WorldWideScience

Sample records for surface property effects

  1. Effects of surface treatment on the properties of UV coating

    OpenAIRE

    Guo, Xiaolei; Li, Rongrong; Teng, Yu; Cao, Pingxiang; Wang, Xiaodong (Alice); Ji, Futang

    2015-01-01

    The influence of the surface treatment of raw medium-density fiberboard on the properties of 1st ultraviolet putty coating film and the effects of primer coating arrangement on the qualities of 1st ultraviolet primer film were investigated. With regard to surface roughness and the recorded adhesion of the coating film, there were significant variations when the surface treatment was modified or when the coating arrangement was changed. The findings led to the conclusion that there was a close...

  2. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    OpenAIRE

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The opti...

  3. Constraining the surface properties of effective Skyrme interactions

    Science.gov (United States)

    Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.

    2016-08-01

    Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The

  4. Effect of Surface Treatment on the Properties of Wool Fabric

    Science.gov (United States)

    Kan, C. W.; Yuen, C. W. M.; Chan, C. K.; Lau, M. P.

    Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.

  5. Magnetic nanoparticles: surface effects and properties related to biomedicine applications.

    Science.gov (United States)

    Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

    2013-10-25

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 μm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  6. Effect of nanofillers' size on surface properties after toothbrush abrasion.

    Science.gov (United States)

    Cavalcante, Larissa M; Masouras, Konstantinos; Watts, David C; Pimenta, Luiz A; Silikas, Nick

    2009-02-01

    To investigate the effect of filler-particle size of experimental and commercial resin composites, undergoing toothbrush abrasion, on three surface properties: surface roughness (SR), surface gloss (G) and color stability (CS). Four model (Ivoclar/Vivadent) and one commercial resin composite (Tokuyama) with varying filler-size from 100-1000 nm were examined. Six discs (10 mm x 2 mm) from each product were prepared and mechanically polished. The samples were then submitted to 20,000 brushing strokes in a toothbrush abrasion machine. SR parameters (Ra, Rt and RSm), G, and CS were measured before and after toothbrush abrasion. Changes in SR and G were analyzed by 2-way ANOVA, with Bonferroni post hoc test. CS values were submitted to one-way ANOVA and Bonferroni post hoc test (alpha=0.05). Initial G values ranged between 73-87 gloss units (GU) and were reduced after toothbrush abrasion to a range of 8-64 GU. Toothbrush abrasion resulted in significant modifications in SR and G amongst the materials tested, attributed to filler sizes. There was statistically significant difference in color (delta E* ranged from 0.38-0.88). Filler size did not affect color stability. Toothbrush abrasion resulted in rougher and matte surfaces for all materials tested. Although the individual differences in surface roughness among filler sizes were not always significant, the correlation showed a trend that larger filler sizes resulted in higher surface roughness after abrasion for the SR parameters Ra and Rt (r = 0.95; r = 0.93, respectively). RSm showed an increase after toothbrush abrasion for all resin composites, however no significant correlation was detected (r = 0.21).There was a significant correlation between G and Ra ratios (r = - 0.95).

  7. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  8. Effect of surface energy of solid surfaces on the micro- and macroscopic properties of adsorbed BSA and lysozyme.

    Science.gov (United States)

    Sharma, Indu; Pattanayek, Sudip K

    2017-07-01

    The surface energy, a macroscopic property, depends on the chemical functionality and micro- and macroscopic roughness of the surface. The adsorption of two widely used proteins bovine serum albumin (BSA) and lysozyme on surfaces of four different chemical functionalities were done to find out the interrelation between macroscopic and microscopic properties. We have observed the secondary structure of protein after its adsorption. In addition, we observed the variation of surface energy of proteins due to variation in adsorption time, change in protein concentration and effect of a mixture of proteins. Surfaces of three different chemical functionalities namely, amine, hydroxyl and octyl were obtained through self-assembled monolayer on silica surfaces and were tested for responses towards adsorption of lysozyme and BSA. The adsorbed lysozyme has higher surface energy than the adsorbed BSA on amine and octyl surfaces. On hydroxyl functional surface, the surface energy due to the adsorbed lysozyme or BSA increases slowly with time. The surface energy of the adsorbed protein increases gradually with increasing protein concentration on hydrophobic surfaces. On hydrophilic surfaces, with increasing BSA concentration in bulk solution, the surface energy of the adsorbed protein on GPTMS and amine surfaces is maximum at 1μM concentration. During the adsorption from a mixture of BSA and lysozyme on octyl surface, first lysozyme adsorbs and subsequent BSA adsorption leads to a high surface energy. Copyright © 2016. Published by Elsevier B.V.

  9. Effects of Chemical Surface Treatment on Mechanical Properties of ...

    African Journals Online (AJOL)

    The morphology of the materials was studied using scanning electron microscopy (SEM). The fibre chemical modification improves its adhesion to the matrix as well as the mechanical properties of the composites. Keywords: Scanning Electron Microscopy, Sisal fiber, Tensile test, Unsaturated polyester resin ...

  10. Surface orientation effects on bending properties of surgical mesh are independent of tensile properties.

    Science.gov (United States)

    Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O

    2018-02-01

    Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.

  11. Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids

    International Nuclear Information System (INIS)

    Vieira, N.S.M.; Luís, A.; Reis, P.M.; Carvalho, P.J.; Lopes-da-Silva, J.A.; Esperança, J.M.S.S.; Araújo, J.M.M.; Rebelo, L.P.N.; Freire, M.G.; Pereiro, A.B.

    2016-01-01

    Highlights: • Surface tension of fluorinated ionic liquids. • Thermophysical properties of fluorinated ionic liquids. • Thermal properties and thermodynamic functions. - Abstract: This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from (293.15 to 353.15) K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids.

  12. The Effects of Surface Roughness on the Apparent Thermal and Optical Properties of the Moon

    Science.gov (United States)

    Rubanenko, L.; Hayne, P. O.; Paige, D. A.

    2017-12-01

    The thermal inertia and albedo of airless planetary bodies such as the Moon can be inferred by measuring the surface temperatures and solar reflectance. However, roughness below the instrument resolution can affect these measured parameters. Scattering and IR emission from warm slopes onto colder slopes change the surface cooling rate, while shadowing and directional scattering change the reflectance. The importance of these effects grows with increasing solar incidence and emission angles, and during solar eclipses during which the insolation decreases rapidly. The high-quality data gathered by the Lunar Reconnaissance Orbiter (LRO) mission during the last seven years provides us with a unique opportunity to study these effects. Previous works have either adopted a simplified roughness model composed of a single slope, or an illumination model that does not account for subsurface conduction. Our approach incorporates data with simulations conducted using a coupled thermal and illumination model. First, we model the surface temperature distribution below the instrument resolution, considering two realizations: a cratered surface and a Gaussian random surface. Then, we fit the rough surface brightness temperature distribution to that of a flat surface with effective thermal and optical properties to find they differ from the original properties by up to 20% due to the added surface roughness. In the future, this will help to better constrain the intrinsic physical properties of the surface on both the Moon and Mercury and also other airless bodies such as asteroids.

  13. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    International Nuclear Information System (INIS)

    Pei Xianqiang; Li Yan; Wang Qihua; Sun Xiaojun

    2009-01-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation

  14. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    Energy Technology Data Exchange (ETDEWEB)

    Pei Xianqiang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000 (China); Li Yan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000 (China); Graduate school of the Chinese Academy of Sciences, Beijing 100039 (China); Wang Qihua [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000 (China)], E-mail: Wangqh@lzb.ac.cn; Sun Xiaojun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000 (China)

    2009-03-15

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation.

  15. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    Science.gov (United States)

    Pei, Xianqiang; Li, Yan; Wang, Qihua; Sun, Xiaojun

    2009-03-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to "carpet-like" structure after irradiation.

  16. Surface antireflection properties of GaN nanostructures with various effective refractive index profiles.

    Science.gov (United States)

    Han, Lu; Zhao, Hongping

    2014-12-29

    GaN nanostructures with various effective refractive index profiles (Linear, Cubic, and Quintic functions) were numerically studied as broadband omnidirectional antireflection structures for concentrator photovoltaics by using three-dimensional finite difference time domain (3D-FDTD) method. Effective medium theory was used to design the surface structures corresponding to different refractive index profiles. Surface antireflection properties were calculated and analyzed for incident light with wavelength, polarization and angle dependences. The surface antireflection properties of GaN nanostructures based on six-sided pyramid with both uniform and non-uniform patterns were also investigated. Results indicate a significant dependence of the surface antireflection on the refractive index profiles of surface nanostructures as well as their pattern uniformity. The GaN nanostructures with linear refractive index profile show the best performance to be used as broadband omnidirectional antireflection structures.

  17. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2017-12-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  18. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2018-03-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  19. Effects of surface preparation on the properties of metal/CdTe junctions

    International Nuclear Information System (INIS)

    Werthen, J.G.; Haering, J.; Fahrenbruch, A.L.; Bube, R.H.

    1983-01-01

    The effects of surface preparation on the properties of single crystal CdTe junctions have been investigated through characterization of metal/CdTe junctions. Oriented surfaces include air-cleaved (110) surfaces, bromine-in-methanol etched (110) and (111) surfaces, and bromine-in-methanol etched surfaces subjected to a hydrogen heat treatment. Surface photovoltage measurements of the surfaces indicate larger band bending on the etched surfaces than on the cleaved and heat treated surfaces. X-ray photoelectron spectroscopy analysis verifies that excess Te remains after bromine-in-methanol etching and that cleaving leaves a stoichiometric surface. Hydrogen heat treatment of an etched CdTe surface restores a stoichiometric cleaved-like surface from that altered by the etching process. The barrier height for metal/CdTe junctions formed on cleaved surfaces depends on metal work function and reaches 0.99 V in an Al/CdTe junction and 0.87 V in a Cr/CdTe junction. Junctions formed with different metals on etched (110) surfaces result in barrier heights of 0.55--0.65 V with no dependence of the barrier height on the metal work function being observed, due to the presence of an etch-induced layer that partially governs the properties the surface. Heat treatment of an etched surface results in metal/CdTe junctions with characteristics similar to those of junctions formed on cleaved surfaces, and dependence of barrier height on metal work function is again observed, indicating the removal of an etch-induced layer by the heat treatment and the production of a junction similar to that on the cleaved surface

  20. Effect of thermal annealing on the surface properties of electrospun polymer fibers.

    Science.gov (United States)

    Chen, Jiun-Tai; Chen, Wan-Ling; Fan, Ping-Wen; Yao, I-Chun

    2014-02-01

    Electrospun polymer fibers are gaining importance because of their unique properties and applications in areas such as drug delivery, catalysis, or tissue engineering. Most studies to control the morphology and properties of electrospun polymer fibers focus on changing the electrospinning conditions. The effects of post-treatment processes on the morphology and properties of electrospun polymer fibers, however, are little studied. Here, the effect of thermal annealing on the surface properties of electrospun polymer fibers is investigated. Poly(methyl methacrylate) and polystyrene fibers are fist prepared by electrospinning, followed by thermal annealing processes. Upon thermal annealing, the surface roughness of the electrospun polymer fibers decreases. The driving force of the smoothing process is the minimization of the interfacial energy between polymer fibers and air. The water contact angles of the annealed polymer fibers also decrease with the annealing time. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haibo [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@mail.tsinghua.edu.cn [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The present work integrates 3D digital optical microscopy (OM), nano-indentation, X-ray diffraction (XRD), scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) to systematically investigate the effect of electropulsing on the surface mechanical properties and microstructure of AISI 304 stainless steel during the ultrasonic surface rolling process (USRP). Compared with the original USRP, the introduction of electropulsing with optimal parameters can effectively facilitate surface crack healing and improve surface hardness and wear resistance dramatically, and the residual compressive stress is further enhanced. Meanwhile, more martensite phase and fewer deformation twins can be found in the strengthened layer. Rapid improvement of the surface mechanical properties should be attributed to the ultra-refined grains, accelerated martensitic phase transformation and suppressed deformation twining induced by the coupling effect of USRP and electropulsing. The high strain rate given by USRP, increased stacking fault energy and accelerated dislocation mobility caused by electropulsing are likely the primary intrinsic reasons for the observed phenomena.

  2. Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites.

    Science.gov (United States)

    Khoshkava, V; Kamal, M R

    2013-09-09

    Dispersion quality and polymer-filler interaction are important factors in determining the final properties of polymer nanocomposites. Surface energy of nanocrystalline cellulose (NCC) and some polymers (polypropylene, PP, and polylactic acid, PLA) was measured at room and high temperatures. NCC had higher polarity and surface energy than PP and PLA at room temperature but had a lower surface energy at higher temperatures. The effect of surface modification with alkenyl succinic anhydride (ASA) on NCC surface energy at room and high temperature was studied. Total surface energy of NCC was lowered after surface modification. Thermodynamic work of adhesion for PP/NCC and PLA/NCC was lowered by NCC surface modification. A thermodynamic analysis is proposed to estimate the dispersion energy, based on surface energy measurements at room and high temperatures. Also, a dispersion factor is defined to provide a quantitative indication of the dispersibility of nanoparticles in a polymer matrix under various conditions. The required dispersion energy was reduced by lowering the interfacial tension. On the other hand, it increased as the quality of NCC dispersion (i.e., the nanoparticle surface area) in the system was improved. Surface modification of NCC with ASA had a negative effect on the compatibility between NCC and PLA, whereas it had a positive influence on compatibility between PP and NCC.

  3. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Wang Qian; Chen Ping; Jia Caixia; Chen, Mingxin; Li Bin

    2011-01-01

    In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. -O-C=O) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.

  4. Effect of surface roughness scattering on the transport properties of a 2DEG

    International Nuclear Information System (INIS)

    Yarar, Z.

    2004-01-01

    In this work surface roughness scattering of electrons in a two dimensional electron gas (2DEG) formed at heterojunction interfaces is investigated for various auto-correlation functions. Gaussian, exponential and Lorentzian auto-correlation functions are used to represent surface roughness. Poisson and Schrodinger equations are solved self consistently at the hetero interface to find the energy levels, the wave functions corresponding to each level and electron concentrations at each level. Using these wave functions and the auto-correlation functions mentioned above, the scattering rates due to surface roughness are calculated. Scattering rates resulting from acoustic and optical phonons are also calculated. These rates are used to study the transport properties of the two dimensional electrons using ensemble Monte Carlo method at various temperatures. Emphasis is given to the effect of surface roughness scattering on the transport properties of the electrons

  5. The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Carran, Richard S.; Ghosh, Arun, E-mail: Arun.Ghosh@agresearch.co.nz; Dyer, Jolon M.

    2013-12-15

    Wool is a natural composite fiber, with keratin and keratin-associated proteins as the key molecular components. The outermost surface of wool fibers comprises a hydrophobic lipid layer that can lead to unsatisfactory processing and properties of fabric products. In this study, molecular sieve 5A, a Na{sup +} and Ca{sup 2+} exchanged type A zeolite with a 1:1 Si:Al ratio was integrated onto the surface of wool using 3-mercaptopropyl trimethoxy silane. The resultant surface morphology, hydrophilicity and mechanical performance of the treated wool fabrics were then evaluated. Notably, the surface hydrophilicity of wool was observed to increase dramatically. When wool was treated with a dispersion of 2 wt% acetic acid, 2.5 wt% zeolite and 0.3 wt% or more silane, the water contact angle was observed to decrease from an average value of 148° to 0° over a period of approximately 30 s. Scanning electron microscopic imaging indicated good coverage of the wool surface with zeolite particles, with infrared spectroscopic evaluation indicating strong bonding of the dealuminated zeolite to wool keratins. This application of zeolite showed no adverse effects on the tensile and other mechanical properties of the fabric. This study indicates that zeolite-based treatment is a potentially efficient approach to increasing the surface hydrophilicity and modifying other key surface properties of wool and wool fabrics.

  6. The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics

    Science.gov (United States)

    Carran, Richard S.; Ghosh, Arun; Dyer, Jolon M.

    2013-12-01

    Wool is a natural composite fiber, with keratin and keratin-associated proteins as the key molecular components. The outermost surface of wool fibers comprises a hydrophobic lipid layer that can lead to unsatisfactory processing and properties of fabric products. In this study, molecular sieve 5A, a Na+ and Ca2+ exchanged type A zeolite with a 1:1 Si:Al ratio was integrated onto the surface of wool using 3-mercaptopropyl trimethoxy silane. The resultant surface morphology, hydrophilicity and mechanical performance of the treated wool fabrics were then evaluated. Notably, the surface hydrophilicity of wool was observed to increase dramatically. When wool was treated with a dispersion of 2 wt% acetic acid, 2.5 wt% zeolite and 0.3 wt% or more silane, the water contact angle was observed to decrease from an average value of 148° to 0° over a period of approximately 30 s. Scanning electron microscopic imaging indicated good coverage of the wool surface with zeolite particles, with infrared spectroscopic evaluation indicating strong bonding of the dealuminated zeolite to wool keratins. This application of zeolite showed no adverse effects on the tensile and other mechanical properties of the fabric. This study indicates that zeolite-based treatment is a potentially efficient approach to increasing the surface hydrophilicity and modifying other key surface properties of wool and wool fabrics.

  7. Effect of temperature on the behavior of surface properties of alcohols in aqueous solution

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Jimenez, Eulogio; Suarez, Felipe

    2009-01-01

    The influence of temperature on the behavior of surface properties of aqueous solutions has often been used to obtain information about solute structural effects on water. In this work, we present experimental results for surface tension of aqueous solutions of n-pentanol, n-hexanol, n-heptanol, and n-octanol at T = (283.15, 288.15, 293.15, 298.15, 303.15, and 308.15) K at several concentrations. The results were used to evaluate the limiting experimental slopes of surface tension with respect to mole fraction and the hydrophobicity constant of the Connors model at each temperature. The thermodynamic behavior of aqueous alcohol solutions is discussed in terms of the effect of the hydrocarbon chain on water structure. The temperature dependence of the limiting slopes of surface tension with respect to mole fraction, as well as the hydrophobicity constant derived from surface measurements, is interpreted in terms of alcohol hydration

  8. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    International Nuclear Information System (INIS)

    Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.

    2015-01-01

    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness

  9. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites

    International Nuclear Information System (INIS)

    Song Wei; Gu Aijuan; Liang Guozheng; Yuan Li

    2011-01-01

    The effect of the surface roughness on interfacial properties of carbon fibers (CFs) reinforced epoxy (EP) resin composite is studied. Aqueous ammonia was applied to modify the surfaces of CFs. The morphologies and chemical compositions of original CFs and treated CFs (a-CFs) were characterized by Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). Compared with the smooth surface of original CF, the surface of a-CF has bigger roughness; moreover, the roughness increases with the increase of the treating time. On the other hand, no obvious change in chemical composition takes place, indicating that the treating mechanism of CFs by aqueous ammonia is to physically change the morphologies rather than chemical compositions. In order to investigate the effect of surface roughness on the interfacial properties of CF/EP composites, the wettability and Interfacial Shear Strength (IFSS) were measured. Results show that with the increase of the roughness, the wettabilities of CFs against both water and ethylene glycol improves; in addition, the IFSS value of composites also increases. These attractive phenomena prove that the surface roughness of CFs can effectively overcome the poor interfacial adhesions between CFs and organic matrix, and thus make it possible to fabricate advanced composites based on CFs.

  10. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy

    Science.gov (United States)

    Cuenot, Stéphane; Frétigny, Christian; Demoustier-Champagne, Sophie; Nysten, Bernard

    2004-04-01

    The effect of reduced size on the elastic properties measured on silver and lead nanowires and on polypyrrole nanotubes with an outer diameter ranging between 30 and 250 nm is presented and discussed. Resonant-contact atomic force microscopy (AFM) is used to measure their apparent elastic modulus. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The latter is comparable to the macroscopic modulus of the materials. The increase of the apparent elastic modulus for the smaller diameters is attributed to surface tension effects. The surface tension of the probed material may be experimentally determined from these AFM measurements.

  11. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties

    Energy Technology Data Exchange (ETDEWEB)

    Suslik, Lubos [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Pudis, Dusan, E-mail: pudis@fyzika.uniza.sk [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Goraus, Matej [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Nolte, Rainer [Fakultät für Maschinenbau FG Lichttechnik Ilmenau University of Technology, Ilmenau (Germany); Kovac, Jaroslav [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Durisova, Jana; Gaso, Peter [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Hronec, Pavol [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-15

    Graphical abstract: Photonic quasicrystal patterned in the surface of polydimethylsiloxane membrane (left) and radiation pattern of light emitting diode with patterned membrane applied in the surface (right). - Highlights: • We presented fabrication technique of PDMS membranes with patterned surface by photonic crystal (PhC) and photonic quasi-crystal (PQC). • Presented technique is effective for preparation PhC and PQC PDMS membranes easily implementing in the LED chip. • From the goniophotometer measurements, the membranes document effective angular emission due to the diffraction on patterned surfaces. • 12 fold symmetry PQC structure shows homogeneous radiation pattern, while the 2 fold symmetry of square PhC shows evident diffraction lobes. - Abstract: We present results of fabrication and implementation of thin polydimethylsiloxane (PDMS) membranes with patterned surface for the light emitting diode (LED). PDMS membranes were patterned by using the interference lithography in combination with embossing technique. Two-dimensional photonic crystal and photonic quasicrystal structures with different period were patterned in the surface of thin PDMS membranes with depth up to 550 nm. Patterned PDMS membranes placed on the LED chip effectively diffracted light and increased angular emission of LED radiation pattern. We presented effective technique for fabrication of patterned PDMS membranes, which could modify the emission properties of optoelectronic devices and can be applied directly on surface LEDs and small optical devices.

  12. Irradiation effects on the mechanical and thermal properties and surface tension of plasticised PVC

    International Nuclear Information System (INIS)

    Bellili, Nadira; Djidjelli, Hocine; Boukerrou, Amar

    2013-01-01

    Irradiation effects on the mechanical and thermal properties and surface tension of plasticised PVC. The mechanical and thermal behavior of 1 mm thick sheets of plasticised PVC after gamma irradiation at doses of 10 and 70 kGy was studied and compared to untreated PVC. The use of gamma irradiation treatment as plasticised PVC induces better mechanical properties, good thermal stability, with an increase in its wettability as compared to untreated PVC. The results showed that gamma irradiation PVC film improved mechanical properties. Young's modulus and tensile strength increased respectively from 297 MPa to 189 and 24 to 28 MPa, respectively, and the ultimate elongation increased from 124 to 154%. The gamma irradiation of the polyvinyl chloride caused significant increase of the surface tension, from 3 mN/m for the unirradiated to 5 to 11 mN/m up to 10 after irradiation at 70 kGy. (authors)

  13. UV and gamma irradiation effects on surface properties of polyurethane derivative from castor oil

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Elaine C.; Nascimento, Eduardo M., E-mail: helunica@yahoo.com.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Chierice, Gilberto O.; Claro Neto, Salvador [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Instituto de Quimica; Lepienski, Carlos M. [Universidade Federal do Parana (UFPR), Curitiba (Brazil)

    2013-07-01

    Gamma and ultraviolet radiation effects on hardness, elastic modulus and viscoelastic properties of polyurethane derived from castor oil (PU) were investigated by nanoindentation tests. Modifications on surface morphology, induce by radiation, were observed by atomic force microscopy. The polyurethane derivative from castor oil shows good resistance to gamma radiation, with only small changes in hardness, elastic modulus, viscoelastic properties and contact angle. The hardness of PY increases at the near surface region due to UVA radiation and decreases after UVC radiation. The contact angle for water drop decreases after UVC radiation, by not after gamma radiation, despite a significant increase in roughness. Such results are attributed to different responses from polyurethane to radiation energy. Increase in hardness due to UVA is attributed to a higher crosslinking at shallow depths, while a decrease in mechanical properties may be attributed to chain scission. These results are consistent with the modifications on viscoelastic properties. Shore D hardness did not show the same trend as observed by nanoindentation results. Hardness, viscoelastic properties and contact angle of castor oil polyurethane are more severely influenced by UVC radiation, while gamma radiation does not have a significant effect. (author)

  14. UV and gamma irradiation effects on surface properties of polyurethane derivative from castor oil

    International Nuclear Information System (INIS)

    Azevedo, Elaine C.; Nascimento, Eduardo M.; Chierice, Gilberto O.; Claro Neto, Salvador

    2013-01-01

    Gamma and ultraviolet radiation effects on hardness, elastic modulus and viscoelastic properties of polyurethane derived from castor oil (PU) were investigated by nanoindentation tests. Modifications on surface morphology, induce by radiation, were observed by atomic force microscopy. The polyurethane derivative from castor oil shows good resistance to gamma radiation, with only small changes in hardness, elastic modulus, viscoelastic properties and contact angle. The hardness of PY increases at the near surface region due to UVA radiation and decreases after UVC radiation. The contact angle for water drop decreases after UVC radiation, by not after gamma radiation, despite a significant increase in roughness. Such results are attributed to different responses from polyurethane to radiation energy. Increase in hardness due to UVA is attributed to a higher crosslinking at shallow depths, while a decrease in mechanical properties may be attributed to chain scission. These results are consistent with the modifications on viscoelastic properties. Shore D hardness did not show the same trend as observed by nanoindentation results. Hardness, viscoelastic properties and contact angle of castor oil polyurethane are more severely influenced by UVC radiation, while gamma radiation does not have a significant effect. (author)

  15. In vitro effect of meconium on the physical surface properties and morphology of exogenous pulmonary surfactant.

    Science.gov (United States)

    Park, K. H.; Bae, C. W.; Chung, S. J.

    1996-01-01

    The pathophysiology of meconium aspiration syndrome(MAS) is related to mechanical obstruction of the airways and to chemical pneumonitis. Meconium is also suggested to cause functional deterioration of pulmonary surfactant. Recent studies have reported that meconium inhibits the physical surface properties of pulmonary surfactant, and that administration of exogenous surfactant may provide therapeutic benefits in animal models or infants with respiratory distress due to MAS. To assess the effects of meconium on physical surface properties, especially the changes on the air-liquid interface and hypophase of pulmonary surfactant in vitro, we studied the following findings; a) the surface spreading rate(SSR) and the surface adsorption rate(SAR), b) the viscosity, c) the electron microscopic changes, on a series of mixtures with various concentrations of lyophilized human meconium and Surfactant-TA(SurfactenTM). The human meconium has significantly increased the surface tension of SSR and the viscosity of pulmonary surfactant, but had decreased the surface pressure of SAR of surfactant, and changed the electron microscopic findings of surfactant. We have concluded that these findings support the concept that meconium-induced surfactant dysfunction may play a role in the pathophysiology of MAS. PMID:8934399

  16. Effect of Leaf Surface Chemical Properties on Efficacy of Sanitizer for Rotavirus Inactivation.

    Science.gov (United States)

    Fuzawa, Miyu; Ku, Kang-Mo; Palma-Salgado, Sindy Paola; Nagasaka, Kenya; Feng, Hao; Juvik, John A; Sano, Daisuke; Shisler, Joanna L; Nguyen, Thanh H

    2016-10-15

    -wax-content cultivars. The disinfection efficacy of the oxidant-based sanitizer was affected by the surface properties of the vegetables, while the surfactant-based sanitizer was effective for both high- and low-wax leafy vegetable cultivars. This study suggests that the surface properties of vegetables may be an important factor that interacts with disinfection with food sanitizers of rotaviruses adhering to fresh produce. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Qian Li

    2016-09-01

    Full Text Available Bacterial contact leaching of ores is more effective than non-contact leaching. Adhesion is the first step for leaching bacteria to form a biofilm on a mineral surface. Extracellular polymeric substances (EPS are pivotal for mediating bacterial adhesion to a substratum. In order to clarify the role of EPS, we measured the adhesion forces between chalcopyrite-, sulfur- or FeSO4·7H2O-grown cells of Acidithiobacillus ferrooxidans and chalcopyrite by an atomic force microscope (AFM before and after EPS removal. Surface properties of these cells were assessed by measurements of the contact angle, zeta potential, Fourier transform infrared spectroscopy (FTIR and acid-base titration. Bacterial attachment to chalcopyrite was monitored for 140 min. The results indicate that the EPS control the surface properties of the cells. In addition, the surface properties are decisive for adhesion. The adhesion forces and the amounts of attached cells decreased dramatically after removing EPS, which was not dependent on the preculture.

  18. Effect of Surface Modification by Oleic Acid on Physical Properties of Cellulose Nanofibers

    Directory of Open Access Journals (Sweden)

    Hadi Almasi

    2013-08-01

    Full Text Available Oleic acid was used as a hydrophobic agent to modify cellulose nanofiber (CNF and the reaction time and fatty acid content were tested in relation to the hydrophilic properties of the products as well as the physicochemical properties of CNF. It was found that the degree of substitution (DS increased by extending the reaction time though the fatty acid content had no effect on hydrophobicity of CNF. The success of the esterification reaction was confirmed by Fourier transform infrared spectroscopy. Higher degree of substitution led to increased contact angle of CNF surfaces with water, which indicated the increased surface hydrophobicity of modified CNF. The X-ray diffraction analyses showed a lowering trend in crystallinity index and crystallite size with increases in DS value. Surface modification changed the thermal stability of CNF by lowering the degradation temperature from 290.8°C for unmodified cellulose to 195.4°C for highly esterified cellulose. Scanning electron microscopy micrographs revealed that after esterification of CNF with oleic acid, its filamentous shape was preserved. As a result, although the surface modification of CNF by fatty acid increased its hydrophobicity and its ability to mix with non-polar polymers, but it changed CNF physicochemical characteristics and weakened its functional properties.

  19. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Shahbaz; Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk; Ali, Nisar; Umm-i-Kalsoom,; Yousaf, Daniel; Faizan-ul-Haq,; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Highlights: • Brass targets were exposed to carbon ions of energy 2 MeV. • The effect of ion dose has been investigated. • The surface morphology is investigated by SEM analysis. • XRD analysis is performed to reveal structural modification. • Mechanical properties were investigated by tensile testing and microhardness testing. - Abstract: Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 10{sup 12} to 26 × 10{sup 13} ions/cm{sup 2}. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation

  20. Osteogenic response and osteoprotective effects in vivo of a nanostructured titanium surface with antibacterial properties.

    Science.gov (United States)

    Ravanetti, F; Chiesa, R; Ossiprandi, M C; Gazza, F; Farina, V; Martini, F M; Di Lecce, R; Gnudi, G; Della Valle, C; Gavini, J; Cacchioli, A

    2016-03-01

    In implantology, as an alternative approach to the use of antibiotics, direct surface modifications of the implant addressed to inhibit bacterial adhesion and to limit bacterial proliferation are a promising tactic. The present study evaluates in an in vivo normal model the osteogenic response and the osteointegration of an anodic spark deposition nanostructured titanium surface doped with gallium (ASD + Ga) in comparison with two other surface treatments of titanium: an anodic spark deposition treatment without gallium (ASD) and an acid etching treatment (CTR). Moreover the study assesses the osteoprotective potential and the antibacterial effect of the previously mentioned surface treatments in an experimentally-induced peri-implantitis model. The obtained data points out a more rapid primary fixation in ASD and ASD + Ga implants, compared with CTR surface. Regarding the antibacterial properties, the ASD + Ga surface shows osteoprotective action on bone peri-implant tissue in vivo as well as an antibacterial effect within the first considered time point.

  1. Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs

    Science.gov (United States)

    Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing

    2018-03-01

    It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.

  2. Electron beam irradiation effects on the mechanical, thermal and surface properties of a fluoroelastomer

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Pino, Eddy Segura; Rossi, Marcelo Rabello; Machado, Luci Diva Brocardo

    2007-01-01

    Fluoroelastomer can be used as a sealing material for different purposes. The aim of this work is the evaluation of the effects of the ionizing radiation of an electron beam (EB) on the mechanical, thermal and surface properties of a commercial fluoroelastomer containing carbon black and inorganic fillers. The material was irradiated with overall doses between 10 and 250 kGy. Tensile strength (stress and strain at break), hardness (Shore A) and compression set were evaluated. Thermal behavior was evaluated by thermogravimetric analysis and differential scanning calorimetry. Surface modifications were inspected using scanning electron microscopy (SEM) and optical microscopy. The experiments have shown that EB irradiation promotes beneficial changes in the fluoroelastomer tensile strength behavior while compression set remain constant and the glass transition temperature increases. The SEM micrographs have shown compactness in the irradiated samples, although optical observations showed no surface morphology changes

  3. Natural weathering effects on the mechanical and surface properties of polyphenylene sulphide (PPS) composites

    Energy Technology Data Exchange (ETDEWEB)

    Sinmazcelik, Tamer [Mechanical Engineering Department, Kocaeli University, Veziroglu Campus, izmit 41040 (Turkey): TUBITAK-MRC, MCTRI, P.O. Box 21, 41470 Gebze (Turkey)]. E-mail: tamersc@yahoo.com

    2006-07-01

    In this paper, Natural weathering effects on the mechanical and surface properties of polyphenylene sulphide (PPS) composites were studied. Injection moulded short glass fibre and short glass fibre/calcium carbonate particle filled (hybrid) PPS composites were investigated. These specimens were subjected to natural weathering in izmit, Turkey for 3216 h. Instrumented charpy impact tests were performed on a charpy pendulum type tester. The surfaces of the samples were examined by scanning electron microscopy (SEM). It is demonstrated that particle reinforcement (additional to the random oriented short glass fibre) reduces the impact performance of composite material but the material becomes more resistant to weathering. Percentage decrease in the impact strength after natural weathering of fibre/particle filled PPS composite is smaller compared to short fibre filled PPS composite. On the other hand, surface morphology of CaCO{sub 3} particle reinforced PPS composite is affected less from natural weathering and this material should be considered for outdoor applications.

  4. The effect of metal ion implantation on the surface mechanical properties of Mylar (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Yao, X.; Brown, I.G. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

    1993-12-31

    Ion implantation of polymers leads to the formation of new carbonaceous materials, the revolution during implantation of various species consists of (1) ion beam induced damage: chain scission, crosslinking, molecular emission of volatile elements and compounds, stoichiometric change in the surface layer of pristine polymers; and (2) chemical effect between ion and target materials: microalloying and precipitation. Literature regarding ion implanted polymers shows that the reorganisation of the carbon network after implantation can dramatically modify several properties of pristine polymers solubility, molecular weight, and electrical, optical and mechanical properties. However, ion implantation of polymers is actually a very complex interaction which depends on not only ion species, implantation condition, but also polymer type and specific structure. In this paper the effect of Ag or Ti ions implantation on surface mechanical properties of PET (polyethylenne terephthalate) polymer is reported. There was a clear deterioration in wear resistance after implantation of both Ag and Ti ions. It is suggested that the increment of wear after implantation may result from not only ion damage but also chemical effect between ion and target material. 3 refs., 1 tab., 2 figs.

  5. Effect of nanocoating with rhamnogalacturonan-I on surface properties and osteoblasts response

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Svava, Rikke; Syberg, Susanne

    2012-01-01

    -I) on surface properties and osteoblasts response. Three different RG-Is from apple and lupin pectins were modified and coated on amino-functionalized tissue culture polystyrene plates (aminated TCPS). Surface properties were evaluated by scanning electron microscopy, contact angle measurement, atomic force...

  6. THE EFFECTS OF SURFACE CHEMISTRY ON THE PROPERTIES OF PROTEINS CONFINED IN NANO-POROUS MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, L. M.; O' Neill, H.

    2007-01-01

    The entrapment of proteins using the sol-gel route provides a means to retain its native properties and artifi cially reproduce the molecular crowding and confi nement experienced by proteins in the cell allowing investigation of the physico-chemical and structural properties of biomolecules at the biotic/abiotic interface. The biomolecules are spatially separated and ‘caged’ in the gel structure but solutes can freely permeate the matrix. Thus, properties such as the folding of ensembles of individual molecules can be examined in the absence of aggregation effects that can occur in solution studies. Green fl uorescent protein from Aequorea coerulescens was used as a model protein to examine the unfolding/re-folding properties of protein in silica gels. The recombinant protein was isolated and purifi ed from Escherichia coli extracts by cell lysis, three-phase partitioning, dialysis, and anion exchange chromatography. The purity of the protein was greater than 90% as judged by SDS PAGE gel analysis. Sol-gels were synthesized using tetramethylorthosilicate (TMOS) in combination with, methyltrimethoxyorthosilane (MTMOS), ethyltrimethoxyorthosilane (ETMOS), 3-aminopropyltriethoxysilane (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS). The acid induced denaturation and renaturation of GFP was analyzed by UV-visible, fl uorescence, and circular dichroism (CD) spectroscopies. No renaturation was observed in gels that were made with TMOS only, and in the presence of APTES, MTMOS, and ETMOS. However, in gels that were made with GPTMS, the CD and UV-visible spectra indicated that the protein had refolded. The fl uorescence emission spectrum indicated that approximately 20% of fl uorescence had returned. This study highlights the importance of the surface chemistry of the silica gels for the refolding properties of the entrapped GFP. Future studies will investigate the effect of surface chemistry on the thermal and solvent stability of the entrapped protein.

  7. Template assisted surface microstructuring of flowable dental composites and its effect on microbial adhesion properties.

    Science.gov (United States)

    Frenzel, Nadja; Maenz, Stefan; Sanz Beltrán, Vanesa; Völpel, Andrea; Heyder, Markus; Sigusch, Bernd W; Lüdecke, Claudia; Jandt, Klaus D

    2016-03-01

    Despite their various advantages, such as good esthetic properties, absence of mercury and adhesive bonding to teeth, modern dental composites still have some drawbacks, e.g., a relatively high rate of secondary caries on teeth filled with composite materials. Recent research suggests that microstructured biomaterials surfaces may reduce microbial adhesion to materials due to unfavorable physical material-microbe interactions. The objectives of this study were, therefore, to test the hypotheses that (i) different surface microstructures can be created on composites by a novel straightforward approach potentially suitable for clinical application and (ii) that these surface structures have a statistically significant effect on microbial adhesion properties. Six different dental composites were initially tested for their suitability for microstructuring by polydimethylsiloxane (PDMS) templates. Each composite was light-cured between a glass slide and a microstructured PDMS template. The nano-hybrid composite Grandio Flow was the only tested composite with satisfying structurability, and was therefore used for the bacterial adhesion tests. Composites samples were structured with four different microstructures (flat, cubes, linear trapezoid structures, flat pyramids) and incubated for 4h in centrifuged saliva. The bacterial adherence was then characterized by colony forming units (CFUs) and scanning electron microscopy (SEM). All four microstructures were successfully transferred from the PDMS templates to the composite Grandio Flow. The CFU-test as well as the quantitative analysis of the SEM images showed the lowest bacterial adhesion on the flat composite samples. The highest bacterial adhesion was observed on the composite samples with linear trapezoid structures, followed by flat pyramids and cubes. The microstructure of dental composite surfaces statistically significantly influenced the adhesion of oral bacteria. Modifying the composite surface structure may be

  8. Effects of hot water pre-extraction on surface properties of bagasse soda pulp.

    Science.gov (United States)

    Cordeiro, Nereida; Ashori, Alireza; Hamzeh, Yahya; Faria, Marisa

    2013-03-01

    In this work, the effects of hot water pre-extraction of depithed bagasse on the soda pulping and surface properties were studied. The conditions of hot water pre-extraction were: maximum temperature 170 °C, heat-up time 90 min, time at maximum temperature 10 min, and solid to liquor ratio (S:L) 1:8. Consequently, the pre-extracted and un-extracted bagasse chips were subjected to soda pulping at 160 °C for 1h with 11, 14 and 17% active alkali charge and an S:L of 1:5. The results showed that the hot water pre-extraction increased bagasse surface texture porosity by hemicellulose degradation. Therefore, the delignification was faster for pulping of pre-extracted samples. At a certain charge of alkali, pre-extracted samples showed higher screened yield and lower Kappa number. For instance, at 17% alkali charge, pre-extracted bagasse gave 11.3% higher pulp yield compared with the un-extracted ones. Inverse gas chromatography (IGC) results showed that the hot water pre-extraction changed the active sites on the bagasse surface, decreasing the dispersive energy and the basicity character, and affected the particle morphology. The pulping process decreased the hydrophobicity and the basicity of the bagasse surface. The surfaces of un-extracted and pre-extracted bagasse pulps had similar properties but different morphology. The pulps present higher surface area and permeability with more reactive capacity. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Effects of Kaolin Surface Treatments on the Thermomechanical Properties and on the Degradation of Polypropylene

    OpenAIRE

    Guessoum, Melia; Nekkaa, Sorya; Fenouillot-Rimlinger, Françoise; Haddaoui, Nacerddine

    2012-01-01

    The effects of kaolin content and treatments on the thermal and mechanical properties and on the degradation of polypropylene were examined using mechanical tests, differential scanning calorimetry (DSC), and thermogravimetry (TGA). The weak interactions filler/matrix have been reinforced using a modification with urea then with an ammonium salt and a surface treatment with a silane coupling agent. The XRD results showed that the peak at the d-value of 10.7 Å increases in urea/kaolin complex,...

  10. The effect of glazing and aging on the surface properties of CAD/CAM resin blocks.

    Science.gov (United States)

    Tekçe, Neslihan; Fidan, Sinan; Tuncer, Safa; Kara, Dilan; Demirci, Mustafa

    2018-02-01

    To investigate the effect of accelerated aging on surface properties of glazed CAD/CAM resin blocks using a 2D surface profilometer and a 3D non-contact optical profilometer. Three types of CAD/CAM resin restorative materials, LAVA Ultimate (3M ESPE, St Paul, MN, USA), VITA Enamic (Vita Zahnfabrik H. Rauter, Bad Säckingen, Germany), and Cerasmart (GC Corparation, Tokyo, Japan) were used for this study. CAD/CAM blocks were cut in 3-mm thickness slabs and divided into three groups; Group 1: control group (specimens polished with 600 grit SCI paper); Group 2: specimens sandblasted, silanized, and glazed with Optiglaze Color (GC); Group 3: glazed specimens subjected to 5000 thermocycles (n=15). The surface roughness (R a and R z ) was evaluated using a profilometer and a 3D scanning instrument. Data were analyzed using two-way ANOVA and Tukey's post-hoc test ( P .05). For VITA and Cerasmart, the specimens in Group 1 exhibited significantly higher R a values than Group 2 ( P .05). Glaze material Optiglaze Color makes CAD/CAM resin surfaces smooth and glazed CAD/CAM surfaces seem resistant to deterioration under 5000 thermocycles.

  11. Adsorption of the water molecule on monolayer graphene surface has effect on its optical properties

    International Nuclear Information System (INIS)

    Peng, Y F; Wang, J; Lu, Z S; Han, X Y

    2015-01-01

    The adsorption of water molecules on the surface of a monolayer graphene can be studied with the Materials Studio software and be applied density function theory from first principles. By studying the interaction of graphene with water molecule, it uses DFT (density function theory) with the PBE-GGA (the generalized gradient approximation of Perdew- Burke-Ernzerhof) and Periodic plane model, on the one hand working out the adsorption energy, and on the other hand getting related optical properties. It is shown that a single water molecule on graphene has very small adsorption energy, mainly owning to the van der Waals interactions. Graphene has high hydrophobic; adsorbed water molecule has little effect on the electronic structure of the graphene. The optical properties of the graphene have changed after the adsorption. (paper)

  12. Effects of Kaolin Surface Treatments on the Thermomechanical Properties and on the Degradation of Polypropylene

    Directory of Open Access Journals (Sweden)

    Melia Guessoum

    2012-01-01

    Full Text Available The effects of kaolin content and treatments on the thermal and mechanical properties and on the degradation of polypropylene were examined using mechanical tests, differential scanning calorimetry (DSC, and thermogravimetry (TGA. The weak interactions filler/matrix have been reinforced using a modification with urea then with an ammonium salt and a surface treatment with a silane coupling agent. The XRD results showed that the peak at the d-value of 10.7 Å increases in urea/kaolin complex, but the treatment with the ammonium salt caused the return to the initial state of the clay. FTIR results showed the appearance of new bands characteristic of the interactions between urea and kaolinite and the alkylammonium and kaolinite. The mechanical properties of the composites exhibited important variations while the DSC results showed the decrease of the crystallization temperature as a function of kaolin content. TGA thermograms pointed out the improvement of the composites' thermal stability.

  13. Effects of phosphourus addition on the physical properties and surface condition of tungsten-copper composites

    International Nuclear Information System (INIS)

    Akiyoshi, N.; Nakada, K.; Nakayama, M.; Kohda, K.

    2001-01-01

    Tungsten-copper composites containing a small amount of phosphorus prepared using conventional P/M method. Cu 3 P powder was used as phosphorous source. The effects of phosphorus addition on the physical properties and the surface condition were investigated and the existing form of phosphorus was specified on the tungsten-copper composites The results are summarized as follows. The tungsten-copper composite containing 10 % copper, for example, demonstrated optimum thermal conductivity at the phosphorus addition of 0.02 %. The density of the composites was almost 100 % and the surface of the sintered body was flat and smooth after sintering at a temperature between 1100 and 1150 o C. It was shown that phosphorus exists as Co 2 P. (author)

  14. Effects of surface treating methods of high-strength carbon fibers on interfacial properties of epoxy resin matrix composite

    International Nuclear Information System (INIS)

    Ma, Quansheng; Gu, Yizhuo; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2016-01-01

    Highlights: • Effects of surface treating on T700 grade high strength carbon fiber were discussed. • The fiber surface roughness, surface energy and chemical properties are analyzed. • The surface treating significantly affect the properties of carbon fiber. • The composite with electrolysis and sizing-fiber has the highest mechanical properties. - Abstract: This paper aims to study the effects of surface treating methods, including electrolysis of anodic oxidation, sizing and heat treatment at 200 °C, on physical and chemical properties of T700 grade high-strength carbon fiber GQ4522. The fiber surface roughness, surface energy and chemical properties were analyzed for different treated carbon fibers, using atom force microscopy, contact angle, Fourier transformed infrared and X-ray photoelectron spectroscopy, respectively. The results show that the adopted surface treating methods significantly affect surface roughness, surface energy and active chemical groups of the studied carbon fibers. Electrolysis and sizing can increase the roughness, surface energy and chemical groups on surface, while heat treatment leads to decreases in surface energy and chemical groups due to chemical reaction of sizing. Then, unidirectional epoxy 5228 matrix composite laminates were prepared using different treated GQ4522 fibers, and interlaminar shear strength and flexural property were measured. It is revealed that the composite using electrolysis and sizing-fiber has the strongest interfacial bonding strength, indicating the important roles of the two treating processes on interfacial adhesion. Moreover, the composite using heat-treating fiber has lower mechanical properties, which is attributed to the decrease of chemical bonding between fiber surface and matrix after high temperature treatment of fiber.

  15. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Shi Fenghui; Zhang Baoyan; Li Min; Zhang Zuoguang

    2011-01-01

    This paper aims to study effect of sizing on surface properties of carbon fiber and the fiber/epoxy interfacial adhesion by comparing sized and desized T300B and T700SC carbon fibers. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the desized carbon fibers present less concentration of activated carbon, especially those connect with the hydroxyl and epoxy groups. Inverse gas chromatography (IGC) analysis reveals that the desized carbon fibers have larger dispersive surface energy γ S D and smaller polar component γ S SP than the commercial sized ones. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the desized carbon fiber/epoxy is higher than those of the T300B and T700SC. Variations of the IFSS for both the sized and desized carbon fibers correspond to γ S D /γ S tendency of the fiber surface, however the work of adhesion does not reveal close correlation with IFSS trend for different fiber/epoxy systems.

  16. Soil surface protection by Biocrusts: effects of functional groups on textural properties

    Science.gov (United States)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián

    2015-04-01

    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  17. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch

    Directory of Open Access Journals (Sweden)

    Pan HU

    Full Text Available Abstract Rice starches with different amylose contents were treated with sodium dodecyl sulfate (SDS to deplete surface proteins and lipids, and the changes in molecular structure, thermal properties, and enzymatic hydrolysis were evaluated. SDS treatment did not significantly change the molecular weight distribution, crystalline structure, short-range ordered degree, and gelatinization properties of starch, but significantly altered the pasting properties and increased the swelling power of starch. The removal of surface proteins and lipids increased the enzymatic hydrolysis and in vitro digestion of starch. The influences of removing surface proteins and lipids from starch on swelling power, pasting properties, and enzymatic hydrolysis were different among the various starches because of the differences in molecular structures of different starch styles. The aforementioned results indicated that removing the surface proteins and lipids from starch did not change the molecular structure but had significant effects on some functional properties.

  18. Heat treatment effects on the surface morphology and optical properties of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zainizan Sahdan, M. [Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical and Electronics Engineering, Universiti Tun Hussein onn Malaysia, 86400 Batu Pahat, Johor (Malaysia); Hafiz Mamat, M.; Salina, M.; Noor, Uzer M.; Rusop, Mohamad [Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Khusaimi, Zuraida [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2010-09-15

    Zinc oxide (ZnO) nanostructures have received broad attention due to its wide applications especially for thin-film solar cells and transistors. In this paper, we report the effects of heat treatment on the structural and optical properties of ZnO nanostructures. Zinc oxide nanostructures were synthesized using thermal chemical vapour deposition (CVD) method on glass substrate. The surface morphologies which were observed by scanning electron microscope (SEM) show that ZnO nanostructures change its shape and size when the annealing temperature increases from 400 C to 600 C. Structural measurement using X-ray diffraction (XRD) has shown that ZnO nanostructures have the highest crystallinity and smallest crystallite size (20 nm) when annealed at 550 C. Furthermore, the samples were optically characterized using Photoluminescence (PL) spectrometer. The PL spectra indicate that ZnO nanostructures have the highest peak at UV wavelength when annealed at 550 C. The mechanism of the PL properties of ZnO nanostructures is also discussed. We conclude that ZnO nanostructures deposited using thermal CVD have the optimum structural and PL properties when annealed at 550 C. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Effect of Extraction Process and Surface Treatment on the mechanical properties in Pineapple Leaf Fibre

    Directory of Open Access Journals (Sweden)

    Ariffin Azrie

    2017-01-01

    Full Text Available Pineapple Leaf Fibre (PALF is a one of the natural fibre that has high potential in the industry. Natural fibres have become the main alternative source in the modern world industry. The objective of this study is to observe the effect chemical treatment using Sodium Hydroxide (NaOH solution on the physical and mechanical properties of pineapple leaf fibre. Different concentration of NaOH solution (2%, 4%, 6%, 8% and different treatment time (1 hour, 3 hour and 5 hour are used for the experiment. The tensile test was conducted to obtain the mechanical properties such as tensile strength, Yong modulus, (E and elongation at break. From the results obtained, NaOH concentration of 6% and five-hour treatment time that was used for treatment showed the higher physical and mechanical properties values. Furthermore, morphology analysis also shows the surface of the fibre at 6% NaOH after five-hour of treatment was in the better condition with good bonding arrangement of the fibre.

  20. A theoretical investigation of the influence of the surface effect on the ferroelectric property of strained barium titanate film

    Science.gov (United States)

    Fang, Chao; Liu, Wei Hua

    2017-07-01

    The influence of the surface effect on the ferroelectric property of strained barium titanate film has been investigated. In this study, based on time-dependent Ginsburg-Landau-Devonshire thermodynamic theory, the surface effects have been simulated by introducing a surface constant, which leads to the strained BaTiO3 film consisting of inner tetragonal core and gradient lattice strain layer. Further, surface effects produce a depolarization field which has a dominant effect on the ferroelectric properties of the films. The spontaneous polarization, dielectric properties and ferroelectric hysteresis loop of BaTiO3 film are calculated under different boundary conditions. Theoretical and experimental results for strained BaTiO3 film are compared and discussed.

  1. The effect of surface layer properties on bendability of ultra-high strength steel

    Science.gov (United States)

    Arola, Anna-Maija; Kaijalainen, Antti; Kesti, Vili

    2016-10-01

    Bendability is an important property for ultra-high strength steel because air-bending is the most common forming process for the material. In this paper the bendability of two ultra-high strength steels with similar mechanical properties but different bendability was investigated using tensile testing with optical strain measurements. The tensile tests were conducted also for specimens cut from the surface layer and the middle layer of the sheet. It was discovered that the mechanical properties of the surface of the sheet affect the bendability in great manner.

  2. Comparative Effect of Different Polymerization Techniques on the Flexural and Surface Properties of Acrylic Denture Bases.

    Science.gov (United States)

    Gad, Mohammed M; Fouda, Shaimaa M; ArRejaie, Aws S; Al-Thobity, Ahmad M

    2017-05-22

    Polymerization techniques have been modified to improve physical and mechanical properties of polymethylmethacrylate (PMMA) denture base, as have the laboratory procedures that facilitate denture construction techniques. The purpose of the present study was to investigate the effect of autoclave polymerization on flexural strength, elastic modulus, surface roughness, and the hardness of PMMA denture base resins. Major Base and Vertex Implacryl heat-polymerized acrylic resins were used to fabricate 180 specimens. According to the polymerization technique, tested groups were divided into: group I (water-bath polymerization), group II (short autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 10 minutes), and group III (long autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 20 minutes). Each group was divided into two subgroups based on the materials used. Flexural strength and elastic modulus were determined by a three-point bending test. Surface roughness and hardness were evaluated with a profilometer and Vickers hardness (VH) test, respectively. One-way ANOVA and the Tukey-Kramer multiple-comparison test were used for results analysis, which were statistically significant at p ≤ 0.05. Autoclave polymerization showed a significant increase in flexural strength and hardness of the two resins (p autoclave polymerization and water-bath polymerization (p > 0.05). Autoclave polymerization significantly increased the flexural properties and hardness of PMMA denture bases, while the surface roughness was within acceptable clinical limits. For a long autoclave polymerization cycle, it could be used as an alternative to water-bath polymerization. © 2017 by the American College of Prosthodontists.

  3. Electron Beam Irradiation Effect on the Mechanical, Thermal and Surface Properties of Fluoroelastomer

    International Nuclear Information System (INIS)

    Machado, L. D. B.

    2006-01-01

    Fluoroelastomer is a polymer used as a sealing material due to some excellent properties comparing to other elastomers, such as resistance to high temperatures and to aggressive chemical substances. The aim of this work was to evaluate the effect of the ionizing radiation of electron beam (EB) on the mechanical, thermal and surface properties of this elastomeric material. The fluoroelastomer studied in this work was a commercial product obtained by a conventional curing process, containing carbon black and other inorganic fillers. This material was irradiated with energetic electrons and the overall doses were 10, 25, 50, 75, 100, 125, 150, 175, 200 and 250 kGy. The evaluated mechanical properties were tensile strength (stress and strain at break), hardness (Shore A) and compression set. Thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) were used to evaluate the thermal behavior of the irradiated material. Surface modification on the fracture specimens was verified with scanning electron microscopy (SEM) and using an optical microscope on line to a computer. Tensile strength tests have shown that the tensile stress at break increases 34 % and total strain decreases considerably, from 347 % to 109 %, in the range of radiation dose applied. Shore A hardness values increase 15 % in the range of radiation dose studied. The compression set data showed that the values remain stable independent of the radiation dose applied. Thermogravimetric curves showed that there are no large variations on the onset temperatures for all samples in the range of radiation doses applied. On the other hand, DCS curves showed a progressive increase of the glass transition temperature, from 3.3 degree for non-irradiated sample to 12.9 degree for sample irradiated with 250 kGy. SEM micrographs showed a more homogeneous morphological aspect of the fracture surfaces with the increase of the applied dose. The results have shown that EB radiation, in the studied

  4. Surface effect on the electronic and the magnetic properties of rock-salt alkaline-earth metal silicides

    International Nuclear Information System (INIS)

    Bialek, Beata; Lee, Jaeil

    2011-01-01

    An all electron ab-initio method was employed to study the electronic and the magnetic properties of the (001) surface of alkaline-earth metal silicides, CaSi, SrSi, and BaSi, in the rock-salt structure. The three compounds retain their ferromagnetic metallic properties at the surface. Due to the surface effects, the magnetism of the topmost layer is changed as compared with the bulk. This is a short-range effect. In CaSi, the magnetism of the surface layer is noticeably reduced, as compared with the bulk: magnetic moments (MMs) on both Ca and Si atoms are reduced. In SrSi (001), the polarization of electrons in the surface atoms is similar to that in the bulk atoms, and the values of MMs on the component atoms in the topmost layer do not change as much as in CaSi. In BaSi (001), the magnetic properties of Si surface atoms are enhanced slightly, and the magnetism of Ba atoms is not affected considerably by the surface effect. The calculated densities of states confirm the short-range effect of the surface on the electronic properties of the metal silicides.

