degrees C. To check these models at different temperatures, experimental data such as the enthalpies of sorption are thus required. Highly sensitive microcalorimeters can now be used to determine the heat effects accompanying the sorption of radionuclides on oxide-water interfaces, but enthalpies of sorption cannot be extracted from microcalorimetric data without a clear knowledge of the thermodynamics of protonation and deprotonation of the oxide surface. However, the values reported in the literature show large discrepancies and one must conclude that, amazingly, this fundamental problem of proton binding is not yet resolved. We have thus undertaken to measure by titration microcalorimetry the heat effects accompanying proton exchange at the alumina-water interface at 25 degrees C. Based on (i) the surface sites speciation provided by a surface complexation model (built from acid-base titrations at 25 degrees C) and (ii) results of the microcalorimetric experiments, calculations have been made to extract the enthalpic variations associated respectively to first and second deprotonation of the alumina surface. Values obtained are deltaH1 = 80+/-10 kJ mol(-1) and deltaH2 = 5+/-3 kJ mol(-1). In a second step, these enthalpy values were used to calculate the alumina surface acidity constants at 50 degrees C via the van't Hoff equation. Then a theoretical titration curve at 50 degrees C was calculated and compared to the experimental alumina surface titration curve. Good agreement between the predicted acid-base titration curve and the experimental one was observed.

  14. The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Kugel, H.; Bell, M.; Ahn, J.W.; Bush, C.E.; Maingi, R.

    2008-01-01

    National Spherical Torus Experiment (which M. Ono, Nucl. Fusion 40, 557 (2000)) high-power divertor plasma experiments have shown, for the first time, that benefits from lithium coatings applied to plasma facing components found previously in limited plasmas can occur also in high-power diverted configurations. Lithium coatings were applied with pellets injected into helium discharges, and also with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium oven depositions from a few milligrams to 1 g have been applied between discharges. Benefits from the lithium coatings were sometimes, but not always, seen. These benefits sometimes included decreases in plasma density, inductive flux consumption, and edge-localized mode occurrence, and increases in electron temperature, ion temperature, energy confinement, and periods of edge and magnetohydrodynamic quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  15. Study of the external parameters influence on the channel discharge radius in Hg lamps

    International Nuclear Information System (INIS)

    Cristea, M.

    2000-01-01

    In this paper, the plasma electric conductivity and the channel radius for high-pressure mercury arc discharge are calculated. The examined model emphasizes some correlations between various external parameters (current intensity, silicon tube diameter and working pressure) and the channel discharge radius. After model validation, the temperature distribution in the discharge zone is obtained and then the electrons and ions distribution, the electric carriers mobility and the electric conductivity for different lamp characteristics are calculated. The applied numerical simulation shows a linear increase of the channel radius with the tube radius Rw increasing, and a very week pressure dependence (in the range 0.5 - 5 atm.)

  16. The separatrix radius measurement of field-reversed configuration plasma in FRX-L

    International Nuclear Information System (INIS)

    Zhang, Shouyin; Tejero, Erik M.; Taccetti, Jose Martin; Wurden, Glen A.; Intrator, Thomas; Waganaar, William J.

    2004-01-01

    Magnetic pick-up coils and single turn flux loops are installed on the FRX-L device. The combination of the two measurements provides the excluded flux radius that approximates the separatrix radius of the field-reversed configuration plasma. Arrays of similar probes are used to map out local magnetic field dynamics beyond both ends of the theta-coil confinement region to help understand the effects of cusp locations on flux trapping during the FRC formation process. Details on the probe design and system calibrations are presented. The overall system calibration of excluded flux radius measurement is examined by replacing FRC plasma with a known radius aluminum conductor cylinder.

  17. Fractures of the bilateral distal radius and scaphoid: a case report

    Directory of Open Access Journals (Sweden)

    Ozkan Korhan

    2008-03-01

    Full Text Available Abstract Introduction Bilateral fractures of the distal radius and scaphoid are extremely rare injuries. Case presentation A patient with bilateral comminuted, displaced distal fractures of the radius and bilateral fractures of the scaphoid was treated via internal fixation of the scaphoid fractures with Herbert screws and internal fixation of the distal radius fractures with locked volar plating. Conclusion Rigid internal fixation of distal radius and scaphoid fractures is mandatory to start early active rehabilitation of the wrist without the need for wrist immobilization with a plaster or external skeletal fixation.

  18. Report on Microgravity Experiments of Dynamic Surface Deformation Effects on Marangoni Instability in High-Prandtl-Number Liquid Bridges

    Science.gov (United States)

    Yano, Taishi; Nishino, Koichi; Matsumoto, Satoshi; Ueno, Ichiro; Komiya, Atsuki; Kamotani, Yasuhiro; Imaishi, Nobuyuki

    2018-04-01

    This paper reports an overview and some important results of microgravity experiments called Dynamic Surf, which have been conducted on board the International Space Station from 2013 to 2016. The present project mainly focuses on the relations between the Marangoni instability in a high-Prandtl-number (Pr= 67 and 112) liquid bridge and the dynamic free surface deformation (DSD) as well as the interfacial heat transfer. The dynamic free surface deformations of large-scale liquid bridges (say, for diameters greater than 10 mm) are measured with good accuracy by an optical imaging technique. It is found that there are two causes of the dynamic free surface deformation in the present study: the first is the time-dependent flow behavior inside the liquid bridge due to the Marangoni instability, and the second is the external disturbance due to the residual acceleration of gravity, i.e., g-jitter. The axial distributions of DSD along the free surface are measured for several conditions. The critical parameters for the onset of oscillatory Marangoni convection are also measured for various aspect ratios (i.e., relative height to the diameter) of the liquid bridge and various thermal boundary conditions. The characteristics of DSD and the onset conditions of instability are discussed in this paper.

  19. Further investigation of surface velocity measurements for material characterization in laser shockwave experiments

    Science.gov (United States)

    Smith, James A.; Lacy, Jeffrey M.; Scott, Clark L.; Benefiel, Bradley C.; Lévesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin

    2018-04-01

    As part of the U.S. High Performance Research Reactor program, a laser shock test system is being developed by the Idaho National Laboratory (INL) to characterize interface strength in innovative plate fuel for research reactors around the world. The INL has been working with National Research Council Canada (NRC) on this project for the last five years. One of the concerns is the difficulty of calibrating and standardizing the laser shock technique. A recent analytical study and testing support the use of the Hugoniot Elastic Limit (HEL) in materials as a robust and simple benchmark to compare stresses generated by different laser shock systems. Using a non-contact laser velocimeter based on a solid Fabry-Perot etalon, the systems at NRC and INL show that the back-surface velocity reached at the HEL is consistent, and independent of the laser power used. In this work, the laser velocimeter of the NRC system is tested against a fast rotating wheel to verify accuracy and determine best operating conditions. A round robin test between the two laser shock systems on plates of different aluminum alloys is presented that shows the consistent characterization of the aluminum alloys based on the HEL velocities as well as determines the bias between the systems. The effects of setup parameters on other characteristics of the back-surface velocity trace and corresponding stress wave are also discussed.

  20. Experiment Study on Determination of Surface Area of Finegrained Soils by Mercury Intrusion Porosimetry

    Science.gov (United States)

    Yan, X. Q.; Zhou, C. Y.; Fang, Y. G.; Lin, L. S.

    2017-12-01

    The specific surface area (SSA) has a great influence on the physical and chemical properties of fine-grained soils. Determination of specific surface area is an important content for fine-grained soils micro-meso analysis and characteristic research. In this paper, mercury intrusion porosimetry (MIP) was adopted to determine the SSA of fine-grained soils including quartz, kaolinite, bentonite and natural Shenzhen soft clay. The test results show that the average values of SSA obtained by MIP are 0.78m2/g, 11.31m2/g, 57.28m2/g and 27.15m2/g respectively for very fine-grained quartz, kaolin, bentonite and natural Shenzhen soft clay, and that it is feasible to apply MIP to obtain the SSA of fine-grained soils through statistical analysis of 97 samples. Through discussion, it is necessary to consider the state of fine-grained soils such as pore ratio when the SSA of fine-grained soils is determined by MIP.

  1. Atomic-scale investigation of nuclear quantum effects of surface water: Experiments and theory

    Science.gov (United States)

    Guo, Jing; Li, Xin-Zheng; Peng, Jinbo; Wang, En-Ge; Jiang, Ying

    2017-12-01

    Quantum behaviors of protons in terms of tunneling and zero-point motion have significant effects on the macroscopic properties, structure, and dynamics of water even at room temperature or higher. In spite of tremendous theoretical and experimental efforts, accurate and quantitative description of the nuclear quantum effects (NQEs) is still challenging. The main difficulty lies in that the NQEs are extremely susceptible to the structural inhomogeneity and local environments, especially when interfacial systems are concerned. In this review article, we will highlight the recent advances of scanning tunneling microscopy and spectroscopy (STM/S), which allows the access to the quantum degree of freedom of protons both in real and energy space. In addition, we will also introduce recent development of ab initio path-integral molecular dynamics (PIMD) simulations at surfaces/interfaces, in which both the electrons and nuclei are treated as quantum particles in contrast to traditional ab initio molecular dynamics (MD). Then we will discuss how the combination of STM/S and PIMD are used to directly visualize the concerted quantum tunneling of protons within the water clusters and quantify the impact of zero-point motion on the strength of a single hydrogen bond (H bond) at a water/solid interface. Those results may open up the new possibility of exploring the exotic quantum states of light nuclei at surfaces, as well as the quantum coupling between the electrons and nuclei.

  2. Effect of facility on the operative costs of distal radius fractures.

    Science.gov (United States)

    Mather, Richard C; Wysocki, Robert W; Mack Aldridge, J; Pietrobon, Ricardo; Nunley, James A

    2011-07-01

    The purpose of this study was to investigate whether ambulatory surgery centers can deliver lower-cost care and to identify sources of those cost savings. We performed a cost identification analysis of outpatient volar plating for closed distal radius fractures at a single academic medical center. Multiple costs and time measures were taken from an internal database of 130 consecutive patients and were compared by venue of treatment, either an inpatient facility or an ambulatory, stand-alone surgery facility. The relationships between total cost and operative time and multiple variables, including fracture severity, patient age, gender, comorbidities, use of bone graft, concurrent carpal tunnel release, and surgeon experience, were examined, using multivariate analysis and regression modeling to identify other cost drivers or explanatory variables. The mean operative cost was considerably greater at the inpatient facility ($7,640) than at the outpatient facility ($5,220). Cost drivers of this difference were anesthesia services, post-anesthesia care unit, and operating room costs. Total surgical time, nursing time, set-up, and operative times were 33%, 109%, 105%, and 35% longer, respectively, at the inpatient facility. There was no significant difference between facilities for the additional variables, and none of those variables independently affected cost or operative time. The only predictor of cost and time was facility type. This study supports the use of ambulatory stand-alone surgical facilities to achieve efficient resource utilization in the operative treatment of distal radius fractures. We also identified several specific costs and time measurements that differed between facilities, which can serve as potential targets for tertiary facilities to improve utilization. Economic and Decisional Analysis III. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  3. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.

    Key words: Hydrology (desertification - Meterology and

  4. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    2000-03-01

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.Key words: Hydrology (desertification - Meterology and atmospheric

  5. Evaluation of sarcopenia in patients with distal radius fractures.

    Science.gov (United States)

    Roh, Young Hak; Koh, Young Do; Noh, Jung Ho; Gong, Hyun Sik; Baek, Goo Hyun

    2017-12-01

    Sarcopenia is more prevalent in patients with distal radius fracture (DRF) than in age- and sex-matched controls. Lower appendicular mass index in men and weaker grip strength in both men and women increase the likelihood of DRF. Sarcopenia is a core component of physical frailty that predisposes older people to falls and negatively impacts the activities of daily living. The objectives of this study were to compare the prevalence of sarcopenia in patients with DRF with that in age- and sex-matched controls without DRF; and evaluate the association between sarcopenia and the occurrence of DRF. We prospectively recruited 132 patients over 50 years of age who sustained DRF due to fall and 132 age- and sex-matched controls without DRF. A definition of sarcopenia was based on the consensus of the Asian Working Group for Sarcopenia. Sarcopenic components including appendicular lean body mass, grip strength, and gait speed were compared between the two groups. Other factors assessed for the occurrence of DRF were age, gender, body mass index (BMI), lumbar, and hip bone mineral density (BMD) values. A conditional logistic regression analysis was conducted to evaluate the associations between sarcopenia and the occurrence of DRF. A total of 39 (30%) of 132 DRF patients were sarcopenic, whereas 23 (17%) of the 132 controls were within the sarcopenic criteria (p = 0.048). The patient group had significantly lower lean body mass and weaker grip strength than those of the control group. However, there was no significant difference in gait speed between the two groups. According to regression analysis, lower appendicular mass index in men was associated with an increased incidence of DRF (odds ratio [OR] = 0.84, 95% confidence interval [CI] = 0.72, 0.95) while weaker grip strength and lower total hip BMD values were associated with the occurrence of DRF in both men (OR = 0.77, 95% CI = 0.63, 0.92; and OR = 0.79, 95% CI = 0.64, 0.94, respectively) and women (OR

  6. Inverting Comet Acoustic Surface Sounding Experiment (CASSE) touchdown signals to measure the elastic modulus of comet material

    Science.gov (United States)

    Arnold, W.; Faber, C.; Knapmeyer, M.; Witte, L.; Schröder, S.; Tune, J.; Möhlmann, D.; Roll, R.; Chares, B.; Fischer, H.; Seidensticker, K.

    2014-07-01

    The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Each of the three landing feet of Philae house a triaxial acceleration sensor of CASSE, which will thus be the first sensors to be in mechanical contact with the cometary surface. CASSE will be in listening mode to record the deceleration of the lander, when it impacts with the comet at a velocity of approx. 0.5 m/s. The analysis of this data yields information on the reduced elastic modulus and the yield stress of the comet's surface material. We describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths, allowing to adapt landing procedures with predefined velocities. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. A dead mass of the size and mass of the lander housing is attached via a damper above the landing gear to represent the lander structure as a whole. Attached to each leg is a foot with two soles and a mechanically driven fixation screw (''ice screw'') to secure the lander on the comet. The right soles, if viewed from the outside towards the lander body, house a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that one of the axes, here the X-axis of the accelerometer, points downwards, while the Y- and Z-axes are horizontal. Data were recorded at a sampling rate of 8.2 kHz within a time gate of 2 s. In parallel, a video sequence was taken, in order to monitor the touchdown on the sand and the movement of the ice screws. Touchdown measurements were conducted on three types of ground with landing velocities between 0.1 to 1.1 m/s. Landings with low velocities were

  7. Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments

    International Nuclear Information System (INIS)

    Tichomirowa, Marion; Junghans, Manuela

    2009-01-01

    Experiments were conducted to investigate (i) the rate of O-isotope exchange between SO 4 and water molecules at low pH and surface temperatures typical for conditions of acid mine drainage (AMD) and (ii) the O- and S-isotope composition of sulfates produced by pyrite oxidation under closed and open conditions (limited and free access of atmospheric O 2 ) to identify the O source/s in sulfide oxidation (water or atmospheric molecular O 2 ) and to better understand the pyrite oxidation pathway. An O-isotope exchange between SO 4 and water was observed over a pH range of 0-2 only at 50 deg. C, whereas no exchange occurred at lower temperatures over a period of 8 a. The calculated half-time of the exchange rate for 50 deg. C (pH = 0 and 1) is in good agreement with former experimental data for higher and lower temperatures and excludes the possibility of isotope exchange for typical AMD conditions (T ≤ 25 deg. C, pH ≥ 3) for decades. Pyrite oxidation experiments revealed two dependencies of the O-isotope composition of dissolved sulfates: O-isotope values decreased with longer duration of experiments and increasing grain size of pyrite. Both changes are interpreted as evidence for chemisorption of molecular O 2 to pyrite surface sites. The sorption of molecular O 2 is important at initial oxidation stages and more abundant in finer grained pyrite fractions and leads to its incorporation in the produced SO 4 . The calculated bulk contribution of atmospheric O 2 in the dissolved SO 4 reached up to 50% during initial oxidation stages (first 5 days, pH 2, fine-grained pyrite fraction) and decreased to less than 20% after about 100 days. Based on the direct incorporation of molecular O 2 in the early-formed sulfates, chemisorption and electron transfer of molecular O 2 on S sites of the pyrite surface are proposed, in addition to chemisorption on Fe sites. After about 10 days, the O of all newly-formed sulfates originates only from water, indicating direct interaction

  8. How Many Peripheral Solder Joints in a Surface Mounted Design Experience Inelastic Strains?

    Science.gov (United States)

    Suhir, E.; Yi, S.; Ghaffarian, R.

