WorldWideScience

Sample records for surface primary production

  1. Primary productivity

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Parulekar, A.H.

    Photosynthetic production in the oceans in relation to light, nutrients and mixing processes is discussed. Primary productivity in the estuarine region is reported to be high in comparison to coastal and oceanic waters. Upwelling phenomenon...

  2. Global land-surface primary productivity based upon Nimbus-7 37 GHz data

    Science.gov (United States)

    Choudhury, B. J.

    1988-01-01

    Accumulation and renewal of organic matter as quantified through net primary productivity (NPP) is considered a very major function of the biosphere, and its estimation is crucial in understanding the carbon cycle. A physically-based model relating NPP to the difference of vertically and horizontally polarized brightness temperatures (Delta T) observed at 37 GHz frequency of the scanning multichannel microwave radiometer on board the Nimbus-7 satellite is used for fitting areally averaged values of NPP and Delta T for five biomes. The land-surface NPP within 80 deg N to 55 deg S is then calculated using the Delta T data and compared with other estimates.

  3. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord

    DEFF Research Database (Denmark)

    Ribeiro, Sofia; Sejr, Mikael K; Limoges, Audrey

    2017-01-01

    Monitoring Programme. Clear spatial gradients in organic carbon and biogenic silica contents reflected marine influence, nutrient availability and river-induced turbidity, in good agreement with in situ measurements. The sea ice proxy IP25 was detected at all sites but at low concentrations, indicating...... that IP25 records from fjords need to be carefully considered and not directly compared to marine settings. The sea ice-associated biomarker HBI III revealed an open-water signature, with highest concentrations near the mid-July ice edge. This proxy evaluation is an important step towards reliable......In order to establish a baseline for proxy-based reconstructions for the Young Sound–Tyrolerfjord system (Northeast Greenland), we analysed the spatial distribution of primary production and sea ice proxies in surface sediments from the fjord, against monitoring data from the Greenland Ecosystem...

  4. Relating Nimbus-7 37 GHz data to global land-surface evaporation, primary productivity and the atmospheric CO2 concentration

    Science.gov (United States)

    Choudhury, B. J.

    1988-01-01

    Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.

  5. Parameterization of surface irradiance and primary production in Århus Bay, SW Kattegat, Baltic Sea

    DEFF Research Database (Denmark)

    Lund-Hansen, Lars Chresten; Sørensen, Helene Munk

    2009-01-01

    . The study is based on a one year long time-series of PAR, CTD-casts (n = 45), and primary production measurements (n = 24) from Århus Bay (56°09′ N; 10°20′ E), south west Kattegat. Results showed a high and positive correlation between observed and calculated primary production in the bay, as based...

  6. Asymmetric Responses of Primary Productivity to Altered Precipitation Simulated by Land Surface Models across Three Long-term Grassland Sites

    Science.gov (United States)

    Wu, D.; Ciais, P.; Viovy, N.; Knapp, A.; Wilcox, K.; Bahn, M.; Smith, M. D.; Ito, A.; Arneth, A.; Harper, A. B.; Ukkola, A.; Paschalis, A.; Poulter, B.; Peng, C.; Reick, C. H.; Hayes, D. J.; Ricciuto, D. M.; Reinthaler, D.; Chen, G.; Tian, H.; Helene, G.; Zscheischler, J.; Mao, J.; Ingrisch, J.; Nabel, J.; Pongratz, J.; Boysen, L.; Kautz, M.; Schmitt, M.; Krohn, M.; Zeng, N.; Meir, P.; Zhang, Q.; Zhu, Q.; Hasibeder, R.; Vicca, S.; Sippel, S.; Dangal, S. R. S.; Fatichi, S.; Sitch, S.; Shi, X.; Wang, Y.; Luo, Y.; Liu, Y.; Piao, S.

    2017-12-01

    Changes in precipitation variability including the occurrence of extreme events strongly influence plant growth in grasslands. Field measurements of aboveground net primary production (ANPP) in temperate grasslands suggest a positive asymmetric response with wet years resulting in ANPP gains larger than ANPP declines in dry years. Whether land surface models used for historical simulations and future projections of the coupled carbon-water system in grasslands are capable to simulate such non-symmetrical ANPP responses remains an important open research question. In this study, we evaluate the simulated responses of grassland primary productivity to altered precipitation with fourteen land surface models at the three sites of Colorado Shortgrass Steppe (SGS), Konza prairie (KNZ) and Stubai Valley meadow (STU) along a rainfall gradient from dry to wet. Our results suggest that: (i) Gross primary production (GPP), NPP, ANPP and belowground NPP (BNPP) show nonlinear response curves (concave-down) in all the models, but with different curvatures and mean values. In contrast across the sites, primary production increases and then saturates along increasing precipitation with a flattening at the wetter site. (ii) Slopes of spatial relationships between modeled primary production and precipitation are steeper than the temporal slopes (obtained from inter-annual variations). (iii) Asymmetric responses under nominal precipitation range with modeled inter-annual primary production show large uncertainties, and model-ensemble median generally suggests negative asymmetry (greater declines in dry years than increases in wet years) across the three sites. (iv) Primary production at the drier site is predicted to more sensitive to precipitation compared to wetter site, and median sensitivity consistently indicates greater negative impacts of reduced precipitation than positive effects of increased precipitation under extreme conditions. This study implies that most models

  7. Denali Ice Core Record of North Pacific Sea Surface Temperatures and Marine Primary Productivity

    Science.gov (United States)

    Polashenski, D.; Osterberg, E. C.; Kreutz, K. J.; Winski, D.; Wake, C. P.; Ferris, D. G.; Introne, D.; Campbell, S. W.

    2016-12-01

    Chemical analyses of precipitation preserved in glacial ice cores provide a unique opportunity to study changes in atmospheric circulation patterns and ocean surface conditions through time. In this study, we aim to investigate changes in both the physical and biological parameters of the north-central Pacific Ocean and Bering Sea over the twentieth century using the deuterium excess (d-excess) and methanesulfonic acid (MSA) records from the Mt. Hunter ice cores drilled in Denali National Park, Alaska. These parallel, 208 m-long ice cores were drilled to bedrock during the 2013 field season on the Mt. Hunter plateau (63° N, 151° W, 3,900 m above sea level) by a collaborative research team consisting of members from Dartmouth College and the Universities of Maine and New Hampshire. The cores were sampled on a continuous melter system at Dartmouth College and analyzed for the concentrations major ions (Dionex IC) and trace metals (Element2 ICPMS), and for stable water isotope ratios (Picarro). The depth-age scale has been accurately dated to 400 AD using annual layer counting of several chemical species and further validated using known historical volcanic eruptions and the Cesium-137 spike associated with nuclear weapons testing in 1963. We use HYSPLIT back trajectory modeling to identify likely source areas of moisture and aerosol MSA being transported to the core site. Satellite imagery allows for a direct comparison between chlorophyll a concentrations in these source areas and MSA concentrations in the core record. Preliminary analysis of chlorophyll a and MSA concentrations, both derived almost exclusively from marine biota, suggest that the Mt. Hunter ice cores reflect changes in North Pacific and Bering Sea marine primary productivity. Analysis of the water isotope and MSA data in conjunction with climate reanalysis products shows significant correlations (psea surface temperatures in the Bering Sea and North Central Pacific. These findings, coupled with

  8. Respiration of new and old carbon in the surface ocean: Implications for estimates of global oceanic gross primary productivity

    Science.gov (United States)

    Carvalho, Matheus C.; Schulz, Kai G.; Eyre, Bradley D.

    2017-06-01

    New respiration (Rnew, of freshly fixated carbon) and old respiration (Rold, of storage carbon) were estimated for different regions of the global surface ocean using published data on simultaneous measurements of the following: (1) primary productivity using 14C (14PP); (2) gross primary productivity (GPP) based on 18O or O2; and (3) net community productivity (NCP) using O2. The ratio Rnew/GPP in 24 h incubations was typically between 0.1 and 0.3 regardless of depth and geographical area, demonstrating that values were almost constant regardless of large variations in temperature (0 to 27°C), irradiance (surface to 100 m deep), nutrients (nutrient-rich and nutrient-poor waters), and community composition (diatoms, flagellates, etc,). As such, between 10 and 30% of primary production in the surface ocean is respired in less than 24 h, and most respiration (between 55 and 75%) was of older carbon. Rnew was most likely associated with autotrophs, with minor contribution from heterotrophic bacteria. Patterns were less clear for Rold. Short 14C incubations are less affected by respiratory losses. Global oceanic GPP is estimated to be between 70 and 145 Gt C yr-1.Plain Language SummaryHere we present a comprehensive coverage of ocean new and old respiration. Our results show that nearly 20% of oceanic gross primary production is consumed in the first 24 h. However, most (about 60%) respiration is of older carbon fixed at least 24 h before its consumption. Rates of new respiration relative to gross primary production were remarkably constant for the entire ocean, which allowed a preliminary estimation of global primary productivity as between 70 and 145 gt C yr-1.

  9. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Science.gov (United States)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling

  10. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2013-07-01

    Full Text Available Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE in NPP modelled at the 1 km resolution is reduced from 14.8 g C m−2 yr−1 to 4.8 g C m−2 yr−1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m−2 yr−1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI and elevation have small and additive effects on improving

  11. Inventory of radioactive corrosion products on the primary surfaces and release during shutdown in Ringhals 2

    International Nuclear Information System (INIS)

    Aronsson, O.

    1994-01-01

    In Ringhals 2 a retrospective study using gamma scans of system surfaces, fuel crud sampling and reactor coolant analyses during operation and shutdown has been done. The data have been used to prepare a balance of activity inventory. The inventory has been fairly stable from 1986 to 1993, expressed as a gamma source term. The steam generator replacement in 1989 removed some 40-50% of the Co-60 inventory in the reactor system. After the steam generator replacement, the gamma source term has got an increasing contribution from Co-58, absolutely as well as relatively. The reason for this is probably the switch from high pH operation to modified pH operation. Corrosion from fresh alloy 690 surfaces in the new steam generators is probably another contributing factor. The inventory and production rate of Co-60 is decreasing over the years. It has also been found that clean-up of the reactor coolant during start-up, operation, and shutdown as well as the fuel pool during refuelling removes about the same amounts of Co-60. (author). 11 figs., 15 refs

  12. Variation and Trends of Landscape Dynamics, Land Surface Phenology and Net Primary Production of the Appalachian Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu; Zhang, Hongyan

    2012-12-15

    The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions. We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30°N-40°N and 40°N-50°N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.

  13. Late holocene primary productivity and sea surface temperature variations in the northeastern Arabian Sea: Implications for winter monsoon variability.

    Digital Repository Service at National Institute of Oceanography (India)

    Boll, A.; Luckge, A.; Munz, P.; Forke, S.; Schulz, H.; Ramaswamy, V.; Rixen, T.; Gaye, B.; Emeis, K.-C.

    changes in winter monsoon strength with winds from the northeast that drive convective mixing and high surface ocean productivity in the northeastern Arabian Sea. To establish a high-resolution record of winter monsoon variability for the late Holocene, we...

  14. Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5 43° S)

    Science.gov (United States)

    Iriarte, J. L.; González, H. E.; Liu, K. K.; Rivas, C.; Valenzuela, C.

    2007-09-01

    The southern fjord region of Chile is a unique ecosystem characterized by complex marine-terrestrial-atmospheric interactions that result in high biological production. Since organic nitrogen from terrestrial and atmospheric compartments is highly significant in this region (>40%), as is the low NO 3:PO 4 ratio in surface waters, it is suggested that fertilization from inorganic and organic nitrogen sources has a strong influence on both phytoplankton biomass/primary production and harmful algae bloom dynamics. The data presented in this paper provide an opportunity to improve our knowledge of phytoplankton dynamics on temporal and spatial mesoscales. Ocean color data from NASA (SeaWiFS) for chlorophyll and primary production estimates and in situ surface measurement of inorganic nutrients, phytoplankton biomass, and primary productivity revealed that the coastal waters of southern Chile have a classical spring and autumn chlorophyll bloom cycle in which primary production is co-limited by strong seasonal changes in light and nitrate. During spring blooms, autotrophic biomass (such as chlorophyll a, Chl- a) and primary production estimates reached 25 mg Chl- a m -3 and 23 mg C m -3 h -1, respectively, and micro-phytoplankton accounted for a significant portion of the biomass (60%) in spring. The contribution of phytoplankton size classes to total chlorophyll a revealed the dominance of nanoplankton (>50%) in winter and post-bloom periods (<1.0 mg Chl- a m -3).

  15. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data

    Science.gov (United States)

    Liu, J.; Chen, J. M.; Cihlar, J.; Chen, W.

    1999-11-01

    The purpose of this paper is to upscale tower measurements of net primary productivity (NPP) to the Boreal Ecosystem-Atmosphere Study (BOREAS) study region by means of remote sensing and modeling. The Boreal Ecosystem Productivity Simulator (BEPS) with a new daily canopy photosynthesis model was first tested in one coniferous and one deciduous site. The simultaneous CO2 flux measurements above and below the tree canopy made it possible to isolate daily net primary productivity of the tree canopy for model validation. Soil water holding capacity and gridded daily meteorological data for the region were used as inputs to BEPS, in addition to 1 km resolution land cover and leaf area index (LAI) maps derived from the advanced very high resolution radiometer (AVHRR) data. NPP statistics for the various cover types in the BOREAS region and in the southern study area (SSA) and the northern study area (NSA) are presented. Strong dependence of NPP on LAI was found for the three major cover types: coniferous forest, deciduous forest and cropland. Since BEPS can compute total photosynthetically active radiation absorbed by the canopy in each pixel, light use efficiencies for NPP and gross primary productivity could also be analyzed. From the model results, the following area-averaged statistics were obtained for 1994: (1) mean NPP for the BOREAS region of 217 g C m-2 yr-1; (2) mean NPP of forests (excluding burnt areas in the region) equal to 234 g C m-2 yr-1; (3) mean NPP for the SSA and the NSA of 297 and 238 g C m-2 yr-1, respectively; and (4) mean light use efficiency for NPP equal to 0.40, 0.20, and 0.33 g C (MJ APAR)-1 for deciduous forest, coniferous forest, and crops, respectively.

  16. Deep primary production in coastal pelagic systems

    DEFF Research Database (Denmark)

    Lyngsgaard, Maren Moltke; Richardson, Katherine; Markager, Stiig

    2014-01-01

    produced. The primary production (PP) occurring below the surface layer, i.e. in the pycnocline-bottom layer (PBL), is shown to contribute significantly to total PP. Oxygen concentrations in the PBL are shown to correlate significantly with the deep primary production (DPP) as well as with salinity...... that eutrophication effects may include changes in the structure of planktonic food webs and element cycling in the water column, both brought about through an altered vertical distribution of PP....

  17. Relationship between chlorophyll-a and column primary production

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Bhargava, R.M.S.

    Relationship between surface chlorophyll a and column primary production has been established to help in estimating the latter more quickly and accurately. The equation derived is Primary Production, y = 0.54 Ln Chl a - 0.6. The relationship...

  18. Primary Productivity (PP_Master)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included primary production for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came...

  19. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence

    Science.gov (United States)

    Hamed Alemohammad, Seyed; Fang, Bin; Konings, Alexandra G.; Aires, Filipe; Green, Julia K.; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre

    2017-09-01

    A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.

  20. Primary productivity of the Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.; Devassy, V.P.

    The average surface and column primary productivity, chl a and particulate organic carbon, estimated at 24 stations during Feb. 1979, were respectively 5.3 mg C/m3/d and 273 mg C/m2 /d; 0.03 mg/m3 and 3.64 mg/m2; and 132mg/m3 and 4.59 g/m2...

  1. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Product (NPP) portion of the HANPP Collection represents a map identifying...

  2. Physical control of primary productivity on a seasonal scale in ...

    Indian Academy of Sciences (India)

    Keywords. Primary production; upwelling; winter cooling; Ekman-pumping, nutrient transport; Arabian Sea ... on the other hand, is driven by advection from the Somalia upwelling. Surface cooling and convection resulting from reduced solar radiation and increased evaporation make the northern region productive in winter.

  3. Method for the production of primary amines

    NARCIS (Netherlands)

    Baldenius, Kai-Uwe; Ditrich, Klaus; Breurer, Michael; Navickas, Vaidotas; Janssen, Dick; Crismaru, Ciprian; Bartsch, Sebastian

    2014-01-01

    The present invention relates to a novel enzymatically catalyzed method for the production of aliphatic primary amines, which method comprises the enzymatic oxidation of a primary aliphatic alcohol catalyzed by an alcohol dehydrogenase, amination of the resulting oxocompound catalyzed by a

  4. Seasonality in sub-surface chlorophyll maxima in the Arabian Sea: Detection by IRS-P4/OCM and implication of it to primary productivity

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Parab, S.G.; Dwivedi, R.M.

    various seasons. During November at St. 1 surface chlorophyll a was 1.503 mgm-3and subsurface chlorophyll maxima was 12.692 mgm-3. Similarly, at St. 13 surface chlorophyll a was 0.584 mgm-3and surface chlorophyll maxima was 8.517 mgm-3. During upwelling...

  5. Primary production of tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.

    Among tropical marine ecosystems estuaries are one of the highly productive areas and act as a nursery to large number of organisms. The primary production in most of the estuaries is less during the monsoon period. Post-monsoon period shows...

  6. Primary Productivity of the Cengklik Dam Boyolali

    Directory of Open Access Journals (Sweden)

    WIRYANTO

    2002-01-01

    Full Text Available Primary productivity dynamic of the water ecosystem was conducted faster in the last decades. This study was intended to find out the primary productivity of Cengklik dam Boyolali, Central Java to explain the ecosystem dynamic and to lead the maintenance of dam. This study used quantitative methods in completely randomized group design (CRD, and the data was analized by Analysis of Variance (ANAVA. Samples were taken horizontally in four sampling point, respectively in the riparian zone, around of the floating net (“karamba”, in the center of dam water and around of the ex-paddy fields. There were taken vertically in three-depth point in each of the sampling point, respectively 0.5 meter, 1.5 meter, and 2.5 meter. The results showed that the gross primary productivity of the dam was 11.122.500-22.545.600 mgC/m3/days, and the primary productivity differences in each of the point sampling caused by light intensity, nutrient supply, and abundance of the chlorophyll organisms.

  7. The use of algorithms to predict surface seawater dimethyl sulphide concentrations in the SE Pacific, a region of steep gradients in primary productivity, biomass and mixed layer depth

    Directory of Open Access Journals (Sweden)

    A. J. Hind

    2011-01-01

    Full Text Available Dimethyl sulphide (DMS is an important precursor of cloud condensation nuclei (CCN, particularly in the remote marine atmosphere. The SE Pacific is consistently covered with a persistent stratocumulus layer that increases the albedo over this large area. It is not certain whether the source of CCN to these clouds is natural and oceanic or anthropogenic and terrestrial. This unknown currently limits our ability to reliably model either the cloud behaviour or the oceanic heat budget of the region. In order to better constrain the marine source of CCN, it is necessary to have an improved understanding of the sea-air flux of DMS. Of the factors that govern the magnitude of this flux, the greatest unknown is the surface seawater DMS concentration. In the study area, there is a paucity of such data, although previous measurements suggest that the concentration can be substantially variable. In order to overcome such data scarcity, a number of climatologies and algorithms have been devised in the last decade to predict seawater DMS. Here we test some of these in the SE Pacific by comparing predictions with measurements of surface seawater made during the Vamos Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx in October and November of 2008. We conclude that none of the existing algorithms reproduce local variability in seawater DMS in this region very well. From these findings, we recommend the best algorithm choice for the SE Pacific and suggest lines of investigation for future work.

  8. Evaluation of Organic Proxies for Quantifying Past Primary Productivity

    Science.gov (United States)

    Raja, M.; Rosell-Melé, A.; Galbraith, E.

    2017-12-01

    Ocean primary productivity is a key element of the marine carbon cycle. However, its quantitative reconstruction in the past relies on the use of biogeochemical models as the available proxy approaches are qualitative at best. Here, we present an approach that evaluates the use of phytoplanktonic biomarkers (i.e. chlorins and alkenones) as quantitative proxies to reconstruct past changes in marine productivity. We compare biomarkers contents in a global suite of core-top sediments to sea-surface chlorophyll-a abundance estimated by satellites over the last 20 years, and the results are compared to total organic carbon (TOC). We also assess satellite data and detect satellite limitations and biases due to the complexity of optical properties and the actual defined algorithms. Our findings show that sedimentary chlorins can be used to track total sea-surface chlorophyll-a abundance as an indicator for past primary productivity. However, degradation processes restrict the application of this proxy to concentrations below a threshold value (1µg/g). Below this threshold, chlorins are a useful tool to identify reducing conditions when used as part of a multiproxy approach to assess redox sedimentary conditions (e.g. using Re, U). This is based on the link between anoxic/disoxic conditions and the flux of organic matter from the sea-surface to the sediments. We also show that TOC is less accurate than chlorins for estimating sea-surface chlorophyll-a due to the contribution of terrigenous organic matter, and the different degradation pathways of all organic compounds that TOC includes. Alkenones concentration also relates to primary productivity, but they are constrained by different processes in different regions. In conclusion, as lons as specific constraints are taken into account, our study evaluates the use of chlorins and alkenones as quantitative proxies of past primary productivity, with more accuracy than by using TOC.

  9. Anthropogenic climate change has altered primary productivity in Lake Superior.

    Science.gov (United States)

    O'Beirne, M D; Werne, J P; Hecky, R E; Johnson, T C; Katsev, S; Reavie, E D

    2017-06-09

    Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems.

  10. Primary production in the Bay of Bengal during southwest monsoon of 1978

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.; Devassy, V.P.; Radhakrishna, K.

    Measurements of primary production, chlorophyll a and particulate organic carbon were made at 33, 43 and 44 stations respectively during August-September of 1978. The average surface production, chlorophyll a and particulate organic carbon values...

  11. Mass extinctions: Ecological selectivity and primary production

    Science.gov (United States)

    Rhodes, Melissa Clark; Thayer, Charles W.

    1991-09-01

    If mass extinctions were caused by reduced primary productivity, then extinctions should be concentrated among animals with starvation-susceptible feeding modes, active lifestyles, and high-energy budgets. The stratigraphic ranges (by stage) of 424 genera of bivalves and 309 genera of articulate brachiopods suggest that there was an unusual reduction of primary productivity at the Cretaceous/Tertiary (K/T) boundary extinction. For bivalves at the K/T, there were (1) selective extinction of suspension feeders and other susceptible trophic categories relative to deposit feeders and other resistant categories, and (2) among suspension feed-ers, selective extinction of bivalves with active locomotion. During the Permian-Triassic (P/Tr) extinction and Jurassic background time, extinction rates among suspension feeders were greater for articulate brachiopods than for bivalves. But during the K/T event, extinction rates of articulates and suspension-feeding bivalves equalized, possibly because the low-energy budgets of articulates gave them an advantage when food was scarce.

  12. Multiple stressors for oceanic primary production

    KAUST Repository

    Agusti, Susana

    2015-12-15

    Marine ecosystems are increasingly exposed to stress factors of anthropogenic origin that change their function, structure and services they deliver society. Climate change occurs simultaneously with other changes in the environment acting jointly in a context of global environmental change. For oceanic phytoplankton communities, the research conducted so far has identified stress factors associated with global change and their impact individually (warming, acidification, increased UVB radiation, pollutants). But when several stressors act simultaneously interactions and responses are not equal to the sum of individual impacts, but may have synergistic effects (the effects are multiplied) or antagonistic (cancel out the effects) that hinder predictions of the vulnerability of ecosystems to global change. Here we will examine the vulnerability of oceanic primary producers to the accumulation of different stressors associated with global change. The trend for autotrophic picoplankton to increase with temperature in the ocean has led to predictions that autotrophic picoplankton abundance will increase with warming. However, it is documented a trend towards a decline in productivity, due to declined autotroph biomass and production with warming and the associated stratification in the subtropical ocean. Models predicting an increase in abundance are in contradiction with the reported decrease in productivity in several oceanic areas, and associate oligotrophication. Here we perform a global study to analyze the relationships of autotrophic picoplankton with oceanic temperature, nutrients, underwater light and ultraviolet B (UVB) radiation, and productivity. We built a model to project the future changes of autotrophic picoplankton considering multiple environmental changes in future climate scenarios for the subtropical gyres. We considered increased water temperature, and associated changes in productivity and underwater light and UVB. The model show that warming and

  13. Multiple stressors for oceanic primary production

    KAUST Repository

    Agusti, Susana; Llabré s, Moira; Lubiá n, Luis M.; Moreno-Ostos, Enrique; Estrada, Marta; Duarte, Carlos M.; Cerezo, Maria I.

    2015-01-01

    Marine ecosystems are increasingly exposed to stress factors of anthropogenic origin that change their function, structure and services they deliver society. Climate change occurs simultaneously with other changes in the environment acting jointly in a context of global environmental change. For oceanic phytoplankton communities, the research conducted so far has identified stress factors associated with global change and their impact individually (warming, acidification, increased UVB radiation, pollutants). But when several stressors act simultaneously interactions and responses are not equal to the sum of individual impacts, but may have synergistic effects (the effects are multiplied) or antagonistic (cancel out the effects) that hinder predictions of the vulnerability of ecosystems to global change. Here we will examine the vulnerability of oceanic primary producers to the accumulation of different stressors associated with global change. The trend for autotrophic picoplankton to increase with temperature in the ocean has led to predictions that autotrophic picoplankton abundance will increase with warming. However, it is documented a trend towards a decline in productivity, due to declined autotroph biomass and production with warming and the associated stratification in the subtropical ocean. Models predicting an increase in abundance are in contradiction with the reported decrease in productivity in several oceanic areas, and associate oligotrophication. Here we perform a global study to analyze the relationships of autotrophic picoplankton with oceanic temperature, nutrients, underwater light and ultraviolet B (UVB) radiation, and productivity. We built a model to project the future changes of autotrophic picoplankton considering multiple environmental changes in future climate scenarios for the subtropical gyres. We considered increased water temperature, and associated changes in productivity and underwater light and UVB. The model show that warming and

  14. Primary production in the Bay of Bengal during August 1977

    Digital Repository Service at National Institute of Oceanography (India)

    Devassy, V.P.; Bhattathiri, P.M.A.; Radhakrishna, K.

    Primary production, chlorophyll @ia@@, phaeophytin, phytoplankton and particulate organic carbon (POC) were studied at 14 stations in the Bay of Bengal during August 1977. Column primary production, chlorophyll @ia@@, and phaeopigments varied from 0...

  15. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary Productivity (HANPP) Collection maps the net amount of solar...

  16. Fission product behaviour in the primary circuit of an HTR

    International Nuclear Information System (INIS)

    Decken, C.B. von der; Iniotakis, N.

    1981-01-01

    The knowledge of fission product behaviour in the primary circuit of a High Temperature Reactor (HTR) is an essential requirement for the estimations of the availability of the reactor plant in normal operation, of the hazards to personnel during inspection and repair and of the potential danger to the environment from severe accidents. On the basis of the theoretical and experimental results obtained at the ''Institute for Reactor Components'' of the KFA Juelich /1/,/2/ the transport- and deposition behaviour of the fission- and activation products in the primary circuit of the PNP-500 reference plant has been investigated thoroughly. Special work had been done to quantify the uncertainties of the investigations and to calculate or estimate the dose rate level at different components of the primary cooling circuit. The contamination and the dose rate level in the inspection gap in the reactor pressure vessel is discussed in detail. For these investigations in particular the surface structure and the composition of the material, the chemical state of the fission products in the cooling gas, the composition of the cooling gas and the influence of dust on the transport- and deposition behaviour of the fission products have been taken into account. The investigations have been limited to the nuclides Ag-110m; Cs-134 and Cs-137

  17. Ocean primary production and available light: Further algorithms for remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    Platt, T.; Sathyendranath, S.; Caverhill, C.M.; Lewis, M.R.

    (1986, Deep-Sea Research, 33, 149-163) Further empirical evidence is presented to show the stability of the relationship between surface light and biomass-normalized primary production of the ocean water column A theoretical explanation is given...

  18. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  19. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  20. Surface negative ion production in ion sources

    International Nuclear Information System (INIS)

    Belchenko, Y.

    1993-01-01

    Negative ion sources and the mechanisms for negative ion production are reviewed. Several classes of sources with surface origin of negative ions are examined in detail: surface-plasma sources where ion production occurs on the electrode in contact with the plasma, and ''pure surface'' sources where ion production occurs due to conversion or desorption processes. Negative ion production by backscattering, impact desorption, and electron- and photo-stimulated desorption are discussed. The experimental efficiencies of intense surface negative ion production realized on electrodes contacted with hydrogen-cesium or pure hydrogen gas-discharge plasma are compared. Recent modifications of surface-plasma sources developed for accelerator and fusion applications are reviewed in detail

  1. THE PRODUCT DESIGN PROCESS USING STYLISTIC SURFACES

    Directory of Open Access Journals (Sweden)

    Arkadiusz Gita

    2017-06-01

    Full Text Available The increasing consumer requirements for the way what everyday use products look like, forces manufacturers to put more emphasis on product design. Constructors, apart from the functional aspects of the parts created, are forced to pay attention to the aesthetic aspects. Software for designing A-class surfaces is very helpful in this case. Extensive quality analysis modules facilitate the work and allow getting models with specific visual features. The authors present a design process of the product using stylistic surfaces based on the front panel of the moped casing. In addition, methods of analysis of the design surface and product technology are presented.

  2. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation.

    Science.gov (United States)

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Maosheng Zhao; Steve W. Running; Steven C. Wofsy; Shawn Urbanski; Allison L. Dunn; J.W. Munger

    2003-01-01

    The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using...

  3. Global patterns in human consumption of net primary production

    Science.gov (United States)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  4. Valuing ecosystem services. A shadow price for net primary production

    International Nuclear Information System (INIS)

    Richmond, Amy; Kaufmann, Robert K.; Myneni, Ranga B.

    2007-01-01

    We analyze the contribution of ecosystem services to GDP and use this contribution to calculate an empirical price for ecosystem services. Net primary production is used as a proxy for ecosystem services and, along with capital and labor, is used to estimate a Cobb Douglas production function from an international panel. A positive output elasticity for net primary production probably measures both marketed and nonmarketed contributions of ecosystems services. The production function is used to calculate the marginal product of net primary production, which is the shadow price for ecosystem services. The shadow price generally is greatest for developed nations, which have larger technical scalars and use less net primary production per unit output. The rate of technical substitution indicates that the quantity of capital needed to replace a unit of net primary production tends to increase with economic development, and this rate of replacement may ultimately constrain economic growth. (author)

  5. Primary production in the Kattegat - past and present

    DEFF Research Database (Denmark)

    Richardson, K.; Heilmann, Jens

    1995-01-01

    data collected during the period 1984-1993 are calculated using the method employed in the 1950s. It is concluded that primary production in the Kattegat has increased from less than 100 g C m(-2) y(- 1) to about 200 g C m(-2) y(-1) since the 1950s. This increase is not seen during the winter months...... to be responses to increases in primary production. However, for most areas, there are insufficient data to demonstrate whether or not increases in primary production have actually occurred. In this study, the evidence for increased primary production in the Kattegat is examined by comparing primary production...... measurements from the 1950s and measurements made in the period 1984-1993. The methods employed during the two periods differ considerably. These differences and how they may affect the validity of a comparison of the results from the studies carried out in two periods are addressed. The primary production...

  6. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  7. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.

    Science.gov (United States)

    David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon

    2005-01-01

    Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...

  8. Wireless sensing on surface hydrocarbon production systems

    International Nuclear Information System (INIS)

    Kane, D; McStay, D; Mulholland, J; Costello, L

    2009-01-01

    The use of wireless sensor networks for monitoring and optimising the performance of surface hydrocarbon production systems is reported. Wireless sensor networks are shown to be able to produce comprehensively instrumented XTs and other equipment that generate the data required by Intelligent Oilfield systems. The information produced by such systems information can be used for real-time operational control, production optimization and troubleshooting.

  9. Correlation between Ni base alloys surface conditioning and cation release mitigation in primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Clauzel, M.; Guillodo, M.; Foucault, M. [AREVA NP SAS, Technical Centre, Le Creusot (France); Engler, N.; Chahma, F.; Brun, C. [AREVA NP SAS, Chemistry and Radiochemistry Group, Paris La Defense (France)

    2010-07-01

    The mastering of the reactor coolant system radioactive contamination is a real stake of performance for operating plants and new builds. The reduction of activated corrosion products deposited on RCS surfaces allows minimizing the global dose integrated by workers which supports the ALARA approach. Moreover, the contamination mastering limits the volumic activities in the primary coolant and thus optimizes the reactor shutdown duration and environment releases. The main contamination sources on PWR are due to Co-60 and Co-58 nuclides which come respectively Co-59 and Ni-58, naturally present in alloys used in the RCS. Co is naturally present as an impurity in alloys or as the main component of hardfacing materials (Stellites™). Ni is released mainly by SG tubes which represent the most important surface of the RCS. PWR steam generators (SG), due to the huge wetted surface are the main source of corrosion products release in the primary coolant circuit. As corrosion products may be transported throughout the whole circuit, activated in the core, and redeposited all over circuit surfaces, resulting in an increase of activity buildup, it is of primary importance to gain a better understanding of phenomenon leading to corrosion product release from SG tubes before setting up mitigation measures. Previous studies have shown that SG tubing made of the same material had different release rates. To find the origin of these discrepancies, investigations have been performed on tubes at the as-received state and after exposure to a nominal primary chemistry in titanium recirculating loop. These investigations highlighted the existence of a correlation between the inner surface metallurgical properties and the release of corrosion products in primary coolant. Oxide films formed in nominal primary chemistry are always protective, their morphology and their composition depending strongly on the geometrical, metallurgical and physico-chemical state of the surface on which they

  10. Fission product release into the primary coolant

    International Nuclear Information System (INIS)

    Apperson, C.E.

    1977-01-01

    The analytic evaluation of steady state primary coolant activity is discussed. The reported calculations account for temperature dependent fuel failure in two particle types and arbitrary radioactive decay chains. A matrix operator technique implemented in the SUVIUS code is used to solve the simultaneous equations. Results are compared with General Atomic Company's published results

  11. A review of ocean chlorophyll algorithms and primary production models

    Science.gov (United States)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  12. Chemical phenomena in primary titanium production

    CSIR Research Space (South Africa)

    van Vuuren, DS

    2011-01-01

    Full Text Available TiO2 $ 490m p.a. $ 2500 p.a. Pigment Production ~20 kt TiO2 5100 kt TiO2 $ 37m p.a. $ 10000 m.p.a. Sponge Production Nil 125 kt p.a. Ti $ 1250 m.p.a. Ingot Production Nil 145 kt p.a. Ti $ 2600 m.p.a. Mill Products Nil ~90 kt p.a. Ti $ 4500 m... Museum Photo courtesy of the Kyushu National Museum http://web-japan.org/nipponia/nipponia38/en/travel/travel03.html V AL U E TiCl4 TiO2 Sponge Powder M2TiF6 Ingot INC R EAS ING COS T PRECURSOR REDUCTANT PRODUCT...

  13. Spatial scaling of net primary productivity using subpixel landcover information

    Science.gov (United States)

    Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.

    2008-10-01

    Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.

  14. Investigating smoke's influence on primary production throughout the Amazon

    Science.gov (United States)

    Flanner, M. G.; Mahowald, N. M.; Zender, C. S.; Randerson, J. T.; Tosca, M. G.

    2007-12-01

    Smoke from annual burning in the Amazon causes large reduction in surface insolation and increases the diffuse fraction of photosynthetically-active radiation (PAR). These effects have competing influence on gross primary production (GPP). Recent studies indicate that the sign of net influence depends on aerosol optical depth, but the magnitude of smoke's effect on continental-scale carbon cycling is very poorly constrained and may constitute an important term of fire's net impact on carbon storage. To investigate widespread effects of Amazon smoke on surface radiation properties, we apply a version of the NCAR Community Atmosphere Model with prognostic aerosol transport, driven with re-analysis winds. Carbon aerosol emissions are derived from the Global Fire Emissions Database (GFED). We use AERONET observations to identify model biases in aerosol optical depth, single-scatter albedo, and surface radiative forcing, and prescribe new aerosol optical properties based on field observations to improve model agreement with AERONET data. Finally, we quantify a potential range of smoke-induced change in large-scale GPP based on: 1) ground measurements of GPP in the Amazon as a function of aerosol optical depth and diffuse fraction of PAR, and 2) empirical functions of ecosystem-scale photosynthesis rates currently employed in models such as the Community Land Model (CLM).

  15. Primary production in the Sulu Sea

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    its remotely sensed values from OCTS (Ocean Colour Temperature Scanner) are found to be in ... Although the Sulu Sea is more productive than the adjacent South China Sea, the central area ... surrounding ocean by a chain of islands.

  16. Models for ecological models: Ocean primary productivity

    Science.gov (United States)

    Wikle, Christopher K.; Leeds, William B.; Hooten, Mevin B.