  5. Effects of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective

    Science.gov (United States)

    Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang

    2017-07-01

    We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing -P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.

  6. Effects of surface treating methods of high-strength carbon fibers on interfacial properties of epoxy resin matrix composite

    Science.gov (United States)

    Ma, Quansheng; Gu, Yizhuo; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2016-08-01

    This paper aims to study the effects of surface treating methods, including electrolysis of anodic oxidation, sizing and heat treatment at 200 °C, on physical and chemical properties of T700 grade high-strength carbon fiber GQ4522. The fiber surface roughness, surface energy and chemical properties were analyzed for different treated carbon fibers, using atom force microscopy, contact angle, Fourier transformed infrared and X-ray photoelectron spectroscopy, respectively. The results show that the adopted surface treating methods significantly affect surface roughness, surface energy and active chemical groups of the studied carbon fibers. Electrolysis and sizing can increase the roughness, surface energy and chemical groups on surface, while heat treatment leads to decreases in surface energy and chemical groups due to chemical reaction of sizing. Then, unidirectional epoxy 5228 matrix composite laminates were prepared using different treated GQ4522 fibers, and interlaminar shear strength and flexural property were measured. It is revealed that the composite using electrolysis and sizing-fiber has the strongest interfacial bonding strength, indicating the important roles of the two treating processes on interfacial adhesion. Moreover, the composite using heat-treating fiber has lower mechanical properties, which is attributed to the decrease of chemical bonding between fiber surface and matrix after high temperature treatment of fiber.

  7. An effective field study of the magnetic properties and critical behaviour at the surface Ising film

    International Nuclear Information System (INIS)

    Bengrine, M.; Benyoussef, A.; Ez-Zahraouy, H.; Mhirech, F.

    1998-09-01

    The influence of corrugation and disorder at the surface on the critical behaviour of a ferromagnetic spin-1/2 Ising film is investigated using mean-field theory and finite cluster approximation. It is found that the critical surface exponent β 1 follows closely the one of a perfect surface, in the two cases: corrugated surface and random equiprobable coupling surface. However, in the case of flat surface with random interactions the surface critical exponent β 1 depends on the concentration p of the strong interaction for p>p c =0,5, while for p≤p c , such critical exponent is independent on the value of p and is equal to the one of the perfect surface. Moreover, in the case of corrugated surface, the effective exponent for a layer z, β eff J(z,n), is calculated as a function of the number of steps at the surface. (author)

  8. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    International Nuclear Information System (INIS)

    Kocabas, Mustafa; Uelker, Suekrue

    2015-01-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  9. Effect of Sisal Fiber Surface Treatment on Properties of Sisal Fiber Reinforced Polylactide Composites

    Directory of Open Access Journals (Sweden)

    Zhaoqian Li

    2011-01-01

    Full Text Available Mechanical properties of composites are strongly influenced by the quality of the fiber/matrix interface. The objective of this study was to evaluate the mechanical properties of polylactide (PLA composites as a function of modification of sisal fiber with two different macromolecular coupling agents. Sisal fiber reinforced polylactide composites were prepared by injection molding, and the properties of composites were studied by static/dynamic mechanical analysis (DMA. The results from mechanical testing revealed that surface-treated sisal fiber reinforced composite offered superior mechanical properties compared to untreated fiber reinforced polylactide composite, which indicated that better adhesion between sisal fiber and PLA matrix was achieved. Scanning electron microscopy (SEM investigations also showed that surface modifications improved the adhesion of the sisal fiber/polylactide matrix.

  10. Effect of Leaf Surface Chemical Properties on Efficacy of Sanitizer for Rotavirus Inactivation

    OpenAIRE

    Fuzawa, Miyu; Ku, Kang-Mo; Palma-Salgado, Sindy Paola; Nagasaka, Kenya; Feng, Hao; Juvik, John A.; Sano, Daisuke; Shisler, Joanna L.; Nguyen, Thanh H.

    2016-01-01

    The use of sanitizers is essential for produce safety. However, little is known about how sanitizer efficacy varies with respect to the chemical surface properties of produce. To answer this question, the disinfection efficacies of an oxidant-based sanitizer and a new surfactant-based sanitizer for porcine rotavirus (PRV) strain OSU were examined. PRV was attached to the leaf surfaces of two kale cultivars with high epicuticular wax contents and one cultivar of endive with a low epicuticular ...

  11. Effect of ecological surface treatment method on friction strength properties of nettle (urtica dioica) fibre yarns

    Science.gov (United States)

    Şansal, S.; Mıstık, S. I.; Fettahov, R.; Ovalı, S.; Duman, M.

    2017-10-01

    Over the last few decades, more attention is given to lignocellulose based fibres as reinforcement material in the polymer composites owing to the environmental pollution caused by the extensive usage of synthetic and inorganic fibres. Developing new natural fibre reinforced composites is the focus of many researches nowadays. They are made from renewable resources and they have less environmental effect in comparison to inorganic fibre reinforced composites. The interest of consumers in eco-friendly natural fibres and textiles has increased in recent years. Unlike inorganic fibres, natural fibres present light weight, high strength/density ratio and are readily available, environmentally friendly and biodegradable. Many different types of natural fibres are exploited for the production of biodegradable polymer composites. The nettle (Urtica dioica L.) is a well-known plant growing on rural sites of Europe, Asia, and North America. Nettle plant contains fibre similar to hemp and flax. However, similar to other natural fibres, nettle fibres are poorly compatible with the thermoplastic matrix of composites, due to their hydrophilic character which reduces mechanical properties of nettle fibre reinforced thermoplastics. In order to improve the fibrematrix adhesion of the natural fibre reinforced composites, surface treatment processes are applied to the lignocellulose fibres. In this study nettle (urtica dioica) fibre yarns were treated with NaOH by using conventional, ultrasonic and microwave energy methods. After treatment processes tensile strength, elongation, friction strength and SEM observations of the nettle fibre yarns were investigated. All treatment processes were improved the tensile strength, elongation and friction strength properties of the nettle fibre yarns. Also higher tensile strength, elongation and friction strength properties were obtained from treated nettle fibre yarns which treated by using microwave energy method.

  12. Surface Properties of a Hooked Steel Fiber and their Effects on the Fiber Pullout and Composite Cracking 1. Experimental Study

    Science.gov (United States)

    Zesers, A.; Krūmiņš, J.

    2014-09-01

    Concrete as a material is brittle, but adding short steel fibers to the matrix can significantly improve its mechanical properties. The chemical adhesion between concrete and steel is weak, and the fiber pullout properties are based on fiber geometry and frictional forces. Single-fiber pullout tests of steel fibers with toothed and smooth surfaces were performed in order to characterize the effects of fiber surface facture. The influence of fiber form, surface facture, and fiber orientation (relative to the pullout direction) on the fiber withdrawal resistance and the maximum pullout force were studied.

  13. Effects of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective

    International Nuclear Information System (INIS)

    Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang

    2017-01-01

    We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P 12 for scattering angles between 20°–120°, whereas surface roughness has a much weaker effect, increasing -P 12 slightly from 60°–120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered. - Highlights: • Surface roughness and air bubble inclusions affect optical properties of ice crystals significantly. • Including both factors improves simulations of ice cloud.• Cirrus cloud particle habit model of the MODIS collection 6 achieves better self-consistency and consistency with

  14. The effects of parametric changes in electropolishing process on surface properties of 316L stainless steel

    Science.gov (United States)

    ur Rahman, Zia; Deen, K. M.; Cano, Lawrence; Haider, Waseem

    2017-07-01

    Corrosion resistance and biocompatibility of 316L stainless steel implants depend on the surface features and the nature of the passive film. The influence of electropolishing on the surface topography, surface free energy and surface chemistry was determined by atomic force microscopy, contact angle meter and X-ray photoelectron spectroscopy, respectively. The electropolishing of 316L stainless steel was conducted at the oxygen evolution potential (EPO) and below the oxygen evolution potential (EPBO). Compared to mechanically polished (MP) and EPO, the EPBO sample depicted lower surface roughness (Ra = 6.07 nm) and smaller surface free energy (44.21 mJ/m2). The relatively lower corrosion rate (0.484 mpy) and smaller passive current density (0.619 μA/cm2) as determined from cyclic polarization scans was found to be related with the presence of OH, Cr(III), Fe(0), Fe(II) and Fe(III) species at the surface. These species assured the existence of relatively uniform passive oxide film over EPBO surface. Moreover, the relatively large charge transfer (Rct) and passive film resistance (Rf) registered by EPBO sample from impedance spectroscopy analysis confirmed its better electrochemical performance. The in vitro response of these polished samples toward MC3T3 pre-osteoblast cell proliferation was determined to be directly related with their surface and electrochemical properties.

  15. The Effects of Heat Treatment on the Physical Properties and Surface Roughness of Turkish Hazel (Corylus colurna L. Wood

    Directory of Open Access Journals (Sweden)

    Nevzat Çakıcıer

    2008-09-01

    Full Text Available Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L. wood were examined. Samples obtained from Kastamonu Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for different durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, wereb made in the direction perpendicular to the fiber. Four main roughness parameters, mean arithmetic deviation of profile (Ra, mean peak-to-valley height (Rz, root mean square roughness (Rq, and maximum roughness (Ry obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant difference was determined (p = 0.05 between physical properties and surface roughness parameters (Ra,Rz, Ry, Rq for three temperatures and three durations of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Turkish Hazel wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.

  16. Optical Properties of DLC:SiOx and Ag Multilayer Films: Surface Plasmon Resonance Effect

    Directory of Open Access Journals (Sweden)

    Arvydas ČIEGIS

    2016-11-01

    Full Text Available Diamond like carbon films containing silicon (DLC:SiOx and „conventional“ hydrogenated diamond like carbon (DLC films were deposited by direct ion beam using anode layer ion source. Ag films were grown by unbalanced direct current magnetron sputtering. Structure of DLC:SiOx films was investigated by Raman scattering spectroscopy. In the case of DLC:SiOx film deposited on Ag layer surface enhanced Raman scattering effect was observed. Optical properties of the different diamond like carbon and silver multilayers were studied. Annealing effects were investigated. Influence of the thickness of the diamond like carbon and Ag layers was investigated. Position of the plasmonic absorbance peak maximum of DLC:SiOx and multilayers in all cases was redshifted in comparison with “conventional” diamond like nanocomposite films containing silver nanoclusters. It was explained by increase of the Ag nanoparticle size and/or increased probability of the oxidation of the embedded Ag due to the higher amount of oxygen in DLC:SiOx film in comparison with “conventional” diamond like carbon film.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13194

  17. Effect of microarc discharge surface treatment on the tensile properties of Al-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Xue, Wenbin; Wang, Chao; Deng, Zhiwei; Chen, Ruyi; Zhang, Tonghe; Li, Yongliang

    2002-01-01

    A thick ceramic coating was prepared on Al-Cu-Mg alloy by microarc discharge in aqueous solution. The tensile properties of the alloy before and after microarc oxidation (MAO) surface treatment were tested, then the fractography and morphology of ceramic oxide coatings were investigated using scanning electron microscope (SEM). It is shown that the tensile properties of aluminum alloy have smaller change after the alloy has undergone microarc discharge treatment. For all specimens with different thickness coatings, the decreases of yield strength, tensile strength and elastic modulus are less than 5%, and the contraction of area rises while the elongation slightly decreases. After the coatings are polished, the tensile properties of the alloy are improved rather small. The surface of tensile specimens uniformly remains a large quantity of tiny fragments of alumina coatings. That implies that the ceramic coating has good adhesion with aluminum alloy substrate

  18. Formation of CaCO3 deposits on hard surfaces--effect of bulk solution conditions and surface properties.

    Science.gov (United States)

    Wang, Hao; Alfredsson, Viveka; Tropsch, Juergen; Ettl, Roland; Nylander, Tommy

    2013-05-22

    We have studied nucleation and crystal growth of calcium carbonate on hard surfaces, i.e. stainless steel and silica, at different temperatures, in relation to the corresponding bulk processes, using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ellipsometry. In the bulk solution, a mixture of all three calcium carbonate crystalline polymorphs, calcite, aragonite, and vaterite, as well as amorphous particles was observed at 25 °C, while at 55 °C aragonite and calcite crystals dominated. On surfaces only calcite crystals were observed at 25 °C, whereas aragonite and calcite crystal adsorbed on the surfaces at 55 °C. Two kinds of nucleation and adsorption mechanism of CaCO3 crystals on hard surfaces were observed, depending on the surface orientation (vertical or horizontal, i.e., subject to sedimentation) in the bulk solution. A model for the relation between interfacial layer structure, the substrate, and the solution crystallization is discussed based on the observed difference in deposition between type of surfaces and surface orientation. In addition, the effect of magnesium ion on the morphology of calcium carbonate crystals is discussed.

  19. Facile Adhesion-Tuning of Superhydrophobic Surfaces between "Lotus" and "Petal" Effect and Their Influence on Icing and Deicing Properties.

    Science.gov (United States)

    Nine, Md J; Tung, Tran Thanh; Alotaibi, Faisal; Tran, Diana N H; Losic, Dusan

    2017-03-08

    Adhesion behavior of superhydrophobic (SH) surfaces is an active research field related to various engineering applications in controlled microdroplet transportation, self-cleaning, deicing, biochemical separation, tissue engineering, and water harvesting. Herein, we report a facile approach to control droplet adhesion, bouncing and rolling on properties of SH surfaces by tuning their air-gap and roughness-height by altering the concentrations of poly dimethyl-siloxane (PDMS). The optimal use of PDMS (4-16 wt %) in a dual-scale (nano- and microparticles) composite enables control of the specific surface area (SSA), pore volume, and roughness of matrices that result in a well-controlled adhesion between water droplets and SH surfaces. The sliding angles of these surfaces were tuned to be varied between 2 ± 1 and 87 ± 2°, which are attributed to the transformation of the contact type between droplet and surface from "point contact" to "area contact". We further explored the effectiveness of these low and high adhesive SH surfaces in icing and deicing actions, which provides a new insight into design highly efficient and low-cost ice-release surface for cold temperature applications. Low adhesion (lotus effect) surface with higher pore-volume exhibited relatively excellent ice-release properties with significant icing delay ability principally attributed to the large air gap in the coating matrix than SH matrix with high adhesion (petal effect).

  20. Surface treatments for improved performance and properties

    International Nuclear Information System (INIS)

    Burke, J.J.; Weiss, V.

    1982-01-01

    This book considers the characteristics, structures, and properties of surfaces. Divides the subject into the physical and chemical characteristics of metallic and nonmetallic surfaces, emerging surface modification techniques, surface structure and mechanical properties, and relationships between properties and processing for nonmetallic materials. Explores various methods of surface modification that can produce improved materials properties. Discusses such wide-ranging topics as the characterization of surfaces, reaction kinetics, the chemistry of gaseous hydrogen embrittlement, the effect of surface modification on corrosion, protection against high-temperature corrosion of surfaces, the effect of high temperatures developed during plating on the microstructure and microhardness of steel, near-surface modifications that will improve the crack-tolerant behavior of high-strength alloys, fretting corrosion and fretting fatigue, surface treatments for enhanced bonding between inorganic surfaces and polymers, and the relationships between surface structure, ceramic processing, and mechanical properties. Recommended for workers and researchers in materials science, surface science, and mechanical engineering. Constitutes the proceedings of the Twenty-sixth Sagamore Army Materials Research Conference (entitled ''Surface Treatments for Improved Performance and Properties'') held in New York in 1979

  1. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Science.gov (United States)

    Ahmad, Shahbaz; Bashir, Shazia; Ali, Nisar; Umm-i-Kalsoom; Yousaf, Daniel; Faizan-ul-Haq; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 1012 to 26 × 1013 ions/cm2. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation, augmentation, recombination and annihilation of the ion-induced defects.

  2. Electronic and structural properties of TiB2: Bulk, surface, and nanoscale effects

    International Nuclear Information System (INIS)

    Volonakis, George; Tsetseris, Leonidas; Logothetidis, Stergios

    2011-01-01

    Titanium diboride (TiB 2 ), is a widely used hard material that comprises graphene-like layers of B and intercalated Ti atoms. Here we report the results of extensive first-principles calculations on key properties of bulk TiB 2 , TiB 2 surfaces, and TiB 2 nanocrystals (NCs). The computational approach is first validated based on the agreement between calculated structural and electronic properties of bulk TiB 2 and available experimental and theoretical data. We then obtain the formation energies for several surface cuts and use these values to construct TiB 2 NCs based on the Wulff theorem. Finally, we demonstrate by studying the adsorption of small molecules that hydrogen and oxygen adatoms can be attached through strongly exothermic chemisorption reactions on TiB 2 surfaces. Likewise, water molecules bind on various TiB 2 surfaces and NC facets, with an energetic preference for the latter. The results are relevant to applications that depend on reactivity-related TiB 2 properties, for example resistance to corrosion and interactions with water-based solutions.

  3. Surface Properties of Silane-Treated Diatomaceous Earth Coatings: Effect of Alkyl Chain Length.

    Science.gov (United States)

    Perera, Helanka J; Mortazavian, Hamid; Blum, Frank D

    2017-03-21

    Modification of diatomaceous earth (DE) was performed using alkyltrimethoxysilanes of different chain lengths (C3, C8, C12, C16, and C18), and their resultant properties were determined. The thermal properties of these alkyltrimethoxysilane-treated DE powders were probed using thermogravimetric analysis and temperature-modulated differential scanning calorimetry, and the surface/porosity was studied using nitrogen adsorption and electron microscopy. Crystallinity of the hydrocarbon tails occurred when the chain lengths were C12 or larger, and the adsorbed hydrocarbon amounts were 1.6 mg/m 2 or more. The wettability of functionalized DE-containing surfaces was studied using water contact angle measurements. At larger adsorbed amounts of 2.2 mg/m 2 or more, the treated DE formed superhydrophobic coatings (with water contact angles ≥150°) with a polyurethane binder. These coatings required a minimum of 30% particle loadings, which allowed the DE particles to dominate the surface. At loadings larger than approximately 50%, there was a decrease in the contact angles corresponding to a reduction in roughness on the surface. Samples with adsorbed amounts less than 2.2 mg/m 2 or chain lengths shorter than C12 were only hydrophobic. These results were in agreement with scanning electron microscopy and Brunauer-Emmett-Teller specific surface area and pore volume measurements.

  4. Effects of erosive challenge on the morphology and surface properties of luting cements

    Directory of Open Access Journals (Sweden)

    Brenna Louise Cavalcanti GONDIM

    Full Text Available Abstract Introduction Few studies investigated the surface properties of luting cements after erosive challenge. Objective To evaluate the surface roughness (Ra, Vickers hardness (VHN and morphology of 4 luting cements after erosive challenge. Material and method Twenty specimens of each cement were prepared (4×2mm and divided into experimental (erosive challenge and control (artificial saliva groups (n=10: Rely X U200 (U200; Rely X ARC (ARC; Ketac Cem Easy Mix (Ketac and Zinc phosphate (ZnP. The erosive challenge was performed by four daily erosive cycles (90s in a cola drink and 2 h in artificial saliva over 7 days. Ra and VHN readings were performed before and after erosion. The percentage of hardness loss (%VHN was obtained after erosion. The surface morphology was analyzed by scanning electron microscopy (SEM. ANOVA, Tukey and Student-T tests were used (α=0.05. Result After erosion, all luting cements had increase in Ra values and U200 and ZnP groups had the highest %VHN. After saliva immersion, only U200 and ZnP groups had significant increases in Ra values and there were no significant differences among the groups in %VHN. SEM analysis showed that Ketac and ZnP groups had rough and porous surfaces, and U200 group had higher resin matrix degradation than ARC group. Conclusion Erosive challenge with a cola drink affected the surface properties of all luting cements.

  5. The effects of parametric changes in electropolishing process on surface properties of 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Zia ur [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mt. Pleasant, MI 48859 (United States); Deen, K.M. [Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Department of Metallurgy and Materials Engineering, CEET, University of the Punjab, Lahore, 54590 (Pakistan); Cano, Lawrence [Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539 (United States); Haider, Waseem, E-mail: haide1w@cmich.edu [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mt. Pleasant, MI 48859 (United States)

    2017-07-15

    Highlights: • 316L stainless steel was electropolished at the oxygen evolution (EPO) and below the oxygen evolution (EPBO) potentials. • EPBO samples displayed low fractional polarity and surface roughness when compared to EPO. • Both electropolished samples (EPO and EPBO) showed higher resistance to corrosion when compared to mechanically polished samples. • EPO and EPBO samples showed enhanced cell proliferation and stellar morphology after 24 h. - Abstract: Corrosion resistance and biocompatibility of 316L stainless steel implants depend on the surface features and the nature of the passive film. The influence of electropolishing on the surface topography, surface free energy and surface chemistry was determined by atomic force microscopy, contact angle meter and X-ray photoelectron spectroscopy, respectively. The electropolishing of 316L stainless steel was conducted at the oxygen evolution potential (EPO) and below the oxygen evolution potential (EPBO). Compared to mechanically polished (MP) and EPO, the EPBO sample depicted lower surface roughness (Ra = 6.07 nm) and smaller surface free energy (44.21 mJ/m{sup 2}). The relatively lower corrosion rate (0.484 mpy) and smaller passive current density (0.619 μA/cm{sup 2}) as determined from cyclic polarization scans was found to be related with the presence of OH, Cr(III), Fe(0), Fe(II) and Fe(III) species at the surface. These species assured the existence of relatively uniform passive oxide film over EPBO surface. Moreover, the relatively large charge transfer (R{sub ct}) and passive film resistance (R{sub f}) registered by EPBO sample from impedance spectroscopy analysis confirmed its better electrochemical performance. The in vitro response of these polished samples toward MC3T3 pre-osteoblast cell proliferation was determined to be directly related with their surface and electrochemical properties.

  6. Effects of DNP on the cell surface properties of marine bacteria and its implication for adhesion to surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, A.; Nishad, K.K.; Bhosle, N.B.

    of hydrogen peroxide as model antimicrobial agent for examining resisitance mechanisms. Methods Enzymol 310 : 599-608. Haque H, Cutright TJ & Zhang newby BM (2005) Effectiveness of sodium benzoate as a freshwater low toxicity antifoulant when dispersed... and the Environment (D Almorza C A, Brebbia D Sales & V Popov) (Editors),ISBN 1-85312-907- 0. Min Seok chae, Heidi Schraft, Lisbeth Truelstrup Hansen & Robet Mackereth (2006) Effect of physiochemical surface characteristic of Listeria monocytogenes strains...

  7. The Effects of Particle Size on the Surface Properties of an HVOF Coating of WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tong Yul; Yoon, Jae Hong; Yoon, Sang Hwan; Joo, Yun Kon [Changwon National University, Changwon (Korea, Republic of); Choi, Won Ho; Son, Young Bok [Xinix Metallizing Co., Ltd, Gyungnam (Korea, Republic of)

    2017-04-15

    The effects of particle size on the surface properties of HVOF spray coating were studied to improve of the durability of metal components. Micro and nano sized WC-12Co powders were coated on the surface of Inconel718, and the effects of particle size on surface properties were studied. Surface hardness was reduced when the particle sizes of the powder were decreased, because the larger specific surface area of the smaller particles caused greater heat absorption and decomposition of the hard WC to less hard W{sub 2}C and graphite. Porosity was increased by decreasing the particle size, because the larger specific surface area of the smaller particles caused a greater decomposition of WC to W{sub 2}C and free carbon. The free carbon formed carbon oxide gases which created the porous surface. The friction coefficient was reduced by decreasing the particle size because the larger specific surface area of the smaller particles produced more free carbon free Co and Co oxide which acted as solid lubricants. The friction coefficient increased when the surface temperature was increased from 25 to 500 ℃, due to local cold welding. To improve the durability of metal mechanical components, WC-Co coating with the proper particle size is recommended.

  8. Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, G., E-mail: ligang_scut@outlook.com; Qu, S.G., E-mail: qusg@scut.edu.cn; Pan, Y.X.; Li, X.Q.

    2016-12-15

    Highlights: • Effects of MUSR frequency and load on surface properties of HIP Ti-6Al-4V investigated. • The grains in surface-modified layer were refined and appeared twins and many dense dislocations. • The hardened layer depth and surface residual stress of MUSR- treated samples were significantly improved. • MUSR- treated samples showed the good fretting friction and wear resistance. • The best microstructure and properties of surface-modified layer obtained by sample treated by 30 kHz and 900 N. - Abstract: The main purpose of this paper was to investigate the effects of the different frequencies and loads of multi-pass ultrasonic surface rolling (MUSR) on surface layer mechanical properties, microstructure and fretting friction and wear characteristics of HIP (hot isostatic pressing) Ti–6Al–4 V alloy. Some microscopic analysis methods (SEM, TEM and EDS) were used to characterize the modified surface layer of material after MUSR treatment. The results indicated that the material in sample surface layer experienced a certain extent plastic deformation, and accompanied by some dense dislocations and twins generation. Moreover surface microhardness and residual stress of samples treated by MUSR were also greatly improved compared with the untreated. The fretting friction and wear properties of samples treated by MUSR in different conditions are tested at 10 and 15 N in dry friction conditions. It could be found that friction coefficient and wear volume loss were significantly declined in the optimal result. The main wear mechanism of MUSR-treated samples included abrasive wear, adhesion and spalling.

  9. Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach

    Science.gov (United States)

    Ribeiro, M. S.; Pascoini, A. L.; Knupp, W. G.; Camps, I.

    2017-12-01

    Carbon nanotubes (CNTs) have important electronic, mechanical and optical properties. These features may be different when comparing a pristine nanotube with other presenting its surface functionalized. These changes can be explored in areas of research and application, such as construction of nanodevices that act as sensors and filters. Following this idea, in the current work, we present the results from a systematic study of CNT's surface functionalized with hydroxyl and carboxyl groups. Using the entropy as selection criterion, we filtered a library of 10k stochastically generated complexes for each functional concentration (5, 10, 15, 20 and 25%). The structurally related parameters (root-mean-square deviation, entropy, and volume/area) have a monotonic relationship with functionalization concentration. Differently, the electronic parameters (frontier molecular orbital energies, electronic gap, molecular hardness, and electrophilicity index) present and oscillatory behavior. For a set of concentrations, the nanotubes present spin polarized properties that can be used in spintronics.

  10. Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Deepika, G; Green, R J; Frazier, R A; Charalampopoulos, D

    2009-10-01

    To investigate the changes in the surface properties of Lactobacillus rhamnosus GG during growth, and relate them with the ability of the Lactobacillus cells to adhere to Caco-2 cells. Lactobacillus rhamnosus GG was grown in complex medium, and cell samples taken at four time points and freeze dried. Untreated and trypsin treated freeze dried samples were analysed for their composition using SDS-PAGE analysis and Fourier transform infrared spectroscopy (FTIR), hydrophobicity and zeta potential, and for their ability to adhere to Caco-2 cells. The results suggested that in the case of early exponential phase samples (4 and 8 h), the net surface properties, i.e. hydrophobicity and charge, were determined to a large extent by anionic hydrophilic components, whereas in the case of stationary phase samples (13 and 26 h), hydrophobic proteins seemed to play the biggest role. Considerable differences were also observed between the ability of the different samples to adhere to Caco-2 cells; maximum adhesion was observed for the early stationary phase sample (13 h). The results suggested that the adhesion to Caco-2 cells was influenced by both proteins and non-proteinaceous compounds present on the surface of the Lactobacillus cells. The surface properties of Lact. rhamnosus GG changed during growth, which in return affected the ability of the Lactobacillus cells to adhere to Caco-2 cells. The levels of adhesion of Lactobacillus cells to Caco-2 cells were influenced by the growth time and reflected changes on the bacterial surface. This study provides critical information on the physicochemical factors that influence bacterial adhesion to intestinal cells.

  11. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  12. Effect of Hybrid Surface Modifications on Tensile Properties of Polyacrylonitrile- and Pitch-Based Carbon Fibers

    Science.gov (United States)

    Naito, Kimiyoshi

    2016-05-01

    Recent interest has emerged in techniques that modify the surfaces of carbon fibers, such as carbon nanotube (CNT) grafting or polymer coating. Hybridization of these surface modifications has the potential to generate highly tunable, high-performance materials. In this study, the mechanical properties of surface-modified polyacrylonitrile (PAN)-based and pitch-based carbon fibers were investigated. Single-filament tensile tests were performed for fibers modified by CNT grafting, dipped polyimide coating, high-temperature vapor deposition polymerized polyimide coating, grafting-dipping hybridization, and grafting-vapor deposition hybridization. The Weibull statistical distributions of the tensile strengths of the surface-modified PAN- and pitch-based carbon fibers were examined. All surface modifications, especially hybrid modifications, improved the tensile strengths and Weibull moduli of the carbon fibers. The results exhibited a linear relationship between the Weibull modulus and average tensile strength on a log-log scale for all surface-modified PAN- and pitch-based carbon fibers.

  13. Surface properties of beached plastics.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  14. Effects of rare earth oxide additive on surface and tribological properties of polyimide composites

    Science.gov (United States)

    Pan, Zihe; Wang, Tianchang; Chen, Li; Idziak, Stefan; Huang, Zhaohui; Zhao, Boxin

    2017-09-01

    Rare earth oxide La2O3 microparticles-reinforced polyimide (PI) composites (La-PI-Cs) were fabricated, aiming to improve the tribological property of PI. Surface roughness, surface composition, bulk structure, friction force (Ff) and coefficient of friction (COF) at macro/micro preload, and anti-wear performances of La-PI-Cs were studied and compared with neat PI. With La2O3 microparticles, La-PI-Cs showed larger surface roughness, lower surface energy, and higher hydrophobicity than neat PI, and displayed beneficial layered structure different from the compact structure of PI. Owing to these advantages, La-PI-Cs were found to show a 70% reduction in Ff and COF, and a 30% reduction in wear rate, indicating significantly lowered friction and enhanced anti-wear properties after adding La2O3 microparticles. Our research findings demonstrated an easy and low cost method to fabricate polymer composites with low friction and high wear resistance, and help meet the demanding of polymer composites with high tribological performances in broaden applications.

  15. Effect of Surface Modification of Nanosilica on the Viscoelastic Properties of Its Polystyrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Mortezaei

    2008-12-01

    Full Text Available The preparation and characterization of the vinyltriethoxysilane-modified silica nanoparticles were investigated. Also the surface tension of polystyrene, native (hydrophilic silica and silane-modified (hydrophobic silica were determined. Two kinds of polystyrene/silica (treated and non-treated nanocomposites were prepared with different filler loadings by solution method. Their viscoelastic properties were studied by dynamic stress controlled rotary shear rheometer. Solid-like response of polystyrene/native silica nanocomposites were observed in the terminal zone. Solid inclusionsincrease the storage modulus more than the loss modulus, hence decrease the material damping. By increasing filler volume fraction, the particles tend to agglomerate and build clusters. The presence of clusters increases the viscosity, the moduli and the viscoelastic non-linearity of the composites.Treating the filler surface reduces its tendency to agglomerate as well as the adhesion between the particles and the polystyrene, leading to lower viscosity and interfacial slippage. Also the loss modulus peak is affected significantly by the particle surface area and its surface property in silica-filled polystyrene, which corresponds to its glass transition.

  16. Effect of surface treatments on tensile properties of hemp fiber reinforced polypropylene composites

    Science.gov (United States)

    Ma, Li; He, Lujv; Zhang, Libin

    2017-04-01

    Three forms of hemp fiber (untreated, treated with sodium hydroxide solution and treated with sodium hydroxide solution followed by three-aminopropyltriethoxysilane) reinforced polypropylene composites were prepared. The effects of chemical treatments on tensile properties of the composites were studied. The results show that alkali treatment followed by three-aminopropyltriethoxysilane treatment significantly improves the tensile properties. In particular, the specific tensile strengths of alkali-silane treated composites with 30% fiber content are only 4% lower than those of composites reinforced with glass fiber. Scanning electron microscopy examination shows that the improvements in tensile properties can be attributed to better bonding between the fiber and matrix.

  17. Natural fiber reinforced polystyrene composites: Effect of fiber loading, fiber dimensions and surface modification on mechanical properties

    International Nuclear Information System (INIS)

    Singha, A.S.; Rana, Raj K.

    2012-01-01

    Highlights: ► Preparation of Agave fiber reinforced polystyrene composites. ► Effect of fiber content, fiber dimensions and surface treatment on the mechanical properties of composites. ► Composites with 20% by weight fiber content exhibited optimum mechanical properties. ► Composites reinforced with MMA grafted fibers exhibited better mechanical strength as compared to raw fibers. ► SEM of fractured surfaces of samples showed better interface in particle reinforced composites. -- Abstract: Natural fibers have been found to be excellent reinforcing materials for preparing polymer matrix based composites. In the present study both raw and surface modified Agave fiber reinforced polystyrene matrix based composites were prepared in order to explore the effect of reinforcement on the mechanical properties of the matrix. The surface modification of Agave fiber was carried out by graft copolymerization of methyl methacrylate (MMA) onto it in the presence of ceric ammonium nitrate (CAN) as initiator. For preparing these composites different fiber contents of both raw and grafted fibers (10–30% by weight) have been used. It has been found that 20% fiber content gives optimum mechanical properties. The effect of different fiber dimensions (particle, short and long fibers) on the mechanical properties of the composites has also been investigated. It has been found that particle reinforcement gives better mechanical properties than short and long fiber reinforcement. The composites thus prepared have been characterized by Fourier transform infra red (FT-IR) spectroscopy, Scanning electron microscopy (SEM) and TGA/DTA techniques. Further the surface modified fiber reinforced composites have been found to be thermally more stable than that of raw fiber reinforced composites.

  18. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  19. Surface properties of HMX crystal

    Science.gov (United States)

    Yee, R. Y.; Adicoff, A.; Dibble, E. J.

    1980-01-01

    The surface properties of Beta-HMX crystals were studied. The surface energies of three principal crystal faces were obtained by measuring contact angles with several reference liquids. The surface energies and polarity of the three crystal faces are found to be different.

  20. Further studies of the effects of oxidation on the surface properties of coal and coal pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Miguel Nicolas [Univ. of California, Berkeley, CA (United States)

    1994-01-01

    The objective of this research was to investigate the oxidation behavior of coal and coal pyrite and to correlate the changes in the surface properties induced by oxidation, along with the intrinsic physical and chemical properties of these organic and inorganic materials, with the behavior in physical coal cleaning processes. This provide more fundamental knowledge for understanding the way in which different factors interact in a medium as heterogeneous as coal. Fourteen coal samples of different ranks ranging from high to medium sulfur content were studied by dry oxidation tests at different temperatures and humidities, and by wet oxidation tests using different oxidizing agents. The concentration of surface oxygen functional groups was determined by ion-exchange methods. The changes in the coal composition with oxidation were analyzed by spectroscopic techniques. The wettability of as-received and oxidized coal and coal pyrite samples was assessed by film flotation tests. The electrokinetic behavior of different coals and coal pyrite samples was studied by electrokinetic tests using electrophoresis. Possible oxidation mechanisms have been proposed to explain the changes on the coal surface induced by different oxidation treatments.

  1. Effect of ALD surface treatment on structural and optical properties of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin-Tak [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, Hyukhyun, E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, Won-Jae [Department of Materials and Components Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2013-07-01

    In this study, we report on the improvement of the optical and structural properties of ZnO nanorods using atomic layer deposition (ALD) on seed ZnO nanorods. After the initial growth of ZnO seed nanorods by hydrothermal synthesis for 1 h, a ZnO layer with a thickness of 10 nm was deposited on the initial ZnO seed nanorods using ALD. Then ZnO was further grown by hydrothermal synthesis for 4 h. The samples were characterized using room temperature photoluminescence (PL), field emission-scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). From this experiment, it was found that the ZnO nanorods with the ALD surface treatment show improved optical and structural properties when compared with the ZnO nanorods grown only by hydrothermal synthesis. The ZnO nanorods with the ALD surface treatment show about 2.7 times higher XRD (0 0 2) peak intensity, about 2.64 times higher PL NBE peak intensity, and about 3.1 times better NBE/DLE ratio than the ZnO nanorods without an ALD surface treatment.

  2. Effects of surface coordination chemistry on the magnetic properties of MnFe(2)O(4) spinel ferrite nanoparticles.

    Science.gov (United States)

    Vestal, Christy R; Zhang, Z John

    2003-08-13

    To understand the influence of surface interactions upon the magnetic properties of magnetic nanoparticles, the surface of manganese ferrite, MnFe(2)O(4), nanoparticles have been systematically modified with a series of para-substituted benzoic acid ligands (HOOC-C(6)H(4)-R; R = H, CH(3), Cl, NO(2), OH) and substituted benzene ligands (Y-C(6)H(5), Y = COOH, SH, NH(2), OH, SO(3)H). The coercivity of magnetic nanoparticles decreases up to almost 50% upon the coordination of the ligands on the nanoparticle surface, whereas the saturation magnetization has increased. The percentage coercivity decrease of the modified nanoparticles with respect to the native nanoparticles strongly correlates with the crystal field splitting energy (CFSE) Delta evoked by the coordination ligands. The ligand inducing largest CFSE results in the strongest effect on the coercivity of magnetic nanoparticles. The change in magnetic properties of nanoparticles also correlates with the specific coordinating functional group bound onto the nanoparticle surface. The correlations suggest the decrease in spin-orbital couplings and surface anisotropy of magnetic nanoparticles due to the surface coordination. Such surface effects clearly show the dependence on the size of nanoparticles.

  3. Self-assembled monolayers of Lewis bases: effects on surface and interfacial electronic properties in III-V optical semiconductors

    Science.gov (United States)

    Dorsten, J. F.; Maslar, James E.; Zhang, Ying; Rauchfuss, T. B.; Bohn, Paul W.; Agarwala, S.; Adesida, Ilesanmi; Caneau, Catherine; Bhat, Rajaram J.

    1994-07-01

    The nature and disposition of surface states can have a dramatic effect on the near-surface electronic properties in semiconductor heterostructures. In particular the lack of a well-defined surface oxide in III-V materials means that surface band bending can cause surface recombination velocities to be up to 103 larger than in Si-based materials. Raman scattering by coupled longitudinal optic phonons and 2D electron gas electrons in In0.52Al0.48AsIn0.53Ga0.47As (delta) -doped heterostructures is used to demonstrate the extreme sensitivity to surface states. The two highest frequency modes, of the three coupled electron-phonon modes expected in this system, were observed, with the L+ mode being identified for the first time in InGaAs-based systems. The large dispersion of this mode makes it a particularly sensitive probe for changes in such properties as carrier concentration and subband energy. For structures with higher carrier concentrations coupling of the longitudinal optic phonon to multiple electron intersubband transitions is resolved. In order to passivate native surface states organic thiols are being investigated. Measurements on bulk GaAs indicate a change in the surface depletion region thickness, within the abrupt junction model, of up to 50 angstrom (ca. 30%). Changes in carrier scattering times up to 50% have also been observed.

  4. Effect of Rock Fragment Cover on Hydraulics Properties of Surface Flows and Rill Initiation with Simulating Runoff under Natural Conditions

    Directory of Open Access Journals (Sweden)

    sara kalbali

    2017-06-01

    Full Text Available Introduction: Rock fragments on soil surfaces can also have several contrasting effects on the hydraulics of overland flow and soil erosion processes. Many investigators have found that a cover of rock fragments on a soil surface can decrease its erosion potential compared to bare soil surface (1, 12 and 18. This has mainly been attributed to the protection of the soil surface by rock fragments against the beating action of rain. This leads to a decrease in the intensity of surface sealing, an increase in the infiltration rate, a decrease in the runoff volume and rate, and, hence, a decrease in sediment generation and production for soils covered by rock fragments. Parameters that have been reported to be important for explaining the degree of runoff or soil loss from soils containing rock fragments include the position and size (15, geometry (18, and percentage cover (11 and 12 of rock fragments and the structure of fine earth (16. Surface rock fragment cover is a more important factor for hydroulic properties of surface flows such as flow depth, flow velocity, Manning’s roughness coefficient (n parameter and flow shear stress and geometrics properties of formed rill such as time, location, number, length, width and depth of rill. Surface rock fragment cover is directly affected soil erosion processes in dry area specially in areas that plant can not grow because of sever dryness and salinity. Also, Surface rock fragment prevent the contact of rain drops to aggregates, decreasing physical degradation by decreasing flow velocity. The objective of this study was to investigate the effect of different surface rock fragment cover on hydraulic properties of surface flows and geometrics properties of formed rill. Materials and Methods: For this purpose, 36 field plots of 20 meter length and 0.5 meter width with 3% slope were established in research field of agricultural faculty, Shahrekord University. Before each erosion event, topsoil was tilled

  5. Effect of fibre laser marking on surface properties and corrosion resistance of a Fe-Ni-Cr alloy

    Science.gov (United States)

    Astarita, Antonello; Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla; Squillace, Antonino; Scherillo, Fabio

    2017-10-01

    Fiber laser techniques are increasing their use in many applications, including modification of material surface properties. In particular they are often used for materials' marking as a non-contact processing. In spite of this, the impact of the laser beam on the surface causes metallurgical and morphological changes. The developments during the laser-material interaction can also affect other surface properties, especially corrosion properties which are crucial in the case of Iron-Nickel alloys. Effect of laser marking on a Fe-Cr-Ni alloy using a Tm-fibre laser (IPG Photonics TRL1904; maximum power: 50W, wavelength: 1904 nm), is described in this paper. In order to evaluate the effect of the laser on corrosion properties a specific ageing test in salt spray has been performed. Moreover, superficial morphology analyses have been performed on samples before and after corrosion tests. Possibilities and limitations of laser marking on these alloys have been discussed, in particular from the point of view of the marked surface corrosion resistance preservation.

  6. Effect of Surface Modification of Palygorskite on the Properties of Polypropylene/Polypropylene-g-Maleic Anhydride/Palygorskite Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Cisneros-Rosado

    2017-01-01

    Full Text Available The effect of surface modification of palygorskite (Pal on filler dispersion and on the mechanical and thermal properties of polypropylene (PP/polypropylene grafted maleic anhydride (PP-g-MAH/palygorskite (Pal nanocomposites was evaluated. A natural Pal mineral was purified and individually surface modified with hexadecyl tributyl phosphonium bromide and (3-Aminopropyltrimethoxysilane; the pristine and modified Pals were melt-compounded with PP to produce nanocomposites using PP-g-MAH as compatibilizer. The grafting of Pal surface was verified by FT-IR and the change in surface hydrophilicity was estimated by the contact angle of sessile drops of ethylene glycol on Pal tablets. The extent of Pal dispersion and the degree of improvement in both the mechanical and thermal properties were related to the surface treatment of Pal. Modified Pals were better dispersed during melt processing and improved Young’s modulus and strength; however, maximum deformation tended to decrease. The thermal stability of PP/PP-g-MAH/Pal nanocomposites was considerably improved with the content of modified Pals. The degree of crystallinity increased with Pal content, regardless of the surface modification. Surfactant modified Pal exhibited better results in comparison with silane Pal; it is possible that longer alkyl chains from surfactant molecules promoted interactions with polymer chains, thereby improving nanofiller dispersion and enhancing the properties.

  7. Effects of immersion disinfection of agar-alginate combined impressions on the surface properties of stone casts.

    Science.gov (United States)

    Iwasaki, Yukiko; Hiraguchi, Hisako; Iwasaki, Eriko; Yoneyama, Takayuki

    2016-01-01

    This study investigated the effects of disinfection of agar-alginate combined impressions on the surface properties of the resulting stone casts. Two brands of cartridge-form agar impression material and one alginate impression material were used. Agar-alginate combined impressions of smooth glass plates were prepared. The impressions were immersed in 0.55% ortho-phthalaldehyde solution or 0.5% sodium hypochlorite solution for 1, 3, 5 and 10 min. A stone cast made with an impression that had not been immersed was prepared as a control. The surface roughness (Ra) of the stone casts was measured, and the cast surfaces were observed by SEM. Immersion of agar-alginate combined impressions in 0.5% sodium hypochlorite solution for up to 10 min had no serious adverse effects on the surface properties of the stone casts. In contrast, even 1 min of immersion in 0.55% ortho-phthalaldehyde solution caused deterioration of the cast surface properties.

  8. [The effect of autoclave sterilization on the surface properties of orthodontic brackets after fitting in the mouth].

    Science.gov (United States)

    Rerhrhaye, W; Ouaki, B; Zaoui, F; Aalloula, E

    2011-12-01

    Repeated sterilizations of the orthodontic bands, after fitting in mouth, are likely to involve modifications of their surface properties. Through this study we have tried to observe the effect of sterilization by autoclave on the surface of the orthodontic bands, as well as the contribution of the use of ultrasound in the chain of sterilization. The sample was composed of 30 orthodontic bands divided into 5 groups: a group of new bands (witnesses) and 4 groups having undergone respectively 1 cycle, 3 cycles, 5 cycles and 7 cycles of autoclave sterilization according to the World Health Organization recommendations. For half of each group bands, ultrasonic cleaning has not been provided. The scanning electron microscopy with the elementary microanalysis by X-rays was used for the investigation of surface. At the exam, new bands showed surface irregularities probably due to manufacturing procedures. And the bands, without ultrasonic cleaning, showed the presence of contamination and discolourations. Moreover, there were no modifications on the surface of the bands cleaned by ultrasounds before sterilization. The presence of surface irregularities associated with deposits observed on the bands surface, may be the site of bio corrosion by contributing bio film accumulation. The stay duration of the orthodontic bands in mouth, during orthodontic treatment, is important. So the effect of sterilization on the surface of the orthodontic bands must encourage other scientific research to determine the long term effects of sterilization which remains an essential process in our daily practice.

  9. Effect furfurylation on physical properties and surface quality of two species of Beech and Fir

    Directory of Open Access Journals (Sweden)

    aysona talai

    2016-12-01

    Full Text Available The objective of this study was investigation of furfurylation effect on water absorption, thickness swelling, contact angle and surface roughness in two species such as beech (Fagus orientalis and fir (Abies alba. In this regard, two different values of furfurylation of beech and fir wood specimens in the form of low level and high level were carried out and compared with control specimens. The furfurylation was carried out with impregnation under pressure and polymerization of furfuryl alcohol monomer with heat catalyst. For evaluating the water absorption and thickness swelling, specimens were subjected to long-term water immersion, and their dimension changes were determined at different times. The surface roughness and contact angle testes were also carried out. Results indicated that water absorption and thickness swelling were reduced. Results also indicated that drop contact angles were decreased and surface roughness were increased by increasing of furfurylation level.

  10. Effects of polymer surface energy on morphology and properties of silver nanowire fabricated via nanoimprint and E-beam evaporation

    Science.gov (United States)

    Zhao, Zhi-Jun; Hwang, Soon Hyoung; Jeon, Sohee; Jung, Joo-Yun; Lee, Jihye; Choi, Dae-Geun; Choi, Jun-Hyuk; Park, Sang-Hu; Jeong, Jun-Ho

    2017-10-01

    In this paper, we demonstrate that use of different nanoimprint resins as a polymer pattern has a significant effect on the morphology of silver (Ag) nanowires deposited via an E-beam evaporator. RM-311 and Ormo-stamp resins are chosen as a polymer pattern to form a line with dimensions of width (100 nm) × space (100 nm) × height (120 nm) by using nanoimprint lithography (NIL). Their contact angles are then measured to evaluate their surface energies. In order to compare the properties of the Ag nanowires deposited on the various polymer patterns with different surface energies, hydrophobic surface treatment of the polymer pattern surface is implemented using self-assembled monolayers. In addition, gold and aluminum nanowires are fabricated for comparison with the Ag nanowires, with the differences in the nanowire morphologies being determined by the different atomic properties. The monocrystalline and polycrystalline structures of the various Ag nanowire formations are observed using transmission electron microscopy. In addition, the melting temperatures and optical properties of four kinds of Ag nanowire morphologies deposited on various polymer patterns are evaluated using a hot plate and an ultraviolet-visible (UV-vis) spectrometer, respectively. The results indicate that the morphology of the Ag nanowire determines the melting temperature and the transmission. We believe that these findings will greatly aid the development of NIL, along with physical evaporation and chemical deposition techniques, and will be widely employed in optics, biology, and surface wettability applications.

  11. Red mud carbonation using carbon dioxide: Effects of carbonate and calcium ions on goethite surface properties and settling.

    Science.gov (United States)

    Liang, Gaojie; Chen, Wenmi; Nguyen, Anh V; Nguyen, Tuan A H

    2018-05-01

    Carbonation using CO 2 appears as an attractive solution for disposing of red mud suspensions, an aluminum industry hazardous waste since it also offers an option for CO 2 sequestration. Here we report the novel findings that CO 3 2- together with Ca 2+ can significantly affect the surface properties and settling of goethite, a major component of red mud. Specifically, their effects on the goethite surface chemistry, colloidal interaction forces and settling in alkaline solutions are investigated. The surface potential becomes more negative by the formation of carbonate inner-sphere complexes on goethite surface. It is consistent with the strong repulsion, decreased particle size and settling velocity with increased carbonate concentrations as measured by atomic force microscopy, particle size analysis, and particle settling. Adding Ca 2+ that forms outer-sphere complexes with pre-adsorbed carbonate changes goethite surface charge negligibly. Changing repulsion to the attraction between goethite surfaces by increasing calcium dosage indicates the surface bridging, in accordance with the increased settling velocity. The adverse effect of carbonate on goethite flocculation is probably due to its specific chemisorption and competition with flocculants. By forming outer-sphere complexes together with the flocculant-calcium bridging effect, calcium ions can eliminate the negative influence of carbonate and improve the flocculation of goethite particles. These findings contribute to a better understanding of goethite particle interaction with salt ions and flocculants in controlling the particle behavior in the handling processes, including the red mud carbonation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The effects of processing parameters on the properties of micro-scale porous surface for a micro-channel reactor

    International Nuclear Information System (INIS)

    Feng, Yanbing; Mei, Deqing; Qian, Miao; Yi, Zoudongyi; Chen, Zichen

    2017-01-01

    To improve the performance of hydrogen production via a microchannel reactor with a porous surface, the process of layered powder sintering and dissolution method is optimized, and the effects of processing parameters on the morphological and mechanical properties of the porous surface structure are studied. Based on the preliminary experiments, three key parameters in the process are the size of the NaCl particle, the compaction pressure, and the sintering temperature. Besides, the porous surface structures are evaluated by the specific surface area and compression strength to optimize the influencing variables. Results show that the specific surface area of porous surface structure is determined mainly by the size of NaCl particle, while the pressure and temperature have little influence unexpectedly within the range of experimental condition. With the increase of temperature and pressure, the compression strength will be enhanced, but the increase of the size of NaCl particles will cause the decrease of compression strength. The optimum compaction pressure, sintering temperature, and size of the NaCl particle are obtained respectively. Finally, the optimum parameters have been used to manufacture the micro-channel catalyst support with a porous surface, and its hydrogen production can be maximumly enhanced by 90% compared with the surface fabricated with NaCl particles of 125–150 µ m. (paper)

  13. Surface properties of dielectrics

    International Nuclear Information System (INIS)

    Le Gressus, C.; Maire, P.; Duraud, J.P.; Lecayon, G.

    1988-03-01

    Importance of defects on dielectric behaviour (breakdown), mechanical behaviour (fracture, adhesion) and thermochemical behaviour of insulating materials is recalled. Then effect of a mechanical stress on breakdown voltage is studied. An experimental verification shows that fracture of Y 2 O 3 is propagated in grain boundaries enriched in oxygen vacancies for a non stoichiometric sample by local variation of dielectric constant [fr

  14. A case study on biomass burning aerosols: effects on aerosol optical properties and surface radiation levels

    Directory of Open Access Journals (Sweden)

    A. Arola

    2007-08-01

    Full Text Available In spring 2006, biomass burning aerosols from eastern Europe were transported extensively to Finland, and to other parts of northern Europe. They were observed as far as in the European Arctic. In the first part of this paper, temporal and spatial evolution and transport of these biomass burning aerosols are monitored with MODIS retrieved aerosol optical depth (AOD imagery at visible wavelengths (0.55 μm. Comparison of MODIS and AERONET AOD is conducted at Tõravere, Estonia. Then trajectory analyses, as well as MODIS Fire Mapper products are used to better understand the type and origin of the air masses. During the studied four-week period AOD values ranged from near zero up to 1.2 at 0.55 μm and the linear correlation between MODIS and AERONET was very high (~0.97. Temporal variability observed within this four-week period was also rather well explained by the trajectory analysis in conjunction with the fire detections produced by the MODIS Rapid Response System. In the second part of our study, the surface measurements of global and UV radiation at Jokioinen, Finland are used to study the effect of this haze episode on the levels of surface radiation. We found reductions up to 35% in noon-time surface UV irradiance (at 340 nm as compared to typical aerosol conditions. For global (total solar radiation, the reduction was always smaller, in line with the expected wavelength dependence of the aerosol effect.

  15. Effects of copper-plasma deposition on weathering properties of wood surfaces

    Science.gov (United States)

    Gascón-Garrido, P.; Mainusch, N.; Militz, H.; Viöl, W.; Mai, C.

    2016-03-01

    Thin layers of copper micro-particles were deposited on the surfaces of Scots pine (Pinus sylvestris L.) micro-veneers using atmospheric pressure plasma to improve the resistance of the surfaces to weathering. Three different loadings of copper were established. Micro-veneers were exposed to artificial weathering in a QUV weathering tester for 0, 24, 48, 96 and 144 h following the standard EN 927-6 [1]. Mass losses after each exposure showed significant differences between copper coated and untreated micro-veneers. Tensile strength was assessed at zero span (z-strength) and finite span (f-strength) under dry conditions (20 °C, 65% RH). During 48 h, micro-veneers lost their z-strength progressively. In contrast, copper coating at highest loading imparts a photo-protective effect to wood micro-veneers during 144 h exhibiting z-strength retention of 95%. F-strength losses were similar in all copper treated and untreated micro-veneers up to 96 h. However, after 144 h, copper coated micro-veneers at highest loading showed significantly greater strength retention of 56%, while untreated micro-veneers exhibited only 38%. Infrared spectroscopy suggested that copper coating does not stabilize lignin. Inductively Coupled Plasma revealed that micro-veneers coated with the highest loading exhibited the lowest percentage of copper loss. Blue stain resistance of copper coated Scots pine following the guidelines of EN 152 [2] was performed. Additional test with different position of the coated surface was also assessed. Copper coating reduced fungal growth when coated surface is exposed in contact with vermiculite. Spores of Aureobasidium pullulans were not able to germinate on the copper coated surface positioned uppermost.

  16. Activation of wood surfaces for glue bonds by mechanical pre-treatment and its effects on some properties of veneer surfaces and plywood panels

    Science.gov (United States)

    Aydin, İsmail

    2004-06-01

    Some chemical pre-treatments with chemical reagents are widely applied to wood surfaces in order to improve bonding ability, wettability and reactivate wood surfaces for glue-wood bonds. Besides these chemical treatments, some mechanical pre-treatments such as sanding and planing can be applied to get a fresh surface which eliminates bonding problems and improves glue bonding of wood. In this study, 2 mm thick rotary cut veneers obtained from steamed beech ( Fagus orientalis) logs were used as material. Both air-drying and oven-drying methods were used for drying veneer. After drying, the surfaces of some veneers were sanded with 100 and 180 grit sandpapers. Three-layer-plywood panels were produced from sanded and non-sanded veneers by using urea formaldehyde and phenol formaldehyde glue resins to evaluate the effects of sanding some mechanical properties of plywood. Changes in pH, surface roughness and adhesive wettability of veneers were evaluated. Wettability of veneers was assessed with contact angle measurements according to the sessile drop method. Both veneer and plywood properties investigated in this study improved clearly after the sanding process. Shear and bending strength values of plywood panels manufactured from sanded and non-sanded veneers were vary depending on glue types and veneer drying methods.

  17. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    Science.gov (United States)

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  18. Effect of surface treatment of carbon nanotubes on mechanical properties of cement composite

    Directory of Open Access Journals (Sweden)

    KONDAKOV Alexander Igorevich

    2014-08-01

    Full Text Available The aim of the paper is to explore the influence of the carbon nanotubes functionalized by oxygen groups on the physical and mechanical properties of cement composites. Advantages and disadvantages of the main methods for the homogeneous distribution of carbon nanotubes (CNTs in solution are discussed. A method for covalent functionalization of CNTs is described. An acid-base titration and dispersion analysis of solutions containing functionalized carbon nanotubes (f-CNTs was performed. The research data made it possible to propose new technology of preparation of modified concrete. The results of the work can be used for designing of the additives commonly used in the construction industry, as well as for further studies of the effects of CNTs on the physical and mechanical and structural properties of building materials. Efficient modification of cement composite with f-CNTs was achieved at the concentration of f-CNTs ranging from 0.0004% to 0.0008% by weight of the binder. The observed increase of the concrete mechanical properties is explained by the fact that the CNTs act as nucleation centers for the cement hydration products.