    2017-03-01

    It has been established that it is the peripheral solder joints that are the most vulnerable in the ball-grid-array (BGA) and column-grid-array (CGA) designs and most often fail. As far as the long-term reliability of a soldered microelectronics assembly as a whole is concerned, it makes a difference, if just one or more peripheral joints experience inelastic strains. It is clear that the low cycle fatigue lifetime of the solder system is inversely proportional to the number of joints that simultaneously experience inelastic strains. A simple and physically meaningful analytical expression (formula) is obtained for the prediction, at the design stage, of the number of such joints, if any, for the given effective thermal expansion (contraction) mismatch of the package and PCB; materials and geometrical characteristics of the package/PCB assembly; package size; and, of course, the level of the yield stress in the solder material. The suggested formula can be used to determine if the inelastic strains in the solder material could be avoided by the proper selection of the above characteristics and, if not, how many peripheral joints are expected to simultaneously experience inelastic strains. The general concept is illustrated by a numerical example carried out for a typical BGA package. The suggested analytical model (formula) is applicable to any soldered microelectronics assembly. The roles of other important factors, such as, e.g., solder material anisotropy, grain size, and their random orientation within a joint, are viewed in this analysis as less important factors than the level of the interfacial stress. The roles of these factors will be accounted for in future work and considered, in addition to the location of the joint, in a more complicated, more sophisticated, and more comprehensive reliability/fatigue model.

  9. Preliminary thermal and thermomechanical modeling for the near surface test facility heater experiments at Hanford. Volume II: Appendix D

    International Nuclear Information System (INIS)

    Chan, T.; Remer, J.S.

    1978-12-01

    Appendix D is a complete set of figures illustrating the detailed calculations necessary for designing the heater experiments at the Near Surface Test Facility (NSTF) at Hanford, Washington. The discussion of the thermal and thermomechanical modeling that yielded these calculations is presented in Volume 1. A summary of the figures and the models they illustrate is given in table D1. The most important figures have also been included in the discussion in Volume 1, and Table D2 lists the figure numbers in this volume that correspond to figure numbers used there

  10. Mechanism of distal radius fracture as analyzed by 3D finite element model

    International Nuclear Information System (INIS)

    Tomizawa, Kazuo

    2007-01-01

    The purpose of this study is to see the difference of distal radius fracture between normal and osteoporotic bones and in its patterns due to limb position at injury through simulation and analysis of the biomechanics using three-dimensional (3D) finite element model. CT images were taken with SIEMENS machine, of right wrist joints of 32 and 76 years old, normal healthy man and osteoporotic woman, respectively. The wrist joint angles at CT were 70 degrees both at dorsiflexion and at palmerflexion for simulating fracture at tumbling down. The 3D bone model reconstructed from CT images with Forge software (Studio PON) was trimmed to remain the distal radial-ulnar portion and proximal carpal bones to make simulation easer, and the simplified 3D model was divided to 56,622 elements and 13,274 nodal points (normal bone) or 51,760 and 12,940 (osteoporosis), respectively, in 3 areas of different bone densities calculated with Scion Image processor. This 3D finite element model was analyzed with the software ANSYS LS-DYNA 10.0 for simulating the fracture (the defined yield stress attained) by impacting the elements of carpal bones to the radial bone joint surface with a measure of Mises stress. In osteoporotic bone, fracture was found to occur at dorsal cortex closer to the joint surface. Fracture occurred at dorsal and palmer cortex at dorsiflexion and palmerflexion, respectively. (R.T.)

  11. Comparing DNS and Experiments of Subcritical Flow Past an Isolated Surface Roughness Element

    Science.gov (United States)

    Doolittle, Charles; Goldstein, David

    2009-11-01

    Results are presented from computational and experimental studies of subcritical roughness within a Blasius boundary layer. This work stems from discrepancies presented by Stephani and Goldstein (AIAA Paper 2009-585) where DNS results did not agree with hot-wire measurements. The near wake regions of cylindrical surface roughness elements corresponding to roughness-based Reynolds numbers Rek of about 202 are of specific concern. Laser-Doppler anemometry and flow visualization in water, as well as the same spectral DNS code used by Stephani and Goldstein are used to obtain both quantitative and qualitative comparisons with previous results. Conclusions regarding previous studies will be presented alongside discussion of current work including grid resolution studies and an examination of vorticity dynamics.

  12. Construction and operational experiences of engineered barrier test facility for near surface disposal of LILW

    International Nuclear Information System (INIS)

    Park, Jin Beak; Park, Se Moon; Kim, Chang Lak

    2003-01-01

    Engineered barrier test facility is specially designed to demonstrate the performance of engineered barrier system for the near-surface disposal facility under the domestic environmental conditions. Comprehensive measurement systems are installed within each test cell. Long-and short-term monitoring of the multi-layered cover system can be implemented according to different rainfall scenarios with artificial rainfall system. Monitoring data on the water content, temperature, matric potential, lateral drainage and percolation of cover-layer system can be systematically managed by automatic data acquisition system. The periodic measurement data are collected and will be analyzed by a dedicated database management system, and provide a basis for performance verification of the disposal cover design

  13. Surface relief gratings: experiments, physical scenarios, and photoinduced (anomalous) dynamics of functionalized polymer chains

    Science.gov (United States)

    Mitus, A. C.; Radosz, W.; Wysoczanski, T.; Pawlik, G.

    2017-10-01

    Surface Relief Gratings (SRG) were demonstrated experimentally more than 20 years ago. Despite many years of research efforts the underlying physical mechanisms remain unclear. In this paper we present a short overview of the main concepts related to SRG - photofluidization and its counterpart, the orientational approach - based on a seminal paper by Saphiannikova et al. Next, we summarize the derivation of the cos2 θ potential, following the lines of recent paper of this group. Those results validate the generic Monte Carlo model for the photoinduced build-up of the density and SRG gratings in a model polymer matrix functionalized with azo-dyes, presented in another part of the paper. The characterization of the photoinduced motion of polymer chains, based on our recent paper, is briefly discussed in the last part of the paper. This discussion offers a sound insight into the mechanisms responsible for inscription of SRG as well as for single functionalized nanoparticle studies.

  14. Design and experimental research of a novel inchworm type piezo-driven rotary actuator with the changeable clamping radius.

    Science.gov (United States)

    Zhao, Hongwei; Fu, Lu; Ren, Luquan; Huang, Hu; Fan, Zunqiang; Li, Jianping; Qu, Han

    2013-01-01

    In this paper, a novel piezo-driven rotary actuator with the changeable clamping radius is developed based on the inchworm principle. This actuator mainly utilizes three piezoelectric actuators, a flexible gripper, a clamping block, and a rotor to achieve large stroke rotation with high resolution. The design process of the flexible gripper consisting of the driving unit and the clamping unit is described. Lever-type mechanisms were used to amplify the micro clamping displacements. The amplifying factor and parasitic displacement of the lever-type mechanism in the clamping unit was analyzed theoretically and experimentally. In order to investigate the rotation characteristics of the actuator, a series of experiments was carried out. Experimental results indicate that the actuator can rotate at a speed of 77,488 μrad/s with a driving frequency of 167 Hz. The rotation resolution and maximum load torque of the actuator are 0.25 μrad and 37 N mm, respectively. The gripper is movable along the z direction based on an elevating platform, and the clamping radius can change from 10.6 mm to 25 mm. Experimental results confirm that the actuator can achieve different rotation speeds by changing the clamping radius.

  15. Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows

    Science.gov (United States)

    Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan

    2017-11-01

    Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.

  16. The orientation of the mineral crystals in the radius and tibia of the sheep, and its variation with age.

    OpenAIRE

    Bacon, G E; Goodship, A E

    1991-01-01

    The direction of preferred orientation of the hydroxyapatite crystals in both the tibia and radius of the sheep is close to the long axis of the bone, notwithstanding the angle of about 30 degrees which, for the tibia, exists between the long axis and the direction of principal dynamic strain during locomotion. For both bones the orientation of the cranial cortex, which is a tension surface during locomotion, is about 40% larger than the caudal. The variation with age of the magnitude of the ...

  17. Gradient flux measurements of sea–air DMS transfer during the Surface Ocean Aerosol Production (SOAP experiment

    Directory of Open Access Journals (Sweden)

    M. J. Smith

    2018-04-01

    Full Text Available Direct measurements of marine dimethylsulfide (DMS fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP voyage in February–March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L−1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC technique using atmospheric pressure chemical ionization–mass spectrometry (API-CIMS and the gradient flux (GF technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean–Atmosphere Response Experiment gas transfer algorithm (COAREG. A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89. A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG

  18. Gradient flux measurements of sea-air DMS transfer during the Surface Ocean Aerosol Production (SOAP) experiment

    Science.gov (United States)

    Smith, Murray J.; Walker, Carolyn F.; Bell, Thomas G.; Harvey, Mike J.; Saltzman, Eric S.; Law, Cliff S.

    2018-04-01

    Direct measurements of marine dimethylsulfide (DMS) fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP) voyage in February-March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L-1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC) technique using atmospheric pressure chemical ionization-mass spectrometry (API-CIMS) and the gradient flux (GF) technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean-Atmosphere Response Experiment gas transfer algorithm (COAREG). A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89). A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG model.

  19. Frictional coefficient depending on active friction radius with BPV ...

    African Journals Online (AJOL)

    www.ajol.info/index.php/ijest ... parameters acquired using the braking system and predetermined values. ... subjected to the variations in the incompressibility of the hydraulic brake fluid, introducing air can have detrimental effects on the ... process. Degestein et al. (2006) concluded that uniform surface pressing occurs due ...

  20. Numerical study of chemical reactions in a surface microdischarge tube with mist flow based on experiment

    International Nuclear Information System (INIS)

    Shibata, T; Nishiyama, H

    2014-01-01

    Recently, a water treatment method of spraying solution into a discharge region has been developed and shows high energy efficiency. In this study, a simulation model of a water treatment method using a surface microdischarge (SMD) tube with mist flow is proposed for further understanding the detailed chemical reactions. Our model has three phases (plasma, gas and liquid) and three simulation steps. The carrier gas is humid air including 2% or 3% water vapour. The chemical species diffusion characteristics in the SMD tube and the concentrations in a droplet are clarified in a wide pH interval. The simulation results show that the chemical species generated on the SMD tube inner wall are diffused to the central axis and dissolved into fine droplets. Especially, OH radicals dissolve into droplets a few mm away from the SMD tube wall because of acidification of the droplets. Furthermore, the hydrogen peroxide density, which is the most important indicator of a radical reaction in water, is influenced by the initial solution pH. This pH dependence results from ozone self-decomposition in water. (paper)

  1. Numerical study of chemical reactions in a surface microdischarge tube with mist flow based on experiment

    Science.gov (United States)

    Shibata, T.; Nishiyama, H.

    2014-03-01

    Recently, a water treatment method of spraying solution into a discharge region has been developed and shows high energy efficiency. In this study, a simulation model of a water treatment method using a surface microdischarge (SMD) tube with mist flow is proposed for further understanding the detailed chemical reactions. Our model has three phases (plasma, gas and liquid) and three simulation steps. The carrier gas is humid air including 2% or 3% water vapour. The chemical species diffusion characteristics in the SMD tube and the concentrations in a droplet are clarified in a wide pH interval. The simulation results show that the chemical species generated on the SMD tube inner wall are diffused to the central axis and dissolved into fine droplets. Especially, OH radicals dissolve into droplets a few mm away from the SMD tube wall because of acidification of the droplets. Furthermore, the hydrogen peroxide density, which is the most important indicator of a radical reaction in water, is influenced by the initial solution pH. This pH dependence results from ozone self-decomposition in water.

  2. Field experiments for studying the deposition of aerosols onto vegetation and other surfaces

    International Nuclear Information System (INIS)

    Jonas, R.; Heinemann, K.

    1986-01-01

    For some pollutions, dry deposition clearly predominates in the long-term mean over the wash-out or wet deposition. The deposition velocity or fall-out constant, defined as follows, is a measure of the dry deposition of pollutants onto the soil or vegetation: upsilonsub(g) = K/I, where upsilonsub (g) = deposition velocity (cms -1 ); K = contamination of the sampling surface per cm 2 area (quantity deposited per cm 2 ); I = time-integrated air concentration conventionally measured at a reference height of 1 m above the ground. The deposition velocity of radioactively labelled test aerosols (copper sulphate) onto grass, clover, various species of tree (common beech, hornbeam, red oak, common oak, horse chestnut, silver birch, Norway maple, common spruce, Scots pine, Japanese larch, European larch, common silver fir) as well as onto bare soil, water, metals and horizontal filter paper was determined in an extensive series of field tests at the Julich Nuclear Research Centre (Jonas, 1984; Jonas and Heinemann, 1985). For determination of the deposition velocities, the reader is referred to Jonas and Heinemann (1985). (author)

  3. Transverse magnetoresistance induced by electron-surface scattering on thin gold films: Experiment and theory

    International Nuclear Information System (INIS)

    Oyarzún, Simón; Henríquez, Ricardo; Suárez, Marco Antonio; Moraga, Luis; Kremer, Germán; Munoz, Raúl C.

    2014-01-01

    We report new experimental data regarding the transverse magnetoresistance measured in a family of thin gold films of different thickness with the electric field E oriented perpendicular to the magnetic field B (both fields contained within the plane of the film), as well as a theoretical description of size effects based upon a solution of Boltzmann Transport Equation. The measurements were performed at low temperatures T (4 K ≤ T ≤ 50 K) under magnetic field strengths B (1.5 T ≤ B ≤ 9 T). The magnetoresistance signal can be univocally identified as arising from electron-surface scattering, for the Hall mobility at 4 K depends linearly on film thickness. The magnetoresistance signal exhibits a marked thickness dependence, and its curvature as a function of magnetic field B varies with film thickness. The theoretical description of the magnetic field dependence of the magnetoresistance requires a Hall field that varies with the thickness of the film; this Hall field is tuned to reproduce the experimental data.

  4. Transverse magnetoresistance induced by electron-surface scattering on thin gold films: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzún, Simón [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne CEDEX (France); Henríquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Suárez, Marco Antonio; Moraga, Luis [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Kremer, Germán [Bachillerato, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800024 (Chile); Munoz, Raúl C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)

    2014-01-15

    We report new experimental data regarding the transverse magnetoresistance measured in a family of thin gold films of different thickness with the electric field E oriented perpendicular to the magnetic field B (both fields contained within the plane of the film), as well as a theoretical description of size effects based upon a solution of Boltzmann Transport Equation. The measurements were performed at low temperatures T (4 K ≤ T ≤ 50 K) under magnetic field strengths B (1.5 T ≤ B ≤ 9 T). The magnetoresistance signal can be univocally identified as arising from electron-surface scattering, for the Hall mobility at 4 K depends linearly on film thickness. The magnetoresistance signal exhibits a marked thickness dependence, and its curvature as a function of magnetic field B varies with film thickness. The theoretical description of the magnetic field dependence of the magnetoresistance requires a Hall field that varies with the thickness of the film; this Hall field is tuned to reproduce the experimental data.