    2016-01-01

    The ocean accounts for more than 70% of planet Earth's surface, and it processes are critically important to marine and terrestrial life.  Ocean ecosystems are strongly dependent on the physical state of the ocean (e.g., transports, mixing, upwelling, runoff, and ice dynamics(.  As an example, consider the Coastal Gulf of Alaska (CGOA) region.

  17. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... designed for local conditions could be a way of protecting water quality attractive to many stakeholders....

  18. Interannual Variation in Phytoplankton Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2013-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect

  19. Cell surface of sea urchin micromeres and primary mesenchyme

    International Nuclear Information System (INIS)

    DeSimone, D.W.

    1985-01-01

    The cell surface and extracellular matrix (ECM) of the sea urchin embryo were studied during the early morphogenetic events involved in the differentiation of the micromere cell lineage. Sixteen-cell and early cleavage stage blastomeres were isolated and the protein composition of their cell surfaces examined by 125 I-labelling followed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Micromere-specific cell surface proteins are reported for Arbacia punctulata, Strongylocentrotus droebachiensis, and Strongylocentrotus purpuratus. Cell surface glycoproteins were characterized on the basis of lectin binding specificity with a novel lectin affinity transfer technique. Using this procedure, cell-type specific surface proteins, which are also lectin-binding specific, can be detected. In addition, fluorescein conjugated lectins were microinjected into the blastocoels of living S. drobachiensis and Lytechinus pictus embryos and the patterns of lectin bindings observed by fluorescence microscopy. The evidence presented in this thesis suggests that the differentiation of the primary mesenchyme cells is correlated with changes in the molecular composition of the cell-surface and the ECM

  20. Piecewise Loglinear Estimation of Efficient Production Surfaces

    OpenAIRE

    Rajiv D. Banker; Ajay Maindiratta

    1986-01-01

    Linear programming formulations for piecewise loglinear estimation of efficient production surfaces are derived from a set of basic properties postulated for the underlying production possibility sets. Unlike the piecewise linear model of Banker, Charnes, and Cooper (Banker R. D., A. Charnes, W. W. Cooper. 1984. Models for the estimation of technical and scale inefficiencies in data envelopment analysis. Management Sci. 30 (September) 1078--1092.), this approach permits the identification of ...

  1. Deposition and incorporation of corrosion product to primary coolant suppressing method

    International Nuclear Information System (INIS)

    Tsuzuki, Yasuo; Hasegawa, Naoyoshi; Fujioka, Tsunaaki.

    1992-01-01

    In a PWR type nuclear power plant, the concentration of dissolved nitrogen in primary coolants is increased by controlling the nitrogen partial pressure in a volume controlling tank gas phase portion or addition of water in a primary system water supply tank containing dissolved nitrogen to a primary system. Then ammonium is formed by a reaction with hydrogen dissolved in the primary coolants in the field of radiation rays, to control the concentration of ammonium in the coolants within a range from 0.5 to 3.5 ppm, and operate the power plant. As a result, deposition and incorporation of corrosion products to the structural materials of the primary system equipments during plant operation (pH 6.8 to 8.0) are suppressed. In other words, deposition of particulate corrosion products on the surface of fuel cladding tubes and the inner surface of pipelines in the primary system main equipments is prevented and incorporation of ionic radioactive corrosion products to the oxide membranes on the inner surface of the pipelines of the primary system main equipments is suppressed, to greatly reduce the radiation dose rate of the primary system pipelines. Thus, operator's radiation exposure can be decreased upon shut down of the plant. (N.H.)

  2. On Tour... Primary Hardwood Processing, Products and Recycling Unit

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt

    1995-01-01

    Housed within the Department of Wood Science and Forest Products at Virginia Polytechnic Institute is a three-person USDA Forest Service research work unit (with one vacancy) devoted to hardwood processing and recycling research. Phil Araman is the project leader of this truly unique and productive unit, titled ãPrimary Hardwood Processing, Products and Recycling.ä The...

  3. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  4. Work Environment and Productivity among Primary School Teachers ...

    African Journals Online (AJOL)

    User

    International Multidisciplinary Journal, Ethiopia. Vol. 5 (5), Serial No. ... work environment of Nigeria primary school teachers to greater productivity ... changes on the structure and curriculum, recommend and prescribed teaching methods and ...

  5. UV radiation and primary production in the Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Krishnakumari, L.; Bhattathiri, P.M.A.; Chandramohan, D.

    at 683 nm), scalar irradiance (photosynthetically active radiation (PAR), computed primary production (pp), diffuse attenuation coefficient, and UVB (308 and 320 nm) and UVA (340 and 380 nm) radiation and ocean temperature all measured as a function...

  6. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the HANPP Collection maps the net amount of solar energy converted to plant organic matter through...

  7. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    Science.gov (United States)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  8. Low Energy Nuclear Reaction Products at Surfaces

    Science.gov (United States)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  9. Do Offshore Wind Farms Influence Marine Primary Production?

    Science.gov (United States)

    Tweddle, J. F.; Murray, R. B. O.; Gubbins, M.; Scott, B. E.

    2016-02-01

    Primary producers (phytoplankton) form the basis of marine food-webs, supporting production of higher trophic levels, and act as a sink of CO2. We considered the impact of proposed large scale offshore wind farms in moderately deep waters (> 45 m) off the east coast of Scotland on rates of primary production. A 2 stage modelling process was used, employing state-of-the-art 3-D hydrographic models with the ability to capture flow at the spatial resolution of 10 m combined with 1-D vertical modelling using 7 years of local forcing data. Through influencing the strength of stratification via changes in current flow, large (100 m) modelled wind turbine foundations had a significant effect on primary producers, consistently reducing total annual primary production, although within the range of natural interannual variability. The percentage reduction was largest over submarine banks less than 54 m in depth, and was outside the range of natural interannual variability. Smaller (10 m) turbine foundations had no discernible effect on total annual primary production. The results indicate that smaller foundations should be favored as a mitigation measure, in terms of effects on primary production, and this type of analysis should be considered within sectoral planning and licensing processes for future renewable energy developments.

  10. Production and Utilization of Core-Textbooks in Primary School ...

    African Journals Online (AJOL)

    Production and Utilization of Core-Textbooks in Primary School System: Impact of Authors and Publishers. ... These stakeholders have specific roles to play and cannot operate in isolation. The study, therefore investigated the influence of authorship and publishers on core textbook production and utilisation in Oyo State ...

  11. MODIS-derived terrestrial primary production [chapter 28

    Science.gov (United States)

    Maosheng Zhao; Steven Running; Faith Ann Heinsch; Ramakrishna Nemani

    2011-01-01

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of...

  12. Primary productivity in nearshore waters of Thal, Maharashtra coast

    Digital Repository Service at National Institute of Oceanography (India)

    Varshney, P.K.; Nair, V.R.; Abidi, S.A.H.

    Primary productivity off Thal, Maharashtra, India was evaluated at 3 stations during Feb. 1980 to Jan. 1981. The area was quite turbid and the euphotic zone never exceeded 2.5 m. Column production ranged from 0.69 to 605.21 mg C.m/2.d/2 (av. 78.2 mg...

  13. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    KAUST Repository

    Gasol, Josep M.; Cardelú s, Clara; Moran, Xose Anxelu G.; Balagué , Vanessa; Forn, Irene; Marrasé , Cè lia; Massana, Ramon; Pedró s-Alió , Carlos; Sala, M. Montserrat; Simó , Rafel; Vaqué , Dolors; Estrada, Marta

    2016-01-01

    We carried out monthly photosynthesis-irradiance (P-E) experiments with the 14C-method for 12 years (2003–2014) to determine the photosynthetic parameters and primary production of surface phytoplankton in the Blanes Bay Microbial Observatory, a

  14. HANPP Collection: Human Appropriation of Net Primary Productivity (HANPP) by Country and Product

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) by Country and Product portion of the HANPP Collection contains tabular data on carbon-equivalents of...

  15. The 2010 spring drought reduced primary productivity in southwestern China

    International Nuclear Information System (INIS)

    Zhang Li; Li Jing; Xiao Jingfeng; Wang Kun; Lei Liping; Guo Huadong

    2012-01-01

    Many parts of the world experience frequent and severe droughts. Summer drought can significantly reduce primary productivity and carbon sequestration capacity. The impacts of spring droughts, however, have received much less attention. A severe and sustained spring drought occurred in southwestern China in 2010. Here we examine the influence of this spring drought on the primary productivity of terrestrial ecosystems using data on climate, vegetation greenness and productivity. We first assess the spatial extent, duration and severity of the drought using precipitation data and the Palmer drought severity index. We then examine the impacts of the drought on terrestrial ecosystems using satellite data for the period 2000–2010. Our results show that the spring drought substantially reduced the enhanced vegetation index (EVI) and gross primary productivity (GPP) during spring 2010 (March–May). Both EVI and GPP also substantially declined in the summer and did not fully recover from the drought stress until August. The drought reduced regional annual GPP and net primary productivity (NPP) in 2010 by 65 and 46 Tg C yr −1 , respectively. Both annual GPP and NPP in 2010 were the lowest over the period 2000–2010. The negative effects of the drought on annual primary productivity were partly offset by the remarkably high productivity in August and September caused by the exceptionally wet conditions in late summer and early fall and the farming practices adopted to mitigate drought effects. Our results show that, like summer droughts, spring droughts can also have significant impacts on vegetation productivity and terrestrial carbon cycling. (letter)

  16. Benthic primary production and mineralization in a High Arctic Fjord

    DEFF Research Database (Denmark)

    Attard, Karl M.; Hancke, Kasper; Sejr, Mikael K.

    2016-01-01

    Coastal and shelf systems likely exert major influence on Arctic Ocean functioning, yet key ecosystem processes remain poorly quantified. We employed the aquatic eddy covariance (AEC) oxygen (O2) flux method to estimate benthic primary production and mineralization in a High Arctic Greenland fjord....... Seabed gross primary production (GPP) within the 40 m deep photic zone was highest at 10 m (29 mmol O2 m−2 d−1) and decreased to 5 mmol O2 m−2 d−1 at 40 m, while nighttime community respiration (CR) ranged from 11 to 25 mmol O2m−2 d−1. CR decreased to ~2.5 mmol O2m−2 d−1 at 80 m and remained constant...... with further depth. Fauna activity accounted for ~50% of the CR at depths ≤60 m but was primary production...

  17. Clinical productivity of primary care nurse practitioners in ambulatory settings.

    Science.gov (United States)

    Xue, Ying; Tuttle, Jane

    Nurse practitioners are increasingly being integrated into primary care delivery to help meet the growing demand for primary care. It is therefore important to understand nurse practitioners' productivity in primary care practice. We examined nurse practitioners' clinical productivity in regard to number of patients seen per week, whether they had a patient panel, and patient panel size. We further investigated practice characteristics associated with their clinical productivity. We conducted cross-sectional analysis of the 2012 National Sample Survey of Nurse Practitioners. The sample included full-time primary care nurse practitioners in ambulatory settings. Multivariable survey regression analyses were performed to examine the relationship between practice characteristics and nurse practitioners' clinical productivity. Primary care nurse practitioners in ambulatory settings saw an average of 80 patients per week (95% confidence interval [CI]: 79-82), and 64% of them had their own patient panel. The average patient panel size was 567 (95% CI: 522-612). Nurse practitioners who had their own patient panel spent a similar percent of time on patient care and documentation as those who did not. However, those with a patient panel were more likely to provide a range of clinical services to most patients. Nurse practitioners' clinical productivity was associated with several modifiable practice characteristics such as practice autonomy and billing and payment policies. The estimated number of patients seen in a typical week by nurse practitioners is comparable to that by primary care physicians reported in the literature. However, they had a significantly smaller patient panel. Nurse practitioners' clinical productivity can be further improved. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Characterization of surface properties of glass vials used as primary packaging material for parenterals.

    Science.gov (United States)

    Ditter, Dominique; Mahler, Hanns-Christian; Roehl, Holger; Wahl, Michael; Huwyler, Joerg; Nieto, Alejandra; Allmendinger, Andrea

    2018-04-01

    The appropriate selection of adequate primary packaging, such as the glass vial, rubber stopper, and crimp cap for parenteral products is of high importance to ensure product stability, microbiological quality (integrity) during storage as well as patient safety. A number of issues can arise when inadequate vial material is chosen, and sole compliance to hydrolytic class I is sometimes not sufficient when choosing a glass vial. Using an appropriate pre-treatment, such as surface modification or coating of the inner vial surface after the vial forming process the glass container quality is often improved and interactions of the formulation with the surface of glass may be minimized. This study aimed to characterize the inner surface of different type I glass vials (Exp33, Exp51, Siliconized, TopLyo™ and Type I plus®) at the nanoscale level. All vials were investigated topographically by colorimetric staining and Scanning Electron Microscopy (SEM). Glass composition of the surface was studied by Time-of-Flight - Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS), and hydrophobicity/hydrophilicity of the inner surface was assessed by dye tests and surface energy measurements. All containers were studied unprocessed, as received from the vendor, i.e. in unwashed and non-depyrogenized condition. Clear differences were found between the different vial types studied. Especially glass vials without further surface modifications, like Exp33 and Exp51 vials, showed significant (I) vial-to-vial variations within one vial lot as well as (II) variations along the vertical axis of a single vial when studying topography and chemical composition. In addition, differences and heterogeneity in surface energy were found within a given tranche (circumferential direction) of Exp51 as well as Type I plus® vials. Most consistent quality was achieved with TopLyo™ vials. The present comprehensive characterization of surface properties of the

  19. Quality Assessment of Landsat Surface Reflectance Products Using MODIS Data

    Science.gov (United States)

    Feng, Min; Huang, Chengquan; Channan, Saurabh; Vermote, Eric; Masek, Jeffrey G.; Townshend, John R.

    2012-01-01

    Surface reflectance adjusted for atmospheric effects is a primary input for land cover change detection and for developing many higher level surface geophysical parameters. With the development of automated atmospheric correction algorithms, it is now feasible to produce large quantities of surface reflectance products using Landsat images. Validation of these products requires in situ measurements, which either do not exist or are difficult to obtain for most Landsat images. The surface reflectance products derived using data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), however, have been validated more comprehensively. Because the MODIS on the Terra platform and the Landsat 7 are only half an hour apart following the same orbit, and each of the 6 Landsat spectral bands overlaps with a MODIS band, good agreements between MODIS and Landsat surface reflectance values can be considered indicators of the reliability of the Landsat products, while disagreements may suggest potential quality problems that need to be further investigated. Here we develop a system called Landsat-MODIS Consistency Checking System (LMCCS). This system automatically matches Landsat data with MODIS observations acquired on the same date over the same locations and uses them to calculate a set of agreement metrics. To maximize its portability, Java and open-source libraries were used in developing this system, and object-oriented programming (OOP) principles were followed to make it more flexible for future expansion. As a highly automated system designed to run as a stand-alone package or as a component of other Landsat data processing systems, this system can be used to assess the quality of essentially every Landsat surface reflectance image where spatially and temporally matching MODIS data are available. The effectiveness of this system was demonstrated using it to assess preliminary surface reflectance products derived using the Global Land Survey (GLS) Landsat

  20. Seasonality of primary and secondary production in an Arctic river

    Science.gov (United States)

    Kendrick, M.; Huryn, A.; Deegan, L.

    2011-12-01

    Rivers and streams that freeze solid for 8-9 months each year provide excellent examples of the extreme seasonality of arctic habitats. The communities of organisms inhabiting these rivers must complete growth and development during summer, resulting in a rapid ramp-up and down of production over the short ice-free period. The effects of recent shifts in the timing of the spring thaw and autumn freeze-up on the duration and pattern of the period of active production are poorly understood. We are currently investigating: 1) the response of the biotic community of the Kuparuk River (Arctic Alaska) to shifts in the seasonality of the ice-free period, and 2) the community response to increases in phosphorous (P) supply anticipated as the volume of the permafrost active-layer increases in response to climate warming. Here algal production supports a 2-tier web of consumers. We tracked primary and secondary production from the spring thaw through mid-August in a reference reach and one receiving low-level P fertilization. Gross primary production/community respiration (GPP/R) ratios for both reaches were increasing through mid-July, with higher GPP/R in response to the P addition. Understanding the degree of synchrony between primary and secondary production in this Arctic river system will enhance further understanding of how shifts in seasonality affect trophic dynamics.

  1. Decadal Changes in Global Ocean Annual Primary Production

    Science.gov (United States)

    Gregg, Watson; Conkright, Margarita E.; Behrenfeld, Michael J.; Ginoux, Paul; Casey, Nancy W.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) has produced the first multi-year time series of global ocean chlorophyll observations since the demise of the Coastal Zone Color Scanner (CZCS) in 1986. Global observations from 1997-present from SeaWiFS combined with observations from 1979-1986 from the CZCS should in principle provide an opportunity to observe decadal changes in global ocean annual primary production, since chlorophyll is the primary driver for estimates of primary production. However, incompatibilities between algorithms have so far precluded quantitative analysis. We have developed and applied compatible processing methods for the CZCS, using modern advances in atmospheric correction and consistent bio-optical algorithms to advance the CZCS archive to comparable quality with SeaWiFS. We applied blending methodologies, where in situ data observations are incorporated into the CZCS and SeaWiFS data records, to provide improvement of the residuals. These re-analyzed, blended data records provide maximum compatibility and permit, for the first time, a quantitative analysis of the changes in global ocean primary production in the early-to-mid 1980's and the present, using synoptic satellite observations. An intercomparison of the global and regional primary production from these blended satellite observations is important to understand global climate change and the effects on ocean biota. Photosynthesis by chlorophyll-containing phytoplankton is responsible for biotic uptake of carbon in the oceans and potentially ultimately from the atmosphere. Global ocean annual primary decreased from the CZCS record to SeaWiFS, by nearly 6% from the early 1980s to the present. Annual primary production in the high latitudes was responsible for most of the decadal change. Conversely, primary production in the low latitudes generally increased, with the exception of the tropical Pacific. The differences and similarities of the two data records provide evidence

  2. Nitrogenous nutrients and primary production in a tropical oceanic environment

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; Devassy, V.P.

    Measurements of the concentrations of nitrogenous nutrients and primary production were made at 10 stations along 8 degrees N and 10 degrees N in the tropical oceanic Lakshadweep waters Inorganic nitrogen (NO3, NO2 and NH4) accounted for less than...

  3. Anoxic and oxic phototrophic primary production during the Precambrian

    DEFF Research Database (Denmark)

    Ebey-Honeycutt, Christina Marie; Bjerrum, Christian J.; Canfield, Donald Eugene

    2009-01-01

    of the mixed layer often lies above the base of the photic zone . Thus, an ecosystem model for the Precambrian should reflect the net primary production (NPP) of oxygenic phototrophs in the mixed layer and anoxygenic phototrophs below (NPPox and NPPred, respectively). Satelite data and a vertically generalized...

  4. Hot-spots of primary productivity: An Alternative interpretation to Conventional upwelling models

    Science.gov (United States)

    van Ruth, Paul D.; Ganf, George G.; Ward, Tim M.

    2010-12-01

    The eastern Great Australian Bight (EGAB) forms part of the Southern and Indian Oceans and is an area of high ecological and economic importance. Although it supports a commercial fishery, quantitative estimates of the primary productivity underlying this industry are open to debate. Estimates range from 500 mg C m -2 day -1. Part of this variation may be due to the unique upwelling circulation of shelf waters in summer/autumn (November-April), which shares some similarities with highly productive eastern boundary current upwelling systems, but differs due to the influence of a northern boundary current, the Flinders current, and a wide continental shelf. This study examines spatial variations in primary productivity in the EGAB during the upwelling seasons of 2005 and 2006. Daily integral productivity calculated using the vertically generalised production model (VGPM) showed a high degree of spatial variation. Productivity was low (modelled with the VGPM, which uses surface measures of phytoplankton biomass to calculate productivity. Macro-nutrient concentrations could not be used to explain the difference in the low and high productivities (silica > 1 μmol L -1, nitrate/nitrite > 0.4 μmol L -1, phosphate > 0.1 μmol L -1). Mixing patterns or micro-nutrient concentrations are possible explanations for spatial variations in primary productivity in the EGAB. On a global scale, daily rates of primary productivity of the EGAB lie between the highly productive eastern boundary current upwelling systems, and less productive coastal regions of western and south eastern Australia, and the oligotrophic ocean. However, daily productivity rates in the upwelling hotspots of the EGAB rival productivities in Benguela and Humboldt currents.

  5. Modelling the behaviour of corrosion products in the primary heat transfer circuits of pressurised water reactors

    International Nuclear Information System (INIS)

    Rodliffe, R.S.; Polley, M.V.; Thornton, E.W.

    1985-05-01

    The redistribution of corrosion products from the primary circuit surfaces of a water reactor can result in increased flow resistance, poorer heat transfer performance, fuel failure and radioactive contamination of circuit surfaces. The environment is generally sufficiently well controlled to ensure that the first three effects are not limiting. The last effect is of particular importance since radioactive corrosion products are major contributors to shutdown fields and since it is necessary to ensure that the radiation exposure of personnel is as low as reasonably achievable. This review focusses attention on the principles which must form the basis for any mechanistic model describing the formation, transport and deposition of radioactive corrosion products. It is relevant to all water reactors in which the primary heat transfer medium is predominantly single-phase water and in which steam is generated in a secondary circuit, i.e. including CANDU pressurised heavy water reactors, Sovient VVERs, etc. (author)

  6. Experimental measurements of negative hydrogen ion production from surfaces

    International Nuclear Information System (INIS)

    Graham, W.G.

    1977-09-01

    Experimental measurements of the production of H - from surfaces bombarded with hydrogen are reviewed. Some measurements of H + and H 0 production from surfaces are also discussed with particular emphasis on work which might be relevant to ion source applications

  7. Estimating Next Primary Productivity using Satellite and Ancillary Data

    Science.gov (United States)

    Choudhury, B. J.

    The net primary productivity (C) or annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of the rate of gross photosynthesis (Ag) and autotrophic respiration (R) per unit ground area. Although available observations show that R is a large and variable fraction of Ag, viz., 0.3 to 0.7, it is generally recognized that much uncertainties exist in this fraction due to difficulties associated with the needed measurements. Additional uncertainties arise when these measurements are extrapolated to regional or global land surface using empirical equations, for example, using regression equations relating C to mean annual precipitation and air temperature. Here, a process- based approach has been taken to calculate Ag and R using satellite and ancillary data. Ag has been expressed as a product of radiation use efficiency, magnitude of intercepted photosynthetically active radiation (PAR), and normalized by stresses due to soil water shortage and air temperature away from the optimum range. A biophysical model has been used to determine the radiation use efficiency from the maximum rate of carbon assimilation by a leaf, foliage temperature, and the fraction of diffuse PAR incident on a canopy. All meteorological data (PAR, air temperature, precipitation, etc.) needed for the calculation are derived from satellite observations, while a land use, land cover data (based on satellite and ground measurements) have been used to assess the maximum rate of carbon assimilation by a leaf of varied cover type based on field measurements. R has been calculated as the sum of maintenance and growth components. The maintenance respiration of foliage and live fine roots at a standard temperature of different land cover has been determined from their nitrogen content using field and satellite measurements, while that of living fraction of woody stem (viz., sapwood) from the seasonal maximum leaf area index as determined from satellite

  8. Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer

    International Nuclear Information System (INIS)

    Song Xingyu; Huang Liangmin; Zhang Jianlin; Huang, Xiaoping; Zhang Junbin; Yin Jianqiang; Tan Yehui; Liu Sheng

    2004-01-01

    Environmental factors, phytoplankton biomass (Chl a) and primary production of two water areas in Daya Bay (Dapeng'ao Bay and Aotou Bay) were investigated during the transition period from spring to summer. Chl a ranged from 3.20 to 13.62 and 13.43 to 26.49 mg m -3 in Dapeng'ao Bay and Aotou Bay respectively, if data obtained during red tides are excluded. Primary production varied between 239.7 and 1001.4 mgC m -2 d -1 in Dapeng'ao Bay. The regional distribution of Chl a and primary production were mostly consistent from spring to summer in both bays. Seasonal transition characters have been found in Daya Bay from spring to summer, including high values of DO, nitrate and silicate. Size structures of phytoplankton and its primary production do not change very much from spring to summer, with micro-phytoplankton dominating and contributing about 50% of the whole. In Daya Bay, phytoplankton is limited by nitrogen in spring, and by phosphate in summer. Artificial impacts are evident from high temperature effluent from nuclear power stations, aquaculture and sewage. During the investigation, a red tide occurred in Aotou Bay, with a maximum Chl a of 103.23 mg m -3 at surface and primary production of 2721.9 mgC m -2 d -1 in the red tide center. Raised water temperature and nutrient supply from land-sources help to stimulate annual red tides

  9. Towards 250 m mapping of terrestrial primary productivity over Canada

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2011-12-01

    Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).

  10. Primary production in the Delta: Then and now

    Science.gov (United States)

    Cloern, James E.; Robinson, April; Richey, Amy; Grenier, Letitia; Grossinger, Robin; Boyer, Katharyn E.; Burau, Jon; Canuel, Elizabeth A.; DeGeorge, John F.; Drexler, Judith Z.; Enright, Chris; Howe, Emily R.; Kneib, Ronald; Mueller-Solger, Anke; Naiman, Robert J.; Pinckney, James L.; Safran, Samuel M.; Schoellhamer, David H.; Simenstad, Charles A.

    2016-01-01

    To evaluate the role of restoration in the recovery of the Delta ecosystem, we need to have clear targets and performance measures that directly assess ecosystem function. Primary production is a crucial ecosystem process, which directly limits the quality and quantity of food available for secondary consumers such as invertebrates and fish. The Delta has a low rate of primary production, but it is unclear whether this was always the case. Recent analyses from the Historical Ecology Team and Delta Landscapes Project provide quantitative comparisons of the areal extent of 14 habitat types in the modern Delta versus the historical Delta (pre-1850). Here we describe an approach for using these metrics of land use change to: (1) produce the first quantitative estimates of how Delta primary production and the relative contributions from five different producer groups have been altered by large-scale drainage and conversion to agriculture; (2) convert these production estimates into a common currency so the contributions of each producer group reflect their food quality and efficiency of transfer to consumers; and (3) use simple models to discover how tidal exchange between marshes and open water influences primary production and its consumption. Application of this approach could inform Delta management in two ways. First, it would provide a quantitative estimate of how large-scale conversion to agriculture has altered the Delta's capacity to produce food for native biota. Second, it would provide restoration practitioners with a new approach—based on ecosystem function—to evaluate the success of restoration projects and gauge the trajectory of ecological recovery in the Delta region.

  11. Primary Production in the Delta: Then and Now

    Directory of Open Access Journals (Sweden)

    James E. Cloern

    2016-10-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss3art1To evaluate the role of restoration in the recovery of the Delta ecosystem, we need to have clear targets and performance measures that directly assess ecosystem function. Primary production is a crucial ecosystem process, which directly limits the quality and quantity of food available for secondary consumers such as invertebrates and fish. The Delta has a low rate of primary production, but it is unclear whether this was always the case. Recent analyses from the Historical Ecology Team and Delta Landscapes Project provide quantitative comparisons of the areal extent of 14 habitat types in the modern Delta versus the historical Delta (pre-1850. Here we describe an approach for using these metrics of land use change to: (1 produce the first quantitative estimates of how Delta primary production and the relative contributions from five different producer groups have been altered by large-scale drainage and conversion to agriculture; (2 convert these production estimates into a common currency so the contributions of each producer group reflect their food quality and efficiency of transfer to consumers; and (3 use simple models to discover how tidal exchange between marshes and open water influences primary production and its consumption. Application of this approach could inform Delta management in two ways. First, it would provide a quantitative estimate of how large-scale conversion to agriculture has altered the Delta's capacity to produce food for native biota. Second, it would provide restoration practitioners with a new approach—based on ecosystem function—to evaluate the success of restoration projects and gauge the trajectory of ecological recovery in the Delta region.

  12. HANPP Collection: Human Appropriation of Net Primary Productivity (HANPP) by Country and Product

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  13. Fission and corrosion products behavior in primary circuits of LMFBR's

    International Nuclear Information System (INIS)

    Feuerstein, H.; Thorley, A.W.

    1987-08-01

    Most of the 20 presented papers report items belonging to more than one session. The equipment results of primary circuits of LMFBR's relative to corrosion and fission products, release and chemistry of fuel, measurement techniques and analytical procedures of sodium sampling, difficulties with radionuclides and particles, reactor experiences with EBR-II, FFTF, BR10, BOR60, BN350, BN600, JOYO, and KNK-II, DFR, PFR, RAPSODIE, PHENIX, and SUPERPHENIX, and at least the verification of codes for calculation models of radioactive products accumulation and distribution are described. All 20 papers presented at the meeting are separately indexed in the database. (DG)

  14. Variations of Terrestrial Net Primary Productivity in East Asia

    Directory of Open Access Journals (Sweden)

    Fangmin Zhang

    2012-01-01

    Full Text Available Due to the heterogeneity and complexity of terrestrial ecosystems of East Asia, a better understanding of relationships between climate change and net primary productivity (NPP distribution is important to predict future carbon dynamics. The objective of this study is to analyze the temporal-spatial patterns of NPP in East Asia (10°S - 55°N, 60 - 155°E from 1982 to 2006 using the process-based Boreal Ecosystem Productivity Simulator (BEPS model. Prior to the regional simulation, the annual simulated NPP was validated using field observed NPP demonstrating the ability of BEPS to simulate NPP in different ecosystems of East Asia.

  15. Regulation of primary productivity rate in the equatorial Pacific

    International Nuclear Information System (INIS)

    Barber, R.T.; Chavez, F.P.

    1991-01-01

    Analysis of the Chl-specific rate of primary productivity (P B ) as a function of subsurface nutrient concentration at >300 equatorial stations provides an answer to the question: What processes regulate primary productivity rate in the high-nutrient, low-chlorophyll waters of the equatorial Pacific? In the western Pacific where there is a gradient in 60-m [NO 3 ] from 0 to ∼12 μM, the productivity rate is a linear function of nutrient concentration; in the eastern Pacific where the gradient is from 12 to 28 μM, the productivity rate is independent of nutrient concentration and limited to ∼36 mg C(mg Chl) -1 d -1 , or a mean euphotic zone C-specific growth rate (μ) of 0.47 d -1 . However, rates downstream of the Galapagos Islands are not limited; they are 46.4 mg C(mg Chl) -1 d -1 and μ = 0.57 d -1 , very close to the predicted nutrient-regulated rates in the absence of other limitation. This pattern of rate regulation can be accounted for by a combination of eolian Fe, subsurface nutrients, and sedimentary Fe derived from the Galapagos platform. In the low-nutrient western Pacific the eolian supply of Fe is adequate to allow productivity rate to be set by subsurface nutrient concentration. In the nutrient-rich easter equatorial region eolian Fe is inadequate to support productivity rates proportional to the higher nutrient concentrations, so in this region eolian Fe is rate limiting. Around the Galapagos Islands productivity rates reach levels consistent with nutrient concentrations; sedimentary Fe from the Galapagos platform seems adequate to support increased nutrient-regulated productivity rates in this region

  16. Corrosion products in the primary circuits of PWRs

    International Nuclear Information System (INIS)

    Darras, R.

    1983-01-01

    The characteristics of PWR primary circuits are recalled, particularly the chemical specifications of the medium and the various materials used (austenitic steel, nickel alloys, cobalt-based alloys and zirconium alloys). The behaviour of these materials as regards general corrosion in nominal and transient conditions is then outlined briefly, special emphasis being laid on the effect of the determining parameters on the quantity of corrosion products formed. The release of the latter into the primary coolant is caused by two main processes: solubilization and erosion. Particular attention was given therefore to the laws governing the solubility of the oxides involved, especially as a function of temperature and pH. Erosion, or release in the form of solid particles, is relatively severe during transient events. As these corrosion products are then carried through all circuits, they cause deposits to form in favourable places on the walls as a result either of precipitation of soluble species or of sedimentation followed by consolidation of suspended particles. The presence of corrosion products in the primary circuits creates a particular impact since they become radioactive as they pass through the core and especially when they remain in it in the form of deposits; as a result, the products are capable of contaminating the entire system. Finally, although long-term reliability is obviously an essential condition for materials developed, attention must also be given to problems associated with a build-up of corrosion products in the cooling circuits and efforts made to minimize them. To that end, a number of precautions are recommended, and various remedies can be applied: selecting materials which are not readily activated, keeping structures clean, purifying fluids properly, restricting solubilization and precipitation, and perhaps, periodic decontamination. (author)

  17. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  18. Regionally and seasonally differentiated primary production in the North Atlantic

    Science.gov (United States)

    Sathyendranath, Shubha; Longhurst, Alan; Caverhill, Carla M.; Platt, Trevor

    1995-10-01

    A bio-geochemical classification of the N. Atlantic Basin is presented according to which the basin is first divided into four primary algal domains: Polar, West-Wind, Trades and Coastal. These are in turn sub-divided into smaller provinces. The classification is based on differences in the physical environment which are likely to influence regional algal dynamics. The seasonally-differentiated parameters of the photosynthesis-light curve ( P-I curve) and parameters that define the vertical structure in chlorophyll profile are then established for each province, based on an analysis of an archive of over 6000 chlorophyll profiles, and over 1800 P-I curves. These are then combined with satellite-derived chlorophyll data for the N. Atlantic, and information on cloud cover, to compute primary production at the annual scale. using a model that computes spectral transmission of light underwater, and spectral, photosynthetic response of phytoplankton to available light. The results are compared with earlier, satellite-derived, estimates of basin-scale primary production.

  19. Global net primary production and heterotrophic respiration for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.E. Jr.; Piper, S.C.; Nemani, R. [Univ. of Montana, Missoula, MT (United States)]|[Scripps Institute of Oceanography, La Jolla, CA (United States)] [and others

    1995-06-01

    An ecosystem process model, BIOME-BGC, was parameterized and used to simulate the actual net primary production and heterotrophic respiration using daily climatic data, land cover type, leaf area index gridded to 1{degree} latitude by 1{degree} longitude grid cells for the year 1987. Global net primary production was 52 Pg C. These estimates were validated directly by two different methods. First, the grid cells were aggregated and used as inputs to a 3D atmospheric transport model, to compare CO{sub 2} station data with predictions. We simulated the intra-annual variation of atmospheric CO{sub 2} well for the northern hemisphere, but not for the southern hemisphere. Second, we calculated the net {sup 13}C uptake of vegetation, which is a function of water use efficiency. The {sup 13}C/{sup 12}C ratios agreed with measured data, indicating a strong limitation of global primary processes by the hydrologic cycle, especially precipitation. These are different from other global carbon models as we can simulate the year-to-year variation of climate, including El Nino, on the global carbon cycle.

  20. Patterns of primary production in the Red Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Qurban, M.A.; Wafar, M.; Jyothibabu, R.; Manikandan, K.P.

    for bio- phic stations occupied in e Indian Ocean (source - et al., 1995), remotely-sensed (CZCS) chlorophyll data were used to make deductions on rates of primary production at basin-scale. The conclusion consistently arrived at from all earlier studies... acquired along the axis of the basin in the 2013 cruise, Wafar et al. (2016a) identified alternating zonal currents at six locations – 18–18.5°N, 19–20.5°N, 22°N, 24°N, 24.5°N and 26°N - and concluded that they represent three successive anticyclonic cells...

  1. Software sensor for primary metabolite production case of alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roux, G.; Dahhou, B.; Queinnec, I. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Goma, G. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1995-12-31

    This paper investigate the application of an observer for state and parameter estimation to batch, continuous and fed batch fermentations for alcohol production taken as model for a primary metabolite production. This observer is provided to palliate the lack of suitable sensors for on-line biomass and ethanol concentrations measurements and to estimate the time varying specific growth rate. Estimates are obtained from an interlaced structure filter based on a `modified extended Kalman filter` by using on-line measurements of carbon dioxide outflow rate and substrate concentration. The filter algorithm was tested during batch, continuous and fed batch fermentation processes. The filter behaviour observed in the experiments gives good results with an agreement theory/practice. (authors) 18 refs.

  2. Sero-prevalence of hepatitis B surface antigen among primary ...

    African Journals Online (AJOL)

    of 2-7% in Southern and Eastern Europe to low rates of less than 2%, in .... Table 2. Distribution of HBsAg by Age and Gender amongst Primary School Pupils in the Hawal valley ... effective manner and the global assessment of hepatitis B. 13 ... settlement in the Middle Hawal Valley, Nigeria, Trans Roy. Soc Trop Med Hyg ...

  3. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  4. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    Science.gov (United States)

    Cloern, James E.; Foster, S.Q.; Kleckner, A.E.