  19. Effects of Surface Modification of MWCNT on the Mechanical and Electrical Properties of Fluoro Elastomer/MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2012-01-01

    Full Text Available Surface modification is a good way to improve the surface activity and interfacial strength of multiwalled carbon nanotubes (MWCNTs when used as fillers in the polymer composites. Among the reported methods for nanotube modification, mixed acid oxidation and plasma treatment is often used by introducing polar groups to the sidewall of MWCNT successfully. The purpose of this study is to evaluate the effect of different surface modification of MWCNT on the mechanical property and electrical conductivity of Fluoro-elastomer (FE/MWCNT nanocomposites. MWCNTs were surface modified by mixed oxidation and CF4 plasma treatment and then used to reinforce the fluoro elastomer (FE, a copolymer of trifluorochloroethylene and polyvinylidene fluoride. FE/MWCNT composite films were prepared from mixture solutions of ethylacetate and butylacetate, using untreated CNTs (UCNTs, acid-modified CNTs (ACNTs, and CF4 plasma-modified CNT (FCNTs. In each case, MWCNT content was 0.01 wt%, 0.05 wt%, 0.1 wt%, and 0.2 wt% with respect to the polymer. Morphology and mechanical properties were characterized by using scanning electron microscopy (SEM, Raman spectroscopy, as well as dynamic mechanical tests. The SEM results indicated that dispersion of ACNTs and especially FCNTs in FE was better than that of UCNTs. DMA indicated mechanical properties of FCNT composites were improved over ACNT and UCNT filled FE. The resulting electrical properties of the composites ranged from dielectric behavior to bulk conductivities of 10-2 Sm-1 and were found to depend strongly on the surface modification methods of MWCNTs.

  20. Effects of surface morphology on the optical and electrical properties of Schottky diodes of CBD deposited ZnO nanostructures

    Science.gov (United States)

    Mwankemwa, Benard S.; Akinkuade, Shadrach; Maabong, Kelebogile; Nel, Jackie M.; Diale, Mmantsae

    2018-04-01

    We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.

  1. Effect of solvent/disinfectant ethanol on the micro-surface structure and properties of multiphase denture base polymers.

    Science.gov (United States)

    Basavarajappa, Santhosh; Al-Kheraif, Abdul Aziz Abdullah; ElSharawy, Mohamed; Vallittu, Pekka K

    2016-02-01

    The aim of this study was to evaluate the effect of solvent/disinfectant ethanol on the surface of denture base polymers. Changes in surface roughness, topography and some nanomechanical properties were assessed by SEM and nanoindentation plotted against different concentrations of ethanol on heat cured and autopolymerized polymetyl methacrylate based acrylic denture base polymers. Test specimens (10×10×3mm(3)) of heat-curing (HC) and auto-polymerizing (AP) acrylic resin were prepared and polished to obtain uniform smoothness which were further grouped into 3 sub-groups HC1, HC2, HC3 and AP1, AP2, AP3 respectively 10 specimens (n) in each group. HC1 and AP1, HC2 and AP2, HC3 and AP3 were treated with 99.9%, 70% and 40% respectively for 30, 60 and 120s followed by analysis of surface roughness (Sa), topographical changes and some nanomechanical properties. Both HC and AP resins showed changes in their Sa and nanomechanically measured modulus of elasticity and surface hardness after being treated at different concentrations of ethanol and at different lengths of time. Surface changes were most clearly seen in autopolymerizing denture base polymer, especially at the interface region between the PMMA polymer bead and polymer matrix. There was a correlation (R2=0.83, r=0.91, Pdisinfectant ethanol. The interphase region between the PMMA polymer bead and the polymer matrix was most affected by the ethanol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Surface-Bound Molecular Film Structure Effects on Electronic and Magnetic Properties

    Science.gov (United States)

    Pronschinske, Alex M.

    This thesis dissertation will discuss the importance of understanding the driving forces of molecular assembly on surfaces and the need to characterize the electronic and magnetic properties of the resulting organic films. Furthermore, experimental results on model organic molecular assemblies, benzoate on Cu(110) and Fe[(H2BPz2)2bpy] ("Fe-bpy") on Au(111), and their novel film properties will be presented. The primary experimental techniques used in this work are scanning tunneling microscopy and spectroscopy (STM, STS), and so a theoretical characterization of constant current distance-voltage STS (z(V)-STS) will also be developed. Deposition of benzoic acid (C6H5COOH) on to Cu(110) will be used to create a diverse molecular environment of benzoate molecules (C6H5COO+). In this film we will utilize structural phases consisting of co-existing orientation (alpha-phase) and uniform molecular orientation (c(8x2) phase) to probe electric potential variation across the surface of the film. Using z( V)-STS find that the electron affinity level of a molecule's near-neighbor will exert a substrate-mediated influence on the energy of the molecule's image potential state; which we describe using a 1-D dielectric continuum model. Motivated by the unique utility of z(V)-STS for gentle probing of molecular electronic structure and electric potential we perform a thorough theoretical characterize of z( V)-STS. We derive a differential equation for simulating z(V)-STS spectra under the standard approximation of a square tunneling barrier. Moreover, we derive an equation for sample density of states (DOS) that is applicable for all modes of STS. The central result of this work for interpretation of z(V)-STS results is a characterization of systematic error between state energy and z(V)-STS peak location, as well we show that empirical normalization procedure for removing background distortion from constant height current-voltage STS, (V/I)dI/dV, is also applicable to z(V)-STS is

  3. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Gary Wayne [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression.

  4. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    International Nuclear Information System (INIS)

    Pinkerton, G.W.

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression

  5. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi Golru, S., E-mail: samanesharifi@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Attar, M.M., E-mail: attar@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Ramezanzadeh, B. [Department of Surface Coating and Corrosion, Institute for Color Science and Technology, No. 59,Vafamanesh St, Hosainabad Sq, Lavizan, Tehran (Iran, Islamic Republic of)

    2015-08-01

    Highlights: • Aluminium alloy 1050 was treated by zirconium-based (Zr) conversion coating. • The surface morphology and surface free energy of the samples were obtained. • The adhesion properties of the epoxy coating was studied on the treated samples. • The corrosion resistance of the epoxy coating was enhanced on treated samples. - Abstract: The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly.

  6. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    International Nuclear Information System (INIS)

    Sharifi Golru, S.; Attar, M.M.; Ramezanzadeh, B.

    2015-01-01

    Highlights: • Aluminium alloy 1050 was treated by zirconium-based (Zr) conversion coating. • The surface morphology and surface free energy of the samples were obtained. • The adhesion properties of the epoxy coating was studied on the treated samples. • The corrosion resistance of the epoxy coating was enhanced on treated samples. - Abstract: The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly

  7. Effect of Sb2O3 Modified by Various Surface Active Agents on Flame Retardant Properties of PVC Composite

    Directory of Open Access Journals (Sweden)

    XU Jian-lin

    2016-08-01

    Full Text Available Sb2O3 powders were prepared by high energy ball milling using polyethyleneglycol-6000,sodium dodecyl sulfate and OP-10 to modify the surface properties of the powder. The influence of Sb2O3 powders modified by various surface active agents on flame retardant properties of PVC composite materials was studied. The phase composition, morphology and the average particle size of the powders were characterized by XRD and TEM. The particle distribution and flame retardant properties of Sb2O3/PVC composite materials were studied by EDS, limiting oxygen index instrument and vertical burning test. The results show that nanometer Sb2O3 has good dispersion in the PVC matrix because of the higher space steric effect of organic film on the surface of nanometer Sb2O3 when polyethyleneglycol-6000 was used as the surface active agent. While the content of nanometer Sb2O3 is 1.26% in the PVC composite material, the oxygen index of the composite material is 27.1% and the composite material reaches fire retardant grade. Using sodium dodecyl sulfate and OP-10 as surface dispersants, the surface of Sb2O3 powders can not be coated completely. The particle size of Sb2O3 powders are 100nm and 150nm, respectively, The Sb2O3 powders have poor dispersion in the PVC matrix, and even some agglomerating phenomena took place. The oxygen index of Sb2O3/PVC composite materials are 24.7% and 25.3%, respectively, containing 1.26% Sb2O3 powders in Sb2O3/PVC composite material. The materials don't achieve flame retardant level.

  8. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.

    Science.gov (United States)

    Mohammadi, Maziar Shah; Ahmed, Ifty; Muja, Naser; Rudd, Christopher D; Bureau, Martin N; Nazhat, Showan N

    2011-12-01

    Incorporation of soluble bioactive glass fibres into biodegradable polymers is an interesting approach for bone repair and regeneration. However, the glass composition and its surface properties significantly affect the nature of the fibre-matrix interface and composite properties. Herein, the effect of Si and Fe on the surface properties of calcium containing phosphate based glasses (PGs) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x = 0, 5 and 10 mol.%) were investigated. Contact angle measurements revealed a higher surface energy, and surface polarity as well as increased hydrophilicity for Si doped PG which may account for the presence of surface hydroxyl groups. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into poly(lactic acid) (PLA) produced by melt processing. The ageing in deionised water (DW), mechanical property changes in phosphate buffered saline (PBS) and cytocompatibility properties of these composites were investigated. In contrast to Fe10 and as a consequence of the higher surface energy and polarity of Fe5Si5, its incorporation into PLA led to increased inorganic/organic interaction indicated by a reduction in the carbonyl group of the matrix. PLA chain scission was confirmed by a greater reduction in its molecular weight in PLA-Fe5Si5 composites. In DW, the dissolution rate of PLA-Fe5Si5 was significantly higher than that of PLA-Fe10. Dissolution of the glass fibres resulted in the formation of channels within the matrix. Initial flexural strength was significantly increased through PGF incorporation. After PBS ageing, the reduction in mechanical properties was greater for PLA-Fe5Si5 compared to PLA-Fe10. MC3T3-E1 preosteoblasts seeded onto PG discs, PLA and PLA-PGF composites were evaluated for up to 7 days indicating that the materials were generally cytocompatible. In addition, cell alignment along the PGF

  9. Hemolytic properties of synthetic nano- and porous silica particles: the effect of surface properties and the protection by the plasma corona.

    Science.gov (United States)

    Shi, J; Hedberg, Y; Lundin, M; Odnevall Wallinder, I; Karlsson, H L; Möller, L

    2012-09-01

    Novel silica materials incorporating nanotechnology are promising materials for biomedical applications, but their novel properties may also bring unforeseen behavior in biological systems. Micro-size silica is well documented to induce hemolysis, but little is known about the hemolytic activities of nanostructured silica materials. In this study, the hemolytic properties of synthetic amorphous silica nanoparticles with primary sizes of 7-14 nm (hydrophilic vs. hydrophobic), 5-15 nm, 20 nm and 50 nm, and model meso/macroporous silica particles with pore diameters of 40 nm and 170 nm are investigated. A crystalline silica sample (0.5-10 μm) is included for benchmarking purposes. Special emphasis is given to investigations of how the temperature and solution complexity (solvent, plasma), as well as the physicochemical properties (such as size, surface charge, hydrophobicity and other surface properties), link to the hemolytic activities of these particles. Results suggests the potential importance of small size and large external surface area, as well as surface charge/structure, in the hemolysis of silica particles. Furthermore, a significant correlation is observed between the hemolytic profile of red blood cells and the cytotoxicity profile of human promyelocytic leukemia cells (HL-60) induced by nano- and porous silica particles, suggesting a potential universal mechanism of action. Importantly, the results generated suggest that the protective effect of plasma towards silica nanoparticle-induced hemolysis as well as cytotoxicity is primarily due to the protein/lipid layer shielding the silica particle surface. These results will assist the rational design of hemocompatible silica particles for biomedical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2012-01-01

    and a high concentration of hydrophobic waxes on its outer surface that may limit the pellet strength. The present work studies the impact of the lignin glass transition on the pelletizing properties of wheat straw. Furthermore, the effect of surface waxes on the pelletizing process and pellet strength...... are investigated by comparing wheat straw before and after organic solvent extraction. The lignin glass transition temperature for wheat straw and extracted wheat straw is determined by dynamic mechanical thermal analysis. At a moisture content of 8%, transitions are identified at 53°C and 63°C, respectively....... Pellets are pressed from wheat straw and straw where the waxes have been extracted from. Two pelletizing temperatures were chosen—one below and one above the glass transition temperature of lignin. The pellets compression strength, density, and fracture surface were compared to each other. Pellets pressed...

  11. The Effect of Membrane Material and Surface Pore Size on the Fouling Properties of Submerged Membranes

    Directory of Open Access Journals (Sweden)

    Sungil Jeon

    2016-12-01

    Full Text Available We aimed to investigate the relationship between membrane material and the development of membrane fouling in a membrane bioreactor (MBR using membranes with different pore sizes and hydrophilicities. Batch filtration tests were performed using submerged single hollow fiber membrane ultrafiltration (UF modules with different polymeric membrane materials including cellulose acetate (CA, polyethersulfone (PES, and polyvinylidene fluoride (PVDF with activated sludge taken from a municipal wastewater treatment plant. The three UF hollow fiber membranes were prepared by a non-solvent-induced phase separation method and had similar water permeabilities and pore sizes. The results revealed that transmembrane pressure (TMP increased more sharply for the hydrophobic PVDF membrane than for the hydrophilic CA membrane in batch filtration tests, even when membranes with similar permeabilities and pore sizes were used. PVDF hollow fiber membranes with smaller pores had greater fouling propensity than those with larger pores. In contrast, CA hollow fiber membranes showed good mitigation of membrane fouling regardless of pore size. The results obtained in this study suggest that the surface hydrophilicity and pore size of UF membranes clearly affect the fouling properties in MBR operation when using activated sludge.

  12. Ion implantation effects on surface-mechanical properties of metals and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.R.

    1993-04-01

    Fatigue of 8 complex alloys based on Fe-13Cr-15Ni-2Mo-2Mn-0.2Ti-0.8Si- 0.06C, and single-crystal Fe-15Cr-15Ni, implanted with 400-keV B[sup +] and 550-keV N[sup +] (total dose 2.3[times]10[sup 16] ions/cm[sup 2]) was examined. 600 C creep was also examined. The dual implantation increased hardness but decreased fatigue life of the 8 complex alloys. An optimum strengthening level and a shift to grain boundary cracking were determined. The single crystals also showed reduced fatigue life after implantation. High temperature creep of E1 and B1 alloys were improved by the dual implantation. Four polymers (PE, polypropylene, polystyrene, polyethersulfone) were implanted with 200keV B[sup +] to 3 different doses. PS was also implanted with both B[sup +] and Ar[sup +]. Near-surface hardness and tribological properties were measured. The hardness increased with dose and energy; wear also improved, with an optimum dose. (DLC)

  13. Ion implantation effects on surface-mechanical properties of metals and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.R.

    1993-04-01

    Fatigue of 8 complex alloys based on Fe-13Cr-15Ni-2Mo-2Mn-0.2Ti-0.8Si- 0.06C, and single-crystal Fe-15Cr-15Ni, implanted with 400-keV B{sup +} and 550-keV N{sup +} (total dose 2.3{times}10{sup 16} ions/cm{sup 2}) was examined. 600 C creep was also examined. The dual implantation increased hardness but decreased fatigue life of the 8 complex alloys. An optimum strengthening level and a shift to grain boundary cracking were determined. The single crystals also showed reduced fatigue life after implantation. High temperature creep of E1 and B1 alloys were improved by the dual implantation. Four polymers (PE, polypropylene, polystyrene, polyethersulfone) were implanted with 200keV B{sup +} to 3 different doses. PS was also implanted with both B{sup +} and Ar{sup +}. Near-surface hardness and tribological properties were measured. The hardness increased with dose and energy; wear also improved, with an optimum dose. (DLC)

  14. Spreading properties of cosmetic emollients: Use of synthetic skin surface to elucidate structural effect.

    Science.gov (United States)

    Douguet, Marine; Picard, Céline; Savary, Géraldine; Merlaud, Fabien; Loubat-Bouleuc, Nathalie; Grisel, Michel

    2017-06-01

    The study focuses on the impact of structural and physicochemical properties of emollients on their spreadability. Fifty-three emollients, among which esters, silicones, vegetable and mineral oils, have been characterized. Their viscosity, surface tension, density and spreadability have been measured. Vitro-skin ® , an artificial skin substitute, was used as an artificial porous substrate to measure spreadability. Two different methods have been selected to characterize spreadability, namely contact angle and spreading value. Dynamic contact angle measurements showed that emollient spreadability is first governed by spontaneous spreading and that, in a second phase, absorption and migration into the porous substrate becomes the driver of the extension of the spreading area. Statistical analysis of physicochemical and spreading value data revealed that viscosity has a major impact on the spreading behavior of emollients whatever their chemical type. A special emphasis was placed on the ester family in which chemical diversity is very wide. The results highlighted a difference between "high viscosity esters" for which viscosity is the main factor impacting spreadability and "low viscosity esters" for which structural variations (mono/diester, saturated/unsaturated chain, linear/branched chain) have to be considered in addition to viscosity. Linear regressions were used to express spreading value as a function of viscosity for each of the four emollient families tested (esters, silicones, vegetable and mineral oils). These regressions allowed the development of reliable predictive models as a powerful tool for formulators to forecast spreadability of emollients. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of surface diffusion on morphology and scaling properties during glancing angle deposition

    Science.gov (United States)

    Mukherjee, Srijit

    The objective of this research work is to study the effect of surface diffusion on the morphology of porous thin films grown by Glancing Angle Deposition (GLAD) wherein atomic shadowing is the dominant physical phenomenon responsible for growth of isolated nano-rod structures. The morphology has been analyzed in terms of change in the width of the nanorods w at a given height h as well as changes in scaling relations as a function of diffusion length scale. Atomic shadowing during kinetically limited physical vapor deposition causes a chaotic instability in the layer morphology that leads to nanorod growth. GLAD experiments indicate that the rod morphology, in turn, exhibits a chaotic instability with increasing surface diffusion. The measured rod width versus growth temperature converges onto a single curve for metallic systems when normalized by the melting point Tm. A model based on mean field nucleation theory reveals a transition from a two- to three-dimensional growth regime at (0.20 +/- 0.03) x Tm and an activation energy for diffusion on curved surfaces of (2.46 +/- 0.02) x kTm. The consistency in the GLAD data suggests that the effective mass transport on a curved surface is described by a single normalized activation energy that is applicable to all elemental metals. Metallic nanorods grown by GLAD at Ts = 300--1123 K exhibit self-affine scaling, where the average rod width w increases with height h according to w ∝ h p. The growth exponent p for the investigated metals (Ta, Nb, Cr and Al) varies with temperature and material but collapses onto a single curve when plotted against the homologous temperature theta = Ts/Tm. It decreases from p = 0.5 at theta = 0 to 0.39 at theta = 0.22, consistent with reported theoretical predictions, but exhibits a transition to an anomalous value of p = 0.7 at theta = 0.26, followed by a decrease to 0.33 at theta = 0.41. The change in the scaling relations has been related to changes in the surface roughness of the

  16. Effects of copper amine treatments on mechanical, biological and surface/interphase properties of poly (vinyl chloride)/wood composites

    Science.gov (United States)

    Jiang, Haihong

    2005-11-01

    The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.

  17. Effect of specific surface area of raw material Fe2O3 on magnetic properties of YIG

    Science.gov (United States)

    Huang, Ching-Chien; Zuo, Wei-Zong; Hung, Yung-Hsiung; Huang, Jing-Yi; Kuo, Ming-Feng; Cheng, Chun-Hu

    2018-03-01

    The effect of specific surface area (SSA) of Fe2O3 was investigated while evaluating the raw material of Y3Fe5O12 (yttrium iron garnet (YIG)) preparation. For YIG ferrite, the specific surface area of Fe2O3, rather than average particle size (D50), was found to markedly affect the mixing homogeneity of powders in the mixing procedure and the magnetic properties. Increasing the specific surface area of Fe2O3 resulted in the increase of the remanence (Br) and squareness ratio (SQR); meanwhile, it also caused an obvious reduction in coercivity (HC) for the sintered specimens. An upgrade in the specific surface area of raw material Fe2O3 could further resulted in a decrease in slurry viscosity in the mixing procedure, which promotes slurry mixing homogeneity and further promotes reactivity in the calcination and sintering processes. Consequently, a larger Br and SQR and a smaller HC were obtained. In addition, good ferromagnetic resonance (FMR) line width (i.e., ΔH) properties were also realized as 36.7 Oe at 3.2 GHz using the selected Fe2O3. As found in this study, the strict control of raw material Fe2O3 is critical in tailoring suitable Br and HC for the YIG ferrite manufacturing process.

  18. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    Science.gov (United States)

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  19. Effect of perfluorodecyltrichlorosilane on the surface properties and anti-corrosion behavior of poly(dimethylsiloxane)-ZnO coatings

    Science.gov (United States)

    Arukalam, Innocent O.; Meng, Meijiang; Xiao, Haigang; Ma, Yuantai; Oguzie, Emeka E.; Li, Ying

    2018-03-01

    Poly(dimethylsiloxane)-ZnO coatings modified with different amounts of perfluorodecyltrichlorosilane (FDTS) were prepared using sol-gel technique. The results of field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) examinations showed that the surface structures and roughness of the coatings were respectively influenced by the increasing addition of FDTS. The water contact angle measurements showed maximum value of 130.52° with the 0.10 g FDTS-modified coating sample. The X-ray photoelectron spectroscopy (XPS) results indicated the coatings' hydrophobicity was also influenced by surface chemistry. The FTIR-ATR characterization results showed there was remarkable increase in the crystallinity of 0.10 g FDTS-modified coating after modification, and was confirmed by differential scanning calorimetry (DSC) analysis of crystallization temperature and the X-ray diffraction (XRD) results with an estimation of 71.29% percent crystallinity. The mechanical properties of the coatings were also conducted. The EIS measurements for anti-corrosion behavior showed that 0.10 g FDTS-modified coating had the highest barrier performance and lowest rate of degradation. Indeed, the obtained data have demonstrated that 0.10 g (≈ 0.18%) FDTS produced the most significantly effect on the surface and barrier properties of the coatings and thus, can effectively be used for anti-corrosion application in the marine environments.

  20. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  1. Effect of Carbon Content on the Properties of Iron-Based Powder Metallurgical Parts Produced by the Surface Rolling Process

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2018-01-01

    Full Text Available In recent years, the rolling densification process has become increasingly widely used to strengthen powder metallurgy parts. The original composition of the rolled powder metallurgy blank has a significant effect on the rolling densification technology. The present work investigated the effects of different carbon contents (0 wt. %, 0.2 wt. %, 0.45 wt. %, and 0.8 wt. % on the rolling densification. The selection of the raw materials in the surface rolling densification process was analyzed based on the pore condition, structure, hardness, and friction performance of the materials. The results show that the 0.8 wt. % carbon content of the surface rolling material can effectively improve the properties of iron-based powder metallurgy parts. The samples with 0.8 wt. % carbon have the highest surface hardness (340 HV0.1 and the lowest surface friction coefficient (0.35. Even if the dense layer depth is 1.13 mm, which is thinner than other samples with low carbon content, it also meets the requirements for powder metallurgy parts such as gears used in the auto industry.

  2. Effect of Phosphate on Surface Properties of Ferrihydrite and its Reactivity towards Aqueous Fe(II)

    Science.gov (United States)

    Liao, D.; Schroeder, C.; Haderlein, S.

    2012-12-01

    The iron redox cycle plays a prominent role for the biogeochemical cycling of nutrients and metals as well as transformation of contaminants in soils, sediments and aquifers. The mineral surface acts as a sorption site for Fe(II), which becomes partially oxidized upon sorption [1]. According to Gorski and Scherer [2], the electron is transferred to the bulk mineral, where it may be stored in a conduction band leading to an increased reductive potential of the system. Iron (hydr)oxides also exhibit a high sorption capacity for phosphate which forms strong surface complexes with iron. Phosphate is a common constituent of pore waters as a result of agricultural fertilizers, and is frequently used by microbiologists as buffer in laboratory experiments. We investigated the effect of phosphate on the oxidation of Fe(II) in the presence of ferrihydrite minerals in batch reactors. We synthesized three different ferrihydrites: untreated ferrihydrite (Fh); phosphate-coated ferrihydrite (pc-Fh), where phosphate was added to suspensions of pure ferrihydrite and allowed to sorb to the mineral surface; and phosphate-doped ferrihydrite (pd-Fh), where phosphate co-precipitated with ferrihydrite and was included in the bulk mineral structure. Nitrobenzene was used as model oxidant to study ferrous iron oxidation in anoxic Fh-Fe(II) suspensions. Fe(II) oxidation was much slower in the presence of pc-Fh and pd-Fh compared to untreated Fh. Using Mössbauer spectroscopy, we added dissolved Fe(II) either as pure 57Fe (Mössbauer-active) to analyse for the iron fraction associated with the minerals surface, or as 56Fe (Mössbauer-inactive) to focus on the bulk mineral only. We took Mössbauer spectra for each system before and after Fe(II) oxidation by nitrobenzene. Surface bound Fe(II) was oxidized by two processes: e-transfer to structural Fe(III) in Fh and nitrobenzene reduction. The oxidation product was lepidocrocite which increased with nitrobenzene reduction. Phosphate-doped and

  3. Relating the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles (SPIONs to Their Bactericidal Effect towards a Biofilm of Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Taraneh Javanbakht

    Full Text Available This study was designed to determine the effects of superparamagnetic iron oxide nanoparticles (SPIONs on the biological activity of a bacterial biofilm (Streptococcus mutans. Our hypothesis was that the diffusion of the SPIONs into biofilms would depend on their surface properties, which in turn would largely be determined by their surface functionality. Bare, positively charged and negatively charged SPIONs, with hydrodynamic diameters of 14.6 ± 1.4 nm, 20.4 ± 1.3 nm and 21.2 ± 1.6 nm were evaluated. Time-of-flight secondary ion mass spectrometry (TOF-SIMS and electrophoretic mobility (EPM measurements were used to confirm that carboxylic functional groups predominated on the negatively charged SPIONS, whereas amine functional groups predominated on the positively charged particles. Transmission electron microscopy (TEM showed the morphology and sizes of SPIONs. Scanning electron microscopy (SEM and EPM measurements indicated that the surfaces of the SPIONs were covered with biomolecules following their incubation with the biofilm. Bare SPIONs killed bacteria less than the positively charged SPIONs at the highest exposure concentrations, but the toxicity of the bare and positively charged SPIONs was the same for lower SPION concentrations. The positively charged SPIONs were more effective in killing bacteria than the negatively charged ones. Nonetheless, electrophoretic mobilities of all three SPIONs (negative, bare and positively charged became more negative following incubation with the (negatively-charged biofilm. Therefore, while the surface charge of SPIONS was important in determining their biological activity, the initial surface charge was not constant in the presence of the biofilm, leading eventually to SPIONS with fairly similar surface charges in situ. The study nonetheless suggests that the surface characteristics of the SPIONS is an important parameter controlling the efficiency of antimicrobial agents. The analysis of the CFU

  4. Effect of carbon embedding on the tribological properties of magnetic media surface with and without a perfluoropolyether (PFPE) layer

    International Nuclear Information System (INIS)

    Samad, M Abdul; Yang, H; Bhatia, C S; Sinha, S K

    2011-01-01

    Carbon embedding (≤1 nm) in the top surface of cobalt (∼100 nm) sputtered on a silicon surface is used as a surface modification technique to evaluate the tribological properties with or without an ultra-thin layer of perfluoropolyether (PFPE) lubricant. The carbon embedding is achieved using the filtered cathodic vacuum arc technique at an ion energy of 90 eV. Transport of ions in matter simulations, time-of-flight secondary ion spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy (XPS) are used to study the carbon embedding profiles and surface chemical composition. The XPS results show that carbon embedding using the ion energy of 90 eV results in the formation of about 58 ± 6% of tetrahedral (sp 3 ) carbon hybridization. Furthermore, the XPS results also show that the carbon embedding is effective in improving the anti-oxidation resistance of cobalt. Ball-on-disk tribological tests are conducted at a contact pressure of 0.26 GPa on the modified cobalt surface with or without the PFPE layer. It is observed that the average coefficient of friction is reduced considerably from a value of approximately 0.7 to 0.42 after the surface modification. The coefficient of friction is further reduced to ∼0.26 after the deposition of an ultra-thin layer of PFPE over the modified surface, which is lower than a friction coefficient of 0.4 from commercial media. The modified cobalt surface also shows much better wear life than the present day commercial media.

  5. Surface and redox properties of cobalt–ceria binary oxides: On the effect of Co content and pretreatment conditions

    Energy Technology Data Exchange (ETDEWEB)

    Konsolakis, Michalis, E-mail: mkonsol@science.tuc.gr [School of Production Engineering and Management, Technical University of Crete, GR-73100, Chania, Crete (Greece); Sgourakis, Michalis [School of Production Engineering and Management, Technical University of Crete, GR-73100, Chania, Crete (Greece); Carabineiro, Sónia A.C. [Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto (Portugal)

    2015-06-30

    Graphical abstract: - Highlights: • Impact of Co content and pretreatment conditions on Co/CeO{sub 2} surface chemistry. • The improved reducibility of Co/CeO{sub 2} compared to single oxides is disclosed. • A synergistic effect between Co and Ce toward more oxygen vacancies is revealed. • Calcination procedure leads to the impoverishment of catalyst surface on cobalt. • Reduction results in a uniform distribution of Co and Ce on the catalyst surface. - Abstract: Ceria-based transition metal catalysts have recently received considerable attention both in heterogeneous catalysis and electro-catalysis fields, due to their unique physicochemical characteristics. Their catalytic performance is greatly affected by the surface local chemistry and oxygen vacancies. The present study aims at investigating the impact of Co/Ce ratio and pretreatment conditions on the surface and redox properties of cobalt–ceria binary oxides. Co–ceria mixed oxides with different Co content (0, 20, 30, 60, 100 wt.%) were prepared by impregnation method and characterized by means of N{sub 2} adsorption at −196 °C, X-ray diffraction (XRD), H{sub 2} temperature-programmed reduction (H{sub 2}-TPR) and X-ray photoelectron spectroscopy (XPS). The results shown the improved reducibility of Co/CeO{sub 2} mixed oxides compared to single oxides, due to a synergistic interaction between cobalt and cerium. Oxidation pretreatment results in a preferential localization of cerium species on the outer surface. In contrast, a uniform distribution of cobalt and cerium species over the entire catalyst surface is obtained by the reduction process, which facilitates the formation of oxygen vacancies though Co{sup 3+}/Co{sup 2+} and Ce{sup 3+}/Ce{sup 4+} redox cycles. Fundamental insights toward tuning the surface chemistry of cobalt–ceria binary oxides are provided, paving the way for real-life industrial applications.

  6. Electromechanical properties of 1D ZnO nanostructures: nanopiezotronics building blocks, surface and size-scale effects.

    Science.gov (United States)

    Momeni, Kasra; Attariani, Hamed

    2014-03-14

    One-dimensional (1D) zinc oxide nanostructures are the main components of nanogenerators and central to the emerging field of nanopiezotronics. Understanding the underlying physics and quantifying the electromechanical properties of these structures, the topic of this research study, play a major role in designing next-generation nanoelectromechanical devices. Here, atomistic simulations are utilized to study surface and size-scale effects on the electromechanical response of 1D ZnO nanostructures. It is shown that the mechanical and piezoelectric properties of these structures are controlled by their size, cross-sectional geometry, and loading configuration. The study reveals enhancement of the piezoelectric and elastic modulus of ZnO nanowires (NW) with diameter d > 1 nm, followed by a sudden drop for d macron]1[combining macron]0) and (011[combining macron]0) planes in NBs. Transition from a surface-reconstructed dominant to a surface-relaxed dominant region is demonstrated for lateral dimensions <1 nm. New phase-transformation (PT) kinetics from piezoelectric wurtzite to nonpiezoelectric body-centered tetragonal (WZ → BCT) and graphite-like phase (WZ → HX) structures occurs in ZnO NWs loaded up to large strains of ∼10%.

  7. Effect of hydrogen plasma treatment on the surface morphology, microstructure and electronic transport properties of nc-Si:H

    International Nuclear Information System (INIS)

    Dutta, P.; Paul, S.; Galipeau, D.; Bommisetty, V.

    2010-01-01

    Hydrogenated nanocrystalline silicon (nc-Si:H) films, deposited by reactive radio-frequency sputtering with 33% hydrogen dilution in argon at 200 o C, were treated with low-power hydrogen plasma at room temperature at various power densities (0.1-0.5 W/cm 2 ) and durations (10 s-10 min). Plasma treatment reduced the surface root mean square roughness and increased the average grain size. This was attributed to the mass transport of Si atoms on the surface by surface and grain boundary diffusion. Plasma treatment under low power density (0.1 W/cm 2 ) for short duration (10 s) caused a significant enhancement of crystalline volume fraction and electrical conductivity, compared to as-deposited film. While higher power (0.5 W/cm 2 ) hydrogen plasma treatment for longer durations (up to 10 min) caused moderate improvement in crystalline fraction and electrical properties; however, the magnitude of improvement is not significant compared to low-power (0.1 W/cm 2 )/short-duration (10 s) plasma exposure. The results indicate that low-power hydrogen plasma treatment at room temperature can be an effective tool to improve the structural and electrical properties of nc-Si:H.

  8. Vesta surface thermal properties map

    Science.gov (United States)

    Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.

    2014-01-01

    The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.

  9. Surface Effects in Magnetic Nanoparticles

    CERN Document Server

    Fiorani, Dino

    2005-01-01

    This volume is a collection of articles on different approaches to the investigation of surface effects on nanosized magnetic materials, with special emphasis on magnetic nanoparticles. The book aims to provide an overview of progress in the understanding of surface properties and surface driven effects in magnetic nanoparticles through recent results of different modeling, simulation, and experimental investigations.

  10. The effect of phosphorus and sulfur treatment on the surface properties of InP

    Science.gov (United States)

    Iyer, R.; Chang, R. R.; Dubey, A.; Lile, D. L.

    1988-01-01

    Experimental results are presented for InP surfaces treated by using red phosphorus as a source to create an excess overpressure of phosphorus during annealing and prior to silicon dioxide deposition. The surface has been probed by in situ photoluminescence, noncontacting remote gate C-V, and conventional high-frequency and quasi-static C-V methods. A study has also been made of the surface of sulfurized InP following heating in aqueous (NH4)2S(x). MISFETs fabricated using the benefits of these surface treatments show high transconductances and stabilities approaching those of thermal SiO2/Si with less than 5-percent variation in drain current over a 12-hr period.

  11. The effects of artificial surface temperature on mechanical properties and player kinematics during landing and acceleration

    Directory of Open Access Journals (Sweden)

    Laura Charalambous

    2016-09-01

    Conclusion: These findings highlight different demands placed on players due to the surface temperature and suggest a need for coaches, practitioners, and sports governing bodies to be aware of these differences.

  12. Effect of diameter and surface roughness on ultrasonic properties of GaAs nanowires

    Science.gov (United States)

    Dhawan, Punit Kumar; Wan, Meher; Verma, S. K.; Pandey, D. K.; Yadav, R. R.

    2015-02-01

    Second and third order elastic constants of GaAs Nanowires (NWs) are calculated using the many-body interaction potential model. The velocities of ultrasonic waves at different orientations of propagation with unique axis are evaluated using the second order elastic constants. The ultrasonic attenuation and thermal relaxation times of the single crystalline GaAs-NW are determined as a function of diameter and surface roughness by means of Mason theoretical approach using the thermal conductivity and higher order elastic constants. The diameter variation of ultrasonic attenuation and thermal relaxation exhibit second order polynomial function of diameter. It is also found that ultrasonic attenuation and thermal relaxation follow the exponential decay with the surface roughness for GaAs-NW due to reduction in thermal conductivity caused by dominance of surface asperities. Finally, the correlations among ultrasonic parameters, thermal conductivity, surface roughness, and diameter for GaAs-NWs are established leading towards potential applications.

  13. Effect of electric arc cutting procedures on the properties of processed metal surface

    International Nuclear Information System (INIS)

    Gutman, L.M.; Novikova, D.P.; Struina, T.A.

    1980-01-01

    Presented are the data of comparative studies of the cutting surface, made by the electrodes of the ANR-2 type and by the coal electrode by the method of air-arc cutting. Absence of carbonization of cutting surface, minimum structural changes in metal and a considerably high productivity permit to recommend the ANR-2 and ANR-2M electrodes for separation metal cutting, weld root and defect area cut without further stripping by the grinding stone

  14. Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites

    Energy Technology Data Exchange (ETDEWEB)

    Žvátora, Pavel [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Veverka, Miroslav; Veverka, Pavel; Knížek, Karel; Závěta, Karel; Pollert, Emil [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Král, Vladimír [Department of Analytical Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague (Czech Republic); Zentiva Development (Part of Sanofi Group), U Kabelovny 130, 102 37 Prague (Czech Republic); Goglio, Graziella; Duguet, Etienne [CNRS, University of Bordeaux, ICMCB, UPR 9048, 33600 Pessac (France); Kaman, Ondřej, E-mail: kamano@seznam.cz [Department of Magnetism and Superconductors, Institute of Physics AS CR, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 40 Prague (Czech Republic)

    2013-08-15

    Syntheses of nanocrystalline perovskite phases of the general formula La{sub 1−x}Sr{sub x}MnO{sub 3+δ} were carried out employing sol–gel technique followed by thermal treatment at 700–900 °C under oxygen flow. The prepared samples exhibit a rhombohedral structure with space group R3{sup ¯}c in the whole investigated range of composition 0.20≤x≤0.45. The studies were aimed at the chemical composition including oxygen stoichiometry and extrinsic properties, i.e. size of the particles, both influencing the resulting structural and magnetic properties. The oxygen stoichiometry was determined by chemical analysis revealing oxygen excess in most of the studied phases. The excess was particularly high for the samples with the smallest crystallites (12–28 nm) while comparative bulk materials showed moderate non-stoichiometry. These differences are tentatively attributed to the surface effects in view of the volume fraction occupied by the upper layer whose atomic composition does not comply with the ideal bulk stoichiometry. - Graphical abstract: Evolution of the particle size with annealing temperature in the nanocrystalline La{sub 0.70}Sr{sub 0.30}MnO{sub 3+δ} phase. Display Omitted - Highlights: • The magnetic behaviour of nanocrystalline La{sub 1−x}Sr{sub x}MnO{sub 3+δ} phases was analyzed on the basis of their crystal structure, chemical composition and size of the particles. • Their Curie temperature and magnetization are markedly affected by finite size and surface effects. • The oxygen excess observed in the La{sub 1−x}Sr{sub x}MnO{sub 3+δ} nanoparticles might be generated by the surface layer with deviated oxygen stoichiometry.

  15. Study of the synergistic effects of salinity, pH, and temperature on the surface-active properties of biosurfactants produced by Lactobacillus pentosus.

    Science.gov (United States)

    Bello, Xanel Vecino; Devesa-Rey, Rosa; Cruz, José Manuel; Moldes, Ana Belén

    2012-02-08

    Many studies have investigated the effects of pH, temperature, and salinity on the surface-active properties of various surfactants, although in most cases the variables have been studied separately, without considering the effects of any interactions between them. In the present study, a Box-Behnken factorial design was applied to study the effects of pH, temperature, and salinity on the surface-active properties of a biosurfactant produced by Lactobacillus pentosus. The data obtained enabled development of a second-order model describing the interrelationships between operational and experimental variables, by equations including linear, interaction, and quadratic terms. The variable that had the greatest effect on the surface-active properties of the biosurfactant was pH. Moreover, at pH 3-5.5, decreases in salinity and temperature acted synergistically, reducing the surface tension of the biosurfactant; at pH 8, the same effect was observed with increasing salinity and temperature.

  16. Effect of surface transport properties on the performance of carbon plastic electrodes for flow battery applications

    International Nuclear Information System (INIS)

    Sun, Xihe; Souier, Tewfik; Chiesa, Matteo; Vassallo, Anthony

    2014-01-01

    Due to their high electrical conductivity and corrosion resistance, carbon nanotube (MWNT)-high density polyethylene (HDPE) composites are potential candidates to replace traditional activated carbon electrodes for the next generation of fuel-cells, super capacitors and flow batteries. Electrochemical impedance spectroscopy (EIS) is employed to separate the surface conduction from bulk conduction in 15% HDPE-MWNT and 19% carbon black (CB)-HDPE composites for zinc-bromine flow battery electrodes. While exhibiting superior bulk conductivity, the interfacial conductivity of MWNT-filled composites is lower than that of CB-filled composites. High resolution conductive atomic force microscopy (C-AFM) imaging and current-voltage (I-V) spectroscopy were employed to investigate the sub-surface electronic transport of the composite. Unlike the CB-composite, the fraction of conducting MWNTs near the surface is very low compared to their volume fraction. In addition, the non-linear I-V curves reveal the presence of a tunneling junction between the tip and the polymer-coated MWNTs. The tunneling resistance is as high as 1 GΩ, which strongly affects the electronic/electrochemical transfer at the interface of the electrolyte and the surface of the composite, which is evident in the voltammetric and EIS observations

  17. Effects of mechanical and chemical surface treatments on the resin-glass ceramic adhesion properties.

    Science.gov (United States)

    Sattabanasuk, Vanthana; Charnchairerk, Paleenee; Punsukumtana, Lada; Burrow, Michael F

    2017-08-01

    Intraoral repair of fractured ceramic restorations using resin composite is practical for dental treatment. In the present study, we investigated whether differences in surface treatments for glass ceramic would affect resin adhesion. Leucite-reinforced glass ceramic plates (IPS Empress Esthetic) were ground with 320-grit silicon carbide paper, cleaned using phosphoric acid, and then etched with hydrofluoric acid (IPS Ceramic Etching Gel) or left unetched, and silanized using silane coupling agent (RelyX Ceramic Primer) or kept unsilanized. Either conventional (Adper Scotchbond Multi-Purpose) or universal (Scotchbond Universal) adhesive was used to bond the resin composite to ceramic surfaces. Specimens were subjected to microshear test after 37°C water storage for 24 h, and fractured surfaces were examined. Ceramic surface hydrophobicity after treatments was verified with contact angle measurements. Data were analyzed using anova and Tukey's tests. Regardless of the adhesive tested, hydrofluoric acid-etched ceramics showed higher bond strengths. Ceramic primer application improved resin bonding, even in non-etched groups, and also influenced fractography (P ceramics treated with ceramic primer were higher than those treated with silane-containing universal adhesive (P resin adhesion to glass ceramic. Universal adhesive seems to not function in the same manner as a silane coupling agent. © 2016 John Wiley & Sons Australia, Ltd.

  18. Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons

    Directory of Open Access Journals (Sweden)

    Medvid Artur

    2011-01-01

    Full Text Available Abstract On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity.

  19. Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties

    International Nuclear Information System (INIS)

    Yang Jinghai; Wang Jian; Li Xiuyan; Lang Jihui; Liu Fuzhu; Yang Lili; Zhai Hongju; Gao Ming; Zhao Xiaoting

    2012-01-01

    Highlights: ► Large-scale arrayed ZnO nanocrystals including ZnO hexagonal platforms and hamburger-like samples have been successfully fabricated by a simple hydrothermal method. ► ZnO with hexagonal platform-like morphology exhibited higher photocatalytic activity compared with that of the hamburger-like ZnO nanostructures. ► The theories of expose surfaces and oxygen vacancies were utilized to explain the photocatalytic mechanism. - Abstract: Large-scale arrayed ZnO nanocrystals with two different expose surfaces, including ZnO hexagonal nanoplatforms with the major expose plane of (0 0 0 1) and hamburger-like samples with the nonpolar planes of {101 ¯ 0} mainly exposed, were successfully fabricated by a simple hydrothermal method. Mechanisms for compare the photocatalytic activity of two typical ZnO nanostructures were systematic explained as the key point in the paper. Compared with the hamburger-like ZnO nanostructures, the ZnO with hexagonal platform-like morphology exhibited improved ability on the photocatalytic degradation of Rhodamine B (RhB) in aqueous solution under UV radiation. The relative higher photocatalytic activity of the ZnO hexagonal nanoplatforms was attributed to the exposed polar surfaces and the content of oxygen vacancy on the nanostructures surface. The Zn-terminated (0 0 0 1) polar face and the surface defects are facile to adsorb O 2− and OH − ions, resulting in a greater production rate of O 2 · − and OH· − , hence promoting the photocatalysis reaction.

  20. Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jinghai, E-mail: jhyang1@jlnu.edu.cn [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Key Laboratory of Functional Materials Physics and Chemistry (Jilin Normal University), Ministry of Education, Siping 136000 (China); Wang Jian; Li Xiuyan; Lang Jihui; Liu Fuzhu; Yang Lili; Zhai Hongju; Gao Ming; Zhao Xiaoting [Institute of Condensed State Physics, Jilin Normal University, Siping 136000 (China); Key Laboratory of Functional Materials Physics and Chemistry (Jilin Normal University), Ministry of Education, Siping 136000 (China)

    2012-07-05

    Highlights: Black-Right-Pointing-Pointer Large-scale arrayed ZnO nanocrystals including ZnO hexagonal platforms and hamburger-like samples have been successfully fabricated by a simple hydrothermal method. Black-Right-Pointing-Pointer ZnO with hexagonal platform-like morphology exhibited higher photocatalytic activity compared with that of the hamburger-like ZnO nanostructures. Black-Right-Pointing-Pointer The theories of expose surfaces and oxygen vacancies were utilized to explain the photocatalytic mechanism. - Abstract: Large-scale arrayed ZnO nanocrystals with two different expose surfaces, including ZnO hexagonal nanoplatforms with the major expose plane of (0 0 0 1) and hamburger-like samples with the nonpolar planes of {l_brace}101{sup Macron }0{r_brace} mainly exposed, were successfully fabricated by a simple hydrothermal method. Mechanisms for compare the photocatalytic activity of two typical ZnO nanostructures were systematic explained as the key point in the paper. Compared with the hamburger-like ZnO nanostructures, the ZnO with hexagonal platform-like morphology exhibited improved ability on the photocatalytic degradation of Rhodamine B (RhB) in aqueous solution under UV radiation. The relative higher photocatalytic activity of the ZnO hexagonal nanoplatforms was attributed to the exposed polar surfaces and the content of oxygen vacancy on the nanostructures surface. The Zn-terminated (0 0 0 1) polar face and the surface defects are facile to adsorb O{sup 2-} and OH{sup -} ions, resulting in a greater production rate of O{sup 2}{center_dot}{sup -} and OH{center_dot}{sup -}, hence promoting the photocatalysis reaction.

  1. THE EFFECT OF SURFACE MOULD APPLICATION TO SELECTED PROPERTIES OF DRY FERMENTED SAUSAGES

    Directory of Open Access Journals (Sweden)

    Josef Kameník

    2014-02-01

    Full Text Available Three batches of dry fermented sausages were prepared. A proportion of the products from each batch were surface-treated with a mould starter culture, with the remaining products being smoked without mould. Physico-chemical analysis, including determination of the content of lactic acid and biogenic amines, was performed on day 35 during the ripening and on the final products (day 65. The sausages with surface mould showed a higher pH value, a higher water activity value and a lower content of D/L-lactic acid. The differences were statistically significant (P ≤ 0.001. A higher content of malondialdehyde (TBARS was found in products with mould, though the differences determined were not statistically significant. From day 35, statistically significant differences were found in the content of biogenic amines (BA. The highest content was recorded on day 65 in sausages with surface mould, with a content seven times that of the content in the mix immediately after being filled in the casing being recorded. In no case did the sum level of BA exceed 100 mg kg-1.

  2. Improvement of water-repellent and hydrodynamic drag reduction properties on bio-inspired surface and exploring sharkskin effect mechanism

    Science.gov (United States)

    Luo, Yuehao; Liu, Yufei; Anderson, James; Li, Xiang; Li, Yuanyue

    2015-07-01

    Bio-inspired/biomimetic surface technologies focusing on sharkskin, lotus leaf, gecko feet, and others have attracted so lots of attentions from all over the world; meanwhile, they have also brought great advantages and profits for mankind. Sharkskin drag-reducing/low-resistance surface is the imperative consequence of nature selection and self-evolution in the long history, which can enable itself accommodate the living environments perfectly. Generally speaking, sharkskin effect can become transparent only in some certain velocity scope. How to expand its application range and enhance the drag reduction function further has developed into the urgent issue. In this article, the water-repellent and hydrodynamic drag-reducing effects are improved by adjusting sharkskin texture. The experimental results show that contact angle of more than 150° is achieved, and drag-reducing property is improved to some extent. In addition, the drag-reducing mechanism is explored and generalized from different aspects adopting the numerical simulation, which has important significance to comprehend sharkskin effect.

  3. Effects of thermophoresis and variable properties on mixed convection along a vertical wavy surface in a fluid saturated porous medium

    Directory of Open Access Journals (Sweden)

    Darbhasayanam Srinivasacharya

    2016-06-01

    Full Text Available This paper investigates the influence of thermophoresis on mixed convection heat and mass transfer flow over a vertical wavy surface in a porous medium with variable properties, namely variable viscosity and variable thermal conductivity. The effect of wavy surface is incorporated into non-dimensional equations by using suitable transformations and then transformed into non-linear ordinary differential equations by employing the similarity transformations and then solved numerically. The transport process of flow, heat and mass transfer in the boundary layer for aiding and opposing flow cases is discussed. The structure of flow, temperature and concentration fields in the Darcy porous media are more pronounced by complex interactions among variable viscosity, variable thermal conductivity, mixed convective parameter, thermophoresis and amplitude of the wavy surface. Increasing thermophoresis parameter enhances velocity profile, concentration distribution and Sherwood number while reduces Nusselt number. As increase in variable viscosity, temperature and concentration distributions are enhanced while velocity profile, Nusselt number and Sherwood numbers are reduced. This study finds applications in aerosol Technology, space technology and processes involving high temperatures.

  4. The effects of clam fishing on the properties of surface sediments in the lagoon of Venice, Italy

    Directory of Open Access Journals (Sweden)

    R. J. Aspen

    2004-01-01

    Full Text Available Harvesting of clams(Tapes philippinarum has important socio-economic and environmental implications for the Venice lagoon area, Italy. Clam harvesting disrupts the structure of benthic communities but the effects upon sediment stability and surface structure remain unclear. The effect of clam fishing on the sediment properties of the lagoon bed was investigated at two different sites, a heavily fished site (San Angelo and an infrequently fished site (San Giaccomo. Both sites were assessed for immediate impacts of fishing, using indicators of biogenic sediment stabilisation. Samples were taken at three points along three 100 m linear transects at each site prior to and post fishing. Paired samples were also taken parallel to each transect at a distance of 5m, to allow for temporal variation. Sediment stability, measured with a cohesive strength meter (CSM, was significantly higher at the less impacted site (F1,34 = 6.23, p a (chl a, colloidal-S carbohydrate and dry bulk density were observed on the transect after fishing but not adjacent to the fishing path. At the heavily impacted site, clam fishing by trawling had, in general, no significant effect on the biological and physical properties (although chl a did decrease significantly after fishing. The lack of a significant impact from fishing at the impacted site was attributed to the higher frequency of fishing occurring in this area. Hence, frequent fishing of the lagoon prevents establishment of biotic communities, preventing biostabilisation and thus reduces the stability of the surface sediment. Keywords: clam harvesting, erosion threshold, microphytobenthos, sediment, stability

  5. Effect of heat and mechanical surface treatments on the fatigue properties of SAE 8620 steel

    International Nuclear Information System (INIS)

    Varcl, R.

    1996-01-01

    In this study, the fatigue properties of SAE 8620 case hardened steel was investigated. Carburizing, shot peening and their combinations were applied to SAE 8620 steel fatigue specimens. Different fabrication parameters of carburizing were applied. Shot peening was also applied to carburized and non carburized specimens. Hardness and residual distribution of mechanical and heat-treated fatigue specimens were determined. Rotating bending fatigue tests were performed using treated test specimens. Plotted S-N curves, for treated at different conditions and different ways, were compared to curves for drawn specimens. The maximum increase in fatigue limit is determined for double quenched and shot peened specimens as 72%. (author)

  6. Effect of extracytoplasmic function sigma factors on autoaggregation, hemagglutination, and cell surface properties of Porphyromonas gingivalis

    Science.gov (United States)

    Kokubu, Eitoyo; Okamoto-Shibayama, Kazuko; Ishihara, Kazuyuki

    2017-01-01

    Porphyromonas gingivalis is a bacterium frequently isolated from chronic periodontal lesions and is involved in the development of chronic periodontitis. To colonize the gingival crevice, P. gingivalis has to adapt to environmental stresses. Microbial gene expression is regulated by transcription factors such as those in two-component systems and extracytoplasmic function (ECF) sigma factors. ECF sigma factors are involved in the regulation of environmental stress response genes; however, the roles of individual ECF sigma factors are largely unknown. The purpose of this study was to investigate the functions, including autoaggregation, hemagglutination, gingipain activity, susceptibility to antimicrobial agents, and surface structure formation, of P. gingivalis ECF sigma factors encoded by SigP (PGN_0274), SigCH (PGN_0319), PGN_0450, PGN_0970, and SigH (PGN_1740). Various physiological aspects of the sigP mutant were affected; autoaggregation was significantly decreased at 60 min (p < 0.001), hemagglutination activity was markedly reduced, and enzymatic activities of Kgp and Rgps were significantly decreased (p < 0.001). The other mutants also showed approximately 50% reduction in Rgps activity. Kgp activity was significantly reduced in the sigH mutant (p < 0.001). No significant differences in susceptibilities to tetracycline and ofloxacin were observed in the mutants compared to those of the wild-type strain. However, the sigP mutant displayed an increased susceptibility to ampicillin, whereas the PGN_0450 and sigH mutants showed reduced susceptibility. Transmission electron microscopy images revealed increased levels of outer membrane vesicles formed at the cell surfaces of the sigP mutant. These results indicate that SigP is important for bacterial surface-associated activities, including gingipain activity, autoaggregation, hemagglutination, vesicle formation, and antimicrobial susceptibility. PMID:28931045

  7. Parametric modelling design applied to weft knitted surfaces and its effects in their physical properties

    Science.gov (United States)

    Oliveira, N. P.; Maciel, L.; Catarino, A. P.; Rocha, A. M.

    2017-10-01

    This work proposes the creation of models of surfaces using a parametric computer modelling software to obtain three-dimensional structures in weft knitted fabrics produced on single needle system machines. Digital prototyping, another feature of digital modelling software, was also explored in three-dimensional drawings generated using the Rhinoceros software. With this approach, different 3D structures were developed and produced. Physical characterization tests were then performed on the resulting 3D weft knitted structures to assess their ability to promote comfort. From the obtained results, it is apparent that the developed structures have potential for application in different market segments, such as clothing and interior textiles.

  8. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    Science.gov (United States)

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. [Effects of tooth whitening agents and acidic drinks on the surface properties of dental enamel].

    Science.gov (United States)

    Chen, Xiaoling; Chen, Zhiqun; Lin, Yao; Shao, Jinquan; Yin, Lu

    2013-10-01

    Using tooth whitening agents (bleaching clip) in vitro and acidic drinks, we conducted a comparative study of the changes in enamel surface morphology, Ca/P content, and hardness. Tooth whitening glue pieces, cola, and orange juice were used to soak teeth in artificial saliva in vitro. Physiological saline was used as a control treatment. The morphology of the four groups was observed under a scanning electron microscope (SEM) immediately after the teeth were soaked for 7 and 14 d. The changes in Ca/P content and microhardness were analyzed. The enamel surfaces of the teeth in the three test groups were demineralized. The Ca/P ratio and the average microhardness were significantly lower than those of the control group immediately after the teeth were soaked (P 0.05). Bleaching agents caused transient demineralization of human enamel, but these agents could induce re-mineralization and repair of enamel over time. Demineralization caused by bleaching covered a relatively normal range compared with acidic drinks and daily drinking.

  10. Surface saturation effect on mechanical and optical properties of ZnO nanowires

    Directory of Open Access Journals (Sweden)

    S Yazdani

    2012-09-01

    Full Text Available  In this work, on the basis of density functional theory and the generalized gradient approximation (GGA we optimized the electronic structure of the unsaturated and hydrogen saturated ZnO nanowires with [0001] orientation. Studying the effects of a uniaxial strain on the nanowires, we calculated the Young’s modulus and the effective piezoelectric coefficient of the nanowires. Furthermore, the effect of this uniaxial strain on the imaginary part of dielectric function of the nanowires was investigated.