  5. Examining the temperature behavior of stainless steel surfaces exposed to hydrogen plasmas in the Lithium Tokamak eXperiment (LTX)

    Science.gov (United States)

    Bedoya, Felipe; Allain, Jean Paul; Kaita, Robert; Lucia, Matthew; St-Onge, Denis; Ellis, Robert; Majeski, Richard

    2014-10-01

    The Materials Analysis Particle Probe (MAPP) is an in-situ diagnostic designed to characterize plasma-facing components (PFCs) in tokamak devices. MAPP is installed in LTX at Princeton Plasma Physics Laboratory. MAPP's capabilities include remotely operated XPS acquisition and temperature control of four samples. The recent addition of a focused ion beam allows XPS depth profiling analysis. Recent published results show an apparent correlation between hydrogen retention and temperature of Li coated stainless steel (SS) PFCs exposed to plasmas like those of LTX. According to XPS data, the retention of hydrogen by the coated surfaces decreases at above 180 °C. In the present study MAPP will be used to study the oxidation of Li coatings as a function of time and temperature of the walls when Li coatings are applied. Experiments in the ion-surface interaction experiment (IIAX) varying the hydrogen fluence on the SS samples will be also performed. Conclusions resulting from this study will be key to explain the PFC temperature-dependent variation of plasma performance observed in LTX. This work was supported by U.S. DOE Contracts DE-AC02-09CH11466, DE-AC52-07NA27344 and DE-SC0010717.

  6. CT virtual reality in the preoperative workup of malunited distal radius fractures: preliminary results

    International Nuclear Information System (INIS)

    Rieger, Michael; Gruber, Hannes; Jaschke, Werner R.; Gabl, Markus; Mallouhi, Ammar

    2005-01-01

    Our objective was to evaluate the usefulness of CT virtual preoperative planning in the surgical repositioning of malunited distal radius fracture. Eleven patients with malunited distal radius fracture underwent multislice CT of both wrists. A preoperative workup was performed in a virtual reality environment created from the CT data sets. Virtual planning comprised three main procedures, carrying out the virtual osteotomy of the radius, prediction of the final position of the distal radius after osteotomy and computer-assisted manufacturing of a repositioning device, which was later placed at the surgical osteotomy site to reposition objectively the distal radius fragment before fixation with the osteosynthesis. All patients tolerated the surgical procedure well. During surgery, the orthopedic surgeons were not required in any of the cases to alter the position of the distal radius that was determined by the repositioning device. At postoperative follow-up, the anatomic relationship of the distal radius was restored (radial inclination, 21.4 ; volar tilt, 10.3 ; ulnar variance, 0.5 mm). Clinically, a significant improvement of pronation (P=0.012), supination (P=0.01), flexion (P=0.001) and extension (P=0.006) was achieved. Pain decreased from 54 to 7 points. CT virtual reality is a valuable adjunct for the preoperative workup and surgical reposition of malunited distal radius fractures. (orig.)

  7. Non union of the neck of radius: a case report and review of the ...

    African Journals Online (AJOL)

    Fractures of the neck of radius are frequent in trauma. They happen without being noticed at the moment of injury of the elbow or in the context of polytrauma. A case of non union of the radius neck occurring in a young person due to ignorance, during first consultation has been reported by the authors. They insist on the ...

  8. Radiographic diagnosis of scapholunate dissociation among intra-articular fractures of the distal radius: interobserver reliability

    NARCIS (Netherlands)

    Gradl, Gertraud; Neuhaus, Valentin; Fuchsberger, Thomas; Guitton, Thierry G.; Prommersberger, Karl-Josef; Ring, David; Wahegaonkar, Abhijeet L.; Shafritz, Adam B.; Garcia, Aida E.; Caputo, Andrew E.; Terrono, Andrew L.; Spoor, Andy B.; Eschler, Anica; Vochteloo, Anne J. H.; Beumer, Annechien; Barquet, Antonio; Kristan, Anze; van der Zwan, Arnard L.; Berner, Arne; Ilyas, Asif; Jubel, Axel; Sutker, Ben; Nolan, Betsy M.; Petrisor, Brad; Cross, Brian J.; Wills, Brian P. D.; Barreto, Camilo J. R.; Fernandes, Carlos H.; Swigart, Carrie; Zalavras, Charalampos; Goldfarb, Charles A.; Cassidy, Charles; Eaton, Charles; Wilson, Chris; Cheng, Christine J.; Wall, Christopher J.; Walsh, Christopher J.; Jones, Christopher M.; Garnavos, Christos; Klostermann, Cyrus; Kirkpatrick, D. Kay; Eygendaal, Denise; Verbeek, Diederik O. F.; Beeres, Frank J. P.; Thomas, George; Ponsen, Kornelis J.; van den Bekerom, Michel P. J.; Schep, Niels; Kloen, Peter; Haverlag, Robert

    2013-01-01

    To evaluate the reliability and accuracy of diagnosis of scapholunate dissociation (SLD) among AO type C (compression articular) fractures of the distal radius. A total of 217 surgeons evaluated 21 sets of radiographs with type C fractures of the distal radius for which the status of the

  9. [Matrimonial radius and anthropologic differentiation of the population of the Peloponnese, Greece].

    Science.gov (United States)

    Pitsios, T K

    1983-09-01

    Mean matrimonial radius (MMR) and mean breeding radius (MBR) were studied in the population of the Peloponnese (Greece). The historical and geographical causes of these important genetical variables are discussed considering, too, their effects on the anthropological differentiation of this population.

  10. Relationship between plate removal and Soong grading following surgery for fractured distal radius

    NARCIS (Netherlands)

    Selles, Caroline A.; Reerds, Sam T. H.; Roukema, Gert; van der Vlies, Kees H.; Cleffken, Berry I.; Schep, Niels W. L.

    2018-01-01

    The aim of this study was to determine the relationship between volar plate removal and the Soong classification following fixation for fractured distal radius. In this retrospective cohort study, all consecutive patients who had volar plate fixation for a distal radius fracture in 2011-2015 were

  11. Classification and treatment of distal radius fractures: a survey among orthopaedic trauma surgeons and residents

    NARCIS (Netherlands)

    M.A.M. Mulders (Marjolein A. M.); D. Rikli; J.C. Goslings (Carel); N.W.L. Schep (Niels)

    2017-01-01

    textabstractPurpose: Classification, the definition of an acceptable reduction and indications for surgery in distal radius fracturemanagement are still subject of debate. The purpose of this study was to characterise current distal radius fracture management in Europe. Methods: During the European

  12. Active space of pheromone plume and its relationship to effective attraction radius in applied models.

    Science.gov (United States)

    Byers, John A

    2008-09-01

    The release rate of a semiochemical lure that attracts flying insects has a specific effective attraction radius (EAR) that corresponds to the lure's orientation response strength. EAR is defined as the radius of a passive sphere that intercepts the same number of insects as a semiochemical-baited trap. It is estimated by calculating the ratio of trap catches in the field in baited and unbaited traps and the interception area of the unbaited trap. EAR serves as a standardized method for comparing the attractive strengths of lures that is independent of population density. In two-dimensional encounter rate models that are used to describe insect mass trapping and mating disruption, a circular EAR (EAR(c)) describes a key parameter that affects catch or influence by pheromone in the models. However, the spherical EAR, as measured in the field, should be transformed to an EAR(c) for appropriate predictions in such models. The EAR(c) is calculated as (pi/2EAR(2))/F (L), where F (L) is the effective thickness of the flight layer where the insect searches. F (L) was estimated from catches of insects (42 species in the orders Coleoptera, Lepidoptera, Diptera, Hemiptera, and Thysanoptera) on traps at various heights as reported in the literature. The EAR(c) was proposed further as a simple but equivalent alternative to simulations of highly complex active-space plumes with variable response surfaces that have proven exceedingly difficult to quantify in nature. This hypothesis was explored in simulations where flying insects, represented as coordinate points, moved about in a correlated random walk in an area that contained a pheromone plume, represented as a sector of active space composed of a capture probability surface of variable complexity. In this plume model, catch was monitored at a constant density of flying insects and then compared to simulations in which a circular EAR(c) was enlarged until an equivalent rate was caught. This demonstrated that there is a

  13. Vertical profiles of droplet effective radius in shallow convective clouds

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2011-05-01

    Full Text Available Conventional satellite retrievals can only provide information on cloud-top droplet effective radius (re. Given the fact that cloud ensembles in a satellite snapshot have different cloud-top heights, Rosenfeld and Lensky (1998 used the cloud-top height and the corresponding cloud-top re from the cloud ensembles in the snapshot to construct a profile of re representative of that in the individual clouds. This study investigates the robustness of this approach in shallow convective clouds based on results from large-eddy simulations (LES for clean (aerosol mixing ratio Na = 25 mg−1, intermediate (Na = 100 mg−1, and polluted (Na = 2000 mg−1 conditions. The cloud-top height and the cloud-top re from the modeled cloud ensembles are used to form a constructed re profile, which is then compared to the in-cloud re profiles. For the polluted and intermediate cases where precipitation is negligible, the constructed re profiles represent the in-cloud re profiles fairly well with a low bias (about 10 %. The method used in Rosenfeld and Lensky (1998 is therefore validated for nonprecipitating shallow cumulus clouds. For the clean, drizzling case, the in-cloud re can be very large and highly variable, and quantitative profiling based on cloud-top re is less useful. The differences in re profiles between clean and polluted conditions derived in this manner are however, distinct. This study also investigates the subadiabatic characteristics of the simulated cumulus clouds to reveal the effect of mixing on re and its evolution. Results indicate that as polluted and moderately polluted clouds develop into their decaying stage, the subadiabatic fraction

  14. The effect of three surface conditions, speed and running experience on vertical acceleration of the tibia during running.

    Science.gov (United States)

    Boey, Hannelore; Aeles, Jeroen; Schütte, Kurt; Vanwanseele, Benedicte

    2017-06-01

    Research has focused on parameters that are associated with injury risk, e.g. vertical acceleration. These parameters can be influenced by running on different surfaces or at different running speeds, but the relationship between them is not completely clear. Understanding the relationship may result in training guidelines to reduce the injury risk. In this study, thirty-five participants with three different levels of running experience were recruited. Participants ran on three different surfaces (concrete, synthetic running track, and woodchip trail) at two different running speeds: a self-selected comfortable speed and a fixed speed of 3.06 m/s. Vertical acceleration of the lower leg was measured with an accelerometer. The vertical acceleration was significantly lower during running on the woodchip trail in comparison with the synthetic running track and the concrete, and significantly lower during running at lower speed in comparison with during running at higher speed on all surfaces. No significant differences in vertical acceleration were found between the three groups of runners at fixed speed. Higher self-selected speed due to higher performance level also did not result in higher vertical acceleration. These results may show that running on a woodchip trail and slowing down could reduce the injury risk at the tibia.

  15. Preliminary experiments on surface flow visualization in the cryogenic wind tunnel by use of condensing or freezing gases

    Science.gov (United States)

    Goodyer, M. J.

    1988-01-01

    Cryogenic wind tunnel users must have available surface flow visualization techniques to satisfy a variety of needs. While the ideal from an aerodynamic stand would be non-intrusive, until an economical technique is developed there will be occasions when the user will be prepared to resort to an intrusive method. One such method is proposed, followed by preliminary evaluation experiments carried out in environments representative of the cryogenic nitrogen tunnel. The technique uses substances which are gases at normal temperature and pressure but liquid or solid at cryogenic temperatures. These are deposited on the model in localized regions, the patterns of the deposits and their subsequent melting or evaporation revealing details of the surface flow. The gases were chosen because of the likelihood that they will not permanently contaminate the model or tunnel. Twenty-four gases were identified as possibly suitable and four of these were tested from which it was concluded that surface flow direction can be shown by the method. Other flow details might also be detectable. The cryogenic wind tunnel used was insulated on the outside and did not show signs of contamination.

  16. Organic Matter in the Surface Microlayer: Insights From a Wind Wave Channel Experiment

    Directory of Open Access Journals (Sweden)

    Anja Engel

    2018-06-01

    Full Text Available The surface microlayer (SML is the uppermost thin layer of the ocean and influencing interactions between the air and sea, such as gas exchange, atmospheric deposition and aerosol emission. Organic matter (OM plays a key role in air-sea exchange processes, but studying how the accumulation of organic compounds in the SML relates to biological processes is impeded in the field by a changing physical environment, in particular wind speed and wave breaking. Here, we studied OM dynamics in the SML under controlled physical conditions in a large annular wind wave channel, filled with natural seawater, over a period of 26 days. Biology in both SML and bulk water was dominated by bacterioneuston and -plankton, respectively, while autotrophic biomass in the two compartments was very low. In general, SML thickness was related to the concentration of dissolved organic carbon (DOC but not to enrichment of DOC or of specific OM components in the SML. Pronounced changes in OM enrichment and molecular composition were observed in the course of the study and correlated significantly to bacterial abundance. Thereby, hydrolysable amino acids, in particular arginine, were more enriched in the SML than combined carbohydrates. Amino acid composition indicated that less degraded OM accumulated preferentially in the SML. A strong correlation was established between the amount of surfactants coverage and γ-aminobutric acid, suggesting that microbial cycling of amino acids can control physiochemical traits of the SML. Our study shows that accumulation and cycling of OM in the SML can occur independently of recent autotrophic production, indicating a widespread biogenic control of process across the air-sea exchange.

  17. Nutrient Limitation in Surface Waters of the Oligotrophic Eastern Mediterranean Sea: an Enrichment Microcosm Experiment

    KAUST Repository

    Tsiola, A.

    2015-12-01

    The growth rates of planktonic microbes in the pelagic zone of the Eastern Mediterranean Sea are nutrient limited, but the type of limitation is still uncertain. During this study, we investigated the occurrence of N and P limitation among different groups of the prokaryotic and eukaryotic (pico-, nano-, and micro-) plankton using a microcosm experiment during stratified water column conditions in the Cretan Sea (Eastern Mediterranean). Microcosms were enriched with N and P (either solely or simultaneously), and the PO4 turnover time, prokaryotic heterotrophic activity, primary production, and the abundance of the different microbial components were measured. Flow cytometric and molecular fingerprint analyses showed that different heterotrophic prokaryotic groups were limited by different nutrients; total heterotrophic prokaryotic growth was limited by P, but only when both N and P were added, changes in community structure and cell size were detected. Phytoplankton were N and P co-limited, with autotrophic pico-eukaryotes being the exception as they increased even when only P was added after a 2-day time lag. The populations of Synechococcus and Prochlorococcus were highly competitive with each other; Prochlorococcus abundance increased during the first 2 days of P addition but kept increasing only when both N and P were added, whereas Synechococcus exhibited higher pigment content and increased in abundance 3 days after simultaneous N and P additions. Dinoflagellates also showed opportunistic behavior at simultaneous N and P additions, in contrast to diatoms and coccolithophores, which diminished in all incubations. High DNA content viruses, selective grazing, and the exhaustion of N sources probably controlled the populations of diatoms and coccolithophores.

  18. Search for life on Mars in surface samples: Lessons from the 1999 Marsokhod rover field experiment

    Science.gov (United States)

    Newsom, Horton E.; Bishop, J.L.; Cockell, C.; Roush, T.L.; Johnson, J. R.