    2014-01-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land – estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m−2 yr−1, but the range is large: from −105 (net pelagic production in the Scheldt Estuary) to 1890 g C m−2 yr−1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148

  5. Estimators of primary production for interpretation of remotely sensed data on ocean color

    Science.gov (United States)

    Platt, Trevor; Sathyendranath, Shubha

    1993-01-01

    The theoretical basis is explained for some commonly used estimators of daily primary production in a vertically uniform water column. These models are recast into a canonical form, with dimensionless arguments, to facilitate comparison with each other and with an analytic solution. The limitations of each model are examined. The values of the photoadaptation parameter I(k) observed in the ocean are analyzed, and I(k) is used as a scale to normalize the surface irradiance. The range of this scaled irradiance is presented. An equation is given for estimation of I(k) from recent light history. It is shown how the models for water column production can be adapted for estimation of the production in finite layers. The distinctions between model formulation, model implementation and model evaluation are discussed. Recommendations are given on the choice of algorithm for computation of daily production according to the degree of approximation acceptable in the result.

  6. Contamination of Optical Surfaces Under Irradiation by Outgassed Volatile Products

    International Nuclear Information System (INIS)

    Khasanshin, R. H.; Grigorevskiy, A. V.; Galygin, A. N.; Alexandrov, N. G.

    2009-01-01

    Deposition of outgassed products of a polymeric composite on model material surfaces being irradiated by electrons and protons with initial energies of E e = 40 keV and E p = 30 keV respectively was studied. It was shown that deposition of volatile products on model material surfaces being under ionizing radiations results in increase of organic film growth rate.

  7. Combined constraints on global ocean primary production using observations and models

    Science.gov (United States)

    Buitenhuis, Erik T.; Hashioka, Taketo; Quéré, Corinne Le

    2013-09-01

    production is at the base of the marine food web and plays a central role for global biogeochemical cycles. Yet global ocean primary production is known to only a factor of 2, with previous estimates ranging from 38 to 65 Pg C yr-1 and no formal uncertainty analysis. Here, we present an improved global ocean biogeochemistry model that includes a mechanistic representation of photosynthesis and a new observational database of net primary production (NPP) in the ocean. We combine the model and observations to constrain particulate NPP in the ocean with statistical metrics. The PlankTOM5.3 model includes a new photosynthesis formulation with a dynamic representation of iron-light colimitation, which leads to a considerable improvement of the interannual variability of surface chlorophyll. The database includes a consistent set of 50,050 measurements of 14C primary production. The model best reproduces observations when global NPP is 58 ± 7 Pg C yr-1, with a most probable value of 56 Pg C yr-1. The most probable value is robust to the model used. The uncertainty represents 95% confidence intervals. It considers all random errors in the model and observations, but not potential biases in the observations. We show that tropical regions (23°S-23°N) contribute half of the global NPP, while NPPs in the Northern and Southern Hemispheres are approximately equal in spite of the larger ocean area in the South.

  8. An improvement of satellite-based algorithm for gross primary production estimation optimized over Korea

    Science.gov (United States)

    Pi, Kyoung-Jin; Han, Kyung-Soo; Kim, In-Hwan; Kim, Sang-Il; Lee, Min-Ji

    2011-11-01

    Monitoring the global gross primary production (GPP) is relevant to understanding the global carbon cycle and evaluating the effects of interannual climate variation on food and fiber production. GPP, the flux of carbon into ecosystems via photosynthetic assimilation, is an important variable in the global carbon cycle and a key process in land surface-atmosphere interactions. The Moderate-resolution Imaging Spectroradiometer (MODIS) is one of the primary global monitoring sensors. MODIS GPP has some of the problems that have been proven in several studies. Therefore this study was to solve the regional mismatch that occurs when using the MODIS GPP global product over Korea. To solve this problem, we estimated each of the GPP component variables separately to improve the GPP estimates. We compared our GPP estimates with validation GPP data to assess their accuracy. For all sites, the correlation was close with high significance (R2 = 0.8164, RMSE = 0.6126 g.C.m-2.d-1, bias = -0.0271 g.C.m-2.d-1). We also compared our results to those of other models. The component variables tended to be either over- or under-estimated when compared to those in other studies over the Korean peninsula, although the estimated GPP was better. The results of this study will likely improve carbon cycle modeling by capturing finer patterns with an integrated method of remote sensing. Keywords: VEGETATION, Gross Primary Production, MODIS.

  9. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  10. Monitoring residue in animals and primary products of animal origin

    Directory of Open Access Journals (Sweden)

    Janković Saša

    2008-01-01

    Full Text Available The objective of control and systematic monitoring of residue is to secure, by the examination of a corresponding number of samples, the efficient monitoring of the residue level in tissues and organs of animals, as well as in primary products of animal origin. This creates possibilities for the timely taking of measures toward the securing of food hygiene of animal origin and the protection of public health. Residue can be a consequence of the inadequate use of medicines in veterinary medicine and pesticides in agriculture and veterinary medicine, as well as the polluting of the environment with toxic elements, dioxins, polychlorinated biphenyls, and others. Residue is being monitored in Serbia since 1972, and in 2004, national monitoring was brought to the level of EU countries through significant investments by the Ministry of Agriculture, Forestry and Water Management. This is also evident in the EU directives which permit exports of all kinds of meat and primary products of animal origin, covered by the Residue Monitoring Program. The program of systematic examinations of residue has been coordinated with the requirements of the European Union, both according to the type of examined substance, as well as according to the number of samples and the applied analytical techniques. In addition to the development of methods and the including of new harmful substances into the monitoring programme, it is also necessary to coordinate the national regulations that define the maximum permitted quantities of certain medicines and contaminants with the EU regulations, in order to protect the health of consumers as efficiently as possible, and for the country to take equal part in international trade.

  11. Satellite Driven Estimation of Primary Productivity of Agroecosystems in India

    Science.gov (United States)

    Patel, N. R.; Dadhwal, V. K.; Agrawal, S.; Saha, S. K.

    2011-08-01

    Earth observation driven ecosystem modeling have played a major role in estimation of carbon budget components such as gross primary productivity (GPP) and net primary production (NPP) over terrestrial ecosystems, including agriculture. The present study therefore evaluate satellite-driven vegetation photosynthesis (VPM) model for GPP estimation over agro-ecosystems in India by using time series of the Normalized Difference Vegetation Index (NDVI) from SPOT-VEGETATION, cloud cover observation from MODIS, coarse-grid C3/C4 crop fraction and decadal grided databases of maximum and minimum temperatures. Parameterization of VPM parameters e.g. maximum light use efficiency (ɛ*) and Tscalar was done based on eddy-covariance measurements and literature survey. Incorporation of C3/C4 crop fraction is a modification to commonly used constant maximum LUE. Modeling results from VPM captured very well the geographical pattern of GPP and NPP over cropland in India. Well managed agro-ecosystems in Trans-Gangetic and upper Indo-Gangetic plains had the highest magnitude of GPP with peak GPP during kharif occurs in sugarcane-wheat system (western UP) and it occurs in rice-wheat system (Punjab) during Rabi season. Overall, croplands in these plains had more annual GPP (> 1000 g C m-2) and NPP (> 600 g C m-2) due to input-intensive cultivation. Desertic tracts of western Rajasthan showed the least GPP and NPP values. Country-level contribution of croplands to national GPP and NPP amounts to1.34 Pg C year-1 and 0.859 Pg C year-1, respectively. Modeled estimates of cropland NPP agrees well with ground-based estimates for north-western India (R2 = 0.63 and RMSE = 108 g C m-2). Future research will focus on evaluating the VPM model with medium resolution sensors such as AWiFS and MODIS for rice-wheat system and validating with eddy-covariance measurements.

  12. Modelling and numerical simulation of the corrosion product transport in the pressurised water reactor primary circuit

    International Nuclear Information System (INIS)

    Marchetto, C.

    2002-05-01

    During operation of pressurised water reactor, corrosion of the primary circuit alloys leads to the release of metallic species such as iron, nickel and cobalt in the primary fluid. These corrosion products are implicated in different transport phenomena and are activated in the reactor core where they are submitted to neutron flux. The radioactive corrosion products are afterwards present in the out of flux parts of primary circuit where they generate a radiation field. The first part of this study deals with the modelling of the corrosion: product transport phenomena. In particular, considering the current state of the art, corrosion and release mechanisms are described empirically, which allows to take into account the material surface properties. New mass balance equations describing the corrosion product behaviour are thus obtained. The numerical resolution of these equations is implemented in the second part of this work. In order to obtain large time steps, we choose an implicit time scheme. The associated system is linearized from the Newton method and is solved by a preconditioned GMRES method. Moreover, a time step auto-adaptive management based on Newton iterations is performed. Consequently, an efficient resolution has been implemented, allowing to describe not only the quasi-steady evolutions but also the fast transients. In a last step, numerical simulations are carried out in order to validate the new corrosion product transport modelling and to illustrate the capabilities of this modelling. Notably, the numerical results obtained indicate that the code allows to restore the on-site observations underlining the influence of material surface properties on reactor contamination. (author)

  13. Estimating Net Primary Productivity Using Satellite and Ancillary Data

    Science.gov (United States)

    Choudhury, Bhaskar J.

    2002-01-01

    The net primary productivity (C) or the annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of gross photosynthesis (A(sub g)) and respiration (R) per unit ground area. Available field observations show that R is a large and variable fraction of A(sub g), although it is generally recognized that there are considerable difficulties in determining these fluxes, and thus pose challenge in assessing the accuracy. Further uncertainties arise in extrapolating field measurements (which are acquired over a hectare or so area) to regional scale. Here, an approach is presented for determining these fluxes using satellite and ancillary data to be representative of regional scale and allow assessment of interannual variation. A, has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R(sub g) and R(sub m)).The R(sub m) has been determined from nitrogen content of plant tissue per unit ground area, while R(sub g) has been obtained as a fraction of the difference of A(sub g) and R(sub m). Results for five consecutive years (1986-1990) are presented for the Amazon-Tocontins, Mississippi, and Ob River basins.

  14. Will Global Change Effect Primary Productivity in Coastal Ecosystems?

    Science.gov (United States)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Algae are the base of coastal food webs because they provide the source of organic carbon for the remaining members of the community. Thus, the rate that they produce organic carbon to a large extent controls the productivity of the entire ecosystem. Factors that control algal productivity range from the physical (e.g., temperature, light), chemical (e.g., nutrient levels) to the biological (e.g., grazing). Currently, levels of atmospheric carbon dioxide surficial fluxes of ultraviolet radiation are rising. Both of these environmental variables can have a profound effect on algal productivity. Atmospheric carbon dioxide may increase surficial levels of dissolved inorganic carbon. Our laboratory and field studies of algal mats and phytoplankton cultures under ambient and elevated levels of pCO2 show that elevated levels of inorganic carbon can cause an increase in photosynthetic rates. In some cases, this increase will cause an increase in phytoplankton numbers. There may be an increase in the excretion of fixed carbon, which in turn may enhance bacterial productivity. Alternatively, in analogy with studies on the effect of elevated pCO2 on plants, the phytoplankton could change their carbon to nitrogen ratios, which will effect the feeding of the planktonic grazers. The seasonal depletion of stratospheric ozone has resulted in elevated fluxes of UVB radiation superimposed on the normal seasonal variation. Present surface UV fluxes have a significant impact on phytoplankton physiology, including the inhibition of the light and dark reactions of photosynthesis, inhibition of nitrogenase activity, inhibition of heterocyst formation, reduction in motility, increased synthesis of the UV-screening pigment scytonemin, and mutation. After reviewing these issues, recent work in our lab on measuring the effect of UV radiation on phytoplankton in the San Francisco Bay Estuary will be presented.

  15. Does surface roughness influence the primary stability of acetabular cups? A numerical and experimental biomechanical evaluation.

    Science.gov (United States)

    Le Cann, Sophie; Galland, Alexandre; Rosa, Benoît; Le Corroller, Thomas; Pithioux, Martine; Argenson, Jean-Noël; Chabrand, Patrick; Parratte, Sébastien

    2014-09-01

    Most acetabular cups implanted today are press-fit impacted cementless. Anchorage begins with the primary stability given by insertion of a slightly oversized cup. This primary stability is key to obtaining bone ingrowth and secondary stability. We tested the hypothesis that primary stability of the cup is related to surface roughness of the implant, using both an experimental and a numerical models to analyze how three levels of surface roughness (micro, macro and combined) affect the primary stability of the cup. We also investigated the effect of differences in diameter between the cup and its substrate, and of insertion force, on the cups' primary stability. The results of our study show that primary stability depends on the surface roughness of the cup. The presence of macro-roughness on the peripheral ring is found to decrease primary stability; there was excessive abrasion of the substrate, damaging it and leading to poor primary stability. Numerical modeling indicates that oversizing the cup compared to its substrate has an impact on primary stability, as has insertion force. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Measurement and evaluation of radioactive corrosion product behaviour in primary sodium circuits of JOYO

    International Nuclear Information System (INIS)

    Ito, K.; Iizawa, K.; Takahashi, K.; Zulquarnain, M.A.; Suzuki, S.; Kinjo, K.

    1992-01-01

    In the experimental fast reactor JOYO, the radioactive corrosion product (CP) measurement has been conducted in the primary sodium circuits during each annual inspection. The measured data has been analyzed by the computer code 'PSYCHE', which has been developed by PNC. Main results obtained from the measurements and/or calculations are as follows; (1) The dominant CP nuclide is 54 Mn followed by 60 Co and 58 Co. (2) Average surface gamma dose rate around the primary piping system at the 8th annual inspection is 0.96 mSv/h. The increasing rate of this value is 0.25 (mSv/h)/EFPY. (3) The calculated deposition densities of 54 Mn and 60 Co agree with measured ones within factor of 0.7 ∼ 1.7. (author)

  17. Large historical growth in global terrestrial gross primary production

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. E.; Berry, J. A.; Seibt, U.; Smith, S. J.; Montzka, S. A.; Launois, T.; Belviso, S.; Bopp, L.; Laine, M.

    2017-04-05

    Growth in terrestrial gross primary production (GPP) may provide a feedback for climate change, but there is still strong disagreement on the extent to which biogeochemical processes may suppress this GPP growth at the ecosystem to continental scales. The consequent uncertainty in modeling of future carbon storage by the terrestrial biosphere constitutes one of the largest unknowns in global climate projections for the next century. Here we provide a global, measurement-based estimate of historical GPP growth using long-term atmospheric carbonyl sulfide (COS) records derived from ice core, firn, and ambient air samples. We interpret these records using a model that relates changes in the COS concentration to changes in its sources and sinks, the largest of which is proportional to GPP. The COS history was most consistent with simulations that assume a large historical GPP growth. Carbon-climate models that assume little to no GPP growth predicted trajectories of COS concentration over the anthropogenic era that differ from those observed. Continued COS monitoring may be useful for detecting ongoing changes in GPP while extending the ice core record to glacial cycles could provide further opportunities to evaluate earth system models.

  18. Geostationary Surface and Insolation Products (GSIP), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Surface and Insolation Products (GSIP) Version 3 contains upwelling and downwelling shortwave (0.2-4.0 um) and visible (0.4-0.7 um) radiative...

  19. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  20. Design considerations of fission and corrosion product in primary system of MONJU

    International Nuclear Information System (INIS)

    Yanagisawa, T.; Akagane, K.; Yamamoto, K.; Kawashima, K.

    1976-01-01

    General influence of fission and corrosion products in primary system on MONJU plant design is reviewed. Various research and development works are now in progress to decrease the generation rate, to remove the products more effectively and to develop the methods of evaluation the behaviour of radioactive products. The inventory and distribution of fission and corrosion products in the primary circuit of MONJU are given. The radiation levels on the primary components are estimated to be several roentgens per hour. (author)

  1. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  2. Reducing the uncertainty of the primary damage production in Fe

    International Nuclear Information System (INIS)

    Bjorkas, C.; Nordlund, K.

    2007-01-01

    Full text of publication follows: One of the key questions for understanding neutron irradiation damage buildup in fission and fusion reactor steels is knowing the primary damage state produced by neutron-induced atomic recoils in Fe. Supporting this is our recent study revealing that the initial damage in Fe 0.9 Cr 0.1 is essentially the same as in pure Fe [1]. In spite of decades of study, the question of what the amount and distribution of defects in Fe is, has remained highly unclear. Different computer simulations modules have given a good qualitative understanding of the cascade development [1,2]. However, quantitative differences of more than a factor of three have remained in the predicted clustered defect production numbers [2]. The disagreements between the potentials pose problems for finding a reliable predictive model for the behavior of Fe under irradiation. In this study we analyze the initial damage as predicted by three recent interatomic potentials for Fe. These are well suited for a comparison because they have very different physical motivations and functional forms, but are comparable in overall quality and in particular reproduce the energetics of interstitials in different configurations well. The potentials are those by Ackland and Mendelev et al. (AMS) [3], the 'magnetic' potential by Dudarev and Derlet (DD) [4] and the Tersoff-like analytical potential by Mueller, Erhart and Albe (MEA) [5]. The DD and MEA potentials were modified by us to describe high-energy repulsive interactions well. All potentials were then used in recoil collision cascade simulations carried out and analyzed in exactly the same manner for all potentials. Analysis of the resulting damage showed a much smaller uncertainty regarding the damage production than that of previous potentials. The total defect production numbers essentially agree within the statistical uncertainty for the three potentials. Some differences remains regarding the defect clustered fractions, but

  3. Satellite remote sensing for estimating leaf area index, FPAR and primary production. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Boresjoe Bronge, Laine [SwedPower AB, Stockholm (Sweden)

    2004-03-01

    Land vegetation is a critical component of several biogeochemical cycles that have become the focus of concerted international research effort. Most ecosystem productivity models, carbon budget models, and global models of climate, hydrology and biogeochemistry require vegetation parameters to calculate land surface photosynthesis, evapotranspiration and net primary production. Therefore, accurate estimates of vegetation parameters are increasingly important in the carbon cycle, the energy balance and in environmental impact assessment studies. The possibility of quantitatively estimating vegetation parameters of importance in this context using satellite data has been explored by numerous papers dealing with the subject. This report gives a summary of the present status and applicability of satellite remote sensing for estimating vegetation productivity by using vegetation index for calculating leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR). Some possible approaches for use of satellite data for estimating LAI, FPAR and net primary production (NPP) on a local scale are suggested. Recommendations for continued work in the Forsmark and Oskarshamn investigation areas, where vegetation data and NDVI-images based on satellite data have been produced, are also given.

  4. Satellite remote sensing for estimating leaf area index, FPAR and primary production. A literature review

    International Nuclear Information System (INIS)

    Boresjoe Bronge, Laine

    2004-03-01

    Land vegetation is a critical component of several biogeochemical cycles that have become the focus of concerted international research effort. Most ecosystem productivity models, carbon budget models, and global models of climate, hydrology and biogeochemistry require vegetation parameters to calculate land surface photosynthesis, evapotranspiration and net primary production. Therefore, accurate estimates of vegetation parameters are increasingly important in the carbon cycle, the energy balance and in environmental impact assessment studies. The possibility of quantitatively estimating vegetation parameters of importance in this context using satellite data has been explored by numerous papers dealing with the subject. This report gives a summary of the present status and applicability of satellite remote sensing for estimating vegetation productivity by using vegetation index for calculating leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR). Some possible approaches for use of satellite data for estimating LAI, FPAR and net primary production (NPP) on a local scale are suggested. Recommendations for continued work in the Forsmark and Oskarshamn investigation areas, where vegetation data and NDVI-images based on satellite data have been produced, are also given

  5. Fission product plateout and liftoff in the MHTGR primary system: A review

    International Nuclear Information System (INIS)

    Wichner, R.P.

    1991-04-01

    A review is presented of the technical basis for predicting radioactivity release resulting from depressurization of an MHTGR primary system. Consideration is restricted to so called dry events with no involvement of the steam system. The various types of deposition mechanisms effective for iodine, cesium, strontium, and silver are discussed in terms of their chemical characteristics and the nature of the materials in the primary system. Emphasis is given to iodine behavior, including means for estimating the quantity available for release, the types of plateout locations in the primary system, and the effect of dust on distribution and release. The behavior of fission products cesium, strontium, and silver in such accidents is presented qualitatively. A major part of the review deals with expected dust levels, types, and transport. Available information on the level and nature of dust in the HTGR primary system is reviewed. A summary is presented of dust deposition and liftoff mechanisms. It was concluded that recent approaches to dust liftoff modeling, based on turbulent burst concepts for removal from surfaces, probably offer advantages over the current shear ratio approach. This study concludes that iodine releases from dry depressurization events are likely to be extremely low, on the order of millicuries, due to a predictably low degree of chemical desorption, a low degree of dust liftoff, and a low involvement of iodine with dust. It was also concluded that deposition mechanisms controlling the distribution of fission product material in the primary system, and hence also controlling the degree of liftoff, depend strongly on the chemical nature of the individual elements. Therefore contrary to the current practice, both plateout and liftoff models should reflect those unique chemical and physical properties. 56 refs., 16 figs., 23 tabs

  6. GOES Surface and Insolation Products (GSIP), Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 2 of the GOES Surface and Insolation Products (GSIP) is a high spatial resolution (1/8 x 1/8 degrees) solar radiation product estimated from the GOES-East...

  7. Interactions between atmospheric circulation, nutrient deposition, and tropical forest primary production (Invited)

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Rogers, B. M.; Morton, D. C.; van der Werf, G.; Mahowald, N. M.

    2010-12-01

    Tropical forests influence regional and global climate by means of several pathways, including by modifying surface energy exchange and by forming clouds. High levels of precipitation, leaching, and soil weathering limit nutrient availability in these ecosystems. Phosphorus (P) is a key element limiting net primary production, and in some areas, including forests recovering from prior disturbance, nitrogen (N) also may limit some components of production. Here we quantified atmospheric P and N inputs to these forests from fires using satellite-derived estimates of emissions and atmospheric models. In Africa and South America, cross-biome transport of fire-emitted aerosols and reactive N gases from savannas and areas near the deforestation frontier increased deposition of P and N in interior forests. Equatorward atmospheric transport during the dry (fire) season in one hemisphere was linked with surface winds moving toward the inter-tropical convergence zone (ITCZ) in the other hemisphere. Deposition levels were higher in tropical forests in Africa than in South America because of large savanna areas with high levels of fire emissions in both southern and northern Africa. We conclude by describing a potential feedback loop by which equatorward transport of fire emissions, dust, and spores sustains the productivity of tropical forests. We specifically assessed evidence that savanna-to-forest atmospheric transport of nutrients increases forest productivity, height, and rates of evapotranspiration (ET). In parallel, we examined the degree to which increases in ET and surface roughness in tropical forests have the potential to strengthen several components of the Hadley circulation, including deep convection, equatorward return flow (near the surface), and the intensity of seasonal drought in the subtropics (thereby increasing fires). These interactions are important for understanding biogeochemical - climate interactions on millennial timescales and for quantifying how

  8. Benthic Light Availability Improves Predictions of Riverine Primary Production

    Science.gov (United States)

    Kirk, L.; Cohen, M. J.

    2017-12-01

    Light is a fundamental control on photosynthesis, and often the only control strongly correlated with gross primary production (GPP) in streams and rivers; yet it has received far less attention than nutrients. Because benthic light is difficult to measure in situ, surrogates such as open sky irradiance are often used. Several studies have now refined methods to quantify canopy and water column attenuation of open sky light in order to estimate the amount of light that actually reaches the benthos. Given the additional effort that measuring benthic light requires, we should ask if benthic light always improves our predictions of GPP compared to just open sky irradiance. We use long-term, high-resolution dissolved oxygen, turbidity, dissolved organic matter (fDOM), and irradiance data from streams and rivers in north-central Florida, US across gradients of size and color to build statistical models of benthic light that predict GPP. Preliminary results on a large, clear river show only modest model improvements over open sky irradiance, even in heavily canopied reaches with pulses of tannic water. However, in another spring-fed river with greater connectivity to adjacent wetlands - and hence larger, more frequent pulses of tannic water - the model improved dramatically with the inclusion of fDOM (model R2 improved from 0.28 to 0.68). River shade modeling efforts also suggest that knowing benthic light will greatly enhance our ability to predict GPP in narrower, forested streams flowing in particular directions. Our objective is to outline conditions where an assessment of benthic light conditions would be necessary for riverine metabolism studies or management strategies.

  9. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    Directory of Open Access Journals (Sweden)

    Josep M. Gasol

    2016-09-01

    Full Text Available We carried out monthly photosynthesis-irradiance (P-E experiments with the 14C-method for 12 years (2003–2014 to determine the photosynthetic parameters and primary production of surface phytoplankton in the Blanes Bay Microbial Observatory, a coastal sampling station in the NW Mediterranean Sea. Our goal was to obtain seasonal trends and to establish the basis for detecting future changes of primary production in this oligotrophic area. The maximal photosynthetic rate PBmax ranged 30-fold (0.5-15 mg C mg Chl a–1 h–1, averaged 3.7 mg C mg Chl a–1 h–1 (±0.25 SE and was highest in August and lowest in April and December. We only observed photoinhibition twice. The initial or light-limited slope of the P-E relationship, αB, was low, averaging 0.007 mg C mg Chl a–1 h–1 (μmol photons m–2 s–1–1 (±0.001 SE, range 0.001-0.045 and showed the lowest values in spring (April-June. The light saturation parameter or saturation irradiance, EK, averaged 711 μmol photons m–2 s–1 (± 58.4 SE and tended to be higher in spring and lower in winter. Phytoplankton assemblages were typically dominated by picoeukaryotes in early winter, diatoms in late autumn and late winter, dinoflagellates in spring and cyanobacteria in summer. Total particulate primary production averaged 1.45 mg C m-3 h–1 (±0.13 SE with highest values in winter (up to 8.50 mg C m-3 h–1 and lowest values in summer (summer average, 0.30 mg C m-3 h–1, while chlorophyll-specific primary production averaged 2.49 mg C mg Chl a–1 h–1 (±0.19, SE and peaked in summer (up to 12.0 mg C mg Chl a–1 h–1 in August. 14C-determined phytoplankton growth rates varied between ca. 0.3 d–1 in winter and 0.5 d–1 in summer and were within 60-80% of the maximal rates of growth, based on PBmax. Chlorophyll a was a good predictor of primary production only in the winter and autumn. Seasonality appeared to explain most of the variability in the studied variables, while

  10. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    KAUST Repository

    Gasol, Josep M.

    2016-10-11

    We carried out monthly photosynthesis-irradiance (P-E) experiments with the 14C-method for 12 years (2003–2014) to determine the photosynthetic parameters and primary production of surface phytoplankton in the Blanes Bay Microbial Observatory, a coastal sampling station in the NW Mediterranean Sea. Our goal was to obtain seasonal trends and to establish the basis for detecting future changes of primary production in this oligotrophic area. The maximal photosynthetic rate PBmax ranged 30-fold (0.5-15 mg C mg Chl a–1 h–1), averaged 3.7 mg C mg Chl a–1 h–1 (±0.25 SE) and was highest in August and lowest in April and December. We only observed photoinhibition twice. The initial or light-limited slope of the P-E relationship, αB, was low, averaging 0.007 mg C mg Chl a–1 h–1 (μmol photons m–2 s–1)–1 (±0.001 SE, range 0.001-0.045) and showed the lowest values in spring (April-June). The light saturation parameter or saturation irradiance, EK, averaged 711 μmol photons m–2 s–1 (±58.4 SE) and tended to be higher in spring and lower in winter. Phytoplankton assemblages were typically dominated by picoeukaryotes in early winter, diatoms in late autumn and late winter, dinoflagellates in spring and cyanobacteria in summer. Total particulate primary production averaged 1.45 mg C m–3 h–1 (±0.13 SE) with highest values in winter (up to 8.50 mg C m–3 h–1) and lowest values in summer (summer average, 0.30 mg C m–3 h–1), while chlorophyll-specific primary production averaged 2.49 mg C mg Chl a–1 h–1 (±0.19, SE) and peaked in summer (up to 12.0 mg C mg Chl a–1 h–1 in August). 14C-determined phytoplankton growth rates varied between ca. 0.3 d–1 in winter and 0.5 d–1 in summer and were within 60-80% of the maximal rates of growth, based on PBmax. Chlorophyll a was a good predictor of primary production only in the winter and autumn. Seasonality appeared to explain most of the variability in the studied variables, while

  11. The whale pump: marine mammals enhance primary productivity in a coastal basin.

    Directory of Open Access Journals (Sweden)

    Joe Roman

    Full Text Available It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×10(4 metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward "whale pump" played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities.

  12. Altered primary production during mass-extinction events

    NARCIS (Netherlands)

    van de Schootbrugge, B.; Gollner, S.

    2013-01-01

    The Big Five mass-extinction events are characterized by dramatic changes in primary producers. Initial disturbance to primary producers is usually followed by a succession of pioneers that represent qualitative and quantitative changes in standing crops of land plants and/or phytoplankton. On land,

  13. Primary cilium - antenna-like structure on the surface of most mammalian cell types

    International Nuclear Information System (INIS)

    Dvorak, J; Kasaova, L; Filip, S; Petera, J; Sitorova, V; Nikolov, D Hadzi; Ryska, A; Mokry, J; Richter, I

    2011-01-01

    The primary cilium is a sensory solitary non-motile microtubule-based organelle protruding in the quiescent phase of the cell cycle from the surface of the majority of human cells, including embryonic cells, stem cells and stromal cells of malignant tumors. The presence of a primary cilium on the surface of a cell is transient, limited to the quiescent G 1 (G 0 ) phase and the beginning of the S phase of the cell cycle. The primary cilium is formed from the mother centriole. Primary cilia are key coordinators of signaling pathways during development and tissue homeostasis and, when deffective, they are a major cause of human diseases and developmental disorders, now commonly referred to as ciliopathies. Most cancer cells do not possess a primary cilium. The loss of the primary cilium is a regular feature of neoplastic transformation in the majority of solid tumors. The primary cilium could serve as a tumor suppressor organelle. The aim of this paper was to provide a review of the current knowledge of the primary cilium.

  14. Primary cilium - antenna-like structure on the surface of most mammalian cell types

    Science.gov (United States)

    Dvorak, J.; Sitorova, V.; Hadzi Nikolov, D.; Mokry, J.; Richter, I.; Kasaova, L.; Filip, S.; Ryska, A.; Petera, J.

    2011-12-01

    The primary cilium is a sensory solitary non-motile microtubule-based organelle protruding in the quiescent phase of the cell cycle from the surface of the majority of human cells, including embryonic cells, stem cells and stromal cells of malignant tumors. The presence of a primary cilium on the surface of a cell is transient, limited to the quiescent G1(G0) phase and the beginning of the S phase of the cell cycle. The primary cilium is formed from the mother centriole. Primary cilia are key coordinators of signaling pathways during development and tissue homeostasis and, when deffective, they are a major cause of human diseases and developmental disorders, now commonly referred to as ciliopathies. Most cancer cells do not possess a primary cilium. The loss of the primary cilium is a regular feature of neoplastic transformation in the majority of solid tumors. The primary cilium could serve as a tumor suppressor organelle. The aim of this paper was to provide a review of the current knowledge of the primary cilium.

  15. Retrieval of daily gross primary production over Europe and Africa from an ensemble of SEVIRI/MSG products

    Science.gov (United States)

    Martínez, B.; Sanchez-Ruiz, S.; Gilabert, M. A.; Moreno, A.; Campos-Taberner, M.; García-Haro, F. J.; Trigo, I. F.; Aurela, M.; Brümmer, C.; Carrara, A.; De Ligne, A.; Gianelle, D.; Grünwald, T.; Limousin, J. M.; Lohila, A.; Mammarella, I.; Sottocornola, M.; Steinbrecher, R.; Tagesson, T.

    2018-03-01

    The main goal of this paper is to derive a method for a daily gross primary production (GPP) product over Europe and Africa taking the full advantage of the SEVIRI/MSG satellite products from the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) sensors delivered from the Satellite Application Facility for Land Surface Analysis (LSA SAF) system. Special attention is paid to model the daily GPP response from an optimized Montheith's light use efficiency model under dry conditions by controlling water shortage limitations from the actual evapotranspiration and the potential evapotranspiration (PET). The PET was parameterized using the mean daily air temperature at 2 m (Ta) from ERA-Interim data. The GPP product (MSG GPP) was produced for 2012 and assessed by direct site-level comparison with GPP from eddy covariance data (EC GPP). MSG GPP presents relative bias errors lower than 40% for the most forest vegetation types with a high agreement (r > 0.7) when compared with EC GPP. For drylands, MSG GPP reproduces the seasonal variations related to water limitation in a good agreement with site level GPP estimates (RMSE = 2.11 g m-2 day-1; MBE = -0.63 g m-2 day-1), especially for the dry season. A consistency analysis against other GPP satellite products (MOD17A2 and FLUXCOM) reveals a high consistency among products (RMSD Africa. The major GPP disagreement arises over moist biomes in central Africa (RMSD > 3.0 g m-2 day-1) and over dry biomes with MSG GPP estimates lower than FLUXCOM (MBD up to -3.0 g m-2 day-1). This newly derived product has the potential for analysing spatial patterns and temporal dynamics of GPP at the MSG spatial resolutions on a daily basis allowing to better capture the GPP dynamics and magnitude.

  16. Preparation of a primary target for the production of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Arino, H.; Cosolito, F.J.; George, K.D.; Thornton, A.K.

    1976-01-01

    A primary target for the production of fission products in a nuclear reactor, such as uranium or plutonium fission products, is comprised of an enclosed, cylindrical vessel, preferably comprised of stainless steel, having a thin, continuous, uniform layer of fissionable material, integrally bonded to its inner walls and a port permitting access to the interior of the vessel. A process is also provided for depositing uranium material on to the inner walls of the vessel. Upon irradiation of the target with neutrons from a nuclear reactor, radioactive fission products, such as molybdenum-99, are formed, and thereafter separated from the target by the introduction of an acidic solution through the port to dissolve the irradiated inner layer. The irradiation and dissolution are thus effected in the same vessel without the necessity of transferring the fissionable material and fission products to a separate chemical reactor. Subsequently, the desired isotopes are extracted and purified. Molybdenum-99 decays to technetium-99m which is a valuable medical diagnostic radioisotope. 3 claims, 1 drawing figure

  17. A multi-sites analysis on the ozone effects on Gross Primary Production of European forests

    Energy Technology Data Exchange (ETDEWEB)

    Proietti, C. [Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome (Italy); Anav, A. [Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, Via Anguillarese 301, 00123 S. Maria di Galeria, Rome (Italy); University of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter (United Kingdom); De Marco, A. [Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, Via Anguillarese 301, 00123 S. Maria di Galeria, Rome (Italy); Sicard, P. [ACRI-HE, 260 route du Pin Montard BP234, 06904 Sophia Antipolis-cedex (France); Vitale, M., E-mail: marcello.vitale@uniroma1.it [Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome (Italy)

    2016-06-15

    Ozone (O{sub 3}) is both a greenhouse gas and a secondary air pollutant causing adverse impacts on forests ecosystems at different scales, from cellular to ecosystem level. Specifically, the phytotoxic nature of O{sub 3} can impair CO{sub 2} assimilation that, in turn affects forest productivity. This study aims to evaluate the effects of tropospheric O{sub 3} on Gross Primary Production (GPP) at 37 European forest sites during the time period 2000–2010. Due to the lack of carbon assimilation data at O{sub 3} monitoring stations (and vice-versa) this study makes a first attempt to combine high resolution MODIS Gross Primary Production (GPP) estimates and O{sub 3} measurement data. Partial Correlations, Anomalies Analysis and the Random Forests Analysis (RFA) were used to quantify the effects of tropospheric O{sub 3} concentration and its uptake on GPP and to evaluate the most important factors affecting inter-annual GPP changes. Our results showed, along a North-West/South-East European transect, a negative impact of O{sub 3} on GPP ranging from 0.4% to 30%, although a key role of meteorological parameters respect to pollutant variables in affecting GPP was found. In particular, meteorological parameters, namely air temperature (T), soil water content (SWC) and relative humidity (RH) are the most important predictors at 81% of test sites. Moreover, it is interesting to highlight a key role of SWC in the Mediterranean areas (Spanish, Italian and French test sites) confirming that, soil moisture and soil water availability affect vegetation growth and photosynthesis especially in arid or semi-arid ecosystems such as the Mediterranean climate regions. Considering the pivotal role of GPP in the global carbon balance and the O{sub 3} ability to reduce primary productivity of the forests, this study can help in assessing the O{sub 3} impacts on ecosystem services, including wood production and carbon sequestration. - Highlights: • Assessment of the surface O{sub 3

  18. Adiabatic surface thermometer for improved production braze quality

    International Nuclear Information System (INIS)

    Dittbenner, G.R.

    1975-01-01

    An adiabatic surface thermometer was developed to control automatically the critical temperature-time cycle of a production vacuum-brazing process. Investigations revealed that optimum braze-joint strength required precise control of the brazing temperature. Spot-welded thermocouples could not be used because the spot welds cause surface damage. This thermometer touches the surface and uses a differential thermocouple and heater to measure surface temperature without heat flow, thereby eliminating large errors caused by conduction losses common to conventional spring-loaded thermocouples. Temperatures in air or vacuum are measured to 800 0 C with errors less than 5 0 C. This thermometer has minimized the rejection of production parts, resulting in a cost saving to the U. S. Energy Research and Development Administration

  19. Improved assessment of gross and net primary productivity of Canada's landmass

    Science.gov (United States)

    Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien

    2013-12-01

    assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.