  11. Study of the effect of surface treatment of kenaf fibre on mechanical properties of kenaf filled unsaturated polyester composite

    Science.gov (United States)

    Salem, I. A. S.; Rozyanty, A. R.; Betar, B. O.; Adam, T.; Mohammed, M.; Mohammed, A. M.

    2017-10-01

    In this research, unsaturated polyester/kenaf fiber (UP/KF) composites was prepared by using hand lay-up process. The effect of surface treatment of kenaf fiber on mechanical properties of kenaf filled unsaturated polyester composites were studied. Different concentrationsof stearic acid (SA) were applied, i.e. 0, 0.4, and 0.8 wt%. Tensile strength of untreated UP/KF composites was found to be higher for 40 wt% loading of kenaf fiber. The highest tensile strength value was obtained after treatment with 0.4 wt% concentration of stearic acid at 56 MPa and tensile modulus was at 2409 MPa. From the flexural strength result obtained, it is clearly seen that 40 wt% loading of kenaf fiber and treatment with 0.4 wt% concentration of stearic acid give the highest value at 72 MPa and flexural modulus at 3929 MPa.

  12. Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells.

    Science.gov (United States)

    Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning

    2014-10-08

    The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.

  13. Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes.

    Science.gov (United States)

    Cui, G; Yoo, J H; Lee, J S; Yoo, J; Uhm, J H; Cha, G S; Nam, H

    2001-08-01

    The effect of various electrochemical pre-treatment methods on the surface and electrochemical properties of screen-printed carbon paste electrodes (SPCE) prepared with three different commercial products was examined. It was observed that a positively charged redox couple, e.g., hexaammineruthenium(III), exhibited quasi-reversible behavior at the untreated SPCE. However, the cyclic voltammograms (CVs) of the SPCE prepared with general-purpose carbon inks did not exhibit clear redox peaks to other representative redox couples [e.g., hexacyanoferrate(III), hexachloroiridate(IV), dopamine, and hydroquinone] without activation. Electrochemical pre-treatment methods were sought in four different aqueous solutions, i.e., sulfuric acid, potassium chloride, sodium hydrogencarbonate, and sodium carbonate, applying various activation potentials. It was found that the pre-treatment procedure in saturated Na2CO3 solution at 1.2 V provides a mild and effective condition for activating the SPCE. By measuring the water contact angles at the SPCE surfaces and recording their SEM images, it was confirmed that the electrochemical pre-treatment effectively removes the organic binders from the surface carbon particles. A prolonged period of activation (> 5 min) or the use of high potentials (> 1.2 V) increased the capacitance of the electrode over 20 microF cm(-2). The pre-treated SPCE behaved like a random array microelectrode, exhibiting a sigmoidal-shaped CV at a slow scan rate. The short pre-anodization method in Na2CO3 solution was generally applicable to most SPCE prepared with general-purpose carbon inks.

  14. Effect of Nanoparticle Incorporation and Surface Coating on Mechanical Properties of Bone Scaffolds: A Brief Review

    Directory of Open Access Journals (Sweden)

    Jesus Corona-Gomez

    2016-07-01

    Full Text Available Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to fabricate scaffolds are strong enough to mimic native bones. Extensive research has been conducted in order to increase scaffold strength and mechanical performance by incorporating nanoparticles and/or coatings. An incredible improvement has been achieved; and some outstanding examples are the usage of nanodiamond, hydroxyapatite, bioactive glass particles, SiO2, MgO, and silver nanoparticles. This review paper aims to present the results, to summarize significant findings, and to give perspective for future work, which could be beneficial to future bone tissue engineering.

  15. Effect of Nanoparticle Incorporation and Surface Coating on Mechanical Properties of Bone Scaffolds: A Brief Review

    Science.gov (United States)

    Corona-Gomez, Jesus; Chen, Xiongbiao; Yang, Qiaoqin

    2016-01-01

    Mechanical properties of a scaffold play an important role in its in vivo performance in bone tissue engineering, due to the fact that implanted scaffolds are typically subjected to stress including compression, tension, torsion, and shearing. Unfortunately, not all the materials used to fabricate scaffolds are strong enough to mimic native bones. Extensive research has been conducted in order to increase scaffold strength and mechanical performance by incorporating nanoparticles and/or coatings. An incredible improvement has been achieved; and some outstanding examples are the usage of nanodiamond, hydroxyapatite, bioactive glass particles, SiO2, MgO, and silver nanoparticles. This review paper aims to present the results, to summarize significant findings, and to give perspective for future work, which could be beneficial to future bone tissue engineering. PMID:27420104

  16. Structure, surface morphology and electrical properties of evaporated Ni thin films: Effect of substrates, thickness and Cu underlayer

    International Nuclear Information System (INIS)

    Hemmous, M.; Layadi, A.; Guittoum, A.; Souami, N.; Mebarki, M.; Menni, N.

    2014-01-01

    Series of Ni thin films have been deposited by thermal evaporation onto glass, Si(111), Cu, mica and Al 2 O 3 substrates with and without a Cu underlayer. The Ni thicknesses, t, are in the 4 to 163 nm range. The Cu underlayer has also been evaporated with a Cu thickness equal to 27, 52 and 90 nm. The effects of substrate, the Ni thickness and the Cu underlayer on the structural and electrical properties of Ni are investigated. Rutherford Backscattering Spectroscopy was used to probe the Ni/Substrate and Ni–Cu underlayer interfaces and to measure both Ni and Cu thicknesses. The texture, the strain and the grain size values were derived from X-ray diffraction experiments. The surface morphology is studied by means of a Scanning Electron Microscope. The electrical resistivity is measured by the four point probe. The Ni films grow with the <111> texture on all substrates. The Ni grain sizes D increase with increasing thickness for the glass, Si and mica substrates and decrease for the Cu one. The strain ε is positive for low thickness, decreases in magnitude and becomes negative as t increases. With the Cu underlayer, the growth mode goes through two phases: first, the stress (grain size) increases (decreases) up to a critical thickness t Cr , then stress is relieved and grain size increases. All these results will be discussed and correlated. - Highlights: • The structural and electrical properties of evaporated Ni thin films are studied. • The effect of thickness, substrates and Cu underlayer is investigated. • Texture, grain size, strain and surface morphology are discussed. • Growth modes are described as a function of Ni thickness

  17. The effect of oxygen vacancies on the stability, electronic and optical properties of the ZnAl2O4(100) surface; A first-principles study

    Science.gov (United States)

    Lahmer, M. A.

    2018-03-01

    The effect of oxygen vacancy formation on the stability, structural, electronic, and optical properties of the ZnAl2O4(100) surface was investigated by using the first-principles method. The obtained results show that, in the case of the Free-defect surface, the AlO2-terminated surface is more stable than the Zn-terminated surface. The results of structural relaxation show that, for each surface termination, the interlayer distances near the surface oscillate in a damping style. In addition, the work function values and the optical properties of these two surfaces are quite different. Our results show that the work function of the Zn-terminated surface is at least 2 times smaller than that of the AlO2 surface. On the other hand, ab initio thermodynamic calculations show that the O reduction occurs in the case of the AlO2 surface under all growth conditions, while, there is no evidence for O reduction in the case of the Zn-terminated surface. Our results show also that neutral oxygen vacancies can affect greatly the electronic and optical properties of the ZnAl2O4(100) surface.

  18. the study of thermal effect on the surface properties of gamma ...

    African Journals Online (AJOL)

    eobe

    parameter analysis as dependent on temperature and time being the key parameters in heat treatment reaction. As such, this study sough to establish the effect of temperature and soaking time on the thermal treatment of ammonium alum produced from Kankara kaolin through novel method (which does not involve external ...

  19. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces.

    Science.gov (United States)

    Su, E P; Justin, D F; Pratt, C R; Sarin, V K; Nguyen, V S; Oh, S; Jin, S

    2018-01-01

    The development and pre-clinical evaluation of nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated with titanium dioxide (TiO 2 ) nanotube arrays is reviewed. In vitro and in vivo evaluations show that TiO 2 nanotubes on Ti surfaces positively affect the osseointegration, cell differentiation, mineralisation, and anti-microbial properties. This surface treatment can be superimposed onto existing macro and micro porous Ti implants creating a surface texture that also interacts with cells at the nano level. Histology and mechanical pull-out testing of specimens in rabbits indicate that TiO 2 nanotubes improves bone bonding nine-fold (p = 0.008). The rate of mineralisation associated with TiO 2 nanotube surfaces is about three times that of non-treated Ti surfaces. In addition to improved osseointegration properties, TiO 2 nanotubes reduce the initial adhesion and colonisation of Staphylococcus epidermidis Collectively, the properties of Ti implant surfaces enhanced with TiO 2 nanotubes show great promise. Cite this article: Bone Joint J 2018;100-B(1 Supple A):9-16. ©2018 The British Editorial Society of Bone & Joint Surgery.

  20. Effect of Structure and Surface State of Nanocrystalline Tin Dioxide on its Gas Sensing Properties

    Science.gov (United States)

    Ovodok, E.; Ivanovskaya, M.; Kotsikau, D.; Azarko, I.; Kormosh, V.; Alyaksev, I.

    2013-05-01

    An effect of particle size, concentration of structural defects and the presence of sulfite and sulfate groups on the response of thick-film SnO2 sensors to CH4 and CO was revealed. Particle size and the presence of SO-groups were found to be main parameters determining the sensitivity of SnO2-based sensors to CH4, while structural defects of SnO2 layers are essential for CO detection.

  1. Effect of Ag-doping of nanosized FeAlO system on its structural, surface and catalytic properties

    Directory of Open Access Journals (Sweden)

    Laila I. Ali

    2016-11-01

    Full Text Available The effects of Ag2O-doping on the physicochemical, surface and catalytic properties of FeAlO system with various extents of Fe2O3 loading have been investigated. The dopant concentration was changed between 1.5 and 4.0 mol % Ag2O. Pure and variously doped solids were subjected to heat treatment at 400–800 °C. The techniques employed for characterization of catalysts were TG/DTG, XRD, N2-adsorption at −196 °C and the catalytic decomposition of H2O2 at 25–40 °C. The results obtained revealed that, the investigated catalysts consisted of nanosized γ-Al2O3 phase. The textural properties including SBET, porosity and St were modified by Ag2O-doping. The doping process with Ag-species improves the catalytic activity of FeAlO system. Increasing the precalcination temperature from 400 to 800 °C increases the catalytic activity of 3.5% AgFeAlO with 1.9-fold toward H2O2 decomposition at 30 °C. Furthermore, the maximum increase in the catalytic activity due to doping with 3.5 mol % Ag2O at 30 °C attained about 15.1-fold for the solids calcined at 800 °C.

  2. Marine Phages As Tracers: Effects of Size, Morphology, and Physico-Chemical Surface Properties on Transport in a Porous Medium.

    Science.gov (United States)

    Ghanem, Nawras; Kiesel, Bärbel; Kallies, René; Harms, Hauke; Chatzinotas, Antonis; Wick, Lukas Y

    2016-12-06

    Although several studies examined the transport of viruses in terrestrial systems only few studies exist on the use of marine phages (i.e., nonterrestrial viruses infecting marine host bacteria) as sensitively detectable microbial tracers for subsurface colloid transport and water flow. Here, we systematically quantified and compared for the first time the effects of size, morphology and physicochemical surface properties of six marine phages and two coliphages (MS2, T4) on transport in sand-filled percolated columns. Phage-sand interactions were described by colloidal filtration theory and the extended Derjaguin-Landau-Verwey-Overbeek approach (XDLVO), respectively. The phages belonged to different families and comprised four phages never used in transport studies (i.e., PSA-HM1, PSA-HP1, PSA-HS2, and H3/49). Phage transport was influenced by size, morphology and hydrophobicity in an approximate order of size > hydrophobicity ≥ morphology. Two phages PSA-HP1, PSA-HS2 (Podoviridae and Siphoviridae) exhibited similar mass recovery as commonly used coliphage MS2 and were 7-fold better transported than known marine phage vB_PSPS-H40/1. Differing properties of the marine phages may be used to trace transport of indigenous viruses, natural colloids or anthropogenic nanomaterials and, hence, contribute to better risk analysis. Our results underpin the potential role of marine phages as microbial tracer for transport of colloidal particles and water flow.

  3. Effects of 45S5 bioglass on surface properties of dental enamel subjected to 35% hydrogen peroxide.

    Science.gov (United States)

    Deng, Meng; Wen, Hai-Lin; Dong, Xiao-Li; Li, Feng; Xu, Xin; Li, Hong; Li, Ji-Yao; Zhou, Xue-Dong

    2013-06-01

    Tooth bleaching agents may weaken the tooth structure. Therefore, it is important to minimize any risks of tooth hard tissue damage caused by bleaching agents. The aim of this study was to evaluate the effects of applying 45S5 bioglass (BG) before, after, and during 35% hydrogen peroxide (HP) bleaching on whitening efficacy, physicochemical properties and microstructures of bovine enamel. Seventy-two bovine enamel blocks were prepared and randomly divided into six groups: distilled deionized water (DDW), BG, HP, BG before HP, BG after HP and BG during HP. Colorimetric and microhardness tests were performed before and after the treatment procedure. Representative specimens from each group were selected for morphology investigation after the final tests. A significant color change was observed in group HP, BG before HP, BG after HP and BG during HP. The microhardness loss was in the following order: group HP>BG before HP, BG after HP>BG during HP>DDW, BG. The most obvious morphological alteration of was observed on enamel surfaces in group HP, and a slight morphological alteration was also detected in group BG before HP and BG after HP. Our findings suggest that the combination use of BG and HP could not impede the tooth whitening efficacy. Using BG during HP brought better protective effect than pre/post-bleaching use of BG, as it could more effectively reduce the mineral loss as well as retain the surface integrity of enamel. BG may serve as a promising biomimetic adjunct for bleaching therapy to prevent/restore the enamel damage induced by bleaching agents.

  4. Effect of ultrasound on some chemical and microbiological properties of sour cherry juice by response surface methodology.

    Science.gov (United States)

    Türken, Tuğba; Erge, Hande S

    2017-09-01

    In this study, it is aimed to determine effect of ultrasonication on some chemical and microbiological properties of sour cherry juice by response surface methodology, since ultrasound is known as an alternative method for thermal food processing. Sour cherry juice was sonicated at varying amplitude levels (50, 75, 100%); moderate temperatures (20, 30, 40 ℃); and treatment times of 2, 6, 10 min at a constant frequency of 20 kHz. Different ultrasonication amplitudes, temperatures, and times had no significant effect on pH,°Bx, and titratable acidity. A significant increase in total monomeric anthocyanins was observed as the amplitude level and temperature increased (p < 0.01). An increase in the total phenolics was also obtained as the temperature increased (p < 0.05). The effect of amplitude level on antioxidant capacity of sour cherry juice was also found significant (p < 0.05). Color parameters (L*, a*, b*, C, h) generally increased by increasing temperature, amplitude level, and treatment time. It was determined that Escherichia coli O157:H7 significantly affected by temperature and treatment time (p < 0.05).

  5. Investigation of gamma radiation effect on chemical properties and surface morphology of some nonlinear optical (NLO) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahlam, M.A., E-mail: omaymn771@yahoo.com [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India); Ravishankar, M.N. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India); Vijayan, N. [Materials Characterization Division, National Physical Laboratory, New Delhi 110 012 (India); Govindaraj, G. [Department of Physics, Pondicherry University, Pondicherry 605 014 (India); Siddaramaiah [Department of Polymer and Technology, Sri Jayachamarajendra College of Engineering, Mysore 570 006 (India); Gnana Prakash, A.P., E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India)

    2012-05-01

    The effect of Co-60 gamma irradiation on L-alanine cadmium chloride (LACC), L-alanine doped potassium dihydrogen orthophosphate (KDP) and L-arginine doped KDP nonlinear optical (NLO) single crystals were studied in doses ranging from 100 krad to 6 Mrad. The crystals were grown by slow evaporation method at room temperature. The effects of gamma irradiation on the chemical, surface morphology, DC electrical conductivity, thermal and mechanical properties of the grown crystals have been studied. The functional groups of unirradiated and irradiated crystals have been identified and confirmed by Fourier transform infrared (FTIR) studies. Scanning electron microscopy (SEM) of irradiated crystals shows some morphological changes in the crystals. The dc conductivity of LACC and L-alanine doped KDP crystals were found to increase with increase in radiation dose whereas in case of L-arginine doped KDP crystals, the dc conductivity was found to decrease with increase in radiation dose. Differential scanning calorimetry (DSC) thermograms reveals that there is no significant change in the melting point of the crystals after irradiation and the crystals does not decompose as a result of irradiation. The mechanical behavior of both unirradiated and irradiated crystals is explained with the indentation effects using Vicker's microhardness tester. The Vicker's hardness number H{sub V} and Mayer's index 'n' has been estimated and confirms that LACC belong to the hard materials.

  6. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: Its environmental implications

    International Nuclear Information System (INIS)

    Luo, Zhuanxi; Wang, Zhenhong; Wei, QunShan; Yan, Changzhou; Liu, Feng

    2011-01-01

    Highlights: → The attachment of Enano-TiO 2 to surface enhanced markedly sediment BET surface area and t-Plot external surface area. → The fill of Enano-TiO 2 into the micropores reduced significantly the sediment t-Plot micropore surface area. → Enano-TiO 2 could increase sediment phosphorus (P) adsorption maximum and decrease in sediment P binding energy. → P would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO 2 . - Abstract: Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO 2 (Enano-TiO 2 ) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO 2 . In this study, Enano-TiO 2 was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO 2 particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S max ). Contrarily, the fill of Enano-TiO 2 particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO 2 . Enano-TiO 2 would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO 2 and/or similar ENPs.

  7. Effect of Ag Doping on the Electronic Structure and Optical Properties of ZnO(0001 Surface

    Directory of Open Access Journals (Sweden)

    Xiang Qian

    2018-01-01

    Full Text Available Using first-principle calculations, the geometrical structure, the electronic and optical properties of Ag-doped ZnO(0001 surface have been investigated. We found that Ag-doped ZnO(0001 surface is more easily formed on the first layer. On the other hand, the doped surface has gradually become an equipotential body, showing obvious metallic characteristics. We found that a new peak appeared in the low energy region after Ag doping, which was mainly due to the electron transition between the two orbital levels of Ag-4d and O-2p.

  8. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: its environmental implications.

    Science.gov (United States)

    Luo, Zhuanxi; Wang, Zhenhong; Wei, Qunshan; Yan, Changzhou; Liu, Feng

    2011-09-15

    Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO(2) (Enano-TiO(2)) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO(2). In this study, Enano-TiO(2) was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO(2) particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S(max)). Contrarily, the fill of Enano-TiO(2) particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO(2). Enano-TiO(2) would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO(2) and/or similar ENPs. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. On the properties of two binary NiTi shape memory alloys. Effects of surface finish on the corrosion behaviour and in vitro biocompatibility.

    Science.gov (United States)

    Es-Souni, Mohammed; Es-Souni, Martha; Fischer-Brandies, Helge

    2002-07-01

    The present paper compares the transformation behaviour and mechanical properties of two orthodontic wires of close chemical compositions. The effects of surface topography and surface finish residues on the potentiodynamic corrosion behaviour and biocompatibility are also reported. The cytotoxicity tests were performed on both alloys in fibroblast cell cultures from human gingiva using the MTT test. It is shown that the surface finish and the amounts of surface finish residues affect dramatically the corrosion resistance. Bad surface finish results in lower corrosion resistance. The in vitro biocompatibility, though not affected to the extent of corrosion resistance, is also reduced as the surface roughness and the amounts of residues increase. This is thought to be due to surface effects on corrosion and metallic ions release.

  10. Effect of PF impregnation and surface densification on the mechanical properties of small-scale wood laminated poles

    Science.gov (United States)

    Huaqiang Yu; Chung Y. Hse; Zehui Jiang

    2009-01-01

    The wood poles in the United States are from high-valued trees that are becoming more expensive and less available. Wood laminated composite poles (LCP) are a kind of alternative to solid poles. Considerable interest has developed in last century in the resin impregnation and wood surface densification to improve its physical and mechanical properties. In this...

  11. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    Science.gov (United States)

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2012-01-01

    The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing wood biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit...

  12. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone

    NARCIS (Netherlands)

    Bobbert, F.S.L.; Zadpoor, A.A.

    2017-01-01

    The success of bone substitutes used to repair bone defects such as critical sized defects depends on the architecture of the porous biomaterial. The architectural parameters and surface properties affect cell seeding efficiency, cell response, angiogenesis, and eventually bone formation. The

  13. Effects of argon sputtering and UV-ozone radiation on the physico-chemical surface properties of ITO

    Science.gov (United States)

    Che, Hui; El Bouanani, M.

    2018-01-01

    X-ray photoelectron spectroscopy (XPS) and Ultraviolet Photoelectron Spectroscopy (UPS) were used to evaluate and determine the effects of 1 KeV Ar+ irradiation (sputtering) on the surface chemical composition and work function of Indium Thin Oxide (ITO). While Ar+ sputtering removes carbon-based surface contaminants, it also modifies the Sn-rich surface of ITO and leads to a reduction of the oxidation state of Sn from Sn4+ to Sn2+. The decrease in the work function of ITO is directly correlated to the decrease of Sn atomic concentration in the Sn-rich top surface layer and the reduction of the oxidation state of surface Sn.

  14. Mesoporous magnetic activated carbon: Effect of preparation route on texture and surface properties and on effect for Reactive Black 5 adsorption.

    Science.gov (United States)

    Giannakoudakis, Dimitrios; Saroyan, Hayarpi; Lazaridis, Nikolaos; Deliyanni, Eleni

    2016-04-01

    Mesoporous magnetic activated carbon: Effect of preparation route on texture and surface properties and on effect for Reactive Black 5 adsorption. Dimitrios Giannakoudakis1, Hayarpi Saroyan2, Nikolaos Lazaridis2, Eleni Deliyanni2 1 City College of New York, Chemistry Department, 160 Convent Avenue, New York, United States 2 Laboratory of General and oInorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece In this study, the effect of preparation route of a mesoporous magnetic activated carbon on Reactive Black 5 (RB5) adsorption was investigated. The synthesis of the magnetic activated carbon was achieved both with (i) impregnation method (Bmi), and (ii) co-precipitation with two precipitation agents: NaOH (Bm) and NH4OH (Bma). After synthesis, the full characterization with various techniques (SEM, FTIR, XRD, DTA, DTG, VSM) was achieved in order to testify the effect of the preparation route on its textural and surface properties. It was shown that after the precipitation method the prepared carbon presented a collapsed texture and small magnetic properties. Effects of initial solution pH, effect of temperature, adsorption isotherms and kinetics were investigated in order to conclude about the aforementioned effect of the preparation method on dye adsorption performance of the magnetic carbons. The adsorption evaluation of the magnetic activated carbon presented higher adsorption capacity of Bmi carbon (350 mg/g) and lower of Bm (150 mg/g). Equilibrium experiments are also performed studying the effect of contact time (pseudo-first and -second order equations) and temperature (isotherms at 25, 45 and 65 °C fitted to Langmuir and Freundlich model). A full thermodynamic evaluation was carried out, calculating the parameters of enthalpy, free energy and entropy (ΔHο, ΔGο and ΔSο). The characterization with various techniques revealed the possible interactions/forces of dye-composite system.

  15. Evaluation of the effect of three mouthwashes on the mechanical properties and surface morphology of several orthodontic wires: Anin vitrostudy.

    Science.gov (United States)

    Aghili, Hossein; Yassaei, Sogra; Eslami, Farzaneh

    2017-01-01

    The aim of this study was to evaluate and compare the changes in the mechanical properties and surface morphology of different orthodontic wires after immersion in three mouthwash solutions. In this in vitro study, five specimens of each of 0.016 inch nickel titanium (NiTi), coated NiTi, and stainless steel orthodontic wires were selected. The specimens were immersed in 0.05% sodium fluoride (NaF), 0.2% chlorhexidine, Zataria multiflora extract, and distilled water (control) for 1.5 h at 37°C. After immersion, loading and unloading forces at 0.5 mm intervals and the elastic modulus (E) of the wires were measured using a three-point bending test. Surface changes were observed with a scanning electron microscope (SEM). Two-way analysis of variance and Bonferroni tests were used to compare the properties of the wires. The level of significance was set at 0.05. Statistically significant changes in loading and unloading forces and E of the orthodontic wires were observed after immersion in different mouthwash solutions ( P wires ( P > 0.05). SEM images showed surface changes in some types ofthe orthodontic wires. The mouthwashes used in this study seemed to change the mechanical properties and surface quality of the orthodontic wires.

  16. The effects of silane-SiO2 nanocomposite films on Candida albicans adhesion and the surface and physical properties of acrylic resin denture base material.

    Science.gov (United States)

    Yodmongkol, Sirasa; Chantarachindawong, Rojcharin; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Amornsakchai, Taweechai; Srikhirin, Toemsak

    2014-12-01

    Polysiloxane has been used as a coupling material in restorative dental materials for several decades. However, few studies are available on the application of polysiloxane in other dental prosthesis functions. The purpose of this study was to investigate the effects of silane-SiO2 nanocomposite films on Candida albicans adhesion and the surface and physical properties of acrylic resin denture base materials. Specimens were separated into 2 groups, uncoated and coated. They were coated with a film by using the dip-coating method. Specimens were incubated with Candida albicans 10(7) cells/mL for 1 hour, and the adherent cells were counted under an optical microscope. The following surface properties were measured: surface chemical composition with Fourier-transform infrared spectrometry, surface roughness with a surface profiler, surface energy with the sessile drop method, and surface hardness with a microhardness tester. The physical properties, including water sorption, water solubility, ultimate flexural strength, and flexural modulus, were evaluated according to International Organization for Standardization 20795-1 requirements. The adhesion of Candida albicans and the surface properties of the specimens were investigated after cleaning with effervescent tablets and brushing. An MTT assay was used to evaluate the coated specimens. The results were statistically analyzed with the Mann-Whitney U test (α=.05). A significant reduction in Candida albicans adhesion (P=.002) was observed before cleaning. In addition, the surface energy was comparable (P=.100), the surface hardness increased significantly (P=.008), and the surface roughness remained unchanged (P=.310). After cleaning with effervescent tablets, a significant decrease in Candida albicans adhesion (P=.002) and in surface roughness (P=.008) was observed; however, similar surface energies were measured (P=.100). After cleaning with a toothbrush, the adhesion of Candida albicans was significantly higher on

  17. Effects of surface coating process conditions on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes

    KAUST Repository

    Louie, Jennifer Sarah

    2011-02-01

    The application of polymer surface coatings to improve the fouling resistance of reverse osmosis membranes tends to increase flow resistance across the membrane. This paper presents a systematic analysis on how membrane properties and performance are impacted by the coating process steps, and investigates how such effects could contribute to lower water flux. On one hand, simply pre-soaking dry aromatic polyamide composite membranes in aliphatic alcohols results in a significant increase in water flux, which is attributed to wetting of pores in the selective polyamide layer and to changes in the polymer structure. This flux increase was not readily reversible, based on a 300-h water permeation test. Conversely, drying a wetted membrane led to a decrease in water flux, which we hypothesize is caused by increased interchain hydrogen-bonding in the selective layer. This drop in water flux was not permanent; higher flux was observed if the same wetted/dried membrane was then re-soaked in ethanol prior to the water permeation experiment. An ethanol pre-soaking step also increased water flux of a PEBAX-coated membrane by nearly 70%. In contrast to the reduction in water flux caused by the specific treatment sequence of ethanol-swelling followed by drying, this same sequence actually increased gas transport. The eight- to ten-fold increase in Knudsen diffusion-based gas permeance after this pre-treatment was attributed to an increase in the number or size of membrane defects. © 2010 Elsevier B.V.

  18. Zirconium titanate thin film prepared by surface sol-gel process and effects of thickness on dielectric property

    CERN Document Server

    Kim, C H

    2002-01-01

    Single phase of multicomponent oxide ZrTiO sub 4 film could be prepared through surface sol-gel route simply by coating the mixture of 100mM zirconium butoxide and titanium butoxide on Pt/Ti/SiO sub 2 /Si(100) substrate, following pyrolysis at 450 .deg. C, and annealing it at 770 .deg. C. The dielectric constant of the film was reduced as the film thickness decreased due to of the interfacial effects caused by layer/electrode and a few voids inside the multilayer. However, the dielectric property was independent of applied dc bias sweeps voltage (-2 to +2 V). The dielectric constant of bulk film, 31.9, estimated using series-connected capacitor model was independent of film thickness and frequency in the measurement range, but theoretical interfacial thickness, t sub i , was dependent on the frequency. It reached a saturated t sub i value, 6.9 A, at high frequency by extraction of some capacitance component formed at low frequency range. The dielectric constant of bulk ZrTiO sub 4 pellet-shaped material was 3...

  19. Surface properties of poly(styrene- co- n-butyl acrylate) binary copolymers: Effect of chain microstructure and composition

    Science.gov (United States)

    Bogdanova, Yu. G.; Kostina, J. V.; Dolzhikova, V. D.; Chernikova, E. V.; Plutalova, A. V.

    2015-12-01

    The regularities of changing of surface energy characteristics of poly(styrene- co- n-butyl acrylate) binary copolymers films at varying of chain microstructure, composition and thermodynamic quality of solvent, from which films are formed, with respect to comonomers, were detected. The concordance between the information about characteristics of films surfaces, obtained via contact angle measurements and ATR-FTIR spectroscopy was observed. The type of polymer chain microstructure, provided the best adhesion properties of copolymers with respect to polar phases was detected.

  20. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf.

    Science.gov (United States)

    Yamamoto, Minehide; Nishikawa, Naoki; Mayama, Hiroyuki; Nonomura, Yoshimune; Yokojima, Satoshi; Nakamura, Shinichiro; Uchida, Kingo

    2015-07-07

    Theoretical study is presented on the wetting behaviors of water droplets over a lotus leaf. Experimental results are interpreted to clarify the trade-offs among the potential energy change, the local pinning energy, and the adhesion energy. The theoretical parameters, calculated from the experimental results, are used to qualitatively explain the relations among surface fractal dimension, surface morphology, and dynamic wetting behaviors. The surface of a lotus leaf, which shows the superhydrophobic lotus effect, was dipped in ethanol to remove the plant waxes. As a result, the lotus effect is lost. The contact angle of a water drop decreased dramatically from 161° of the original surface to 122°. The water droplet was pinned on the surface. From the fractal analysis, the fractal region of the original surface was divided into two regions: a smaller-sized roughness region of 0.3-1.7 μm with D of 1.48 and a region of 1.7-19 μm with D of 1.36. By dipping the leaf in ethanol, the former fractal region, characterized by wax tubes, was lost, and only the latter large fractal region remained. The lotus effect is attributed to a surface structure that is covered with needle-shaped wax tubes, and the remaining surface allows invasion of the water droplet and enlarges the interaction with water.

  1. Effect of Surface States on Joining Mechanisms and Mechanical Properties of Aluminum Alloy (A5052) and Polyethylene Terephthalate (PET) by Dissimilar Friction Spot Welding

    OpenAIRE

    Farazila Yusof; Mohd Ridha bin Muhamad; Raza Moshwan; Mohd Fadzil bin Jamaludin; Yukio Miyashita

    2016-01-01

    In this research, polyethylene terephthalate (PET), as a high-density thermoplastic sheet, and Aluminum A5052, as a metal with seven distinct surface roughnesses, were joined by friction spot welding (FSW). The effect of A5052’s various surface states on the welding joining mechanism and mechanical properties were investigated. Friction spot welding was successfully applied for the dissimilar joining of PET thermoplastics and aluminum alloy A5052. During FSW, the PET near the joining interfac...

  2. The Effect of Ytterbium-Doped Fiber Laser with Different Parameters on Physical Properties of Zirconia Surface.

    Science.gov (United States)

    Mutluay Unal, Server; Ozkir, Serhat Emre; Seyfioglu Polat, Zelal; Guven, Sedat; Asutay, Hilal

    2017-03-01

    Laser irradiation is an alternative surface treatment method for roughening zirconia surfaces. The aim of this study was to evaluate the effects of ytterbium-doped fiber laser (YbPL) on zirconia. Zirconia surfaces are resistant to many surface treatment methods, but surface roughness is crucial for adhesion of veneering materials and cements to zirconia. The zirconia discs were prepared and divided into four groups according to the power of the laser irradiation (5, 12, 17, and 20 W). These groups were divided into five subgroups according to the frequency (25, 40, 60, 80, and 100 kHz). Surface roughness values were measured with a noncontact profilometer, and the mean Ra values were calculated. Wettability was measured with a goniometer. The surface morphology was observed with a scanning electron microscope (SEM). The changes in the surface crystalline structure were analyzed with X-ray diffractometry. Ra values of all groups were higher than the control group. The highest surface roughness value was at 20 W and 100 kHz. Best wettability characteristic was observed at 5 W and 60 kHz. The correlations between Ra and wettability were low but significant. SEM examination of 5 W with different frequencies showed no microcracks, however, melted areas were observed. Remaining groups had microcracks and melted layers. A significantly lower T/M-phase transformation was observed in some groups. YbPL irradiation was effective at roughening the zirconia surface. Although laser treatment affected zirconia surfaces and provided surface roughness, the power and frequency should be adjusted to achieve optimum results.

  3. The interaction of osteoblasts with bone-implant materials: 1. The effect of physicochemical surface properties of implant materials

    Czech Academy of Sciences Publication Activity Database

    Kubies, Dana; Himmlová, L.; Riedel, T.; Chánová, Eliška; Balík, Karel; Douděrová, M.; Bartová, J.; Pešáková, V.

    2011-01-01

    Roč. 60, č. 1 (2011), s. 95-111 ISSN 0862-8408 R&D Projects: GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z30460519 Keywords : implant * surface properties * proliferation Subject RIV: FH - Neurology Impact factor: 1.555, year: 2011 http://www.biomed.cas.cz/physiolres/pdf/60/60_95.pdf

  4. Effects of {gamma}-irradiation and ageing on surface and catalytic properties of nano-sized Cu O/Mg O system

    Energy Technology Data Exchange (ETDEWEB)

    El-Molla, S. A. [Ain Shams University, Faculty of Education, Chemistry Deparment, Roxy, Heliopolis, 11757 Cairo (Egypt); Ismail, S. A.; Ibrahim, M. M., E-mail: saharelmolla@yahoo.com [National Center for Radiation Research and Technology, Nasr City, P.O. Box 29, 11731 Cairo (Egypt)

    2011-07-01

    0.2 Cu O/Mg O system prepared by impregnation method was calcined at 350 and 450 C. The effects of {gamma}-rays (0.2-1.6 MGy) on its structure, surface and catalytic properties were investigated by using XRD, N{sub 2}-adsorption at -196 C and catalytic conversion of isopropanol at 150-275 C using a flow technique. The results revealed that the investigated solids consisted of nano-sized Mg O as a major phase besides Cu O and trace amount of Cu{sub 2}O. {gamma}-Irradiation of the solids investigated exerted measurable changes in their surface and catalytic properties dependent on the calcination temperature and dose of irradiation. The catalysts investigated acted as active dehydrogenation solids. The five years-ageing of different solids showed limited changes of their surface and catalytic properties indicating a good catalytic stability of the irradiated prepared solids. (Author)

  5. Effects of γ-irradiation and ageing on surface and catalytic properties of nano-sized Cu O/Mg O system

    International Nuclear Information System (INIS)

    El-Molla, S. A.; Ismail, S. A.; Ibrahim, M. M.

    2011-01-01

    0.2 Cu O/Mg O system prepared by impregnation method was calcined at 350 and 450 C. The effects of γ-rays (0.2-1.6 MGy) on its structure, surface and catalytic properties were investigated by using XRD, N 2 -adsorption at -196 C and catalytic conversion of isopropanol at 150-275 C using a flow technique. The results revealed that the investigated solids consisted of nano-sized Mg O as a major phase besides Cu O and trace amount of Cu 2 O. γ-Irradiation of the solids investigated exerted measurable changes in their surface and catalytic properties dependent on the calcination temperature and dose of irradiation. The catalysts investigated acted as active dehydrogenation solids. The five years-ageing of different solids showed limited changes of their surface and catalytic properties indicating a good catalytic stability of the irradiated prepared solids. (Author)

  6. The effects of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood.

    Science.gov (United States)

    Gündüz, Gökhan; Korkut, Süleyman; Korkut, Derya Sevim

    2008-05-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on physical properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood were examined. Samples obtained from Yenice-Zonguldak Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for varying durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. The mechanical properties of heat-treated and control samples were tested, and compression strength, and Janka-hardness were determined. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements by the stylus method were made in the direction perpendicular to the fiber. Four main roughness parameters, mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), root mean square roughness (Rq), and maximum roughness (Ry) obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant difference was determined (p=0.05) between physical and technological properties, and surface roughness parameters (Ra, Rz, Ry, Rq) for three temperatures and three durations of heat treatment. Based on the findings in this study, the results showed that density, swelling, compression strength, Janka-hardness and surface roughness values decreased with increasing treatment temperature and treatment times. Increase in temperature and duration further diminished technological strength values of the wood specimens. Camiyani Black Pine wood could be utilized by using proper heat treatment techniques without any losses in strength values in areas where working, stability, and surface smoothness, such as in window frames, are important factors.

  7. Oxides Surfaces and Novel Electronic Properties

    Science.gov (United States)

    Koirala, Pratik

    The scope of this thesis extends to the study of surface structures and electronic properties in a number of complex oxides. The c(6x2) surface reconstruction on SrTiO3 (001) was solved using a combination of plan view transmission electron microscopy imaging, atomic resolution secondary electron imaging, and density functional theory calculations. This work provided fundamental insights on the effects of dielectric screening in secondary electron generation. A thorough analysis on the limitation and functionality of transmission plan view imaging showed that the kinematical approximations used in the separation of top and bottom surfaces is only valid in thin samples (˜5 nm or less for SrTiO3). The presence of an inversion center in the surface structure also made separation of the top and bottom surfaces more robust. Surface studies of two other oxides, KTaO3 and NdGaO3, provided understanding on the mechanism of surface heterogeneity and segregation. In the case of KTaO3, selective ion sputtering and the loss of K resulted in large stoichiometric variations at the surface. Annealing of such samples led to the formation of a potassium deficient tetragonal phase (K 6Ta10.8O30) on the surface. A similar phenomenon was also observed in NdGaO3. Exploratory surface studies of the rare earth scandates (ReScO3 , Re = Gd, Tb, Dy) led to the observation of large flexoelectric bending inside an electron microscope. Thin rods of these scandates bent by up to 90 degree under a focused electron beam; the bending was fully reversible. Ex-situ measurements of flexoelectric coe cient performed by an- other graduate student, Christopher Mizzi, confirmed that the scandates have a large flexocoupling voltage (˜42 V). Electronic structure of the lanthanide scandates was studied using temperature depen- dent X-ray photoelectron spectroscopy and hybrid density functional theory calculations. The amount of charging under X-ray illumination was greatly reduced with increasing

  8. The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231).

    Science.gov (United States)

    Xia, Ling; Huang, Rong; Li, Yinta; Song, Shaoxian

    2017-01-01

    The effects of growth phase on the lipid content and surface properties of oleaginous microalgae Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231 were investigated in this study. The results showed that throughout the growth phases, the lipid content of microalgae increased. The surface properties like particle size, the degree of hydrophobicity, and the total concentration of functional groups increased while net surface zeta potential decreased. The results suggested that the growth stage had significant influence not only on the lipid content but also on the surface characteristics. Moreover, the lipid content was significantly positively related to the concentration of hydroxyl functional groups in spite of algal strains or growth phases. These results provided a basis for further studies on the refinery process using oleaginous microalgae for biofuel production.

  9. Effect of type and loading of surface-modifying agent on mechanical properties of modified geothermal scale powder/stereolithography polymer composite

    Science.gov (United States)

    Tilendo, A. C.; Pajarito, B. B.

    2017-05-01

    This study investigated the effect of stearic acid (SA), glycerol monostearate (GMS) and 3-trimethoxysilylpropyl methacrylate (TSPM) at varied loadings on the hardness and flexural properties of modified geothermal scale powder (GSP)/stereolithography (SLA) polymer composite. TSPM-modified GSP/SLA composite has the highest value of hardness due to increased filler dispersion and crystallinity. Hardness of GSP/SLA composite increases with loading of surface-modifying agent due to increase filler dispersion. Pronounced effect of surface modification to flexural modulus is observed. While low loading of SA and GMS leads to reduction of flexural modulus, increasing loading enhances the said property. Further increase of SA deteriorates the property. TSPM-modified GSP enhances the modulus due to increased crystalline phase of the system owing to TSPM copolymerization. Likewise, addition of SA and GMS increases flexural strength due to efficient reduction of filler agglomerates. However, unreacted TSPM produces weak interfaces and poor adhesion between GSP and SLA matrix.

  10. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  11. Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel

    Science.gov (United States)

    Zhao, Jinlong; Xu, Dake; Shahzad, M. Babar; Kang, Qiang; Sun, Ying; Sun, Ziqing; Zhang, Shuyuan; Ren, Ling; Yang, Chunguang; Yang, Ke

    2016-11-01

    The resistance for pitting corrosion, passive film stability and antibacterial performance of 316L-Cu SS passivated by nitric acid solution containing certain concentration of copper sulfate, were studied by electrochemical cyclic polarization, electrochemical impedance spectroscopy (EIS) and co-culture with bacteria. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Cu2+ ions release from 316L-Cu SS surface. XPS analysis proved that the enrichment of CuO, Cr2O3 and Cr(OH)3 on the surface of specimen could simultaneously guarantee a better corrosion resistance and stable antibacterial properties. The biocompatibility evaluation determined by RTCA assay also indicated that the 316L-Cu SS after antibacterial passivation was completely biocompatible.

  12. Effect of oxidation agent on wood biomass in ethylene vinyl acetate conductive polymer: tensile properties, tensile fracture surface and electrical properties

    Science.gov (United States)

    Hanif, M. P. M.; Supri, A. G.; Rozyanty, A. R.; Tan, S. J.

    2017-10-01

    The wood fiber (WF) type of Pulverised Wood Filler obtained by combustion process at temperature under 700 °C for 3 hours was characterized and coated with ferric chloride (FeCl3) by ethanol solution. Both carbonized wood fiber (CWF) and carbonized wood fiber-ferric chloride (CWF-FeCl3) were used as filler in ethylene vinyl acetate (EVA) conductive polymer. The filler was coated with FeCl3 to enhance the properties of the CWF to achieve progressive mechanical and electrical properties. The CWF and CWF-FeCl3 loading were varied from 2.5 to 10.0 wt%. EVA/CWF and EVA/CWF-FeCl3 conductive polymer were processed by using Brabender Plasticoder at 160 °C with 50 rpm rotor speed for 10 min. The mechanical properties were investigated by tensile testing and the tensile fractured surface of conductive polymers was analyzed by scanning electron microscopy (SEM) analysis. Then, the electrical conductivity of conductive polymer was determined by four-point probe I-V measurement system. The EVA/CWF-FeCl3 conductive polymer showed greater electrical conductivity and tensile strength but lower elongation at break than EVA/CWF conductive polymer. SEM morphology displayed rougher surface between CWF-FeCl3 and EVA phases compared to EVA/CWF conductive polymer.

  13. Impact of surface coal mining on soil hydraulic properties

    Science.gov (United States)

    X. Liu; J. Q. Wu; P. W. Conrad; S. Dun; C. S. Todd; R. L. McNearny; William Elliot; H. Rhee; P. Clark

    2016-01-01

    Soil erosion is strongly related to soil hydraulic properties. Understanding how surface coal mining affects these properties is therefore important in developing effective management practices to control erosion during reclamation. To determine the impact of mining activities on soil hydraulic properties, soils from undisturbed areas, areas of roughly graded mine...

  14. The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes

    International Nuclear Information System (INIS)

    Liu, Chao; Lee Panetta, R.; Yang, Ping

    2013-01-01

    Effects of surface roughness on the optical scattering properties of ice crystals are investigated using a random wave superposition model of roughness that is a simplification of models used in studies of scattering by surface water waves. Unlike previous work with models of rough surfaces applicable only in limited size ranges, such as surface perturbation methods in the small particle regime or the tilted-facet (TF) method in the large particle regime, ours uses a single roughness model to cover a range in sizes extending from the Rayleigh to the geometric optics regimes. The basic crystal shape we examine is the hexagonal column but our roughening model can be used for a wide variety of particle geometries. To compute scattering properties over the range of sizes we use the pseudo-spectral time domain method (PSTD) for small to moderate sized particles and the improved geometric optics method (IGOM) for large ones. Use of the PSTD with our roughness model is straightforward. By discretizing the roughened surface with triangular sub-elements, we adapt the IGOM to give full consideration of shadow effects, multiple reflections/refractions at the surface, and possible reentrance of the scattered beams. We measure the degree of roughness of a surface by the variance (σ 2 ) of surface slopes occurring on the surfaces. For moderately roughened surfaces (σ 2 ≤0.1) in the large particle regime, the scattering properties given by the TF and IGOM agree well, but differences in results obtained with the two methods become noticeable as the surface becomes increasingly roughened. Having a definite, albeit idealized, roughness model we are able to use the combination of the PSTD and IGOM to examine how a fixed degree of surface roughness affects the scattering properties of a particle as the size parameter of the particle changes. We find that for moderately rough surfaces in our model, as particle size parameter increases beyond about 20 the influence of surface

  15. The effect of using waste newspaper in surface layers on physical and mechanical properties of three-layer particleboard

    Directory of Open Access Journals (Sweden)

    vahid vaziri

    2017-02-01

    Full Text Available In this study, physical and mechanical properties of particleboard made from recycled newspaper in the surface layers were investigated. Coarse and fine wood chips and recycled newspaper with dimension of 0.5 × 4 cm2 were used. The variable in this research were the ratio of recycled newspaper to wood chips (at five levels; 0:100, 15:85, 30:70, 45:55, 60:40. Urea formaldehyde resin used at 10% content on dry weight basis of the wood particles and newspaper and ammonium chloride was used as a catalyst to 2% of the dry weight of adhesive. Physical and mechanical properties of panels measured according to EN Standard. The results showed that panels containing recycled newspapers at the level of 45% had the highest bending strength and modulus of elasticity. Internal bonding and screw holding strength decreased with increasing of recycled newspaper and control sample had the highest strength. Water absorption and thickness swelling increased with increasing of recycled newspaper portion. On the basis of results of this study can be concluded that particleboard containing recycled newspapers in the surface layers up to the level of 30% can be used for general purpose boards and interior fitments (including furniture for use in dry conditions.

  16. Effect of PECVD SiNx/SiOy Nx –Si interface property on surface passivation of silicon wafer

    International Nuclear Information System (INIS)

    Jia Xiao-Jie; Zhou Chun-Lan; Zhou Su; Wang Wen-Jing; Zhu Jun-Jie

    2016-01-01

    It is studied in this paper that the electrical characteristics of the interface between SiO y N x /SiN x stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiO y N x layer on interface parameters, such as interface state density Di t and fixed charge Q f , and the surface passivation quality of silicon are observed. Capacitance–voltage measurements reveal that inserting a thin SiO y N x layer between the SiN x and the silicon wafer can suppress Q f in the film and D it at the interface. The positive Q f and D it and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiO y N x film increasing. Prepared by deposition at a low temperature and a low ratio of N 2 O/SiH 4 flow rate, the SiO y N x /SiN x stacks result in a low effective surface recombination velocity (S eff ) of 6 cm/s on a p-type 1 Ω·cm–5 Ω·cm FZ silicon wafer. The positive relationship between S eff and D it suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it. (paper)

  17. Surface active monomers synthesis, properties, and application

    CERN Document Server

    Borzenkov, Mykola

    2014-01-01

    This brief includes information on the background?of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers? and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.

  18. Effect of temperature on the acid-base properties of the alumina surface: microcalorimetry and acid-base titration experiments.

    Science.gov (United States)

    Morel, Jean-Pierre; Marmier, Nicolas; Hurel, Charlotte; Morel-Desrosiers, Nicole

    2006-06-15

    Sorption reactions on natural or synthetic materials that can attenuate the migration of pollutants in the geosphere could be affected by temperature variations. Nevertheless, most of the theoretical models describing sorption reactions are at 25 degrees C. To check these models at different temperatures, experimental data such as the enthalpies of sorption are thus required. Highly sensitive microcalorimeters can now be used to determine the heat effects accompanying the sorption of radionuclides on oxide-water interfaces, but enthalpies of sorption cannot be extracted from microcalorimetric data without a clear knowledge of the thermodynamics of protonation and deprotonation of the oxide surface. However, the values reported in the literature show large discrepancies and one must conclude that, amazingly, this fundamental problem of proton binding is not yet resolved. We have thus undertaken to measure by titration microcalorimetry the heat effects accompanying proton exchange at the alumina-water interface at 25 degrees C. Based on (i) the surface sites speciation provided by a surface complexation model (built from acid-base titrations at 25 degrees C) and (ii) results of the microcalorimetric experiments, calculations have been made to extract the enthalpic variations associated respectively to first and second deprotonation of the alumina surface. Values obtained are deltaH1 = 80+/-10 kJ mol(-1) and deltaH2 = 5+/-3 kJ mol(-1). In a second step, these enthalpy values were used to calculate the alumina surface acidity constants at 50 degrees C via the van't Hoff equation. Then a theoretical titration curve at 50 degrees C was calculated and compared to the experimental alumina surface titration curve. Good agreement between the predicted acid-base titration curve and the experimental one was observed.

  19. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    The surface composition and surface properties of water hyacinth (Eichhornia crassipes) root biomass were studied before and after extraction with dilute nitric acid and toluene/ethanol (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, thermogravimetric analysis, x-ray diffraction, ...

  20. Effects of cavity surface temperature on mechanical properties of specimens with and without a weld line in rapid heat cycle molding

    International Nuclear Information System (INIS)

    Wang, Guilong; Zhao, Guoqun; Wang, Xiaoxin

    2013-01-01

    Highlights: ► Higher cavity surface temperature reduces tensile strength of non-weldline part. ► Higher cavity surface temperature increases weldline tensile strength for PS and PP. ► Higher cavity surface temperature reduces weldline tensile strength for ABS, ABS/PMMA, ABS/PMMA/nano-C a CO 3 and FRPP. ► Tensile strength is reduced more by the weldline than impact strength. ► FRPP has the lowest weld line factor than other plastics without reinforced fibers. - Abstract: Rapid heat cycle molding (RHCM) is a recently developed injection molding technology to enhance surface esthetic of the parts. By rapid heating and cooling of mold cavity surfaces in molding process, it can greatly alleviate or even eliminate the surface defects such as flow mark, weld line, glass fiber rich surface, silver mark, jetting mark, and swirl mark, and also improve gloss finish and dimensional accuracy without prolonging the molding cycle. Besides surface esthetic, mechanical property is also a very import issue for the molded plastic part. The aim of this study is focusing on the effects of the cavity surface temperature just before filling, T cs , in RHCM on the mechanical strength of the specimen with and without weld line. Six kinds of typical plastics including polystyrene (PS), polypropylene (PP), acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene styrene/polymethylmethacrylate (ABS/PMMA), ABS/PMMA/nano-C a CO 3 and glass fiber reinforced polypropylene (FRPP) are used in experiments. The specimens with and without a weld line are produced with the different T cs on the developed electric-heating RHCM system. Tensile tests and notched Izod impact tests are conducted to characterize the mechanical strength of the specimens molded with different cavity surface temperatures. Simulations, differential scanning calorimetry (DSC), scanning electron microscope (SEM) and optical microscope are implemented to explain the impact mechanism of T cs on mechanical properties

  1. The unusual properties of beryllium surfaces

    International Nuclear Information System (INIS)

    Stumpf, R.; Hannon, J.B.

    1994-01-01

    Be is a ''marginal metal.'' The stable phase, hcp-Be, has a low Fermi-level density of states and very anisotropic structural and elastic properties, similar to a semiconductor's. At the Be(0001) surface, surface states drastically increase the Fermi-level density of states. The different nature of bonding in bulk-Be and at the Be(0001) surface explains the large outward relaxation. The presence of surface states causes large surface core-level shifts by inducing a higher electrostatic potential in the surface layers and by improving the screening at the surface. The authors experimental and theoretical investigations of atomic vibrations at the Be(0001) surface demonstrate clearly that Be screening of atomic motion by the surface states makes the surface phonon dispersion fundamentally different from that of the bulk. Properties of Be(0001) are so different from those of the bulk that the surface can be considered a new ''phase'' of beryllium with unique electronic and structural characteristics. For comparison they also study Be(11 bar 20), a very open surface without important surface states. Be(11 bar 20) is the only clean s-p metal surface known to reconstruct (1 x 3 missing row reconstruction)

  2. Effect of surface treatments on the flexural properties and adhesion of glass fiber-reinforced composite post to self-adhesive luting agent and radicular dentin.

    Science.gov (United States)

    Elnaghy, Amr M; Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of different surface treatments on the flexural properties and adhesion of glass fiber post to self-adhesive luting agent and radicular dentin. Seventy-five single-rooted human teeth were prepared to receive a glass fiber post (Reblida). The posts were divided into five groups according to the surface treatment: Gr C (control; no treatment), Gr S (silanization for 60 s), Gr AP (airborne-particle abrasion), Gr HF (etching with 9 % hydrofluoric acid for 1 min), and Gr M10 (etching with CH2Cl2 for 10 min). Dual-cure self-adhesive luting agent (Rely X Unicem) was applied to each group for testing the adhesion using micropush-out test. Failure types were examined with stereomicroscope and surface morphology of the posts was characterized using a scanning electron microscopy (SEM). Flexural properties of posts were assessed using a three-point bending test. Data were analyzed using ANOVA and Tukey's HSD test. Statistical significance was set at the 0.05 probability level. Groups treated with M10 showed significantly higher bond strength than those obtained with other surface treatments (P C > S > AP > HF. Most failure modes were adhesive type of failures between dentin and luting agent (48.2%). SEM analysis revealed that the fiber post surfaces were modified after surface treatments. The surface treatments did not compromise the flexural properties of fiber posts. Application of M10 to the fiber post surfaces enhanced the adhesion to self-adhesive luting agent and radicular dentin.

  3. The Effect of Irradiation of Fe and Ar Ion on the Surface Morphology of Diamond Thin Film Related to the Magnetoresistance Property

    Directory of Open Access Journals (Sweden)

    Salim Mustofa

    2016-08-01

    Full Text Available The irradiation of Fe and Ar ion was applied on the surface of diamond/Si thin film to know its effect on the morphology of thin film.The magnetoresistance property was also studied. Ion irradiation treatment using Fe ion followed by argon ion at the energy of 70 keV and a dose of 1 x 1015 ion/cm2 have been conducted on the surface of two types of thin film, diamond/Si (111 and diamond/Si(100. Both thin films were made by using a CVD method, and the thickness of the thin film is 1000-nm. From simulations using the software called Stopping and Range of Ions in Matter (SRIM, it is known that Fe and Argon ion penetration into the surface of the thin film are respectively 512 and 603 Angstroms. After that the thin film sample was irradiated with ion Fe and Ar, and the property behavior of the morphological change of thin film were studied through Scanning Electron Microscopy (SEM and Atomic Force Microscopy (AFM. The grain size range of thin filmon diamond films / Si (100 was reduced from 115-322 nm to 147-169 nm, suggesting the effect of irradiation on the surface morphology. The magnetoresistance property is approximately 0.15% at room temperature and magnetic field external H = 0.8 Tesla.

  4. Effect of micro-arc oxidation surface modification on the properties of the NiTi shape memory alloy.

    Science.gov (United States)

    Xu, J L; Zhong, Z C; Yu, D Z; Liu, F; Luo, J M

    2012-12-01

    In this paper, the effects of micro-arc oxidation (MAO) surface modification (alumina coatings) on the phase transformation behavior, shape memory characteristics, in vitro haemocopatibility and cytocompatibility of the biomedical NiTi alloy were investigated respectively by differential scanning calorimetry, bending test, hemolysis ratio test, dynamic blood clotting test, platelet adhesion test and cytotoxicity testing by human osteoblasts (Hobs). The results showed that there were no obvious changes of the phase transformation temperatures and shape memory characteristics of the NiTi alloy after the MAO surface modification and the coating could withstand the thermal shock and volume change caused by martensite-austenite phase transformation. Compared to the uncoated NiTi alloys, the MAO surface modification could effectively improve the haemocopatibility of the coated NiTi alloys by the reduced hemolysis ratio, the prolonged dynamic clotting time and the decreased number of platelet adhesion; and the rough and porous alumina coatings could obviously promote the adherence, spread and proliferation of the Hobs with the significant increase of proliferation number of Hobs adhered on the surface of the coated NiTi alloys (P < 0.05).