    2001-01-01

    The Marsokhod 1999 field experiment in the Mojave Desert included a simulation of a rover-based sample selection mission. As part of this mission, a test was made of strategies and analytical techniques for identifying past or present life in environments expected to be present on Mars. A combination of visual clues from high-resolution images and the detection of an important biomolecule (chlorophyll) with visible/near-infrared (NIR) spectroscopy led to the successful identification of a rock with evidence of cryptoendolithic organisms. The sample was identified in high-resolution images (3 times the resolution of the Imager for Mars Pathfinder camera) on the basis of a green tinge and textural information suggesting the presence of a thin, partially missing exfoliating layer revealing the organisms. The presence of chlorophyll bands in similar samples was observed in visible/NIR spectra of samples in the field and later confirmed in the laboratory using the same spectrometer. Raman spectroscopy in the laboratory, simulating a remote measurement technique, also detected evidence of carotenoids in samples from the same area. Laboratory analysis confirmed that the subsurface layer of the rock is inhabited by a community of coccoid Chroococcidioposis cyanobacteria. The identification of minerals in the field, including carbonates and serpentine, that are associated with aqueous processes was also demonstrated using the visible/NIR spectrometer. Other lessons learned that are applicable to future rover missions include the benefits of web-based programs for target selection and for daily mission planning and the need for involvement of the science team in optimizing image compression schemes based on the retention of visual signature characteristics. Copyright 2000 by the American Geophysical Union.

  19. Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach

    International Nuclear Information System (INIS)

    Khatir, Z.; Kubiak, K.J.; Jimack, P.K.; Mathia, T.G.

    2016-01-01

    Highlights: • Droplets jumping phenomenon can enhance condensate evacuation from the surface. • Droplets jumping velocity depends on droplets radius and surface static contact angle. • Optimum conditions are for droplets with radius 35–40 μm and contact angle near 160°. • Jumping phenomenon occurs only when static contact angle is above 140°. • The optimal functional surface design maximises jumping velocity and heat flux. - Abstract: Dropwise condensation has superior heat transfer efficiency than filmwise condensation; however condensate evacuation from the surface still remains a significant technological challenge. The process of droplets jumping, against adhesive forces, from a solid surface upon coalescence has been studied using both experimental and Computational Fluid Dynamics (CFD) analysis. Both Lattice Boltzmann (LBM) and Volume of Fluid (VOF) methods have been used to evaluate different kinematic conditions of coalescence inducing a jump velocity. In this paper, an optimisation framework for superhydrophobic surface designs is presented which uses experimentally verified high fidelity CFD analyses to identify optimal combinations of design features which maximise desirable characteristics such as the vertical velocity of the merged jumping droplet from the surface and energy efficiency. A Radial Basis Function (RBF)-based surrogate modelling approach using Design of Experiment (DOE) technique was used to establish near-optimal initial process parameters around which to focus the study. This multidisciplinary approach allows us to evaluate the jumping phenomenon for superhydrophobic surfaces for which several input parameters may be varied, so as to improve the heat transfer exchange rate on the surface during condensation. Reliable conditions were found to occur for droplets within initial radius range of r = 20–40 μm and static contact angle θ_s ∼ 160°. Moreover, the jumping phenomenon was observed for droplets with initial

  20. Effect of the surface roughness on the seismic signal generated by a single rock impact: insight from laboratory experiments

    Science.gov (United States)

    Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud

    2016-04-01

    The seismic signal generated by rockfalls, landslides or avalanches is a unique tool to detect, characterize and monitor gravitational flow activity, with strong implication in terms of natural hazard monitoring. Indeed, as natural flows travel down the slope, they apply stresses on the ground, generating seismic waves in a wide frequency band. Our ultimate objective is to relate the granular flow properties to the generated signals that result from the different physical processes involved. We investigate here the more simple process: the impact of a single bead on a rough surface. Farin et al. [2015] have already shown theoretically and experimentally the existence of a link between the properties of an impacting bead (mass and velocity) on smooth surfaces, and the emitted signal (radiated elastic energy and mean frequency). This demonstrates that the single impactor properties can be deduced from the form of the emitted signal. We extend this work here by investigating the impact of single beads and gravels on rough and erodible surfaces. Experimentally, we drop glass and steel beads of diameters from 2 mm to 10 mm on a PMMA plate. The roughness of this last is obtained by gluing 3mm-diameter glass beads on one of its face. Free beads have been also added to get erodible beds. We track the dropped impactor motion, times between impacts and the generated acoustic waves using two fast cameras and 8 accelerometers. Cameras are used in addition to estimate the impactor rotation. We investigate the energy balance during the impact process, especially how the energy restitution varies as a function of the energy lost through acoustic waves. From these experiments, we clearly observe that even if more dissipative processes are involved (friction, grain reorganization, etc.), the single bead scaling laws obtained on smooth surfaces remain valid. A main result of this work is to quantify the fluctuations of the characteristic quantities such as the bounce angle, the

  1. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes - A flume experiment.

    Science.gov (United States)

    Bento, Célia P M; Commelin, Meindert C; Baartman, Jantiene E M; Yang, Xiaomei; Peters, Piet; Mol, Hans G J; Ritsema, Coen J; Geissen, Violette

    2018-03-01

    This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with "seeding lines on the contour" (T2) were tested in a rainfall simulation experiment using soil flumes (1 × 0.5 m) with a 5% slope. A dose of 178 mg m -2 of a glyphosate-based formulation (CLINIC ® ) was applied on the upper 0.2 m of the flumes. Four 15-min rainfall events (RE) with 30-min interval in between and a total rainfall intensity of 30 mm h -1 were applied. Runoff samples were collected after each RE in a collector at the flume outlet. At the end of the four REs, soil and sediment samples were collected in the application area and in four 20 cm-segments downslope of the application area. Samples were collected according to the following visually distinguished soil surface groups: light sedimentation (LS), dark sedimentation (DS), background and aggregates. Results showed that runoff, suspended sediment and associated glyphosate and AMPA off-site transport were significantly lower in T2 than in T1. Glyphosate and AMPA off-site deposition was higher for T2 than for T1, and their contents on the soil surface decreased with increasing distance from the application area for all soil surface groups and in both treatments. The LS and DS groups presented the highest glyphosate and AMPA contents, but the background group contributed the most to the downslope off-site deposition. Glyphosate and AMPA off-target particle-bound transport was 9.4% (T1) and 17.8% (T2) of the applied amount, while water-dissolved transport was 2.8% (T1) and 0.5% (T2). Particle size and organic matter influenced the mobility of glyphosate and AMPA to off-target areas. These results indicate that the pollution risk of terrestrial and aquatic environments through runoff and deposition can be considerable. Copyright © 2017 Elsevier Ltd

  2. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  3. Technical aspects of the joint JET-ISX-B beryllium limiter experiment

    International Nuclear Information System (INIS)

    Edmonds, P.H.; Dietz, K.J.; Mioduszewski, P.K.; Watson, R.D.; Emerson, L.C.; Gabbard, W.A.; Goodall, D.; Simpkins, J.E.; Yarber, J.L.

    1984-01-01

    An experiment has been performed on the Impurity Study Experiment (ISX-B) tokamak to test beryllium as a limiter material. Beryllium is an attractive candidate for a limiter and has been proposed for use in the Joint European Torus (JET) experiment. A temperature-controlled, segmented, beryllium top-rail limiter was located inside the plasma radius described by the existing titanium limiters. An extended set of diagnostics was added for measurement of scrapeoff and limiter parameters. These included visible and infrared monitoring systems, probes, and surface analysis experiments. Tokamak experiments included parameter surveys of both ohmically heated and neutral-beam-heated plasmas and an extended fluence test of the limiter

  4. Speed Choice and Curve Radius on Rural Roads

    DEFF Research Database (Denmark)

    Rimme, Nicolai; Nielsen, Lea; Kjems, Erik

    2016-01-01

    with informative speed-calming measures as traffic signs, reflectors or surface painting. However, it has been the hypothesis that people are reducing their speed insufficiently and are driving too fast in most curved alignments – especially when they are driving there frequently. By knowing the speed near...... and in the curved alignments compared to the geometry of the curved alignments, it can be clarified, if and which speed-calming measures that are required. Using GNSS-based floating car data (FCD) from driving cars the speed near and in curved alignments is found. Single observation of FCD are connected to trips...

  5. Radiation-induced osteochondroma-like lesion in young rat radius

    International Nuclear Information System (INIS)

    Delgado, E.; Rodriguez, J.I.; Serrada, A.; Tellez, M.; Paniagua, R.

    1985-01-01

    To investigate the effects of radiation on the perichondrial groove of Ranvier in osteochondroma development, the external surface of the distal growth plate of the radius in both forelimbs of 30 ten-day-old rats was exposed to a single low dose of radiation (150 r), which was focused on the perichondrial groove. This induced the formation of a chondrocyte nest at the proximal external edge of the growth plate (five to nine days after irradiation). With advancing longitudinal growth of the bone, the chondrocyte nest occupied a diaphyseal position. At nine to 11 days the chondrocyte nest underwent endochondral ossification. At 13-15 days, this osteochondroma-like lesion began to regress with the disappearance of the chondrocyte nest. After 19-21 days, only an irregularly thickened cortical bone remains at the osteochondroma site. Although the possible role of the growth plate subjacent to the irradiated perichondrial groove must be taken into account, the continuity between the perichondrial groove and the osteochondroma, which is separated from the growth plate by the periosteal ring (bone bark), suggests that the perichondrial groove was involved in osteochondroma-like lesion development

  6. The radius of the quiescent neutron star in the globular cluster M13

    Science.gov (United States)

    Shaw, A. W.; Heinke, C. O.; Steiner, A. W.; Campana, S.; Cohn, H. N.; Ho, W. C. G.; Lugger, P. M.; Servillat, M.

    2018-06-01

    X-ray spectra of quiescent low-mass X-ray binaries containing neutron stars can be fit with atmosphere models to constrain the mass and the radius. Mass-radius constraints can be used to place limits on the equation of state of dense matter. We perform fits to the X-ray spectrum of a quiescent neutron star in the globular cluster M13, utilizing data from ROSAT, Chandra, and XMM-Newton, and constrain the mass-radius relation. Assuming an atmosphere composed of hydrogen and a 1.4 M⊙ neutron star, we find the radius to be R_NS=12.2^{+1.5}_{-1.1} km, a significant improvement in precision over previous measurements. Incorporating an uncertainty on the distance to M13 relaxes the radius constraints slightly and we find R_NS=12.3^{+1.9}_{-1.7} km (for a 1.4M⊙ neutron star with a hydrogen atmosphere), which is still an improvement in precision over previous measurements, some of which do not consider distance uncertainty. We also discuss how the composition of the atmosphere affects the derived radius, finding that a helium atmosphere implies a significantly larger radius.

  7. The COMET-L3 experiment on long-term melt. Concrete interaction and cooling by surface flooding

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Cron, T.; Fluhrer, B.; Messemer, G.; Miassoedov, A.; Schmidt-Stiefel, S.; Wenz, T.

    2007-02-01

    The COMET-L3 experiment considers the long-term situation of corium/concrete interaction in an anticipated core melt accident of a light-water-reactor, after the metal melt is layered beneath the oxide melt. The experimental focus is on cavity formation in the basemat and the risk of long term basemat penetration. The experiment investigates the two-dimensional concrete erosion in a cylindrical crucible fabricated from siliceous concrete in the first phase of the test, and the influence of surface flooding in the second phase. Decay heating in the two-component metal and oxide melt is simulated by sustained induction heating of the metal phase that is overlaid by the oxide melt. The inner diameter of the concrete crucible was 60 cm, the initial mass of the melt was 425 kg steel and 211 kg oxide at 1665 C, resulting in a melt height of 450 mm. The net power to the metal melt was about 220 kW from 0 s to 1880 s, when the maximum erosion limit of the crucible was reached and heating was terminated. In the initial phase of the test (less than 100 s), the overheated, highly agitated metal melt causes intense interaction with the concrete, which leads to fast decrease of the initial melt overheat and reduction of the initially high concrete erosion rate. Thereafter, under quasistationary conditions until about 800 s, the erosion by the metal melt slows down to some 0.07 mm/s into the axial direction. Lateral erosion is a factor 3 smaller. Video observation of the melt surface shows an agitated melt with ongoing gas release from the decomposing concrete. Several periods of more intense gas release, gas driven splashing, and release of crusts from the concrete interface indicate the existence and iterative break-up of crusts that probably form at the steel/concrete interface. Surface flooding of the melt is initiated at 800 s by a shower from the crucible head with 0.375 litre water/s. Flooding does not lead to strong melt/water interactions, and no entrapment reactions or

  8. An Integrated Approach to Estimate Instantaneous Near-Surface Air Temperature and Sensible Heat Flux Fields during the SEMAPHORE Experiment.

    Science.gov (United States)

    Bourras, Denis; Eymard, Laurence; Liu, W. Timothy; Dupuis, Hélène

    2002-03-01

    A new technique was developed to retrieve near-surface instantaneous air temperatures and turbulent sensible heat fluxes using satellite data during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, which was conducted in 1993 under mainly anticyclonic conditions. The method is based on a regional, horizontal atmospheric temperature advection model whose inputs are wind vectors, sea surface temperature fields, air temperatures around the region under study, and several constants derived from in situ measurements. The intrinsic rms error of the method is 0.7°C in terms of air temperature and 9 W m2 for the fluxes, both at 0.16° × 0.16° and 1.125° × 1.125° resolution. The retrieved air temperature and flux horizontal structures are in good agreement with fields from two operational general circulation models. The application to SEMAPHORE data involves the First European Remote Sensing Satellite (ERS-1) wind fields, Advanced Very High Resolution Radiometer (AVHRR) SST fields, and European Centre for Medium-Range Weather Forecasts (ECMWF) air temperature boundary conditions. The rms errors obtained by comparing the estimations with research vessel measurements are 0.3°C and 5 W m2.

  9. Synchronous Multicentric Giant Cell Tumour of Distal Radius and Sacrum with Pulmonary Metastases

    Directory of Open Access Journals (Sweden)

    Varun Sharma Tandra

    2015-01-01

    Full Text Available Giant cell tumour (GCT is an uncommon primary bone tumour, and its multicentric presentation is exceedingly rare. We report a case of a 45-year-old female who presented to us with GCT of left distal radius. On the skeletal survey, osteolytic lesion was noted in her right sacral ala. Biopsy confirmed both lesions as GCT. Pulmonary metastasis was also present. Resection-reconstruction arthroplasty for distal radius and thorough curettage and bone grafting of the sacral lesion were done. Multicentric GCT involving distal radius and sacrum with primary sacral involvement is not reported so far to our knowledge.

  10. Initialization effects via the nuclear radius on transverse in-plane flow and its disappearance

    Directory of Open Access Journals (Sweden)

    Bansal Rajni

    2014-04-01

    Full Text Available We study the dependence of collective transverse flow and its disappearance on initialization effects via the nuclear radius within the framework of the Isospin-dependent Quantum Molecular Dynamics (IQMD model. We calculate the balance energy using different parametrizations of the radius available in the literature for the reaction of 12C+12C to explain its measured balance energy. A mass-dependent analysis of the balance energy through out the periodic table is also carried out by changing the default liquid drop IQMD radius.

  11. X-ray Spectroscopy of the Virgo Cluster out to the Virial Radius

    OpenAIRE

    Urban, O.; Werner, N.; Simionescu, A.; Allen, S. W.; Böhringer, H.

    2011-01-01

    We present results from the analysis of a mosaic of thirteen XMM-Newton pointings covering the Virgo Cluster from its center northwards out to a radius r~1.2 Mpc (~4.5 degrees), reaching the virial radius and beyond. This is the first time that the properties of a modestly sized (M_vir~1.4e14 M_sun, kT~2.3 keV), dynamically young cluster have been studied out to the virial radius. The density profile of the cluster can be described by a surprisingly shallow power-law with index 1.21+/-0.12. I...