  20. Primary Productivity, NASA Aqua MODIS and GOES Imager, 0.1 degrees, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  1. Primary Productivity, SeaWiFS and Pathfinder, 0.1 degrees, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from SeaWiFS Chl a, Pathfinder SST, and SeaWiFS PAR data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  2. Primary Productivity, NASA Aqua MODIS, 4.4 km, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific evaluation by professional...

  3. Landscape level influence: aquatic primary production in the Colorado River of Glen and Grand canyons

    Science.gov (United States)

    Yard, M. D.; Kennedy, T.; Yackulic, C. B.; Bennett, G. E.

    2012-12-01

    Irregular features common to canyon-bound regions intercept solar incidence (photosynthetic photon flux density [PPFD: μmol m-2 s-1]) and can affect ecosystem energetics. The Colorado River in Grand Canyon is topographically complex, typical of most streams and rivers in the arid southwest. Dam-regulated systems like the Colorado River have reduced sediment loads, and consequently increased water transparency relative to unimpounded rivers; however, sediment supply from tributaries and flow regulation that affects erosion and subsequent sediment transport, interact to create spatial and temporal variation in optical conditions in this river network. Solar incidence and suspended sediment loads regulate the amount of underwater light available for aquatic photosynthesis in this regulated river. Since light availability is depth dependent (Beer's law), benthic algae is often exposed to varying levels of desiccation or reduced light conditions due to daily flow regulation, additional factors that further constrain aquatic primary production. Considerable evidence suggests that the Colorado River food web is now energetically dependent on autotrophic production, an unusual condition since large river foodwebs are typically supported by allochthonous carbon synthesized and transported from terrestrial environments. We developed a mechanistic model to account for these regulating factors to predict how primary production might be affected by observed and alternative flow regimes proposed as part of ongoing adaptive management experimentation. Inputs to our model include empirical data (suspended sediment and temperature), and predictive relationships: 1) solar incidence reaching the water surface (topographic complexity), 2) suspended sediment-light extinction relationships (optical properties), 3) unsteady flow routing model (stage-depth relationship), 4) channel morphology (photosynthetic area), and 5) photosynthetic-irradiant response for dominant algae (Cladophora

  4. Land surface temperature downscaling using random forest regression: primary result and sensitivity analysis

    Science.gov (United States)

    Pan, Xin; Cao, Chen; Yang, Yingbao; Li, Xiaolong; Shan, Liangliang; Zhu, Xi

    2018-04-01

    The land surface temperature (LST) derived from thermal infrared satellite images is a meaningful variable in many remote sensing applications. However, at present, the spatial resolution of the satellite thermal infrared remote sensing sensor is coarser, which cannot meet the needs. In this study, LST image was downscaled by a random forest model between LST and multiple predictors in an arid region with an oasis-desert ecotone. The proposed downscaling approach was evaluated using LST derived from the MODIS LST product of Zhangye City in Heihe Basin. The primary result of LST downscaling has been shown that the distribution of downscaled LST matched with that of the ecosystem of oasis and desert. By the way of sensitivity analysis, the most sensitive factors to LST downscaling were modified normalized difference water index (MNDWI)/normalized multi-band drought index (NMDI), soil adjusted vegetation index (SAVI)/ shortwave infrared reflectance (SWIR)/normalized difference vegetation index (NDVI), normalized difference building index (NDBI)/SAVI and SWIR/NDBI/MNDWI/NDWI for the region of water, vegetation, building and desert, with LST variation (at most) of 0.20/-0.22 K, 0.92/0.62/0.46 K, 0.28/-0.29 K and 3.87/-1.53/-0.64/-0.25 K in the situation of +/-0.02 predictor perturbances, respectively.

  5. Integrated system of production information processing for surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Wang, S.; Zeng, Z.; Wei, J.; Ren, Z. [China University of Mining and Technology, Xuzhou (China). Dept of Mining Engineering

    2000-09-01

    Based on the concept of geological statistic, mathematical program, condition simulation, system engineering, and the features and duties of each main department in surface mine production, an integrated system for surface mine production information was studied systematically and developed by using the technology of data warehousing, CAD, object-oriented and system integration, which leads to the systematizing and automating of the information management, data processing, optimization computing and plotting. In this paper, its overall object, system design, structure and functions and some key techniques were described. 2 refs., 3 figs.

  6. Dissolved organic carbon concentration controls benthic primary production: results from in situ chambers in north-temperate lakes

    Science.gov (United States)

    Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2014-01-01

    We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.

  7. Short-term to seasonal variability in factors driving primary productivity in a shallow estuary: Implications for modeling production

    Science.gov (United States)

    Canion, Andy; MacIntyre, Hugh L.; Phipps, Scott

    2013-10-01

    The inputs of primary productivity models may be highly variable on short timescales (hourly to daily) in turbid estuaries, but modeling of productivity in these environments is often implemented with data collected over longer timescales. Daily, seasonal, and spatial variability in primary productivity model parameters: chlorophyll a concentration (Chla), the downwelling light attenuation coefficient (kd), and photosynthesis-irradiance response parameters (Pmchl, αChl) were characterized in Weeks Bay, a nitrogen-impacted shallow estuary in the northern Gulf of Mexico. Variability in primary productivity model parameters in response to environmental forcing, nutrients, and microalgal taxonomic marker pigments were analysed in monthly and short-term datasets. Microalgal biomass (as Chla) was strongly related to total phosphorus concentration on seasonal scales. Hourly data support wind-driven resuspension as a major source of short-term variability in Chla and light attenuation (kd). The empirical relationship between areal primary productivity and a combined variable of biomass and light attenuation showed that variability in the photosynthesis-irradiance response contributed little to the overall variability in primary productivity, and Chla alone could account for 53-86% of the variability in primary productivity. Efforts to model productivity in similar shallow systems with highly variable microalgal biomass may benefit the most by investing resources in improving spatial and temporal resolution of chlorophyll a measurements before increasing the complexity of models used in productivity modeling.

  8. Modelling size-fractionated primary production in the Atlantic Ocean from remote sensing

    Science.gov (United States)

    Brewin, Robert J. W.; Tilstone, Gavin H.; Jackson, Thomas; Cain, Terry; Miller, Peter I.; Lange, Priscila K.; Misra, Ankita; Airs, Ruth L.

    2017-11-01

    Marine primary production influences the transfer of carbon dioxide between the ocean and atmosphere, and the availability of energy for the pelagic food web. Both the rate and the fate of organic carbon from primary production are dependent on phytoplankton size. A key aim of the Atlantic Meridional Transect (AMT) programme has been to quantify biological carbon cycling in the Atlantic Ocean and measurements of total primary production have been routinely made on AMT cruises, as well as additional measurements of size-fractionated primary production on some cruises. Measurements of total primary production collected on the AMT have been used to evaluate remote-sensing techniques capable of producing basin-scale estimates of primary production. Though models exist to estimate size-fractionated primary production from satellite data, these have not been well validated in the Atlantic Ocean, and have been parameterised using measurements of phytoplankton pigments rather than direct measurements of phytoplankton size structure. Here, we re-tune a remote-sensing primary production model to estimate production in three size fractions of phytoplankton (10 μm) in the Atlantic Ocean, using measurements of size-fractionated chlorophyll and size-fractionated photosynthesis-irradiance experiments conducted on AMT 22 and 23 using sequential filtration-based methods. The performance of the remote-sensing technique was evaluated using: (i) independent estimates of size-fractionated primary production collected on a number of AMT cruises using 14C on-deck incubation experiments and (ii) Monte Carlo simulations. Considering uncertainty in the satellite inputs and model parameters, we estimate an average model error of between 0.27 and 0.63 for log10-transformed size-fractionated production, with lower errors for the small size class (10 μm), and errors generally higher in oligotrophic waters. Application to satellite data in 2007 suggests the contribution of cells 2 μm to total

  9. GPM Mission Gridded Text Products Providing Surface Precipitation Retrievals

    Science.gov (United States)

    Stocker, Erich Franz; Kelley, Owen; Huffman, George; Kummerow, Christian

    2015-04-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar), and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMI/DPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for reseachers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations. This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments - GMI, DPR, and combined GMI/DPR (2) surface precipitation retrievals for the partner

  10. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems

    DEFF Research Database (Denmark)

    Ingerslev, Flemming; Toräng, Lars; Loke, M.-L.

    2001-01-01

    The primary aerobic and anaerobic biodegradability at intermediate concentrations (50-5000 mug/l) of the antibiotics olaquindox (OLA), metronidazole (MET), tylosin (TYL) and oxytetracycline (OTC) was studied in a simple shake flask system simulating the conditions in surface waters. The purpose...

  11. Effects of ultraviolet radiation on rates and size distribution of primary production by Lake Erie phytoplankton

    International Nuclear Information System (INIS)

    Hiriart, V.P.; Greenberg, B.M.; Guildford, S.J.; Smith, R.E.H.

    2002-01-01

    The impact of natural solar ultraviolet radiation (UVR), particularly UVB (297-320 nm), on phytoplankton primary production in Lake Erie was investigated during the spring and summer of 1997. Radiocarbon incorporation and size-selective filtration was used to trace total production and its distribution among particulate and dissolved pools. On average, 1-h exposures produced half the UVB-dependent inhibition of total production realized in 8-h exposures, indicating rapid kinetics of photoinhibition. Cumulative UVB-dependent photoinhibition averaged 36% in 8-h simulated surface exposures. The efficiency of photoinhibition was greater for N-deficient than N-replete communities, but was not related to phytoplankton light history, P limitation, or the dominant genera. The proportion of recently fixed carbon occurring in the dissolved pool after 8-h exposures was significantly greater in higher-UVB treatments, whereas the share in picoplankton (<2 μm) was significantly lower. Significant UVB-dependent inhibition of total production was limited on average to relatively severe exposures, but the rapid kinetics of inhibition and the apparent effects on the allocation of carbon suggest it may be important to the lake's food web. Differences in optical properties and thermal stratification patterns suggested that the relatively turbid west basin was potentially more susceptible to UVR photoinhibition than the more transparent east or central basins. (author)

  12. Frontal dynamics boost primary production in the summer stratified Mediterranean sea

    Science.gov (United States)

    Olita, Antonio; Capet, Arthur; Claret, Mariona; Mahadevan, Amala; Poulain, Pierre Marie; Ribotti, Alberto; Ruiz, Simón; Tintoré, Joaquín; Tovar-Sánchez, Antonio; Pascual, Ananda

    2017-06-01

    Bio-physical glider measurements from a unique process-oriented experiment in the Eastern Alboran Sea (AlborEx) allowed us to observe the distribution of the deep chlorophyll maximum (DCM) across an intense density front, with a resolution (˜ 400 m) suitable for investigating sub-mesoscale dynamics. This front, at the interface between Atlantic and Mediterranean waters, had a sharp density gradient (Δ ρ ˜ 1 kg/m3 in ˜ 10 km) and showed imprints of (sub-)mesoscale phenomena on tracer distributions. Specifically, the chlorophyll-a concentration within the DCM showed a disrupted pattern along isopycnal surfaces, with patches bearing a relationship to the stratification (buoyancy frequency) at depths between 30 and 60 m. In order to estimate the primary production (PP) rate within the chlorophyll patches observed at the sub-surface, we applied the Morel and Andrè (J Geophys Res 96:685-698 1991) bio-optical model using the photosynthetic active radiation (PAR) from Argo profiles collected simultaneously with glider data. The highest production was located concurrently with domed isopycnals on the fresh side of the front, suggestive that (sub-)mesoscale upwelling is carrying phytoplankton patches from less to more illuminated levels, with a contemporaneous delivering of nutrients. Integrated estimations of PP (1.3 g C m-2d-1) along the glider path are two to four times larger than the estimations obtained from satellite-based algorithms, i.e., derived from the 8-day composite fields extracted over the glider trip path. Despite the differences in spatial and temporal sampling between instruments, the differences in PP estimations are mainly due to the inability of the satellite to measure DCM patches responsible for the high production. The deepest (depth > 60 m) chlorophyll patches are almost unproductive and probably transported passively (subducted) from upper productive layers. Finally, the relationship between primary production and oxygen is also investigated

  13. Environmental conditions and primary production in a Sahelian ...

    African Journals Online (AJOL)

    Environmental descriptors (nutrient, water transparency, temperature ... Nutrient concentrations were low, with high variability (from 0 to 30 µg.l-1 for DIN and from 0 to 18 µg.l-1 for. PO4). The primary ... and permanent interventions of sea water.

  14. Effect of the fast pyrolysis temperature on the primary and secondary products of lignin

    NARCIS (Netherlands)

    Zhou, Shuai; Garcia-Perez, Manuel; Pecha, Brennan; Kersten, Sascha R.A.; McDonald, Armando G.; Westerhof, Roel Johannes Maria

    2013-01-01

    This paper presents results on the primary pyrolysis products of organosolv lignin at temperatures between 360 and 700 °C. To study the primary products, a vacuum screen heater (heating rate of 8000 °C/s, deep vacuum of 0.7 mbar, and very fast cooling at the wall temperature of −100 °C) was used.

  15. Net primary productivity of subalpine meadows in Yosemite National Park in relation to climate variability

    Science.gov (United States)

    Peggy E. Moore; Jan W. van Wagtendonk; Julie L. Yee; Mitchel P. McClaran; David N. Cole; Neil K. McDougald; Matthew L. Brooks

    2013-01-01

    Subalpine meadows are some of the most ecologically important components of mountain landscapes, and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary productivity are associated with variability in moisture and temperature will become increasingly important with current and anticipated changes in climate....

  16. Primary production, nutrient dynamics and mineralisation in a northeastern Greenland fjord during the summer thaw

    DEFF Research Database (Denmark)

    Rysgaard, S.; Finster, K.; Dahlgaard, H.

    1996-01-01

    This investigation represents the first integrated study of primary production, nutrient dynamics and mineralisation in a northeastern fjord of Greenland. The data presented represent conditions and activities during the early summer thaw (first 2 weeks of July). Primary production (5.3 mmol C m(...

  17. Primary production of edaphic algal communities in a Mississippi salt marsh

    International Nuclear Information System (INIS)

    Sullivan, M.J.; Moncreiff, C.A.

    1988-01-01

    Primary production rates of edaphic algae associated with the sediments beneath four monospecific canopies of vascular plants were determined over an annual cycle in a Mississippi salt marsh. The edaphic algal flora was dominated by small, motile pennate diatoms. Algal production (as measured by 14 C uptake) was generally highest in spring-early summer and lowest in fall. Hourly rates ranged from a low of 1.4 mg C/m 2 in Juncus roemerianus Scheele to a high of 163 mg C/m 2 beneath the Scirpus olneyi Gray canopy. Stepwise multiple regressions identified a soil moisture index and chlorophyll a as the best environmental predictors of hourly production; light energy reaching the marsh surface and sediment and air temperature proved of little value. Adding the relative abundances of 33 diatom taxa to the set of independent variables only slightly increased R 2 ; however, virtually all variables selected were diatom taxa. R 2 was only 0.38 for the Spartina alterniflora Loisel. habitat but ranged from 0.70 to 0.87 for the remaining three vascular plant zones. Annual rates of algal production (g C/m 2 ) were estimated as follows: Juncus (28), Spartina (57), Distichlis spicata (L.) Greene (88), and Scirpus (151). The ratio of annual edaphic algal production to vascular plant net aerial production (EAP/VPP) was 10-12% for the first three habitats and 61% for Scirpus. Chlorophyll a concentrations, annual algal production rates, and EAP/VPP values were comparable to those determined in Texas, Delaware, and Massachusetts salt marshes but lower than those reported for Georgia and particularly California marshes

  18. Micro-phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean

    Science.gov (United States)

    Tilstone, Gavin H.; Lange, Priscila K.; Misra, Ankita; Brewin, Robert J. W.; Cain, Terry

    2017-11-01

    Micro-phytoplankton is the >20 μm component of the phytoplankton community and plays a major role in the global ocean carbon pump, through the sequestering of anthropogenic CO2 and export of organic carbon to the deep ocean. To evaluate the global impact of the marine carbon cycle, quantification of micro-phytoplankton primary production is paramount. In this paper we use both in situ data and a satellite model to estimate the contribution of micro-phytoplankton to total primary production (PP) in the Atlantic Ocean. From 1995 to 2013, 940 measurements of primary production were made at 258 sites on 23 Atlantic Meridional Transect Cruises from the United Kingdom to the South African or Patagonian Shelf. Micro-phytoplankton primary production was highest in the South Subtropical Convergence (SSTC ∼ 409 ± 720 mg C m-2 d-1), where it contributed between 38 % of the total PP, and was lowest in the North Atlantic Gyre province (NATL ∼ 37 ± 27 mg C m-2 d-1), where it represented 18 % of the total PP. Size-fractionated photosynthesis-irradiance (PE) parameters measured on AMT22 and 23 showed that micro-phytoplankton had the highest maximum photosynthetic rate (PmB) (∼5 mg C (mg Chl a)-1 h-1) followed by nano- (∼4 mg C (mg Chl a)-1 h-1) and pico- (∼2 mg C (mg Chl a)-1 h-1). The highest PmB was recorded in the NATL and lowest in the North Atlantic Drift Region (NADR) and South Atlantic Gyre (SATL). The PE parameters were used to parameterise a remote sensing model of size-fractionated PP, which explained 84 % of the micro-phytoplankton in situ PP variability with a regression slope close to 1. The model was applied to the SeaWiFS time series from 1998-2010, which illustrated that micro-phytoplankton PP remained constant in the NADR, NATL, Canary Current Coastal upwelling (CNRY), Eastern Tropical Atlantic (ETRA), Western Tropical Atlantic (WTRA) and SATL, but showed a gradual increase in the Benguela Upwelling zone (BENG) and South Subtropical Convergence (SSTC

  19. Microarc Oxidation of Product Surfaces without Using a Bath

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2015-01-01

    Full Text Available While using an electrochemical method to cover the large-sized work-pieces, units, and products up to 6 м3 by protective coating, there is a certain difficulty to apply traditional anodizing techniques in a plating vat, and it is necessary to find various processing techniques.To use the existing micro-arc oxide coating (MOC methods for work-pieces of various forms and sizes in a plating vat is complicated in case it is required to provide oxide layers in separate places rather than over entire surface of a work-piece. The challenge is to treat flat surfaces in various directions, external and internal surfaces of rotation bodies, profiled surfaces, intersections, closed and through holes, pipes, as well as spline and thread openings for ensuring anti-seize properties in individual or small-scale production to meet technical requirements and operational properties of products.A design of tools to provide MOC-process of all possible surfaces of various engineering box-type products depends on many factors and can be considerably different even when processing the surfaces of the same forms. An attachment to be used is fixed directly on a large-sized design (a work-piece, a product or fastened in the special tool. The features of technological process, design shape, and arrangement of the processed surfaces define a fastening method of the attachment. Therefore it is necessary to pay much attention to a choice of the processing pattern and a design of tools.The Kaluga-branch of Bauman Moscow State Technical University is an original proposer of methods to form MOC-coatings on the separate surfaces of large-sized work-pieces using the moved and stationary electrodes to solve the above listed tasks.The following results of work will have an impact on development of the offered processing methods and their early implementation in real production:1. To provide oxide coatings on the surfaces of large-sized products or assemblies in a single or small

  20. Can the primary algae production be measured precisely?

    International Nuclear Information System (INIS)

    Olesen, M.; Lundsgaard, C.

    1996-01-01

    Algae production in seawater is extremely important as a basic link in marine food chains. Evaluation of the algae quantity is based on 14CO 2 tracer techniques while natural circulation and light absorption in seawater is taken insufficiently into account. Algae production can vary by 500% in similar nourishment conditions, but varying water mixing conditions. (EG)

  1. Linking climate, gross primary productivity, and site index across forests of the western United States

    Science.gov (United States)

    Aaron R. Weiskittel; Nicholas L. Crookston; Philip J. Radtke

    2011-01-01

    Assessing forest productivity is important for developing effective management regimes and predicting future growth. Despite some important limitations, the most common means for quantifying forest stand-level potential productivity is site index (SI). Another measure of productivity is gross primary production (GPP). In this paper, SI is compared with GPP estimates...

  2. Yields of primary products from chloroethylenes in air under electron beam irradiation

    International Nuclear Information System (INIS)

    Hakoda, Teruyuki; Hashimoto, Shoji; Kojima, Takuji

    2003-01-01

    The quantitative analysis of toxic primary irradiation products was carried out for the development of the purification technology of chloroethylenes/air mixtures using an electron beam (EB). Degradation of chloroethylenes in humid air proceeded through the formation of primary products retaining a carbon-carbon (C-C) bond such as chloroacetyl chlorides and chloroacetyl aldehyde as well as that of primary products of COCl 2 and HCOCl through C-C bond cleavage. Chloroethylenes having one carbon bonded to two Cl atoms was decomposed into the primary products retaining a C-C bond prior to breaking a C-C bond. The number of Cl atoms of a chloroethylene molecule enhanced the formation ratio of primary products retaining a C-C bond. On the other hand, chloroethylene having two carbons bonded to one Cl atom was degraded thought the scission of a C-C bond predominantly C-C bond maintenance. (author)

  3. Late Quaternary changes in surface productivity and oxygen ...

    Indian Academy of Sciences (India)

    Changes in the abundance of selected planktic foraminiferal species and some sedimentological parameters at ODP site 728A were examined to understand the fluctuations in the surface productivity and deep sea oxygenation in the NW Arabian Sea during last ∼540 kyr. The increased relative abundances of high fertility ...

  4. The Cretaceous-Tertiary boundary marine extinction and global primary productivity collapse

    Science.gov (United States)

    Zachos, J. C.; Arthus, M. A.; Dean, W. E.

    1988-01-01

    The extinction of marine phyto-and zoo-plankton across the K-T boundary has been well documented. Such an event may have resulted in decreased photosynthetic fixation of carbon in surface waters and a collapse of the food chain in the marine biosphere. Because the vertical and horizontal distribution of the carbon isotopic composition of total dissolved carton (TDC) in the modern ocean is controlled by the transfer of organic carbon from the surface to deep reservoirs, it follows that a major disruption of the marine biosphere would have had a major effect on the distribution of carbon isotopes in the ocean. Negative carbon isotope excursions have been identified at many marine K-T boundary sequences worldwide and are interpreted as a signal of decreased oceanic primary productivity. However, the magnitude, duration and consequences of this productivity crisis have been poorly constrained. On the basis of planktonic and benthic calcareous microfossil carbon isotope and other geochemical data from DSDP Site 577 located on the Shatsky Rise in the north-central Pacific, as well as other sites, researchers have been able to provide a reasonable estimate of the duration and magnitude of this event.

  5. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  6. Adjuvant treatment or primary topical monotherapy for ocular surface squamous neoplasia: a systematic review

    Directory of Open Access Journals (Sweden)

    Gustavo Arruda Viani

    Full Text Available ABSTRACT In this systematic review, we evaluated studies involving adjuvant and primary topical treatment for ocular surface squamous neoplasia (OSSN. The findings were: (i adjuvant 5-fluorouracil (5-FU reduces the risk of relapse after surgical excision with mild side effects [level Ib, grade of recommendation (GR A]. (ii Primary topical mitomycin (MMC produces a high rate of complete response, low recurrence rate, and mild side effects (level Ib, GR A. (iii Primary chemotherapy versus adjuvant chemotherapy produce similar rates of recurrence, with no significant difference (level IIb, GR B. (iv Adjuvant 5-FU versus MMC showed no significant differences, with mild side effects in both groups and a better toxicity profile for MMC (level III, GR C. (v Primary topical 5-FU versus MMC versus interferon (IFN showed similar rates of tumor recurrence, mild side effects for all drugs, and more severe side effects in the 5-FU arm, followed successively by MMC and IFN (level III, GR C.

  7. 2,4-D and Glyphosate affect aquatic biofilm accrual, gross primary production, and community respiration

    Directory of Open Access Journals (Sweden)

    Lawton E. Shaw

    2016-10-01

    Full Text Available 2,4-Dichlorophenoxyacetic acid (2,4-D and glyphosate are widely used agricultural herbicides commonly found in surface waters near cultivated land. Field experiments were conducted to determine the effects of 2,4-D and glyphosate on biofilms in a pond next to agricultural land in Athabasca, Alberta. Contaminant-exposure substrates (CES consisted of GF/C glass fiber or a cellulose filter paper substrates placed on specimen jars filled with agar that contained low levels of nitrogen and phosphorus, and different concentrations (15, 9.0, 1.5 mM of either 2,4-D or glyphosate. Nutrients and herbicide diffused freely through the agar to the substrate surface. CES arrays were deployed 15 cm below the water surface for 22 days, after which biofilms were collected and biomass (chlorophyll a, autotroph gross primary production (GPP, and heterotroph community respiration (CR were measured. 2,4-D (15 mM caused significant decreases in rates of biomass accrual (−22%, GPP (−34%, and CR(−63%. Glyphosate (15 mM also caused significant decreases in rates of biomass accrual (−50%, GPP (−67%, and CR (−47%. For the contaminant concentrations used, mean flux rates are estimated to be between 50–700 ng cm−2 min−1.

  8. The long-term Global LAnd Surface Satellite (GLASS) product suite and applications

    Science.gov (United States)

    Liang, S.

    2015-12-01

    Our Earth's environment is experiencing rapid changes due to natural variability and human activities. To monitor, understand and predict environment changes to meet the economic, social and environmental needs, use of long-term high-quality satellite data products is critical. The Global LAnd Surface Satellite (GLASS) product suite, generated at Beijing Normal University, currently includes 12 products, including leaf area index (LAI), broadband shortwave albedo, broadband longwave emissivity, downwelling shortwave radiation and photosynthetically active radiation, land surface skin temperature, longwave net radiation, daytime all-wave net radiation, fraction of absorbed photosynetically active radiation absorbed by green vegetation (FAPAR), fraction of green vegetation coverage, gross primary productivity (GPP), and evapotranspiration (ET). Most products span from 1981-2014. The algorithms for producing these products have been published in the top remote sensing related journals and books. More and more applications have being reported in the scientific literature. The GLASS products are freely available at the Center for Global Change Data Processing and Analysis of Beijing Normal University (http://www.bnu-datacenter.com/), and the University of Maryland Global Land Cover Facility (http://glcf.umd.edu). After briefly introducing the basic characteristics of GLASS products, we will present some applications on the long-term environmental changes detected from GLASS products at both global and local scales. Detailed analysis of regional hotspots, such as Greenland, Tibetan plateau, and northern China, will be emphasized, where environmental changes have been mainly associated with climate warming, drought, land-atmosphere interactions, and human activities.

  9. Primary production calculations for sea ice from bio-optical observations in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Susann Müller

    2016-09-01

    Full Text Available Abstract Bio-optics is a powerful approach for estimating photosynthesis rates, but has seldom been applied to sea ice, where measuring photosynthesis is a challenge. We measured absorption coefficients of chromophoric dissolved organic matter (CDOM, algae, and non-algal particles along with solar radiation, albedo and transmittance at four sea-ice stations in the Gulf of Finland, Baltic Sea. This unique compilation of optical and biological data for Baltic Sea ice was used to build a radiative transfer model describing the light field and the light absorption by algae in 1-cm increments. The maximum quantum yields and photoadaptation of photosynthesis were determined from 14C-incorporation in photosynthetic-irradiance experiments using melted ice. The quantum yields were applied to the radiative transfer model estimating the rate of photosynthesis based on incident solar irradiance measured at 1-min intervals. The calculated depth-integrated mean primary production was 5 mg C m–2 d–1 for the surface layer (0–20 cm ice depth at Station 3 (fast ice and 0.5 mg C m–2 d–1 for the bottom layer (20–57 cm ice depth. Additional calculations were performed for typical sea ice in the area in March using all ice types and a typical light spectrum, resulting in depth-integrated mean primary production rates of 34 and 5.6 mg C m–2 d–1 in surface ice and bottom ice, respectively. These calculated rates were compared to rates determined from 14C incorporation experiments with melted ice incubated in situ. The rate of the calculated photosynthesis and the rates measured in situ at Station 3 were lower than those calculated by the bio-optical algorithm for typical conditions in March in the Gulf of Finland by the bio-optical algorithm. Nevertheless, our study shows the applicability of bio-optics for estimating the photosynthesis of sea-ice algae.

  10. A winter dinoflagellate bloom drives high rates of primary production in a Patagonian fjord ecosystem

    Science.gov (United States)

    Montero, P.; Pérez-Santos, I.; Daneri, G.; Gutiérrez, M. H.; Igor, G.; Seguel, R.; Purdie, D.; Crawford, D. W.

    2017-12-01

    A dense winter bloom of the dinoflagellate Heterocapsa triquetra was observed at a fixed station (44°35.3‧S; 72°43.6‧W) in the Puyuhuapi Fjord in Chilean Patagonia during July 2015. H. triquetra dominated the phytoplankton community in the surface waters between 2 and 15 m (13-58 × 109 cell m-2), with abundances some 3 to 15 times higher than the total abundance of the diatom assemblage, which was dominated by Skeletonema spp. The high abundance of dinoflagellates was reflected in high rates of gross primary production (GPP; 0.6-1.6 g C m-2 d-1) and chlorophyll-a concentration (Chl-a; 70-199.2 mg m-2) that are comparable to levels reported in spring diatom blooms in similar Patagonian fjords. We identify the main forcing factors behind a pulse of organic matter production during the non-productive winter season, and test the hypothesis that low irradiance levels are a key factor limiting phytoplankton blooms and subsequent productivity during winter. Principal Component Analysis (PCA) indicated that GPP rates were significantly correlated (r = -0.8, p bloom. The bloom occurred under low surface irradiance levels characteristic of austral winter and was accompanied by strong northern winds, associated with the passage of a low-pressure system, and a water column dominated by double diffusive layering. To our knowledge, this is the first report of a dense dinoflagellate bloom during deep austral winter in a Patagonian fjord, and our data challenge the paradigm of light limitation as a factor controlling phytoplankton blooms in this region in winter.

  11. PROMOTION OF PRIMARY PRODUCTS - A VIEW FROM THE CLOISTER

    OpenAIRE

    Quilkey, John J.

    1986-01-01

    This paper is a discourse on how promotion may contribute to the efficiency of consumption. The view is taken that, through its addition to the quantity of search with respect to product characteristics, promotion may enable consumers to allocate their expenditures more efficiently and yield additional revenue to producers of the promoted product. The central plea is for consistency in the identification of promotion objectives, the implementation of the promotion program and monitoring of th...

  12. Global resistance and resilience of primary production following extreme drought are predicted by mean annual precipitation

    Science.gov (United States)

    Stuart-Haëntjens, E. J.; De Boeck, H. J.; Lemoine, N. P.; Gough, C. M.; Kröel-Dulay, G.; Mänd, P.; Jentsch, A.; Schmidt, I. K.; Bahn, M.; Lloret, F.; Kreyling, J.; Wohlgemuth, T.; Stampfli, A.; Anderegg, W.; Classen, A. T.; Smith, M. D.

    2017-12-01

    Extreme drought is increasing globally in frequency and intensity, with uncertain consequences for the resistance and resilience of key ecosystem functions, including primary production. Primary production resistance, the capacity of an ecosystem to withstand change in primary production following extreme climate, and resilience, the degree to which primary production recovers, vary among and within ecosystem types, obscuring global patterns of resistance and resilience to extreme drought. Past syntheses on resistance have focused climatic gradients or individual ecosystem types, without assessing interactions between the two. Theory and many empirical studies suggest that forest production is more resistant but less resilient than grassland production to extreme drought, though some empirical studies reveal that these trends are not universal. Here, we conducted a global meta-analysis of sixty-four grassland and forest sites, finding that primary production resistance to extreme drought is predicted by a common continuum of mean annual precipitation (MAP). However, grasslands and forests exhibit divergent production resilience relationships with MAP. We discuss the likely mechanisms underlying the mixed production resistance and resilience patterns of forests and grasslands, including different plant species turnover times and drought adaptive strategies. These findings demonstrate the primary production responses of forests and grasslands to extreme drought are mixed, with far-reaching implications for Earth System Models, ecosystem management, and future studies of extreme drought resistance and resilience.

  13. LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application

    Science.gov (United States)

    Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin

    2014-11-01

    The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product

  14. Physical control of primary productivity on a seasonal scale in ...

    Indian Academy of Sciences (India)

    amplitude of the seasonal signal is much higher than the inter-annual ... Spring inter-monsoon was characterised by light (< 4. m sА1) and ... due to increased insolation, combined with weak ... Nitrate in the surface layers was below detection.

  15. Estimation of Global Vegetation Productivity from Global LAnd Surface Satellite Data

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2018-02-01

    Full Text Available Accurately estimating vegetation productivity is important in research on terrestrial ecosystems, carbon cycles and climate change. Eight-day gross primary production (GPP and annual net primary production (NPP are contained in MODerate Resolution Imaging Spectroradiometer (MODIS products (MOD17, which are considered the first operational datasets for monitoring global vegetation productivity. However, the cloud-contaminated MODIS leaf area index (LAI and Fraction of Photosynthetically Active Radiation (FPAR retrievals may introduce some considerable errors to MODIS GPP and NPP products. In this paper, global eight-day GPP and eight-day NPP were first estimated based on Global LAnd Surface Satellite (GLASS LAI and FPAR products. Then, GPP and NPP estimates were validated by FLUXNET GPP data and BigFoot NPP data and were compared with MODIS GPP and NPP products. Compared with MODIS GPP, a time series showed that estimated GLASS GPP in our study was more temporally continuous and spatially complete with smoother trajectories. Validated with FLUXNET GPP and BigFoot NPP, we demonstrated that estimated GLASS GPP and NPP achieved higher precision for most vegetation types.

  16. Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.

    Science.gov (United States)

    Genkai-Kato, Motomi; Vadeboncoeur, Yvonne; Liboriussen, Lone; Jeppesen, Erik

    2012-03-01

    Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.

  17. Nitrogen and carbon limitation of planktonic primary production and phytoplankton–bacterioplankton coupling in ponds on the McMurdo Ice Shelf, Antarctica

    International Nuclear Information System (INIS)

    Sorrell, Brian K; Safi, Karl; Hawes, Ian

    2013-01-01

    We compared planktonic primary and secondary production across twenty meltwater ponds on the surface of the McMurdo Ice Shelf in January 2007, including some ponds with basal brines created by meromictic stratification. Primary production ranged from 1.07 to 65.72 mgC m −3 h −1 in surface waters. In stratified ponds primary production was always more than ten times higher in basal brines than in the corresponding mixolimnion. Regression tree analysis (r 2 = 0.80) identified inorganic nitrogen (as NH 4 + ) as the main factor limiting planktonic primary production. However, there was also evidence of inorganic carbon co-limitation of photosynthesis in some of the more oligotrophic waters. Neither C nor N limited carbon fixation at [NH 4 –N] > 50 mg m −3 , with photoinhibition the factor most likely limiting photosynthesis under such conditions. Primary production was the only factor significantly correlated to bacterial production and the relationship (r 2 = 0.56) was non-linear. Nitrogen limitation and tight coupling of planktonic primary and bacterial production is surprising in these ponds, as all have large pools of dissolved organic carbon (1.2–260 g m −3 ) and organic nitrogen (all >130 mg m −3 ). The dissolved pools of organic carbon and nitrogen appear to be recalcitrant and bacterial production to be constrained by limited release of labile organics from phytoplankton. (letter)

  18. Primary defect production by high energy displacement cascades in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Selby, Aaron P. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Xu, Donghua, E-mail: xudh@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Juslin, Niklas; Capps, Nathan A. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, P.O. Box 2008, MS6003, Oak Ridge, TN 37831 (United States)

    2013-06-15

    We report molecular dynamics simulations of primary damage in molybdenum produced by high energy displacement cascades on the femto- to pico-second and Angstrom to nanometer scales. Clustering directly occurred for both interstitials and vacancies in the 1–50 keV cascade energy range explored. Point defect survival efficiency and partitioning probabilities into different sized clusters were quantified. The results will provide an important reference for kinetic models to describe the microstructural evolution in Mo under ion or neutron irradiations over much longer time and length scales.

  19. GHG emissions from primary aluminum production in China: Regional disparity and policy implications

    International Nuclear Information System (INIS)

    Hao, Han; Geng, Yong; Hang, Wen

    2016-01-01

    Highlights: • GHG emissions from primary aluminum production in China were accounted. • The impact of regional disparity of power generation was considered for this study. • GHG emissions factor of China’s primary aluminum production was 16.5 t CO_2e/t Al ingot in 2013. • Total GHG emissions from China’s primary aluminum production were 421 mt CO_2e in 2013. - Abstract: China is the world-leading primary aluminum production country, which contributed to over half of global production in 2014. Primary aluminum production is power-intensive, for which power generation has substantial impact on overall Greenhouse Gas (GHG) emissions. In this study, we explore the impact of regional disparity of China’s power generation system on GHG emissions for the sector of primary aluminum production. Our analysis reveals that the national GHG emissions factor (GEF) of China’s primary aluminum production was 16.5 t CO_2e/t Al ingot in 2013, with province-level GEFs ranging from 8.2 to 21.7 t CO_2e/t Al ingot. There is a high coincidence of provinces with high aluminum productions and high GEFs. Total GHG emissions from China’s primary aluminum production were 421 mt CO_2e in 2013, approximately accounting for 4% of China’s total GHG emissions. Under the 2020 scenario, GEF shows a 13.2% reduction compared to the 2013 level, but total GHG emissions will increase to 551 mt CO_2e. Based on our analysis, we recommend that the government should further promote energy efficiency improvement, facilitate aluminum industry redistribution with low-carbon consideration, promote secondary aluminum production, and improve aluminum industry data reporting and disclosure.