  5. The effect of simulated inflammatory conditions on the surface properties of titanium and stainless steel and their importance as biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca-García, Abril [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México, México (Mexico); Pérez-Alvarez, J. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México (Mexico); Barrera, C.C. [Posgrado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México, México (Mexico); Medina, J.C. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México, México (Mexico); Almaguer-Flores, A. [Facultad de Odontología, Universidad Nacional Autónoma de México, México (Mexico); Sánchez, R. Basurto [Instituto Nacional de Investigaciones Nucleares, México (Mexico); and others

    2016-09-01

    observed on the SS. The cpTi surface suffered from a dissolution/oxidation process that allows its integration with the surrounding media, while the SS remained completely passive and this different response might be related to their distinguished clinical outcome. - Highlights: • Comparison of the surface properties of titanium and stainless steel was done. • Titanium was more affected in the inflammatory conditions than stainless steel. • The H{sub 2}O{sub 2} induced the growth of the oxide layer in both metals. • The polar component had an opposite change among both metals. • The immersion in H{sub 2}O{sub 2} induced dissolution–oxidation of Ti.

  6. Effects of 45S5 bioglass on surface properties of dental enamel subjected to 35% hydrogen peroxide

    OpenAIRE

    Deng, Meng; Wen, Hai-Lin; Dong, Xiao-Li; Li, Feng; Xu, Xin; Li, Hong; Li, Ji-Yao; Zhou, Xue-Dong

    2013-01-01

    Tooth bleaching agents may weaken the tooth structure. Therefore, it is important to minimize any risks of tooth hard tissue damage caused by bleaching agents. The aim of this study was to evaluate the effects of applying 45S5 bioglass (BG) before, after, and during 35% hydrogen peroxide (HP) bleaching on whitening efficacy, physicochemical properties and microstructures of bovine enamel. Seventy-two bovine enamel blocks were prepared and randomly divided into six groups: distilled deionized ...

  7. Effects of pore size, implantation time and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants

    OpenAIRE

    Farrell, Brad J.; Prilutsky, Boris I.; Ritter, Jana M.; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2013-01-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40–100 microns and Large, 100–160 microns), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to 7 groups. Implant extrusion rate was measured w...

  8. Metrology and properties of engineering surfaces

    CERN Document Server

    Greenwood, J; Chetwynd, D

    2001-01-01

    Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement. The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a w...

  9. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    Energy Technology Data Exchange (ETDEWEB)

    Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my; Abdullah, Hasan Zuhudi, E-mail: hasan@uthm.edu.my; Idris, Maizlinda Izwana, E-mail: izwana@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.

  10. Comparative Evaluation of Effect of Water Absorption on the Surface Properties of Heat Cure Acrylic: An in vitro Study

    Science.gov (United States)

    Chandu, G S; Asnani, Pooja; Gupta, Siddarth; Faisal Khan, Mohd.

    2015-01-01

    Background: Use of alkaline peroxide denture cleanser with different temperature of water could cause a change in surface hardness of the acrylic denture and also has a bleaching effect. The purpose of the study was to determine the effect of increased water content during thermal cycling of hot water-treated acrylic on the surface hardness of acrylic denture base when compared to warm water treated acrylic. And to compare the bleaching effect of alkaline peroxide solution on the acrylic denture base on hot water and warm water treated acrylic. Materials and Methods: Forty samples (10 mm × 10 mm × 2.5 mm) were prepared. After the calculation of the initial hardness 40 samples, each was randomly assigned to two groups. Group A: 20 samples were immersed in 250 ml of warm distilled water at 40°C with alkaline peroxide tablet. Group B: 20 samples were immersed in 250 ml of hot distilled water at 100°C with alkaline peroxide tablet. The surface hardness of each test sample was obtained using the digital hardness testing machine recording the Rockwell hardness number before the beginning of the soaking cycles and after completion of 30 soak cycles and compared. Values were analyzed using paired t-test. Five samples from the Group A and five samples from Group B were put side by side and photographed using a Nikon D 40 digital SLR Camera and the photographs were examined visually to assess the change in color. Results: Acrylic samples immersed in hot water showed a statistically significant decrease of 5.8% in surface hardness. And those immersed in warm water showed a statistically insignificant increase of 0.67% in surface hardness. Samples from the two groups showed clinically insignificant difference in color when compared to each other on examination of the photographs. Conclusion: Thermocycling of the acrylic resin at different water bath temperature at 40°C and 100°C showed significant changes in the surface hardness. PMID:25954074

  11. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400 019 (India); Arunkumar, A.; Ramkumar, M.C. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Ruzybayev, I.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Periayah, Mercy Halleluyah; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-08-30

    Highlights: • Investigated the mechanism of effect of various gaseous plasma treatments on the surface properties of Polypropylene (PP) films. • The improvement in surface energy is basically due to the incorporation of polar functional groups onto the PP films. • The extent of surface modification and hydrophobic recovery depends upon the type of plasma forming gas. • Due to the significant morphological and chemical changes induced by the gaseous plasma treatment, improved the blood compatibility as well as adhesive strength of the PP films. - Abstract: The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O{sub 2}, air and Ar + O{sub 2} for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility

  12. Effects of excipients on the tensile strength, surface properties and free volume of Klucel® free films of pharmaceutical importance

    Science.gov (United States)

    Gottnek, Mihály; Süvegh, Károly; Pintye-Hódi, Klára; Regdon, Géza

    2013-08-01

    The physicochemical properties of polymers planned to be applied as mucoadhesive films were studied. Two types of Klucel® hydroxypropylcellulose (LF and MF) were used as film-forming polymers. Hydroxypropylcellulose was incorporated in 2 w/w% with glycerol and xylitol as excipients and lidocaine base as an active ingredient at 5, 10 or 15 w/w% of the mass of the film-forming polymer. The free volume changes of the films were investigated by positron annihilation lifetime spectroscopy, the mechanical properties of the samples were measured with a tensile strength tester and contact angles were determined to assess the surface properties of the films. It was found that the Klucel® MF films had better physicochemical properties than those of the LF films. Klucel® MF as a film-forming polymer with lidocaine base and both excipients at 5 w/w% exhibited physicochemical properties and good workability. The excipients proved to exert strong effects on the physicochemical properties of the tested systems and it is very important to study them intensively in preformulation studies in the pharmaceutical technology in order to utilise their benefits and to avoid any disadvantageous effects.

  13. Surface and finite size effects impact on the phase diagrams, polar, and dielectric properties of (Sr,Bi)Ta2O9 ferroelectric nanoparticles

    International Nuclear Information System (INIS)

    Eliseev, E. A.; Fomichov, Y. M.; Glinchuk, M. D.; Semchenko, A. V.; Sidsky, V. V.; Kolos, V. V.; Pleskachevsky, Yu. M.; Silibin, M. V.; Morozovsky, N. V.; Morozovska, A. N.

    2016-01-01

    In the framework of the thermodynamic approach Landau-Ginzburg-Devonshire (LGD) combined with the equations of electrostatics, we investigated the effect of polarization surface screening on finite size effects of the phase diagrams, polar, and dielectric properties of ferroelectric nanoparticles of different shapes. We obtained and analyzed the analytical results for the dependences of the ferroelectric phase transition temperature, critical size, spontaneous polarization, and thermodynamic coercive field on the shape and size of the nanoparticles. The pronounced size effect of these characteristics on the scaling parameter, the ratio of the particle characteristic size to the length of the surface screening, was revealed. Also our modeling predicts a significant impact of the flexo-chemical effect (that is a joint action of flexoelectric effect and chemical pressure) on the temperature of phase transition, polar, and dielectric properties of nanoparticles when their chemical composition deviates from the stoichiometric one. We showed on the example of the stoichiometric nanosized SrBi 2 Ta 2 O 9 particles that except the vicinity of the critical size, where the system splitting into domains has an important role, results of analytical calculation of the spontaneous polarization have a little difference from the numerical ones. We revealed a strong impact of the flexo-chemical effect on the phase transition temperature, polar, and dielectric properties of Sr y Bi 2+x Ta 2 O 9 nanoparticles when the ratio Sr/Bi deviates from the stoichiometric value of 0.5 within the range from 0.35 to 0.65. From the analysis of experimental data, we derived the parameters of the theory, namely, the coefficients of expansion of the LGD functional, the contribution of flexo-chemical effect, and the length of the surface screening.

  14. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering.

    Science.gov (United States)

    El-Fiqi, Ahmed; Lee, Jae Ho; Lee, Eun-Jung; Kim, Hae-Won

    2013-12-01

    Collagen (Col) hydrogels have poor physicochemical and mechanical properties and are susceptible to substantial shrinkage during cell culture, which limits their potential applications in hard tissue engineering. Here, we developed novel nanocomposite hydrogels made of collagen and mesoporous bioactive glass nanoparticles (mBGns) with surface amination, and addressed the effects of mBGn addition (Col:mBG = 2:1, 1:1 and 1:2) and its surface amination on the physicochemical and mechanical properties of the hydrogels. The amination of mBGn was shown to enable chemical bonding with collagen molecules. As a result, the nanocomposite hydrogels exhibited a significantly improved physicochemical and mechanical stability. The hydrolytic and enzymatic degradation of the Col-mBGn hydrogels were slowed down due to the incorporation of mBGn and its surface amination. The mechanical properties of the hydrogels, specifically the resistance to loading as well as the stiffness, significantly increased with the addition of mBGn and its aminated form, as assessed by a dynamic mechanical analysis. Mesenchymal stem cells cultivated within the Col-mBGn hydrogels were highly viable, with enhanced cytoskeletal extensions, due to the addition of surface aminated mBGn. While the Col hydrogel showed extensive shrinkage (down to ∼20% of initial size) during a few days of culture, the shrinkage of the mBGn-added hydrogel was substantially reduced, and the aminated mBGn-added hydrogel had no observable shrinkage over 21 days. Results demonstrated the effective roles of aminated mBGn in significantly improving the physicochemical and mechanical properties of Col hydrogel, which are ultimately favorable for applications in stem cell culture for bone tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Effects on cytotoxicity and antibacterial properties of the incorporations of silver nanoparticles into the surface coating of dental alloys.

    Science.gov (United States)

    Shen, Xiao-Ting; Zhang, Yan-Zhen; Xiao, Fang; Zhu, Jing; Zheng, Xiao-Dong

    2017-07-01

    The aim of this study was to research the changes in cytotoxicity and antibacterial properties after silver nanoparticles (AgNPs) were incorporated into the surface coating of dental alloys. AgNPs were attached to cobalt chromium alloys and pure titanium using a hydrothermal method, according to the reaction: AgNO 3 +NaBH 4 → Ag+1/2H 2 +1/2B 2 H 6 +NaNO 3 . A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity of the alloys when in contact with osteogenic precursor cells (MC3T3-E1) from mice and mesenchymal stem cells (BMSC) from rats. The antibacterial properties of dental alloys incorporating three different concentrations (10, 4, and 2 μmol/L) of AgNPs were tested on Staphylococcus aureus (SA) and Streptococcus mutans (MS). High cytotoxicity values were observed for all dental alloys that contained 0% of AgNPs (the control groups). The incorporation of AgNPs reduced cytotoxicity values. No significant difference was observed for antibacterial performance when comparing dental alloys containing AgNPs to the respective control groups. The results demonstrated that the cobalt chromium alloys and pure titanium all had cytotoxicity to MC3T3-E1 and BMSC and that the incorporation of AgNPs could reduce this cytotoxicity. The concentrations of AgNPs adopted in this study were found to have no antibacterial action against SA or MS.

  16. Increase in the Hydrophilicity and Lewis Acid-Base Properties of Solid Surfaces Achieved by Electric Gliding Discharge in Humid Air: Effects on Bacterial Adherence

    International Nuclear Information System (INIS)

    Kamgang, J. O.; Brisset, J.-L.; Naitali, M.; Herry, J.-M.; Bellon-Fontaine, M.-N.; Briandet, R.

    2009-01-01

    This study addressed the effects of treatment with gliding discharge plasma on the surface properties of solid materials, as well as the consequences concerning adherence of a model bacterium. As evaluated by contact angles with selected liquids, plasma treatment caused an increase in surface hydrophilicity and in the Lewis acid-base components of the surface energy of all materials tested. These modifications were more marked for low density polyethylene and stainless steel than for polytetrafluoroethylene. After treatment, the hydrophilicity of the materials remained relatively stable for at least 20 days. Moreover, analysis of the topography of the materials by atomic force microscopy revealed that the roughness of both polymers was reduced by glidarc plasma treatment. As a result of all these modifications, solid substrates were activated towards micro-organisms and the adherence of S. epidermidis, a negatively charged Lewis-base and mildly hydrophilic strain selected as the model, was increased in almost all the cases tested. (plasma technology)

  17. Effect of surface modification of fly ash on the mechanical, thermal, electrical and morphological properties of polyetheretherketone composites

    International Nuclear Information System (INIS)

    Parvaiz, M. Rahail; Mohanty, Smita; Nayak, Sanjay K.; Mahanwar, P.A.

    2011-01-01

    Research highlights: → Preparation of high performance poly (ether ether ketone) (PEEK)/fly ash (FA) composites. → Characterization studies like DMTA, MDSC, FTIR and SEM have been carried out. → Addition of modified FA, decrease T c by 58 deg. C, due to the hindrance in PEEK molecular mobility during the cooling crystallization process. → Modified fly ash filled PEEK composites exhibit higher tensile strength and modulus than the unmodified ones. - Abstract: Poly (ether ether ketone) (PEEK)/fly ash (FA) composites were prepared using melt blending technique. To improve the interfacial interaction of fly ash with the PEEK matrix, fly ash was chemically modified with calcium hydroxide, at different concentration. Various characterization studies like dynamic mechanical thermal analysis (DMTA), modulated differential scanning calorimetry (MDSC) and scanning electron microscopy (SEM) have been carried out to evaluate the storage modulus, tan δ, crystallinity, and morphology in the composites. SEM micrographs showed more uniform dispersion and interaction in the modified composites than unmodified counterpart. Surface modified fly ash improved the interfacial adhesion between fly ash and PEEK which is confirmed also through improved mechanical strength. The dynamic modulus of PEEK composites exhibited over 133% increment at 100-250 deg. C, indicating improvement of elevated temperature mechanical properties. The modified fly ash reinforcements also showed improvement in glass-transition and crystallization temperature.

  18. Evaluating the effect of processing conditions and organoclay content on the properties of styrene-butadiene rubber/organoclay nanocomposites by response surface methodology

    Directory of Open Access Journals (Sweden)

    2010-02-01

    Full Text Available In this work, basic mathematical models and response surface graphs have been used to illustrate the relationship between mixing parameters in internal mixer and properties of the SBR (styrene butadiene rubber/organoclay composites. Using a Box-Behnken statistical design experiment methodology, the effects of mixing temperature (80–140°C, mixing time (4–12 min and nano filler amount (3–9 phr in SBR nanocomposites on the properties (tensile properties, scorch time and Mooney viscosity were evaluated. It was found that the mixing parameters (time and temperature have the predominant role in properties and morphology of nanocomposite. The R2 values (the R2 values indicate the degree of agreement between the experimental results with those predicted by model of all responses were above 0.85. Increasing temperature and mixing time facilitated a better organoclay dispersion which resulted in a better tensile property. With increase in nanoclay amount in composite the scorch time and Mooney viscosity decreased. The morphology of nanocomposite was studied by XRD (X-ray diffraction and TEM (Transmission electron microscope. Intercalation and exfoliation of the nanoclay were observed for samples with higher temperature and longer mixing time. Due to thermal degradation of the rubber matrix at 140°C, tensile properties of the nanocomposite were decreased.

  19. Effect of 100 MeV Ag{sup +7} ion irradiation on the bulk and surface magnetic properties of Co–Fe–Si thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hysen, T., E-mail: hysenthomas@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Department of Physics, Christian College, Chengannur, Kerala 689 122 (India); Geetha, P. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Al-Harthi, Salim; Al-Omari, I.A. [Department of Physics, College of Science, Sultan Qaboos University, Al Khod 123 (Oman); Lisha, R. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639 798 (Singapore); Sakthikumar, D. [Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe (Japan); Avasthi, D.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Anantharaman, M.R., E-mail: mra@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India)

    2014-12-15

    Thin films of Co–Fe–Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag{sup +7} ions at fluences of 1×10{sup 11}, 1×10{sup 12} and 1×10{sup 13} ions/cm{sup 2}. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag{sup 7+} ions modifies the surface morphology. Irradiating with ions at fluences of 1×10{sup 11} ions/cm{sup 2} smoothens the mesoscopic hill-like structures, and then, at 1×10{sup 12} ions/cm{sup 2} new surface structures are created. When the fluence is further increased to 1×10{sup 13} ions/cm{sup 2} an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×10{sup 11} ions/cm{sup 2}, 1×10{sup 12} ions/cm{sup 2} and 1×10{sup 13} ions/cm{sup 2} the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation. - Highlights: • We have irradiated thermally evaporated Co–Fe–Si thin films on glass substrate with 100 MeV Ag{sup +7} ions using the 15 UD Pelletron Accelerator at IUAC, New Delhi, India. • Surface morphology and magnetic characteristics of the films can be altered with ion irradiation. • It was observed that the variation in surface magnetic properties correlates well with the changes in surface morphology, further reiterating the

  20. Excimer laser surface modification: Process and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hirvonen, J.P. [Technical Research Institute, Espoo (Finland). Metallurgy Lab.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  1. Effects of synthesis conditions on structure and surface properties of SmMn{sub 2}O{sub 5} mullite-type oxide

    Energy Technology Data Exchange (ETDEWEB)

    Thampy, Sampreetha; Ibarra, Venessa; Lee, Yun-Ju [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); McCool, Geoffrey [Nanostellar Inc., 3696 Haven Avenue, Redwood City, CA 94063 (United States); Cho, Kyeongjae [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Hsu, Julia W.P., E-mail: jwhsu@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States)

    2016-11-01

    Highlights: • Investigate the effects of calcination temperature and precipitation pH on crystallinity, phase purity, particle size, surface composition, and NO adsorption capacity of SmMn{sub 2}O{sub 5}. • High calcination temperature increases mullite phase purity but decreases specific surface area (SSA). • Mullite phase purity is independent of pH while SSA monotonically increases. • SSA and surface Mn/Sm ratio determine NO uptake. - Abstract: A mixed-phase compound that contains SmMn{sub 2}O{sub 5} mullite-type oxides has been reported to display excellent catalytic activity for nitric oxide (NO) oxidation. Here we investigate the effects of calcination temperature and precipitation pH on structural, physical, chemical, and surface properties of SmMn{sub 2}O{sub 5}. As the calcination temperature increases from 750 °C to 1000 °C, mullite phase purity increases from 74% to 100%, while specific surface area (SSA) decreases from 23.6 m{sup 2}/g to 5.1 m{sup 2}/g with particle size increases correspondingly. Mullite phase purity (87%) is independent of pH between 8.5–10.4, whereas SSA monotonically increases from 12.5 m{sup 2}/g at pH 8.1 to 27.4 m{sup 2}/g at pH 13. X-ray photoelectron spectroscopy (XPS) studies reveal that the surface Mn/Sm ratio is similar to the bulk value and is unaffected by calcination temperature and pH values up to 10.4, whereas sample precipitated at pH 13 is surface-rich in Sm. NO chemisorption studies show that the SSA and surface Mn/Sm ratio determine NO uptake by SmMn{sub 2}O{sub 5} mullite oxides.

  2. Surface property effects on dropwise condensation heat transfer from flowing air-steam mixtures to promote drainage

    International Nuclear Information System (INIS)

    Grooten, M.H.M.; Van der Geld, C.W.M.

    2012-01-01

    In this study, the effect of a partially structured Ti-coated plate surface on droplet drainage and heat transfer in dropwise condensation in a compact plate heat exchanger is investigated. In the presence of high concentrations of inert gases, heat transfer is governed by vapor diffusion and condensate drainage is of major importance. A structured coating of the condenser plates is applied to create two coexisting dropwise condensation patterns. The structured Ti-coating constrains drainage and introduces directed surface energy 'gradients', 1-D binary patterns. The condenser with the partially structured coating is compared with two equally sized condensers: a full PVDF and a fully Ti-coated PVDF condenser. It is found that drop drainage is promoted by oriented Ti-coated tracks with a width of approximately the diameter of the maximum drop size to such a degree that the heat transfer performance is practically the same as that of a fully Ti-coated exchanger. Design recommendations are given. (authors)

  3. Effects of ion-implanted C on the microstructure and surface mechanical properties of Fe alloys implanted with Ti

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Knapp, J.A.; Pope, L.E.; Yost, F.G.; Picraux, S.T.

    1984-01-01

    The microstructural and tribological effects of ion implanting C into Ti-implanted, Fe-based alloys are examined and compared to the influence of C introduced by vacuum carburization during Ti implantation alone. The amorphous surface alloy formed by Ti implantation of pure Fe increases in thickness when additional C is implanted at depths containing Ti but beyond the range of carburization. Pin-on-disc tests of 15-5 PH stainless steel show that implantation of both Ti and C reduces friction significantly under conditions where no reduction is obtained by Ti implantation alone; wear depths are also less when C is implanted. All available experimental results can be accounted for by consideration of the thickness and Ti concentration of the amorphous Fe-Ti-C alloy. The thicker amorphous layer on samples implanted with additional C extends tribological benefits to more severe wear regimes

  4. Effects of pore size, implantation time, and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants.

    Science.gov (United States)

    Farrell, Brad J; Prilutsky, Boris I; Ritter, Jana M; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2014-05-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40-100 μm and Large, 100-160 μm), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to seven groups. Implant extrusion rate was measured weekly and skin ingrowth into implants was determined histologically after harvesting implants. It was found that all three types of implants demonstrated skin tissue ingrowth of over 30% (at week 3) and 50% (at weeks 4-6) of total implant porous area under the skin; longer implantation resulted in greater skin ingrowth (p skin integration with the potential for a safe seal. Copyright © 2013 Wiley Periodicals, Inc.

  5. The Effect of surface Treatment of Alumina NanoParticles with a Silane Coupling Agent on the Mechanical Properties of Polymer Nanocomposites

    Science.gov (United States)

    Amirchakhmaghi, S.; Nia, A. Alavi; Azizpour, G.; Bamdadi, H.

    2015-07-01

    Surface-treated and untreated alumina nanoparticles were mixed with a polycarbonate matrix at different weight percentages and the mechanical properties of the nanocomposites produced were determined by subjecting them to quasi-static tension and Charpy impact tests. The results obtained showed that the surface treatment of nanoparticles had improved their mechanical properties.

  6. Effect of substrate surface free energy on the optoelectronic and morphological properties of organolead halide perovskite solar cell materials (Presentation Recording)

    Science.gov (United States)

    Shallcross, R. Clayton; Stanfill, James G.; Armstrong, Neal R.

    2015-08-01

    Here, we show how the surface free energy of the electron-collecting oxide contact has a very pronounced effect on the nucleation free energy of solution-processed organolead halide perovskite thin films, which influences the crystal size/orientation, band-edge energies, conductivity and, ultimately, the performance of solar cell devices. While a great deal of the research community's attention has been focused on the perovskite deposition methodology (e.g., starting precursors, annealing conditions, etc.), we demonstrate how the surface free energy of the oxide contact itself can be modified to control morphology and optoelectronic properties of the resulting hybrid perovskite thin films. The surface free energy of high-quality oxide contacts deposited by chemical vapor deposition (CVD) and atomic layer deposition (ALD) is modified by functionalization with a variety of self-assembled monolayers. We explore a number of deposition methodologies (e.g., a variety of single step and sequential step approaches) and their effect on the morphological and electronic properties of the resulting perovskite thin films deposited on these modified oxide contacts. Standard atomic force microscopy (AFM) and its conductive analog (cAFM) show how the oxide surface free energy ultimately affects the nanoscale morphology and charge transport characteristics of these semiconductor films. Photoelectron spectroscopy is used to elucidate the chemical composition (e.g., X-ray photoelectron spectroscopy - XPS), band edge energies (e.g., ultraviolet photoelectron spectroscopy - UPS), and the presence of gap states above the valence band (high sensitivity UPS measurements near the Fermi energy) of the hybrid perovskite materials as a function of the oxide surface free energy.

  7. Surface Properties of TNOs: Preliminary Statistical Analysis

    Science.gov (United States)

    Antonieta Barucci, Maria; Fornasier, S.; Alvarez-Cantal, A.; de Bergh, C.; Merlin, F.; DeMeo, F.; Dumas, C.

    2009-09-01

    An overview of the surface properties based on the last results obtained during the Large Program performed at ESO-VLT (2007-2008) will be presented. Simultaneous high quality visible and near-infrared spectroscopy and photometry have been carried out on 40 objects with various dynamical properties, using FORS1 (V), ISAAC (J) and SINFONI (H+K bands) mounted respectively at UT2, UT1 and UT4 VLT-ESO telescopes (Cerro Paranal, Chile). For spectroscopy we computed the spectral slope for each object and searched for possible rotational inhomogeneities. A few objects show features in their visible spectra such as Eris, whose spectral bands are displaced with respect to pure methane-ice. We identify new faint absorption features on 10199 Chariklo and 42355 Typhon, possibly due to the presence of aqueous altered materials. The H+K band spectroscopy was performed with the new instrument SINFONI which is a 3D integral field spectrometer. While some objects show no diagnostic spectral bands, others reveal surface deposits of ices of H2O, CH3OH, CH4, and N2. To investigate the surface properties of these bodies, a radiative transfer model has been applied to interpret the entire 0.4-2.4 micron spectral region. The diversity of the spectra suggests that these objects represent a substantial range of bulk compositions. These different surface compositions can be diagnostic of original compositional diversity, interior source and/or different evolution with different physical processes affecting the surfaces. A statistical analysis is in progress to investigate the correlation of the TNOs’ surface properties with size and dynamical properties.

  8. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.

    Science.gov (United States)

    Llamas, Sara; Mendoza, Alma J; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G

    2013-06-15

    Lithium cations are known to form complexes with the oxygen atoms of poly(oxyethylene) chains. The effect of Li(+) on the surface properties of three block-copolymers containing poly(oxyethylene) (PEO) have been studied. Two types of copolymers have been studied, a water soluble one of the pluronic family, PEO-b-PPO-b-PEO, PPO being poly(propyleneoxyde), and two water insoluble ones: PEO-b-PS and PEO-b-PS-b-PEO, PS being polystyrene. In the case of the pluronic the adsorption kinetics, the equilibrium surface tension isotherm and the aqueous/air surface rheology have been measured, while for the two insoluble copolymers only the surface pressure and the surface rheology have been studied. In all the cases two different Li(+) concentrations have been used. As in the absence of lithium ions, the adsorption kinetics of pluronic solutions shows two processes, and becomes faster as [Li(+)] increases. The kinetics is not diffusion controlled. For a given pluronic concentration the equilibrium surface pressure increases with [Li(+)], and the isotherms show two surface phase transitions, though less marked than for [Li(+)]=0. A similar behavior was found for the equilibrium isotherms of PEO-b-PS and PEO-b-PS-b-PEO. The surface elasticity of these two copolymers was found to increase with [Li(+)] over the whole surface concentration and frequency ranges studied. A smaller effect was found in the case of the pluronic solutions. The results of the pluronic solutions were modeled using a recent theory that takes into account that the molecules can be adsorbed at the surface in two different states. The theory gives a good fit for the adsorption kinetics and a reasonably good prediction of the equilibrium isotherms for low and intermediate concentrations of pluronic. However, the theory is not able to reproduce the isotherm for [Li(+)]=0. Only a semi-quantitative prediction of the surface elasticity is obtained for [pluronic]≤1×10(-3) mM. Copyright © 2013 Elsevier Inc. All

  9. Enhancement of surface properties for coal beneficiation

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  10. Application of Response Surface Methodology to Study the Effects of Brisket Fat, Soy Protein Isolate, and Cornstarch on Nutritional and Textural Properties of Rabbit Sausages.

    Science.gov (United States)

    Wambui, Joseph M; Karuri, Edward G; Wanyoike, Margaret M M

    2017-01-01

    The effects of brisket fat, soy protein isolate, and cornstarch on chemical and textural properties of rabbit sausages were studied using surface response methodology. Sausage samples were prepared using a five-level three-variable Central Composite Rotatable Design with 16 combinations, including two replicates of the center point, carried out in random order. The level of brisket fat (BF), soy protein isolate (SPI), and cornstarch (CS) in the sausage formulation ranged within 8.3-16.7%, 0.7-2.3%, and 1.3-4.7%, respectively. Increasing BF decreased moisture and ash contents but increased protein and fat contents of the sausages ( p sausages ( p sausages than CS.

  11. Effect of temperature and composition on the surface tension and surface properties of binary mixtures containing DMSO and short chain alcohols

    International Nuclear Information System (INIS)

    Bagheri, Ahmad; Fazli, Mostafa; Bakhshaei, Malihe

    2016-01-01

    Highlights: • Surface tension of DMSO + alcohol (methanol, ethanol and isopropanol) at various temperatures was measured. • The surface tension data of binary mixtures were correlated with four equations. • Intermolecular interaction of DMSO with alcohol was discussed. • The surface mole fraction of alcohol increase with increasing the length of alcohol chain. - Abstract: Surface tension of binary mixtures of methanol, ethanol and isopropanol with DMSO (dimethyl sulfoxide) was measured over the whole range of composition at atmospheric pressure of 82.5 kPa within the temperatures between (298.15 and 328.15) K. The experimental measurements were used to calculate in surface tension deviations (Δσ). The sign of Δσ for all temperatures is negative (except of methanol/DMSO system) because of the factors of hydrogen bonding and dipole–dipole interactions in the DMSO-alcohol systems. Surface tension values of the binary systems were correlated with FLW, MS, RK and LWW models. The mean standard deviation obtained from the comparison of experimental and calculated surface tension values for binary systems with three models (FLW, MS and RK) at various temperatures is less than 0.83. Also, the results of the LWW model were used to account for the interaction energy between alcohols and DMSO in binary mixtures. The temperature dependence of σ (surface tension) at fixed composition of solutions was used to estimate surface enthalpy, H s , and surface entropy, S s . The results obtained show that the values of the thermodynamic parameters for alcohol/DMSO mixtures decrease with increasing alkyl chain length of alcohol. Finally, the results are discussed in terms of surface mole fraction and lyophobicity using the extended Langmuir (EL) isotherm.

  12. Surface elastic properties in silicon nanoparticles

    Science.gov (United States)

    Melis, Claudio; Giordano, Stefano; Colombo, Luciano

    2017-09-01

    The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.

  13. Land management effects on near-surface soil properties of southern U.S. coastal plain kandiudults.

    Science.gov (United States)

    M. Levi; J. Shaw; C. Wood; S. Herman; E. Carter; Y. Feng

    2010-01-01

    A comparative assessment of land management systems and relatively undisturbed ecosystems is useful for evaluating anthropogenic impacts on soil properties (Larson and Pierce, 1994). Such information is useful for the restoration and evaluation of C sequestration potential. Comparison of disturbed with natural ecosystems allows the measurement of soil properties...

  14. Effect of the presence of cationic polyacrylamide on the surface properties of aqueous alumina suspension-stability mechanism

    Science.gov (United States)

    Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa

    2014-11-01

    The effects of solution pH and the content of cationic groups in polyacrylamide (PAM) macromolecules on the stability mechanism of aqueous alumina suspension were investigated. The following experimental techniques were applied: spectrophotometry, potentiometric titration, microelectrophoresis, viscosimetry and turbidimetry. They enable determination of polymer adsorbed amount, surface charge density and zeta potential of solid particles in the presence and absence of PAM, as well as thickness of polymer adsorption layer, size of macromolecules in the solution and stability of the Al2O3-polymer systems, respectively. The obtained results indicate that adsorption of PAM increases with the increasing pH, whereas the thickness of polymeric adsorption layer decreases. Additionally, the greater the number of cationic groups in the PAM chains is, the higher adsorption was found. The polymer presence influences on the alumina suspension stability. At pH 3 and 6 the slight deterioration of stability conditions of solid particle covered with polyacrylamide was observed. At pH 9 the systems containing polymer are unstable, similarly to the suspension without PAM, but the mechanism of their destabilization is different.

  15. Blood compatibility of gas plasma-treated diamond-like carbon surface-Effect of physicochemical properties of DLC surface on blood compatibility

    International Nuclear Information System (INIS)

    Mochizuki, Akira; Ogawa, Tatsuhisa; Okamoto, Keishi; Nakatani, Tatsuyuki; Nitta, Yuki

    2011-01-01

    From the knowledge that zwitterion-type polymers show good blood compatibility, the introduction of both cationic and anionic functional groups onto diamond-like carbon (DLC) surface is expected to improve blood compatibility. Thus, DLC films were treated with oxygen and ammonia gas plasmas. The surfaces were characterized in terms of chemical composition by XPS, contact angle, and zeta potential. XPS analysis showed the introductions of a carboxyl group by oxygen plasma treatment and nitrogen atoms by ammonia plasma treatment. The evaluation of blood compatibility for the DLC surfaces was carried out in terms of platelets and the coagulation system. Excellent improvement of platelet compatibility was observed by the treatment with the gas plasmas, regardless of the plasma species. As for the compatibility with the coagulation system, DLC surfaces with a high concentration of carboxyl groups (COOH) markedly activated the system via the intrinsic pathway. However, the surfaces treated with ammonia plasma did not activate the system even though they had high COOH concentration. Measurement of the zeta potential revealed that the ammonia plasma treatment raised the potential from a negative value to a positive one. Though the introduction of amino groups to the surface was not detected directly, the treatment of ammonia plasma changed the electrical state of the DLC surface having COOH group, causing a difference in blood compatibility among the DLCs obtained by various plasma conditions.

  16. Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs.

    Science.gov (United States)

    Sun, Lanying; Danoux, Charlène B; Wang, Qibao; Pereira, Daniel; Barata, David; Zhang, Jingwei; LaPointe, Vanessa; Truckenmüller, Roman; Bao, Chongyun; Xu, Xin; Habibovic, Pamela

    2016-09-15

    Within the general aim of finding affordable and sustainable regenerative solutions for damaged and diseased tissues and organs, significant efforts have been invested in developing synthetic alternatives to natural bone grafts, such as autografts. Calcium phosphate (CaP) ceramics are among widely used synthetic bone graft substitutes, but their mechanical properties and bone regenerative capacity are still outperformed by their natural counterparts. In order to improve the existing synthetic bone graft substitutes, it is imperative to understand the effects of their individual properties on a biological response, and to find a way to combine the desired properties into new, improved functional biomaterials. To this end, we studied the independent effects of the chemical composition and surface microstructure of a poly(lactic acid)/hydroxyapatite (PLA/HA) composite material on the proliferation and osteogenic differentiation of clinically relevant bone marrow-derived human mesenchymal stromal cells (hMSCs). While the molecular weight of the polymer and presence/absence of the ceramic phase were used as the chemical variables, a soft embossing technique was used to pattern the surfaces of all materials with either pits or pillars with identical microscale dimensions. The results indicated that, while cell morphology was affected by both the presence and availability of HA and by the surface microstructure, the effect of the latter parameter on cell proliferation was negligible. The osteogenic differentiation of hMSCs, and in particular the expression of bone morphogenetic protein 2 (BMP-2) and osteopontin (OP) were significantly enhanced when cells were cultured on the composite based on low-molecular-weight PLA, as compared to the high-molecular-weight PLA-based composite and the two pure polymers. The OP expression on the low-molecular-weight PLA-based composite was further enhanced when the surface was patterned with pits. Taken together, within this experimental

  17. Surface active properties of lipid nanocapsules.

    Directory of Open Access Journals (Sweden)

    Celia R A Mouzouvi

    Full Text Available Lipid nanocapsules (LNCs are biomimetic nanocarriers used for the encapsulation of a broad variety of active ingredients. Similar to surface active compounds, LNCs contain both hydrophilic and hydrophobic parts in their structure. Moreover, the components of LNCs, macrogol 15 hydroxystearate (MHS and lecithin, are known for their surface active properties. Therefore, the aim of this paper was to investigate the capability of the LNCs to decrease surface tension using two techniques: drop tensiometry and the Wilhelmy plate method. LNCs with diameters ranging from 30 to 100 nm were successfully obtained using a phase inversion technique. The LNCs' properties, such as size and zeta potential, depend on the composition. LNCs exhibit a lower limiting surface tension compared to MHS (34.8-35.0 mN/m and 37.7-38.8 mN/m, respectively, as confirmed by both drop tensiometry and the Wilhelmy plate method. LNCs have exhibited a saturated interfacial concentration (SIC that was 10-fold higher than the critical micellar concentration (CMC of MHS or the SIC of binary and ternary mixtures of LNC ingredients. The SIC of the LNC formulations depended on the mass mixing ratio of the MHS/triglycerides but not on the presence of lecithin. The CMC/SIC values measured by the Wilhelmy plate method were higher than those obtained using drop tensiometry because of the longer duration of the tensiometry measurement. In conclusion, the surfactant-like properties of the LNCs offer new possibilities for medical and pharmaceutical applications.

  18. Effect of Relative Humidity on the Tribological Properties of Self-Lubricating H3BO3 Films Formed on the Surface of Steel Suitable for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    E. Hernández-Sanchez

    2015-01-01

    Full Text Available The effect of environmental humidity on the self-lubricating properties of a thin film of boric acid (H3BO3 was evaluated. H3BO4 films were successfully formed on the surface of AISI 316L steel. The study was conducted on AISI 316L steel because of its use in biomedical applications. First, the samples were exposed to boriding to generate a continuous surface layer of iron borides. The samples were then exposed to a short annealing process (SAP at 1023 K for 5 min and cooled to room temperature while controlling the relative humidity (RH. Five different RH conditions were tested. The purpose of SAP was to promote the formation of a surface film of boric acid from the boron atoms present in the iron boride layers. The presence of the boric acid at the surface of the borided layer was confirmed by Raman spectroscopy and X-ray diffraction (XRD. The self-lubricating capability of the films was demonstrated using the pin-on-disk technique. The influence of RH was reflected by the friction coefficient (FC, as the samples cooled with 20% of RH exhibited FC values of 0.16, whereas the samples cooled at 60% RH showed FC values of 0.02.

  19. A Comparative Evaluation of the Effect of Low Cycle Fatigue and Creep-Fatigue Interaction on Surface Morphology and Tensile Properties of 316L(N) Stainless Steel

    Science.gov (United States)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Bhaduri, A. K.; Laha, Kinkar

    2016-04-01

    In the present work, the deformation and damage evolution in 316L(N) stainless steel during low cycle fatigue (LCF) and creep-fatigue interaction (CFI) loadings have been compared by evaluating the residual tensile properties. Towards this, LCF and CFI experiments were carried out at constant strain amplitude of ±0.6 pct, strain rate of 3 × 10-3 s-1 and temperature of 873 K (600 °C). During CFI tests, 30 minutes hold period was introduced at peak tensile strain. Experiments were interrupted up to various levels of fatigue life viz. 5, 10, 30, 50, and 60 pct of the total fatigue life ( N f) under both LCF and CFI conditions. The specimens subjected to interrupted fatigue loadings were subsequently monotonically strained at the same strain rate and temperature up to fracture. Optical and scanning electron microscopy and profilometry were conducted on the untested and tested samples to elucidate the damage evolution during the fatigue cycling under both LCF and CFI conditions. The yield strength (YS) increased sharply with the progress of fatigue damage and attained saturation within 10 pct of N f under LCF condition. On the contrary, under CFI loading condition, the YS continuously increased up to 50 pct of N f, with a sharp increase of YS up to 5 pct of N f followed by a more gradual increase up to 50 pct of N f. The difference in the evolution of remnant tensile properties was correlated with the synergistic effects of the underlying deformation and damage processes such as cyclic hardening/softening, oxidation, and creep. The evolution of tensile properties with prior fatigue damage has been correlated with the change in surface roughness and other surface features estimated by surface replica technique and fractography.

  20. Determining Surface Material Properties Using Satellite Imaging

    Science.gov (United States)

    Gloudeman, C.; Gerace, A. D.

    2017-12-01

    Knowledge of soil moisture content is necessary for drought monitoring, crop irrigation, and water runoff. Remote sensing techniques provide a more efficient alternative to traditional field measurements for determining soil moisture content. Thermal infrared sensors from Landsat, MODIS Aqua & Terra, and AVHRR MetOp A & B satellites were used to find thermal inertia, which is highly correlated with soil moisture. A diurnal cycle is converted from band effective radiance to Land Surface Temperature (LST) using Planck's Law for blackbody radiation and a modified split-window algorithm. The THERM model for finding expected LST is then used to determine the material properties. A second approach was used to calculate apparent thermal inertia and soil moisture content from day/ night pairs of LST. For this method, only the MODIS Aqua LST product was used.To this end, we have observed clear differences in moisture between areas of vegetation and sand and between different crop fields. Our results indicate that matching the observed data with the THERM model could be improved with increased satellite measurements.

  1. The Effect of Compost and the Ripe Fruit Waste of Fig on some Physical Properties of Surface Soil

    Directory of Open Access Journals (Sweden)

    zahra dianat maharluei

    2017-02-01

    Full Text Available Introduction: In arid and semi-arid soils, low organic matter is one of the barriers to achieving optimal performance. The soils with more organic matter have a better structure and are more resistant to erosive factors such as water and wind. Soil organic matter has a particular importance and has significant impact on the stability of soil aggregates, the extension of plant root system, carbon and water cycles and soil resistance to erosion. This substance acts as a cementing agent and plays an important role in soil flocculation and formation of resistant aggregates.Also, the addition of organic matter to the soil increases soil porosity and decreases soil bulk density. Materials and Methods: In this research, the effect of the two types of organic matter (compost and the ripe fruit waste of fig on some soil physical properties was studied. A factorial experiment based on completely randomized design, including the four levels of compost and the ripe fruit waste of fig (0, 1, 2 and 4 by weight % and three soil types (loamy sand, loam and silty clay loam with three replications was carried out. The soil samples were collected from the three territories of Fars Province: loamy sand soil from Shiraz, loamy soil from Maharlu and Silty clay loam soil from Zarghan area. The soil samples were air dried and passed through a 2 mm sieve. The physical properties including the bulk density, particle density, porosity, moisture content and soil crust strength was measured. In this research, the soil texture by hydrometer method, Electrical conductivity of the soil saturated paste extract by electrical conductivity meter, saturated paste pH by pH meter, seedling emergence test, soil crust strength by a pocket penetrometer (HUMBOLDT MFG.CO. bulk density by cylindrical sample and particle density by pycnometer method were measured. The fig fruit treatments were prepared by thoroughly mixing the dried powder of ripe fig fruit passed through a 2 mm sieve (with

  2. Characterizing the statistical properties of protein surfaces

    Science.gov (United States)

    Bak, Ji Hyun; Bitbol, Anne-Florence; Bialek, William

    Proteins and their interactions form the body of the signaling transduction pathway in many living systems. In order to ensure the accuracy as well as the specificity of signaling, it is crucial that proteins recognize their correct interaction partners. How difficult, then, is it for a protein to discriminate its correct interaction partner(s) from the possibly large set of other proteins it may encounter in the cell? An important ingredient of recognition is shape complementarity. The ensemble of protein shapes should be constrained by the need for maintaining functional interactions while avoiding spurious ones. To address this aspect of protein recognition, we consider the ensemble of proteins in terms of the shapes of their surfaces. We take into account the high-resolution structures of E.coli non-DNA-binding cytoplasmic proteins, retrieved from the Protein Data Bank. We aim to characterize the statistical properties of the protein surfaces at two levels: First, we study the intrinsic dimensionality at the level of the ensemble of the surface objects. Second, at the level of the individual surfaces, we determine the scale of shape variation. We further discuss how the dimensionality of the shape space is linked to the statistical properties of individual protein surfaces. Jhb and WB acknowledge support from National Science Foundation Grants PHY-1305525 and PHY-1521553. AFB acknowledges support from the Human Frontier Science Program.

  3. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  4. Effects of content and surface hydrophobic modification of BaTiO3 on the cooling properties of ASA (acrylonitrile-styrene-acrylate copolymer)

    Science.gov (United States)

    Xiang, Bo; Zhang, Jun

    2018-01-01

    For the field of cool material, barium titanate (BaTiO3, BT) is still a new member that needs to be further studied. Herein, the effects of both content and surface hydrophobic modification of BT on the cooling properties of acrylonitrile-styrene-acrylate copolymer (ASA) were detailedly investigated, aiming to fabricate composited cool material. Butyl acrylate (BA) was employed to convert the surface of BT from hydrophilic to hydrophobic. The addition of unmodified BT could significantly improve the solar reflectance of ASA, especially when the addition amount is 3 vol%, the near infrared (NIR) reflectance increased from 22.02 to 72.60%. However, serious agglomeration occurred when the addition amount increased to 5 vol% and therefore led to a relatively smaller increase in solar reflectance and an obvious decline in impact strength. After surface hydrophobic modification, the modified BT (M-BT) presented better dispersibility in ASA matrix, which contributed to the improvement of both solar reflectance and impact strength. In addition, the temperature test provided a more sufficient and intuitive way to evaluate the cooling effect of the composited cool materials, and a significant decrease (over 10 °C) could be achieved in the temperature test when M-BT particles were introduced.

  5. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe{sub 2}O{sub 3}) nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Carlos, E-mail: carlos.lunacd@uanl.edu.mx [Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Cuan-Guerra, Aída D. [Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, San Nicolás de los Garza, Nuevo León 66455 (Mexico); Barriga-Castro, Enrique D. [Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, 25294 Coahuila (Mexico); Núñez, Nuria O. [Instituto de Ciencia de Materiales de Sevilla (ICMS), CSIC-US, Avda. Americo Vespucio n° 49, Isla de la Cartuja, 41092 Sevilla (Spain); Mendoza-Reséndez, Raquel [Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, San Nicolás de los Garza, Nuevo León 66455 (Mexico)

    2016-08-15

    Highlights: • Uniform rhombohedral hematite nanocrystals (RHNCs) have been obtained. • A detailed formation mechanism of these HNCS has been proposed. • Phonon confinement effects were revealed in the RHNCS vibrational bands. • Quantum confinement effects on the optical and electronic properties were found. - Abstract: Morphological, microstructural and vibrational properties of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with a rhombohedral shape and rounded edges, obtained by forced hydrolysis of iron(III) solutions under a fast nucleation, have been investigated in detail as a function of aging time. These studies allowed us to propose a detailed formation mechanism and revealed that these nanocrystals are composed of four {104} side facets, two {110} faces at the edges of the long diagonal of the nanocrystals and two {−441} facets as the top and bottom faces. Also, the presence of nanoscopic pores and fissures was evidenced. The vibrational bands of such nanocrystals were shifted to lower frequencies in comparison with bulk hematite ones as the nanocrystal size was reduced due to phonon confinement effects. Also, the indirect and direct transition band gaps displayed interesting dependences on the aging time arising from quantum confinement and surface effects.

  6. Effect of Surface Pretreatment on Quality and Electrochemical Corrosion Properties of Manganese Phosphate on S355J2 HSLA Steel

    Czech Academy of Sciences Publication Activity Database

    Pastorek, F.; Borko, K.; Fintová, Stanislava; Kajánek, D.; Hadzima, B.

    2016-01-01

    Roč. 6, č. 4 (2016), s. 1-9 ISSN 2079-6412 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : corrosion * steel * sandblasting * manganese phosphate Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.175, year: 2016 http://www.mdpi.com/2079-6412/6/4/46

  7. Effect of additional sample bias in Meshed Plasma Immersion Ion Deposition (MPIID) on microstructural, surface and mechanical properties of Si-DLC films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mingzhong [State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001 (China); School of Materials Science & Engineering, Jiamusi University, Jiamusi 154007 (China); Tian, Xiubo, E-mail: xiubotian@163.com [State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001 (China); Li, Muqin [School of Materials Science & Engineering, Jiamusi University, Jiamusi 154007 (China); Gong, Chunzhi [State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001 (China); Wei, Ronghua [Southwest Research Institute, San Antonio, TX 78238 (United States)

    2016-07-15

    Highlights: • A novel Meshed Plasma Immersion Ion Deposition is proposed. • The deposited Si-DLC films possess denser structures and high deposition rate. • It is attributed to ion bombardment of the deposited films. • The ion energy can be independently controlled by an additional bias (novel set up). - Abstract: Meshed Plasma Immersion Ion Deposition (MPIID) using cage-like hollow cathode discharge is a modified process of conventional PIID, but it allows the deposition of thick diamond-like carbon (DLC) films (up to 50 μm) at a high deposition rate (up to 6.5 μm/h). To further improve the DLC film properties, a new approach to the MPIID process is proposed, in which the energy of ions incident to the sample surface can be independently controlled by an additional voltage applied between the samples and the metal meshed cage. In this study, the meshed cage was biased with a pulsed DC power supply at −1350 V peak voltage for the plasma generation, while the samples inside the cage were biased with a DC voltage from 0 V to −500 V with respect to the cage to study its effect. Si-DLC films were synthesized with a mixture of Ar, C{sub 2}H{sub 2} and tetramethylsilane (TMS). After the depositions, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectrons spectroscopy (XPS), Raman spectroscopy and nanoindentation were used to study the morphology, surface roughness, chemical bonding and structure, and the surface hardness as well as the modulus of elasticity of the Si-DLC films. It was observed that the intense ion bombardment significantly densified the films, reduced the surface roughness, reduced the H and Si contents, and increased the nanohardness (H) and modulus of elasticity (E), whereas the deposition rate decreased slightly. Using the H and E data, high values of H{sup 3}/E{sup 2} and H/E were obtained on the biased films, indicating the potential excellent mechanical and tribological properties of the films. In this

  8. Effects of surface modification of Nd-Fe-B powders using parylene C by CVDP method on the properties of anisotropic bonded Nd–Fe–B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Bin; Sun, Aizhi, E-mail: sunaizhi@126.com; Lu, Zhenwen; Cheng, Chuan; Xu, Chen

    2016-10-15

    This paper presents effects of surface modification of Nd–Fe–B powders using parylene C by means of chemical vapor deposition polymerization (CVDP) on the properties of anisotropic bonded Nd–Fe–B magnets. It can be well verified from SEM images and EDS analysis that the surface of Nd–Fe–B powder is coated with thin parylene C films. The maximum energy product ((BH)max), degree of alignment (DOA), actual density and corrosion resistance of parylene Nd–Fe–B magnets prepared at room temperature are much higher than that of non-parylene Nd–Fe–B magnets. (BH)max, DOA and actual density of parylene Nd–Fe–B magnets (70 kJ/m{sup 3}, 0.342, 5.82 g/cm{sup 3}) prepared at room temperature under 578 MPa are improved by 18.6%, 4.6%, 2.1% and 27.3%, 29.1%, 7.8% compared with non-parylene Nd‐Fe‐B magnets prepared at 140 °C (59 kJ/m{sup 3}, 0327, 5.70 g/cm{sup 3}) and room temperature (55 kJ/m{sup 3}, 0.265, 5.40 g/cm{sup 3}), respectively. Additional, the improvement of actual density and the room temperature process also solve problems such as powders’ sticking wall, non-uniform powder filling, non-uniform magnetic properties, seriously mould damage, short life cycle of mould and so on, which exists during warm compaction process. Parylene Nd–Fe–B magnets have better corrosion resistance and worse mechanical properties than that of non-parylene Nd–Fe–B magnets. The reason for the improvement of magnetic properties and actual density is the low friction cofficient of parylene C films, which results in lower frictional resistance and better lubricating property of parylene Nd–Fe–B powders. - Highlights: • Parylene Nd–Fe–B magnets prepared at room temperature show higher (BH)max and DOA. • Actual density of parylene Nd–Fe–B magnet is improved greatly. • Problems such as powders’ sticking wall, mould damage and so on are solved. • Parylene NdFeB magnets have better corrosion resistance. • Low friction cofficient of

  9. METHANE DRY REFORMING OVER Ni SUPPORTED ON PINE SAWDUST ACTIVATED CARBON: EFFECTS OF SUPPORT SURFACE PROPERTIES AND METAL LOADING

    Directory of Open Access Journals (Sweden)

    Rafael García

    2015-05-01

    Full Text Available The influence of metal loading and support surface functional groups (SFG on methane dry reforming (MDR over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.

  10. Host-guest chemistry of dendrimer-drug complexes. 2. Effects of molecular properties of guests and surface functionalities of dendrimers.

    Science.gov (United States)

    Hu, Jingjing; Cheng, Yiyun; Wu, Qinglin; Zhao, Libo; Xu, Tongwen

    2009-08-06

    The host-guest chemistry of dendrimer-drug complexes is investigated by NMR techniques, including (1)H NMR and 2D-NOESY studies. The effects of molecular properties of drug molecules (protonation ability and spatial steric hindrance of charged groups) and surface functionalities of dendrimers (positively charged amine groups and negatively charged carboxylate groups) on the host-guest interactions are discussed. Different interaction mechanisms between dendrimers and drug molecules are proposed on the basis of NMR results. Primary amine- and secondary amine-containing drugs preferentially bind to negatively charged dendrimers by strong electrostatic interactions, whereas tertiary amine and quaternary ammonium-containing drugs have weak binding ability with dendrimers due to relatively low protonation ability of the tertiary amine group and serious steric hindrance of the quaternary ammonium group. Positively charged drugs locate only on the surface of negatively charged dendrimers, whereas negatively charged drugs locate both on the surface and in the interior cavities of positively charged dendrimers. The host-guest chemistry of dendrimer-drug complexes is promising for the development of new drug delivery systems.

  11. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Gustavo A.; Lohse, Samuel E.; Torelli, Marco; Murphy, Catherine; Hamers, Robert J.; Orr, Galya; Klaper, Rebecca D.

    2015-05-01

    Concern has been raised regarding the current and future release of engineered nanomaterials into aquatic environments from industry and other sources. However, not all nanomaterials may cause an environ-mental impact and identifying which nanomaterials may be of greatest concern has been difficult. It is thought that the surface groups of a functionalized nanoparticles (NPs) may play a significant role in determining their interactions with aquatic organisms, but the way in which surface properties of NPs impact their toxicity in whole organisms has been minimally explored. A major point of interaction of NPs with aquatic organisms is in the gastrointestinal tract as they ingest particulates from the water column or from the sediment. The main goal of this study was to use model gold NP (AuNPs) to evaluate the potential effects of the different surfaces groups on NPs on the gut of an aquatic model organism, Daphnia magna. In this study, we exposed daphnids to a range of AuNPs concentrations and assessed the impact of AuNP exposure in the daphnid gut by measuring reactive oxygen species (ROS) production and expression of genes associated with oxidative stress and general cellular stress: glutathione S-transferase(gst), catalase (cat), heat shock protein 70 (hsp70), and metallothionein1 (mt1). We found ROS formation and gene expression were impacted by both charge and the specific surface ligand used. We detected some degree of ROS production in all NP exposures, but positively charged AuNPs induced a greater ROS response. Similarly, we observed that, compared to controls, both positively charged AuNPs and only one negatively AuNP impacted expression of genes associated with cellular stress. Finally, ligand-AuNP exposures showed a different toxicity and gene expression profile than the ligand alone, indicating a NP specific effect.

  12. Effects of moulding and environmental conditions on the mechanical and surface properties of injection moulded santoprene rubber

    DEFF Research Database (Denmark)

    Islam, Aminul; Ruby, Tobias M.; Jessen, Rikke L.

    the electronics inside from environmental hazards. The sealing ring is injection moulded in Santoprene-a thermoplastic vulcanizate consisting of Polypropelene and highly vulcanized EPDM rubber. The scope of the project was therefore to investigate the properties of Santoprene and make an immediate evaluation...... of whether Santoprene is appropriate for use under the conditions, to which it will be subjected being part of a hearing aid used on daily basis. The conditions tested are: sweat, acid corrosion, extreme temperatures. An evaluation of the maximum load before breakage in relation to manufacturing conditions...