  12. Initialization effects via the nuclear radius on transverse in-plane flow and its disappearance

    International Nuclear Information System (INIS)

    Bansal, Rajni; Gautam, Sakshi

    2014-01-01

    We study the dependence of collective transverse flow and its disappearance on initialization effects via the nuclear radius within the framework of the Isospin-dependent Quantum Molecular Dynamics (IQMD) model. We calculate the balance energy using different parametrizations of the radius available in the literature for the reaction of 12 C + 12 C to explain its measured balance energy. A mass-dependent analysis of the balance energy through out the periodic table is also carried out by changing the default liquid drop IQMD radius. (author)

  13. Multi-Segment Radius Measurement Using an Absolute Distance Meter Through a Null Assembly

    Science.gov (United States)

    Merle, Cormic; Wick, Eric; Hayden, Joseph

    2011-01-01

    This system was one of the test methods considered for measuring the radius of curvature of one or more of the 18 segmented mirrors that form the 6.5 m diameter primary mirror (PM) of the James Webb Space Telescope (JWST). The assembled telescope will be tested at cryogenic temperatures in a 17-m diameter by 27-m high vacuum chamber at the Johnson Space Center. This system uses a Leica Absolute Distance Meter (ADM), at a wavelength of 780 nm, combined with beam-steering and beam-shaping optics to make a differential distance measurement between a ring mirror on the reflective null assembly and individual PM segments. The ADM is located inside the same Pressure-Tight Enclosure (PTE) that houses the test interferometer. The PTE maintains the ADM and interferometer at ambient temperature and pressure so that they are not directly exposed to the telescope s harsh cryogenic and vacuum environment. This system takes advantage of the existing achromatic objective and reflective null assembly used by the test interferometer to direct four ADM beamlets to four PM segments through an optical path that is coincident with the interferometer beam. A mask, positioned on a linear slide, contains an array of 1.25 mm diameter circular subapertures that map to each of the 18 PM segments as well as six positions around the ring mirror. A down-collimated 4 mm ADM beam simultaneously covers 4 adjacent PM segment beamlets and one ring mirror beamlet. The radius, or spacing, of all 18 segments can be measured with the addition of two orthogonally-oriented scanning pentaprisms used to steer the ADM beam to any one of six different sub-aperture configurations at the plane of the ring mirror. The interferometer beam, at a wavelength of 687 nm, and the ADM beamlets, at a wavelength of 780 nm, pass through the objective and null so that the rays are normally incident on the parabolic PM surface. After reflecting off the PM, both the ADM and interferometer beams return to their respective

  14. Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments

    Science.gov (United States)

    Small, R. Justin; Msadek, Rym; Kwon, Young-Oh; Booth, James F.; Zarzycki, Colin

    2018-05-01

    It has been hypothesized that the ocean mesoscale (particularly ocean fronts) can affect the strength and location of the overlying extratropical atmospheric storm track. In this paper, we examine whether resolving ocean fronts in global climate models indeed leads to significant improvement in the simulated storm track, defined using low level meridional wind. Two main sets of experiments are used: (i) global climate model Community Earth System Model version 1 with non-eddy-resolving standard resolution or with ocean eddy-resolving resolution, and (ii) the same but with the GFDL Climate Model version 2. In case (i), it is found that higher ocean resolution leads to a reduction of a very warm sea surface temperature (SST) bias at the east coasts of the U.S. and Japan seen in standard resolution models. This in turn leads to a reduction of storm track strength near the coastlines, by up to 20%, and a better location of the storm track maxima, over the western boundary currents as observed. In case (ii), the change in absolute SST bias in these regions is less notable, and there are modest (10% or less) increases in surface storm track, and smaller changes in the free troposphere. In contrast, in the southern Indian Ocean, case (ii) shows most sensitivity to ocean resolution, and this coincides with a larger change in mean SST as ocean resolution is changed. Where the ocean resolution does make a difference, it consistently brings the storm track closer in appearance to that seen in ERA-Interim Reanalysis data. Overall, for the range of ocean model resolutions used here (1° versus 0.1°) we find that the differences in SST gradient have a small effect on the storm track strength whilst changes in absolute SST between experiments can have a larger effect. The latter affects the land-sea contrast, air-sea stability, surface latent heat flux, and the boundary layer baroclinicity in such a way as to reduce storm track activity adjacent to the western boundary in the N

  15. Searches for high-mass supersymmetry using masses of large-radius jets

    CERN Document Server

    Heller, Ryan

    2016-01-01

    Results are reported from two searches for supersymmetric particles in final states with multiple jets, including several b-tagged jets, with and without large missing transverse momentum. The data sample corresponds to 2.3 fb − 1 (2.7 fb − 1 without missing transverse momentum) of pp collisions recorded by the CMS experiment at √ s = 13 TeV. The searches focus on processes with massive, high multiplicity final states, such as gluino pair production with the gluino decaying to top quarks and a neutralino, and gluino pair production with R-parity violating gluino decay to top, bottom and strange quarks. Both searches use the quantity M J , the sum of the masses of the large-radius jets, to discriminate between signal and background, establish control regions for other discriminating variables, and as a central piece of the background estimation. The observed event yields are consistent with the standard model expectations, and the results are interpreted in terms of limits on simplified supersymmetric mo...

  16. Coordination chemistry of several radius-sensitive complexones and applications to lanthanide-actinide separations

    Energy Technology Data Exchange (ETDEWEB)

    Potter, M.W.

    1981-10-01

    The relationships between the lanthanide complex formation equilibria and the lanthanide-actinide separation application of three radius sensitive ligands have been studied. The consecutive stepwise formation constants of the 1:1, 2:1, and 3:1 chelate species formed by the interaction of DHDMB and the tripositive lanthanides and yttrium were determined potentiometrically at 0.1 M ionic strength and 25/sup 0/C. Results indicate that three different coordination modes, one tridentate and two bidentate are in evidence. Tracer level /sup 241/Am - /sup 155/Eu cation-exchange experiments utilizing DHDMB eluents indicate that this dihydroxycarboxylate does not form a sufficiently strong americium complex to elute that actinide ahead of europium. The overall stability of the americium 3:1 complex appears intermediate between samarium and europium. Cation-exchange elutions of /sup 241/Am, /sup 155/Eu, and /sup 160/Tb mixtures with EEDTA solutions prove that the EEDTA ligand is capable of eluting americium ahead of all of the tripositive lanthanide cations. The minimum separation occurs with terbium, where the Am-Tb separation factor is 1.71. 1,5-diaminopentane-N,N,N',N'-tetraacetic acid (PMDTA) was synthesized using cation exchange. A mathematical method was developed for the formation constants of the protonated and unprotonated lanthanide-PMDTA complexes from potentiometry. Cation-exchange elutions of tracer quantities of Am, Eu, and Tb revealed that terbium is eluted ahead of both americium and europium.

  17. Methodology for definition of bending radius and pullback force in HDD (Horizontal Directional Drilling) operations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Danilo Machado L. da; Rodrigues, Marcos V. [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil); Venaas, Asle [Det Norske Veritas (DNV), Oslo (Norway); Medeiros, Antonio Roberto de [Subsea 7 (Brazil)

    2009-12-19

    Bending is a primary loading experienced by pipelines during installation and operation. Significant bending in the presence of tension is experienced during installation by the S-lay method, as the pipe conforms to the curvature of the stinger and beyond in the over bend region. Bending in the presence of external pressure is experienced in the sag bend of all major installation methods (e.g., reeling, J-lay, S-lay) as well as in free-spans on the sea floor. Bending is also experienced by pipelines during installation by horizontal directional drilling. HDD procedures are increasingly being utilized around the world not only for crossings of rivers and other obstacles but also for shore approach of offshore pipelines. During installation the pipeline experience a combination of tensile, bending, and compressive stresses. The magnitude of these stresses is a function of the approach angle, bending radius, pipe diameter, length of the borehole, and the soil properties at the site. The objective of this paper is to present an overview of some aspects related to bending of the product pipe during HDD operations, which is closely related to the borehole path as the pipeline conforms to the curvature of the hole. An overview of the aspects related to tensile forces is also presented. The combined effect of bending and tensile forces during the pullback operation is discussed. (author)

  18. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from 55Cs to 80Hg

    Directory of Open Access Journals (Sweden)

    Hiroshi Tatewaki

    2015-06-01

    Full Text Available We consider, for atoms from 55Cs to 80Hg, the effective atomic radius (rear, which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He2. The values of rear are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of rear decreases from 55Cs to 56Ba and undergoes increases and decreases with rising nuclear charge from 57La to 70Y b. In fact rear is understood as comprising two interlaced sequences; one consists of 57La, 58Ce, and 64Gd, which have electronic configuration (4fn−1(5d1(6s2, and the remaining atoms have configuration (4fn(6s2. The sphere defined by rear contains 85%–90% of the 6s electrons. From 71Lu to 80Hg the radius rear also involves two sequences, corresponding to the two configurations 5dn+16s1 and 5dn6s2. The radius rear according to the present methodology is considerably larger than rvdW obtained by other investigators, some of who have found values of rvdW close to .

  19. Advances towards high performance low-torque qmin > 2 operations with large-radius ITB on DIII-D

    Science.gov (United States)

    Xu, G. S.; Solomon, W. M.; Garofalo, A. M.; Ferron, J. R.; Hyatt, A. W.; Wang, Q.; Yan, Z.; McKee, G. R.; Holcomb, C. T.; EAST Team

    2015-11-01

    A joint DIII-D/EAST experiment was performed aimed at extending a fully noninductive scenario with high βP and qmin > 2 to inductive operation at lower torque and higher Ip (0.6 --> 0.8 MA) for better performance. Extremely high confinement was obtained, i.e., H98y2 ~ 2.1 at βN ~ 3, which was associated with a strong ITB at large minor radius (ρ ~ 0.7). Alfvén Eigenmodes and broadband turbulence were significantly suppressed in the core, and fast-ion confinement was improved. ITB collapses at 0.8 MA were induced by ELM-triggered n = 1 MHD modes at the ITB location, which is different from the ``relaxation oscillations'' associated with the steady-state plasmas at lower current (0.6 MA). This successful joint experiment may open up a new avenue towards high performance low-torque qmin > 2 plasmas with large-radius ITBs, which will be demonstrated on EAST in the near future. Work supported by NMCFSP 2015GB102000, 2015GB110001 and the US DOE under DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-89ER53296 and DE-AC52-07NA27344.

  20. Modification of ELESTRES code with new database of flux depression across the pellet radius

    International Nuclear Information System (INIS)

    Sim, Ki Sub; Park, Kwang Suk; Byun, Taek Sang; Suk, Ho Chun

    1995-01-01

    Modification of ELESTRES CANDU fuel performance code with new database of flux depression across the pellet radius is described, and application results of the improved ELESTRES to the fuel performance data are described. (Author) 4 refs., 4 figs

  1. DHIAP Phase I Technology Demonstration Report: Prototype for Remote Authentication Dail-In User Service (RADIUS)

    National Research Council Canada - National Science Library

    Crane, Lynn

    2000-01-01

    ... a region, is a system that meets the Remote Authentication Dial-In User Service (RADIUS) standard. This report describes the development and trials of the technology and provides an analysis of alternative.

  2. Interchange instability with line-typing and finite Larmor radius effects

    International Nuclear Information System (INIS)

    Riordan, J.C.; Hartman, C.W.

    1977-01-01

    Finite Larmor radius and end effects are included in a treatment of the low-β interchange instability. Higher order modes are shown to be destabilized by incomplete line-tying through an external plasma

  3. Analysis of the Arthroscopically Diagnosed Soft-Tissue Injuries Associated With the Distal Radius Fractures

    Directory of Open Access Journals (Sweden)

    Katerina Katerina Kasapinova

    2014-06-01

    CONCLUSIONS: The frequency of the associated soft-tissue lesions in distal radius fractures is high. Ulnar styloid fracture was identified as risk factor for associated LT lesion, as well as combined lesion of both scapholunate and luntriquetral ligament.

  4. Exact solution of gyration radius of individual's trajectory for a simplified human mobility model

    OpenAIRE

    Yan, Xiao-Yong; Han, Xiao-Pu; Zhou, Tao; Wang, Bing-Hong

    2010-01-01

    Gyration radius of individual's trajectory plays a key role in quantifying human mobility patterns. Of particular interests, empirical analyses suggest that the growth of gyration radius is slow versus time except the very early stage and may eventually arrive to a steady value. However, up to now, the underlying mechanism leading to such a possibly steady value has not been well understood. In this Letter, we propose a simplified human mobility model to simulate individual's daily travel wit...

  5. "Osteoporosis and orthopods" incidences of osteoporosis in distal radius fracture from low energy trauma.

    LENUS (Irish Health Repository)

    Bahari, Syah

    2007-07-01

    Fracture of the distal radius from low energy trauma is a common presentation to orthopaedic trauma services. This fragility type fracture is associated with underlying osteoporosis. Osteoporosis is a \\'silent disease\\' where fragility fracture is a common presentation. Orthopaedic surgeons may be the only physician that these patients encounter. We found a high percentage of female patients who sustained a fragility fracture of the distal radius have an underlying osteoporosis. Further management of osteoporosis is important to prevent future fragility fractures.

  6. Study on Oneself Developed to Apparatus Position of Measurement of BMD in the Distal Radius

    International Nuclear Information System (INIS)

    Han, Man Seok; Song, Jae Yong; Lee, Hyun Kuk; Yu, Se Jong; Kim, Yong Kyun

    2009-01-01

    The aim of this study was to evaluate the difference of bone mineral density according to distal radius rotation and to develop the supporting tool to measure rotation angles. CT scanning and the measurement of BMD by DXA of the appropriate position of the forearm were performed on 20 males. Twenty healthy volunteers without any history of operations, anomalies, or trauma were enrolled. The CT scan was used to evaluate the cross sectional structure and the rotation angle on the horizontal plane of the distal radius. The rotational angle was measured by the m-view program on the PACS monitor. The DXA was used in 20 dried radii of cadaveric specimens in pronation and supination with five and ten degrees, respectively, including a neutral position (zero degrees) to evaluate the changes of BMD according to the rotation. The mean rotation angle of the distal radius on CT was 7.4 degrees of supination in 16 cases (80%), 3.3 degrees of pronation in three cases (15%), and zero degree of neutral in one case (9%), respectively. The total average rotation angle in 20 people was 5.4 degrees of supination. In the cadaveric study, the BMD of the distal radius was different according to the rotational angles. The lowest BMD was obtained at 3.3 degrees of supination. In the case of the measurement of BMD in the distal radius with a neutral position, the rotational angle of the distal radius is close to supination. Pronation is needed for the constant measurement of BMD in the distal radius with the rotation angle measuring at the lowest BMD and about five degrees of pronation of the distal radius is recommended.

  7. The mean free path of protons in nuclei and the nuclear radius

    International Nuclear Information System (INIS)

    Dymarz, R.; Kohmura, T.

    1983-01-01

    We determine the mean free path of protons in nuclei in the energy range 40-1000 MeV. We find that it is necessary to use in the calculation of the mean free path the nuclear radius R which reproduces the reaction and total cross sections consistently and that this radius leads to a rather small mean free path which is comparable with the value obtained in the microscopic calculation in the whole energy region. (orig.)

  8. Mass-Radius Relations of Z and Higgs-Like Bosons

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2014-01-01

    Full Text Available Relations between the rest mass and the effective radius are deduced for the Z boson and the experimentally discovered Higgs-like boson, in terms of a revised quantum electrodynamic (RQED theory. The latter forms an alternative to the Standard Model of elementary particles. This results in an effective radius of the order of 10 E-18 m for a rest mass of 125 GeV.