  20. Eta products, BPS states and K3 surfaces

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang-Hui [Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); School of Physics, NanKai University,Tianjin, 300071 (China); Merton College, University of Oxford,Oxford, OX14JD (United Kingdom); McKay, John [Department of Mathematics and Statistics, Concordia University,1455 de Maisonneuve Blvd. West, Montreal, Quebec, H3G 1M8 (Canada)

    2014-01-22

    Inspired by the multiplicative nature of the Ramanujan modular discriminant, Δ, we consider physical realizations of certain multiplicative products over the Dedekind eta-function in two parallel directions: the generating function of BPS states in certain heterotic orbifolds and elliptic K3 surfaces associated to congruence subgroups of the modular group. We show that they are, after string duality to type II, the same K3 surfaces admitting Nikulin automorphisms. In due course, we will present identities arising from q-expansions as well as relations to the sporadic Mathieu group M{sub 24}.

  1. Sensible use of primary energy in organic greenhouse production

    NARCIS (Netherlands)

    Stanghellini, C.; Baptista, F.; Eriksson, Evert; Gilli, Celine; Giuffrida, F.; Kempkes, F.L.K.; Munoz, P.; Stepowska, Agnieszka; Montero, J.I.

    2016-01-01

    Review of the major sources for energy consumption in organic greenhouse horticulture and analyse of the options available to reduce energy consumption or, at least, increase the energy use efficiency of organic production in greenhouses. At the moment, the best way to match demand and availability

  2. Computing the Net Primary Productivity for a Savanna- Dominated ...

    African Journals Online (AJOL)

    komla

    2003-05-19

    May 19, 2003 ... productivity of CO2 (between 1–2% per year) continues, a doubling of the CO2 ... The work ... Numerous isotope mass balance equa-tions are proposed to ..... Terrestrial ecoregions of the world: a new map of life on earth.

  3. Sustainable Production of Asphalt using Biomass as Primary Process Fuel

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    is the heating and drying of aggregate,where natural gas, fuel oil or LPG is burned in a direct-fired rotary dryer. Replacing this energy source with amore sustainable one presents several technical and economic challenges, as high temperatures, short startuptimes and seasonal production variations are required...

  4. Products of tungstate ion interaction with primary aliphatic amines

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Sejfullina, I.I.; Purich, A.N.; Babinets, S.K.

    1982-01-01

    Using the methods of conductometric titration, IR-spectroscopic and thermographic analyses precipitates formed in the process of interaction of diluted aqueous solutions of sodium tungstate with alcoholic solutions of dodecyl-, tetradecyl- and octadecylamine have been studied. It is shown that as a result of interaction tungstates of corresponding amines are formed. The structure and thermal stability of singled out products are determined

  5. Interannual Variation in Phytoplankton Class-Specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2014-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. First we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms were the group that contributed the most to the total phytoplankton production (50, the equivalent of 20 PgC y-1. Coccolithophores and chlorophytes each contributed to 20 (7 PgC y-1 of the total primary production and cyanobacteria represented about 10 (4 PgC y(sub-1) of the total primary production. Primary production by diatoms was highest in high latitude (45) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4 (1-2 PgC y-1. We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nio Index, MEI) and regional climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p 0.05) between the MEI and the class-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatomscyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on the class-specific primary production in the Southern Ocean. These results provide a modeling and

  6. Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters

    Science.gov (United States)

    Robinson, C. M.; Cherukuru, N.; Hardman-Mountford, N. J.; Everett, J. D.; McLaughlin, M. J.; Davies, K. P.; Van Dongen-Vogels, V.; Ralph, P. J.; Doblin, M. A.

    2017-06-01

    The phytoplankton absorption coefficient (aPHY) has been suggested as a suitable alternate first order predictor of net primary productivity (NPP). We compiled a dataset of surface bio-optical properties and phytoplankton NPP measurements in coastal waters around Australia to examine the utility of an in-situ absorption model to estimate NPP. The magnitude of surface NPP (0.20-19.3 mmol C m-3 d-1) across sites was largely driven by phytoplankton biomass, with higher rates being attributed to the microplankton (>20 μm) size class. The phytoplankton absorption coefficient aPHY for PAR (photosynthetically active radiation; āPHY)) ranged from 0.003 to 0.073 m-1, influenced by changes in phytoplankton community composition, physiology and environmental conditions. The aPHY coefficient also reflected changes in NPP and the absorption model-derived NPP could explain 73% of the variability in measured surface NPP (n = 41; RMSE = 2.49). The absorption model was applied to two contrasting coastal locations to examine NPP dynamics: a high chlorophyll-high variation (HCHV; Port Hacking National Reference Station) and moderate chlorophyll-low variation (MCLV; Yongala National Reference Station) location in eastern Australia using the GIOP-DC satellite aPHY product. Mean daily NPP rates between 2003 and 2015 were higher at the HCHV site (1.71 ± 0.03 mmol C m-3 d-1) with the annual maximum NPP occurring during the austral winter. In contrast, the MCLV site annual NPP peak occurred during the austral wet season and had lower mean daily NPP (1.43 ± 0.03 mmol C m-3 d-1) across the time-series. An absorption-based model to estimate NPP is a promising approach for exploring the spatio-temporal dynamics in phytoplankton NPP around the Australian continental shelf.

  7. A model of regional primary production for use with coarse resolution satellite data

    Science.gov (United States)

    Prince, S. D.

    1991-01-01

    A model of crop primary production, which was originally developed to relate the amount of absorbed photosynthetically active radiation (APAR) to net production in field studies, is discussed in the context of coarse resolution regional remote sensing of primary production. The model depends on an approximately linear relationship between APAR and the normalized difference vegetation index. A more comprehensive form of the conventional model is shown to be necessary when different physiological types of plants or heterogeneous vegetation types occur within the study area. The predicted variable in the new model is total assimilation (net production plus respiration) rather than net production alone or harvest yield.

  8. Application of surface science to the study of the corrosion of PWR primary circuit materials

    International Nuclear Information System (INIS)

    Harris, S.J.

    1989-04-01

    This thesis describes a study of the corrosion and oxidation of PWR primary circuit materials using surface sensitive spectroscopic techniques. An X-ray photoemission spectroscopy (XPS) study of a number of mixed oxides of known composition is described and the information obtained is related to XPS measurements made on the surface of iron and nickel based alloys oxidised under controlled conditions. A secondary ion mass spectroscopy (SIMA) study on these mixed transition metal oxides is also described. The gaseous oxidation of stainless steel 3041 and Inconel-690 is examined. Both alloys were oxidised at 600K in air with the composition of the oxide films formed studied by a range of surface spectroscopic methods. Further experimental work was performed on Inconel-690 to examine the effects of surface pretreatment and the effects of low oxygen partial pressures on the formation of oxide films at 600 K. The incorporation of the radionuclide, cobalt-60, into the oxide films formed on structural components of a PWR, result in the build up of radiation fields. A method of pretreating the surface of the alloy stainless steel 3041, in order to reduce the level of cobalt adsorbed into the oxide film formed under simulated primary coolant conditions is examined and contrasts with treatments which have been developed to release cobalt adsorbed in existing oxide layers under reactor conditions are discussed. (author)

  9. Chlorophyll induced fluorescence retrieved from GOME2 for improving gross primary productivity estimates of vegetation

    Science.gov (United States)

    van Leth, Thomas C.; Verstraeten, Willem W.; Sanders, Abram F. J.

    2014-05-01

    Mapping terrestrial chlorophyll fluorescence is a crucial activity to obtain information on the functional status of vegetation and to improve estimates of light-use efficiency (LUE) and global primary productivity (GPP). GPP quantifies carbon fixation by plant ecosystems and is therefore an important parameter for budgeting terrestrial carbon cycles. Satellite remote sensing offers an excellent tool for investigating GPP in a spatially explicit fashion across different scales of observation. The GPP estimates, however, still remain largely uncertain due to biotic and abiotic factors that influence plant production. Sun-induced fluorescence has the ability to enhance our knowledge on how environmentally induced changes affect the LUE. This can be linked to optical derived remote sensing parameters thereby reducing the uncertainty in GPP estimates. Satellite measurements provide a relatively new perspective on global sun-induced fluorescence, enabling us to quantify spatial distributions and changes over time. Techniques have recently been developed to retrieve fluorescence emissions from hyperspectral satellite measurements. We use data from the Global Ozone Monitoring Instrument 2 (GOME2) to infer terrestrial fluorescence. The spectral signatures of three basic components atmospheric: absorption, surface reflectance, and fluorescence radiance are separated using reference measurements of non-fluorescent surfaces (desserts, deep oceans and ice) to solve for the atmospheric absorption. An empirically based principal component analysis (PCA) approach is applied similar to that of Joiner et al. (2013, ACP). Here we show our first global maps of the GOME2 retrievals of chlorophyll fluorescence. First results indicate fluorescence distributions that are similar with that obtained by GOSAT and GOME2 as reported by Joiner et al. (2013, ACP), although we find slightly higher values. In view of optimizing the fluorescence retrieval, we will show the effect of the references

  10. Interannual Variation in Phytoplankton Class-specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile; Gregg, Watson

    2014-01-01

    Phytoplankton is responsible for over half of the net primary production on earth. The knowledge on the contribution of various phytoplankton groups to the total primary production is still poorly understood. Data from satellite observations suggest that for upwelling regions, photosynthetic rates by microplankton is higher than that of nanoplankton but that when the spatial extent is considered, the production by nanoplankton is comparable or even larger than microplankton. Here, we used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. Globally, diatoms were the group that contributed the most to the total phytoplankton production (approx. 50%) followed by coccolithophores and chlorophytes. Primary production by diatoms was highest in high latitude (>45 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nino Index, MEI) and 'regional' climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  11. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    Science.gov (United States)

    Walker, Anthony P.; Carter, Kelsey R.; Gu, Lianhong; Hanson, Paul J.; Malhotra, Avni; Norby, Richard J.; Sebestyen, Stephen D.; Wullschleger, Stan D.; Weston, David J.

    2017-05-01

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPP in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. The model also suggested that variability in internal resistance to CO2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a "soil" layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum "canopy" properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).

  12. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments

    Czech Academy of Sciences Publication Activity Database

    Wilcox, K. R.; Shi, Z.; Gherardi, L. A.; Lemoine, N. P.; Koerner, S. E.; Hoover, D. L.; Bork, E.; Byrne, K. M.; Cahill, J.; Collins, S. L.; Evans, S.M.; Gilgen, Anna K.; Holub, Petr; Jiang, L.; Knapp, A. K.; LeCain, D.; Liang, J.; Garcia-Palacios, P.; Penuelas, J.; Pockman, W. T.; Smith, M. D.; Sun, S.; White, S. R.; Yahdjian, L.; Zhu, K.; Luo, Y.

    2017-01-01

    Roč. 23, č. 10 (2017), s. 4376-4385 ISSN 1354-1013 Institutional support: RVO:86652079 Keywords : net primary productivity * terrestrial ecosystems * temperate grassland * biomass allocation * plant-communities * tallgrass prairie * climate extremes * use efficiency * united-states * global-change * aboveground net primary productivity * belowground net primary productivity * biomass allocation * climate change * grasslands * meta-analysis * root biomass Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 8.502, year: 2016

  13. LIFE CYCLE OF THE PHARMACEUTICAL PRODUCT AND PRIMARY STRATEGIC GOALS

    Directory of Open Access Journals (Sweden)

    Cristina\tCIOT

    2015-12-01

    Full Text Available In addition to innovation, production at high standards, market and marketing policy, pharmaceutical companies need strategies that could cope with apparent contradictions, convergences and divergences, centralisation and involution, at the global and local level, focus and liberty, domestic production and external supply, ownership and alliances, networks and hierarchies, science or market orientation, all these being part of the essence of a profitable and expanding pharmaceutical company. Specialists appreciate that the 20 century will remain in the collective memory for its technological achievements, including a better understanding of the atomic structure, „information explosion” encouraged by the progress of the computer technology, the news from space exploration. If one wants to evaluate its importance in terms of impact on people’s lives, the 20 century could be called THE DRUG AREA. Many experts agree that, at the end of this century, pharmaceutical products would have a higher importance for our lives due to the special progress in neurobiology, immunology, molecular biology, cellular differentiation, cell membrane and genetic studies. In the pharmaceutical industry, important funds are directed towards research and development, while few understand and appreciate the contribution brought by the pharmaceutical marketing system and by the professionals in this field. These ones make the drug accessible at the right time and place, in the required quantity, at a reasonable price and with all the information required.

  14. Back-tracking of primary particle trajectories for muons detected at the Earth surface

    Science.gov (United States)

    Shutenko, V. V.

    2017-01-01

    Investigations of cosmic rays on the surface of the Earth allow to derive information of applied character on the conditions of the interplanetary magnetic field and of the geomagnetic field. For this purpose, it is necessary to collate trajectories of particles detected in the ground-based detector to trajectories of primary cosmic rays in the heliosphere. This problem is solved by means of various back-tracking methods. In this work, one of such methods is presented.

  15. Back-tracking of primary particle trajectories for muons detected at the Earth surface

    International Nuclear Information System (INIS)

    Shutenko, V V

    2017-01-01

    Investigations of cosmic rays on the surface of the Earth allow to derive information of applied character on the conditions of the interplanetary magnetic field and of the geomagnetic field. For this purpose, it is necessary to collate trajectories of particles detected in the ground-based detector to trajectories of primary cosmic rays in the heliosphere. This problem is solved by means of various back-tracking methods. In this work, one of such methods is presented. (paper)

  16. Primary Screening of 10 - Hydroxy - 2 - Decenoic Acid Productive Strains

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, eleven strains, which vere screened strictly from raw royal.jelly, soil and honeycomb etc. by means of dilution plate and spread plate methods, were cultured at 28°C for60 h with shaking. To determine whether they could yield 10-Hydroxy-2-decenoic acid during fermentation, gas chromatography and gas chromatography-mass spectrometry methods were used. The results showed that the strains BH002 and BH004. were both identified as Crvtococcaceae. where BH002 was primarily classified into Candida for possessing the abilities. The 10-HDA productivity of Candida BH002 and that of BH004 were 0.327% and 0.2648% respectively.

  17. Solubility of simulated PWR primary circuit corrosion products

    International Nuclear Information System (INIS)

    Kunig, R.H.; Sandler, Y.L.

    1986-08-01

    The solubility behavior of non-stoichiometric nickel ferrites, nickel-cobalt ferrites, and magnetite, as model substances for the corrosion products (''crud'') formed in nuclear pressurized water reactors, was studied in a flow system in aqueous solutions of lithium hydroxide, boric acid, and hydrogen with pH, temperature, and hydrogen concentrations as parameters. Below the temperature region of 300 to 330 0 C, at hydrogen concentrations of 25 to 40 cm 3 /kg H 2 O as used during reactor operation, the solubility of nickel-cobalt ferrite is the same as that of Ni and Co/sub x/Fe/sub 3-x/O 4 (x 3 /kg of hydrogen, the equilibrium iron and nickel solubilities increase congruently down to about 100 0 C, in a manner consistent with the solubility of Fe 3 O 4 , but sharply decline at lower temperatures, apparently due to formation of a borated layer. A cooldown experiment on a time scale of a typical Westinghouse reactor shutdown, as well as static experiments carried out on various ferrite samples at 60 0 C show that after addition of oxygen or peroxide evolution of nickel (and possibly cobalt) above the equilibrium solubility in hydrogen depends on the presence of dissociation products prior to oxidation. Thermodynamic calculations of various reduction and oxidative decomposition reactions for stoichiometric and non-stoichiometric nickel ferrite and cobalt ferrite are presented. Their significance to evolutions of nickel and cobalt on reactor shutdown is discussed. 30 refs., 38 figs., 34 tabs

  18. SALTS AND RADIATION PRODUCTS ON THE SURFACE OF EUROPA

    International Nuclear Information System (INIS)

    Brown, M. E.; Hand, K. P.

    2013-01-01

    The surface of Europa could contain the compositional imprint of an underlying interior ocean, but competing hypotheses differ over whether spectral observations from the Galileo spacecraft show the signature of ocean evaporates or simply surface radiation products unrelated to the interior. Using adaptive optics at the W. M. Keck Observatory, we have obtained spatially resolved spectra of most of the disk of Europa at a spectral resolution ∼40 times higher than seen by the Galileo spacecraft. These spectra show a previously undetected distinct signature of magnesium sulfate salts on Europa, but the magnesium sulfate is confined to the trailing hemisphere and spatially correlated with the presence of radiation products like sulfuric acid and SO 2 . On the leading, less irradiated, hemisphere, our observations rule out the presence of many of the proposed sulfate salts, but do show the presence of distorted water ice bands. Based on the association of the potential MgSO 4 detection on the trailing side with other radiation products, we conclude that MgSO 4 is also a radiation product, rather than a constituent of a Europa ocean brine. Based on ocean chemistry models, we hypothesize that, prior to irradiation, magnesium is primarily in the form of MgCl 2 , and we predict that NaCl and KCl are even more abundant, and, in fact, dominate the non-ice component of the leading hemisphere. We propose observational tests of this new hypothesis.

  19. SALTS AND RADIATION PRODUCTS ON THE SURFACE OF EUROPA

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M. E. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Hand, K. P., E-mail: mbrown@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2013-04-15

    The surface of Europa could contain the compositional imprint of an underlying interior ocean, but competing hypotheses differ over whether spectral observations from the Galileo spacecraft show the signature of ocean evaporates or simply surface radiation products unrelated to the interior. Using adaptive optics at the W. M. Keck Observatory, we have obtained spatially resolved spectra of most of the disk of Europa at a spectral resolution {approx}40 times higher than seen by the Galileo spacecraft. These spectra show a previously undetected distinct signature of magnesium sulfate salts on Europa, but the magnesium sulfate is confined to the trailing hemisphere and spatially correlated with the presence of radiation products like sulfuric acid and SO{sub 2}. On the leading, less irradiated, hemisphere, our observations rule out the presence of many of the proposed sulfate salts, but do show the presence of distorted water ice bands. Based on the association of the potential MgSO{sub 4} detection on the trailing side with other radiation products, we conclude that MgSO{sub 4} is also a radiation product, rather than a constituent of a Europa ocean brine. Based on ocean chemistry models, we hypothesize that, prior to irradiation, magnesium is primarily in the form of MgCl{sub 2}, and we predict that NaCl and KCl are even more abundant, and, in fact, dominate the non-ice component of the leading hemisphere. We propose observational tests of this new hypothesis.

  20. Primary production measurements at three reservoirs in the state of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Jureidini, P.; Chinez, S.J.; Agudo, E.G.

    1983-01-01

    Primary production measurements were carried out at three reservoirs in the state of Sao Paulo, Barra Bonita, Paiva Castro and Ponte nova using the 14 C technique. Meanwhile, several physical and chemical parameters of these water were also evaluated, in order to find out the limnological conditions of these reservoirs. Primary production rates ranged from 7,6mg C/m 3 d at Ponte Nova, to 247,2mg C/m 3 d at Barra Bonita. There seems to be god correlation between water quality data and primary production measurements. Regarding the results, it may be stated that the Barra Bonita reservoir has reached the eutrophic level, while the other two exibit mesotrophic levels. As a way of testing the water quality data collected was used in Churchill and Nicholas model, issuing results in agreement with those of the primary production measurements. (Author) [pt

  1. HANPP Collection: Global Patterns in Human Appropriation of Net Primary Productivity (HANPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  2. Safety assessment of smoke flavouring primary products by the European Food Safety Authority

    NARCIS (Netherlands)

    Theobald, A.; Arcella, D.; Carere, A.; Croera, C.; Engel, K.H.; Gott, D.; Gurtler, R.; Meier, D.; Pratt, I.; Rietjens, I.M.C.M.; Simon, R.; Walker, R.

    2012-01-01

    This paper summarises the safety assessments of eleven smoke flavouring primary products evaluated by the European Food Safety Authority (EFSA). Data on chemical composition, content of polyaromatic hydrocarbons and results of genotoxicity tests and subchronic toxicity studies are presented and

  3. NODC Standard Format Primary Productivity 1 (F029) Data (1958-1983) (NODC Accession 0014152)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains data from measurements of primary productivity. The data are collected to provide information on nutrient levels and nutrient flow in offshore...

  4. Recent Primary Production and Small Phytoplankton Contribution in the Yellow Sea during the Summer in 2016

    Science.gov (United States)

    Jang, Hyo Keun; Kang, Jae Jung; Lee, Jae Hyung; Kim, Myungjoon; Ahn, So Hyun; Jeong, Jin-Yong; Yun, Mi Sun; Han, In-Seong; Lee, Sang Heon

    2018-05-01

    The high nutrient concentration associated with the mixing dynamics of two warm and cold water masses supports high primary production in the Yellow Sea. Although various environmental changes have been reported, no recent information on small phytoplankton contribution to the total primary production as an important indicator for marine ecosystem changes is currently available in the Yellow Sea. The major objective of this study is to determine the small (values decades ago. The higher contributions of small phytoplankton to the total chlorophyll a concentration and primary production might be caused by P-limited conditions and this resulted in lower chlorophyll a concentration and total primary production in this study compared to previous studies.

  5. Primary productivity in the Karwar Bay, Karnataka, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, U.G.; Naik, R.K.; Nayak, V.N.

    The measurement of primary production is of great importance because of its significance to the problems of aquatic ecology and fishery management. The interaction of light intensity, temperature and nutrient levels determines the photosynthetic...

  6. Remote sensing of oceanic primary production: Computations using a spectral model

    Digital Repository Service at National Institute of Oceanography (India)

    Sathyendranath, S.; Platt, T.; Caverhill, C.M.; Warnock, R.E.; Lewis, M.R.

    A spectral model of underwater irradiance is coupled with a spectral version of the photosynthesis-light relationship to compute oceanic primary production. The results are shown to be significantly different from those obtained using...

  7. Phytoplankton pigments and primary production around the oil fields off Maharashtra

    Digital Repository Service at National Institute of Oceanography (India)

    JiyalalRam, M.J.; Ramaiah, Neelam; Mehta, P.; Krishnakumari, L.; Nair, V.R.

    Studies on phytoplankton pigments, primary productivity and particulate organic carbon were made at 21 locations off Bombay (Maharashtra, India) and adjacent waters during the 48th cruise of @iORV Sagar Kanya@@ in December 1988 to January 1989...

  8. Primary productivity of marine macrophytes in the coral reef lagoon of the Kadmat Island, Lakshadweep

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Shaikh, N.

    n situ primary productivity measurements were carried out with different macrophyte species (belonging to four groups) dominating the benthic communities in the coral reef lagoon of the Kadmat Island of the Lakshadweep Archipelago...

  9. The Faroe shelf circulation and its potential impact on the primary production

    Science.gov (United States)

    Rasmussen, Till A. S.; Olsen, Steffen M.; Hansen, Bogi; Hátún, Hjálmar; Larsen, Karin M. H.

    2014-10-01

    The ecosystem on the Faroe shelf has been shown to be tightly controlled by the primary production. It has been suggested that the primary production is governed by the physical processes controlling this water mass. The objective of this study is to identify the physical control mechanisms that control this water mass, link these to the interannual variability of the chlorophyll content on the Faroe shelf and through this discuss the influence on the primary production. In order to achieve this, a 10 year hindcast (2000-2009) with a regional ocean circulation model has been set up for the focus area. Results are compared with measurements on the Faroe shelf. The model reproduces the clockwise residual circulation around the Faroe Islands. The vertical velocity profile is validated using observations at a location west of the Islands. Observations show a logarithmic profile in the entire water column indicating a fully developed boundary layer. The modeled profile matches the observations in the bottom part of the water column, however the thickness of the bottom boundary layer is underestimated, which results in a constant profile in the upper part of the water column. As a consequence, the modeled velocity in the upper part of the water column is up to 20% lower than the observed velocity. The direction of the modeled velocity profile compares well with observations. The model realistically forms the partly isolated unique shelf water mass. Years with anomalously early and persistent modeled spring stratification correspond with years with a high on-shelf chlorophyll concentration. An integration of the exchange across the 120 m isobath shows intense water mass exchange across this depth contour. The major part of this includes tidal shifting of the front between on-shelf and off-shelf waters and is associated with little effective water mass exchange. The result is a shelf water mass that is relatively isolated. The modeled net exchange is constituted by an on

  10. Corrosion products behaviour under VVER primary coolant conditions

    International Nuclear Information System (INIS)

    Grygar, T.; Zmitko, M.

    2002-01-01

    The aim of this work was to collect data on thermodynamic stability of Cr, Fe, and Ni oxides, mechanisms of hydrothermal corrosion of stainless steels and to compare the real observation with the theory. We found that the electrochemical potential and pH in PWR and VVER are close to the thermodynamic boundary between two fields of stable spinel type oxides. The ways of degradation of the passivating layers due to changes in water chemistry were considered and PWR and VVER systems were found to be potentially endangered by reductive attack. In certain VVER systems the characteristics of the passivating layer on steels and also concentration of soluble corrosion products seem to be in contradiction with the theoretical expectations. (author)

  11. NOx from cement production - reduction by primary measures

    DEFF Research Database (Denmark)

    Jensen, Lars Skaarup

    1999-01-01

    cement production processes cement is typically produced by thermally treating a mixture of limestone and clay minerals in kiln systems consisting of a rotary kiln and a calciner. Clinker burning at a temperature of about 1450 °C takes place in the internally fired rotary kiln and calcination, which...... rotary kilns, while NOx formation from fuel-N and reduction of NOx take place in calciners. NOx formation in the rotary kiln is mainly governed by the necessary clinker burning temperature and is not very amenable to control, while net NOx formation in calciners depends strongly on calciner design......, calciner operation, fuel properties and on the NOx level from the rotary kiln. The low-NOx calciner types presently marketed are based on combinations of reburning, air staging and temperature control and seem equivalent in their ability to restrict NOx formation. If fuels with a significant volatile...

  12. Upscaling Ameriflux observations to assess drought impacts on gross primary productivity across the Southwest

    Science.gov (United States)

    Barnes, M.; Moore, D. J.; Scott, R. L.; MacBean, N.; Ponce-Campos, G. E.; Breshears, D. D.

    2017-12-01

    Both satellite observations and eddy covariance estimates provide crucial information about the Earth's carbon, water and energy cycles. Continuous measurements from flux towers facilitate exploration of the exchange of carbon dioxide, water and energy between the land surface and the atmosphere at fine temporal and spatial scales, while satellite observations can fill in the large spatial gaps of in-situ measurements and provide long-term temporal continuity. The Southwest (Southwest United States and Northwest Mexico) and other semi-arid regions represent a key uncertainty in interannual variability in carbon uptake. Comparisons of existing global upscaled gross primary production (GPP) products with flux tower data at sites across the Southwest show widespread mischaracterization of seasonality in vegetation carbon uptake, resulting in large (up to 200%) errors in annual carbon uptake estimates. Here, remotely sensed and distributed meteorological inputs are used to upscale GPP estimates from 25 Ameriflux towers across the Southwest to the regional scale using a machine learning approach. Our random forest model incorporates two novel features that improve the spatial and temporal variability in GPP. First, we incorporate a multi-scalar drought index at multiple timescales to account for differential seasonality between ecosystem types. Second, our machine learning algorithm was trained on twenty five ecologically diverse sites to optimize both the monthly variability in and the seasonal cycle of GPP. The product and its components will be used to examine drought impacts on terrestrial carbon cycling across the Southwest including the effects of drought seasonality and on carbon uptake. Our spatially and temporally continuous upscaled GPP product drawing from both ground and satellite data over the Southwest region helps us understand linkages between the carbon and water cycles in semi-arid ecosystems and informs predictions of vegetation response to future

  13. Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise

    Directory of Open Access Journals (Sweden)

    S. Bonnet

    2008-02-01

    Full Text Available Iron is an essential nutrient involved in a variety of biological processes in the ocean, including photosynthesis, respiration and dinitrogen fixation. Atmospheric deposition of aerosols is recognized as the main source of iron for the surface ocean. In high nutrient, low chlorophyll areas, it is now clearly established that iron limits phytoplankton productivity but its biogeochemical role in low nutrient, low chlorophyll environments has been poorly studied. We investigated this question in the unexplored southeast Pacific, arguably the most oligotrophic area of the global ocean. Situated far from any continental aerosol source, the atmospheric iron flux to this province is amongst the lowest of the world ocean. Here we report that, despite low dissolved iron concentrations (~0.1 nmol l−1 across the whole gyre (3 stations located in the center and at the western and the eastern edges, primary productivity are only limited by iron availability at the border of the gyre, but not in the center. The seasonal stability of the gyre has apparently allowed for the development of populations acclimated to these extreme oligotrophic conditions. Moreover, despite clear evidence of nitrogen limitation in the central gyre, we were unable to measure dinitrogen fixation in our experiments, even after iron and/or phosphate additions, and cyanobacterial nif H gene abundances were extremely low compared to the North Pacific Gyre. The South Pacific gyre is therefore unique with respect to the physiological status of its phytoplankton populations.

  14. Theoretical approach to description of some corrosion product transport processes in PWRs primary circuit

    International Nuclear Information System (INIS)

    Zmitko, M.

    1990-10-01

    The behavior and mass transport of corrosion products in primary circuits of PWR type reactors are described assuming that the products occur in ionic form, in colloidal form (about 0.01-0.6 μm in size) and in particulate form. The transport of the soluble form is treated as a diffusion process. For the colloidal form, allowance is made for its Van der Waals attraction and repulsion interaction with the surfaces. For particles and their agglomerates, the hydrodynamical effects of the flowing liquid on the agglomerate breakdown and re-formation of the particle suspension are taken into account. Efforts were made to employ theoretical relations rather than particular experimental data, for the conclusions to be applicable to different facilities. It is believed that the complex approach to the problem can contribute to gaining insight into the role of the individual factors and processes involved, particularly as regards colloidal particles whose effect on the formation of radiation fields is not yet fully understood. (author). 3 figs., 10 refs

  15. Methylmercury bioaccumulation in stream food webs declines with increasing primary production

    Science.gov (United States)

    Walters, David; D.F. Raikow,; C.R. Hammerschmidt,; M.G. Mehling,; A. Kovach,; J.T. Oris,

    2015-01-01

    Opposing hypotheses posit that increasing primary productivity should result in either greater or lesser contaminant accumulation in stream food webs. We conducted an experiment to evaluate primary productivity effects on MeHg accumulation in stream consumers. We varied light for 16 artificial streams creating a productivity gradient (oxygen production =0.048–0.71 mg O2 L–1 d–1) among streams. Two-level food webs were established consisting of phytoplankton/filter feeding clam, periphyton/grazing snail, and leaves/shredding amphipod (Hyalella azteca). Phytoplankton and periphyton biomass, along with MeHg removal from the water column, increased significantly with productivity, but MeHg concentrations in these primary producers declined. Methylmercury concentrations in clams and snails also declined with productivity, and consumer concentrations were strongly correlated with MeHg concentrations in primary producers. Heterotroph biomass on leaves, MeHg in leaves, and MeHg in Hyalella were unrelated to stream productivity. Our results support the hypothesis that contaminant bioaccumulation declines with stream primary production via the mechanism of bloom dilution (MeHg burden per cell decreases in algal blooms), extending patterns of contaminant accumulation documented in lakes to lotic systems.

  16. Nanocrystalline diamond surfaces for adhesion and growth of primary neurons, conflicting results and rational explanation

    Directory of Open Access Journals (Sweden)

    Silviya Mikhailovna Ojovan

    2014-06-01

    Full Text Available Using a variety of proliferating cell types, it was shown that the surface of nanocrystalline-diamond (NCD provides a permissive substrate for cell adhesion and development without the need of complex chemical functionalization prior to cell seeding. In an extensive series of experiments we found that, unlike proliferating cells, post-mitotic primary neurons do not adhere to bare NCD surfaces when cultured in defined medium. These observations raise questions on the potential use of bare NCD as an interfacing layer for neuronal devices. Nevertheless, we also found that classical chemical functionalization methods render the hostile bare NCD surfaces with adhesive properties that match those of classically functionalized substrates used extensively in biomedical research and applications. Based on the results, we propose a mechanism that accounts for the conflicting results; which on one hand claim that un-functionalized NCD provides a permissive substrate for cell adhesion and growth, while other reports demonstrate the opposite.

  17. Effect of surface stress state on dissolution property of Alloy 690 in simulated primary water condition

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Shim, Hee-Sang; Lee, Eun Hee; Seo, Myung Ji; Han, Jung Ho; Hur, Do Haeng

    2014-01-01

    The dissolution control of nickel is important to reduce the radioactive dose rate and deterioration of fuel performance in the operation of nuclear power plants (PWR). The corrosion properties are affected by the metal surface residual stress introduced in manufacture process such as work hardening. This work studied the effect of surface modification on the release rate of Alloy 690, nickel-base alloy for a steam generator tube, in the test condition of simulated primary water chemistry in PWRs. The surface stress modification was applied by the electro-polishing and shot peening method. Shot peening process was applied using ceramic beads with different intensities through the variation of air pressure. The corrosion release tests performed at 330degC with LiOH 2 ppm and H 3 BO 4 1200 ppm, DH(dissolved hydrogen) 35 cc/kg (STP) and about 20 ppb of DO(dissolved oxygen) condition. The corrosion release rate was evaluated by a gravimetric analysis method and the surface analysed by SEM and optical microscope. The surface residual stress was measured by an X-ray diffractometer, and the distribution of stress state was evaluated by a micro-hardness tester. The metal ion release rate of alloy 690 was evaluated from the influence of the stress state on the metal surface. The oxide property and structure was affected by the residual stress in the oxide layer. (author)

  18. Advances in the production of freeform optical surfaces

    Science.gov (United States)

    Tohme, Yazid E.; Luniya, Suneet S.

    2007-05-01

    Recent market demands for free-form optics have challenged the industry to find new methods and techniques to manufacture free-form optical surfaces with a high level of accuracy and reliability. Production techniques are becoming a mix of multi-axis single point diamond machining centers or deterministic ultra precision grinding centers coupled with capable measurement systems to accomplish the task. It has been determined that a complex software tool is required to seamlessly integrate all aspects of the manufacturing process chain. Advances in computational power and improved performance of computer controlled precision machinery have driven the use of such software programs to measure, visualize, analyze, produce and re-validate the 3D free-form design thus making the process of manufacturing such complex surfaces a viable task. Consolidation of the entire production cycle in a comprehensive software tool that can interact with all systems in design, production and measurement phase will enable manufacturers to solve these complex challenges providing improved product quality, simplified processes, and enhanced performance. The work being presented describes the latest advancements in developing such software package for the entire fabrication process chain for aspheric and free-form shapes. It applies a rational B-spline based kernel to transform an optical design in the form of parametrical definition (optical equation), standard CAD format, or a cloud of points to a central format that drives the simulation. This software tool creates a closed loop for the fabrication process chain. It integrates surface analysis and compensation, tool path generation, and measurement analysis in one package.

  19. The impact of global warming on seasonality of ocean primary production

    Directory of Open Access Journals (Sweden)

    S. Henson

    2013-06-01

    Full Text Available The seasonal cycle (i.e. phenology of oceanic primary production (PP is expected to change in response to climate warming. Here, we use output from 6 global biogeochemical models to examine the response in the seasonal amplitude of PP and timing of peak PP to the IPCC AR5 warming scenario. We also investigate whether trends in PP phenology may be more rapidly detectable than trends in annual mean PP. The seasonal amplitude of PP decreases by an average of 1–2% per year by 2100 in most biomes, with the exception of the Arctic which sees an increase of ~1% per year. This is accompanied by an advance in the timing of peak PP by ~0.5–1 months by 2100 over much of the globe, and particularly pronounced in the Arctic. These changes are driven by an increase in seasonal amplitude of sea surface temperature (where the maxima get hotter faster than the minima and a decrease in the seasonal amplitude of the mixed layer depth and surface nitrate concentration. Our results indicate a transformation of currently strongly seasonal (bloom forming regions, typically found at high latitudes, into weakly seasonal (non-bloom regions, characteristic of contemporary subtropical conditions. On average, 36 yr of data are needed to detect a climate-change-driven trend in the seasonal amplitude of PP, compared to 32 yr for mean annual PP. Monthly resolution model output is found to be inadequate for resolving phenological changes. We conclude that analysis of phytoplankton seasonality is not necessarily a shortcut to detecting climate change impacts on ocean productivity.