  13. Effect of Surface Morphology and Dispersion Media on the Properties of PEDOT:PSS/n-Si Hybrid Solar Cell Containing Functionalized Graphene

    Directory of Open Access Journals (Sweden)

    Pham Van Trinh

    2017-01-01

    Full Text Available We present the results on the effect of surface morphology and dispersion media on the properties of PEDOT:PSS/n-Si hybrid solar cell containing functionalized graphene (Gr. The hybrid solar cells based on SiNWs showed higher power conversion efficiency (PCE compared to the planar based cells due to suppressing the carrier recombination and improving carrier transport efficiency. The PCE of hybrid solar cells could be improved by adding Gr into PEDOT:PSS. Different solvents including deionized (DI water, ethylene glycol (EG, and isopropyl alcohol (IPA were used as media for Gr dispersion. The best performance was obtained for the cell containing Gr dispersed in EG with a measured PCE of 7.33% and nearly 13% and 16% enhancement in comparison with the cells using Gr dispersed in IPA and DI water, respectively. The increase in PCE is attributed to improving the carrier-mobility, electrical conductivity, PEDOT crystallinity, and ordering.

  14. Diagnostic study of the roughness surface effect of zirconium on the third-order nonlinear-optical properties of thin films based on zinc oxide nanomaterials

    Science.gov (United States)

    Bahedi, K.; Addou, M.; El Jouad, M.; Sofiani, Z.; Alaoui Lamrani, M.; El Habbani, T.; Fellahi, N.; Bayoud, S.; Dghoughi, L.; Sahraoui, B.; Essaïdi, Z.

    2009-02-01

    Zinc oxide (ZnO) and zirconium doped zinc oxide (ZnO:Zr) thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 500 °C using zinc and zirconium chlorides as precursors. Effects of zirconium doping agent and surface roughness on the nonlinear optical properties were investigated in detail using atomic force microscopy (AFM) and third harmonic generation (THG) technique. The best value of nonlinear optical susceptibility χ(3) was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility χ(3) = 20.12 × 10 -12 (esu) of the studied films was found for the 3% doped sample.

  15. Application of Response Surface Methodology to Study the Effects of Brisket Fat, Soy Protein Isolate, and Cornstarch on Nutritional and Textural Properties of Rabbit Sausages

    Directory of Open Access Journals (Sweden)

    Joseph M. Wambui

    2017-01-01

    Full Text Available The effects of brisket fat, soy protein isolate, and cornstarch on chemical and textural properties of rabbit sausages were studied using surface response methodology. Sausage samples were prepared using a five-level three-variable Central Composite Rotatable Design with 16 combinations, including two replicates of the center point, carried out in random order. The level of brisket fat (BF, soy protein isolate (SPI, and cornstarch (CS in the sausage formulation ranged within 8.3–16.7%, 0.7–2.3%, and 1.3–4.7%, respectively. Increasing BF decreased moisture and ash contents but increased protein and fat contents of the sausages (p<0.05. Increasing SPI increased moisture content but decreased ash and carbohydrate contents of the sausages (p<0.05. Increasing CS increased carbohydrate content (p<0.05. Increasing BF increased hardness, adhesiveness, cohesiveness, and chewiness but decreased springiness (p<0.05. SPI addition increased springiness but decreased adhesiveness, cohesiveness, and chewiness (p<0.05. In conclusion, varying the levels of BF and SPI had a more significant effect on chemical and textural properties of rabbit sausages than CS.

  16. The Effect of Surface Roughness on the Corrosion Properties of Type AISI 304 Stainless Steel in Diluted NaCl and Urban Rain Solution

    Science.gov (United States)

    Leban, Mirjam Bajt; Mikyška, Črt; Kosec, Tadeja; Markoli, Boštjan; Kovač, Janez

    2014-05-01

    Due to their good corrosion resistance, favorable mechanical properties, and reasonable price regarding their excellent properties, austenitic stainless steels have, over recent decades, become one of the alloys that are increasingly used in civil engineering and building, as well as for specific architectural purposes. Architects often design stainless steel exterior elements with higher surface roughnesses, which are not resistant to corrosion processes. The aim of this work was to investigate the influence of different types of surface finishes to stainless steel of quality AISI 304 on the corrosion properties of this steel. In order to achieve this goal, electrochemical tests were performed on different surface finishes in two different environments: in an NaCl aqueous solution, and in simulated urban rain which contained no chlorides. In addition to the electrochemical methods used, surface roughness was also measured, and XPS surface analyses were performed. The results of the investigation showed that surface roughness affects the growth of the passive layer in urban rain significantly; however, the growth of such a film is retarded in the case of the NaCl aqueous solution. Based on the results of the performed analyses, it was found that, in the NaCl solution, the pitting potential depended strongly upon the surface roughness and the surface finish, but this was not true for the samples tested in urban rain.

  17. Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties.

    Science.gov (United States)

    Tong, Tiezheng; Zhao, Song; Boo, Chanhee; Hashmi, Sara M; Elimelech, Menachem

    2017-04-18

    We investigated the relationship between membrane surface properties and silica scaling in reverse osmosis (RO). The effects of membrane hydrophilicity, free energy for heterogeneous nucleation, and surface charge on silica scaling were examined by comparing thin-film composite polyamide membranes grafted with a variety of polymers. Results show that the rate of silica scaling was independent of both membrane hydrophilicity and free energy for heterogeneous nucleation. In contrast, membrane surface charge demonstrated a strong correlation with the extent of silica scaling (R 2 > 0.95, p scaling, whereas a more negative membrane surface charge led to reduced scaling. This observation suggests that deposition of negatively charged silica species on the membrane surface plays a critical role in silica scale formation. Our findings provide fundamental insights into the mechanisms governing silica scaling in reverse osmosis and highlight the potential of membrane surface modification as a strategy to reduce silica scaling.

  18. The Effects of Surface Properties and Albedo on Methane Retrievals with the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG)

    Science.gov (United States)

    Ayasse, A.; Thorpe, A. K.; Roberts, D. A.

    2017-12-01

    Atmospheric methane has increased by a factor of 2.5 since the beginning of the industrial era in response to anthropogenic emissions (Ciais et al., 2013). Although it is less abundant than carbon dioxide it is 86 time more potent on a 20 year time scale (Myhre et al., 2013) and is therefore responsible for about 20% of the total global warming induced by anthropogenic greenhouse gasses (Kirschke et al., 2013). Given the importance of methane to global climate change, monitoring and measuring methane emissions using techniques such as remote sensing is of increasing interest. Recently the Airborne Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) has proven to be a valuable instrument for quantitative mapping of methane plumes (Frankenberg et al., 2016; Thorpe et al., 2016; Thompson et al., 2015). In this study, we applied the Iterative Maximum a Posterior Differential Optical Spectroscopy (IMAP-DOAS) methane retrieval algorithm to a synthetic image with variable methane concentrations, albedo, and land cover. This allowed for characterizing retrieval performance, including potential sensitivity to variable land cover, low albedo surfaces, and surfaces known to cause spurious signals. We conclude that albedo had little influence on the IMAP-DOAS results except at very low radiance levels. Water (without sun glint) was found to be the most challenging surface for methane retrievals while hydrocarbons and some green vegetation also caused error. Understanding the effect of surface properties on methane retrievals is important given the increased use of AVIRIS-NG to map gas plumes over diverse locations and methane sources. This analysis could be expanded to include additional gas species like carbon dioxide and to further investigate gas sensitivity of proposed instruments for dedicated gas mapping from airborne and spaceborne platforms.

  19. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  20. Surface properties of copper based cermet materials

    Energy Technology Data Exchange (ETDEWEB)

    Voinea, M. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)], E-mail: m.voinea@unitbv.ro; Vladuta, C.; Bogatu, C.; Duta, A. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)

    2008-08-25

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO{sub x} cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO{sub x} was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components.

  1. Effect of surface coating on optical properties of Eu(3+)-doped CaMoO4 nanoparticles.

    Science.gov (United States)

    Ansari, Anees A; Parchur, A K; Alam, Manawwer; Azzeer, Abdallah

    2014-10-15

    A simple polyol method has been used for the synthesis of CaMoO4:Eu (core), CaMoO4:Eu@CaMoO4 (core/shell) and their silica coated CaMoO4:Eu@CaMoO4 (core/shell/shell) nanoparticles. X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), UV/Vis absorption and photoluminescence (PL) spectroscopies techniques has been employed for their characterization. XRD patterns and FT-Raman spectra showed that these nanoparticles have a scheelite-type tetragonal structure without the presence of deleterious phases. These nanoparticles were easily dispersed in water, producing a transparent colloidal solution. The optical energy band-gap decreases after core/shell formation due to increase the crystalline size. The photoluminescence (PL) spectra of the as-synthesized core, core/shell and core/shell/shell nanoparticles measured with an excitation source wavelength of 325nm showed that the emission intensity was increases after shell formation around the surface of core nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Effect of Magnetic Field on Surface Morphology and Magnetic Properties of FeCu/Cu Nano layers Prepared by Electrodeposition Technique: Investigation of Magneto-hydrodynamic Effect

    Directory of Open Access Journals (Sweden)

    M. Merikhi

    2015-10-01

    Full Text Available In this paper, the effect of magnetic field on the morphology, structure and magnetic properties of electrodeposited FeCu/Cu thin films was investigated. The films were deposited on Au2PdAg/glass substrates using electrodeposition technique in potentiostatic control. The magnetic fields of 5000 and 7000 Oe were applied on deposition bath during deposition. Two series of thin films were prepared in the same deposition conditions, one in the presence and the other in absence of magnetic field and the products were compared. The results indicate that applying the magnetic field has a significant effect on the growth process, i.e. morphology, crystal structure and magnetic properties of the films. The morphology and structure of the FeCu/Cu Nano layers were studied using X-ray diffraction (XRD and scanning electron microscopy (SEM. The weight percentages of the elements in the deposited multilayers were determined by energy dispersive X-ray spectroscopy (EDS. Magnetic properties of thin films were studied using the vibrating sample magnetometer (VSM.

  3. de Haas–van Alphen effect and Fermi surface properties of single-crystal CrB.sub.2./sub..

    Czech Academy of Sciences Publication Activity Database

    Brasse, M.; Chioncel, L.; Kuneš, Jan; Bauer, A.; Regnat, A.; Blum, C.G.F.; Wurmehl, S.; Pfleiderer, C.; Wilde, M.A.; Grundler, D.

    2013-01-01

    Roč. 88, č. 15 (2013), "155138-1"-"155138-7" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : CrB 2 * de Haas -van Alphen effect * non-collinear magnetic order Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013 http://link. aps .org/doi/10.1103/PhysRevB.88.155138

  4. Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto-dielectric properties of polyvinylacetate/BiFeO3 nanocomposites

    Directory of Open Access Journals (Sweden)

    O. P. Bajpai

    2014-09-01

    Full Text Available Bismuth ferrite (BiFeO3 is considered as one of the most promising materials in the field of multiferroics. In this work, a simple green route as well as synthetic routes has been used for the preparation of pure phase BiFeO3. An extract of Calotropis Gigantea flower was used as a reaction medium in green route. In each case so formed BiFeO3 particles are of comparable quality. These particles are in the range of 50–60 nm and exhibit mixed morphology (viz., spherical and cubic as confirmed by TEM analysis. These pure phase BiFeO3 nanoparticles were first time surface modified effectively by mean of two silylating agent’s viz., tetraethyl orthosilicate (TEOS and (3-Aminopropyltriethoxysilane (APTES. Modified and unmodified BiFeO3 nanoparticles were efficiently introduced into polyvinylacetate (PVAc matrix. It has been shown that nanocomposite prepared by modified BiFeO3 comprise superior dispersion characteristics, improved ferroelectric properties and favorable magneto-dielectric properties along with excellent wettability in compare to nanocomposite prepared by unmodified BiFeO3. These preliminary results demonstrate possible applications of this type of nanocomposites particularly in the field of multiferroic coating and adhesives.

  5. Physicochemical properties of concentrated Martian surface waters

    Science.gov (United States)

    Tosca, Nicholas J.; McLennan, Scott M.; Lamb, Michael P.; Grotzinger, John P.

    2011-05-01

    Understanding the processes controlling chemical sedimentation is an important step in deciphering paleoclimatic conditions from the rock records preserved on both Earth and Mars. Clear evidence for subaqueous sedimentation at Meridiani Planum, widespread saline mineral deposits in the Valles Marineris region, and the possible role of saline waters in forming recent geomorphologic features all underscore the need to understand the physical properties of highly concentrated solutions on Mars in addition to, and as a function of, their distinct chemistry. Using thermodynamic models predicting saline mineral solubility, we generate likely brine compositions ranging from bicarbonate-dominated to sulfate-dominated and predict their saline mineralogy. For each brine composition, we then estimate a number of thermal, transport, and colligative properties using established models that have been developed for highly concentrated multicomponent electrolyte solutions. The available experimental data and theoretical models that allow estimation of these physicochemical properties encompass, for the most part, much of the anticipated variation in chemistry for likely Martian brines. These estimates allow significant progress in building a detailed analysis of physical sedimentation at the ancient Martian surface and allow more accurate predictions of thermal behavior and the diffusive transport of matter through chemically distinct solutions under comparatively nonstandard conditions.

  6. Research on the impact of surface properties of particle on damping effect in gear transmission under high speed and heavy load

    Science.gov (United States)

    Xiao, Wangqiang; Chen, Zhiwei; Pan, Tianlong; Li, Jiani

    2018-01-01

    The vibration and noise from gear transmission have great damage on the mechanical equipment and operators. Through inelastic collisions and friction between particles, the energy can be dissipated in gear transmission. A dynamic model of particle dampers in gear transmission was put forward in this paper. The performance of particle dampers in centrifugal fields under different rotational speeds and load was investigated. The surface properties such as the impact of coefficient of restitution and friction coefficient of the particle on the damping effect were analyzed and the total energy loss was obtained by discrete element method (DEM). The vibration from time-varying mesh stiffness was effectively reduced by particle dampers and the optimum coefficient of restitution was discovered under different rotational speeds and load. Then, a test bench for gear transmission was constructed, and the vibration of driven gear and driving gear were measured through a three-directional wireless acceleration sensor. The research results agree well with the simulation results. While at relatively high speed, smaller coefficient of restitution achieves better damping effect. As to friction coefficient, at relatively high speed, the energy dissipation climbs up and then declines with the increase of the friction coefficient. The results can provide guidelines for the application of particle damper in gear transmission.

  7. Tuning antimicrobial properties of biomimetic nanopatterned surfaces.

    Science.gov (United States)

    Michalska, Martyna; Gambacorta, Francesca; Divan, Ralu; Aranson, Igor S; Sokolov, Andrey; Noirot, Philippe; Laible, Philip D

    2018-04-05

    Nature has amassed an impressive array of structures that afford protection from microbial colonization/infection when displayed on the exterior surfaces of organisms. Here, controlled variation of the features of mimetics derived from etched silicon allows for tuning of their antimicrobial efficacy. Materials with nanopillars up to 7 μm in length are extremely effective against a wide range of microbial species and exceed the performance of natural surfaces; in contrast, materials with shorter/blunter nanopillars (<2 μm) selectively killed specific species. Using a combination of microscopies, the mechanisms by which bacteria are killed are demonstrated, emphasizing the dependence upon pillar density and tip geometry. Additionally, real-time imaging reveals how cells are immobilized and killed rapidly. Generic or selective protection from microbial colonization could be conferred to surfaces [for, e.g., internal medicine, implants (joint, dental, and cosmetic), food preparation, and the agricultural industry] patterned with these materials as coatings.

  8. Hygroscopic properties of Amazonian biomass burning and European background HULIS and investigation of their effects on surface tension with two models linking H-TDMA to CCNC data

    Directory of Open Access Journals (Sweden)

    E. O. Fors

    2010-06-01

    Full Text Available HUmic-LIke Substances (HULIS have been identified as major contributors to the organic carbon in atmospheric aerosol. The term "HULIS" is used to describe the organic material found in aerosol particles that resembles the humic organic material in rivers and sea water and in soils. In this study, two sets of filter samples from atmospheric aerosols were collected at different sites. One set of samples was collected at the K-puszta rural site in Hungary, about 80 km SE of Budapest, and a second was collected at a site in Rondônia, Amazonia, Brazil, during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC biomass burning season experiment. HULIS were extracted from the samples and their hygroscopic properties were studied using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA at relative humidity (RH <100%, and a cloud condensation nucleus counter (CCNC at RH >100%. The H-TDMA measurements were carried out at a dry diameter of 100 nm and for RH ranging from 30 to 98%. At 90% RH the HULIS samples showed diameter growth factors between 1.04 and 1.07, reaching values of 1.4 at 98% RH. The cloud nucleating properties of the two sets of aerosol samples were analysed using two types of thermal static cloud condensation nucleus counters. Two different parameterization models were applied to investigate the potential effect of HULIS surface activity, both yielding similar results. For the K-puszta winter HULIS sample, the surface tension at the point of activation was estimated to be lowered by between 34% (47.7 mN/m and 31% (50.3 mN/m for dry sizes between 50 and 120 nm in comparison to pure water. A moderate lowering was also observed for the entire water soluble aerosol sample, including both organic and inorganic compounds, where the surface tension was decreased by between 2% (71.2 mN/m and 13% (63.3 mN/m.

  9. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  10. One pot synthesis of nanosized anion doped TiO2: Effect of irradiation of sound waves on surface morphology and optical properties

    Science.gov (United States)

    Sharotri, Nidhi; Sud, Dhiraj

    2015-08-01

    Commercialization of AOP's for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO2 has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO2 (3.0-3.23 eV) with absorption cut off ˜ 380 nm, enables it to harness only a small fraction (˜ 5%) of the entire solar spectrum. One of the current areas of research is modification of TiO2 photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO2 nanomaterials were dried at 100°C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV.

  11. One pot synthesis of nanosized anion doped TiO2: Effect of irradiation of sound waves on surface morphology and optical properties

    International Nuclear Information System (INIS)

    Sharotri, Nidhi; Sud, Dhiraj

    2015-01-01

    Commercialization of AOP’s for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO 2 has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO 2 (3.0-3.23 eV) with absorption cut off ∼ 380 nm, enables it to harness only a small fraction (∼ 5%) of the entire solar spectrum. One of the current areas of research is modification of TiO 2 photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO 2 nanomaterials were dried at 100°C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV

  12. Experimental Analysis of Grease Friction Properties on Sliding Textured Surfaces

    Directory of Open Access Journals (Sweden)

    Xijun Hua

    2017-10-01

    Full Text Available There is comprehensive work on the tribological properties and lubrication mechanisms of oil lubricant used on textured surfaces, however the use of grease lubrication on textured surfaces is rather new. This research article presents an experimental study of the frictional behaviours of grease lubricated sliding contact under mixed lubrication conditions. The influences of surface texture parameters on the frictional properties were investigated using a disc-on-ring tribometer. The results showed that the friction coefficient is largely dependent on texture parameters, with higher and lower texture density resulting in a higher friction coefficient at a fixed texture depth. The sample with texture density of 15% and texture depth of 19 μm exhibited the best friction properties in all experimental conditions because it can store more grease and trap wear debris. The reduction of friction is mainly attributable to the formation of a stable grease lubrication film composed of oil film, transfer film and deposited film, and the hydrodynamic pressure effect of the surface texture, which increases the mating gap and reduces the probability of asperity contact. This result will help in understanding the tribological behaviour of grease on a textured surface and in predicting the lubrication conditions of sliding bearings for better operation in any machinery.

  13. Magnetic properties of Martian surface material

    Science.gov (United States)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  14. Effect of surface modified TiO2 nanoparticles on thermal, barrier and mechanical properties of long oil alkyd resin-based coatings

    Directory of Open Access Journals (Sweden)

    T. S. Radoman

    2015-10-01

    Full Text Available Novel soy alkyd-based nanocomposites (NCs were prepared using TiO2 nanoparticles (NPs surface modified with different gallates, and for the first time with imine obtained from 3,4-dihydroxybenzaldehyde and oleylamine (DHBAOA. Unmodified and surface modified anatase TiO2 NPs were characterized by transmission electron microscopy (TEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and ultraviolet-visible (UV-Vis spectroscopy, while the amount of adsorbed ligands was calculated from thermogravimetric analysis (TGA results. Surface modification of TiO2 NPs was confirmed by FTIR and UV-Vis spectra. The influence of the TiO2 surface modification on the dispersion of TiO2 NPs in alkyd resin, thermal, barrier and mechanical properties and chemical resistance of alkyd resin/TiO2 NC coatings was investigated. The obtained results revealed that glass transition temperature of all investigated NCs is lower than for pure resin, that the presence of TiO2 NPs surface modified with gallates had no significant influence on the thermooxidative stability of alkyd resin, while TiO2-DHBAOA NPs slightly improved alkyd resin thermooxidative stability. Also, the presence of surface modified TiO2 NPs improved barrier properties, increased stress and strain at break and hardness and chemical resistance and decreased modulus of elasticity and abrasion resistance of alkyd resin.

  15. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  16. Investigation of magnetorheological elastomer surface properties by atomic force microscopy

    International Nuclear Information System (INIS)

    Iacobescu, G.E.; Balasoiu, M.; Bica, I.

    2012-01-01

    Magnetorheological elastomers consist of a natural or synthetic rubber matrix interspersed with micron-sized ferromagnetic particles. The magnetoelastic properties of such a composite are not merely a sum of elasticity of the polymer and stiffness and magnetic properties of the filler, but also the result of a complex synergy of several effects, relevant at different length scales and detectable by different techniques. In the present work we investigate the microstructures, the surface magnetic properties and the elastic properties of new isotropic and anisotropic magnetorheological elastomer prepared using silicone rubber and soft magnetic carbonyl iron microspheres. The measurements were performed by atomic force microscopy in the following modes: standard imaging-non-contact atomic force microscopy, magnetic force microscopy and nanoindentation. A comparative study for the samples with different particle concentrations and strength of magnetic field applied during the polymerization process is developed

  17. Surface and mechanical properties of polypropylene/clay nanocomposite

    Directory of Open Access Journals (Sweden)

    Dibaei Asl Husein

    2013-01-01

    Full Text Available Huge consumption of polypropylene in the industries like automotive motivates academic and industrial R&Ds to find new and excellent approaches to improve the mechanical properties of this polymer, which has no degradation effect on other required performance properties like impact resistance, controlled crystallinity, toughness and shrinkage. Nowadays, nanoparticles play a key role in improving the mechanical and surface properties of polypropylene. In this study, three compositions of "Polypropylene/nanoclay", containing 0%, 2% and 5% of nanoclay were prepared in internal mixer. For characterizing the nanoclay dispersion in polymer bulk, TEM and XRD tests were used. For scratch resistance test, scratch lines were created on the load of 900 grain on sheets and SEM images were taken and compared with neat PP scratch image. Crystallinity and mechanical behavior were studied. The results showed that mechanical properties and scratch resistance of the composites have been improved.

  18. Effect of the functional groups of carbon on the surface and catalytic properties of Ru/C catalysts for hydrogenolysis of glycerol

    International Nuclear Information System (INIS)

    Gallegos-Suarez, E.; Pérez-Cadenas, M.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I.; Arcoya, A.

    2013-01-01

    Ruthenium catalysts supported on activated carbons, original (AC) and treated with nitric acid (AC-Ox) were prepared by incipient wetness impregnation from either chloride (Cl) or nitroxyl nitrate (n) precursors. These catalysts were characterized by TG, XPS, TEM, TPD-MS and CO adsorption microcalorimetry and evaluated in the hydrogenolysis of glycerol in the liquid phase, at 453 K and 8 MPa. Studies by TEM show that ruthenium particles supported on AC-Ox are larger than on AC, without any effect of the nature of the metal precursor. However, adsorption of CO on the ex-chloride catalysts is inhibited in comparison with that of the ex-nitroxyl nitrate catalysts. Catalysts characterization by TG, TPD-MS and XPS reveals that the nitric acid treatment and the nitroxyl nitrate precursor generate oxygenated groups on the carbon surface, which provide acid properties to the catalysts, although they are partly destroyed during the reduction treatment applied to the catalysts. The sequence of the overall TOF, Ru(Cl)/AC < Ru(n)/AC < Ru(Cl)/AC-Ox ≈ Ru(n)/AC-Ox, reasonably parallels the population increase of surface acid groups. Participation of the -COOH groups in the transformation of glycerol into 1,2-propanediol is verified by using the admixture Ru(Cl)/AC+AC-Ox as catalyst. In this case, since AC-Ox was not thermally treated and no loss of oxygenated groups occurred, TOF and selectivity toward 1,2-propanediol improve in comparison with those of the more active catalysts.

  19. Effect of the functional groups of carbon on the surface and catalytic properties of Ru/C catalysts for hydrogenolysis of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos-Suarez, E. [Departamento de Química Inorgánica y Técnica, Facultad de Ciencias, UNED, Paseo Senda del Rey n° 9, 28040 Madrid (Spain); Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie n° 2, L-10, 28049 Madrid (Spain); Pérez-Cadenas, M. [Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie n° 2, L-10, 28049 Madrid (Spain); Guerrero-Ruiz, A. [Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie n° 2, L-10, 28049 Madrid (Spain); Unidad Asociada UNED ICP-CSIC, Group Design and Applied Heterogeneous Catalysis (Spain); Rodriguez-Ramos, I. [Departamento de Química Inorgánica y Técnica, Facultad de Ciencias, UNED, Paseo Senda del Rey n° 9, 28040 Madrid (Spain); Unidad Asociada UNED ICP-CSIC, Group Design and Applied Heterogeneous Catalysis (Spain); Arcoya, A., E-mail: aarcoya@icp.csic.es [Departamento de Química Inorgánica y Técnica, Facultad de Ciencias, UNED, Paseo Senda del Rey n° 9, 28040 Madrid (Spain); Unidad Asociada UNED ICP-CSIC, Group Design and Applied Heterogeneous Catalysis (Spain)

    2013-12-15

    Ruthenium catalysts supported on activated carbons, original (AC) and treated with nitric acid (AC-Ox) were prepared by incipient wetness impregnation from either chloride (Cl) or nitroxyl nitrate (n) precursors. These catalysts were characterized by TG, XPS, TEM, TPD-MS and CO adsorption microcalorimetry and evaluated in the hydrogenolysis of glycerol in the liquid phase, at 453 K and 8 MPa. Studies by TEM show that ruthenium particles supported on AC-Ox are larger than on AC, without any effect of the nature of the metal precursor. However, adsorption of CO on the ex-chloride catalysts is inhibited in comparison with that of the ex-nitroxyl nitrate catalysts. Catalysts characterization by TG, TPD-MS and XPS reveals that the nitric acid treatment and the nitroxyl nitrate precursor generate oxygenated groups on the carbon surface, which provide acid properties to the catalysts, although they are partly destroyed during the reduction treatment applied to the catalysts. The sequence of the overall TOF, Ru(Cl)/AC < Ru(n)/AC < Ru(Cl)/AC-Ox ≈ Ru(n)/AC-Ox, reasonably parallels the population increase of surface acid groups. Participation of the -COOH groups in the transformation of glycerol into 1,2-propanediol is verified by using the admixture Ru(Cl)/AC+AC-Ox as catalyst. In this case, since AC-Ox was not thermally treated and no loss of oxygenated groups occurred, TOF and selectivity toward 1,2-propanediol improve in comparison with those of the more active catalysts.

  20. [Biological properties of Lactobacillus surface proteins].

    Science.gov (United States)

    Buda, Barbara; Dylus, Ewa; Górska-Frączek, Sabina; Brzozowska, Ewa; Gamian, Andrzej

    2013-04-04

    Lactobacillus, a genus of Gram-positive bacteria, includes many strains of probiotic microflora. Probiotics, by definition, are living microorganisms that exert beneficial effects on the host organism. The morphology and physiology of the Lactobacillus bacterial genus are described. The structure of the cell wall of Gram-positive bacteria is discussed. The surface S-layer of Lactobacillus composed of proteins (SLP) with low molecular mass is presented. Cell surface proteins participating in the regulation of growth and survival of the intestinal epithelium cells are characterized. The influence of stress factors such as increased temperature, pH, and enzymes of gastric and pancreatic juice on SLP expression is described. The ability of binding of heavy metal ions by S-layer proteins is discussed. The characteristics of these structures, including the ability to adhere to epithelial cells, and the inhibition of invasion of pathogenic microflora of type Shigella, Salmonella, Escherichia coli and Clostridium and their toxins, are presented. 

  1. The Effects of Sn Addition on the Microstructure and Surface Properties of Laser Deposited Al-Si-Sn Coatings on ASTM A29 Steel

    Science.gov (United States)

    Fatoba, Olawale S.; Akinlabi, Stephen A.; Akinlabi, Esther T.

    2018-03-01

    Aluminium and its alloys have been successful metal materials used for many applications like commodity roles, automotive and vital structural components in aircrafts. A substantial portion of Al-Fe-Si alloy is also used for manufacturing the packaging foils and sheets for common heat exchanger applications. The present research was aimed at studying the morphology and surface analyses of laser deposited Al-Sn-Si coatings on ASTM A29 steel. These Fe-intermetallic compounds influence the material properties during rapid cooling by laser alloying technique and play a crucial role for the material quality. Thus, it is of considerable technological interest to control the morphology and distribution of these phases in order to eliminate the negative effects on microstructure. A 3 kW continuous wave ytterbium laser system (YLS) attached to a KUKA robot which controls the movement of the alloying process was utilized for the fabrication of the coatings at optimum laser parameters. The fabricated coatings were investigated for its hardness and wear resistance performance. The field emission scanning electron microscope equipped with energy dispersive spectroscopy (SEM/EDS) was used to study the morphology of the fabricated coatings and X-ray diffractometer (XRD) for the identification of the phases present in the coatings. The coatings were free of cracks and pores with homogeneous and refined microstructures. The enhanced hardness and wear resistance performance were attributed to metastable intermetallic compounds formed.

  2. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory

    Science.gov (United States)

    Wieting, Celeste; Ebel, Brian A.; Singha, Kamini

    2017-01-01

    Study regionThis study used intact soil cores collected at the Boulder Creek Critical Zone Observatory near Boulder, Colorado, USA to explore fire impacts on soil properties.Study focusThree soil scenarios were considered: unburned control soils, and low- and high-temperature burned soils. We explored simulated fire impacts on field-saturated hydraulic conductivity, dry bulk density, total organic carbon, and infiltration processes during rainfall simulations.New hydrological insights for the regionSoils burned to high temperatures became more homogeneous with depth with respect to total organic carbon and bulk density, suggesting reductions in near-surface porosity. Organic matter decreased significantly with increasing soil temperature. Tension infiltration experiments suggested a decrease in infiltration rates from unburned to low-temperature burned soils, and an increase in infiltration rates in high-temperature burned soils. Non-parametric statistical tests showed that field-saturated hydraulic conductivity similarly decreased from unburned to low-temperature burned soils, and then increased with high-temperature burned soils. We interpret these changes result from the combustion of surface and near-surface organic materials, enabling water to infiltrate directly into soil instead of being stored in the litter and duff layer at the surface. Together, these results indicate that fire-induced changes in soil properties from low temperatures were not as drastic as high temperatures, but that reductions in surface soil water repellency in high temperatures may increase infiltration relative to low temperatures.

  3. EFFECTS OF METHANE GAS FLOW RATE ON THE OPTOELECTRICAL PROPERTIES OF NITROGENATED CARBON THIN FILMS GROWN BY SURFACE WAVE MICROWAVE PLASMA CHEMICAL VAPOR DEPOSITION

    OpenAIRE

    M. RUSOP; S. ABDULLAH; A. M. M. OMER; S. ADHIKARI; T. SOGA; T. JIMBO; M. UMENO

    2006-01-01

    We have studied the influence of the methane gas (CH4) flow rate on the composition and structural and electrical properties of nitrogenated amorphous carbon (a-C:N) films grown by surface wave microwave plasma chemical vapor deposition (SWMP-CVD) using Auger electron spectroscopy, X-ray photoelectron spectroscopy, UV-visible spectroscopy, four-point probe and two-probe method resistance measurement. The photoelectrical properties of a-C:N films were also studied. We have succeeded to grow a-...

  4. The effect of MAO processing time on surface properties and low temperature infrared emissivity of ceramic coating on aluminium 6061 alloy

    Science.gov (United States)

    Al Bosta, Mohannad M. S.; Ma, Keng-Jeng; Chien, Hsi-Hsin

    2013-09-01

    MAO ceramic coatings were prepared on aluminium 6061 surfaces at different treating durations (10, 20, ... 60 min), using alkali silicate electrolyte and pulsed bipolar current mode. The surface microstructures and properties were studied using SEM, XRD, EDX and a surface roughness tester. Image-Pro Plus and MATCH! softwares were used to analyze SEM micrographs and XRD results, respectively. The infrared emissivities of the ceramic coatings were measured at the 70 °C using FTIR spectrometer. We found a linear correlation between the volcano-like area and the surface roughness. The compositions and phases were associated with the volcano-like population and area. The curve of IR spectral emissivity was influenced by surface roughness, γ-alumina, sillimanite and cristobalite phases. The emissivity was enhanced by the surface roughness in the ranges 4.0-9.6 μm and 10.5-14.8 μm. In the range 7.0-8.0 μm, α-alumina and sillimanite phases enhanced the emissivity, while the cristobalite has a negative impact to the emissivity. A negative contributions were found for α-alumina in the region 9.6-16.0 μm and for the surface thickness in the region 15.0-16.0 μm. Overall, the average of long wave infrared (LWIR) emissivity ranged from 87.05% to 91.65%.

  5. Probing Anisotropic Surface Properties and Surface Forces of Fluorite Crystals.

    Science.gov (United States)

    Gao, Zhiyong; Xie, Lei; Cui, Xin; Hu, Yuehua; Sun, Wei; Zeng, Hongbo

    2018-02-20

    Fluorite is the most important mineral source for producing fluorine-based chemicals and materials in a wide range of engineering and technological applications. In this work, atomic force microscopy was employed, for the first time, to probe the surface interactions and adhesion energy of model oleic acid (a commonly used surface modification organics for fluorite) molecules on fluorite surfaces with different orientations in both air and aqueous solutions at different pH conditions. Fitted with the Derjaguin-Landau-Verwey-Overbeek theory, the force results during surface approaching demonstrate the anisotropy in the surface charge of different orientations, with the {111} surface exhibiting a higher magnitude of surface charge, which could be attributed to the difference in the atomic composition. The adhesion measured during surface retraction shows that model oleic acid molecules have a stronger adhesion with the {100} surface than with the {111} surface in both air and aqueous solutions. The anisotropic adhesion energy was analyzed in relation to the surface atom (especially calcium) activity, which was supported by the surface free energy results calculated based on a three-probe-liquid method. Each calcium atom on the {100} surface with four dangling bonds is more active than the calcium atom on the {111} surface with only one dangling bond, supported by a larger value of the Lewis acid component for the {100} surface. The model oleic acid molecules present in the ionic form at pH 9 exhibit a higher adhesion energy with fluorite surfaces as compared to their molecular form at pH 6, which was related to the surface activity of different forms. The adhesion energy measured in solution is much lower than that in air, indicating that the solvent exerts an important influence on the interactions of organic molecules with mineral surfaces. The results provide useful information on the fundamental understanding of surface interactions and adhesion energy of organic

  6. Effect of Surface Roughness and Structure Features on Tribological Properties of Electrodeposited Nanocrystalline Ni and Ni/Al2O3 Coatings

    Science.gov (United States)

    Góral, Anna; Lityńska-Dobrzyńska, Lidia; Kot, Marcin

    2017-05-01

    Metal matrix composite coatings obtained by electrodeposition are one of the ways of improving the surfaces of materials to enhance their durability and properties required in different applications. This paper presents an analysis of the surface topography, microstructure and properties (residual stresses, microhardness, wear resistance) of Ni/Al2O3 nanocomposite coatings electrodeposited on steel substrates from modified Watt's-type baths containing various concentrations of Al2O3 nanoparticles and a saccharin additive. The residual stresses measured in the Ni/Al2O3 coatings decreased with an increasing amount of the co-deposited ceramics. It was established that the addition of Al2O3 powder significantly improved the coatings' microhardness. The wear mechanism changed from adhesive-abrasive to abrasive with a rising amount of Al2O3 particles and coating microhardness. Nanocomposite coatings also exhibited a lower coefficient of friction than that of a pure Ni-electrodeposited coating. The friction was found to depend on the surface roughness, and the smoother surfaces gave lower friction coefficients.

  7. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Microstructure and surface properties of fibrous and ground cellulosic substrates.

    Science.gov (United States)

    Csiszár, Emília; Fekete, Erika

    2011-07-05

    Cotton and linen fibers were ground in a ball-mill, and the effect of grinding on the microstructure and surface properties of the fibers was determined by combining a couple of simple tests with powerful techniques of surface and structure analysis. Results clearly proved that the effect of grinding on cotton fiber was much less severe than on linen. For both fibers, the degree of polymerization reduced (by 14.5% and 30.5% for cotton and linen, respectively) with a simultaneous increase in copper number. The increased water sorption capacity of the ground substrates was in good agreement with the X-ray results, which proved a less perfect crystalline structure in the ground samples. Data from XPS and SEM-EDS methods revealed that the concentration of oxygen atoms (bonded especially in acetal and/or carbonyl groups) on the ground surfaces increased significantly, resulting in an increase in oxygen/carbon atomic ratio (XPS data: from 0.11 to 0.14 and from 0.16 to 0.29 for cotton and linen, respectively). Although grinding created new surfaces rich in O atoms, the probable higher energy of the surface could not be measured by IGC, most likely due to the limited adsorption of the n-alkane probes on the less perfect crystalline surfaces. © 2011 American Chemical Society

  9. Effect of ultrasound treatment on steady and dynamic shear properties of glucomannan based salep dispersions: optimization of amplitude level, sonication time and temperature using response surface methodology.

    Science.gov (United States)

    Karaman, Safa; Yilmaz, Mustafa Tahsin; Ertugay, Mustafa Fatih; Baslar, Mehmet; Kayacier, Ahmed

    2012-07-01

    The present study investigated effect of different amplitude levels (40, 70 and 100%), sonication temperatures (40, 50 and 60°C) and exposure times (3, 7 and 11 min) on steady shear properties; apparent viscosity (η), shear stress (σ), consistency coefficient (K), flow behavior index (n) and dynamic shear properties; storage modulus (G'), loss modulus (G″), complex viscosity (η(∗)), complex modulus (G(∗)) and loss tangent (tan δ) values of glucomannan based salep solution (SS) and salep drink (SD) samples. In addition, the steady and dynamic shear properties were optimized using ridge analysis in terms of amplitude level, sonication temperature and exposure times levels. Increasing amplitude level and sonication time decreased considerably the η, σ, K, G', G″ and η* values of salep dispersions (SS and SD samples). However, sonication temperature did not have a remarkable effect on these properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  11. Ice sintering timescales at the surface of Europa and implications for surface properties

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Meirion-Griffith, G.

    2017-12-01

    The planned exploration of Europa by NASA's Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa's landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a "neck" between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa's subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts. Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa's surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa's surface age, suggesting that loose surface ice

  12. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory

    Directory of Open Access Journals (Sweden)

    Celeste Wieting

    2017-10-01

    New hydrological insights for the region: Soils burned to high temperatures became more homogeneous with depth with respect to total organic carbon and bulk density, suggesting reductions in near-surface porosity. Organic matter decreased significantly with increasing soil temperature. Tension infiltration experiments suggested a decrease in infiltration rates from unburned to low-temperature burned soils, and an increase in infiltration rates in high-temperature burned soils. Non-parametric statistical tests showed that field-saturated hydraulic conductivity similarly decreased from unburned to low-temperature burned soils, and then increased with high-temperature burned soils. We interpret these changes result from the combustion of surface and near-surface organic materials, enabling water to infiltrate directly into soil instead of being stored in the litter and duff layer at the surface. Together, these results indicate that fire-induced changes in soil properties from low temperatures were not as drastic as high temperatures, but that reductions in surface soil water repellency in high temperatures may increase infiltration relative to low temperatures.

  13. Long-term effects of CuO nanoparticles on the surface physicochemical properties of biofilms in a sequencing batch biofilm reactor.

    Science.gov (United States)

    Hou, Jun; You, Guoxiang; Xu, Yi; Wang, Chao; Wang, Peifang; Miao, Lingzhan; Li, Yi; Ao, Yanhui; Lv, Bowen; Yang, Yangyang

    2016-11-01

    In this study, we examined the long-term effects of copper oxide nanoparticles (CuO NPs) on the production and properties of EPS and the resulting variations in surface physicochemical characteristics of biofilms in a sequencing batch biofilm reactor. After exposure to 50 mg/L CuO NPs for 45 days, the protein (PRO) and polysaccharide (PS) contents in loosely bound EPS (LB-EPS) decreased as the production of LB-EPS decreased from 34.4 to 30 mg TOC/g EPS. However, the production of tightly bound EPS (TB-EPS) increased by 16.47 % as the PRO and PS contents increased. The content of humic-like substances (HS) increased significantly, becoming the predominant constituent in EPS with the presence of 50 mg/L CuO NPs. Furthermore, the results of three-dimensional excitation-emission fluorescence spectra confirmed the various changes in terms of the LB-EPS and TB-EPS contents after exposure to CuO NPs. Fourier transform infrared spectroscopy showed that the -OH and -NH 2 groups of proteins in EPS were involved in the reaction with CuO NPs. Moreover, the chronic exposure to CuO NPs induced a negative impact on the flocculating efficiency of EPS and on the hydrophobicity and aggregation ability of microbial cells. The PRO/PS ratios of different EPS fractions were consistent with their hydrophobicities (R 2 >0.98) and bioflocculating efficiencies (R 2 >0.95); however, there was no correlation with aggregation ability. Additionally, the presence of bovine serum albumin (BSA) prevented the physical contact between CuO NPs and EPS as a result of NP aggregation and electrostatic repulsion.

  14. The effect of Ni pre-implantation on surface morphology and optical absorption properties of Ag nanoparticles embedded in SiO2

    International Nuclear Information System (INIS)

    Shen, Yanyan; Qi, Ting; Qiao, Yu; Yu, Shengwang; Hei, Hongjun; He, Zhiyong

    2016-01-01

    Graphical abstract: - Highlights: • Ag concentration increased significantly due to the Ni pre-implantation. • Deposition and accumulation process of Ag atoms depends on Ni fluences. • The incorporation of Ni elements in Ag NPs can damp SPR absorption intensity. • AgNi alloy NPs embedded in SiO 2 have been created by sequentially implantation. • Unique SPR absorption with dual peaks centered at 406 nm and 563 nm was observed. - Abstract: The effect of Ni ion fluence on Ag nucleation and particle growth was investigated by sequentially implantation of 60 keV Ni ions at fluences of 1 × 10 16 , 5 × 10 16 , 1 × 10 17 ions/cm 2 and 70 keV Ag ions at a fluence of 5 × 10 16 ions/cm 2 . Due to the modification of the deposition and accumulation process of Ag implants caused by Ni pre-implantation, the surface morphology, structures, and optical absorption properties of the Ag nanoparticles (NPs) depends strongly on the Ni fluences. UV–vis absorption spectroscopy study showed that the introducing of Ni atoms lead to intensity decrease in the Ag SPR band. Remarkable local concentration increase of Ag profiles appeared for the sample pre-implanted by Ni ions of 5.0 × 10 16 ions/cm 2 . In particular, the AgNi alloy NPs with dual absorption peaks centered at 406 nm and 563 nm have been formed after 600 °C annealing in Ar atmosphere. However, at a low fluence of 1.0 × 10 16 ions/cm 2 , only small increase of the local Ag concentration than the Ag ions singly implanted sample can be observed. At a high fluence of 1.0 × 10 17 ions/cm 2 , lots Ag atoms are trapped close to the surface, which result in heavy sputtering loss of Ag atoms and the sublimation of Ag atoms after 600 °C annealing.

  15. Molecular structures of (3-aminopropyl)trialkoxysilane on hydroxylated barium titanate nanoparticle surfaces induced by different solvents and their effect on electrical properties of barium titanate based polymer nanocomposites

    International Nuclear Information System (INIS)

    Fan, Yanyan; Wang, Guanyao; Huang, Xingyi; Bu, Jing; Sun, Xiaojin; Jiang, Pingkai

    2016-01-01

    Graphical abstract: - Highlights: • The silanization on the surface of hydroxylated barium titanate nanoparticles was introduced by using two kinds of trialkoxysilanes with different solvents (toluene and ethanol), respectively. • Solvents have more remarkable impact on the dielectric properties of the subsequent BT/PVDF nanocomposites than the types of silanes. • The solvents used for BT nanoparticle surface modification exhibit a significant effect on the breakdown strength of the nanocomposites. - Abstract: Surface modification of nanoparticles by grafting silane coupling agents has proven to be a significant approach to improve the interfacial compatibility between inorganic filler and polymer matrix. However, the impact of grafted silane molecular structure after the nanoparticle surface modification, induced by the utilized solvents and the silane alkoxy groups, on the electrical properties of the corresponding nanocomposites, has been seldom investigated. Herein, the silanization on the surface of hydroxylated barium titanate (BT-OH) nanoparticles was introduced by using two kinds of trialkoxysilane, 3-aminopropyltriethoxysilane (AMEO) and 3-aminopropyltrimethoxysilane (AMMO), with different solvents (toluene and ethanol), respectively. Solid-state 13 C, 29 Si nuclear magnetic resonance (NMR) spectroscopy and high-resolution X-ray photoelectron spectroscopy (XPS) were employed to validate the structure differences of alkoxysilane attachment to the nanoparticles. The effect of alkoxysilane structure attached to the nanoparticle surface on the dielectric properties of the BT based poly(vinylidene fluoride) (PVDF) nanocomposites were investigated. The results reveal that the solvents used for BT nanoparticle surface modification exhibit a significant effect on the breakdown strength of the nanocomposites. Nevertheless, the alkoxy groups of silane show a marginal influence on the dielectric properties of the nanocomposites. These research results provide

  16. Effect of partial or complete elimination of light-harvesting complexes on the surface electric properties and the functions of cyanobacterial photosynthetic membranes.

    Science.gov (United States)

    Dobrikova, Anelia G; Domonkos, Ildikó; Sözer, Özge; Laczkó-Dobos, Hajnalka; Kis, Mihály; Párducz, Árpád; Gombos, Zoltán; Apostolova, Emilia L

    2013-02-01

    Influence of the modification of the cyanobacterial light-harvesting complex [i.e. phycobilisomes (PBS)] on the surface electric properties and the functions of photosynthetic membranes was investigated. We used four PBS mutant strains of Synechocystis sp. PCC6803 as follows: PAL (PBS-less), CK (phycocyanin-less), BE (PSII-PBS-less) and PSI-less/apcE(-) (PSI-less with detached PBS). Modifications of the PBS content lead to changes in the cell morphology and surface electric properties of the thylakoid membranes as well as in their functions, such as photosynthetic oxygen-evolving activity, P700 kinetics and energy transfer between the pigment-protein complexes. Data reveal that the complete elimination of PBS in the PAL mutant causes a slight decrease in the electric dipole moments of the thylakoid membranes, whereas significant perturbations of the surface charges were registered in the membranes without assembled PBS-PSII macrocomplex (BE mutant) or PSI complex (PSI-less mutant). These observations correlate with the detected alterations in the membrane structural organization. Using a polarographic oxygen rate electrode, we showed that the ratio of the fast to the slow oxygen-evolving PSII centers depends on the partial or complete elimination of light-harvesting complexes, as the slow operating PSII centers dominate in the PBS-less mutant and in the mutant with detached PBS. Copyright © Physiologia Plantarum 2012.

  17. Influence of surface roughness on the friction property of textured surface

    Directory of Open Access Journals (Sweden)

    Yuankai Zhou

    2015-02-01

    Full Text Available In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in the computation. The numerical simulation results suggest that there is an optimum dimensionless surface roughness, and near this value, the maximum load-bearing capacity can be achieved. The load-bearing capacity is determined by the surface texture, the surface roughness, and the interaction between them. To get information of friction coefficient, the experiments were conducted. This experiment was used to evaluate the simulation. The experimental results show that for the frequency of 4 and 6 Hz, friction coefficient decreases at first and then increases with decreasing surface roughness, which indicates that there exists the optimum region of surface roughness leading to the best friction reduction effect, and it becomes larger when area fractions increase from 2% to 10%. The experimental results agree well with the simulation results.

  18. Effects of using silica fume and polycarboxylate-type superplasticizer on physical properties of cementitious grout mixtures for semiflexible pavement surfacing.

    Science.gov (United States)

    Koting, Suhana; Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S; Ibrahim, Mohd Rasdan; Katman, Herdayati; Husain, Nadiah Md

    2014-01-01

    Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.

  19. Effects of Using Silica Fume and Polycarboxylate-Type Superplasticizer on Physical Properties of Cementitious Grout Mixtures for Semiflexible Pavement Surfacing

    Directory of Open Access Journals (Sweden)

    Suhana Koting

    2014-01-01

    Full Text Available Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.

  20. Effect of growth at low pH on the cell surface properties of a typical strain of Lactobacillus casei group.

    Science.gov (United States)

    Hossein Nezhad, M; Stenzel, Dj; Britz, Ml

    2010-09-01

    Although members of the Lactobacillus casei group are known to survive under acidic conditions, the underlying mechanisms of growth at acidic condition and the impact of low pH on the relative level of protein expression at the cell surface remain poorly studied. After confirming the taxonomy of L. casei strain GCRL 12 which was originally isolated from cheese and confirmed by 16S rRNA sequence analysis, the impact of acidic pH on growth rate was determined. Late log-phase cells cultured at pH 4.0 showed obvious changes in Gram staining properties while transmission electron microscopy analysis revealed evidence of structural distortions of the cell surface relative to the controls cultured at pH 6.5. When comparing cytosolic or whole cell preparations on SDS-PAGE, few changes in protein profiles were observed under the two growth conditions. However, analysis of surface protein extracted by 5M LiCl demonstrated changes in the proportions of proteins present in the molecular weight range of 10 to 80 kDa, with some proteins more dominant at pH 6.5 and other at pH 4. These data suggest that surface proteins of this strain are associated with growth and survival at low pH. The function of these proteins is subject to further investigation.

  1. Effect of the La(OH){sub 3} preparation method on the surface and rehydroxylation properties of resulting La{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, M. [Univ. Rovira i Virgili (URV), Departament de Quimica Fisica i Inorganica, Centre EmaS (Spain); Carvajal, J. J. [Univ. Rovira i Virgili (URV), Fisica i Cristallografia de Materials i Nanomaterials (FICMA-FiCNA), Centre EmaS (Spain); Marsal, L. F. [Univ. Rovira i Virgili (URV), Departament d' Enginyeria Electronica, Centre EmaS (Spain); Salagre, P. [Univ. Rovira i Virgili (URV), Departament de Quimica Fisica i Inorganica, Centre EmaS (Spain); Aguilo, M.; Diaz, F. [Univ. Rovira i Virgili (URV), Fisica i Cristallografia de Materials i Nanomaterials (FICMA-FiCNA), Centre EmaS (Spain); Formentin, P.; Pallares, J. [Univ. Rovira i Virgili (URV), Departament d' Enginyeria Electronica, Centre EmaS (Spain); Cesteros, Y., E-mail: yolanda.cesteros@urv.cat [Univ. Rovira i Virgili (URV), Departament de Quimica Fisica i Inorganica, Centre EmaS (Spain)

    2013-03-15

    Several lanthanum hydroxides (28-146 m{sup 2}/g) were prepared by different procedures involving precipitation and hydrothermal methods by conventional heating or with microwaves. The use of ultrasounds during precipitation led to the formation of additional crystalline phases whereas the aging treatment with microwaves decreased the temperature needed to form the lanthanum oxide phase when compared with the samples aged by conventional heating. After calcination, La{sub 2}O{sub 3} samples showed similar BET surface areas (3-5 m{sup 2}/g) but different particle sizes ranging from 150 to 600 nm depending on the La(OH){sub 3} preparation method, as observed by TEM. La{sub 2}O{sub 3} samples were completely rehydroxylated after 80 h of exposure to atmospheric air at controlled humidity conditions recovering only partially the surface areas of the La(OH){sub 3} precursors (14-18 m{sup 2}/g). The progress of rehydroxylation with time occurred in several steps at different rates. Rehydroxylation rate mainly depended on the particle size and surface area of the lanthanum oxide sample. Therefore, the method used to prepare the initial lanthanum hydroxide affects the surface and rehydroxylation properties of the subsequent lanthanum oxide sample.

  2. Effect of surface modification and hybridization on dynamic ...

    Indian Academy of Sciences (India)

    The paper evaluates effect of fibre surface modification and hybridization on dynamic mechanical properties of Roystonea regia/epoxy composites. Surface modification involved alkali and silane treatments. Alkali treatment proved to be more effective on dynamic mechanical properties as compared to silane treatment.

  3. Surface and interface effects in VLSI

    CERN Document Server

    Einspruch, Norman G

    1985-01-01

    VLSI Electronics Microstructure Science, Volume 10: Surface and Interface Effects in VLSI provides the advances made in the science of semiconductor surface and interface as they relate to electronics. This volume aims to provide a better understanding and control of surface and interface related properties. The book begins with an introductory chapter on the intimate link between interfaces and devices. The book is then divided into two parts. The first part covers the chemical and geometric structures of prototypical VLSI interfaces. Subjects detailed include, the technologically most import

  4. The Effect of Sputtering Parameters and Doping of Copper on Surface Free Energy and Magnetic Properties of Iron and Iron Nitride Nano Thin Films on Polymer Substrate

    Directory of Open Access Journals (Sweden)

    Waheed Khan

    2017-02-01

    Full Text Available The objective of this study was to deposit thin films on PET polymer substrate and examine the functional properties systematically. Their properties have been studied as a function of the N2-Ar flow rates, deposition time span and Cu doping. Iron nitride film deposited on both sides exhibits ferromagnetic phases, γ′-Fe4N and ε-Fe3N co-existed, shows negligible magnetic anisotropy. Other samples show the evolution of N-rich (FeN, Fe2N and N-poor (Fe16N2, Fe3N, Fe4N phases under different deposition time conditions. XPS analysis and free energy calculations confirmed that co-sputtered Fe-Cu thin films are more stable than layer deposited counterparts. From VSM results it is evident that the dominant phase, changes steadily from the ferromagnetic α-Fe (N to the paramagnetic ξ-Fe2N with the increase of nitrogen flow rates and the ordering of the nitrogen atoms. Binding energy increases steadily from 733 eV to 740 eV with the increasing thickness of thin films from 74 nm to 94 nm. It was observed that surface energy decreases as the contact angle of glycol increases and changes the thin film surface from polar to nonpolar. TEM images indicate that cubic γ′-Fe4N and ε-Fe3N nano particles oriented in preferred directions dispersed uniformly in the amorphous iron nitride matrix.

  5. Physical-chemical properties of the surface of B2O3-P2O5-MeOx/SiO2 catalysts and its effect on the parameters of the process of aldol condensation of propionic acid with formaldehyde

    International Nuclear Information System (INIS)

    Yivasyiv, V.V.; Pyikh, Z.G.; Zhiznevs'kij, V.M.; Nebesnij, R.V.

    2011-01-01

    Effect of catalyst B 2 O 3 -P 2 O 5 -MeO x /SiO 2 composition on its physical-chemical properties has been investigated. Relations between physical-chemical and catalytic properties of catalysts in the gas-phase reaction of propionic acid with formaldehyde to methacrylic acid have been found. Effect of the specific surface area and the specific surface acidity on the propionic acid conversion has been determined. Effect of the acidic active site's strength on the selectivity of reaction products has been determined. It has been pointed that methacrylic acid is formed on the moderate strength acidic active sites, whereas the by-product (diethyl ketone) - on the strong acidic active sites of the catalyst.

  6. Modification of surface properties of copper-refractory metal alloys

    Science.gov (United States)

    Verhoeven, J.D.; Gibson, E.D.

    1993-10-12

    The surface properties of copper-refractory metal (CU-RF) alloy bodies are modified by heat treatments which cause the refractory metal to form a coating on the exterior surfaces of the alloy body. The alloys have a copper matrix with particles or dendrites of the refractory metal dispersed therein, which may be niobium, vanadium, tantalum, chromium, molybdenum, or tungsten. The surface properties of the bodies are changed from those of copper to that of the refractory metal.

  7. The Surface Chemical Properties of Novel High Surface Area Solids ...

    African Journals Online (AJOL)

    during zeolite synthesis.22 Because raw fly ash has large quanti- ties of a host of elements, many of these will act as nucleation sites, which results in many small crystals rather than a few large ones. Acid etching removed the needle-like structures on the particle surfaces, revealing a porous underlying structure. (Fig. 1c).