  9. Mutagenic effects induced by accumulating rare earths nuclides with different ionic radius in fission fragments

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Wang Liuyi; Cao Genfa; Sun Baofu

    1991-05-01

    The purpose of the present study was to ascertain the correlation between the different ionic radius of rare earths nuclides such as 170 Tm, 152 Eu, 147 Pm and its accumulation peculiarity as well as induction of mutagenic effect on bone marrow cells. The study showed that the accumulation peculiarity of rare earths nuclides will vary with the ionic radius. The results indicated that large ionic radius of 147 Pm was selectively localized in liver in early stage, while small ionic radius of 170 Tm and 152 Eu were deposited in bone predominantly. There was a positive relationship between the incidence of chromosome aberration rates and the absorption dose in skeleton by 170 Tm, 152 Eu, or 147 Pm. Studies indicated that the chromosome aberration rates were elevated when the absorption dose in skeleton was increased. Among the type of chromosome aberrations induced by rare earths nuclides with different ionic radius, chromatid breakage was predominant, accompanied with a few chromosome breakage and translocation. At the same time mitosis index of metaphase cells was depressed. Internal contamination of 170 Tm, 152 Eu, or 147 Pm can be induced by some aberrations in one cell. This phenomenon might be due in part to nonuniform irradiation of bone marrow cell with local deposition of these rare earths nuclides with different ionic radius

  10. Does bone measurement on the radius indicate skeletal status. Concise communication

    International Nuclear Information System (INIS)

    Mazess, R.B.; Peppler, W.W.; Chesney, R.W.; Lange, T.A.; Lindgren, U.; Smith, E. Jr.

    1984-01-01

    Single-photon (I-125) absorptiometry was used to measure bone mineral content (BMC) of the distal third of the radius, and dual-photon absorptiometry (Gd-153) was used to measure total-body bone mineral (TBBM), as well as the BMC of major skeletal regions. Measurements were done in normal females, normal males, osteoporotic females, osteoporotic males, and renal patients. The BMC of the radius predicted TBBM well in normal subjects, but was less satisfactory in the patient groups. The spinal BMC was predicted with even lower accuracy from radius measurement. The error in predicting areal density (bone mass per unit projected skeletal area) of the lumbar and thoracic spine from the radius BMC divided by its width was smaller, but the regressions differed significantly among normals, osteoporotics, and renal patients. There was a preferential spinal osteopenia in the osteoporotic group and in about half of the renal patients. Bone measurements on the radius can indicate overall skeletal status in normal subjects and to a lesser degree in patients, but these radius measurements are inaccurate, even on the average, as an indicator of spinal state

  11. Synthetical optimization of hydraulic radius and acoustic field for thermoacoustic cooler

    International Nuclear Information System (INIS)

    Kang Huifang; Li Qing; Zhou Gang

    2009-01-01

    It is well known that the acoustic field and the hydraulic radius of the regenerator play key roles in thermoacoustic processes. The optimization of hydraulic radius strongly depends on the acoustic field in the regenerator. This paper investigates the synthetical optimization of hydraulic radius and acoustic field which is characterized by the ratio of the traveling wave component to the standing wave component. In this paper, we discussed the heat flux, cooling power, temperature gradient and coefficient of performance of thermoacoustic cooler with different combinations of hydraulic radiuses and acoustic fields. The calculation results show that, in the cooler's regenerator, due to the acoustic wave, the heat is transferred towards the pressure antinodes in the pure standing wave, while the heat is transferred in the opposite direction of the wave propagation in the pure traveling wave. The better working condition for the regenerator appears in the traveling wave phase region of the like-standing wave, where the directions of the heat transfer by traveling wave component and standing wave component are the same. Otherwise, the small hydraulic radius is not a good choice for acoustic field with excessively high ratio of traveling wave, and the small hydraulic radius is only needed by the traveling wave phase region of like-standing wave.

  12. [Growth behaviour after fractures of the proximal radius: differences to the rest of the skeleton].

    Science.gov (United States)

    Hell, A K; von Laer, L

    2014-12-01

    Fractures of the proximal end of the radius in the growth phase have three characteristics: the head of the radius articulates with two joint partners and is therefore indispensable for an undisturbed function of the elbow. The blood supply of the proximal end of the radius is via periosteal vessels in the sense of a terminal circulation which makes it extremely vulnerable. Severe trauma caused either by accidents or treatment, can result in partial or complete necrosis with deformity of the head and neck region of the radius. Radioulnar synostosis and chronic epiphysiolysis are irreversible complications which can occur after excessive physiotherapy. Despite a low potency growth plate, in young patients the proximal end of the radius shows an enormous spontaneous correction of dislocations. Side to side shifts, however, will not be remodeled. Therapy should be as atraumatic as possible. Due to the blood supply situation, with the appropriate indications the spontaneous correction and a brief period of immobilization without physiotherapy should be integrated into the therapy concept. If an operation is necessary, repeated traumatic repositioning maneuvers should be avoided and in case of doubt closed or careful open repositioning can be achieved with intramedullary nailing. In order to take the special characteristics of the proximal radius into consideration, the vulnerability and correction potential must be weighed up against each other. Therapy must be as atraumatic as possible. The spontaneous correction potential should be integrated into the primary therapy without overestimating this potential with respect to the extent and age of the patient.

  13. Utility of radius bone densitometry for the treatment of osteoporosis with once-weekly teriparatide therapy

    Directory of Open Access Journals (Sweden)

    Harumi Nakayama

    2018-03-01

    Full Text Available Objectives: As clinics that treat patients with osteoporosis do not usually have central dual-energy X-ray absorptiometry (DXA, bone density is often measured with radial DXA. However, no long-term evidence exists for radius bone density outcomes following treatment with once-weekly teriparatide in actual medical treatment. Methods: We evaluated changes in bone density at 6-, 12-, and 18-month intervals using radial DXA in patients treated with once-weekly teriparatide for more than 6 months. Results: A significant increase in bone mineral density (BMD was observed at the 1/3 and 1/10 radius sites 12 months after the initiation of once-weekly teriparatide. We also observed that the rate of change in BMD was greater at the distal 1/10 radius than at the 1/3 radius. Conclusions: Considering these points, the effect of once-weekly teriparatide therapy can be observed at the radius. In clinics that do not have central DXA, but instead have radial DXA, these findings can help to evaluate the effect of once-weekly teriparatide treatment on osteoporosis. Keywords: Once-weekly teriparatide, Osteoporosis, Radius, Dual-energy X-ray absorptiometry

  14. Radiographical measurements for distal intra-articular fractures of the radius using plain radiographs and cone beam computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Suojaervi, Nora; Lindfors, N. [Helsinki University Central Hospital, Department of Hand Surgery, Helsinki (Finland); Sillat, T.; Koskinen, S.K. [HUS Helsinki Medical Imaging Center, Helsinki University Central Hospital, Department of Radiology, Helsinki (Finland)

    2015-12-15

    Operative treatment of an intra-articular distal radius fracture is one of the most common procedures in orthopedic and hand surgery. The intra- and interobserver agreement of common radiographical measurements of these fractures using cone beam computed tomography (CBCT) and plain radiographs were evaluated. Thirty-seven patients undergoing open reduction and volar fixation for a distal radius fracture were studied. Two radiologists analyzed the preoperative radiographs and CBCT images. Agreement of the measurements was subjected to intra-class correlation coefficient and the Bland-Altman analyses. Plain radiographs provided a slightly poorer level of agreement. For fracture diastasis, excellent intraobserver agreement was achieved for radiographs and good or excellent agreement for CBCT, compared to poor interobserver agreement (ICC 0.334) for radiographs and good interobserver agreement (ICC 0.621) for CBCT images. The Bland-Altman analyses indicated a small mean difference between the measurements but rather large variation using both imaging methods, especially in angular measurements. For most of the measurements, radiographs do well, and may be used in clinical practice. Two different measurements by the same reader or by two different readers can lead to different decisions, and therefore a standardization of the measurements is imperative. More detailed analysis of articular surface needs cross-sectional imaging modalities. (orig.)

  15. Radiographical measurements for distal intra-articular fractures of the radius using plain radiographs and cone beam computed tomography images.

    Science.gov (United States)

    Suojärvi, Nora; Sillat, T; Lindfors, N; Koskinen, S K

    2015-12-01

    Operative treatment of an intra-articular distal radius fracture is one of the most common procedures in orthopedic and hand surgery. The intra- and interobserver agreement of common radiographical measurements of these fractures using cone beam computed tomography (CBCT) and plain radiographs were evaluated. Thirty-seven patients undergoing open reduction and volar fixation for a distal radius fracture were studied. Two radiologists analyzed the preoperative radiographs and CBCT images. Agreement of the measurements was subjected to intra-class correlation coefficient and the Bland-Altman analyses. Plain radiographs provided a slightly poorer level of agreement. For fracture diastasis, excellent intraobserver agreement was achieved for radiographs and good or excellent agreement for CBCT, compared to poor interobserver agreement (ICC 0.334) for radiographs and good interobserver agreement (ICC 0.621) for CBCT images. The Bland-Altman analyses indicated a small mean difference between the measurements but rather large variation using both imaging methods, especially in angular measurements. For most of the measurements, radiographs do well, and may be used in clinical practice. Two different measurements by the same reader or by two different readers can lead to different decisions, and therefore a standardization of the measurements is imperative. More detailed analysis of articular surface needs cross-sectional imaging modalities.

  16. Follow-up of the fate of imazalil from post-harvest lemon surface treatment to a baking experiment.

    Science.gov (United States)

    Vass, Andrea; Korpics, Evelin; Dernovics, Mihály

    2015-01-01

    Imazalil is one of the most widespread fungicides used for the post-harvest treatment of citrus species. The separate use of peel during food preparation and processing may hitherto concentrate most of the imazalil into food products, where specific maximum residue limits hardly exist for this fungicide. In order to monitor comprehensively the path of imazalil, our study covered the monitoring of the efficiency of several washing treatments, the comparison of operative and related sample preparation methods for the lemon samples, the validation of a sample preparation technique for a fatty cake matrix, the preparation of a model cake sample made separately either with imazalil containing lemon peel or with imazalil spiking, the monitoring of imazalil degradation into α-(2,4-dichlorophenyl)-1H-imidazole-1-ethanol because of the baking process, and finally the mass balance of imazalil throughout the washing experiments and the baking process. Quantification of imazalil was carried out with an LC-ESI-MS/MS set-up, while LC-QTOF was used for the monitoring of imazalil degradation. Concerning the washing, none of the addressed five washing protocols could remove more than 30% of imazalil from the surface of the lemon samples. The study revealed a significant difference between the extraction efficiency of imazalil by the EN 15662:2008 and AOAC 2007.1 methods, with the advantage of the former. The use of the model cake sample helped to validate a modified version of the EN 15662:2008 method that included a freeze-out step to efficiently recover imazalil (>90%) from the fatty cake matrix. The degradation of imazalil during the baking process was significantly higher when this analyte was spiked into the cake matrix than in the case of preparing the cake with imazalil-containing lemon peel (52% vs. 22%). This observation calls the attention to the careful evaluation of pesticide stability data that are based on solution spiking experiments.

  17. Experience with remediating radiostrontium-contaminated ground water and surface water with versions of AECL's CHEMIC process

    International Nuclear Information System (INIS)

    Vijayan, S.

    2006-01-01

    Numerous approaches have been developed for the remediation of radiostrontium ( 90 Sr) contaminated ground water and surface water. Several strontium-removal technologies have been assessed and applied at AECL's (Atomic Energy of Canada Limited) Chalk River Laboratories. These include simple ion exchange (based on non-selective natural zeolites or selective synthetic inorganic media), and precipitation and filtration with or without ion exchange as a final polishing step. AECL's CHEMIC process is based on precipitation-microfiltration and ion-exchange steps. This paper presents data related to radiostrontium removal performance and other operational experiences including troubleshooting with two round-the-clock, pilot-scale water remediation plants based on AECL's CHEMIC process at the Chalk River Laboratories site. These plants began operation in the early 1990s. Through optimization of process chemistry and operation, high values for system capability and system availability factors, and low concentrations of 90 Sr in the discharge water approaching drinking water standard can be achieved. (author)

  18. Midterm Follow-up of Treating Volar Marginal Rim Fractures with Variable Angle Lcp Volar Rim Distal Radius Plates.

    Science.gov (United States)

    Goorens, Chul Ki; Geeurickx, Stijn; Wernaers, Pascal; Staelens, Barbara; Scheerlinck, Thierry; Goubau, Jean

    2017-06-01

    Specific treatment of the volar marginal rim fragment of distal radius fractures avoids occurance of volar radiocarpal dislocation. Although several fixation systems are available to capture this fragment, adequately maintaining internal fixation is difficult. We present our experience of the first 10 cases using the 2.4 mm variable angle LCP volar rim distal radius plate (Depuy Synthes®, West Chester, US), a low-profile volar rim-contouring plate designed for distal plate positioning and stable buttressing of the volar marginal fragment. Follow-up patient satisfaction, range of motion, grips strength, functional scoring with the QuickDASH and residual pain with a numeric rating scale were assessed. Radiological evaluation consisted in evaluating fracture consolidation, ulnar variance, volar angulation and maintenance of the volar rim fixation. The female to male ratio was 5:5 and the mean age was 52.2 (range, 17-80) years. The mean follow-up period was 11 (range, 5-19) months postoperatively. Patient satisfaction was high. The mean total flexion/extension range was 144° (range, 100-180°) compared to the contralateral uninjured side 160° (range, 95-180°). The mean total pronation/supination range was 153° (range, 140-180°) compared to the contralateral uninjured side 170° (range, 155-180°). Mean grip strength was 14 kg (range, 9-22), compared to the contralateral uninjured side 20 kg (range, 12-25 kg). Mean pre-injury level activity QuickDASH was 23 (range, 0-34.1), while post-recovery QuickDASH was 25 (range 0-43.2). Residual pain was 1.5 on the visual numerical pain rating scale. Radiological evaluation revealed in all cases fracture consolidation, satisfactory reconstruction of ulnar variance, volar angulation and volar rim. We encountered no flexor tendon complications, although plate removal was systematically performed after fracture consolidation. The 2.4 mm variable angle LCP volar rim distal radius plates is a valid treatment option for treating

  19. Cascade-induced fluctuations and the transition from the stable to the critical cavity radius for swelling

    International Nuclear Information System (INIS)

    Hayns, M.R.; Mansur, L.K.

    1985-01-01

    Recently, a cascade diffusion theory was developed to understand cacade-induced fluctuations in point defect flux during irradiation. Application of the theory revealed that such fluctuations give rise to a mechanism of cascade-induced creep that is predicted to be of significant magnitude. Here we extend the investigation to the formation of cavities. Specifically, we explore the possible importance of cascade-induced cavity growth excursions in triggering a transition from the gas-content-dictated stable radius to the critical radius for bias-driven growth. Two methods of analysis are employed. The first uses the variance of fluctuations to assess the average effect of fluctuations. The second is based on the fact that in a large ensemble of cavities, a small fraction will experience larger than average excursions. This prospect is assessed by estimating upper limits to the processes. For the conditions considered, it is concluded that cascade-induced fluctuations are of minor importance in triggering the onset of swelling in a population of stable gas-containing cavities

  20. High Temperature Surface Parameters for Solar Power

    National Research Council Canada - National Science Library

    Butler, C. F; Jenkins, R. J; Rudkin, R. L; Laughridge, F. I

    1960-01-01

    ... at a given distance from the sun. Thermal conversion efficiencies with a concentration ratio of 50 have been computed for each surface when exposed to solar radiation at the Earth's mean orbital radius...