  20. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates

    Science.gov (United States)

    Hill, Victoria J.; Matrai, Patricia A.; Olson, Elise; Suttles, S.; Steele, Mike; Codispoti, L. A.; Zimmerman, Richard C.

    2013-03-01

    Recent warming of surface waters, accompanied by reduced ice thickness and extent may have significant consequences for climate-driven changes of primary production (PP) in the Arctic Ocean (AO). However, it has been difficult to obtain a robust benchmark estimate of pan-Arctic PP necessary for evaluating change. This paper provides an estimate of pan-Arctic PP prior to significant warming from a synthetic analysis of the ARCSS-PP database of in situ measurements collected from 1954 to 2007 and estimates derived from satellite-based observations from 1998 to 2007. Vertical profiles of in situ chlorophyll a (Chl a) and PP revealed persistent subsurface peaks in biomass and PP throughout the AO during most of the summer period. This was contradictory with the commonly assumed exponential decrease in PP with depth on which prior satellite-derived estimates were based. As remotely sensed Chl a was not a good predictor of integrated water column Chl a, accurate satellite-based modeling of vertically integrated primary production (IPPsat), requires knowledge of the subsurface distribution of phytoplankton, coincident with the remotely sensed ocean color measurements. We developed an alternative approach to modeling PP from satellite observations by incorporating climatological information on the depths of the euphotic zone and the mixed layer that control the distribution of phytoplankton that significantly improved the fidelity of satellite derived PP to in situ observations. The annual IPP of the Arctic Ocean combining both in situ and satellite based estimates was calculated here to be a minimum of 466 ± 94 Tg C yr-1 and a maximum of 993 ± 94 Tg C yr-1, when corrected for subsurface production. Inflow shelf seas account for 75% of annual IPP, while the central basin and Beaufort northern sea were the regions with the lowest annual integrated productivity, due to persistently stratified, oligotrophic and ice-covered conditions. Although the expansion of summertime

  2. Stainless Steel Foil with Improved Creep-Resistance for Use in Primary Surface Recuperators for Gas Turbine Engines

    International Nuclear Information System (INIS)

    Browning, P.F.; Fitzpatrick, M.; Grubb, J.F.; Klug, R.C.; Maziasz, P.J.; Montague, J.P.; Painter, R.A.; Swindeman, R.W.

    1998-01-01

    Primary surface recuperators (PSRs) are compact heat-exchangers made from thin-foil type 347 austenitic stainless steel, which boost the efficiency of land-based gas turbine engines. Solar Turbines uses foil folded into a unique corrugated pattern to maximize the primary surface area for efficient heat transfer between hot exhaust gas on one side, and the compressor discharge air on the other side of the foil. Allegheny-Ludlum produces 0.003 - 0.0035 in. thick foil for a range of current turbine engines using PSRs that operate at up to 660 degrees C. Laboratory-scale processing modification experiments recently have demonstrated that dramatic improvements can be achieved in the creep resistance of such typical 347 stainless steel foils. The modified processing enables fine NbC carbide precipitates to develop during creep at 650-700 degrees C, which provides strength even with a fine grain size. Such improved creep-resistance is necessary for advanced turbine systems that will demand greater materials performance and reliability at higher operating conditions. The next challenges are to better understand the nature of the improved creep resistance in these 347 stainless steel foil, and to achieve similar improvements with scale-up to commercial foil production

  3. Preclinical trial of a novel surface architecture for improved primary fixation of cementless orthopaedic implants.

    Science.gov (United States)

    Harrison, Noel; Field, John R; Quondamatteo, Fabio; Curtin, William; McHugh, Peter E; Mc Donnell, Pat

    2014-09-01

    A new surface architecture for cementless orthopaedic implants (OsteoAnchor), which incorporates a multitude of tiny anchor features for enhancing primary fixation, was tested in an ovine hemi-arthroplasty pilot study. Test animals were implanted with a hip stem component incorporating the OsteoAnchor surface architecture produced using additive layer manufacturing and control animals were implanted with stems containing a standard plasma sprayed titanium coating. Intra-operative surgeon feedback indicated that superior primary fixation was achieved for the OsteoAnchor stems and rapid return to normal gait and load bearing was observed post-operation. Following a 16-week recovery time, histological evaluation of the excised femurs revealed in-growth of healthy bone into the porous structure of the OsteoAnchor stems. Bone in-growth was not achieved for the plasma sprayed stems. These results indicate the potential for the OsteoAnchor surface architecture to enhance both the initial stability and long term lifetime of cementless orthopaedic implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Primary Criteria for Near Surface Disposal Facility in Egypt Proposal approach

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2013-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media to protect human health and environment from the harmful effect of the ionizing radiation. The required degree of isolation can be obtained by implementing various disposal methods, of which near surface disposal represents an option commonly used and demonstrated in several countries. Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. The primary goal of the sitting process is to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  5. Endangered Right Whales Enhance Primary Productivity in the Bay of Fundy.

    Directory of Open Access Journals (Sweden)

    Joe Roman

    Full Text Available Marine mammals have recently been documented as important facilitators of rapid and efficient nutrient recycling in coastal and offshore waters. Whales enhance phytoplankton nutrition by releasing fecal plumes near the surface after feeding and by migrating from highly productive, high-latitude feeding areas to low-latitude nutrient-poor calving areas. In this study, we measured NH4+ and PO43- release rates from the feces of North Atlantic right whales (Eubalaena glacialis, a highly endangered baleen whale. Samples for this species were primarily collected by locating aggregations of whales in surface-active groups (SAGs, which typically consist of a central female surrounded by males competing for sexual activity. When freshly collected feces were incubated in seawater, high initial rates of N release were generally observed, which decreased to near zero within 24 hours of sampling, a pattern that is consistent with the active role of gut microflora on fecal particles. We estimate that at least 10% of particulate N in whale feces becomes available as NH4+ within 24 hours of defecation. Phosphorous was also abundant in fecal samples: initial release rates of PO43- were higher than for NH4+, yielding low N/P nutrient ratios over the course of our experiments. The rate of PO43- release was thus more than sufficient to preclude the possibility that nitrogenous nutrients supplied by whales would lead to phytoplankton production limited by P availability. Phytoplankton growth experiments indicated that NH4+ released from whale feces enhance productivity, as would be expected, with no evidence that fecal metabolites suppress growth. Although North Atlantic right whales are currently rare (approximately 450 individuals, they once numbered about 14,000 and likely played a substantial role in recycling nutrients in areas where they gathered to feed and mate. Even though the NH4+ released from fresh whale fecal material is a small fraction of total whale

  6. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    Science.gov (United States)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  7. Estimation of livestock appropriation of net primary productivity in Texas Drylands

    Science.gov (United States)

    Robert Washington-Allen; Jody Fitzgerald; Stephanie Grounds; Faisar Jihadi; John Kretzschmar; Kathryn Ramirez; John Mitchell

    2009-01-01

    The ecological state of US Drylands is unknown. This research is developing procedures to determine the impact of the ecological footprint of grazing livestock on the productive capacity of US Drylands. A pilot geodatabase was developed for the state of Texas that includes 2002 data for county boundaries, net primary productivity (NPP) derived from the Moderate...

  8. Patterns of new versus recycled primary production in the terrestrial biosphere

    Science.gov (United States)

    Nitrogen (N) and phosphorus (P) availability regulate plant productivity throughout the terrestrial biosphere, influencing the patterns and magnitude of net primary production (NPP) by land plants both now and into the future. These nutrients enter ecosystems via geologic and atmospheric pathways, a...

  9. PRIMARY PRODUCTION OF SEAGRASS BEDS IN SOUTH SULAWESI (INDONESIA) - A COMPARISON OF HABITATS, METHODS AND SPECIES

    NARCIS (Netherlands)

    ERFTEMEIJER, PLA; OSINGA, R; MARS, AE

    Primary production of tropical seagrass meadows was studied between April and August 1990 in South Sulawesi, Indonesia. Oxygen evolution studies in enclosures over seagrass vegetation revealed gross community production values between 900 and 4400 mg C m-2 day-1. Assumed community respiration ranged

  10. Extensive validation of CM SAF surface radiation products over Europe.

    Science.gov (United States)

    Urraca, Ruben; Gracia-Amillo, Ana M; Koubli, Elena; Huld, Thomas; Trentmann, Jörg; Riihelä, Aku; Lindfors, Anders V; Palmer, Diane; Gottschalg, Ralph; Antonanzas-Torres, Fernando

    2017-09-15

    This work presents a validation of three satellite-based radiation products over an extensive network of 313 pyranometers across Europe, from 2005 to 2015. The products used have been developed by the Satellite Application Facility on Climate Monitoring (CM SAF) and are one geostationary climate dataset (SARAH-JRC), one polar-orbiting climate dataset (CLARA-A2) and one geostationary operational product. Further, the ERA-Interim reanalysis is also included in the comparison. The main objective is to determine the quality level of the daily means of CM SAF datasets, identifying their limitations, as well as analyzing the different factors that can interfere in the adequate validation of the products. The quality of the pyranometer was the most critical source of uncertainty identified. In this respect, the use of records from Second Class pyranometers and silicon-based photodiodes increased the absolute error and the bias, as well as the dispersion of both metrics, preventing an adequate validation of the daily means. The best spatial estimates for the three datasets were obtained in Central Europe with a Mean Absolute Deviation (MAD) within 8-13 W/m 2 , whereas the MAD always increased at high-latitudes, snow-covered surfaces, high mountain ranges and coastal areas. Overall, the SARAH-JRC's accuracy was demonstrated over a dense network of stations making it the most consistent dataset for climate monitoring applications. The operational dataset was comparable to SARAH-JRC in Central Europe, but lacked of the temporal stability of climate datasets, while CLARA-A2 did not achieve the same level of accuracy despite predictions obtained showed high uniformity with a small negative bias. The ERA-Interim reanalysis shows the by-far largest deviations from the surface reference measurements.

  11. Changes in water chemistry and primary productivity of a reactor cooling reservoir (Par Pond)

    International Nuclear Information System (INIS)

    Tilly, L.J.

    1975-01-01

    Water chemistry and primary productivity of a reactor cooling reservoir have been studied for 8 years. Initially the primary productivity increased sixfold, and the dissolved solids doubled. The dissolved-solids increase appears to have been caused by additions of makeup water from the Savannah River and by evaporative concentration during the cooling process. As the dissolved-solids concentrations and the conductivity of makeup water leveled off, the primary productivity stabilized. Major cation and anion concentrations generally followed total dissolved solids through the increase and plateau; however, silica concentrations declined steadily during the initial period of increased plankton productivity. Standing crops of net seston and centrifuge seston did not increase during this initial period. The collective data show the effects of thermal input to a cooling reservoir, illustrate the need for limnological studies before reactor siting, and suggest the possibility of using makeup-water additions to power reactor cooling basins as a reservoir management tool

  12. Recruitment and condition of juvenile sandeel on the Faroe shelf in relation to primary production

    DEFF Research Database (Denmark)

    Eliasen, Kirstin; Reinert, Jákup; Gaard, Eilif

    The food of early-life sandeel is dominated by zooplankton, which again depends on primary production. On the Faroe Shelf, measurements of accumulated new primary production and chlorophyll a during spring and summer have been carried out since 1990 and 1997, respectively. Large inter...... availability. We compare the time series from the sandeel 0-group surveys with data on phytoplankton production and biomass. The results confirm that survival and condition of the early-life stages of sandeel on the Faroe Shelf is dependent on the magnitude of the primary production. Although the sandeel......-annual variations in the onset of the spring bloom and its intensity have been observed. Since 1974 juvenile sandeels have been sampled annually on the Faroe shelf. These results also show large variations – both in number and in average length. Here, we investigate the variations in recruitment in relation to food...

  13. Characterization and assessment of dermal and inhalable nickel exposures in nickel production and primary user industries.

    Science.gov (United States)

    Hughson, G W; Galea, K S; Heim, K E

    2010-01-01

    The aim of this study was to measure the levels of nickel in the skin contaminant layer of workers involved in specific processes and tasks within the primary nickel production and primary nickel user industries. Dermal exposure samples were collected using moist wipes to recover surface contamination from defined areas of skin. These were analysed for soluble and insoluble nickel species. Personal samples of inhalable dust were also collected to determine the corresponding inhalable nickel exposures. The air samples were analysed for total inhalable dust and then for soluble, sulfidic, metallic, and oxidic nickel species. The workplace surveys were carried out in five different workplaces, including three nickel refineries, a stainless steel plant, and a powder metallurgy plant, all of which were located in Europe. Nickel refinery workers involved with electrolytic nickel recovery processes had soluble dermal nickel exposure of 0.34 microg cm(-2) [geometric mean (GM)] to the hands and forearms. The GM of soluble dermal nickel exposure for workers involved in packing nickel salts (nickel chloride hexahydrate, nickel sulphate hexahydrate, and nickel hydroxycarbonate) was 0.61 microg cm(-2). Refinery workers involved in packing nickel metal powders and end-user powder operatives in magnet production had the highest dermal exposure (GM = 2.59 microg cm(-2) soluble nickel). The hands, forearms, face, and neck of these workers all received greater dermal nickel exposure compared with the other jobs included in this study. The soluble nickel dermal exposures for stainless steel production workers were at or slightly above the limit of detection (0.02 microg cm(-2) soluble nickel). The highest inhalable nickel concentrations were observed for the workers involved in nickel powder packing (GM = 0.77 mg m(-3)), although the soluble component comprised only 2% of the total nickel content. The highest airborne soluble nickel exposures were associated with refineries using

  14. Carrot Loss during Primary Production : Field Waste and Pack House Waste.

    OpenAIRE

    Bond, Rebekka

    2016-01-01

    Background: it has been suggested that roughly one-third of all food produced for human consumption is lost or wasted globally. The reduction of loss and waste is seen as an important societal issue with considerable ethical, ecological and economic implications. Fruit and vegetables have the highest wastage rates of any food products; (45 %). And a big part of this waste occurs during production, but empirical data on loss during primary production is limited. Carrots are an important hortic...

  15. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.

    2015-08-31

    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  16. Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication

    International Nuclear Information System (INIS)

    Dunck, Bárbara; Lima-Fernandes, Eva; Cássio, Fernanda; Cunha, Ana; Rodrigues, Liliana; Pascoal, Cláudia

    2015-01-01

    We assessed the eutrophication effects on leaf litter decomposition and primary production, and on periphytic algae, fungi and invertebrates. According to the subsidy-stress model, we expected that when algae and decomposers were nutrient limited, their activity and diversity would increase at moderate levels of nutrient enrichment, but decrease at high levels of nutrients, because eutrophication would lead to the presence of other stressors and overwhelm the subsidy effect. Chestnut leaves (Castanea sativa Mill) were enclosed in mesh bags and immersed in five streams of the Ave River basin (northwest Portugal) to assess leaf decomposition and colonization by invertebrates and fungi. In parallel, polyethylene slides were attached to the mesh bags to allow colonization by algae and to assess primary production. Communities of periphytic algae and decomposers discriminated the streams according to the trophic state. Primary production decomposition and biodiversity were lower in streams at both ends of the trophic gradient. - Highlights: • Algae and decomposers discriminated the streams according to the eutrophication level. • Primary production and litter decomposition are stimulated by moderate eutrophication. • Biodiversity and process rates were reduced in highly eutrophic streams. • Subsidy-stress model explained biodiversity and process rates under eutrophication. - Rates of leaf litter decomposition, primary production and richness of periphytic algae, fungi and invertebrates were lower in streams at both ends of the trophic gradient

  17. Enhanced chlorophyll a and primary production in the northern Arabian Sea during the spring intermonsoon due to green Noctiluca scintillans bloom

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Jyothibabu, R.; Maheswaran, P.A.; Jayaraj, K.A.; Achuthankutty, C.T.

    The surface waters of the northeastern Arabian Sea sustained relatively high chlorophyll a (average 0.81+ or -0.80 mg m sup(-3)) and primary production (average 29.5+ or -23.6 mgC m sup(-3)d sup(-1)) during the early spring intermonsoon 2000...

  18. Mesopelagic Prokaryotes Alter Surface Phytoplankton Production during Simulated Deep Mixing Experiments in Eastern Mediterranean Sea Waters

    Directory of Open Access Journals (Sweden)

    Or Hazan

    2018-01-01

    Full Text Available Mesopelagic prokaryotes (archaea and bacteria, which are transported together with nutrient-rich intermediate-water to the surface layer by deep convection in the oceans (e.g., winter mixing, upwelling systems, can interact with surface microbial populations. This interaction can potentially affect production rates and biomass of surface microbial populations, and thus play an important role in the marine carbon cycle and oceanic carbon sequestration. The Eastern Mediterranean Sea (EMS is one of the most oligotrophic and warm systems in the world's oceans, with usually very shallow winter mixing (<200 m and lack of large-size spring algal blooms. In this study, we collected seawater (0–1,500 m in 9 different cruises at the open EMS during both the stratified and the mixed seasons. We show that the EMS is a highly oligotrophic regime, resulting in low autotrophic biomass and primary productivity and relatively high heterotrophic prokaryotic biomass and production. Further, we simulated deep water mixing in on-board microcosms using Levantine surface (LSW, ~0.5 m and intermediate (LIW, ~400 m waters at a 9:1 ratio, respectively and examined the responses of the microbial populations to such a scenario. We hypothesized that the LIW, being nutrient-rich (e.g., N, P and a “hot-spot” for microbial activity (due to the warm conditions that prevail in these depths, may supply the LSW with not only key-limiting nutrients but also with viable and active heterotrophic prokaryotes that can interact with the ambient surface microbial population. Indeed, we show that LIW heterotrophic prokaryotes negatively affected the surface phytoplankton populations, resulting in lower chlorophyll-a levels and primary production rates. This may be due to out-competition of phytoplankton by LIW populations for resources and/or by a phytoplankton cell lysis via viral infection. Our results suggest that phytoplankton in the EMS may not likely form blooms, even after

  19. Calculation model for predicting concentrations of radioactive corrostion products in the primary coolant of boiling water reactors

    International Nuclear Information System (INIS)

    Uchida, S.; Kikuchi, M.; Asakura, Y.; Yusa, H.; Ohsumi, K.

    1978-01-01

    A calculation model was developed to predict the shutdown dose rate around the recirculation pipes and their components in boiling water reactors (BWRs) by simulating the corrosion product transport in primary cooling water. The model is characterized by separating cobalt species in the water into soluble and insoluble materials and then calculating each concentration using the following considerations: (1) Insoluble cobalt (designated as crud cobalt is deposited directly on the fuel surface, while soluble cobalt (designated as ionic cobalt) is adsorbed on iron oxide deposits on the fuel surface. (2) Cobalt-60 activated on the fuel surface is dissolved in the water in an ionic form, and some is released with iron oxide as crud. The model can follow the reduction of 60 Co in the primary cooling water caused by the control of the iron feed rate into the reactor, which decreases the iron oxide deposits on the fuel surface and then reduces the cobalt adsorption rate. The calculated results agree satisfactorily with the measurements in several BWR plants

  20. Interview and questionnaire guide: Quantification of food losses and waste in primary production

    DEFF Research Database (Denmark)

    Svanes, Erik; Hartikainen, Hanna; Mogensen, Lisbeth

    production in the Nordic countries. Other aims were to estimate the amount of side flow and to gain knowledge about the reasons behind it, how it can be reduced, how it is treated and how it can be better utilized.This guide contains a catalogue of questions that may be used for interviews and questionnaires...... with primary producers and other stakeholders within primary production. It also contains the justification behind the questions and some tips on how to conduct interviews.......This interview guide was developed within the Nordic project “Food losses and waste in primary production” (Franke et al. 2016). One of the main purposes of the project was to test research methods for the quantification of food losses and waste (in the project called 'side flow') from primary...

  1. The production rate of cosmogenic deuterium at the Moon's surface

    Science.gov (United States)

    Füri, Evelyn; Deloule, Etienne; Trappitsch, Reto

    2017-09-01

    The hydrogen (D/H) isotope ratio is a key tracer for the source of planetary water. However, secondary processes such as solar wind implantation and cosmic ray induced spallation reactions have modified the primordial D/H signature of 'water' in all rocks and soils recovered on the Moon. Here, we re-evaluate the production rate of cosmogenic deuterium (D) at the Moon's surface through ion microprobe analyses of hydrogen isotopes in olivines from eight Apollo 12 and 15 mare basalts. These in situ measurements are complemented by CO2 laser extraction-static mass spectrometry analyses of cosmogenic noble gas nuclides (3He, 21Ne, 38Ar). Cosmic ray exposure (CRE) ages of the mare basalts, derived from their cosmogenic 21Ne content, range from 60 to 422 Ma. These CRE ages are 35% higher, on average, than the published values for the same samples. The amount of D detected in the olivines increases linearly with increasing CRE ages, consistent with a production rate of (2.17 ± 0.11) ×10-12 mol(g rock)-1 Ma-1. This value is more than twice as high as previous estimates for the production of D by galactic cosmic rays, indicating that for water-poor lunar samples, i.e., samples with water concentrations ≤50 ppm, corrected D/H ratios have been severely overestimated.

  2. Sea Surface Temperature Products and Research Associated with GHRSST

    Science.gov (United States)

    Kaiser-Weiss, Andrea K.; Minnett, Peter J.; Kaplan, Alexey; Wick, Gary A.; Castro, Sandra; Llewellyn-Jones, David; Merchant, Chris; LeBorgne, Pierre; Beggs, Helen; Donlon, Craig J.

    2012-03-01

    GHRSST serves its user community through the specification of operational Sea Surface Temperature (SST) products (Level 2, Level 3 and Level 4) based on international consensus. Providers of SST data from individual satellites create and deliver GHRSST-compliant near-real time products to a global GHRSST data assembly centre and a long-term stewardship facility. The GHRSST-compliant data include error estimates and supporting data for interpretation. Groups organised within GHRSST perform research on issues relevant to applying SST for air-sea exchange, for instance the Diurnal Variability Working Group (DVWG) analyses the evolution of the skin temperature. Other GHRSST groups concentrate on improving the SST estimate (Estimation and Retrievals Working Group EARWiG) and on improving the error characterization, (Satellite SST Validation Group, ST-VAL) and on improving the methods for SST analysis (Inter-Comparison Technical Advisory Group, IC-TAG). In this presentation we cover the data products and the scientific activities associated with GHRSST which might be relevant for investigating ocean-atmosphere interactions.

  3. Laboratory and field testing results of the LMT/GTM primary surface actuators

    Science.gov (United States)

    Smith, David R.; Souccar, Kamal; Montalvo, Gabriela; Arteaga Magaña, César; Hernández Rebollar, José Luis; Olmos Tapia, Arak; Gallieni, Daniele; Lazzarini, Paolo; Fumi, Pierluigi; Anaclerio, Enzo

    2016-07-01

    With the final installation of the two outermost rings of the primary surface of the Large Millimeter Telescope/ Gran Telescopio Milimétrico (LMT/GTM), the project is also upgrading the primary surface actuators. There are commercial actuators that can approach the required operational accuracy and stroke, but the combination of the size and load requirements ultimately required a customized design. The new actuators fit within the volume constraints imposed by the tighter interior angles in the outer rings and are designed to support the operational and survival loading conditions even for the largest surface segments. Laboratory testing confirmed that the actuators should meet the precision, repeatability, load, and lifetime requirements. However, the LMT/GTM is at a particularly difficult site for electromechanical systems. The high altitude has the usual effect of reducing cooling effectiveness for the drives and motors, and the ambient temperature hovers near freezing. Since there is a significant amount of precipitation during some times of the year, there are frequent freeze/thaw cycles. The constant formation and either sublimation or melting of ice, along with the associated high humidity, has been a challenge for the environmental protection of many devices at the LMT/GTM. Because there are a total of 720 primary surface actuators in the system, it is particularly important that the actuators, their local drive control boxes, and their cable connections be able to meet its specifications even under the site conditions. To confirm the suitability of the actuators, the LMT/GTM procured an initial set of sixteen actuators for testing at the site. After laboratory testing, the actuators were installed into the outer two rings of the telescope and cycled during the early winter months of the 2015-16 scientific observing season. Because of the continuing installation activities in these two rings, they are not illuminated by the receivers, so field testing

  4. Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peijuan; Xie, Donghui; Zhou, Yuyu; E, Youhao; Zhu, Qijiang

    2014-01-16

    The ecological structure in the arid and semi-arid region of Northwest China with forest, grassland, agriculture, Gobi, and desert, is complex, vulnerable, and unstable. It is a challenging and sustaining job to keep the ecological structure and improve its ecological function. Net primary productivity (NPP) modeling can help to improve the understanding of the ecosystem, and therefore, improve ecological efficiency. The boreal ecosystem productivity simulator (BEPS) model provides the possibility of NPP modeling in terrestrial ecosystem, but it has some limitations for application in arid and semi-arid regions. In this paper we improve the BEPS model, in terms of its water cycle by adding the processes of infiltration and surface runoff, to be applicable in arid and semi-arid regions. We model the NPP of forest, grass, and crop in Gansu Province as an experimental area in Northwest China in 2003 using the improved BEPS model, parameterized with moderate resolution remote sensing imageries and meteorological data. The modeled NPP using improved BEPS agrees better with the ground measurements in Qilian Mountain than that with original BEPS, with a higher R2 of 0.746 and lower root mean square error (RMSE) of 46.53 gC/m2 compared to R2 of 0.662 and RMSE of 60.19 gC/m2 from original BEPS. The modeled NPP of three vegetation types using improved BEPS show evident differences compared to that using original BEPS, with the highest difference ratio of 9.21% in forest and the lowest value of 4.29% in crop. The difference ratios between different vegetation types lie on the dependence on natural water sources. The modeled NPP in five geographic zones using improved BEPS are higher than those with original BEPS, with higher difference ratio in dry zones and lower value in wet zones.

  5. Climate engineering and the ocean: effects on biogeochemistry and primary production

    Science.gov (United States)

    Lauvset, Siv K.; Tjiputra, Jerry; Muri, Helene

    2017-12-01

    Here we use an Earth system model with interactive biogeochemistry to project future ocean biogeochemistry impacts from the large-scale deployment of three different radiation management (RM) climate engineering (also known as geoengineering) methods: stratospheric aerosol injection (SAI), marine sky brightening (MSB), and cirrus cloud thinning (CCT). We apply RM such that the change in radiative forcing in the RCP8.5 emission scenario is reduced to the change in radiative forcing in the RCP4.5 scenario. The resulting global mean sea surface temperatures in the RM experiments are comparable to those in RCP4.5, but there are regional differences. The forcing from MSB, for example, is applied over the oceans, so the cooling of the ocean is in some regions stronger for this method of RM than for the others. Changes in ocean net primary production (NPP) are much more variable, but SAI and MSB give a global decrease comparable to RCP4.5 (˜ 6 % in 2100 relative to 1971-2000), while CCT gives a much smaller global decrease of ˜ 3 %. Depending on the RM methods, the spatially inhomogeneous changes in ocean NPP are related to the simulated spatial change in the NPP drivers (incoming radiation, temperature, availability of nutrients, and phytoplankton biomass) but mostly dominated by the circulation changes. In general, the SAI- and MSB-induced changes are largest in the low latitudes, while the CCT-induced changes tend to be the weakest of the three. The results of this work underscore the complexity of climate impacts on NPP and highlight the fact that changes are driven by an integrated effect of multiple environmental drivers, which all change in different ways. These results stress the uncertain changes to ocean productivity in the future and advocate caution at any deliberate attempt at large-scale perturbation of the Earth system.

  6. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Gustavsson, Leif [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  7. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif; Bergh, Johan

    2010-01-01

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO 2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  8. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission. (author)

  9. Primary production in a shallow water lake with special reference to a reed swamp

    International Nuclear Information System (INIS)

    Andersen, F.Oe.

    1976-01-01

    Phytoplankton gross primary production ( 14 C method) in the shallow, eutrophic Danish Lake Arresoe in 1973 was 980 g C m -2 . Calculated net primary production was near zero. Macrophyte net primary production was measured by harvesting the maximum biomass, and above ground values were between 420 and 1325 g ash free dry wt m -2 , while below ground values were between 2480 and 8570 g ash free dry wt m -2 . The reed swamps were mapped on aerial photographs, and the composition of the macrophyte vegetation was determined. A comparison of macrophyte vegetation in 1944 and 1972 showed a reduction in species diversity, especially of submerged species. The seasonal variations in physical and chemical data indicated strong eutrophication in Arresoe. (author)

  10. Corrosion product behaviour in the primary circuit of the KNK nuclear reactor facility

    International Nuclear Information System (INIS)

    Stamm, H.H.; Stade, K.Ch.

    1976-01-01

    During nuclear operation of the KNK facility from 1972 until September 1974 the composition and behaviour of radionuclides occuring in the primary circuit were investigated. Besides traces of 140 Ba/ 140 La, no fission product activity was detectable in the KNK primary circuit. The fuel element purification from sodium deposits (prior to transport to the reprocessing plant) did not yield any indication of a fuel element failure during KNK-I operation. The activity inventory of the primary loop was exclusively made up of activated corrosion products and 22 Na. The main activity was due to 65 Zn, followed by 54 Mn, 22 Na, sup(110m)Ag, 182 Ta, 60 Co and 124 Sb. It was found that the sorption of 65 Zn and 54 Mn on crucibles made from nickel was condiserably higher than on vessels made from other materials. This observation was confirmed both in tests with material samples from the primary circuit and for disks of gate valves of the primary circuit. sup(110m)Ag did hardly exhibit any sorption effects and had been dissolved largely homogeneously in the hot primary coolant. In the first primary cold trap which was removed from the circuit after some 20,000 hours of operation, only 65 Zn and 54 Mn were detected in addition to traces of 60 Co and 182 Ta. (author)

  11. Validity and Reliability of Surface Electromyography in the Assessment of Primary Muscle Tension Dysphonia.

    Science.gov (United States)

    Khoddami, Seyyedeh Maryam; Talebian, Saeed; Izadi, Farzad; Ansari, Noureddin Nakhostin

    2017-05-01

    The study aims to evaluate the reliability and the discriminative validity of surface electromyography (sEMG) in the assessment of patients with primary muscle tension dysphonia (MTD). The study design is cross-sectional. Fifteen patients with primary MTD (mean age: 34.07 ± 10.99 years) and 15 healthy volunteers (mean age: 34.53 ± 10.63 years) were included. All participants underwent evaluation of sEMG to record the electrical activity of the thyrohyoid and cricothyroid muscles. The outcome measures were the root mean square (RMS), activity peak, duration, and time to the peak activity, which were obtained during /a/ and /i/ prolongation for test-retest reliability. The test-retest reliability was good to excellent for the RMS and peak activity measures (intraclass correlation coefficient [agreement] [ICC agreement ] = 0.49-0.98). The reliability for the activity duration was poor to excellent (ICC agreement  = 0.19-0.9). Poor test-retest reliability was found for the time to peak measure (ICC agreement  = 0.15-0.37). The standard error of measurement for all sEMG measures was between 0.41 and 2.05. The smallest detectable change (SDC) was calculated between 1.13 and 5.66. The highest SDC values were obtained for the peak and the lowest SDCs were documented for the duration (5.66 and 1.13, respectively). All sEMG measures were not able to discriminate between the MTD patients and healthy subjects (P > 0.05). The sEMG is a reliable tool to measure the RMS, the peak activity, and the activity duration in primary MTD. However, it is not able to discriminate the patients with primary MTD from healthy subjects. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  12. Structural brain aging and speech production: a surface-based brain morphometry study.

    Science.gov (United States)

    Tremblay, Pascale; Deschamps, Isabelle

    2016-07-01

    While there has been a growing number of studies examining the neurofunctional correlates of speech production over the past decade, the neurostructural correlates of this immensely important human behaviour remain less well understood, despite the fact that previous studies have established links between brain structure and behaviour, including speech and language. In the present study, we thus examined, for the first time, the relationship between surface-based cortical thickness (CT) and three different behavioural indexes of sublexical speech production: response duration, reaction times and articulatory accuracy, in healthy young and older adults during the production of simple and complex meaningless sequences of syllables (e.g., /pa-pa-pa/ vs. /pa-ta-ka/). The results show that each behavioural speech measure was sensitive to the complexity of the sequences, as indicated by slower reaction times, longer response durations and decreased articulatory accuracy in both groups for the complex sequences. Older adults produced longer speech responses, particularly during the production of complex sequence. Unique age-independent and age-dependent relationships between brain structure and each of these behavioural measures were found in several cortical and subcortical regions known for their involvement in speech production, including the bilateral anterior insula, the left primary motor area, the rostral supramarginal gyrus, the right inferior frontal sulcus, the bilateral putamen and caudate, and in some region less typically associated with speech production, such as the posterior cingulate cortex.

  13. Mean annual precipitation predicts primary production resistance and resilience to extreme drought.

    Science.gov (United States)

    Stuart-Haëntjens, Ellen; De Boeck, Hans J; Lemoine, Nathan P; Mänd, Pille; Kröel-Dulay, György; Schmidt, Inger K; Jentsch, Anke; Stampfli, Andreas; Anderegg, William R L; Bahn, Michael; Kreyling, Juergen; Wohlgemuth, Thomas; Lloret, Francisco; Classen, Aimée T; Gough, Christopher M; Smith, Melinda D

    2018-04-27

    Extreme drought is increasing in frequency and intensity in many regions globally, with uncertain consequences for the resistance and resilience of ecosystem functions, including primary production. Primary production resistance, the capacity to withstand change during extreme drought, and resilience, the degree to which production recovers, vary among and within ecosystem types, obscuring generalized patterns of ecological stability. Theory and many observations suggest forest production is more resistant but less resilient than grassland production to extreme drought; however, studies of production sensitivity to precipitation variability indicate that the processes controlling resistance and resilience may be influenced more by mean annual precipitation (MAP) than ecosystem type. Here, we conducted a global meta-analysis to investigate primary production resistance and resilience to extreme drought in 64 forests and grasslands across a broad MAP gradient. We found resistance to extreme drought was predicted by MAP; however, grasslands (positive) and forests (negative) exhibited opposing resilience relationships with MAP. Our findings indicate that common plant physiological mechanisms may determine grassland and forest resistance to extreme drought, whereas differences among plant residents in turnover time, plant architecture, and drought adaptive strategies likely underlie divergent resilience patterns. The low resistance and resilience of dry grasslands suggests that these ecosystems are the most vulnerable to extreme drought - a vulnerability that is expected to compound as extreme drought frequency increases in the future. Copyright © 2018. Published by Elsevier B.V.

  14. Food waste quantification in primary production - The Nordic countries as a case study.

    Science.gov (United States)

    Hartikainen, Hanna; Mogensen, Lisbeth; Svanes, Erik; Franke, Ulrika

    2018-01-01

    Our understanding of food waste in the food supply chain has increased, but very few studies have been published on food waste in primary production. The overall aims of this study were to quantify the total amount of food waste in primary production in Finland, Sweden, Norway and Denmark, and to create a framework for how to define and quantify food waste in primary production. The quantification of food waste was based on case studies conducted in the present study and estimates published in scientific literature. The chosen scope of the study was to quantify the amount of edible food (excluding inedible parts like peels and bones) produced for human consumption that did not end up as food. As a result, the quantification was different from the existing guidelines. One of the main differences is that food that ends up as animal feed is included in the present study, whereas this is not the case for the recently launched food waste definition of the FUSIONS project. To distinguish the 'food waste' definition of the present study from the existing definitions and to avoid confusion with established usage of the term, a new term 'side flow' (SF) was introduced as a synonym for food waste in primary production. A rough estimate of the total amount of food waste in primary production in Finland, Sweden, Norway and Denmark was made using SF and 'FUSIONS Food Waste' (FFW) definitions. The SFs in primary production in the four Nordic countries were an estimated 800,000 tonnes per year with an additional 100,000 tonnes per year from the rearing phase of animals. The 900,000 tonnes per year of SF corresponds to 3.7% of the total production of 24,000,000 tonnes per year of edible primary products. When using the FFW definition proposed by the FUSIONS project, the FFW amount was estimated at 330,000 tonnes per year, or 1% of the total production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Kinetics of corrosion products release from nickel-base alloys corroding in primary water conditions. A new modeling of release

    International Nuclear Information System (INIS)

    Carrette, F.; Guinard, L.; Pieraggi, B.