  8. Surface Properties of Photo-Oxidized Bituminous Coals: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Natural weathering has a detrimental effect on the hydrophobic nature of coal, which in turn can influence clean-coal recovery during flotation. Few techniques are available that can establish the quality of coal surfaces and that have a short analysis time to provide input for process control. Luminescence emissions which can be quantified with an optical microscope and photometer system, are measurably influenced by degree of weathering as well as by mild storage deterioration. In addition, it has been shown that when vitrinite is irradiated with a relatively high intensity flux of violet- or ultraviolet- light in the presence of air, photo-oxidation of the surface occurs. The combination of measuring the change in luminescence emission intensity with degree of surface oxidation provided the impetus for the current investigation. The principal aim of this research was to determine whether clear correlations could be established among surface oxygen functionality, hydrophobicity induced by photo-oxidation, and measurements of luminescence intensity and alteration. If successful, the project would result in quantitative luminescence techniques based on optical microscopy that would provide a measure of the changes in surface properties as a function of oxidation and relate them to coal cleanability. Two analytical techniques were designed to achieve these goals. Polished surfaces of vitrain bands or a narrow size fraction of powdered vitrain concentrates were photo-oxidized using violet or ultraviolet light fluxes and then changes in surface properties and chemistry were measured using a variety of near-surface analytical techniques. Results from this investigation demonstrate that quantitative luminescence intensity measurements can be performed on fracture surfaces of bituminous rank coals (vitrains) and that the data obtained do reveal significant variations depending upon the level of surface oxidation. Photo-oxidation induced by violet or ultraviolet light

  9. Antifouling polymer brushes displaying antithrombogenic surface properties

    Czech Academy of Sciences Publication Activity Database

    de los Santos Pereira, Andres; Sheikh, S.; Blaszykowski, C.; Pop-Georgievski, Ognen; Fedorov, K.; Thompson, M.; Rodriguez-Emmenegger, Cesar

    2016-01-01

    Roč. 17, č. 3 (2016), s. 1179-1185 ISSN 1525-7797 R&D Projects: GA ČR(CZ) GJ15-09368Y; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : polymer brushes * surface characterization * antifouling surfaces Subject RIV: BO - Biophysics Impact factor: 5.246, year: 2016

  10. Nonlinear mean field theory for nuclear matter and surface properties

    International Nuclear Information System (INIS)

    Boguta, J.; Moszkowski, S.A.

    1983-01-01

    Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)

  11. Surface Properties of Metal Hydroxide Microparticles in the Ambient Air

    Directory of Open Access Journals (Sweden)

    Zakharenko Valery

    2017-01-01

    Full Text Available The adsorption and photoadsorption properties of Mg(OH2 and Ca(OH2 microparticles in the ambient air were investigated. The compositional analysis of an adsorption layer of microparticles was carried out. The kinetics of photodesorption of molecules from microcrystal surfaces and the interaction of HCFC-22 (CHF2Cl in the dark and under light were studied. Quantum yields and their spectral dependencies were determined for CO2 photodesorption, O2 and CO photoadsorption. The effect of weakly bound CO displacement from the surface of microparticles was revealed during dark adsorption of HCFC-22. It is supposed that adsorbed CO is formed as a result of atmospheric CO2 reduction after the break of Mg—OH bonds. In case of calcium hydroxide, CO is generated during the interaction of calcium hydroxide with carbon dioxide in the presence of water.

  12. Effects of Irradiation with Ions and Photons in Ultraviolet-Vacuum Ultraviolet Regions on Nano-Surface Properties of Polymers Exposed to Plasmas

    Science.gov (United States)

    Cho, Ken; Takenaka, Kosuke; Setsuhara, Yuichi; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2012-01-01

    The interactions of ions and photons in ultraviolet (UV) and vacuum ultraviolet (VUV) regions from argon plasmas with polymer surfaces were investigated by of depth analysis of chemical bonding states in the nano-surface layer of poly(ethylene terephthalate) (PET) films via conventional X-ray photoelectron spectroscopy (XPS) and hard X-ray photoelectron spectroscopy (HXPES). The PET films were exposed to argon plasmas by covering the PET films with MgF2 and quartz windows as optical filters to compare the irradiation effects with ions and photons. The conventional XPS results indicated that oxygen functionalities (the C-O bond and the O=C-O bond) were degraded by ion bombardment in the shallower region up to about 10 nm from the surface, whereas the effect of photoirradiation in the UV and VUV regions was insignificant. The HXPES analysis showed that irradiation with ions and photons did not cause serious damage in chemical bonding states in the deeper region up to about 50 nm from the surface.

  13. Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface.

    Science.gov (United States)

    Wan, S J; Wang, L; Xu, X J; Zhao, C H; Liu, X D

    2014-02-14

    Surface modification by grafting polymers on solid materials is an important strategy used to improve surface properties. This article reports that under appropriate conditions, very thin layers with desired morphologies may be constructed on a plasma-treated substrate by feeding a small quantity of a monomer with a mist stream carrying droplets produced from monomer solutions. We investigate the effects of process parameters that affect layer morphology, including exposure time to the mist stream, concentration of the monomer solution, and solvent selectivity. For a methyl methacrylate solution in ethanol, nanoparticles are uniformly grown with increasing monomer concentration or exposure time and finally form a porous layer at 3.65 mol L(-1) for 30 min. Decreasing solvent polarity not only affects surface morphology, but also increases hydrophobicity of the resulting surface. With 2,2,3,4,4,4-hexafluorobutyl methacrylate as the monomer, SEM and AFM micrographs indicated that mist polymerization results in numerous microspheres on the activated surface. These experimental results were interpreted by a mechanism in terms of an in situ polymerization accompanied by a phase transformation of the resulting polymer. Specifically, plasma treatment provides highly active cations and radicals to initiate very rapid polymerization, and the resulting polymers are consequently deposited from the liquid onto the surface under phase transition mechanisms.

  14. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.

    2005-11-15

    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  15. Composition and physical properties of Enceladus' surface

    Science.gov (United States)

    Brown, R.H.; Clark, R.N.; Buratti, B.J.; Cruikshank, D.P.; Barnes, J.W.; Mastrapa, R.M.E.; Bauer, J.; Newman, S.; Momary, T.; Baines, K.H.; Bellucci, G.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Drossart, P.; Formisano, V.; Jaumann, R.; Langavin, Y.; Matson, D.L.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe

    2006-01-01

    Observations of Saturn's satellite Enceladus using Cassini's Visual and Infrared Mapping Spectrometer instrument were obtained during three flybys of Enceladus in 2005. Enceladus' surface is composed mostly of nearly pure water ice except near its south pole, where there are light organics, CO2, and amorphous and crystalline water ice, particularly in the region dubbed the "tiger stripes." An upper limit of 5 precipitable nanometers is derived for CO in the atmospheric column above Enceladus, and 2% for NH 3 in global surface deposits. Upper limits of 140 kelvin (for a filled pixel) are derived for the temperatures in the tiger stripes.

  16. Manganese phospate physical chemistry and surface properties

    International Nuclear Information System (INIS)

    Najera R, N.; Romero G, E. T.

    2008-01-01

    This paper presents the methodology for the manganese phosphate (III) synthesis (MnP0 4 H 2 0) from manganese chloride. The physicochemical characterization was carried out by: X-ray diffraction, scanning electron microscopy, infrared analysis and thermal gravimetric analysis. The surface characterization is obtained through the determination of surface area, point of zero charge and kinetics of moisture. As a phosphate compound of a metal with low oxidation state is a promising compound for removal pollutants from water and soil, can be used for the potential construction of containment barriers for radioactive wastes. (Author)

  17. Surface property modification of coatings via self-stratification

    Science.gov (United States)

    Pieper, Robert Joseph

    Biological fouling occurs everywhere in the marine environment and is a significant problem for marine vessels. Anti-fouling coatings have been used effectively to prevent fouling; however, these coatings harm non-targeted sea-life. Fouling-release coatings (FRC) appear to be an alternative way to combat fouling. FRC do not necessarily prevent the settlement of marine organisms but rather allow their easy removal with application of shear to the coatings surface. These coatings must be non-toxic, non-leaching, have low surface energy, low modulus, and durability to provide easy removal of marine organisms. Here the goal is to develop FRC based on thermosetting siloxane-polyurethane, amphiphilic polyurethane, and zwitterionic/amphiphilic polyurethane systems. A combinatorial high-throughput approach has been taken in order to explore the variables that may affect the performance of the final coatings. Libraries of acrylic polyols were synthesized using combinatorial high-throughput techniques by either batch or semi-batch processes. The design of the experiments for the batch and semi-batch processes were done combinatorially to explore a range of compositions and various reaction process variables that cannot be accomplished or are not suitable for single reaction experiments. Characterization of Rapid-GPC, high-throughput DSC, and gravimetrically calculated percent solids verified the effects of different reaction conditions on the MW, glass transition temperatures, and percent conversion of the different compositions of acrylic polyols. Coatings were characterized for their surface energy, pseudobarnacle pull-off adhesion, and were subjected to bioassays including marine bacteria, algae, and barnacles. From the performance properties results the acrylic polyol containing 20% hydroxyethyl acrylate and 80% butyl acrylate was selected for further siloxane-polyurethane formulations and were subjected to the same physical, mechanical, and performance testing

  18. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    Science.gov (United States)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  19. surface properties of electrochemically reduced viscose rayon ...

    African Journals Online (AJOL)

    DJFLEX

    A viscose rayon based activated carbon cloth (ACC) was electrochemically reduced under a wide ... Electrochemical reduction resulted in a loss of 28% BET surface .... electrodes. As shown in. Figure 1. Schematic of the electrochemical cell used for electrochemical reduction. Figure 1, the anodes were placed at equal.

  20. SURFACE PROPERTIES AND CATALYTIC PERFORMANCE OF Pt ...

    African Journals Online (AJOL)

    Perovskite-type La2 –xSrxCoO4 mixed oxides have been prepared by calcination at various temperatures of precipitates obtained from aqueous solutions in the presence of citric or ethylenediamintetraacetic (EDTA) acids, and have been studied by X-ray diffraction (XRD), surface area (BET) measurements, temperature ...

  1. Wetting Properties of Molecularly Rough Surfaces

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Martin; Malijevský, Alexandr; Lísal, Martin

    2015-01-01

    Roč. 143, č. 10 (2015), s. 104701 ISSN 0021-9606 R&D Projects: GA ČR GA13-09914S; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : contant-angle * solid-surface * dynamics Subject RIV: BJ - Thermodynamics Impact factor: 2.894, year: 2015

  2. Effect of temperature on magnetic and impedance properties of Fe3BO6 of nanotubular structure with a bonded B2O3 surface layer

    Science.gov (United States)

    Kumari, Kalpana; Ram, S.; Kotnala, R. K.

    2018-03-01

    In this investigation, we explore a facile synthesis of Fe3BO6 in the form of small crystallites in the specific shape of nanotubes crystallized from a supercooled liquid Fe2O3-B2O3 precursor. This study includes high resolution transmission electron microscopy (HRTEM) images, magnetic, optical, and impedance properties of the sample. HRTEM images reveal small tubes of Fe3BO6 of 20 nm diameter. A well resolved hysteresis loop appears at 5 K in which the magnetization does not saturate even up to as high field as 50 kOe. It means that the Fe3BO6 nanotubes behave as highly antiferromagnetic in nature in which the surface spins do not align along the field so easily. The temperature dependent impedance describes an ionic Fe3BO6 conductor with a reasonably small activation energy Ea ˜ 0.33 eV. Impedance formalism in terms of a Cole-Cole plot shows a deviation from an ideal Debye-like behavior. We have also reported that electronic absorption spectra are over a spectral range 200-800 nm of wavelengths in order to find out how a bonded surface layer present on the Fe3BO6 crystallites tunes the 3d → 3d electronic transitions in Fe3+ ions.

  3. Sputtering properties of tungsten 'fuzzy' surfaces

    International Nuclear Information System (INIS)

    Nishijima, D.; Baldwin, M.J.; Doerner, R.P.; Yu, J.H.

    2011-01-01

    Sputtering yields of He-induced W 'fuzzy' surfaces bombarded by Ar have been measured in the linear divertor plasma simulator PISCES-B. It is found that the sputtering yield of a fuzzy surface, Y fuzzy , decreases with increasing fuzzy layer thickness, L, and saturates at ∼10% of that of a smooth surface, Y smooth , at L > 1 μm. The reduction in the sputtering yield is suspected to be due mainly to the porous structure of fuzz, since the ratio, Y fuzzy /Y smooth follows (1 - p fuzz ), where p fuzz is the fuzz porosity. Further, Y fuzzy /Y smooth is observed to increase with incident ion energy, E i . This may be explained by an energy dependent change in the angular distribution of sputtered W atoms, since at lower E i , the angular distribution is observed to become more butterfly-shaped. That is, a larger fraction of sputtered W atoms can line-of-sight deposit/stick onto neighboring fuzz nanostructures for lower E i butterfly distributions, resulting in lower ratio of Y fuzzy /Y smooth .

  4. Influence of surface activated carbon nano fibres on mechanical properties of poly ether ketone (PEK)

    Science.gov (United States)

    Ajeesh, G.; Bhowmik, S.; Sivakumar, V.; Varshney, L.

    2017-05-01

    This investigation highlights different surface functionalization processes of Carbon Nano Fibres (CNF’s) and their effects on mechanical properties of Polyetherketone (PEK) nano composite. Surfaces of CNF’s were modified by low pressure plasma process. There is a significant change in physico-chemical characteristics of CNF’s after low plasma treatment as evident from Transmission Electron Microscopy (TEM) and Fourier Transform infrared Spectroscopic (FTIR) studies. Significant modification in surface morphology and oxygen functionalities are observed as a result of surface modification. There is a significant increase in mechanical properties of high performance polymeric nano composites when surface functionalized CNF’s are dispersed in polymeric matrix.

  5. Effect of Wood Flour Addition on the Pore Volume and BET Surface Area Properties of the Prepared Gamma Alumina (ɤ-Al2O3 Extrudates Used in Catalyst Carriers

    Directory of Open Access Journals (Sweden)

    Alaa D. Jawad Al-Bayati

    2015-11-01

    Full Text Available The effect of Wood Flour addition to the gamma alumina powder used in the preparation of gamma alumina (ɤ-Al2O3 catalyst carrier extrudates on the pore volume and BET surface area physical properties was investigated. Two parameters which are size of wood flour particles and its quantity were studied. The sizes of wood flour particles used are 150 µm, 212 µm and 500 µm and the weight percentage added to the gamma alumina powder during the preparation of the extrudates are (1%, 3%, 5% and 10%. The results showed that the addition of wood flour to the gamma alumina powder in order to get gamma alumina extrudates used as catalyst carrier is one of the successful methods to improve the pore volume and BET surface area of the alumina extrudates. The size of wood flour particles and its quantity have main effect on the above texture properties. The smaller the size of wood flour leaded to higher BET surface area, where maximum BET surface area of 127.3 m2/g was got with addition 10% by weight wood flour of 150µm particle size. BET surface area for the same addition percentage of 10% resulted to 114.5m2/g and 105.2m2/g when adding wood flour of 212 µm and 500 µm particle sizes respectively. The weight percentage of wood flour addition has an effect on the BET surface area, where the 3% addition gives maximum BET surface area when the size of the wood flour particles is 500 µm. Regarding the pore volume property for the gamma alumina prepared extrudates, the results showed that the pore volume of the extrudates increased to 0.83 cm3/g and 1.0 cm3/g when 10% wood flour of 150 µm and 500 µm particle sizes were added respectively. The maximum BET surface area was reached when 10% wood flour of 150 µm particle size was added, and the maximum pore volume was reached when 10% wood flour of 500 µm particle size was added, the increase percentage for the BET surface area and pore volume is more than 40% and 400% respectively.

  6. Surface conditions and viscoelastic properties of the denture liner Permaflex.

    Science.gov (United States)

    Buch, D; Beal, Y

    1995-01-01

    This in vitro study evaluated the viscoelastic properties of Permaflex compared to other soft lining materials. The surface condition of this material was also investigated under both laboratory and simulated clinical conditions and with and without the application of a varnish. The tests provided practical instructions for the use of Permaflex, which showed good adaptive properties to stress and surface condition initially and after adjustment.

  7. The opposition effect in Saturn's main rings as seen by Cassini ISS: 4. Correlations of the surge morphology with surface albedos and VIMS spectral properties

    Science.gov (United States)

    Déau, Estelle; Dones, Luke; Mishchenko, Michael I.; West, Robert A.; Helfenstein, Paul; Hedman, Matt M.; Porco, Carolyn C.

    2018-05-01

    In this paper, we continue our analysis of the saturnian ring opposition effect seen by Cassini ISS. The ring opposition effect is a peak in the rings' reflectivity caused as the directions from a spot on the rings to the observer and to the light source, respectively, converge toward zero degrees. So far, the exact origin of the ring's opposition effect is still a matter of debate. In our previous work (Déau, et al., 2013, Icarus, 226, 591-603), we compared the opposition effect morphology with the rings' optical depth and found that only the slope of the linear part of the rings' phase curves was strongly correlated with the optical depth. We interpreted this as an indication of the predominant role of interparticle shadowing at moderate phase angles (α ∼ 10-40o). More recently (Déau, 2015, Icarus, 253, 311-345), we showed that interparticle shadowing cannot explain the behavior at low phase angles (α microscopic scale of the regolith, and there is a growing body of evidence that regolith grain size, porosity, roughness, and composition control the opposition surge behavior for α < 1o. To test this hypothesis, we compare the opposition surge morphology to the regolith albedo and other spectral properties related to the regolith, such as water ice band depths and spectral slopes derived from Cassini VIMS data (Hedman et al., 2013, Icarus, 223, 105-130). Indeed, it has been recently proven that coherent backscattering affects the water ice band depth variations with phase angle for icy saturnian regoliths (Kolokolova et al., 2010, The Astrophysical Journal Letters, 711, L71-L74). We find that the opposition surge morphology is strongly correlated with the water ice band depth and the regolith albedo. We interpret this finding as an indication that coherent backscattering plays a role in affecting both the water ice band depths and the opposition surge at low phase angles (α < 1o). As the regolith albedo and spectral properties are related to the grain size

  8. Yttrium ion implantation on the surface properties of magnesium

    International Nuclear Information System (INIS)

    Wang, X.M.; Zeng, X.Q.; Wu, G.S.; Yao, S.S.

    2006-01-01

    Owing to their excellent physical and mechanical properties, magnesium and its alloys are receiving more attention. However, their application has been limited to the high reactivity and the poor corrosion resistance. The aim of the study was to investigate the beneficial effects of ion-implanted yttrium using a MEVVA ion implanter on the surface properties of pure magnesium. Isothermal oxidation tests in pure O 2 at 673 and 773 K up to 90 min indicated that the oxidation resistance of magnesium had been significantly improved. Surface morphology of the oxide scale was analyzed using scanning electron microscope (SEM). Auger electron spectroscopy (AES) and X-ray diffraction (XRD) analyses indicated that the implanted layer was mainly composed of MgO and Y 2 O 3 , and the implanted layer with a duplex structure could decrease the inward diffusion of oxygen and reduce the outward diffusion of Mg 2+ , which led to improving the oxidation resistance of magnesium. Potentiodynamic polarization curves were used to evaluate the corrosion resistance of the implanted magnesium. The results show yttrium implantation could enhance the corrosion resistance of implanted magnesium compared with that of pure magnesium

  9. Morphology and electronic properties of silicon carbide surfaces

    Science.gov (United States)

    Nie, Shu

    2007-12-01

    Several issues related to SiC surfaces are studied in the thesis using scanning tunneling microscopy/spectroscopy (STM/S) and atomic force microscopy (AFM). Specific surfaces examined include electropolished SiC, epitaxial graphene on SiC, and vicinal (i.e. slightly miscut from a low-index direction) SiC that have been subjected to high temperature hydrogen-etching. The electropolished surfaces are meant to mimic electrochemically etched SiC, which forms a porous network. The chemical treatment of the surface is similar between electropolishing and electrochemical etching, but the etching conditions are slightly different such that the former produces a flat surface (that is amenable to STM study) whereas the latter produces a complex 3-dimensional porous network. We have used these porous SiC layers as semi-permeable membranes in a biosensor, and we find that the material is quite biocompatible. The purpose of the STM/STS study is to investigate the surface properties of the SiC on the atomic scale in an effort to explain this biocompatibility. The observed tunneling spectra are found to be very asymmetric, with a usual amount of current at positive voltages but no observable current at negative voltages. We propose that this behavior is due to surface charge accumulating on an incompletely passivated surface. Measurements on SiC surfaces prepared by various amounts of hydrogen-etching are used to support this interpretation. Comparison with tunneling computations reveals a density of about 10 13 cm-2 fixed charges on both the electro-polished and the H-etched surfaces. The relatively insulating nature observed on the electro-polished SiC surface may provide an explanation for the biocompatibility of the surface. Graphene, a monolayer of carbon, is a new material for electronic devices. Epitaxial graphene on SiC is fabricated by the Si sublimation method in which a substrate is heated up to about 1350°C in ultra-high vacuum (UHV). The formation of the graphene is

  10. Self-generation of colligative properties at hydrophilic surfaces

    OpenAIRE

    Chaplin, Martin

    2012-01-01

    The generally accepted view of osmotic pressure is that it is a colligative property, along with freezing point depression, boiling point elevation and vapour pressure lowering. These properties ideally depend on the concentration of dissolved solute molecules. Osmotic pressure, however, is also generated, without any solute, at hydrophilic surfaces. Here is presented a rationale and explanation for this phenomenon.

  11. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, Wilma K.; Datta, Rabin; Talma, Auke; Noordermeer, Jacobus W.M.; van Ooij, W.J.

    2009-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  12. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, W.K.; Datta, R.N.; Talma, A.G.; Noordermeer, J.W.M.; van Ooij, W.J.

    2011-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  13. Theoretical studies of mutual diffusivities and surface properties in ...

    Indian Academy of Sciences (India)

    properties, thus underlining the importance of thermodynamic studies for liquid binary alloys. In this study, the transport and surface properties of Cd–Ga liquid alloys are determined from energetics and derivatives from experimental thermodynamic data. Cd–Ga alloys have been studied by many authors [14–16]. The alloy ...

  14. Electronic properties of semiconductor surfaces and metal/semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, M.

    2005-05-15

    This thesis reports investigations of the electronic properties of a semiconductor surface (silicon carbide), a reactive metal/semiconductor interface (manganese/silicon) and a non-reactive metal/semiconductor interface (aluminum-magnesium alloy/silicon). The (2 x 1) reconstruction of the 6H-SiC(0001) surface has been obtained by cleaving the sample along the (0001) direction. This reconstruction has not been observed up to now for this compound, and has been compared with those of similar elemental semiconductors of the fourth group of the periodic table. This comparison has been carried out by making use of photoemission spectroscopy, analyzing the core level shifts of both Si 2p and C 1s core levels in terms of charge transfer between atoms of both elements and in different chemical environments. From this comparison, a difference between the reconstruction on the Si-terminated and the C-terminated surface was established, due to the ionic nature of the Si-C bond. The growth of manganese films on Si(111) in the 1-5 ML thickness range has been studied by means of LEED, STM and photoemission spectroscopy. By the complementary use of these surface science techniques, two different phases have been observed for two thickness regimes (<1 ML and >1 ML), which exhibit a different electronic character. The two reconstructions, the (1 x 1)-phase and the ({radical}3 x {radical}3)R30 -phase, are due to silicide formation, as observed in core level spectroscopy. The growth proceeds via island formation in the monolayer regime, while the thicker films show flat layers interrupted by deep holes. On the basis of STM investigations, this growth mode has been attributed to strain due to lattice mismatch between the substrate and the silicide. Co-deposition of Al and Mg onto a Si(111) substrate at low temperature (100K) resulted in the formation of thin alloy films. By varying the relative content of both elements, the thin films exhibited different electronic properties

  15. Producing the surface structures with required properties with the help of concentrated fluxes of particles

    International Nuclear Information System (INIS)

    Li, I.P.; Rukhlyada, N.Ya.

    2005-01-01

    Pulsed plasma treatment has been proposed for modification of the surface layers of metal-matrix-porous cathodes and parts of electronic-vacuum devices. Surface plasma treatment leads to improvement of thermal emission properties of effective cathodes: work function decreases, secondary electron emission coefficient increases, and surface emission uniformity improves. With the help of pulse plasma, surface smoothing as well as formation of composite coatings can be done [ru

  16. Surface effects in metal oxide-based nanodevices

    KAUST Repository

    Lien, Der Hsien

    2015-10-29

    As devices shrink to the nanoscale, surface-to-volume ratio increases and the surface-environment interaction becomes a major factor for affecting device performance. The variation of electronic properties, including the surface band bending, gas chemisorption or photodesorption, native surface defects, and surface roughness, is called "surface effects". Such effects are ambiguous because they can be either negative or beneficial effects, depending on the environmental conditions and device application. This review provides an introduction to the surface effects on different types of nanodevices, offering the solutions to respond to their benefits and negative effects and provides an outlook on further applications regarding the surface effect. This review is beneficial for designing nano-enabled photodetectors, harsh electronics, memories, sensors and transistors via surface engineering.

  17. The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry

    Science.gov (United States)

    Eid, K. F.; Panth, M.; Sommers, A. D.

    2018-03-01

    This paper explores the fluid property commonly called surface tension, its effect on droplet shape and contact angle, and the major influences of contact angle behaviour (i.e. surface roughness and surface chemistry). Images of water droplets placed on treated copper surfaces are used to measure the contact angles between the droplets and the surface. The surface wettability is manipulated either by growing a self-assembled monolayer on the surface to make it hydrophobic or by changing the surface roughness. The main activities in this experiment, then, are (1) preparing and studying surfaces with different surface wettability and roughness; (2) determining the shape and contact angles of water droplets on these surfaces; and (3) demonstrating the spontaneous motion of water droplets using surface tension gradients.

  18. Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models

    Science.gov (United States)

    Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan

    2018-03-01

    While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.

  19. Surface properties and microporosity of polyhydroxybutyrate under scanning electron microscopy

    International Nuclear Information System (INIS)

    Raouf, A.A.; Samsudin, A.R.; Samian, R.; Akool, K.; Abdullah, N.

    2004-01-01

    This study was designed to investigate the surface properties especially surface porosity of polyhydroxybutyrate (PHB) using scanning electron microscopy. PHB granules were sprinkled on the double-sided sticky tape attached on a SEM aluminium stub and sputtered with gold (10nm thickness) in a Polaron SC515 Coater, following which the samples were placed into the SEM specimen chamber for viewing and recording. Scanning electron micrographs with different magnification of PHB surface revealed multiple pores with different sizes. (Author)

  20. Differential effects of dissolved organic carbon upon re-entrainment and surface properties of groundwater bacteria and bacteria-sized microspheres during transport through a contaminated, sandy aquifer

    Science.gov (United States)

    Harvey, R.W.; Metge, D.W.; Mohanram, A.; Gao, X.; Chorover, J.

    2011-01-01

    Injection-and-recovery studies involving a contaminated, sandy aquifer (Cape Cod, Massachusetts) were conducted to assess the relative susceptibility for in situ re-entrainment of attached groundwater bacteria (Pseudomonas stuzeri ML2, and uncultured, native bacteria) and carboxylate-modified microspheres (0.2 and 1.0 μm diameters). Different patterns of re-entrainment were evident for the two colloids in response to subsequent injections of groundwater (hydrodynamic perturbation), deionized water (ionic strength alteration), 77 μM linear alkylbenzene sulfonates (LAS, anionic surfactant), and 76 μM Tween 80 (polyoxyethylene sorbitan monooleate, a very hydrophobic nonionic surfactant). An injection of deionized water was more effective in causing detachment of micrsopheres than were either of the surfactants, consistent with the more electrostatic nature of microsphere’s attachment, their extreme hydrophilicity (hydrophilicity index, HI, of 0.99), and negative charge (zeta potentials, ζ, of −44 to −49 mv). In contrast, Tween 80 was considerably more effective in re-entraining the more-hydrophobic native bacteria. Both the hydrophilicities and zeta potentials of the native bacteria were highly sensitive to and linearly correlated with levels of groundwater dissolved organic carbon (DOC), which varied modestly from 0.6 to 1.3 mg L−1. The most hydrophilic (0.52 HI) and negatively charged (ζ −38.1 mv) indigenous bacteria were associated with the lowest DOC. FTIR spectra indicated the latter community had the highest average density of surface carboxyl groups. In contrast, differences in groundwater (DOC) had no measurable effect on hydrophilicity of the bacteria-sized microspheres and only a minor effect on their ζ. These findings suggest that microspheres may not be very good surrogates for bacteria in field-scale transport studies and that adaptive (biological) changes in bacterial surface characteristics may need to be considered where there is longer

  1. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface.

    Science.gov (United States)

    Pu, Xia; Li, Guangji; Huang, Hanlu

    2016-04-15

    Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface. © 2016. Published by The Company of Biologists Ltd.

  2. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    Directory of Open Access Journals (Sweden)

    Xia Pu

    2016-04-01

    Full Text Available Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS-embedded elastomeric stamping (PEES method. Scanning electron microscopy (SEM was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface.

  3. Biofilm Surface Density Determines Biocide Effectiveness

    Directory of Open Access Journals (Sweden)

    Sara Bas

    2017-12-01

    Full Text Available High resistance of biofilms for chemical challenges is a serious industrial and medical problem. In this work a gradient of surface covered with biofilm has been produced and correlated to the effectiveness of different commercially available oxidative biocides. The results for thin Escherichia coli biofilms grown in rich media supplemented with glucose or lactose on glass or poly methyl methacrylate surfaces indicate that the effectiveness of hydrogen peroxide or chlorine dioxide and quaternary ammonium compounds is inversely proportional to the fraction of the surface covered with the biofilm. In areas where biofilm covered more than 90% of the available surface the biocide treatment was inefficient after 60 min of incubation. The combined effect of oxidant and surfactant increased the effectiveness of the biocide. On the other hand, the increased biofilm viscoelasticity reduced biocide effectiveness. The results emphasize differential biocide effectiveness depending on the fraction of the attached bacterial cells. The results suggest that biofilm biocide resistance is an acquired property that increases with biofilm maturation. The more dense sessile structures present lower log reductions compared to less dense ones.

  4. THE SURFACE BEHAVIOUR AND CATALYTIC PROPERTIES OF ...

    African Journals Online (AJOL)

    stochiometric oxygen) with the K2NiF4 structure were prepared by the polyglycol gel method and used as catalysts for NO reduction. The samples were investigated by IR, TPD, TPR, and XRD methods and iodometry and the effects of the coefficient x ...

  5. Surface Modifications and Their Effects on Titanium Dental Implants

    Science.gov (United States)

    Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y.

    2015-01-01

    This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants. PMID:26436097

  6. Effect of size and shell: Enhanced optical and surface properties of CdS, ZnS and CdS/ZnS quantum dots

    Science.gov (United States)

    Kumar, Hitanshu; Barman, P. B.; Singh, Ragini Raj

    2015-03-01

    This study reports systematic structural, optical and surface studies on wurtzite CdS, ZnS and CdS/ZnS quantum dots where the effects of size and shell thickness were analysed. Size tunable, stable and luminescent quantum dots (QDs) and their core/shell structures were synthesized by wet chemical growth method at low temperature using 2-mercaptoethanol as a stabilizer. Formation of non-agglomerated wurtzite QDs with reduced particle sizes have been confirmed from x-ray diffraction and transmission electron microscopy studies. Size dependent blue shifts have been observed by absorbance spectroscopy and discussed on the basis of various theoretical models. Significantly enhanced luminescence and monochromaticity have been observed in QDs due to particle size reduction and on core/shell structure formation. Fourier transform infrared spectroscopy indicates that OH, CH2 and C-O functional groups are present on the QDs surfaces and for this reason these QDs can be used in various biological applications.

  7. Effect of Hydrological Properties on the Energy Shares of Reflected Waves at the Surface of a Partially Saturated Porous Solid

    Directory of Open Access Journals (Sweden)

    Mahabir Barak

    2017-02-01

    Full Text Available In the present study, the reflection of inhomogeneous waves is investigated at the stress-free plane surface based on multiphase poroelasticity theory. The porous medium is considered as dissipative due to the presence of viscosity in pores fluid. Four inhomogeneous (i.e. different direction of propagation and attenuation reflected waves (three longitudinal and one shear exists due to an incident wave. By using the appropriate boundary conditions, closed-form analytical expressions for the reflection coeffcients are derived at the stress-free surface. These reflection coeffcients are used to drive the analytical expressions for the energy shares of various reflected inhomogeneous waves. In mathematical framework, the conservation of incident energy is confirmed by considering an interaction energy between two dissimilar waves. It validates that the numerical calculations are analytically correct. Finally, a numerical example is considered to study the effects of viscous cross-coupling, porosity, saturation of gas, pore-characteristics and wave frequency on the energy shares of various reflected inhomogeneous waves and depicted graphically.

  8. Surface effects on converse piezoelectricity of crystals.

    Science.gov (United States)

    Molayem, Mohammad; Springborg, Michael; Kirtman, Bernard

    2017-09-20

    The contribution of surface units to bulk properties are often neglected in theoretical and computational studies of crystalline systems. We demonstrate that this assumption has to be made with caution in the case of (electric field) polarization. As a generalization of an earlier work on quasi-one-dimensional systems [Springborg, et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 82, 165442], it is shown that the polarization for 2D and 3D systems contains a surface contribution that can, in principle, take any value (within physical limits) and has consequences for converse piezoelectric responses. Subsequently, we determine the surface effects quantitatively for a group of ferroelectric perovskite structures. Our results indicate that such contributions can be substantial.

  9. Response surface methodology for studying the effect of processing conditions on some nutritional and textural properties of bambara groundnuts (Voandzei subterranea) during canning.

    Science.gov (United States)

    Afoakwa, Emmanuel Ohene; Budu, Agnes Simpson; Merson, Alan Bullock

    2007-06-01

    The response surface methodology and central composite rotatable design for K=3 was used to study the combined effect of blanching, soaking and sodium hexametaphosphate salt concentration on moisture, ash, leached solids, phytates, tannins and hardness of bambara groundnut during canning. Regression models were developed to predict the effects of the processing parameters on the studied indices. Significant interactions were observed between all the factors with high regression coefficients (64.4-82.6%). Blanching and soaking of the seeds prior to canning led to increases in moisture content and leached solids, while significant decreases were observed for phytates, tannins and hardness of the canned bambara groundnuts. Increasing the concentration of sodium salt added during soaking caused significant (Peffectively reduce the phytates, tannin levels with minimal mineral (ash) loss and enhanced textural integrity of the canned bambara groundnuts.

  10. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2013-03-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found that the traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  11. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2013-01-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  12. Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect

    Directory of Open Access Journals (Sweden)

    O. Rahmani

    2014-04-01

    Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.

  13. Effective Surface Conductivity Approach for Graphene Metamaterials Based Terahertz Devices

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    2013-01-01

    We propose a description of graphene metamaterials properties through the effective surface conductivity. On the example of tunable absorber we demonstrate that this approach allows for fast and efficient design of functional terahertz devices.......We propose a description of graphene metamaterials properties through the effective surface conductivity. On the example of tunable absorber we demonstrate that this approach allows for fast and efficient design of functional terahertz devices....

  14. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Directory of Open Access Journals (Sweden)

    Mott Derrick

    2006-01-01

    Full Text Available AbstractWe report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.

  15. Micromechanical and surface adhesive properties of single saccharomyces cerevisiae cells

    Science.gov (United States)

    Farzi, Bahman; Cetinkaya, Cetin

    2017-09-01

    The adhesion and mechanical properties of a biological cell (e.g. cell membrane elasticity and adhesiveness) are often strong indicators for the state of its health. Many existing techniques for determining mechanical properties of cells require direct physical contact with a single cell or a group of cells. Physical contact with the cell can trigger complex mechanotransduction mechanisms, leading to cellular responses, and consequently interfering with measurement accuracy. In the current work, based on ultrasonic excitation and interferometric (optical) motion detection, a non-contact method for characterizing the adhesion and mechanical properties of single cells is presented. It is experimentally demonstrated that the rocking (rigid body) motion and internal vibrational resonance frequencies of a single saccharomyces cerevisiae (SC) (baker’s yeast) cell can be acquired with the current approach, and the Young’s modulus and surface tension of the cell membrane as well as surface adhesion energy can be extracted from the values of these acquired resonance frequencies. The detected resonance frequency ranges for single SC cells include a rocking (rigid body) frequency of 330  ±  70 kHz and two breathing resonance frequencies of 1.53  ±  0.12 and 2.02  ±  0.31 MHz. Based on these values, the average work-of-adhesion of SC cells on a silicon substrate in aqueous medium is extracted, for the first time, as WASC-Si=16.2+/- 3.8 mJ {{m}-2} . Similarly, the surface tension and the Young’s modulus of the SC cell wall are predicted as {{σ }SC}=0.16+/- 0.02 N {{m}-1} and {{E}SC}= 9.20  ±  2.80 MPa, respectively. These results are compared to those reported in the literature by utilizing various methods, and good agreements are found. The current approach eliminates the measurement inaccuracies associated with the physical contact. Exciting and detecting cell dynamics at micro-second time-scales is significantly faster than the

  16. Effects of Root Debridement With Hand Curettes and Er:YAG Laser on Chemical Properties and Ultrastructure of Periodontally-Diseased Root Surfaces Using Spectroscopy and Scanning Electron Microscopy.

    Science.gov (United States)

    Amid, Reza; Gholami, Gholam Ali; Mojahedi, Masoud; Aghalou, Maryam; Gholami, Mohsen; Mirakhori, Mahdieh

    2017-01-01

    Introduction: The efficacy of erbium-doped yttrium aluminum garnet (Er:YAG) laser for root debridement in comparison with curettes has been the subject of many recent investigations. Considering the possibility of chemical and ultra-structural changes in root surfaces following laser irradiation, this study sought to assess the effects of scaling and root planing (SRP) with curettes and Er:YAG laser on chemical properties and ultrastructure of root surfaces using spectroscopy and scanning electron microscopy (SEM). Methods: In this in vitro experimental study, extracted sound human single-rooted teeth (n = 50) were randomly scaled using manual curettes alone or in conjunction with Er:YAG laser at 100 and 150 mJ/pulse output energies. The weight percentages of carbon, oxygen, phosphorous and calcium remaining on the root surfaces were calculated using spectroscopy and the surface morphology of specimens was assessed under SEM. Data were analyzed using one-way analysis of variance (ANOVA). Results: No significant differences ( P > 0.05) were noted in the mean carbon, oxygen, phosphorous and calcium weight percentages on root surfaces following SRP using manual curettes with and without laser irradiation at both output energies. Laser irradiation after SRP with curettes yielded rougher surfaces compared to the use of curettes alone. Conclusion: Although laser irradiation yielded rougher surfaces, root surfaces were not significantly different in terms of chemical composition following SRP using manual curettes with and without Er:YAG laser irradiation. Er:YAG laser can be safely used as an adjunct to curettes for SRP.

  17. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.

    2014-01-01

    In this thesis structural and optical properties of the water covered Cu(110) surface is studied using density functional theory within independent particle approximation. Several stable adsorption structures are studied such as water clusters (monomer, dimer, trimer, tetramer and pentamer), different hexagonal monolayers, partially dissociated water monolayers and three different types of chains among them a chain that consists of pentagon rings. For a copper surface in contact with water vapor, the energetically stable H 2 O/OH adsorbed structures are compared thermodynamically using adsorption free energy (change of free energy due to adsorption). Several phase diagrams with respect to temperature and pressure are calculated. It is found that among the large number of energetically stable structures (i.e. structures with positive adsorption energy ) only limited number of them are thermodynamically stable. These thermodynamically stable structures are the class of almost energetically degenerate hexagonal overlayers, one type of partially dissociated water structure that contains Bjerrum defect in the hydrogen bond network and pentagon chain. Since hydrogen atoms are light weight their vibrational effects can be considerable. Zero point vibration decreases the adsorption energy up to 0.1 eV and free energy of adsorbed molecules arising from vibrational degree of freedom can go up to -0.2 eV per adsorbed molecule at 500 Kelvin. However zero point energy and vibrational free energy of adsorbed molecules do not alter relative stability of the adsorbed structures. To account for the long range van der Waals interactions, a semi-empirical scheme is applied. Reflectance Anisotropy Spectroscopy (RAS) is a fast and non destructive optical method that can be used to prob the surface in different conditions such as vacuum and electro-chemical environment. Elasto-optic coeficients of bulk are calculated from first principles and the change of the RA spectrum of the bare Cu

  18. Investigation of the surface adsorption and biotribological properties of mucins

    DEFF Research Database (Denmark)

    Madsen, Jan Busk

    to a surface. However, in other instances the inverse properties are desirable. Mucins are found on epithelial surfaces throughout the body and are a key component of the mucus barrier. Here, they facilitate friction reduction, thus lowering the impact of physical abrasions, but they also act as a physical...... and their aqueous lubrication properties have led to them being proposed as possible biocompatible lubricants. In this thesis, we investigate the biotribological properties of two commercially available mucins on the soft, elastomeric and hydrophobic surface of PDMS under different conditions. Due to the presence...... of a significant amount of non-mucin biomolecules in the commercial mucins, a mild single column protein purification protocol was established. In the mucin biotribology community, many employ the mucins either “as received” or after dialysis. It was therefore investigated how the established purification process...

  19. Effects of the deep rolling process on the surface roughness and properties of an Al-3vol%SiC nanoparticle nanocomposite fabricated by mechanical milling and hot extrusion

    Science.gov (United States)

    Sattari, Sajjad; Atrian, Amir

    2017-07-01

    Deep rolling is one of the most widely used surface mechanical treatments among several methods used to generate compressive residual stress. This process is usually used for axisymmetric components and can lead to improvements of the surface quality, dimensional accuracy, and mechanical properties. In this study, we deduced the appropriate deep rolling parameters for Al-3vol%SiC nanocomposite samples using roughness and microhardness measurements. The nanocomposite samples were fabricated using a combination of mechanical milling, cold pressing, and hot extrusion techniques. Density measurements indicated acceptable densification of the samples, with no porosity. The results of tensile tests showed that the samples are sufficiently strong for the deep rolling process and also indicated near 50% improvement of tensile strength after incorporating SiC nanoparticle reinforcements. The effects of some important rolling parameters, including the penetration depth, rotation speed, feed rate, and the number of passes, on the surface quality and microhardness were also investigated. The results demonstrated that decreasing the feed rate and increasing the number of passes can lead to greater surface hardness and lower surface roughness.

  20. Determination of Surface Properties of Liquid Transition Metals

    International Nuclear Information System (INIS)

    Korkmaz, S. D.

    2008-01-01

    Certain surface properties of liquid simple metals are reported. Using the expression derived by Gosh and coworkers we investigated the surface entropy of liquid transition metals namely Fe, Co and Ni. We have also computed surface tensions of the metals concerned. The pair distribution functions are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure using the individual version of the electron-ion potential proposed by Fioalhais and coworkers which was originally developed for solid state. The predicted values of surface tension and surface entropy are in very good agreement with available experimental data. The present study results show that the expression derived by Gosh and coworkers is very useful for the surface entropy by using Fioalhais pseudopotential and Rogers-Young closure

  1. Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites.

    Science.gov (United States)

    Espino-Pérez, Etzael; Bras, Julien; Almeida, Giana; Plessis, Cédric; Belgacem, Naceur; Perré, Patrick; Domenek, Sandra

    2018-03-01

    Nanocomposites are an opportunity to increase the performance of polymer membranes by fine-tuning their morphology. In particular, the understanding of the contribution of the polymer matrix/nanofiller interface to the overall transport properties is key to design membranes with tailored selective and adsorptive properties. In that aim, cellulose nanocrystals (CNC)/polylactide (PLA) nanocomposites were fabricated with chemically designed interfaces, which were ensuring the compatibility between the constituents and impacting the mass transport mechanism. A detailed analysis of the mass transport behaviour of different permeants in CNC/PLA nanocomposites was carried out as a function of their chemical affinity to grafted CNC surfaces. Penetrants (O 2 and cyclohexane), which were found to slightly interact with the constituents of the nanocomposites, provided information on the small tortuosity effect of CNC on diffusive mass transport. The mass transport of water (highly interacting with CNC) and anisole (interacting only with designed CNC surfaces) exhibited non-Fickian, Case II behaviour. The water vapour caused significant swelling of the CNC, which created a preferential pathway for mass transport. CNC surface grafting could attenuate this phenomenon and decrease the water transport rate. Anisole, an aromatic organic vapour, became reversibly trapped at the specifically designed CNC/PLA interface, but without any swelling or creation of an accelerated pathway. This caused the decrease of the overall mass transport rate. The latter finding could open a way to the creation of materials with specifically designed barrier properties by designing nanocomposites interfaces with specific interactions towards permeants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Adaptive Surface Modeling of Soil Properties in Complex Landforms

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-06-01

    Full Text Available Abstract: Spatial discontinuity often causes poor accuracy when a single model is used for the surface modeling of soil properties in complex geomorphic areas. Here we present a method for adaptive surface modeling of combined secondary variables to improve prediction accuracy during the interpolation of soil properties (ASM-SP. Using various secondary variables and multiple base interpolation models, ASM-SP was used to interpolate soil K+ in a typical complex geomorphic area (Qinghai Lake Basin, China. Five methods, including inverse distance weighting (IDW, ordinary kriging (OK, and OK combined with different secondary variables (e.g., OK-Landuse, OK-Geology, and OK-Soil, were used to validate the proposed method. The mean error (ME, mean absolute error (MAE, root mean square error (RMSE, mean relative error (MRE, and accuracy (AC were used as evaluation indicators. Results showed that: (1 The OK interpolation result is spatially smooth and has a weak bull's-eye effect, and the IDW has a stronger ‘bull’s-eye’ effect, relatively. They both have obvious deficiencies in depicting spatial variability of soil K+. (2 The methods incorporating combinations of different secondary variables (e.g., ASM-SP, OK-Landuse, OK-Geology, and OK-Soil were associated with lower estimation bias. Compared with IDW, OK, OK-Landuse, OK-Geology, and OK-Soil, the accuracy of ASM-SP increased by 13.63%, 10.85%, 9.98%, 8.32%, and 7.66%, respectively. Furthermore, ASM-SP was more stable, with lower MEs, MAEs, RMSEs, and MREs. (3 ASM-SP presents more details than others in the abrupt boundary, which can render the result consistent with the true secondary variables. In conclusion, ASM-SP can not only consider the nonlinear relationship between secondary variables and soil properties, but can also adaptively combine the advantages of multiple models, which contributes to making the spatial interpolation of soil K+ more reasonable.

  3. [Research on surface modification and bio-tribological properties of artificial joint].

    Science.gov (United States)

    Pan, Yusong; Wang, Jing; Ding, Guoxin

    2012-06-01

    The bio-tribological properties of an artificial joint can be obviously improved by surface modification technologies. In this paper, the benefits and disadvantages of various surface modification methods-such as surface coating, plasma treatment, surface texture and surface grafting modification-are discussed. The aim of surface coating and/or plasma treatment is to improve the surface hardness of the materials, thus enhancing the wear resistance of artificial joints. However, these technologies do not effectively alleviate stress concentration of material in the short times in which artificial joints bear physiological impact load, resulting in easy fracture. Surface texture serves mainly to improve the lubrication properties through micro-concavities on the material surface for storage lubricant. Surface texturing can realize improvements in bio-tribological properties, but it does not enhance the impact resistance of the joint. Surface grafting modification is implemented mainly by grafting hydrophilic or other specific functional groups to improve the surface hydrophilicity and wetability, thus enhancing lubricating performance and reducing the coefficient of friction.

  4. The surface properties of biopolymer-coated fruit: A review

    Directory of Open Access Journals (Sweden)

    Diana Cristina Moncayo Martinez

    2013-09-01

    Full Text Available Environmental conservation concerns have led to research and development regarding biodegradable materials from biopolymers, leading to new formulations for edible films and coatings for preserving the quality of fresh fruit and vegetables. Determining fruit skin surface properties for a given coating solution has led to predicting coating efficiency. Wetting was studied by considering spreading, adhesion and cohesion and measuring the contact angle, thus optimising the coating formulation in terms of biopolymer, plasticiser, surfactant, antimicrobial and antioxidant concentration. This work reviews the equations for determining fruit surface properties by using polar and dispersive interaction calculations and by determining the contact angle.

  5. Surfaces and their effect on the magnetic properties of polycrystalline hollow γ-Mn{sub 2}O{sub 3} and MnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bah, Mohamed A. [Department of Materials Science and Engineering, Newark, DE (United States); Jaffari, G. Hassnain [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Khan, F.A. [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Shah, S. Ismat, E-mail: ismat@udel.edu [Department of Materials Science and Engineering, Newark, DE (United States); Department of Physics and Astronomy, Newark, DE (United States)

    2016-07-01

    Graphical abstract: Polycrystalline hollow nanoparticles composed of γ-Mn{sub 2}O{sub 3} and MnO were grown in an inert gas condensation system. Particles where found to range from 15 nm to 30 nm in diameter with different void sizes. Both γ-Mn{sub 2}O{sub 3} and MnO phases were found to exist in a single nanoparticle, and in close proximity. The oxides had different size and random lattice orientations. The morphology of the nanoparticles with the specific oxide is believed to be the leading cause for the observed high coercivity and exchange bias. - Highlights: • Polycrystalline hollow nanoparticles composed of γ-Mn{sub 2}O{sub 3} (ferrimagnetic(FiM)) and MnO (antiferromagnetic(AFM)) crystallites. • γ-Mn{sub 2}O{sub 3} and MnO co-exist in a single nanoparticles. • FC loops exhibited noticeably larger coercivity compared to the ZFC loops. • Compared to the core/shell counter parts, large coercivity and exchange bias, up to 11 kOe and 7 kOe, respectively, were observed at low temperature. • Strong coupling between the FiM and AFM phases. • Large horizontal and vertical shifts. - Abstract: Manganese oxide nanoparticles were prepared in an inert gas condensation system. X-ray Diffraction (XRD) studies revealed presence of multiple manganese oxide phases while high resolution transmission electron microscopy (HRTEM) showed polycrystalline hollow nanoparticle morphology. The additional inner surface of the hollow nanoparticle directly affect the magnetic properties of these particles. Combined physical structure, electronic structure and magnetic susceptibility analyses led to the conclusion that the prepared nanoparticles are polycrystalline and composed of γ-Mn{sub 2}O{sub 3} and MnO crystallites. Magnetic study found a sharp peak around 38 K with no frequency dependence in the AC susceptibility measurement. Large coercivity (H{sub C}) and exchange bias (H{sub EB}) fields, up to 11 kOe and 7 kOe, respectively, were observed below the order

  6. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  7. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    Science.gov (United States)

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials

  8. Influence of surface roughness on the friction property of textured surface

    OpenAIRE

    Yuankai Zhou; Hua Zhu; Wenqian Zhang; Xue Zuo; Yan Li; Jianhua Yang

    2015-01-01

    In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in ...

  9. Effects of low-pressure nitrogen plasma treatment on the surface properties and electrochemical performance of the polyethylene separator used lithium-ion batteries

    Science.gov (United States)

    Li, Chun; Li, Hsiao-Ling; Li, Chi-Heng; Liu, Yu-Shuan; Sung, Yu-Ching; Huang, Chun

    2018-01-01

    In this paper, we describe the surface transition of the polyethylene (PE) separator used in lithium-ion batteries treated by low-pressure nitrogen plasma discharge. The nitrogen-plasma-treated PE separator was characterized by contact angle measurement, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical performance of the lithium ion batteries fabricated with the nitrogen-plasma-treated separator was also evaluated. Results showed that polar functionalization groups were induced on the PE surface by the nitrogen plasma discharge, causing the surface to become hydrophilic. The increases in surface wettability and surface free energy result in electrolyte retention improvement. Moreover, the nitrogen plasma-treated PE separator leads to superior performance in lithium-ion battery assembly.

  10. Study on the surface constitute properties of high-speed end milling aluminum alloy

    Science.gov (United States)

    Huang, Xiaoming; Li, Hongwei; Yumeng, Ma

    2017-09-01

    The physical and mechanical properties of the metal surface will change after the metal cutting processing. The comprehensive study of the influence of machining parameters on surface constitute properties are necessary. A high-speed milling experiment by means of orthogonal method with four factors was conducted for aluminum alloy7050-T7451. The surface constitutive properties of the Al-Alloy surface were measured using SSM-B4000TM stress-strain microprobe system. Based on all the load-depth curves obtained, the characteristics parameters such as strain hardening exponent n and yield strength σy of the milling surface are calculated. The effect of cutting speed, feed rate, and width and depth of cut on n and σy was investigated using the ANOVA techniques. The affecting degree of milling parameters on n and σy was v>fz> ap < ae. The influence of milling parameters on n and σ y was described and discussed.

  11. Reversible Surface Properties of Polybenzoxazine/Silica Nanocomposites Thin Films

    Directory of Open Access Journals (Sweden)

    Wei-Chen Su

    2013-01-01

    Full Text Available We report the reversible surface properties (hydrophilicity, hydrophobicity of a polybenzoxazine (PBZ thin film through simple application of alternating UV illumination and thermal treatment. The fraction of intermolecularly hydrogen bonded O–H⋯O=C units in the PBZ film increased after UV exposure, inducing a hydrophilic surface; the surface recovered its hydrophobicity after heating, due to greater O–H⋯N intramolecular hydrogen bonding. Taking advantage of these phenomena, we prepared a PBZ/silica nanocomposite coating through two simple steps; this material exhibited reversible transitions from superhydrophobicity to superhydrophilicity upon sequential UV irradiation and thermal treatment.

  12. Enhancement of surface properties for coal beneficiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  13. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  14. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-01-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  15. Effect of mixing on properties of SCC

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Ekstrand, John Peter; Hansen, Rune

    2007-01-01

    The method of mixing may affect the degree of agglomeration of particles in cement-based materials and thus the properties of the materials in their fresh, hardening, and hardened state. The larger the external force applied during mixing, the larger surface forces can be overcome and the smaller...... agglomerates will remain. The paper focuses on the effect of mixing schedule on self-compacting concrete properties. Workability and micro structure of a typical Danish self-compacting concrete mixed at varying intensity and with addition of superplasticizer in either one or two batches are described...

  16. Influence of Surface Modification on Physicochemical Properties of ZnO Thin Films and Nanostructures: a Review

    Science.gov (United States)

    Xian, Fenglin; Xu, Linhua

    The surface modification plays an important role on both physical and chemical properties of zinc oxide (ZnO) materials. In this review paper, efforts are made to summarize and analyze reported results regarding surface modification method, surface modification effect on the luminescence and superhydrophobic properties of ZnO thin films and nanostructures. Furthermore, the photocatalytic activity and gas sensor property of modified ZnO using both organic and inorganic species are also involved.

  17. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available Aluminium is vastly used in industry due to its low cost, light weight and excellent workability, but lacks in wear resistance and hardness. Laser alloying is used to improve the surface properties such as hardness by modifying the composition...

  18. Effect of swift heavy ion Ag9+ irradiation on the surface morphology, structure and optical properties of AgGaS2 single crystals

    Science.gov (United States)

    Prabukanthan, P.; Asokan, K.; Kanjilal, D.; Dhanasekaran, R.

    2008-12-01

    AgGaS2 (AGS) single crystals grown by chemical vapor transport (CVT) method were irradiated with Ag9+ ions (120 MeV) with various ion fluences. The irradiation was carried out at room temperature (RT) and at liquid nitrogen temperature (LNT). A glancing angle x-ray diffraction (GAXRD) analysis reveals a huge lattice disorder at RT irradiation. This is observed from an increase in the full width at half maximum (FWHM) and a decrease in the intensity of the AGS (1 1 2) peak. However, there is no change in the FWHM of the (1 1 2) peak but the intensity slightly decreases at LNT irradiation. Also, AGS (3 0 3) peak is not observed for the samples irradiated with the fluences of 5 × 1013 and 1 × 1013 ions cm-2 at RT conditions. The GAXRD results show the decrease in degree of crystallinity upon ion irradiation at RT while there is not much degradation in crystallinity upon ion irradiation at LNT. But the LNT irradiation on AGS has its own effects. Atomic force microscope (AFM) studies show that the roughness of AGS increases on increasing the ion fluences at LNT and at RT. Also, it is found that there is an increase in the surface defects with fluences of Ag9+ ion irradiation when compared to pristine AGS. UV-visible transmission spectra show that the percentage of transmission and bandgap energy decrease with increasing ion fluences and also that the peaks are broadened at LNT and at RT. The photoluminescence (PL) spectra were analyzed as a function of irradiation ion fluences in the AGS crystals at RT. It has been found that the emission intensities of band-to-band transition decrease with increase of ion fluences at LNT and at RT.