  1. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from {sub 55}Cs to {sub 80}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Tatewaki, Hiroshi, E-mail: htatewak@nsc.nagoya-cu.ac.jp [Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi 467-8501 (Japan); Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota, Aichi 470-0393 (Japan); Hatano, Yasuyo [School of Information Science and Technology, Chukyo University, Toyota, Aichi 470-0393 (Japan); Noro, Takeshi [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Yamamoto, Shigeyoshi [School of International Liberal Studies, Chukyo University, Nagoya, Aichi 466-8666 (Japan)

    2015-06-15

    We consider, for atoms from {sub 55}Cs to {sub 80}Hg, the effective atomic radius (r{sub ear}), which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He{sub 2}. The values of r{sub ear} are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of r{sub ear} decreases from {sub 55}Cs to {sub 56}Ba and undergoes increases and decreases with rising nuclear charge from {sub 57}La to {sub 70}Y b. In fact r{sub ear} is understood as comprising two interlaced sequences; one consists of {sub 57}La, {sub 58}Ce, and {sub 64}Gd, which have electronic configuration (4f{sup n−1})(5d{sup 1})(6s{sup 2}), and the remaining atoms have configuration (4f{sup n})(6s{sup 2}). The sphere defined by r{sub ear} contains 85%–90% of the 6s electrons. From {sub 71}Lu to {sub 80}Hg the radius r{sub ear} also involves two sequences, corresponding to the two configurations 5d{sup n+1}6s{sup 1} and 5d{sup n}6s{sup 2}. The radius r{sub ear} according to the present methodology is considerably larger than r{sub vdW} obtained by other investigators, some of who have found values of r{sub vdW} close to .

  2. Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS collections 5.1 and 6 over global oceans

    Directory of Open Access Journals (Sweden)

    J. Rausch

    2017-06-01

    Full Text Available Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC estimates inferred from the Aqua–MODIS (Moderate Resolution Imaging Spectroradiometer collections 5.1 (C5.1 and 6 (C6 cloud products (MYD06 are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1°  ×  1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS cloud product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above-cloud emission, cloud-top pressure (CTP, and pixel registration. Global results show a neutral to positive (> 50 cm−3 change for C6-derived CDNC relative to C5.1 for the 1.6 and 2.1 µm channel retrievals, corresponding to a neutral to −2 µm difference in droplet effective radius (re. For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning −25 to +50 cm−3 related to a +2.5 to −1 µm transition in effective radius. Cloud optical thickness (τ differences were small relative to effective radius and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant inter-collection differences in aggregated values of effective radius due to changes to the precomputed retrieval lookup tables (LUTs for ocean scenes, changes to retrieved cloud-top pressure, solar irradiance, or above-cloud thermal emission

  3. Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes – A flume experiment

    NARCIS (Netherlands)

    Bento, Célia P.M.; Commelin, Meindert C.; Baartman, Jantiene E.M.; Yang, Xiaomei; Peters, Piet; Mol, Hans G.J.; Ritsema, Coen J.; Geissen, Violette

    2018-01-01

    This study investigates the influence of small-scale sediment transport on glyphosate and AMPA redistribution on the soil surface and on their off-site transport during water erosion events. Both a smooth surface (T1) and a surface with “seeding lines on the contour” (T2) were tested in a rainfall

  4. Design and modeling of precision solid liner experiments on Pegasus

    International Nuclear Information System (INIS)

    Bowers, R.L.; Brownell, J.H.; Lee, H.; McLenithan, K.D.; Scannapieco, A.J.; Shanahan, W.R.

    1998-01-01

    Pulsed power driven solid liners may be used for a variety of physics experiments involving materials at high stresses. These include shock formation and propagation, material strain-rate effects, material melt, instability growth, and ejecta from shocked surfaces. We describe the design and performance of a cylindrical solid liner that can attain velocities in the several mm/μs regime, and that can be used to drive high-stress experiments. An approximate theoretical analysis of solid liner implosions is used to establish the basic parameters (mass, materials, and initial radius) of the driver. We then present one-dimensional and two-dimensional simulations of magnetically driven, liner implosions which include resistive heating and elastic endash plastic behavior. The two-dimensional models are used to study the effects of electrode glide planes on the liner close-quote s performance, to examine sources of perturbations of the liner, and to assess possible effects of instability growth during the implosion. Finally, simulations are compared with experimental data to show that the solid liner performed as predicted computationally. Experimental data indicate that the liner imploded from an initial radius of 2.4 cm to a target radius of 1.5 cm, and that it was concentric and cylindrical to better than the experimental resolution (60 μm) at the target. The results demonstrate that a precision solid liner can be produced for high-stress, pulsed power applications experiments. copyright 1998 American Institute of Physics

  5. Space Inside a Liquid Sphere Transforms into De Sitter Space by Hilbert Radius

    Science.gov (United States)

    Rabounski, Dmitri; Borissova, Larissa

    2010-04-01

    Consider space inside a sphere of incompressible liquid, and space surrounding a mass-point. Metrics of the spaces were deduced in 1916 by Karl Schwarzschild. 1) Our calculation shows that a liquid sphere can be in the state of gravitational collapse (g00 = 0) only if its mass and radius are close to those of the Universe (M = 8.7x10^55 g, a = 1.3x10^28 cm). However if the same mass is presented as a mass-point, the radius of collapse rg (Hilbert radius) is many orders lesser: g00 = 0 realizes in a mass-point's space by other conditions. 2) We considered a liquid sphere whose radius meets, formally, the Hilbert radius of a mass-point bearing the same mass: a = rg, however the liquid sphere is not a collapser (see above). We show that in this case the metric of the liquid sphere's internal space can be represented as de Sitter's space metric, wherein λ = 3/a^2 > 0: physical vacuum (due to the λ-term) is the same as the field of an ideal liquid where ρ0 0 (the mirror world liquid). The gravitational redshift inside the sphere is produced by the non-Newtonian force of repulsion (which is due to the λ-term, λ = 3/a^2 > 0); it is also calculated.

  6. Bounds of the Spectral Radius and the Nordhaus-Gaddum Type of the Graphs

    Directory of Open Access Journals (Sweden)

    Tianfei Wang

    2013-01-01

    Full Text Available The Laplacian spectra are the eigenvalues of Laplacian matrix L(G=D(G-A(G, where D(G and A(G are the diagonal matrix of vertex degrees and the adjacency matrix of a graph G, respectively, and the spectral radius of a graph G is the largest eigenvalue of A(G. The spectra of the graph and corresponding eigenvalues are closely linked to the molecular stability and related chemical properties. In quantum chemistry, spectral radius of a graph is the maximum energy level of molecules. Therefore, good upper bounds for the spectral radius are conducive to evaluate the energy of molecules. In this paper, we first give several sharp upper bounds on the adjacency spectral radius in terms of some invariants of graphs, such as the vertex degree, the average 2-degree, and the number of the triangles. Then, we give some numerical examples which indicate that the results are better than the mentioned upper bounds in some sense. Finally, an upper bound of the Nordhaus-Gaddum type is obtained for the sum of Laplacian spectral radius of a connected graph and its complement. Moreover, some examples are applied to illustrate that our result is valuable.

  7. The orientation of the mineral crystals in the radius and tibia of the sheep, and its variation with age.

    Science.gov (United States)

    Bacon, G E; Goodship, A E

    1991-01-01

    The direction of preferred orientation of the hydroxyapatite crystals in both the tibia and radius of the sheep is close to the long axis of the bone, notwithstanding the angle of about 30 degrees which, for the tibia, exists between the long axis and the direction of principal dynamic strain during locomotion. For both bones the orientation of the cranial cortex, which is a tension surface during locomotion, is about 40% larger than the caudal. The variation with age of the magnitude of the preferred orientation for the sheep bones is contrasted with what has been reported earlier for the human femur. Notably, for the sheep, both bones show substantial orientation at birth--having increased steadily during gestation--so that the animal is able to stand and walk at the outset. PMID:1817133

  8. The white dwarf mass-radius relation with Gaia, Hubble and FUSE

    Science.gov (United States)

    Joyce, Simon R. G.; Barstow, Martin A.; Casewell, Sarah L.; Holberg, Jay B.; Bond, Howard E.

    2018-04-01

    White dwarfs are becoming useful tools for many areas of astronomy. They can be used as accurate chronometers over Gyr timescales. They are also clues to the history of star formation in our galaxy. Many of these studies require accurate estimates of the mass of the white dwarf. The theoretical mass-radius relation is often invoked to provide these mass estimates. While the theoretical mass-radius relation is well developed, observational tests of this relation show a much larger scatter in the results than expected. High precision observational tests to confirm this relation are required. Gaia is providing distance measurements which will remove one of the main source of uncertainty affecting most previous observations. We combine Gaia distances with spectra from the Hubble and FUSE satelites to make precise tests of the white dwarf mass-radius relation.

  9. Measurements of the Minimum Bending Radius of Small Diameter Scintillating Plastic Fibres

    CERN Document Server

    Gruber, Lukas; Vaananen, Mika Petteri; Gavardi, Laura

    2018-01-01

    The minimum bending radius of plastic fibres is an important parameter as it determines the geometrical flexibility of the fibres during long-term storage or installation and usage inside detectors. The following document describes measurements of the minimum bending radius of round scintillating plastic fibres with small diameter performed in the context of the LHCb SciFi Tracker project. The experimental set-up is based on measuring the light output of a bent fibre in response to 1 MeV electrons over several days. The results suggest that the 250 μm diameter fibres can be bent to a radius of about 10 mm without damaging and losing light.

  10. A COMPARATIVE STUDY OF CONSERVATIVE MANAGEMENT VS. EXTERNAL FIXATION OF COMMINUTED DISTAL RADIUS FRACTURES

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar Kare

    2016-12-01

    Full Text Available BACKGROUND Fracture of the distal radius (‘broken wrist’ is a common clinical problem. It can be treated conservatively usually involving wrist immobilisation in a plaster cast or surgically. A key method of surgical fixation is external fixation. MATERIALS AND METHODS A prospective study was carried out on 66 patients admitted between June 2014 to May 2016 for evaluation of conservative and surgical management of distal radius fractures. RESULTS Excellent, fair or good result was noticed in around 85% of cases managed conservatively and in above 90% of cases managed by external fixator. CONCLUSION There is some evidence to support the use of external fixation for dorsally displaced fractures of the distal radius in adults. Though, there is insufficient evidence to confirm a better functional outcome, external fixation reduces redisplacement gives improved anatomical results and most of the excess surgically-related complications are minor.

  11. Possibility to determine the radius of accretion disk by gravitational waves

    International Nuclear Information System (INIS)

    Sotani, H; Saijo, M

    2007-01-01

    We investigate gravitational waves from a dust disk around a Schwarzschild black hole to focus on whether we can extract any of its physical properties from a direct detection of gravitational waves. We adopt a black hole perturbation approach in a time domain, which is a satisfactory approximation to illustrate a dust disk in a supermassive black hole. We find that we can determine the radius of the disk by using the power spectrum of gravitational waves and that our method to extract the radius works for a disk of arbitrary density distribution. Therefore we believe a possibility exists for determining the radius of the disk from a direct observation of gravitational waves detected by the Laser Interferometer Space Antenna

  12. The Splashback Radius of Halos from Particle Dynamics. I. The SPARTA Algorithm

    Science.gov (United States)

    Diemer, Benedikt

    2017-07-01

    Motivated by the recent proposal of the splashback radius as a physical boundary of dark-matter halos, we present a parallel computer code for Subhalo and PARticle Trajectory Analysis (SPARTA). The code analyzes the orbits of all simulation particles in all host halos, billions of orbits in the case of typical cosmological N-body simulations. Within this general framework, we develop an algorithm that accurately extracts the location of the first apocenter of particles after infall into a halo, or splashback. We define the splashback radius of a halo as the smoothed average of the apocenter radii of individual particles. This definition allows us to reliably measure the splashback radii of 95% of host halos above a resolution limit of 1000 particles. We show that, on average, the splashback radius and mass are converged to better than 5% accuracy with respect to mass resolution, snapshot spacing, and all free parameters of the method.

  13. Aplikasi Pencarian Tempat Wisata Berbasiskan GPS dengan Metode Radius dan Rating

    Directory of Open Access Journals (Sweden)

    Budi Yulianto

    2015-03-01

    Full Text Available Tourist place navigation application becomes more important for travelers, especially backpackers. Previous research had produced applications which can only show the route from the position of traveler to tourist place with map shown. The goal of the research is to use the radius and rating method that is still rare in the community to navigate tourist place. Output of the research is a GPS-based application that can display the search results of tourist sites based on rating and radius method, route from the traveler to the destination place, and description of the place. Development method used waterfall that contained user requirement, analysis, design, coding and testing, implementation, and maintenance. Conclusion of the research has shown that the developed application provided convenience in searching tourist places based on radius and rating, displaying route, and description of tourist places.

  14. Influence of heat input and radius to pipe thickness ratio on the residual stresses in circumferential arc welded pipes of API X46 steels

    International Nuclear Information System (INIS)

    Hemmatzadeh, Majid; Moshayedi, Hessamoddin; Sattari-Far, Iradj

    2017-01-01

    The present work aims to study residual stresses caused by circumferentially welding of two similar API X46 steel pipes by means of finite element modeling. Considering the metallurgical phase transformations and through thermal-mechanical uncoupled analysis, the 3D modeling was carried out by SYSWELD software. Materialistic thermal and mechanical properties of all phases were defined in terms of temperature as well as phase transformation properties. Residual stress was measured through hole-drilling method. The obtained results were used to verify the finite element model. By means of full factorial experiment designing method, effects of heat input and radius to pipe thickness ratio on maximum values of hoop and axial residual stresses were investigated. The effect of each factor was studied in 3 levels and by 9 experiments. Results of statistical analysis revealed that increase in heat input and radius-thickness ratio would lead to higher values of maximum hoop and axial residual stresses. However, interactions of high level of heat input and a low level of radius-thickness ratio increased inter-pass temperature and consequently caused a sudden raise in maximum values of residual stresses. - Highlights: • A FEM model was developed to simulate welding considering phase transformations. • The obtained residual stresses were validated by experiments. • Effect of heat input and radius-to-thickness ratio on residual stress were investigated. • Increasing heat input for 100% caused increasing hoop and axial residual stress until 200%. • Interaction of high heat input and low R/t causes a sudden increase in axial residual stresses.

  15. Sea quarks contribution to the nucleon magnetic moment and charge radius at the physical point

    Science.gov (United States)

    Sufian, Raza Sabbir; Yang, Yi-Bo; Liang, Jian; Draper, Terrence; Liu, Keh-Fei; χ QCD Collaboration

    2017-12-01

    We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We adopt a model-independent extrapolation of the nucleon magnetic moment and the charge radius. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light and strange disconnected-sea quarks contribution to the nucleon magnetic moment is μM(DI )=-0.022 (11 )(09 ) μN and to the nucleon mean square charge radius is ⟨r2⟩E(DI ) =-0.019 (05 )(05 ) fm2 which is about 1 /3 of the difference between the ⟨rp2⟩E of electron-proton scattering and that of a muonic atom and so cannot be ignored in obtaining the proton charge radius in the lattice QCD calculation. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton mean square charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron mean square charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light and strange disconnected-sea quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤Q2≤0.5 GeV2 .