    2002-01-01

    The radioactivity in the primary circuit arises mainly from the activation of corrosion products in the core of pressurised water reactors; corrosion products dissolve from the oxide scales developed on steam generator tubes of alloy 690. The controlling and modelling of this process require a detailed knowledge of the microstructure and chemical composition of oxide scales as well as the kinetics of their corrosion and dissolution. Alloy 690 was studied as tubes and sheets, with three various surface states (as-received, cold-worked, electropolished). Corrosion tests were performed at 325 C and 155 bar in primary water conditions (B/Li - 1000/2 ppm, [H 2 ] 30 cm 3 .kg -1 TPN, [O 2 ] < 5 ppb); test durations ranged between 24 and 2160 hours. Corrosion tests in the TITANE loop provided mainly corrosion and oxidation kinetics, and tests in the BOREAL loop yielded release kinetics. This study revealed asymptotic type kinetics. Characterisation of the oxide scales grown in representative conditions of the primary circuit was performed by several techniques (SEM, TEM, SIMS, XPS, GIXRD). These analyses revealed the essential role of the fine grained cold-worked scale present on as-received and cold-worked materials. This scale controls the corrosion and release phenomena. The kinetic study and the characterisation of the oxide scales contributed to the modelling of the corrosion/release process. A growth/dissolution model was proposed for corrosion product scales grown in non-saturated dynamic fluid. This model provided the temporal evolution of oxide scales and release kinetics for different species (Fe, Ni, Cr). The model was validated for several surface states and several alloys. (authors)

  16. Surface modified superparamagnetic nanoparticles: Interaction with fibroblasts in primary cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Chapa Gonzalez, Christian; Roacho Pérez, Jorge A.; Martínez Pérez, Carlos A.; Olivas Armendáriz, Imelda [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Jimenez Vega, Florinda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Castrejon Parga, Karen Y. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Garcia Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico)

    2014-12-05

    Highlights: • An inorganic layer before an organic material shell onto MNPs improves cell viability. • The coating type and the concentration of nanoparticles directly affect cell viability. • Modified magnetite nanoparticles with organic and inorganic materials was developed. - Abstract: The development of a variety of medical applications such as drug delivery, cell labeling, and medical imaging have been possible owing to the unique features exhibited by magnetic nanoparticles. Nanoparticle–cell interaction is related to the surface aspects of nanoparticle, which may be described based on their chemistry or inorganic/organic characteristics. The coating on particle surface reduces the inter-particle interactions and provides properties such as biocompatibility. Among the coating materials used for nanoparticles employed in biomedical applications, oleic acid is one of the most utilized due to its biocompatibility. However, a major drawback with this naturally occurring fatty acid is that it is easily oxidized by cells and this reduces their performance in biomedical applications. In order to avoid the direct contact of the cell with the magnetite particle, coating with an inorganic material prior to the oleic acid shell would be effective. This would retard the magnetite dissociation thereby improve the cell viability. Here we report our investigation on the effect of surface modified magnetite nanoparticles (MNPs) on the cell viability using primary cultures incubated with those particles. We prepared magnetite nanoparticles by chemical co-precipitation method; nanoparticle surface was first modified by silanol condensation followed by chemisorption of oleic acid. All nanostructures have a particle size less than 100 nm, depending on the material coating and superparamagnetic behavior. The saturated magnetizations (M{sub s}) of the magnetite samples coated with oleic acid (MAO; 49.15 emu/g) and double shell silica-oleic acid (MSAO; 46.16 emu/g) are

  17. Potential consequences of climate change for primary production and fish production in large marine ecosystems.

    Science.gov (United States)

    Blanchard, Julia L; Jennings, Simon; Holmes, Robert; Harle, James; Merino, Gorka; Allen, J Icarus; Holt, Jason; Dulvy, Nicholas K; Barange, Manuel

    2012-11-05

    Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical-biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30-60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28-89%.

  18. Overview and preliminary results of the Surface Ocean Aerosol Production (SOAP campaign

    Directory of Open Access Journals (Sweden)

    C. S. Law

    2017-11-01

    , contaminant markers and a common aerosol inlet facilitated multi-sensor measurement of uncontaminated air. Aerosol characterization identified variable Aitken mode and consistent submicron-sized accumulation and coarse modes. Submicron aerosol mass was dominated by secondary particles containing ammonium sulfate/bisulfate under light winds, with an increase in sea salt under higher wind speeds. MBL measurements and chamber experiments identified a significant organic component in primary and secondary aerosols. Comparison of SOAP aerosol number and size distributions reveals an underprediction in GLOMAP (GLObal Model of Aerosol Processes-mode aerosol number in clean marine air masses, suggesting a missing marine aerosol source in the model. The SOAP data will be further examined for evidence of nucleation events and also to identify relationships between MBL composition and surface ocean biogeochemistry that may provide potential proxies for aerosol precursors and production.

  19. Warming Increases the Proportion of Primary Production Emitted as Methane from Freshwater Mesocosms

    OpenAIRE

    2010-01-01

    Abstract Methane and carbon dioxide are the dominant gaseous end products of the remineralisation of organic carbon and also the two largest contributors to the anthropogenic greenhouse effect. We investigated whether warming altered the balance of methane efflux relative to primary production and ecosystem respiration in a freshwater mesocosm experiment. Whole ecosystem CH4 efflux was strongly related to temperature with an apparent activation energy of 0.85eV. Furthermore, CH4 ef...

  20. Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa.

    Science.gov (United States)

    Ardö, Jonas

    2015-12-01

    Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.

  1. Twenty-million-year relationship between mammalian diversity and primary productivity

    Science.gov (United States)

    Fritz, Susanne A.; Eronen, Jussi T.; Schnitzler, Jan; Hof, Christian; Janis, Christine M.; Mulch, Andreas; Böhning-Gaese, Katrin; Graham, Catherine H.

    2016-01-01

    At global and regional scales, primary productivity strongly correlates with richness patterns of extant animals across space, suggesting that resource availability and climatic conditions drive patterns of diversity. However, the existence and consistency of such diversity–productivity relationships through geological history is unclear. Here we provide a comprehensive quantitative test of the diversity–productivity relationship for terrestrial large mammals through time across broad temporal and spatial scales. We combine >14,000 occurrences for 690 fossil genera through the Neogene (23–1.8 Mya) with regional estimates of primary productivity from fossil plant communities in North America and Europe. We show a significant positive diversity–productivity relationship through the 20-million-year record, providing evidence on unprecedented spatial and temporal scales that this relationship is a general pattern in the ecology and paleo-ecology of our planet. Further, we discover that genus richness today does not match the fossil relationship, suggesting that a combination of human impacts and Pleistocene climate variability has modified the 20-million-year ecological relationship by strongly reducing primary productivity and driving many mammalian species into decline or to extinction. PMID:27621451

  2. ESTIMATING GROSS PRIMARY PRODUCTION IN CROPLAND WITH HIGH SPATIAL AND TEMPORAL SCALE REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    S. Lin

    2018-04-01

    Full Text Available Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km. The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012 Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1 the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR is about 50 % (R2 = 0.52 and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64; 2 estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day, which has better performance than using MODIS 1-km NDVI/EVI product import; 3 using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  3. Surface (glyco-)proteins: primary structure and crystallization under microgravity conditions

    Science.gov (United States)

    Claus, H.; Akca, E.; Schultz, N.; Karbach, G.; Schlott, B.; Debaerdemaeker, T.; De Clercq, J.-P.; König, H.

    2001-08-01

    The Archaea comprise microorganisms that live under environmental extremes, like high temperature, low pH value or high salt concentration. Their cells are often covered by a single layer of (glyco)protein subunits (S-layer) in hexagonal arrangement. In order to get further hints about the molecular mechanisms of protein stabilization we compared the primary and secondary structures of archaeal S-layer (glyco)proteins. We found an increase of charged amino acids in the S-layer proteins of the extreme thermophilic species compared to their mesophilic counterparts. Our data and those of other authors suggest that ionic interactions, e.g., salt bridges seem to be played a major role in protein stabilization at high temperatures. Despite the differences in the growth optima and the predominance of some amino acids the primary structures of S-layers revealed also a significant degree of identity between phylogenetically related archaea. These obervations indicate that protein sequences of S-layers have been conserved during the evolution from extremely thermophilic to mesophilic life. To support these findings the three-dimensional structure of the S-layer proteins has to be elucidated. Recently, we described the first successful crystallization of an extreme thermophilic surface(glyco)protein under microgravity conditions.

  4. Conventional Treatment of Surface Water Using Moringa Oleifera Seeds Extract as a Primary Coagulant

    Directory of Open Access Journals (Sweden)

    Suleyman A. Muyibi, Ahmed Hissein M Birima, Thamer A. Mohammed

    2012-10-01

    Full Text Available The present study involved the use of a model pilot scale water treatment plant to treat turbid surface water from a stream using processed Moringa oleifera seed with 25 % w/w oil extracted as primary coagulant. The water treatment plant was made up of four unit operations: coagulation, flocculation, sedimentation, and filtration (rapid sand filter. Test runs were carried out for three hours per run over a three-month period with turbidities ranging from 18 to 261 NTU. The turbidity, pH, and alkalinity as well as the filter head loss were measured every 30 minutes during the experimental runs. Average turbidity removal of up to 96 % at an effective doses of 20 and 30 mg/l of oil extracted M. oleifera for low (< 50 NTU and moderate turbidity (< 100 NTU water respectively was observed doses 50 – 80 mg/l for high turbidity (> 100 NTU water. M. oleifera seed extract was found to have no significant effect on pH or alkalinity of the water. The residual turbidities measured during most of the test runs satisfied the Malaysian Guideline for Drinking Water Supplies. Key Words: Moringa oleifera, primary coagulant, coagulation, pilot plant, filtration.

  5. Muscle fatigue in women with primary biliary cirrhosis: Spectral analysis of surface electromyography

    Science.gov (United States)

    Biagini, Maria Rosa; Tozzi, Alessandro; Grippo, Antonello; Galli, Andrea; Milani, Stefano; Amantini, Aldo

    2006-01-01

    AIM: To evaluate the myoelectric manifestations of peripheral fatigability in patients with primary biliary cirrhosis in comparison to healthy subjects. METHODS: Sixteen women with primary biliary cirrhosis without comorbidity and 13 healthy women matched for age and body mass index (BMI) completed the self-reported questionnaire fatigue impact scale. All subjects underwent surface electromyography assessment of peripheral fatigability. Anterior tibial muscle isometric voluntary contraction was executed for 20 s at 80% of maximal voluntary isometric contraction. During the exercise electromyographic signal series were recorded and root mean square (expression of central drive) as well as mean and median of electromyographic signal frequency spectrum (estimates of muscle fatigability) were computed. Each subject executed the trial two times. EMG parameters were normalized, then linear regression was applied and slopes were calculated. RESULTS: Seven patients were fatigued (median fatigue impact scale score: 38, range: 26-66) and 9 were not fatigued (median fatigue impact scale score: 7, range: 0-17). The maximal voluntary isometric contraction was similar in patients (82, 54-115 N) and controls (87, 74-101 N), and in patients with high (81, 54-115 N) and low fatigue impact scale scores (86, 65-106 N). Root mean square as well as mean and median of frequency spectrum slopes were compared with the Mann-Whitney U test, and no significant difference was found between fatigued and non-fatigued patients and controls. CONCLUSION: No instrumental evidence of peripheral fatigability can be found in women with primary biliary cirrhosis but no comorbidity, suggesting that fatigue in such patients may be of central origin. PMID:16937530

  6. Shrubland primary production and soil respiration diverge along European climate gradient

    DEFF Research Database (Denmark)

    Reinsch, Sabine; Koller, Eva; Sowerby, Alwyn

    2017-01-01

    uncertain. Here we show the responses of ecosystem C to 8-12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes...

  7. Joint control of terrestrial gross primary productivity by plant phenology and physiology

    DEFF Research Database (Denmark)

    Xia, Jianyang; Niu, Shuli; Ciais, Philippe

    2015-01-01

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of b...

  8. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field

    Science.gov (United States)

    This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...

  9. Studies on the primary productivity of a polluted mangrove pond in ...

    African Journals Online (AJOL)

    The primary productivity of a polluted mangrove pond in Lagos was investigated for six months (October 2010-March 2011) using the chlorophyll-a method. Air and water temperatures were high (≥21°C) while transparency was lower than 11.5 cm at the mangrove pond. Total suspended solids were ≥2.0 mg/L while total ...

  10. Estimating climate change effects on net primary production of rangelands in the United States

    Science.gov (United States)

    Matthew C. Reeves; Adam L. Moreno; Karen E. Bagne; Steven W. Running

    2014-01-01

    The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen...

  11. Evaluation of MODIS gross primary productivity for Africa using eddy covariance data

    CSIR Research Space (South Africa)

    Sjöström, M

    2013-04-01

    Full Text Available MOD17A2 provides operational gross primary production (GPP) data globally at 1 km spatial resolution and 8-day temporal resolution. MOD17A2 estimates GPP according to the light use efficiency (LUE) concept assuming a fixed maximum rate of carbon...

  12. Variance-based sensitivity analysis of BIOME-BGC for gross and net primary production

    NARCIS (Netherlands)

    Raj, R.; Hamm, N.A.S.; van der Tol, C.; Stein, A.

    2014-01-01

    Parameterization and calibration of a process-based simulator (PBS) is a major challenge when simulating gross and net primary production (GPP and NPP). The large number of parameters makes the calibration computationally expensive and is complicated by the dependence of several parameters on other

  13. Creating a regional MODIS satellite-driven net primary production dataset for european forests

    NARCIS (Netherlands)

    Neumann, Mathias; Moreno, Adam; Thurnher, Christopher; Mues, Volker; Härkönen, Sanna; Mura, Matteo; Bouriaud, Olivier; Lang, Mait; Cardellini, Giuseppe; Thivolle-Cazat, Alain; Bronisz, Karol; Merganic, Jan; Alberdi, Iciar; Astrup, Rasmus; Mohren, Frits; Zhao, Maosheng; Hasenauer, Hubert

    2016-01-01

    Net primary production (NPP) is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm

  14. Joint control of terrestrial gross primary productivity by plant phenology and physiology

    NARCIS (Netherlands)

    Xia, J.; Niu, S.; Ciais, P.; Janssens, I.A.; Chen, J.; Ammann, C.; Arain, A.; Blanken, P.D.; Cescatti, A.; Moors, E.J.

    2015-01-01

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of

  15. Cell specific primary production of autotrophic and mixotrophic phytoplankton in acidified lakes of the Bohemian Forest

    Czech Academy of Sciences Publication Activity Database

    Znachor, Petr; Nedoma, Jiří

    2004-01-01

    Roč. 112, - (2004), s. 141-155 ISSN 0342-1120 R&D Projects: GA ČR(CZ) GA206/98/0727; GA ČR(CZ) GA206/97/0072 Keywords : autoradiography * mixotrophy * primary production Subject RIV: EH - Ecology, Behaviour

  16. Seasonal primary production in different sectors of the EEZ of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.; Bhargava, R.M.S.

    The seasonal and regional variations in the primary production, based on the data collected at 562 stations over the period from 1962 to 1988, are presented. The entire Indian Exclusive Economic Zone (EEZ), measuring 2.01 million km super(2...

  17. UV radiation and natural fluorescence linked primary production in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; KrishnaKumari, L.; Bhattathiri, P.M.A.; Chandramohan, D.

    Primary productivity and chlorophyll values have been measured using an underwater profiling radiometer for the first time in the waters around Indian Antarctic Station (70°46'S & 11°44'E) in the summer of 1994. The profiles include natural...

  18. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.

    Science.gov (United States)

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-08-01

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  19. Primary production, nutrients, and size spectra of suspended particles in the southern North Sea

    NARCIS (Netherlands)

    Gieskes, W.W.C.

    1972-01-01

    The effect of nutrient enrichment from the Rhine on some major characteristics of the phytoplankton ecosystem of Dutch coastal waters was studied with 14C, liquid scintillation and Coulter Counter techniques. The magnitude of primary production in the most eutrophic waters closest to

  20. Improved estimates of net primary productivity from MODIS satellite data at regional and local scales

    Science.gov (United States)

    Yude Pan; Richard Birdsey; John Hom; Kevin McCullough; Kenneth Clark

    2006-01-01

    We compared estimates of net primary production (NPP) from the MODIS satellite with estimates from a forest ecosystem process model (PnET-CN) and forest inventory and analysis (FIA) data for forest types of the mid-Atlantic region of the United States. The regional means were similar for the three methods and for the dominant oak? hickory forests in the region. However...

  1. Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data

    Science.gov (United States)

    Xiangming Xiao; Qingyuan Zhang; David Hollinger; John Aber; Berrien, III Moore

    2005-01-01

    Forest canopies are composed of photosynthetically active vegetation (PAV, chloroplasts) and nonphotosynthetic vegetation (NPV, e.g., cell wall, vein, branch). The fraction of photosynthetically active radiation (PAR) absorbed by the canopy (FAPAR) should be partitioned into FAPARPAV and FAPARNPV. Gross primary production (...

  2. Planktonic primary production evaluation by means of the 14C method with liquid scintillation counting

    International Nuclear Information System (INIS)

    Frangopol, T.P.; Bologa, S.A.

    1979-05-01

    Preliminary results on the planktonic primary production obtained for the first time with the 14 C method off the Romanian Black Sea coast (1977, 1978) and in the Sinoe, Mamaia and Bicaz lakes (1978) are presented, along with a review of this method with special reference to liquid scintillation counting. 140 Refs. (author)

  3. Primary oxidation and reduction products in x-irradiated aspartic acid

    International Nuclear Information System (INIS)

    Adams, S.M.; Budzinski, E.E.; Box, H.C.

    1976-01-01

    The primary reduction products identified by ESR--ENDOR spectroscopy in single crystals of DL-aspartic acid hydrochloride irradiated at 4.2degreeK are anions formed by addition of an electron to the carbonyl oxygen atoms of the carboxylic acid groups. The main consequence of the oxidation process is to produce a hole centered mainly on atomic chlorine

  4. Evaluation of MODIS gross primary productivity for Africa using eddy covariance data

    NARCIS (Netherlands)

    Sjostrom, M.; Zhao, M.; Archibald, S.; Veenendaal, E.M.

    2013-01-01

    MOD17A2 provides operational gross primary production (GPP) data globally at 1 km spatial resolution and 8-day temporal resolution. MOD17A2 estimates GPP according to the light use efficiency (LUE) concept assuming a fixed maximum rate of carbon assimilation per unit photosynthetically active

  5. Estimating primary production from oxygen time series: A novel approach in the frequency domain

    NARCIS (Netherlands)

    Cox, T.J.S.; Maris, T.; Soetaert, K.; Kromkamp, J.C.; Meire, P.; Meysman, F.J.R.

    2015-01-01

    Based on an analysis in the frequency domain of the governing equation of oxygen dynamics in aquatic systems, we derive a new method for estimating gross primary production (GPP) from oxygen time series. The central result of this article is a relation between time averaged GPP and the amplitude of

  6. Vegetation-specific model parameters are not required for estimating gross primary production

    Czech Academy of Sciences Publication Activity Database

    Yuan, W.; Cai, W.; Liu, S.; Dong, W.; Chen, J.; Altaf Arain, M.; Blanken, P. D.; Cescatti, A.; Wohlfahrt, G.; Georgiadis, T.; Genesio, L.; Gianelle, D.; Grelle, A.; Kiely, G.; Knohl, A.; Liu, D.; Marek, Michal V.; Merbold, L.; Montagnani, L.; Panferov, O.; Peltoniemi, M.; Rambal, S.; Raschi, A.; Varlagin, A.; Xia, J.

    2014-01-01

    Roč. 292, NOV 24 2014 (2014), s. 1-10 ISSN 0304-3800 Institutional support: RVO:67179843 Keywords : light use efficiency * gross primary production * model parameters Subject RIV: EH - Ecology, Behaviour Impact factor: 2.321, year: 2014

  7. Relationships between net primary productivity and forest stand age in U.S. forests

    Science.gov (United States)

    Liming He; Jing M. Chen; Yude Pan; Richard Birdsey; Jens. Kattge

    2012-01-01

    Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four...

  8. Transport of radioactive corrosion products in primary system of sodium-cooled fast breeder reactor 'MONJU'

    International Nuclear Information System (INIS)

    Matuo, Youichirou; Hasegawa, Masanori; Maegawa, Yoshiharu; Miyahara, Shinya

    2011-01-01

    Radioactive corrosion products (CP) are primary cause of personal radiation exposure during maintenance work at FBR plants with no breached fuel. The PSYCHE code has been developed based on the Solution-Precipitation model for analysis of CP transfer behavior. We predicted and analyzed the CP solution and precipitation behavior of MONJU to evaluate the applicability of the PSYCHE code to MONJU, using the parameters verified in the calculations for JOYO. From the calculation result pertaining to the MONJU system, distribution of 54 Mn deposited in the primary cooling system over 20 years of operation is predicted to be approximately 7 times larger than that of 60 Co. In particular, predictions show a notable tendency for 54 Mn precipitation to be distributed in the primary pump and cold-leg. The calculated distribution of 54 Mn and 60 Co in the primary cooling system of MONJU agreed with tendencies of measured distribution of JOYO. (author)

  9. Development of a surface ionization source for the production of radioactive alkali ion beams in SPIRAL

    International Nuclear Information System (INIS)

    Eleon, C.; Jardin, P.; Gaubert, G.; Saint-Laurent, M.-G.; Alcantara-Nunez, J.; Alves Conde, R.; Barue, C.; Boilley, D.; Cornell, J.; Delahaye, P.; Dubois, M.; Jacquot, B.; Leherissier, P.; Leroy, R.; Lhersonneau, G.; Marie-Jeanne, M.; Maunoury, L.; Pacquet, J.Y.; Pellemoine, F.; Pierret, C.

    2008-01-01

    In the framework of the production of radioactive alkali ion beams by the isotope separation on-line (ISOL) method in SPIRAL I, a surface ionization source has been developed at GANIL to produce singly-charged ions of Li, Na and K. This new source has been designed to work in the hostile environment whilst having a long lifetime. This new system of production has two ohmic heating components: the first for the target oven and the second for the ionizer. The latter, being in carbon, offers high reliability and competitive ionization efficiency. This surface ionization source has been tested on-line using a 48 Ca primary beam at 60.3 A MeV with an intensity of 0.14 pA. The ionization efficiencies obtained for Li, Na and K are significantly better than the theoretical values of the ionization probability per contact. The enhanced efficiency, due to the polarization of the ionizer, is shown to be very important also for short-lived isotopes. In the future, this source will be associated with the multicharged electron-cyclotron-resonance (ECR) ion source NANOGAN III for production of multicharged alkali ions in SPIRAL. The preliminary tests of the set up are also presented in this contribution.

  10. Product Surfaces in Precision Engineering, Micorengineering and Nanotechnology

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Kunzmann, H.; Peggs, G. N.

    2005-01-01

    This paper is and excerpt from a recently published CIRP Key-Note paper on surfaces in Precision Engineering, Micorengineering and Nanotechnology [1]. It is focussed on the relevance of surface metrology at the micrometric and nanometric length scales. The applied measurement technologies...... are strongly dependent from the functional requirements on those surfaces. Examples of surfaces obtained with precision engineering, microengineering and nanotechnology are mentioned, encompassing surfaces in computers, MEMS, biomedical systems, ligth and X-ray optics, as well as in chemical systems. Surface...... in surface metrology at micro and nanoscale are strongly required for future progress of Precision Engineering, Microengineering, and Nanotechnology; and their fundamental importance can not be overestimated....

  11. Primary production in a tropical large lake: The role of phytoplankton composition

    Energy Technology Data Exchange (ETDEWEB)

    Darchambeau, F., E-mail: francois.darchambeau@ulg.ac.be [Chemical Oceanography Unit, University of Liège, Liège (Belgium); Sarmento, H., E-mail: hugo.sarmento@gmail.com [Department of Hydrobiology, Federal University of São Carlos, 13565-905 São Carlos, São Paulo (Brazil); Descy, J.-P., E-mail: jean-pierre.descy@unamur.be [Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur (Belgium)

    2014-03-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ {sup 14}C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (P{sub Bm}) was found, ranging between 1.15 and 7.21 g carbon g{sup −1} chlorophyll a h{sup −1}, and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (I{sub k}) ranged between 91 and 752 μE m{sup −2} s{sup −1} and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll a m{sup −2} (annual mean) and from 143 to 278 g carbon m{sup −2} y{sup −1}, respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. - Highlights: • We provide a 7-year dataset of primary production in a tropical great lake. • Specific photosynthetic rate was determined by community composition. • Annual primary production varied between 143 and 278 mg C m

  12. Primary production in a tropical large lake: The role of phytoplankton composition

    International Nuclear Information System (INIS)

    Darchambeau, F.; Sarmento, H.; Descy, J.-P.

    2014-01-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ 14 C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (P Bm ) was found, ranging between 1.15 and 7.21 g carbon g −1 chlorophyll a h −1 , and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (I k ) ranged between 91 and 752 μE m −2 s −1 and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll a m −2 (annual mean) and from 143 to 278 g carbon m −2 y −1 , respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. - Highlights: • We provide a 7-year dataset of primary production in a tropical great lake. • Specific photosynthetic rate was determined by community composition. • Annual primary production varied between 143 and 278 mg C m −2 y −1 . • Pelagic production was highly

  13. Constraining Ecosystem Gross Primary Production and Transpiration with Measurements of Photosynthetic 13CO2 Discrimination

    Science.gov (United States)

    Blonquist, J. M.; Wingate, L.; Ogeé, J.; Bowling, D. R.

    2011-12-01

    The stable carbon isotope composition of atmospheric CO2 (δ13Ca) can provide useful information on water use efficiency (WUE) dynamics of terrestrial ecosystems and potentially constrain models of CO2 and water fluxes at the land surface. This is due to the leaf-level relationship between photosynthetic 13CO2 discrimination (Δ), which influences δ13Ca, and the ratio of leaf intercellular to atmospheric CO2 mole fractions (Ci / Ca), which is related to WUE and is determined by the balance between C assimilation (CO2 demand) and stomatal conductance (CO2 supply). We used branch-scale Δ derived from tunable diode laser absorption spectroscopy measurements collected in a Maritime pine forest to estimate Ci / Ca variations over an entire growing season. We combined Ci / Ca estimates with rates of gross primary production (GPP) derived from eddy covariance (EC) to estimate canopy-scale stomatal conductance (Gs) and transpiration (T). Estimates of T were highly correlated to T estimates derived from sapflow data (y = 1.22x + 0.08; r2 = 0.61; slope P MuSICA) (y = 0.88x - 0.05; r2 = 0.64; slope P MuSICA (y = 1.10 + 0.42; r2 = 0.50; slope P < 0.001). Results demonstrate that the leaf-level relationship between Δ and Ci / Ca can be extended to the canopy-scale and that Δ measurements have utility for partitioning ecosystem-scale CO2 and water fluxes.

  14. Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought

    Energy Technology Data Exchange (ETDEWEB)

    Wagle, Pradeep; Xiao, Xiangming; Torn, Margaret S.; Cook, David R.; Matamala, Roser; Fischer, Marc L.; Jin, Cui; Dong, Jinwei; Biradar, Chandrashekhar

    2014-09-01

    Drought affects vegetation photosynthesis and growth.Many studies have used the normalized difference vegetation index (NDVI), which is calculated as the normalized ratio between near infrared and red spectral bands in satellite images, to evaluate the response of vegetation to drought. In this study, we examined the impacts of drought on three vegetation indices (NDVI, enhanced vegetation index, EVI, and land surface water index, LSWI) and CO2 flux from three tallgrass prairie eddy flux tower sites in the U.S. Gross primary production (GPP) was also modeled using a satellite-based Vegetation Photosynthesis Model (VPM), and the modeled GPP (GPPVPM) was compared with the GPP (GPPEC) derived from eddy covariance measurements. Precipitation at two sites in Oklahoma was 30% below the historical mean in both years of the study period (2005–2006), while the site in Illinois did not experience drought in the 2005–2007 study period. The EVI explained the seasonal dynamics of GPP better than did NDVI. The LSWI dropped below zero during severe droughts in the growing season, showing its potential to track drought. The result shows that GPP was more sensitive to drought than were vegetation indices, and EVI and LSWI were more sensitive than NDVI. We developed a modified function (Wscalar), calculated as a function of LSWI, to account for the effect of severe droughts on GPP in VPM. The GPPVPM from the modified VPM accounted for the rapid reduction in GPP during severe droughts and the seasonal dynamics of GPPVPM agreed reasonably well with GPPEC. Our analysis shows that 8-day averaged values (temperature, vapor-pressure deficit) do not reflect the short-term extreme climate events well, suggesting that satellite based models may need to be run at daily or hourly scales, especially under unfavorable climatic conditions.

  15. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    Science.gov (United States)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  16. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behaviour of simulant fission product species such as caesium iodide, caesium hydroxide and tellurium, in terms of their vapour deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high-density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO/sub 2/ clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapour phase, and specific data using this technique are reported

  17. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and deposition of fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behavior of simulant fission product species such as cesium iodide, cesium hydroxide and tellurium, in terms of their vapor deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO 2 clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapor phase, and specific data using this technique are reported

  18. Sea Surface Height Determination In The Arctic Using Cryosat-2 SAR Data From Primary Peak Empirical Retrackers

    DEFF Research Database (Denmark)

    Jain, Maulik; Andersen, Ole Baltazar; Dall, Jørgen

    2015-01-01

    extraction. The primary peak retrackers involve the application of retracking algorithms on just the primary peak of the waveform instead of the complete reflected waveform. These primary peak empirical retrackers are developed for Cryosat-2 SAR data. This is the first time SAR data in the Arctic...... and five parameter beta retrackers. In the case of SAR-lead data, it is concluded that the proposed primary peak retrackers work better as compared with the traditional retrackers (OCOG, threshold, five parameter beta) as well as the ESA Retracker.......SAR waveforms from Cryosat-2 are processed using primary peak empirical retrackers to determine the sea surface height in the Arctic. The empirical retrackers investigated are based on the combination of the traditional OCOG (Offset Center of Gravity) and threshold methods with primary peak...

  19. Influences of Scavenging and Removal of Surfactants by Bubble Processing on Primary Marine Aerosol Production from North Atlantic Seawater

    Science.gov (United States)

    Duplessis, P.; Chang, R.; Frossard, A. A.; Keene, W. C.; Maben, J. R.; Long, M. S.; Beaupre, S. R.; Kieber, D. J.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    Primary marine aerosol particles (PMA) are produced by bursting bubbles from breaking waves at the air-sea interface and significantly modulate atmospheric chemical transformations and cloud properties. Surfactants in bulk seawater rapidly (seconds) adsorb onto fresh bubble surfaces forming organic films that influence size, rise velocity, bursting behavior, and associated PMA emissions. During a cruise on the R/V Endeavor in September and October 2016, PMA production from biologically productive and oligotrophic seawater was investigated at four stations in the western North Atlantic Ocean. PMA were produced in a high-capacity generator via turbulent mixing of seawater and clean air in a Venturi nozzle. When the flow of fresh seawater through the generator was turned off, surfactant depletion via bubble processing resulted in greater PMA mass production efficiencies per unit air detrained but had no consistent influence on number production efficiencies. The greater (factor of 3) production efficiencies of organic matter associated with PMA generated with the Venturi relative to those generated with frits during previous campaigns contributed to a faster depletion of surfactants from the seawater reservoir and corresponding divergence in response.

  20. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System

    Directory of Open Access Journals (Sweden)

    Gonzalo V. Gomez-Saez

    2017-04-01

    Full Text Available The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles, characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe2+. Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter, supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13C-incorporation in the dark allowed the classification of aiC15:0, C15:0, and iC16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion

  1. Variability and Changes in Climate, Phenology, and Gross Primary Production of an Alpine Wetland Ecosystem

    Directory of Open Access Journals (Sweden)

    Xiaoming Kang

    2016-05-01

    Full Text Available Quantifying the variability and changes in phenology and gross primary production (GPP of alpine wetlands in the Qinghai–Tibetan Plateau under climate change is essential for assessing carbon (C balance dynamics at regional and global scales. In this study, in situ eddy covariance (EC flux tower observations and remote sensing data were integrated with a modified, satellite-based vegetation photosynthesis model (VPM to investigate the variability in climate change, phenology, and GPP of an alpine wetland ecosystem, located in Zoige, southwestern China. Two-year EC data and remote sensing vegetation indices showed that warmer temperatures corresponded to an earlier start date of the growing season, increased GPP, and ecosystem respiration, and hence increased the C sink strength of the alpine wetlands. Twelve-year long-term simulations (2000–2011 showed that: (1 there were significantly increasing trends for the mean annual enhanced vegetation index (EVI, land surface water index (LSWI, and growing season GPP (R2 ≥ 0.59, p < 0.01 at rates of 0.002, 0.11 year−1 and 16.32 g·C·m−2·year−1, respectively, which was in line with the observed warming trend (R2 = 0.54, p = 0.006; (2 the start and end of the vegetation growing season (SOS and EOS experienced a continuous advancing trend at a rate of 1.61 days·year−1 and a delaying trend at a rate of 1.57 days·year−1 from 2000 to 2011 (p ≤ 0.04, respectively; and (3 with increasing temperature, the advanced SOS and delayed EOS prolonged the wetland’s phenological and photosynthetically active period and, thereby, increased wetland productivity by about 3.7–4.2 g·C·m−2·year−1 per day. Furthermore, our results indicated that warming and the extension of the growing season had positive effects on carbon uptake in this alpine wetland ecosystem.

  2. Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia: Implications for the transfer of carbon within pelagic food webs

    Science.gov (United States)

    Montero, Paulina; Daneri, Giovanni; González, Humberto E.; Iriarte, Jose Luis; Tapia, Fabián J.; Lizárraga, Lorena; Sanchez, Nicolas; Pizarro, Oscar

    2011-03-01

    We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30'S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region. Depth-integrated gross primary production estimates were higher (0.4-3.8 g C m -2 d -1) in the productive season (October, February, and May), and lower (0.1-0.2 g C m -2 d -1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m -2 d -1 and 0.05 to 0.4 g C m -2 d -1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m -2 d -1 and 0.05 to 0.2 g C m -2 d -1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of

  3. Relationships between primary production and irradiance in coral reef algal communities

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Shallow water algal turf communities are the major primary producers on coral reefs. High rates of primary production are maintained despite extremely high light intensities and exposure to ultraviolet wavelengths. The relationships between the light intensity and primary production in these assemblages are typical of algae adapted to a high light environment [low α (initial slope), high I/sub k/ (saturating light intensity), and high I/sub c/ (compensation point light intensity)]. Seasonal variations in algal standing crop due to herbivory and daylength result in some characteristic photoadaptive changes in α I/sub k/, and I/sub c/ and changes in Pnet/sub max/ rates (maximum net photosynthetic rate achieved at light saturation) on both a chlorophyll α and an areal basis. Exposure to UV wavelength results in significantly higher respiration rates but no changes in α, Pnet/sub max/, or I/sub k/, when compared with these parameters for the same algal communities incubated at the same light intensities without UV wavelengths. The apparent lack of photoinhibition in these algae allows calculation of the daily integrated production from the P vs. I parameters. This integrated production is highest in July (3.1 +/- 0.2 g C m -2 d -1 ) and is reduced by 30% from this maximum in December (2.1 +/- 0.1 g C m -2 d -1 )

  4. Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China.

    Science.gov (United States)

    Xu, C; Liu, M; An, S; Chen, J M; Yan, P

    2007-11-01

    Urbanization is one of the most important aspects of global change. The process of urbanization has a significant impact on the terrestrial ecosystem carbon cycle. The Yangtze Delta region has one of the highest rates of urbanization in China. In this study, carried out in Jiangyin County as a representative region within the Yangtze Delta, land use and land cover changes were estimated using Landsat TM and ETM+ imagery. With these satellite data and the BEPS process model (Boreal Ecosystem Productivity Simulator), the impacts of urbanization on regional net primary productivity (NPP) and annual net primary production were assessed for 1991 and 2002. Landsat-based land cover maps in 1991 and 2002 showed that urban development encroached large areas of cropland and forest. Expansion of residential areas and reduction of vegetated areas were the major forms of land transformation in Jiangyin County during this period. Mean NPP of the total area decreased from 818 to 699 gCm(-2)yr(-1) during the period of 1991 to 2002. NPP of cropland was only reduced by 2.7% while forest NPP was reduced by 9.3%. Regional annual primary production decreased from 808 GgC in 1991 to 691 GgC in 2002, a reduction of 14.5%. Land cover changes reduced regional NPP directly, and the increasing intensity and frequency of human-induced disturbance in the urbanized areas could be the main reason for the decrease in forest NPP.

  5. Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops.