  19. Effect of surface modified TiO2 nanoparticles on thermal, barrier and mechanical properties of long oil alkyd resin-based coatings

    OpenAIRE

    T. S. Radoman; J. V. Dzunuzovic; K. T. Trifkovic; T. Palija; A. D. Marinkovic; B. Bugarski; E. S. Dzunuzovic

    2015-01-01

    Novel soy alkyd-based nanocomposites (NCs) were prepared using TiO2 nanoparticles (NPs) surface modified with different gallates, and for the first time with imine obtained from 3,4-dihydroxybenzaldehyde and oleylamine (DHBAOA). Unmodified and surface modified anatase TiO2 NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, while the amount of adsorbed ligands w...

  20. Study of surface tension and surface properties of binary alcohol/n-alkyl acetate mixtures.

    Science.gov (United States)

    Rafati, Amir Abbas; Ghasemian, Ensieh

    2008-12-15

    The Butler equation is employed to describe quantitatively the nature, properties, and compositions of surface layers in binary liquid mixtures. Bulk mole fraction, surface molar area, and surface tension of pure components are necessary inputs for this equation. In addition, the UNIFAC group contribution method is applied to account for the nonideality of the bulk liquid as well as that of the surface layer. The average relative error obtained from the comparison of experimental and calculated surface tension values for 12 binary systems is less than 1%. Therefore, the model has good accuracy in comparison with other predictive equations. In addition to finding more information about the surface structure of binary mixtures, surface mole fraction was calculated using relative Gibbs adsorption values and an extended Langmuir model (EL). The obtained results show a good consistency between two models employed, i.e., the Gibbs adsorption model and EL model, based on the UNIFAC method.

  1. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  2. Determining the Effect of Cutting Parameters on Surface Roughness ...

    African Journals Online (AJOL)

    The aim of present research focuses on the prediction of machining parameters that improve the quality of surface finish. The surface roughness is one of the important properties of work piece quality in the CNC (Computer Numerical Control) turning process. An effective approach of optimization techniques genetic ...

  3. Effect of Viscoelasticity on Adhesion of Bioinspired Micropatterned Epoxy Surfaces

    NARCIS (Netherlands)

    Castellanos, G.; Arzt, E.; Kamperman, M.M.G.

    2011-01-01

    The effect of viscoelasticity on adhesion was investigated for micropatterned epoxy surfaces and compared to nonpatterned surfaces. A two-component epoxy system was used to produce epoxy compositions with different viscoelastic properties. Pillar arrays with flat punch tip geometries were fabricated

  4. Mechanical and tribological properties of ion beam-processed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, Padma [Univ. of Maryland, College Park, MD (United States)

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  5. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  6. Surface properties of topological insulator Bi2Se3 nanoparticles separated by impedance spectroscopy

    Science.gov (United States)

    Choi, Dong Min; Lee, Kyu Won; Jeon, Gi Wan; Kim, Do Wan; Lee, Cheol Eui

    2017-06-01

    We have separated the surface and bulk electrical properties of the Bi2Se3 nanoparticles by means of impedance spectroscopy. An equivalent circuit analysis of the complex impedance data comprising two separate resistance components, RB and RS, and two separate inductance components, LB and LS, enabled us to separate the bulk and surface properties of the topological insulator. One of the resistance components, RS, attributed to the surface, showed no temperature dependence, whereas the other, RB, attributed to the bulk, showed a weak metallic behavior. With increasing surface-to-bulk ratio by mixing with insulating Al2O3 nanoparticles up to the ratio of 1:1, the surface resistivity showed decrease up to ˜70%, whereas the bulk resistivity showed increase up to ˜150%. While the bulk state showed increasing electrical resistivity up to 200% with aging up to 30 days, the surface state resistivity did not show an aging effect.

  7. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  8. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    Science.gov (United States)

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  9. The influence of noble-gas ion bombardment on the electrical and optical properties of clean silicon surfaces

    International Nuclear Information System (INIS)

    Martens, J.W.D.

    1980-01-01

    A study of the effect of argon and helium ion bombardment on the electrical and optical properties of the clean silicon (211) surface is described. The objective of the study was to determine the effect of noble gas ions on the density of surface states at the clean silicon surface. (Auth.)

  10. The Influence of the Tool Surface Texture on Friction and the Surface Layers Properties of Formed Component

    Directory of Open Access Journals (Sweden)

    Jana Šugárová

    2018-03-01

    Full Text Available The morphological texturing of forming tool surfaces has high potential to reduce friction and tool wear and also has impact on the surface layers properties of formed material. In order to understand the effect of different types of tool textures, produced by nanosecond fibre laser, on the tribological conditions at the interface tool-formed material and on the integrity of formed part surface layers, the series of experimental investigations have been carried out. The coefficient of friction for different texture parameters (individual feature shape, including the depth profile of the cavities and orientation of the features relative to the material flow was evaluated via a Ring Test and the surface layers integrity of formed material (surface roughness and subsurface micro hardness was also experimentally analysed. The results showed a positive effect of surface texturing on the friction coefficients and the strain hardening of test samples material. Application of surface texture consisting of dimple-like depressions arranged in radial layout contributed to the most significant friction reduction of about 40%. On the other hand, this surface texture contributed to the increase of surface roughness parameters, Ra parameter increased from 0.49 μm to 2.19 μm and the Rz parameter increased from 0.99 μm to 16.79 μm.

  11. Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys.

    Science.gov (United States)

    Greeley, Jeff; Mavrikakis, Manos

    2005-03-03

    Periodic, self-consistent DFT-GGA calculations are used to study the thermochemical properties of both surface and subsurface atomic hydrogen on a variety of pure metals and near-surface alloys (NSAs). For surface hydrogen on pure metals, calculated site preferences, adsorption geometries, vibrational frequencies, and binding energies are reported and are found to be in good agreement with available experimental data. On NSAs, defined as alloys wherein a solute is present near the surface of a host metal in a composition different from the bulk composition, surface hydrogen generally binds more weakly than it binds to the pure-metal components composing the alloys. Some of the NSAs even possess the unusual property of binding hydrogen as weakly as the noble metals while, at the same time, dissociating H(2) much more easily. On both NSAs and pure metals, formation of surface hydrogen is generally exothermic with respect to H(2)(g). In contrast, formation of subsurface hydrogen is typically endothermic with respect to gas-phase H(2) (the only exception to this general statement is found for pure Pd). As with surface H, subsurface H typically binds more weakly to NSAs than to the corresponding pure-metal components of the alloys. The diffusion barrier for hydrogen from surface to subsurface sites, however, is usually lower on NSAs compared to the pure-metal components, suggesting that population of subsurface sites may occur more rapidly on NSAs.

  12. Ozone Effect On the Properties of Aramid Fabric

    Directory of Open Access Journals (Sweden)

    Wang Yan

    2017-06-01

    Full Text Available The limitation of aramid fiber is its surface property, which results in its very poor interfacial adhesion to most of commercial resins. In order to improve the surface property of the aramid fiber, ozone treatment was carried out in this work. The aramid fabrics were evaluated in terms of surface morphology, wicking effect, tensile property, and ball bursting test. The results showed that the surface morphology of aramid fabrics did not undergo an obvious change; the wicking effect increased slightly with an increase in ozone treatment time; the tenacity and elongation of aramid fibers and fabrics did not significant change after ozone treatment, but the tenacity and elongation of aramid yarns showed significant improvement after ozone treatment, and increased with the increase of ozone treatment time; the ball bursting load and penetration displacement had a slight increase as well after ozone treatment. Therefore, ozone treatment could be one method to improve the surface property of the aramid fiber.

  13. Effects of Different pH-Values on the Nanomechanical Surface Properties of PEEK and CFR-PEEK Compared to Dental Resin-Based Materials

    Directory of Open Access Journals (Sweden)

    Shuai Gao

    2015-07-01

    Full Text Available The study determines the stability and durability of polyetheretherketone (PEEK and a carbon fiber-reinforced PEEK (CFR-PEEK with 30% short carbon fibers, a dental composite based on Bis-GMA and polymethylmethacrylate (PMMA under the influence of different pH-values of the oral environment in vitro. Nanomechanical properties were investigated by nanoindentation and nanoscratch tests before and after incubation of the specimens at 37 °C for 30 days in artificial saliva with pH-values of 3, 7 and 10, respectively. Nanoindentation and nanoscratching tests were performed using the Hysitron TI950 TriboIndenter to evaluate the reduced elastic moduli, nanohardness, viscoelasticity, friction coefficient and residual scratch profiles. After treatment, the nanomechanical properties of unfilled PEEK did not change. The reduced elastic moduli and nanohardness of the carbon fiber-reinforced PEEK increased significantly. The reduced elastic moduli and nanohardness of CHARISMA decreased. The plasticity of all materials except that of the unfilled PEEK increased. This indicates that different pH-values of the artificial saliva solutions had no obvious influences on the nanomechanical properties of the PEEK matrix. Therefore, the aging resistance of the unfilled PEEK was higher than those of other materials. It can be deduced that the PEEK matrix without filler was more stable than with filler in the nanoscale.

  14. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  15. Friction Properties of Surface-Fluorinated Carbon Nanotubes

    Science.gov (United States)

    Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.

    2005-01-01

    Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.

  16. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Significant effects of the distance between the cyanine dye skeleton and the semiconductor surface on the photoelectrochemical properties of dye-sensitized porous semiconductor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sayama, K.; Hara, K.; Arakawa, H. [National Institute of Materials and Chemical Research,NIMC, Ibaraki (Japan); Ohga, Y.; Shinpou, A.; Suga, S. [Hayashibara Biochemical Lab., Inc, Okayama (Japan)

    2001-02-01

    The incident photon-to-current conversion efficiency (IPCE) of a porous TiO{sub 2} electrode sensitized by cyanine dyes increased with decreasing distance between the skeleton of the dye and the TiO{sub 2} surface. The photocurrent of oxide semiconductor electrodes sensitized by a cyanine dye increased with the positive shift of the conduction band potential of the oxide semiconductor in the following order: Nb{sub 2}O{sub 5} < TiO{sub 2} < ZnO < SnO{sub 2}. The SnO{sub 2} semiconductor cell showed the best light-to-electric conversion efficiency among the four semiconductors. (author)

  18. Electrokinetic Properties of TiO2 Nanotubular Surfaces

    Science.gov (United States)

    Lorenzetti, Martina; Gongadze, Ekaterina; Kulkarni, Mukta; Junkar, Ita; Iglič, Aleš

    2016-08-01

    Surface charge is one of the most significant properties for the characterisation of a biomaterial, being a key parameter in the interaction of the body implant with the surrounding living tissues. The present study concerns the systematic assessment of the surface charge of electrochemically anodized TiO2 nanotubular surfaces, proposed as coating material for Ti body implants. Biologically relevant electrolytes (NaCl, PBS, cell medium) were chosen to simulate the physiological conditions. The measurements were accomplished as titration curves at low electrolytic concentration (10-3 M) and as single points at fixed pH but at various electrolytic concentrations (up to 0.1 M). The results showed that all the surfaces were negatively charged at physiological pH. However, the zeta potential values were dependent on the electrolytic conditions (electrolyte ion concentration, multivalence of the electrolyte ions, etc.) and on the surface characteristics (nanotubes top diameter, average porosity, exposed surface area, wettability, affinity to specific ions, etc.). Accordingly, various explanations were proposed to support the different experimental data among the surfaces. Theoretical model of electric double layer which takes into account the asymmetric finite size of ions in electrolyte and orientational ordering of water dipoles was modified according to our specific system in order to interpret the experimental data. Experimental results were in agreement with the theoretical predictions. Overall, our results contribute to enrich the state-of-art on the characterisation of nanostructured implant surfaces at the bio-interface, especially in case of topographically porous and rough surfaces.

  19. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei

    2013-01-01

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...... we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers.......In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...

  20. Surface, structural and tensile properties of proton beam irradiated zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo, E-mail: yongskim@hanyang.ac.kr

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 10{sup 13} to 1 × 10{sup 16} protons/cm{sup 2}. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples’ surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson–Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  1. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  2. Beyond local effective material properties for metamaterials

    Science.gov (United States)

    Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.

    2018-02-01

    To discuss the properties of metamaterials on physical grounds and to consider them in applications, effective material parameters are usually introduced and assigned to a given metamaterial. In most cases, only weak spatial dispersion is considered. It allows to assign local material properties, e.g., a permittivity and a permeability. However, this turned out to be insufficient. To solve this problem, we study here the effective properties of metamaterials with constitutive relations beyond a local response and take strong spatial dispersion into account. This research requires two contributions. First, bulk properties in terms of eigenmodes need to be studied. We particularly investigate the isofrequency surfaces of their dispersion relation are investigated and compared to those of an actual metamaterial. The significant improvement to effectively describe it provides evidence for the necessity to use nonlocal material laws in the effective description of metamaterials. Second, to be able to capitalize on such constitutive relations, also interface conditions need to be known. They are derived in this contribution for our form of the nonlocality using a generalized (weak) formulation of Maxwell's equations. Based on such interface conditions, Fresnel expressions are obtained that predict the amplitude of the reflected and transmitted plane wave upon illuminating a slab of such a nonlocal metamaterial. This all together offers the necessary means for the in-depth analysis of metamaterials characterized by strong spatial dispersion. The general formulation we choose here renders our approach applicable to a wide class of metamaterials.

  3. Quantifying effects of particulate properties on powder flow properties using a ring shear tester.

    Science.gov (United States)

    Hou, Hao; Sun, Changquan Calvin

    2008-09-01

    Effects of particle size, morphology, particle density, and surface silicification, on powder flow properties were investigated using a ring shear tester. Flow properties were quantified by flow function (FF), that is, unconfined yield strength, f(c), as a function of major principal stress. A total of 11 powders from three series of microcrystalline cellulose (MCC): Avicel (regular MCC, elongated particles), Prosolv (silicified MCC, elongated particles), and Celphere (spherical MCC), were studied. Particle size distribution in each type of MCC was systematically different. Within each series, smaller particles always led to poorer powder flow properties. The slope of FF line was correlated to degree of powder consolidation by external stress. A key mechanism of the detrimental effect of particle size reduction on flow properties was the larger powder specific surface area. Flow properties of Celphere were significantly better than Avicel of comparable particles size, suggesting spherical morphology promoted better powder flow properties. Flow properties of powders different in densities but similar in particle size, shape, and surface properties were similar. When corrected for density effect, higher particle density corresponded to better flow behavior. Surface silicification significantly improved flow properties of finer MCC, but did not improve those of coarser.

  4. Effect of flattened surface morphology of anodized aluminum oxide templates on the magnetic properties of nanoporous Co/Pt and Co/Pd thin multilayered films

    Science.gov (United States)

    Nguyen, T. N. Anh; Fedotova, J.; Kasiuk, J.; Bayev, V.; Kupreeva, O.; Lazarouk, S.; Manh, D. H.; Vu, D. L.; Chung, S.; Åkerman, J.; Altynov, V.; Maximenko, A.

    2018-01-01

    For the first time, nanoporous Al2O3 templates with smoothed surface relief characterized by flattened interpore areas were used in the fabrication of Co/Pd and Co/Pt multilayers (MLs) with strong perpendicular magnetic anisotropy (PMA). Alternating gradient magnetometry (AGM) revealed perfectly conserved PMA in the Co/Pd and Co/Pt porous MLs (antidot arrays) with a ratio of remanent magnetization (Mr) to saturation magnetization (MS) of about 0.99, anisotropy fields (Ha) of up to 2.6 kOe, and a small deviation angle of 8° between the easy magnetization axis and the normal to the film surface. The sufficient magnetic hardening of the porous MLs with enhanced coercive field HC of up to ∼1.9 kOe for Co/Pd and ∼1.5 kOe for Co/Pt MLs, as compared to the continuous reference samples (∼1.5-2 times), is associated with the pinning of the magnetic moments on the nanopore edges. Application of the Stoner-Wohlfarth model for fitting the experimental M/MS(H) curves yielded clear evidence of the predominantly coherent rotation mechanism of magnetization reversal in the porous films.

  5. Radiative Properties of Smoke and Aerosol Over Land Surfaces

    Science.gov (United States)

    King, Michael D.

    2000-01-01

    This talk discusses smoke and aerosol's radiative properties with particular attention to distinguishing the measurement over clear sky from clouds over land, sea, snow, etc. surfaces, using MODIS Airborne Simulator data from (Brazil, arctic sea ice and tundra and southern Africa, west Africa, and other ecosystems. This talk also discusses the surface bidirectional reflectance using Cloud Absorption Radiometer, BRDF measurements of Saudi Arabian desert, Persian Gulf, cerrado and rain forests in Brazil, sea ice, tundra, Atlantic Ocean, Great Dismal Swamp, Kuwait oil fire smoke. Recent upgrades to instrument (new TOMS UVA channels at 340 and 380 planned use in Africa (SAFARI 2000) and possibly for MEIDEX will also be discussed. This talk also plans to discuss the spectral variation of surface reflectance over land and the sensitivity of off-nadir view angles to correlation between visible near-infrared reflectance for use in remote sensing of aerosol over land.

  6. Synthesis of Some New Quaternary Ammonium Compounds Evaluation of their Surface properties and Solubilization Activity

    International Nuclear Information System (INIS)

    Ismail, D.A.; Mohamed, A.S.; Mohamed, M.Z.

    2004-01-01

    Four cationic surfactants were prepared by condensing fatty acid methyl diethanolamine derivatives (C 6 , C I0 , C I2 , C I8 ) with stoichiometric amounts of trimethyl chlorosilane. The surface properties and parameters were investigated to find the relationship between the structure of the hydrophobic portion of such compounds and their efficiency toward solubilization. The properties studied included surface excess concentration (Γ m ax), critical micelle concentration (cmc). free energy of micellization (ΔG ο m ic) and adsorption (ΔG ο a ds) in addition to the surface tension (γ c mc) at cmc and effectiveness (Π c mc). The values of Γ m ax, ΔG ο mic and ΔG ο a ds were found to increase with increasing number of chain length. while cmc and minimum surface area occupied by one molecule (A m in) were decreased. Solubilization effect of these surfactants on paraffin oil as a non polar solubilizate and biodegradability were studied

  7. The effect of growth surface morphology on the crystal structure and magnetic property of L1{sub 0} order PtFe layers deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ding Wanyu, E-mail: dwysd_2000@163.com [Graduate School of Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan) and School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Ishiguro, Satoshi; Ogatsu, Ryo [Graduate School of Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan); Ju, Dongying, E-mail: dyju@sit.ac.jp [Graduate School of Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan)

    2012-08-01

    The Fe/Pt/Fe/Pt layers (Pt/Fe multilayer) were deposited on general glass substrate at room temperature by magnetron sputtering technique. Varying the deposition and post-annealing treatment parameters, the PtFe alloy (PtFe) layer with different crystal structures and magnetic properties were obtained at the interface between Fe and Pt layer. The characterization by X-ray diffraction (XRD) showed that the as-deposited Pt/Fe multilayer only contained pure Fe and Pt with body-centered and face-centered cubic structures, respectively. As-deposited Pt layer displayed (2 0 0) preferred orientation, and the columnar grains structure could be observed by the scanning electron microscopy. The PtFe layers with L1{sub 0} face-centered cubic structure could be formed at the interface between Pt and Fe layers by post-annealing the multilayers at 500 Degree-Sign C. In case of Pt/Fe multilayer deposited on smooth substrate, the larger columnar grains in Pt layer resulted in L1{sub 0} PtFe layers without any preferred orientation. While in case of Pt/Fe multilayer deposited on the rough substrate, the thinner columnar grains in Pt layer could induce L1{sub 0} PtFe layers with (2 0 0) preferred orientation. In this case, the vibrating sample magnetometer results indicated that, the magnetic coercivity in plane and out-of-plane model could reach 3.72 and 2.32 kOe, respectively. Based on above results, the L1{sub 0} structure Pt/Fe multilayer with satisfied magnetic properties could be prepared at low temperature by our simple route.

  8. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.

    Science.gov (United States)

    Fox, Douglas M; Rodriguez, Rebeca S; Devilbiss, Mackenzie N; Woodcock, Jeremiah; Davis, Chelsea S; Sinko, Robert; Keten, Sinan; Gilman, Jeffrey W

    2016-10-12

    Cellulose nanocrystals (CNCs) have great potential as sustainable reinforcing materials for polymers, but there are a number of obstacles to commercialization that must first be overcome. High levels of water absorption, low thermal stabilities, poor miscibility with nonpolar polymers, and irreversible aggregation of the dried CNCs are among the greatest challenges to producing cellulose nanocrystal-polymer nanocomposites. A simple, scalable technique to modify sulfated cellulose nanocrystals (Na-CNCs) has been developed to address all of these issues. By using an ion exchange process to replace Na + with imidazolium or phosphonium cations, the surface energy is altered, the thermal stability is increased, and the miscibility of dried CNCs with a nonpolar polymer (epoxy and polystyrene) is enhanced. Characterization of the resulting ion exchanged CNCs (IE-CNCs) using potentiometry, inverse gas chromatography, dynamic vapor sorption, and laser scanning confocal microscopy reveals that the IE-CNCs have lower surface energies, adsorb less water, and have thermal stabilities of up to 100 °C higher than those of prepared protonated cellulose nanocrystals (H-CNCs) and 40 °C higher than that of neutralized Na-CNC. Methyl(triphenyl)phosphonium exchanged cellulose nanocrystals (MePh 3 P-CNC) adsorbed 30% less water than Na-CNC, retained less water during desorption, and were used to prepare well-dispersed epoxy composites without the aid of a solvent and well-dispersed polystyrene nanocomposites using a melt blending technique at 195 °C. Predictions of dispersion quality and glass transition temperatures from molecular modeling experiments match experimental observations. These fiber-reinforced polymers can be used as lightweight composites in transportation, infrastructure, and renewable energy applications.

  9. Impact of Surface Treatment on the Structural and Electronic Properties of Polished CdZnTe Surfaces for Radiation Detectors

    Science.gov (United States)

    Tari, Suleyman; Aqariden, F.; Chang, Y.; Grein, C.; Li, Jin; Kioussis, N.

    2013-11-01

    We present the effects of surface treatments on the structural and electronic properties of chemomechanically polished Cd0.9Zn0.1Te before contact deposition. Specifically, polished CdZnTe (CZT) samples were treated with four distinct chemical etchants: (1) bromine methanol (BM), (2) bromine in lactic acid, (3) bromine in methanol followed by bromine-20% lactic acid in ethylene glycol, and (4) hydrochloric acid (HCl). The surface structure and surface electronic properties were studied with atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). AFM images showed that three of the four etchants significantly altered the surface morphology and structure of CZT. All etchants created smoother surfaces; however, all except HCl also introduced high densities of defects. HCl was found to not affect the surface structure. XPS measurements indicated that a thick, ˜3 nm to 4 nm, TeO2 layer formed about 1 h after etching; hence, it is very important to process devices immediately after etching to prevent oxide formation.

  10. Surface Charge and Ion Sorption Properties of Titanium Dioxide

    Science.gov (United States)

    Ridley, M. K.; Machesky, M. L.; Wesolowski, D. J.; Finnegan, M. P.; Palmer, D. A.

    2001-12-01

    The interaction of submicron metal oxide particles with natural aqueous solutions results in the hydroxylation of surface sites, which impart a pH-dependent surface charge. The charged submicron particles influence processes such as nanoparticle assembly and alteration, crystal growth rates and morphologies, colloid flocculation, and contaminant transport. The surface charge and ion sorption properties of metal-oxide particles may be studied by potentiometric titrations, using hydrogen-electrode concentration-cells or traditional glass electrodes and an autotitrator. These techniques have been used to quantify the adsorption of various ions (Na+, Rb+, Ca2+, Sr2+, Cl-) on rutile, at ionic strengths up to 1.0 molality and temperatures to 250° C. The crystalline rutile used in these studies is less than 400 nm in diameter, has a BET surface area of 17 m2/g, and the 110 and 100 faces predominate. The negative surface charge of the rutile was enhanced by increasing temperature, increasing ionic strength, and decreasing the ionic radii of the electrolyte cation. Moreover, the addition of a divalent cation significantly enhances the negative charge of the rutile surface. These data have been rationalized with the MUSIC model of Hiemestra and van Riemsdijk, and a Basic Stern layer description of the electric double layer (EDL). Model fitting of the experimental data provides binding constants for the adsorbed counterions and divalent cations, and capacitance values as well as corresponding electrical potential values of the binding planes. Recently, new studies have been initiated to determine particle size affects on the proton induced surface charge and ion sorption properties of titanium dioxide. In these studies, anatase with a BET surface area of 40 and 100 m2/g (primary particle sizes of 40 and 10 nm, respectively) is being investigated. The complexity of both the experimental and modeling procedures increases with decreasing particle size. For example, the fine

  11. Lanthanide co-doped TiO{sub 2}: The effect of metal type and amount on surface properties and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Reszczyńska, Joanna, E-mail: j.reszcz@gmail.com [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Catalysis Research Center, Hokkaido University, Sapporo 001-0021 (Japan); Grzyb, Tomasz [Department of Rare Earths, Adam Mickiewicz University, 60-780 Poznan (Poland); Sobczak, Janusz W.; Lisowski, Wojciech [Mazovia Center for Surface Analysis, Polish Academy of Sciences, 01-224 Warsaw (Poland); Gazda, Maria [Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-952 Gdansk (Poland); Ohtani, Bunsho [Catalysis Research Center, Hokkaido University, Sapporo 001-0021 (Japan); Zaleska, Adriana [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland)

    2014-07-01

    Preparation of new rare earth metal-containing TiO{sub 2} nanocomposites (Nd{sup 3+}/Er{sup 3+}, Nd{sup 3+}/Eu{sup 3+}, Eu{sup 3+}/Ho{sup 3+}-TiO{sub 2}) using sol–gel route and their photoactivity under visible and ultraviolet light is reported. The obtained photocatalysts were subsequently characterized by Brunauer–Emmett–Teller (BET) method, UV–vis diffuse-reflectance spectroscopy (DRS), luminescence spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction analysis (XRD). Photodegradation efficiency of phenol and acetic acid was estimated for visible light (λ > 420 nm) and UV irradiation. It was found that introduced rare earth (RE) metals are presented in the form of metal oxides (RE{sub 2}O{sub 3}) at TiO{sub 2} surface. Our study demonstrated that Eu{sup 3+}/Ho{sup 3+}co-doped titania exhibited higher photocatalytic activity than P25 in phenol degradation under visible light, whereas Nd{sup 3+}/Eu{sup 3+} co-doped TiO{sub 2} showed one of the highest activities in both phenol and acetic acid degradation reaction either under UV and visible light among all the rare earth doped samples. Action spectra analysis of the selected samples clearly showed that RE-doped TiO{sub 2} could be excited under visible light in the range from 420 to 450 nm.

  12. Particle size, spin wave and surface effects on magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Aslibeiki, B., E-mail: b.aslibeiki@tabrizu.ac.ir [Department of Physics, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Varvaro, G.; Peddis, D. [Istituto di Struttura della Materia, National Research Council, Monterotondo Scalo, Roma 00015 (Italy); Kameli, P. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2017-01-15

    Magnesium ferrite, MgFe{sub 2}O{sub 4}, nanoparticles with a mean diameter varying from ∼6 to ∼17 nm were successfully synthesized using a simple thermal decomposition method at different annealing temperatures ranging in between 400 and 600 °C. Pure spinel ferrite nanoparticles were obtained at temperatures lower than 500 °C, while the presence of hematite (α-Fe{sub 2}O{sub 3}) impurities was observed at higher temperatures. Single-phase samples show a superparamagnetic behavior at 300 K, the saturation magnetization (M{sub s}) becoming larger with the increase of particles size. The temperature dependence of M{sub s} was explained in terms of surface spin-canting as well as spin wave excitations in the core. Using a modified Bloch law, [M{sub s}(T)=M{sub s}(0)(1−βT{sup α})], we observed a size dependent behavior of the Bloch constant β and the exponent α, whose values increase and decrease, respectively, as the particle size reduces. - Highlights: • MgFe{sub 2}O{sub 4} nanoparticles were synthesized using a thermal decomposition method. • Pure ferrite nanoparticles were obtained at temperatures lower than 500 °C. • Samples show a superparamagnetic behavior at room temperatures. • Spin wave excitations were studied using a modified Bloch law.

  13. Solvent/co-solvent effects on the electronic properties and adsorption mechanism of anticancer drug Thioguanine on Graphene oxide surface as a nanocarrier: Density functional theory investigation and a molecular dynamics

    Science.gov (United States)

    Hasanzade, Zohre; Raissi, Heidar

    2017-11-01

    In this work, the adsorption of Thioguanine (TG) anticancer drug on the surface of Graphene oxide (GO) nanosheet has investigated using density functional theory (DFT) and molecular dynamics simulation (MDs). Quantum mechanics calculations by two methods including M06-2X/6-31G**and ωB97X-D/6-31G** have been employed to calculate the details of energetic, geometric, and electronic properties of the TG molecule interacting with Graphene oxide nanosheet (GONS). DFT calculations confirmed that the strongest adsorption is observed when hydrogen bond interactions between TG molecule and the functional groups of Graphene oxide nanosheet are predominate. In all calculations, solvent effects have been considered in water using the PCM method. It is found that TG molecule can be adsorbed on Graphene oxide with negative solvation energy, indicating the TG adsorption on Graphene oxide surfaces is thermodynamically favored. Moreover, MD simulations are examined to understand the solvent/co-solvent effect (water, ethanol, nicotine) on the Thioguanine drug delivery through Graphene oxide. The results of RDF patterns and the van der Waals energy calculations show that interaction between TG drugs and the Graphene oxide surface is stronger in water solvent compared to the other co-solvent. The obtained MD results illustrate that when nicotine and ethanol exist in the system, the drug takes longer time to bind with GO nanosheet and the system becomes unstable. It can be concluded that Graphene oxide can be a promising candidate in water media for delivery the TG molecule.

  14. Effect of surface etching and electrodeposition of copper on nitinol

    Science.gov (United States)

    Ramos-Moore, E.; Rosenkranz, A.; Matamala, L. F.; Videla, A.; Durán, A.; Ramos-Grez, J.

    2017-10-01

    Nitinol-based materials are very promising for medical and dental applications since those materials can combine shape memory, corrosion resistance, biocompatibility and antibacterial properties. In particular, surface modifications and coating deposition can be used to tailor and to unify those properties. We report preliminary results on the study of the effect of surface etching and electrodeposition of Copper on Nitinol using optical, chemical and thermal techniques. The results show that surface etching enhances the surface roughness of Nitinol, induces the formation of Copper-based compounds at the Nitinol-Copper interface, reduces the austenitic-martensitic transformations enthalpies and reduces the Copper coating roughness. Further studies are needed in order to highlight the influence of the electrodeposited Copper on the memory shape properties of NiTi.

  15. Multipulse nanosecond laser irradiation of silicon for the investigation of surface morphology and photoelectric properties

    Science.gov (United States)

    Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian

    2017-12-01

    We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.

  16. Mechanical properties and surface characteristics of three archwire alloys.

    Science.gov (United States)

    Krishnan, Vinod; Kumar, K Jyothindra

    2004-12-01

    Recent developments in material science have presented newer archwire materials as well as improvements in the properties of existing ones. Proper selection and understanding of the biomechanical requirement of each case requires proper characterization studies on archwire alloys. The present study characterizes and compares three orthodontic archwire alloys, stainless steel, beta titanium alloy (TMA), and a newly introduced titanium alloy (TiMolium), for the parameters (1) ultimate tensile strength (UTS), 0.02% offset yield strength (YS), and modulus of elasticity (E); (2) load deflection characteristics; (3) frictional properties; (4) surface characteristics and (5) elemental analysis for TiMolium. Seven specimens of each archwire alloy were used for evaluating each parameter. An instron universal testing machine was used for tensile testing, three-point bend testing, and evaluation of frictional characteristics. Scanning electron microscope was used for surface evaluation and X-ray fluorescence for elemental analysis of TiMolium wire specimens. Stainless steel was the strongest archwire alloy with high UTS, E, 0.02% offset YS, and less friction at the archwire-bracket interface. TMA wires exhibited better load deflection characteristics with less stiffness than the other two wires. The surface of TMA appeared rough and exhibited very high values for friction at the archwire-bracket interface. TiMolium appeared to be an alpha-beta titanium alloy composed of titanium, aluminum, and vanadium and intermediate in nature for all the parameters evaluated.

  17. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property.

    Science.gov (United States)

    Kwon, Ho Joon; Lee, Yunki; Phuong, Le Thi; Seon, Gyeung Mi; Kim, Eunsuk; Park, Jong Chul; Yoon, Hyunjin; Park, Ki Dong

    2017-10-01

    Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days. In vitro studies revealed that poly(sulfobetaine-co-tyramine)-coated surfaces dramatically reduced the adhesion of fibrinogen, platelets, fibroblasts, and S. aureus by over 90% in comparison with bare surfaces. These results proved that polyurethane surfaces grafted with poly(sulfobetaine-co-tyramine) via a tyrosinase-catalyzed reaction could be promising candidates for an implantable medical device with excellent bioinert abilities. Antifouling surface modification is one of the key strategy to prevent the thrombus formation or infection which occurs on the surface of biomaterial after transplantation. Although there are many methods to modify the surface have been reported, necessity of simple modification technique still exists to apply for practical applications. The purpose of this study is to modify the biomaterial's surface by simply immobilizing antifouling zwitterion polymer via enzyme tyrosinase-mediated reaction which could modify versatile substrates in mild aqueous condition within fast time period. After modification, pSBTA grafted surface becomes resistant to various biological factors including proteins, cells, and bacterias. This approach appears to be a promising method to impart antifouling property on

  18. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  19. Influence of Laser Shock Texturing on W9 Steel Surface Friction Property

    Science.gov (United States)

    Fan, Yujie; Cui, Pengfei; Zhou, Jianzhong; Dai, Yibin; Guo, Erbin; Tang, Deye

    2017-09-01

    To improve surface friction property of high speed steel, micro-dent arrays on W9Mo3Cr4V surface were produced by laser shock processing. Friction test was conducted on smooth surface and texturing surface and effect of surface texturing density on friction property was studied. The results show that, under the same condition, friction coefficient of textured surface is lower than smooth surface with dent area density less than 6%, wear mass loss, width and depth of wear scar are smaller; Wear resistance of the surface is the best and the friction coefficient is the smallest when dent area density is 2.2%; Friction coefficient, wear mass loss, width and depth of wear scar increase correspondingly as density of dent area increases when dent area density is more than 2.2%. Abrasive wear and adhesive wear, oxidative wear appear in the wear process. Reasonable control of geometric parameters of surface texturing induced by laser shock processing is helpful to improve friction performance.

  20. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layer physical properties

    Directory of Open Access Journals (Sweden)

    J.-M. Friedt

    2016-12-01

    Full Text Available We use an instrument combining optical (surface plasmon resonance and acoustic (Love mode surface acoustic wave device real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition and surfactant adsorption, the bound mass and its physical properties – density and optical index – are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70±20% water and are 16±3 to 19±3 nm thick for bulk concentrations ranging from 30 to 300 μg/ml. Fibrinogen layers include 50±10% water for layer thicknesses in the 6±1.5 to 13±2 nm range when the bulk concentration is in the 46 to 460 μg/ml range. Keywords: surface acoustic wave, surface plasmon resonance, collagen, fibrinogen, density, thickness

  1. Relationship between surface property and catalytic application of amorphous NiP/Hβ catalyst for n-hexane isomerization

    Science.gov (United States)

    Chen, Jinshe; Duan, Zunbin; Song, Zhaoyang; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong

    2017-12-01

    The amorphous NiP nanoparticles were synthesized and a novel amorphous NiP/Hβ catalyst was prepared successfully further. Due to the superior surface property of amorphous NiP/Hβ catalyst, it exhibited good catalytic application for n-hexane isomerization. The catalytic activity of amorphous NiP/Hβ catalyst was close to that of the prepared Pt/Hβ sample, and better than that of commercial catalyst and crystalline Ni2P/Hβ catalyst. What's more, the amorphous NiP/Hβ catalyst shows high resistance to different sulfur compounds and water on account of its unique surface property. The effect of loading amounts on surface property and catalytic performance was investigated, and the structure-function relationship among them was studied ulteriorly. The results demonstrate that loading amounts have effect on textural property and surface acid property, which further affect the catalytic performance. The 10 wt.% NiP/Hβ sample has appropriate pore structure and acid property with uniformly dispersed NiP nanoparticles on surface, which is helpful for providing suitable synergistic effect. The effects of reaction conditions on surface reactions and the mechanism for n-hexane isomerization were investigated further. Based on these results, the amorphous NiP/Hβ catalyst with superior surface property probably pavesa way to overcome the drawbacks of traditional noble metal catalyst, which shows good catalytic application prospects.

  2. Microstructure and surface mechanical properties of pulse electrodeposited nickel

    Energy Technology Data Exchange (ETDEWEB)

    Ul-Hamid, A., E-mail: anwar@kfupm.edu.sa [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Dafalla, H.; Quddus, A.; Saricimen, H.; Al-Hadhrami, L.M. [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)

    2011-09-01

    The surface of carbon steel was modified by electrochemical deposition of Ni in a standard Watt's bath using dc and pulse plating electrodeposition. The aim was to compare the microstructure and surface mechanical properties of the deposit obtained by both techniques. Materials characterization was conducted using field emission scanning electron microscope fitted with scanning transmission electron detector, atomic force microscope and X-ray diffractometer. Nanoindentation hardness, elastic modulus, adhesion, coefficients of friction and wear rates were determined for both dc and pulse electrodeposits. Experimental results indicate that pulse electrodeposition produced finer Ni grains compared to dc plating. Size of Ni grains increased with deposition. Both dc and pulse deposition resulted in grain growth in preferred (2 0 0) orientation. However, presence of Ni (1 1 1) grains increased in deposits produced by pulse deposition. Pulse plated Ni exhibited higher hardness, creep and coefficient of friction and lower modulus of elasticity compared to dc plated Ni.

  3. Molecular dynamics simulations on surface properties of silicon dioxide melts

    CERN Document Server

    Röder, A

    2000-01-01

    In the present thesis the surface properties of a silicon dioxide melt were studied. As first systems drops (i.e. sytems without periodic boundary conditions) of N=432, 1536, as well as 4608 atoms were considered. The second analyzed geometry corresponds to that of a thin film, i. e. periodic boundary conditions in x- and y-direction were present, while in z-direction one had a free surface. In this case a system of N=1152 atoms was considered. As model potential the two-body potential proposed by Beest, Kramer, and van Santen was applied. For both geometries five temperatures were considered, which lied in the range of 3000 K

  4. Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface

    Directory of Open Access Journals (Sweden)

    Nie Yining

    2010-09-01

    Full Text Available Abstract Background Aluminum-made settings are widely used in healthcare, schools, public facilities and transit systems. Frequently-touched surfaces of those settings are likely to harbour bacteria and be a potential source of infection. One method to utilize the effectiveness of copper (Cu in eliminating pathogens for these surfaces would be to coat the aluminum (Al items with a Cu coating. However, such a combination of Cu and Al metals is susceptible to galvanic corrosion because of their different electrochemical potentials. Methods In this work, a new approach was proposed in which electrolytic plasma oxidation (EPO of Al was used to form an oxide surface layer followed by electroplating of Cu metal on the top of the oxide layer. The oxide was designed to function as a corrosion protective and biocompatible layer, and the Cu in the form of dots was utilized as an antibacterial material. The antibacterial property enhanced by superhydrophilicity of the Cu-dotted oxide coating was evaluated. Results A superhydrophilic surface was successfully prepared using electrolytic plasma oxidation of aluminum (Al followed by electroplating of copper (Cu in a Cu-dotted form. Both Cu plate and Cu-dotted oxide surfaces had excellent antimicrobial activities against E. coli ATCC 25922, methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300 and vancomycin-resistant Enterococcus faecium (VRE ATCC 51299. However, its Cu-dotted surface morphology allowed the Cu-dotted oxide surface to be more antibacterial than the smooth Cu plate surface. The enhanced antibacterial property was attributed to the superhydrophilic behaviour of the Cu-dotted oxide surface that allowed the bacteria to have a more effective killing contact with Cu due to spreading of the bacterial suspension media. Conclusion The superhydrophilic Cu-dotted oxide coating surface provided an effective method of controlling bacterial growth and survival on contact surfaces and thus reduces the

  5. Surface properties of poly(imide-co-siloxane) block copolymers

    Czech Academy of Sciences Publication Activity Database

    Novák, I.; Sysel, P.; Chodák, I.; Špírková, Milena; Janigová, I.

    2009-01-01

    Roč. 103, č. 13 (2009), s76-s78 ISSN 0009-2770. [PMA 2009 &20th SRC . Bratislava, 21.04.2009/23.04.2009] R&D Projects: GA AV ČR IAA100100622; GA AV ČR IAA400500505 Grant - others:Slovak Scientific Agency(SK) VEGA2/7103/27 Institutional research plan: CEZ:AV0Z40500505 Keywords : Poly(imide-siloxane) * surface properties * morphology Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.717, year: 2009 http://www.chemicke-listy.cz/docs/full/2009_13_s058-s081.pdf

  6. Molluscicidal properties and selective toxicity of surface-active agents

    Science.gov (United States)

    Visser, S. A.

    1965-01-01

    Of over 100 commercially produced surface-active agents tested against the bilharziasis vector snail Biomphalaria sudanica, 13 were found to possess considerable and highly selective molluscicidal properties at concentrations of less than 1 ppm for exposures of 48 hours. Against crustacea, fish, water plants, mosquito larvae, mice, and the eggs of B. sudanica, the toxicities of the 13 surfactants were slight. The chemicals did not appear to be absorbed by organic matter to any appreciable extent. It is thought that the toxicity to B. sudanica is of both a chemical and a physical nature. PMID:5294185

  7. Modification of polyvinyl alcohol surface properties by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pukhova, I.V., E-mail: ivpuhova@mail.ru [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Kurzina, I.A. [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Savkin, K.P. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Laput, O.A. [National Research Tomsk Polytechnic University, 30 Lenin Ave, Tomsk 634050 (Russian Federation); Oks, E.M. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation)

    2017-05-15

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 10{sup 14}, 1 × 10{sup 15} and 1 × 10{sup 16} ion/cm{sup 2} and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (−C=O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  8. Characterizing the effects of regolith surface roughness on photoemission from surfaces in space

    Science.gov (United States)

    Dove, A.; Horanyi, M.; Wang, X.

    2017-12-01

    Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.

  9. Microstructural evolution and mechanical properties of Ti–Zr beta titanium alloy after laser surface remelting

    International Nuclear Information System (INIS)

    Yao, Y.; Li, X.; Wang, Y.Y.; Zhao, W.; Li, G.; Liu, R.P.

    2014-01-01

    Highlights: • The surface mechanical properties of the alloy have been greatly improved. • Its grain size was decreased from 100 μm to 10 μm. • The metastable ω with the size of 20–50 nm was observed in the alloy after LSR. • The strengthening effect is mainly due to fine microstructure and strengthened phase. -- Abstract: The effects of laser surface remelting (LSR) on the microstructural evolution and surface mechanical properties of Ti–Zr beta titanium alloy were investigated. The surfaces of the Ti–Zr alloy was re-melted using a CO 2 laser. X-ray diffraction, Scanning electron microscope, Transmission electron microscope, nanoindentation, and microhardness analyses were performed to evaluate the microstructural and mechanical properties of the alloy. The results showed that the alloy microstructure in the remelting region was greatly refined and homogeneous compared with that in the base material because of the rapid remelting and resolidifying. Meanwhile, the metastable hexagonal ω phases with the size of 20–50 nm was found and uniformly distributed throughout the β matrix after LSR. Phase transformation and microstructural refinement were the major microstructural changes in the alloys after LSR. The microhardness and elastic modulus in the remelted region clearly increased by 92.9% and 21.78%, respectively, compared with those in the region without laser processing. The strengthening effect of LSR on the mechanical properties of the Ti–Zr alloy was also addressed. Our results indicated that LSR was an effective method of improving the surface mechanical properties of alloys

  10. Mechanical Properties of Glass Surfaces Coated with Tin Oxide

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Cantor, B.

    1978-01-01

    The effect of tin oxide coatings on the coefficient of friction and fracture strength of glass surfaces is studied. Experiments were performed partly on commercially treated glass bottles and partly on laboratory prepared microscope slides. Coatings were applied in the laboratory by decomposition...

  11. FORMATION OF ANTIBACTERIAL EFFECT ON CERAMIC TILE SURFACES

    Directory of Open Access Journals (Sweden)

    Selçuk ÖZCAN

    2017-03-01

    Full Text Available Biocidal antimicrobial molecular barrier (BAMB solutions are known to provide antimicrobial effect on the surfaces in industrial applications. However, there has been a lack of scientific reports about the subject in the literature. In this study, in order to impart an antimicrobial surface property on ceramic surfaces, a BAMB solution was applied on gloss fired ceramic wall tile substrates and the surface antimicrobial activity results were compared with that of plain wall tiles (without BAMB application. The ceramic surfaces were cleaned, and stove dried at120°C prior to spray coating with a BAMB solution. The coated substrates were dried in the ambient. The intactness of the coatings was checked with the bromophenol blue test. The microstructural and molecular characterization of the BAMB coated surfaces were carried out with SEM imaging and surface FTIR, respectively. The antimicrobial activity tests of the surfaces were conducted according to ASTM E2180-07 (Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent in Polymeric or Hydrophobic Materials. The microorganisms used were Staphylococcus aureus (ATCC 6538 and Pseudomonas aeruginosa (ATCC 15442 bacteria. The BAMB coated surfaces showed less flocculent bacterial growth in comparison to uncoated ceramic surfaces leading to the conclusion that the BAMB improved the antimicrobial property.

  12. Improved antifouling properties of photobioreactors by surface grafted sulfobetaine polymers.

    Science.gov (United States)

    Wang, Dongwei; Wu, Xia; Long, Lixia; Yuan, Xubo; Zhang, Qinghua; Xue, Shengzhang; Wen, Shumei; Yan, Chenghu; Wang, Jianming; Cong, Wei

    2017-11-01

    To improve the antifouling (AF) properties of photobioreactors (PBR) for microalgal cultivation, using trihydroxymethyl aminomethane (tris) as the linking agent, a series of polyethylene (PE) films grafted with sulfobetaine (PE-SBMA) with grafting density ranging from 23.11 to 112 μg cm -2 were prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). It was found that the contact angle of PE-SBMA films decreased with the increase in the grafting density. When the grafting density was 101.33 μg cm -2 , it reached 67.27°. Compared with the PE film, the adsorption of protein on the PE-SBMA film decreased by 79.84% and the total weight of solid and absorbed microalgae decreased by 54.58 and 81.69%, respectively. Moreover, the transmittance of PE-SBMA film recovered to 86.03% of the initial value after cleaning, while that of the PE film recovered to only 47.27%. The results demonstrate that the AF properties of PE films were greatly improved on polySBMA-grafted surfaces.

  13. Thermal repellent properties of surface coating using silica

    Science.gov (United States)

    Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.

    2017-11-01

    Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.

  14. A robust superhydrophobic surface and origins of its self-cleaning properties

    Science.gov (United States)

    Li, Hao; Yu, Sirong

    2017-10-01

    A hierarchical surface was fabricated by electrodeposition of copper coating and chemical oxidation to form copper oxide, and the surface energy was lowered by chemical modification. The optimum parameters including seven days of chemical modification, 0.12 mol/L of (NH4)2S2O8, 2.5 mol/L of KOH and 60 °C of oxidation temperature were used to fabricate the superhydrophobic surface with a water contact angle up to around 160° and a sliding angle about 3° on a steel substrate. Silver mirror effect and simple calculation showed that the wetting state between a water droplet and the hierarchical superhydrophobic surface was the Cassie state. This superhydrophobic surface had excellent self-cleaning properties for two different sizes (∼ 50 μm and 150 μm) of fly-ash cenospheres, and we gave the reason for its self-cleaning properties by the force involved at the interface. We also investigated the dynamics of water droplets impinging onto the superhydrophobic surface with different impact velocities, ranging from 0.31 m/s to 1.71 m/s, and found that all the water droplets could rebound from the superhydrophobic surface, with no trace of adhesion. In addition, a variety of tests were performed to assess the robustness of the superhydrophobic surfaces.

  15. the effect of surface polarity

    Indian Academy of Sciences (India)

    Abstract. An implant material when comes in contact with blood fluids (e.g., blood and lymph), adsorb proteins spontaneously on its surface. Notably, blood coagulation is influenced by many factors, including mainly chemical structure and polarity (charge) of the material. The present study describes the methodology to ...

  16. Surface structure, crystallographic and ice-nucleating properties of cellulose

    Science.gov (United States)

    Hiranuma, Naruki; Möhler, Ottmar; Kiselev, Alexei; Saathoff, Harald; Weidler, Peter; Shutthanandan, Shuttha; Kulkarni, Gourihar; Jantsch, Evelyn; Koop, Thomas

    2015-04-01

    Increasing evidence of the high diversity and efficient freezing ability of biological ice-nucleating particles is driving a reevaluation of their impact upon climate. Despite their potential importance, little is known about their atmospheric abundance and ice nucleation efficiency, especially non-proteinaceous ones, in comparison to non-biological materials (e.g., mineral dust). Recently, microcrystalline cellulose (MCC; non-proteinaceous plant structural polymer) has been identified as a potential biological ice-nucleating particle. However, it is still uncertain if the ice-nucleating activity is specific to the MCC structure or generally relevant to all cellulose materials, such that the results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to address its role in clouds and the climate system. Here we use the helium ion microscopy (HIM) imaging and the X-ray diffraction (XRD) technique to characterize the nanoscale surface structure and crystalline properties of the two different types of cellulose (MCC and fibrous cellulose extracted from natural wood pulp) as model proxies for atmospheric cellulose particles and to assess their potential accessibility for water molecules. To complement these structural characterizations, we also present the results of immersion freezing experiments using the cold stage-based droplet freezing BINARY (Bielefeld Ice Nucleation ARaY) technique. The HIM results suggest that both cellulose types have a complex porous morphology with capillary spaces between the nanoscale fibrils over the microfiber surface. These surface structures may make cellulose accessible to water. The XRD results suggest that the structural properties of both cellulose materials are in agreement (i.e., P21 space group; a=7.96 Å, b=8.35 Å, c=10.28 Å) and comparable to the crystallographic properties of general monoclinic cellulose (i.e., Cellulose Iβ). The results obtained from the BINARY measurements suggest

  17. Photoinduced reversible topographical changes on diarylethene microcrystalline surfaces with biomimetic wetting properties.

    Science.gov (United States)

    Nishikawa, Naoki; Uyama, Ayaka; Kamitanaka, Takashi; Mayama, Hiroyuki; Kojima, Yuko; Yokojima, Satoshi; Nakamura, Shinichiro; Tsujii, Kaoru; Uchida, Kingo

    2011-09-05

    Reversible topographical changes were observed on a photochromic diarylethene microcrystalline film surface by alternate irradiation with UV and visible light. Two types of surfaces were prepared from this film: 1) Storage of the film at 30 °C for 24 hours in the dark after UV irradiation afforded a surface that was covered with needle-shaped crystals, whose diameter and length were approximately 1 μm and 10 μm, respectively, and showed a superhydrophobic lotus effect. 2) Storage of the film at 70 °C for 3 hours in the dark caused the needle-shaped crystals to be converted into larger rod-like crystals (5~8 μm wide and 20~30 μm long) by Ostwald ripening and a disappearance of the lotus effect. The obtained activation energy of the formation of the needle- and rod-shaped crystals was 143 and 162 kJ mol(-1), respectively. Subsequent UV irradiation to the surface, which was followed by storage at 50 °C for 1 hour in the dark, gave a doubly rough structure; small needle-shaped crystals were formed between the larger rod-shaped crystals. The surface showed both superhydrophobic properties and the pinned effect of the water droplet: the petal effect. Fractal analysis of both surfaces were carried out using a box-counting method, and the lotus effect was observed in the presence of smaller-sized crystals, whilst the petal effect was observed with larger sized crystals (ca. 100 μm). We demonstrated that the hydrophobic property was controlled by the distribution in crystal size of the closed-ring isomer of the diarylethene. Visible-light irradiation of both rough surfaces afforded surfaces with cubic-shaped micro-crystals of the open-ring isomer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Numerical study of propagation properties of surface plasmon polaritons in nonlinear media

    KAUST Repository

    Sagor, Rakibul Hasan

    2016-03-29

    We present a time-domain algorithm for simulating nonlinear propagation of surface plasmon polaritons (SPPs) in chalcogenide glass. Due to the high non-linearity property and strong dispersion and confinement chalcogenide glasses are widely known as ultrafast nonlinear materials. We have used the finite difference time domain (FDTD) method to develop the simulation algorithm for the current analysis. We have modeled the frequency dependent dispersion properties and third order nonlinearity property of chalcogenide glass utilizing the general polarization algorithm merged in the auxiliary differential equation (ADE) method. The propagation dynamics of the whole structure with and without third order nonlinearity property of chalcogenide glass have been simulated and the effect of nonlinearity on the propagation properties of SPP has been investigated. © 2016 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  19. Ion beam application for improved polymer surface properties

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Lewis, M.B.; Mansur, L.K.

    1992-01-01

    Various polymeric materials were subjected to bombardment by different energetic ions with energies ranging from 200 to 1000 keV. Tests showed substantial improvements in hardness, wear resistance, oxidation resistance, resistance to chemicals, and electrical conductivity. The magnitude of property changes was strongly dependent upon ion species, energy, dose, and polymer structure. Both hardness and electrical conductivity increased with ion energy and dose. These properties were apparently related to the effectiveness of cross-linking. Ion species with a large electronic stopping cross-section are expected to produce more crosslinking. It is believed that the polymer property improvements are commensurate with the extent of crosslinking, which is responsible for the formation of three-dimensionally-connected, carbon-rich, rigid networks. 22 refs, 5 figs

  20. Influence of surface oxidation on the radiative properties of ZrB{sub 2}-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning, E-mail: lncaep@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Xing, Pifeng; Li, Cui [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Peng [School of Material Science and Engineering, Shandong University of Technology, Zibo 255049 (China); Jin, Xinxin [College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Zhang, Xinghong [Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001 (China)

    2017-07-01

    Highlights: • Surface component affected radiative properties of ZrB{sub 2}-SiC composites significantly. • Emissivity in long-wave range gradually increased with the thickness of oxide scale. • The surface temperature had a little effect on radiative properties of composites. • Influence of surface roughness on emissivity could be negligible. • Covering the surface with glass is a method for improving radiative properties. - Abstract: The spectral emissivities of ZrB{sub 2}-20 vol.% SiC composites with various surface components of ZrB{sub 2}/SiC (ZS1), silica-rich glass (ZS2) and porous zirconia (ZS3) were measured using infrared spectrometer in the wavelength range from 2.5 to 25.0 μm. The relationship between surface oxidation (associated with surface component, thickness of oxide scale, testing temperature as well as roughness) and the radiative properties of ZrB{sub 2}-SiC composites were investigated systematically. Surface component affected the radiative properties of composites significantly. The total emissivity of ZS1 varied from 0.22 to 0.81 accompanied with surface oxidation in the temperature range 300–900 °C. The emissivity of ZS2 was about 1.5 times as that of ZS3 under the same testing conditions. The oxide scale on specimen surface enhanced the radiative properties especially in terms of short-wave range, and the emissivity in the long-wave range gradually increased with the thickness of oxide scale within a certain range. The influence of testing temperature and surface roughness was also investigated. The testing temperature had a little effect on radiative properties, whereas effect of surface roughness could be negligible.

  1. Preservation of surface-dependent properties of viral antigens following immobilization on particulate ceramic delivery vehicles.

    Science.gov (United States)

    Kossovsky, N; Gelman, A; Sponsler, E; Rajguru, S; Torres, M; Mena, E; Ly, K; Festekjian, A

    1995-05-01

    B-cell stimulation for the purpose of evoking an effective neutralizing humoral immune response is a surface phenomenon that is exquisitely specific to antigen conformation. Consequently, successful delivery of antigen, such as would be desired in a vaccine, entails preservation of an antigen's apparent native surface (conformational) properties. Prior to testing the actual vaccinating efficacy of delivered antigens, the surface properties could be assessed through a variety of in vitro and in vivo assays in which the measurement standard would be the properties of the antigens in their native state (whole virus). Using surface modified nanocrystalline carbon and calcium-phosphate ceramic particulates (carbon ceramics and brushite), we evaluated the