  16. Reconstruction of lower end of radius using vascularized upper end of fibula

    Directory of Open Access Journals (Sweden)

    Koul Ashok

    2007-01-01

    Full Text Available Background: Giant cell tumor is a fairly common locally invasive tumor in young adults. The lower end of the radius is the second commonest site for this tumor. The most common treatment for this tumor is curettage with or without bone grafting but it carries a significant rate of recurrence. Excision is the treatment of choice, especially for cases in which the cortex has been breached. After excision of the distal end of the radius, different procedures have been described to reconstruct the defect of distal radius. These include partial arthrodesis and hemiarthroplasty using the upper end of the fibula. The upper end of the fibula has a morphological resemblance to the lower end of the radius and has been used to replace the latter. Traditionally it was used as a ′free′ (non-vascularized graft. More recently the upper end of the fibula has been transferred as a vascularized transfer for the same purpose. Though vascularized transfer should be expected to be more physiological, its superiority over the technically simpler non-vascularized transfer has not been conclusively proven. Materials and Methods: Two patients are presented who had giant cell tumor of distal radius. They underwent wide local excision and reconstruction with free vascularized upper end of the fibula. Result: Follow-up period was two and a half years and 12 months respectively. Both patients have returned to routine work. One patient has excellent functional result and the other has a good result. Conclusion: Vascularized upper end of fibula transfer is a reliable method of reconstruction for loss of the distal end of the radius that restores local anatomy and physiology.

  17. Structure and reactivity of oxalate surface complexes on lepidocrocite derived from infrared spectroscopy, DFT-calculations, adsorption, dissolution and photochemical experiments

    Science.gov (United States)

    Borowski, Susan C.; Biswakarma, Jagannath; Kang, Kyounglim; Schenkeveld, Walter D. C.; Hering, Janet G.; Kubicki, James D.; Kraemer, Stephan M.; Hug, Stephan J.

    2018-04-01

    Oxalate, together with other ligands, plays an important role in the dissolution of iron(hdyr)oxides and the bio-availability of iron. The formation and properties of oxalate surface complexes on lepidocrocite were studied with a combination of infrared spectroscopy (IR), density functional theory (DFT) calculations, dissolution, and photochemical experiments. IR spectra measured as a function of time, concentration, and pH (50-200 μM oxalate, pH 3-7) showed that several surface complexes are formed at different rates and in different proportions. Measured spectra could be separated into three contributions described by Gaussian line shapes, with frequencies that agreed well with the theoretical frequencies of three different surface complexes: an outer-sphere complex (OS), an inner-sphere monodentate mononuclear complex (MM), and a bidentate mononuclear complex (BM) involving one O atom from each carboxylate group. At pH 6, OS was formed at the highest rate. The contribution of BM increased with decreasing pH. In dissolution experiments, lepidocrocite was dissolved at rates proportional to the surface concentration of BM, rather than to the total adsorbed concentration. Under UV-light (365 nm), BM was photolyzed at a higher rate than MM and OS. Although the comparison of measured spectra with calculated frequencies cannot exclude additional possible structures, the combined results allowed the assignment of three main structures with different reactivities consistent with experiments. The results illustrate the importance of the surface speciation of adsorbed ligands in dissolution and photochemical reactions.

  18. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    Science.gov (United States)

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  19. An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks.

    Science.gov (United States)

    Yu, Shidi; Liu, Xiao; Liu, Anfeng; Xiong, Naixue; Cai, Zhiping; Wang, Tian

    2018-05-10

    Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed

  20. DETERMINATION ОF DRESS ROLL OPTIMAL RADIUS WHILE PRODUCING PARTS WITH TROCHOIDAL PROFILE

    Directory of Open Access Journals (Sweden)

    E. N. Yankevich

    2008-01-01

    Full Text Available The paper considers determination of the dress roll optimal radius while producing parts having trohoidal profile with the help of grinding method that presupposes application of grinding disk. In this case disk profile has been cut-in by diamond dressing. Two methods for determination of calculation of the dress roll optimal radius have been proposed in the paper. On the basis of the satellite gear of the planetary pin reducer whose profile presents a trochoid it has been shown that the obtained results pertaining to two proposed methods conform with each other.

  1. Tyre effective radius and vehicle velocity estimation: a variable structure observer solution

    International Nuclear Information System (INIS)

    El Tannoury, C.; Plestan, F.; Moussaoui, S.; ROMANi, N. RENAULT

    2011-01-01

    This paper proposes an application of a variable structure observer for wheel effective radius and velocity of automotive vehicles. This observer is based on high order sliding approach allowing robustness and finite time convergence. Its originality consists in assuming a nonlinear relation between the slip ratio and the friction coefficient and providing an estimation of both variables, wheel radius and vehicle velocity, from measurement of wheel angular velocity and torque. These signals being available on major modern vehicle CAN (Controller Area Network) buses, this system does not require additional sensors. A simulation example is given to illustrate the relevance of this approach.

  2. The effective neutrino charge radius in the presence of fermion masses

    International Nuclear Information System (INIS)

    Binosi, D.; Bernabeu, J.; Papavassiliou, J.

    2005-01-01

    We show how the crucial gauge cancellations leading to a physical definition of an effective neutrino charge radius persist in the presence of non-vanishing fermion masses. An explicit one-loop calculation demonstrates that, as happens in the massless case, the pinch technique rearrangement of the Feynman amplitudes, together with the judicious exploitation of the fundamental current relation J α (3) =2(J Z +sinθ w 2 J γ ) α , leads to a completely gauge independent definition of the effective neutrino charge radius. Using the formalism of the Nielsen identities it is further proved that the same cancellation mechanism operates unaltered to all orders in perturbation theory

  3. Fine-Tuning on the Effective Patch Radius Expression of the Circular Microstrip Patch Antennas

    Directory of Open Access Journals (Sweden)

    A. E. Yilmaz

    2010-09-01

    Full Text Available In this study, the effective patch radius expression for the circular microstrip antennas is improved by means of several manipulations. Departing from previously proposed equations in the literature, one of the most accurate equations is picked up, and this equation is fine-tuned by means of Particle Swarm Optimization technique. Throughout the study, impacts of other parameters (such as the definition of the fitness/objective function, the degree-of-freedom in the proposed effective patch radius expression, the number of measured resonant frequency values are observed in a controlled manner. Finally, about 3% additional improvement is achieved over a very accurate formula, which was proposed earlier.

  4. Optimization of the bubble radius in a moving single bubble sonoluminescence

    International Nuclear Information System (INIS)

    Mirheydari, Mona; Sadighi-Bonabi, Rasoul; Rezaee, Nastaran; Ebrahimi, Homa

    2011-01-01

    A complete study of the hydrodynamic force on a moving single bubble sonoluminescence in N-methylformamide is presented in this work. All forces exerted, trajectory, interior temperature and gas pressure are discussed. The maximum values of the calculated components of the hydrodynamic force for three different radii at the same driving pressure were compared, while the optimum bubble radius was determined. The maximum value of the buoyancy force appears at the start of bubble collapse, earlier than the other forces whose maximum values appear at the moment of bubble collapse. We verified that for radii larger than the optimum radius, the temperature peak value decreases.

  5. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    Science.gov (United States)

    Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.-W.; Meißner, U.-G.

    2016-11-01

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ→bar{N} N partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.

  6. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    International Nuclear Information System (INIS)

    Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.W.; Meissner, U.G.

    2016-01-01

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ → anti NN partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius. (orig.)

  7. Measuring Atmospheric Abundances and Rotation of a Brown Dwarf with a Measured Mass and Radius

    Science.gov (United States)

    Birkby, Jayne

    2015-08-01

    There are no cool brown dwarfs with both a well-characterized atmosphere and a measured mass and radius. LHS 6343, a brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to tie theoretical atmospheric models to the observed brown dwarf mass-radius diagram. We propose four half-nights of observations with NIRSPAO in 2015B to measure spectral features in LHS 6343 C by detecting the relative motions of absorption features during the system's orbit. In addition to abundances, we will directly measure the brown dwarf's projected rotational velocity and mass.

  8. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Hoferichter, M. [University of Washington, Institute for Nuclear Theory, Seattle, WA (United States); Kubis, B.; Ruiz de Elvira, J. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Hammer, H.W. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Institut fuer Kernphysik, Institute for Advanced Simulation, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany)

    2016-11-15

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ → anti NN partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius. (orig.)

  9. An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shidi Yu

    2018-05-01

    Full Text Available Due to the Software Defined Network (SDN technology, Wireless Sensor Networks (WSNs are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1 with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2 As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3 The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that

  10. Collision free path generation in 3D with turning and pitch radius constraints for aerial vehicles

    DEFF Research Database (Denmark)

    Schøler, F.; La Cour-Harbo, A.; Bisgaard, M.

    2009-01-01

    In this paper we consider the problem of trajectory generation in 3D for uninhabited aerial systems (UAS). The proposed algorithm for trajectory generation allows us to find a feasible collision-free 3D trajectory through a number of waypoints in an environment containing obstacles. Our approach...... assumes that most of the aircraft structural and dynamic limitations can be formulated as a turn radius constraint, and that any two consecutive waypoints have line-of-sight. The generated trajectories are collision free and also satisfy a constraint on the minimum admissible turning radius, while...

  11. An estimation of the spatial coherency radius of a multimode laser beam by the spectral contrast

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, I I

    1983-01-01

    The angular dependency of the spectral contrast behind a diffuser illuminated by an He/Ne laser beam at .63 micrometers on the number of transverse modes is investigated. It is demonstrated that over a wide range of scattering angles, the contrast is determined primarily by the number of transverse modes, i.e. by the radius of the spatial field correlation, and is only slightly dependent on the dimensions and shape of the beam as well as the intensity distribution in the beam. These results may be useful in developing a rapid indication method of the radius of the spatial correlation of laser beams.

  12. In-situ measurements of the ATLAS large-radius jet response in 13 TeV pp collisions

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The response of the ATLAS experiment to groomed large (R=1.0) radius jets is measured {\\em in-situ} with 33 fb−1 of "$\\sqrt$"=13 TeV LHC proton--proton collisions collected in 2016. Results from several methods are combined. The jet transverse momentum scale and resolution are measured in events where the jet recoils against a reference object, either a calibrated photon, another jet, or a recoiling system of jets. The jet mass is constrained using mass peaks formed by boosted W-bosons and top quarks and by comparison to the jet mass calculated with track jets. Generally, the Monte Carlo description is found to be adequate. Small discrepancies are incorporated as {\\em in-situ} corrections. The constraint on the transverse momentum scale is 1-2% for pT< 2 TeV, that on the mass scale 2-4%. The pT (mass) resolution is constrained to 10% (20%).

  13. Surface topography effects on energy-resolved polar angular distributions of electrons induced in heavy ion-Al collisions: experiments and models

    International Nuclear Information System (INIS)

    Mischler, J.; Banouni, M.; Banazeth, C.; Negre, M.; Benazeth, N.

    1986-01-01

    The influence of the surface topography on the polar angular distributions of secondary electrons emitted in Ar + (and Xe - )-Al collisions was studied. After each set of experiments, the surface target was viewed by scanning electron microscope. Under normal incidence, continuum background and Al L 23 VV Auger electron polar angular distributions were not modified by the topography and closely followed a cosine law. For Al L 23 MM Auger electrons, experimental angular distributions as a function of the emission polar angle theta, either were near a constant law or followed a decreasing law depending on the irradiation conditions. The N(theta) curves calculated from the models showed that the isotropic angular distributions obtained for electrons generated outside the crystal from a flat surface could be strongly modified by the surface topography. (author)

  14. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments

    NARCIS (Netherlands)

    Zhao, Longshan; Hou, Rui; Wu, Faqi; Keesstra, Saskia

    2018-01-01

    Agriculture has a large effect on the properties of the soil and with that on soil hydrology. The partitioning of rainfall into infiltration and runoff is relevant to understand runoff generation, infiltration and soil erosion. Tillage manages soil surface properties and generates soil surface

  15. The design, fabrication, and testing of beryllium capsules for resonant ultrasound experiments

    International Nuclear Information System (INIS)

    Salazar, M.A.; Salzer, L.; Day, R.

    1999-01-01

    Inertial Confinement Fusion (ICF) ignition targets require smooth and well-characterized deuterium/tritium (DT) ice layers. Los Alamos is developing Resonant Ultrasound Spectroscopy (RUS) to measure the internal pressure in the targets at room temperature after filling with DT. RUS techniques also can detect and measure the amplitudes of low modal surface roughness perturbations of the target shell interior. The experiments required beryllium capsules with a nominal inside radius of 1 mm and a spherical outside radius of 3 mm. The capsules have various spherical harmonic contours up to mode 12 machined into their interior surfaces. The capsules are constructed from hemispheres using an epoxy adhesive and then filled to ∼270 atm with helium or deuterium gas. This paper describes the adhesive joint design, machining techniques, and interior geometry inspection techniques. It also describes the fixtures needed to assemble, fill, and pressure test the capsules

  16. Determination of the radius of a self-pinched beam from its energy integral

    International Nuclear Information System (INIS)

    Lee, E.P.

    1980-01-01

    The total transverse energy (kinetic plus potential) of a self-pinched beam may be used to predict the final equilibrium radius when the beam is mismatched at injection. The dependence of potential energy on the current profile shape is characterized by a dimensionless parameter C(z), variations of which are correlated with the change of emittance

  17. Perimeter generating functions for the mean-squared radius of gyration of convex polygons

    International Nuclear Information System (INIS)

    Jensen, Iwan

    2005-01-01

    We have derived long series expansions for the perimeter generating functions of the radius of gyration of various polygons with a convexity constraint. Using the series we numerically find simple (algebraic) exact solutions for the generating functions. In all cases the size exponent ν 1. (letter to the editor)

  18. Turnaround radius in an accelerated universe with quasi-local mass

    Energy Technology Data Exchange (ETDEWEB)

    Faraoni, Valerio; Lapierre-Léonard, Marianne; Prain, Angus, E-mail: vfaraoni@ubishops.ca, E-mail: mlapierre12@ubishops.ca, E-mail: angusprain@gmail.com [Physics Department, Bishop' s University, 2600 College Street, Sherbrooke, Québec, J1M 1Z7 Canada (Canada)

    2015-10-01

    We apply the Hawking-Hayward quasi-local energy construct to obtain in a rigorous way the turnaround radius of cosmic structures in General Relativity. A splitting of this quasi-local mass into local and cosmological parts describes the interplay between local attraction and cosmological expansion.

  19. Turnaround radius in an accelerated universe with quasi-local mass

    International Nuclear Information System (INIS)

    Faraoni, Valerio; Lapierre-Léonard, Marianne; Prain, Angus

    2015-01-01

    We apply the Hawking-Hayward quasi-local energy construct to obtain in a rigorous way the turnaround radius of cosmic structures in General Relativity. A splitting of this quasi-local mass into local and cosmological parts describes the interplay between local attraction and cosmological expansion

  20. Determination of bone mineral density at distal radius measured by single photon absorptiometry

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Yanagimoto, Shinichi; Hitomi, Go; Murakami, Akihiko; Suemori, Shinji; Yokobayashi, Tsuneo; Ishii, Koshi; Hiji, Hiroo

    1988-01-01

    We have discussed the index of the bone mineral density (BMD) at the distal radius measured by single photon absorptiometry. Initially, the shape at the distal radius was evaluated using an X-ray photogram of the forearm and a calculation formula of the cross-sectional area at the distal radius was performed using an X-CT photogram of the forearm. A new index for the bone mineral density (modified BMD, mBMD), bone mineral content/cross-sectional area, at the distal radius was obtained for 154 young normal subjects (20 ∼ 44 yrs.). No significant differences in the mBMD values between young normal males and females, except for the group 20 ∼ 24 year-old group, were observed. Furthermore, a significantly decreased in the mBMD values with aging was observed in females between the ages of 20 ∼ 24 and 40 ∼ 44. However, no significant changes in the mBMD values were recognized in the men. Thus, it was shown that the new BMD index, mBMD, was useful for evaluating the changes of the bone mass. (author)