    Science.gov (United States)

    Gitelson, Anatoly A; Peng, Yi; Viña, Andrés; Arkebauer, Timothy; Schepers, James S

    2016-08-20

    One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Major activated corrosion products cobalt, silver and antimony in the primary coolant of PWR power plants

    International Nuclear Information System (INIS)

    Xu Mingxia

    2012-01-01

    The production of the major activated corrosion products such as cobalt, silver and antimony in the primary coolant of PWR power plants and the impacts on the increase of the dose rates caused by these corrosion products during the shutdown are described in the paper. Investigating the corrosion product behavior during the operation and shutdown periods aims at detecting the appearance of these radiological pollutants in the early time and searching relevant solutions that may enable eventually to decrease the dose rate. The solutions may include: Replacing critical material in the primary system's equipment and components, which contact with primary coolant circuit to possibly limit the source term, Elaborating strictly the specific chemical and shutdown procedure to optimize the purification capacity and to minimize the over-contaminations; Improving purification techniques according to the real operation circumstance, and limiting the impacts of these pollutants. It is obvious in the real practices that implementing appropriate solution will be benefit to decrease or limit the pollutants species like cobalt, silver and antimony. (author)

  7. Productive vegetation: relationships between net primary productivity, vegetation types and climate change in the Wet Tropics bioregion

    International Nuclear Information System (INIS)

    Ramirez, Vanessa Valdez; Williams, Stephen E.; VanDerWal, Jeremy

    2007-01-01

    Full text: Full text: There is now ample evidence demonstrating the impacts of climate change on biodiversity and human society (Walther ef a/. 2002). Numerous studies have shown climate change is one of the most significant threats to tropical forests, such as the Wet Tropics Heritage Area, due to their high biodiversity and endemism (Pounds ef al. 1999; Hughes 2000; Parmesan and Yohe 2003). Williams ef al. (2003) suggested that small shifts in net primary productivity (NPP) as a result of climate change could lead to potentially massive follow-on effects for the extremely diverse and vulnerable rainforest flora and fauna. It is therefore crucial to explore the relationships between NPP and local biodiversity, especially to create models for different climate change scenarios. Nevertheless, NPP in the Wet Tropics has yet to be estimated. This is the first study to provide a general NPP estimate for the Wet Tropics bioregion using climate surrogates (Schuur 2003). This technique estimates NPP in an accurate, repeatable, and cost-effective way. NPP values were linked to vegetation types and examined under various climatic and environmental conditions. Results show a significant difference in productivity according to vegetation types and climatic variables, with temperature and rainfall seasonality as the most important determining variables. Additionally, lowland and upland vegetations showed a significant difference in productivity patterns throughout the year. Vegetation types located above 1000 metres in altitude had the lowest values of mean annual productivity due to their high rainfall and low temperatures; vegetation types located below 600 metres showed increased productivity values during the wet season (December-March). Net primary productivity will certainly be impacted by changes in temperature and rainfall, due to climate change. Although an increase in NPP values can be predicted for upland areas, the more widely distributed lowlands will drastically

  8. Immunolocalization of RANK and RANKL along the root surface and in the periodontal membrane of human primary and permanent teeth

    DEFF Research Database (Denmark)

    Bille, Marie-Louise Bastholm; Thomsen, Bjarke; Andersen, Thomas Levin

    2012-01-01

    Abstract Objective. Root resorption, impaired tooth eruption and early tooth loss have been described in relation to diseases that involve defects in the RANK-RANKL-OPG-expression. The aim of the present immunhistochemical study was to localize and compare the reactions for RANK and membrane...... in odontoblasts and in cells along denticles in one primary tooth. RANK was located in mononuclear cells in the pulp and in multinucleated odontoclasts along resorbed root surfaces and along resorbed dentin surfaces in the pulp in primary teeth and one permanent tooth. Conclusions. This study demonstrated RANK...... positivity in resorption areas in primary and permanent teeth. RANKL was positive in the pulp of one primary tooth. RANK expression in odontoclasts and RANKL expression in the pulp may indicate that RANK/RANKL play a role during resorption....

  9. Spatial and Temporal Variation in Primary Productivity (NDVI) of Coastal Alaskan Tundra: Decreased Vegetation Growth Following Earlier Snowmelt

    Science.gov (United States)

    Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.

    2015-01-01

    In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.

  10. MODIS/Terra Gross Primary Productivity 8-Day L4 Global 1km SIN Grid V055

    Data.gov (United States)

    National Aeronautics and Space Administration — The Terra/MODIS Gross Primary Productivity (GPP) product (MOD17A2) is a cumulative composite of GPP values based on the radiation-use efficiency concept that is...

  11. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    International Nuclear Information System (INIS)

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous β-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in 35 SO 4 -labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed

  12. Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Tim [Southwest Research Inst., San Antonio, TX (United States); Beck, Griffin [Southwest Research Inst., San Antonio, TX (United States); Bennett, Jeffrey [Southwest Research Inst., San Antonio, TX (United States); Hoopes, Kevin [Southwest Research Inst., San Antonio, TX (United States); Miller, Larry [Southwest Research Inst., San Antonio, TX (United States)

    2016-06-29

    This project objective is to develop a high-temperature design upgrade for an existing primary surface heat exchanger so that the redesigned hardware is capable of operation in CO2 at temperatures up to 1,510°F (821°C) and pressure differentials up to 130 psi (9 bar). The heat exchanger is proposed for use as a recuperator in an advanced low-pressure oxy-fuel Brayton cycle that is predicted to achieve over 50% thermodynamic efficiency, although the heat exchanger could also be used in other high-temperature, low-differential pressure cycles. This report describes the progress to date, which includes continuing work performed to select and test new candidate materials for the recuperator redesign, final mechanical and thermal performance analysis results of various redesign concepts, and the preliminary design of a test loop for the redesigned recuperator including a budgetary estimate for detailed test loop design, procurement, and test operation. A materials search was performed in order to investigate high-temperature properties of many candidate materials, including high-temperature strength and nickel content. These properties were used to rank the candidate materials, resulting in a reduced list of nine materials for corrosion testing. Multiple test rigs were considered and analyzed for short-term corrosion testing and Thermal Gravimetric Analysis (TGA) was selected as the most cost-effective option for evaluating corrosion resistance of the candidate materials. In addition, tantalum, niobium, and chromium coatings were identified as potential options for increased corrosion resistance. The test results show that many materials exhibit relatively low weight gain rates, and that niobium and tantalum coatings may improve corrosion resistance for many materials, while chromium coatings appear to oxidize and debond quickly. Metallurgical analysis of alloys was also performed, showing evidence of intergranular attack in 282 that may cause long

  13. Primary producers and production in Hornsund and Kongsfjorden – comparison of two fjord systems

    Directory of Open Access Journals (Sweden)

    Smoła Zofia T.

    2017-09-01

    Full Text Available Hornsund and Kongsfjorden are two similar-sized Arctic fjords on the West coast of Spitsbergen. They are influenced by cold coastal Arctic water (Hornsund and warmer Atlantic water (Kongsfjorden. Environmental conditions affect the timing, quantity, spatial distribution (horizontal and vertical of spring and summer blooms of protists as well as the taxonomic composition of those assemblages. Here, we compile published data and unpublished own measurement from the past two decades to compare the environmental factors and primary production in two fjord systems. Kongsfjorden is characterized by a deeper euphotic zone, higher biomass and greater proportion of autotrophic species. Hornsund seems to obtain more nutrients due to the extensive seabird colonies and exhibits higher turbidity compared to Kongsfjorden. The annual primary production in the analysed fjords ranges from 48 g C m−2 y−1 in Kongsfjorden to 216 g C m−2 y−1 in Hornsund, with a dominant component of microplankton (90% followed by macrophytes and microphytobenthos.

  14. Classification and calculation of primary failure modes in bread production line

    International Nuclear Information System (INIS)

    Tsarouhas, Panagiotis H.

    2009-01-01

    In this study, we describe the classification methodology over a 2-year period of the primary failure modes in categories based on failure data of bread production line. We estimate the probabilities of these categories applying the chi-square goodness of fit test, and we calculate their joint probabilities of mass function at workstation and line level. Then, we present numerical examples in order to predict the causes and frequencies of breakdowns for workstations and for the entire bread production line that will occur in the future. The methodology is meant to guide bread and bakery product manufacturers, improving the operation of the production lines. It can also be a useful tool to maintenance engineers, who wish to analyze and improve the reliability and efficiency of the manufacturing systems

  15. The Absorption of Light in Lakes: Negative Impact of Dissolved Organic Carbon on Primary Productivity

    OpenAIRE

    Thrane, Jan-Erik; Hessen, Dag O.; Andersen, Tom

    2014-01-01

    Colored dissolved organic matter (CDOM) absorbs a substantial fraction of photosynthetically active radiation (PAR) in boreal lakes. However, few studies have systematically estimated how this light absorption influences pelagic primary productivity. In this study, 75 boreal lakes spanning wide and orthogonal gradients in dissolved organic carbon (DOC) and total phosphorus (TP) were sampled during a synoptic survey. We measured absorption spectra of phytoplankton pigments, CDOM, and non-algal...

  16. Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests

    OpenAIRE

    Neumann, Mathias; Moreno, Adam; Thurnher, Christopher; Mues, Volker; Härkönen, Sanna; Mura, Matteo; Bouriaud, Olivier; Lang, Mait; Cardellini, Giuseppe; Thivolle-Cazat, Alain; Bronisz, Karol; Merganic, Jan; Alberdi, Iciar; Astrup, Rasmus; Mohren, Frits

    2016-01-01

    Net primary production (NPP) is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily g...

  17. Impacts of temperature on primary productivity and respiration in naturally structured macroalgal assemblages.

    Directory of Open Access Journals (Sweden)

    Leigh W Tait

    Full Text Available Rising global temperatures caused by human-mediated change has already triggered significant responses in organismal physiology, distribution and ecosystem functioning. Although the effects of rising temperature on the physiology of individual organisms are well understood, the effect on community-wide processes has remained elusive. The fixation of carbon via primary productivity is an essential ecosystem function and any shifts in the balance of primary productivity and respiration could alter the carbon balance of ecosystems. Here we show through a series of tests that respiration of naturally structured algal assemblages in southern New Zealand greatly increases with rising temperature, with implications for net primary productivity (NPP. The NPP of in situ macroalgal assemblages was minimally affected by natural temperature variation, possibly through photo-acclimation or temperature acclimation responses, but respiration rates and compensating irradiance were negatively affected. However, laboratory experiments testing the impacts of rising temperature on several photosynthetic parameters showed a decline in NPP, increasing respiration rates and increasing compensating irradiance. The respiration Q10 of laboratory assemblages (the difference in metabolic rates over 10°C averaged 2.9 compared to a Q10 of 2 often seen in other autotrophs. However, gross primary productivity (GPP Q10 averaged 2, indicating that respiration was more severely affected by rising temperature. Furthermore, combined high irradiance and high temperature caused photoinhibition in the laboratory, and resulted in 50% lower NPP at high irradiance. Our study shows that communities may be more severely affected by rising global temperatures than would be expected by responses of individual species. In particular, enhanced respiration rates and rising compensation points have the potential to greatly affect the carbon balance of macroalgal assemblages through declines in

  18. Primary and secondary metabolites production in signal grass around the year under nitrogen fertilizer

    OpenAIRE

    Syeda Maryam Hussain

    2016-01-01

    Plants produce a number of substances and products and primary and secondary metabolites (SM) are amongst them with many benefits but limitation as well. Usually, the fodder are not considered toxic to animals or as a source having higher SM. The Brachiaria decumbens has a considerable nutritional value, but it is considered as a toxic grass for causing photosensitization in animals, if the grass is not harvested for more than 30 days or solely. The absence of detailed information in the lite...

  19. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Hans C.; Brislawn, Colin J.; Dana, Karl; Flores-Wentz, Tobias; Cory, Alexandra B.; Fansler, Sarah J.; Fredrickson, James K.; Moran, James J.

    2017-10-01

    Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: 1) How does species diversity relate to the rates of primary and heterotrophic productivity? 2) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline Lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope incorporation that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose and acetate, respectively. Bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, energy constraints imposed by changing irradiance over a diel cycle.

  20. Diagnosis of compliance of health care product processing in Primary Health Care

    Directory of Open Access Journals (Sweden)

    Camila Eugenia Roseira

    Full Text Available ABSTRACT Objective: identify the compliance of health care product processing in Primary Health Care and assess possible differences in the compliance among the services characterized as Primary Health Care Service and Family Health Service. Method: quantitative, observational, descriptive and inferential study with the application of structure, process and outcome indicators of the health care product processing at ten services in an interior city of the State of São Paulo - Brazil. Results: for all indicators, the compliance indices were inferior to the ideal levels. No statistically significant difference was found in the indicators between the two types of services investigated. The health care product cleaning indicators obtained the lowest compliance index, while the indicator technical-operational resources for the preparation, conditioning, disinfection/sterilization, storage and distribution of health care products obtained the best index. Conclusion: the diagnosis of compliance of health care product processing at the services assessed indicates that the quality of the process is jeopardized, as no results close to ideal levels were obtained at any service. In addition, no statistically significant difference in these indicators was found between the two types of services studied.

  1. Connectedness of land use, nutrients, primary production, and fish assemblages in oxbow lakes

    Science.gov (United States)

    Miranda, Leandro E.; Andrews, Caroline S.; Kroger, Robert

    2013-01-01

    We explored the strength of connectedness among hierarchical system components associated with oxbow lakes in the alluvial valley of the Lower Mississippi River. Specifically, we examined the degree of canonical correlation between land use (agriculture and forests), lake morphometry (depth and size), nutrients (total nitrogen and total phosphorus), primary production (chlorophyll-a), and various fish assemblage descriptors. Watershed (p < 0.01) and riparian (p = 0.02) land use, and lake depth (p = 0.05) but not size (p = 0.28), were associated with nutrient concentrations. In turn, nutrients were associated with primary production (p < 0.01), and primary production was associated with sunfish (Centrarchidae) assemblages (p < 0.01) and fish biodiversity (p = 0.08), but not with those of other taxa and functional guilds. Multiple chemical and biological components of oxbow lake ecosystems are connected to landscape characteristics such as land use and lake depth. Therefore, a top-down hierarchical approach can be useful in developing management and conservation plans for oxbow lakes in a region impacted by widespread landscape changes due to agriculture.

  2. Kronecker Product Analytical Approach to ANOVA of Surface ...

    African Journals Online (AJOL)

    The Fishers-Yates algorithm has remained the most widely used statistical ... with Kronecker product analysis which was enhanced by the use of MATLAB ... Keywords: Kronecker product, Sum of Squares, Mean sum of squares, Optimization.

  3. STUDY OF STATIC ELECTRICITY CHARGE ACCUMULATION ON SURFACE OF FLUOROPOLYMER-4 PRODUCTS USING VIBRATING CAPACITOR METHOD

    Directory of Open Access Journals (Sweden)

    H. А. Vershina

    2012-01-01

    Full Text Available The paper presents investigations of processes pertaining to surface charge accumulation and running of fluoropolymer-4 products using vibrating capacitor method. Modification of a measurement technique allowing to register distribution of dielectric surface potential without disturbance of the surface charged state has been described in the paper. The paper contains graphics of spatial distribution of surface potential of fluoropolymer-4 products after various treatments. The paper reveals that thermal treatment (tempering reduces static characteristics of fluoropolymer-4.

  4. Fabrication of Hierarchically Micro- and Nano-structured Mold Surfaces Using Laser Ablation for Mass Production of Superhydrophobic Surfaces

    Science.gov (United States)

    Noh, Jiwhan; Lee, Jae-Hoon; Na, Suckjoo; Lim, Hyuneui; Jung, Dae-Hwan

    2010-10-01

    Many studies have examined the formation of surfaces with mixed patterns of micro- and nano-sized lotus leaves that have hydrophobic properties. In this study, micro- and nano-shapes such as lotus leaves were fabricated on a metal mold surface using laser ablation and ripple formation. A microstructure on the mold surface was replicated onto poly(dimethylsiloxane) (PDMS) using the polymer casting method to manufacture low-cost hydrophobic surfaces. A PDMS surface with micro- and nano-structures that were the inverse image of a lotus leaf showed hydrophobic characteristics (water contact angle: 157°). From these results, we deduced that portions of the microstructures were wet and that air gaps existed between the microstructures and the water drops. In this paper we suggest the possibility of the mass production of hydrophobic plastic surfaces and the development of a methodology for the hydrophobic texturing of various polymer surfaces, using the polymer casting method with laser-processed molds.

  5. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    Next, the evaluation has been carried out by comparing the OSCAR currents with currents measured by moored buoys ... measurements, to derive the surface current prod- uct, known ... ogy of surface currents based on drifter data. The ... and prediction (RAMA). ..... of satellite derived forcings on numerical ocean model sim-.

  6. The Effect of Improving Primary Care Depression Management on Employee Absenteeism and Productivity A Randomized Trial

    Science.gov (United States)

    Rost, Kathryn; Smith, Jeffrey L.; Dickinson, Miriam

    2005-01-01

    Objective: To test whether an intervention to improve primary care depression management significantly improves productivity at work and absenteeism over 2 years. Setting and Subjects: Twelve community primary care practices recruiting depressed primary care patients identified in a previsit screening. Research Design: Practices were stratified by depression treatment patterns before randomization to enhanced or usual care. After delivering brief training, enhanced care clinicians provided improved depression management over 24 months. The research team evaluated productivity and absenteeism at baseline, 6, 12, 18, and 24 months in 326 patients who reported full-or part-time work at one or more completed waves. Results: Employed patients in the enhanced care condition reported 6.1% greater productivity and 22.8% less absenteeism over 2 years. Consistent with its impact on depression severity and emotional role functioning, intervention effects were more observable in consistently employed subjects where the intervention improved productivity by 8.2% over 2 years at an estimated annual value of $1982 per depressed full-time equivalent and reduced absenteeism by 28.4% or 12.3 days over 2 years at an estimated annual value of $619 per depressed full-time equivalent. Conclusions: This trial, which is the first to our knowledge to demonstrate that improving the quality of care for any chronic disease has positive consequences for productivity and absenteeism, encourages formal cost-benefit research to assess the potential return-on-investment employers of stable workforces can realize from using their purchasing power to encourage better depression treatment for their employees. PMID:15550800

  7. The effect of improving primary care depression management on employee absenteeism and productivity. A randomized trial.

    Science.gov (United States)

    Rost, Kathryn; Smith, Jeffrey L; Dickinson, Miriam

    2004-12-01

    To test whether an intervention to improve primary care depression management significantly improves productivity at work and absenteeism over 2 years. Twelve community primary care practices recruiting depressed primary care patients identified in a previsit screening. Practices were stratified by depression treatment patterns before randomization to enhanced or usual care. After delivering brief training, enhanced care clinicians provided improved depression management over 24 months. The research team evaluated productivity and absenteeism at baseline, 6, 12, 18, and 24 months in 326 patients who reported full-or part-time work at one or more completed waves. Employed patients in the enhanced care condition reported 6.1% greater productivity and 22.8% less absenteeism over 2 years. Consistent with its impact on depression severity and emotional role functioning, intervention effects were more observable in consistently employed subjects where the intervention improved productivity by 8.2% over 2 years at an estimated annual value of US 1982 dollars per depressed full-time equivalent and reduced absenteeism by 28.4% or 12.3 days over 2 years at an estimated annual value of US 619 dollars per depressed full-time equivalent. This trial, which is the first to our knowledge to demonstrate that improving the quality of care for any chronic disease has positive consequences for productivity and absenteeism, encourages formal cost-benefit research to assess the potential return-on-investment employers of stable workforces can realize from using their purchasing power to encourage better depression treatment for their employees.

  8. Modeling UV-B Effects on Primary Production Throughout the Southern Ocean Using Multi-Sensor Satellite Data

    Science.gov (United States)

    Lubin, Dan

    2001-01-01

    This study has used a combination of ocean color, backscattered ultraviolet, and passive microwave satellite data to investigate the impact of the springtime Antarctic ozone depletion on the base of the Antarctic marine food web - primary production by phytoplankton. Spectral ultraviolet (UV) radiation fields derived from the satellite data are propagated into the water column where they force physiologically-based numerical models of phytoplankton growth. This large-scale study has been divided into two components: (1) the use of Total Ozone Mapping Spectrometer (TOMS) and Special Sensor Microwave Imager (SSM/I) data in conjunction with radiative transfer theory to derive the surface spectral UV irradiance throughout the Southern Ocean; and (2) the merging of these UV irradiances with the climatology of chlorophyll derived from SeaWiFS data to specify the input data for the physiological models.

  9. Algal species composition, photosynthetic pigments and primary productivity in relation to temperature variations in the coastal waters of Kalpakkam

    International Nuclear Information System (INIS)

    Rajadurai, M.; Poornima, E.H.; Rao, V.N.R.; Venugopalan, V.P.

    2002-01-01

    With increase in the number of nuclear and fossil fuel power plants being commissioned along the sea coast to meet the growing demands of the society, more and more of the heated effluents from them find their way into the sea, elevated temperature of the waters may affect the phytoplankton, periphyton and the phytobenthos and any harmful effect on these algae may have a cascading effect on the higher level of the food chain especially those that are ecologically and commercially valuable. Therefore, it is necessary to gain sufficient knowledge on the response of these algae to elevated temperatures which will help us to arrive at a meaningful assessment on the temperature effects and to formulate optimum discharge criteria with regard to thermal effluents from power stations. Fifteen sites were chosen along the East Coast near the Madras Atomic power Station (MAPS) and surface water and sediments were analyzed for various parameters such as temperature, algal species composition, pigments and primary productivity

  10. Distortion product otoacoustic emissions: comparison of sequential vs. simultaneous presentation of primary tones.

    Science.gov (United States)

    Kumar, U Ajith; Maruthy, Sandeep; Chandrakant, Vishwakarma

    2009-03-01

    Distortion product otoacoustic emissions are one form of evoked otoacoustic emissions. DPOAEs provide the frequency specific information about the hearing status in mid and high frequency regions. But in most screening protocols TEOAEs are preferred as it requires less time compared to DPOAE. This is because, in DPOAE each stimulus is presented one after the other and responses are analyzed. Grason and Stadler Incorporation 60 (GSI-60) offer simultaneous presentation of four sets of primary tones at a time and checks for the DPOAE. In this mode of presentation, all the pairs are presented at a time and following that response is extracted separately whereas, in sequential mode primaries are presented in orderly fashion one after the other. In this article simultaneous and sequential protocols were used to compare the Distortion product otoacoustic emission amplitude, noise floor and administration time in individuals with normal hearing and mild sensori-neural (SN) hearing loss. In simultaneous protocols four sets of primary tones (i.e. 8 tones) were presented together whereas, in sequential presentation mode one set of primary tones was presented each time. Simultaneous protocol was completed in less than half the time required for the completion of sequential protocol. Two techniques yielded similar results at frequencies above 1000 Hz only in normal hearing group. In SN hearing loss group simultaneous presentation yielded signifi cantly higher noise floors and distortion product amplitudes. This result challenges the use of simultaneous presentation technique in neonatal hearing screening programmes and on other pathologies. This discrepancy between two protocols may be due to some changes in biomechanical process in the cochlear and/or due to higher distortion/noise produced by the system during the simultaneous presentation mode.

  11. Primary souring: A novel bacteria-free method for sour beer production.

    Science.gov (United States)

    Osburn, Kara; Amaral, Justin; Metcalf, Sara R; Nickens, David M; Rogers, Cody M; Sausen, Christopher; Caputo, Robert; Miller, Justin; Li, Hongde; Tennessen, Jason M; Bochman, Matthew L

    2018-04-01

    In the beverage fermentation industry, especially at the craft or micro level, there is a movement to incorporate as many local ingredients as possible to both capture terroir and stimulate local economies. In the case of craft beer, this has traditionally only encompassed locally sourced barley, hops, and other agricultural adjuncts. The identification and use of novel yeasts in brewing lags behind. We sought to bridge this gap by bio-prospecting for wild yeasts, with a focus on the American Midwest. We isolated 284 different strains from 54 species of yeast and have begun to determine their fermentation characteristics. During this work, we found several isolates of five species that produce lactic acid and ethanol during wort fermentation: Hanseniaspora vineae, Lachancea fermentati, Lachancea thermotolerans, Schizosaccharomyces japonicus, and Wickerhamomyces anomalus. Tested representatives of these species yielded excellent attenuation, lactic acid production, and sensory characteristics, positioning them as viable alternatives to lactic acid bacteria (LAB) for the production of sour beers. Indeed, we suggest a new LAB-free paradigm for sour beer production that we term "primary souring" because the lactic acid production and resultant pH decrease occurs during primary fermentation, as opposed to kettle souring or souring via mixed culture fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Size-fractionated dissolved primary production and carbohydrate composition of the coccolithophore Emiliania huxleyi

    Science.gov (United States)

    Borchard, C.; Engel, A.

    2015-02-01

    Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady-state conditions in phosphorus-controlled chemostats (N:P = 29, growth rate of μ = 0.2 d-1) at present-day and high-CO2 concentrations. 14C incubations were performed to determine primary production (PP), comprised of particulate (PO14C) and dissolved organic carbon (DO14C). Concentration and composition of particulate combined carbohydrates (pCCHO) and high-molecular-weight (>1 kDa, HMW) dissolved combined carbohydrates (dCCHO) were determined by ion chromatography. Information on size distribution of ER products was obtained by investigating distinct size classes (10 kDa was significantly different, with a higher mol% of arabinose. The mol% of acidic sugars increased and that of glucose decreased with increasing size of HMW-dCCHO. We conclude that larger polysaccharides follow different production and release pathways than smaller molecules, potentially serving distinct ecological and biogeochemical functions.

  13. Benefits of aggregates surface modification in concrete production

    Science.gov (United States)

    Junak, J.; Sicakova, A.

    2017-10-01

    In our study, recycled concrete aggregates (RCA), which surfaces had been modified by geopolymer material based on coal fly ash, were used to produce the concrete samples. In these samples, fraction 4/8 mm was replaced by recycled concrete aggregate with a range of 100%. To modify the surface of RCA was “Solo” and “Triple stage” modification used. On these samples real density, total water absorption and compressive strength were examined after 28, 90, 180 and 365 days of hardening. The highest compressive strength 56.8 MPa, after 365 days hardening, reached sample which had improved RCA surface by “Triple stage mixing”.

  14. The Puzzle of HCN in Comets: Is it both a Product and a Primary Species?

    Science.gov (United States)

    Mumma, Michael J.; Bonev, Boncho P.; Charnley, Steven B.; Cordiner, Martin A.; DiSanti, Michael A.; Gibb, Erika L.; Magee-Sauer, Karen; Paganini, Lucas; Villanueva, Geronimo L.

    2014-11-01

    Hydrogen cyanide has long been regarded as a primary volatile in comets, stemming from its presence in dense molecular cloud cores and its supposed storage in the cometary nucleus. Here, we examine the observational evidence for and against that hypothesis, and argue that HCN may also result from near-nucleus chemical reactions in the coma. The distinction (product vs. primary species) is important for multiple reasons: 1. HCN is often used as a proxy for water when the dominant species (H2O) is not available for simultaneous measurement, as at radio wavelengths. 2. HCN is one of the few volatile carriers of nitrogen accessible to remote sensing. If HCN is mainly a product species, its precursor becomes the more important metric for compiling a taxonomic classification based on nitrogen chemistry. 3. The stereoisomer HNC is now confirmed as a product species. Could reaction of a primary precursor (X-CN) with a hydrocarbon co-produce both HNC and HCN? 4. The production rate for CN greatly exceeds that of HCN in some comets, demonstrating the presence of another (more important) precursor of CN. Several puzzling lines of evidence raise issues about the origin of HCN: a. The production rates of HCN measured through rotational (radio) and vibrational (infrared) spectroscopy agree in some comets - in others the infrared rate exceeds the radio rate substantially. b. With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H2O, CH3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). c. The nucleus-centered rotational temperatures measured for H2O and other species (C2H6, CH3OH) usually agree within error, but those for HCN are often slightly smaller. d. In comet ISON, ALMA maps of HCN and the dust continuum show a slight displacement 80 km) in the centroids. We will

  15. Small phytoplankton contribution to the standing stocks and the total primary production in the Amundsen Sea

    Directory of Open Access Journals (Sweden)

    S. H. Lee

    2017-08-01

    Full Text Available Small phytoplankton are anticipated to be more important in a recently warming and freshening ocean condition. However, little information on the contribution of small phytoplankton to overall phytoplankton production is currently available in the Amundsen Sea. To determine the contributions of small phytoplankton to total biomass and primary production, carbon and nitrogen uptake rates of total and small phytoplankton were obtained from 12 productivity stations in the Amundsen Sea. The daily carbon uptake rates of total phytoplankton averaged in this study were 0.42 g C m−2 d−1 (SD  =  ± 0.30 g C m−2 d−1 and 0.84 g C m−2 d−1 (SD  =  ± 0.18 g C m−2 d−1 for non-polynya and polynya regions, respectively, whereas the daily total nitrogen (nitrate and ammonium uptake rates were 0.12 g N m−2 d−1 (SD  =  ± 0.09 g N m−2 d−1 and 0.21 g N m−2 d−1 (SD  =  ± 0.11 g N m−2 d−1, respectively, for non-polynya and polynya regions, all of which were within the ranges reported previously. Small phytoplankton contributed 26.9 and 27.7 % to the total carbon and nitrogen uptake rates of phytoplankton in this study, respectively, which were relatively higher than the chlorophyll a contribution (19.4 % of small phytoplankton. For a comparison of different regions, the contributions for chlorophyll a concentration and primary production of small phytoplankton averaged from all the non-polynya stations were 42.4 and 50.8 %, which were significantly higher than those (7.9 and 14.9 %, respectively in the polynya region. A strong negative correlation (r2 = 0. 790, p<0. 05 was found between the contributions of small phytoplankton and the total daily primary production of phytoplankton in this study. This finding implies that daily primary production decreases as small phytoplankton contribution increases, which is

  16. Study on the production mechanism of Co-60 in the primary loop of HTR-10

    International Nuclear Information System (INIS)

    Wang Shouang; Xie Feng; Li Hong; Cao Jianzhu; Li Fu; Wei Liqiang

    2015-01-01

    Co-60 is an activated metallic erosion product, which is very important for waste management and decommissioning work of pressurized water reactor (PWR) power plants. Recent measurement on the samples from the primary loop of HTR-10 indicates the existence of Co-60. In current paper, the preliminary experimental results in HTR-10 will be introduced, and the production mechanism of Co-60 in the pebble bed high temperature gas-cooled reactors will be summarized and compared with that in PWRs and Germany High Temperature Nuclear Reactor (AVR). The further experiments with decomposing the post-irradiation graphite spheres of HTR-10 are put forward, which will promote the further study to testify the production sources of Co-60 and be of great significance in the waste minimization and the decommissioning work of HTR-10. (author)

  17. The Feasibility of Onsite Electrolysis as Primary and Clean Production Source of Fuel Hydrogen in Brazil

    International Nuclear Information System (INIS)

    COSTA, Andre R

    2006-01-01

    In accordance with the International Monetary Fund Brazil is currently the world's 12. largest and Latin America's largest economy, with a nominal GPD in the amount of US dollars 732,078 millions. Despite the fact that energy production is still heavily based on hydrocarbons, such as oil, natural gas and coal, the country is often indicated as one of the worldwide leaders in implementing renewable energy sources, primarily due to the spread utilization of bio-ethanol in transportation and the electricity production from hydropower. The purpose of this study is to assess the feasibility of onsite electrolysis as primary and clean source of fuel hydrogen in Brazil, indicating the main advantages of this production method. A perspective of the most significant challenges and actions to be taken regarding the accomplishment of a clean Brazilian hydrogen economy will be presented herein. (author)

  18. Primary production and algae diversity vs. pollution in xochimilco wet-lands

    Energy Technology Data Exchange (ETDEWEB)

    Pedroza-Pichardo, R.; Hernandez-Delgadillo, R.; Boll-Arguello, G.

    2009-07-01

    Xochimilco is an ancient endorheic lake located in the Valley of Mexico. Due to its shallow water and the freshwater springs that lined the canals, they are surround raised agricultural fields called chinampas. Since the Valley of Mexico was originally wetlands, the chinampas were the most productive means of agricultural production. Xochimilco are considered one of the most important urban lungs in Mexico City. However, it is not clear how the huge urbanization around is to know if there is a correlation between primary production (PP), algae diversity, BOD{sub 5} and faecal coliforms. Sample collection was done every month over a year at six different canals named: Embarcadero Celada, Embarcadero Nuevo Nativitas, Canal Las Abejas, Canal Zacapa, Canal Santo Domingo y Canal Nacional. (Author)

  19. Primary production and algae diversity vs. pollution in xochimilco wet-lands

    International Nuclear Information System (INIS)

    Pedroza-Pichardo, R.; Hernandez-Delgadillo, R.; Boll-Arguello, G.

    2009-01-01

    Xochimilco is an ancient endorheic lake located in the Valley of Mexico. Due to its shallow water and the freshwater springs that lined the canals, they are surround raised agricultural fields called chinampas. Since the Valley of Mexico was originally wetlands, the chinampas were the most productive means of agricultural production. Xochimilco are considered one of the most important urban lungs in Mexico City. However, it is not clear how the huge urbanization around is to know if there is a correlation between primary production (PP), algae diversity, BOD 5 and faecal coliforms. Sample collection was done every month over a year at six different canals named: Embarcadero Celada, Embarcadero Nuevo Nativitas, Canal Las Abejas, Canal Zacapa, Canal Santo Domingo y Canal Nacional. (Author)

  20. DNA markers as a tool for genetic traceability of primary product in agri-food chains

    Directory of Open Access Journals (Sweden)

    Daria Scarano

    2012-11-01

    Full Text Available The agri-food components of the Made in Italy are well known all over the world, therefore they may significantly contribute to the Italian economy. However, also owing to a large number of cases of improper labelling, the Italian agro-food industry faces an ever-increasing competition. For this reason, there is a decline of consumers’ confidence towards food production systems and safety controls. To prevent erroneous classification of products and to protect consumers from false instore information, it is important to develop and validate techniques that are able to detect mislabelling at any stage of the food-chain. This paper describes some examples of genetic traceability of primary products in some important plant food chains such as durum wheat, olive and tomato, based on DNA analysis both of raw material and of processed food (pasta, olive oil, and peeled tomato.

  1. Lage-area planar RF plasma productions by surface waves

    International Nuclear Information System (INIS)

    Nonaka, S.

    1994-01-01

    Large-area rf plasmas are confirmed to be produced by means of RF discharges inside a large-area dielectric tube. The plasma space is 73 cm x 176 cm and 2.5 cm. The plasma is thought to be produced by an odd plasma-surface wave (PSW ο ) in case of using large-area electrodes and by an even plasma-surface wave (PSW ο ) in case of without the electrodes. (author). 7 refs, 4 figs

  2. Primary productivity and the prospects for biofuels in the United Kingdom

    Science.gov (United States)

    Lawson, G. J.; Callaghan, T. V.

    1983-09-01

    Estimates of land use and plant productivity are combined to predict total annual primary production in the UK as 252 million tonnes dry matter (10.5 t ha-1yr-1). Annual above ground production is predicted to be 165 Mt (6.9 t ha-1yr-1). Within these totals, intensive agriculture contributes 60%, productive woodland 8%, natural vegetation 26% and urban vegetation 5%. However, only 25% of total plant production is cropped by man and animals, and most of this is subsequently discarded as wastes and residues. 2112 PJ of organic material is available for fuel without reducing food or fibre production, but since much of this could not be economically collected, 859 PJ is calculated as a more realistic biofuel contribution by the year 2000. After deducting 50% conversion losses, this could save P1 billion (1979 prices) in oil imports. Short rotation energy plantations, forest residues, coppice woodlands, animal and crop wastes, industrial and domestic wastes, catch crops, natural vegetation and urban vegetation all have immediate or short term potential as biofuel sources. Sensitive planning is required to reduce environmental impact, but in some cases more diverse wildlife habitats may be created.

  3. Monitoring Agricultural Production in Primary Export Countries within the framework of the GEOGLAM Initiative

    Science.gov (United States)

    Becker-Reshef, I.; Justice, C. O.; Vermote, E.

    2012-12-01

    Up to date, reliable, global, information on crop production prospects is indispensible for informing and regulating grain markets and for instituting effective agricultural policies. The recent price surges in the global grain markets were in large part triggered by extreme weather events in primary grain export countries. These events raise important questions about the accuracy of current production forecasts and their role in market fluctuations, and highlight the deficiencies in the state of global agricultural monitoring. Satellite-based earth observations are increasingly utilized as a tool for monitoring agricultural production as they offer cost-effective, daily, global information on crop growth and extent and their utility for crop production forecasting has long been demonstrated. Within this context, the Group on Earth Observations developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted by the G20 as part of the action plan on food price volatility and agriculture. The goal of GEOGLAM is to enhance agricultural production estimates through the use of Earth observations. This talk will explore the potential contribution of EO-based methods for improving the accuracy of early production estimates of main export countries within the framework of GEOGLAM.

  4. Productivity and sea surface temperature are correlated with the pelagic larval duration of damselfishes in the Red Sea.

    Science.gov (United States)

    Robitzch, Vanessa S N; Lozano-Cortés, Diego; Kandler, Nora M; Salas, Eva; Berumen, Michael L

    2016-04-30

    We examined the variation of pelagic larval durations (PLDs) among three damselfishes, Dascyllus aruanus, D. marginatus, and D. trimaculatus, which live under the influence of an environmental gradient in the Red Sea. PLDs were significantly correlated with latitude, sea surface temperature (SST), and primary production (CHLA; chlorophyll a concentrations). We find a consistent decrease in PLDs with increasing SST and primary production (CHLA) towards the southern Red Sea among all species. This trend is likely related to higher food availability and increased metabolic rates in that region. We suggest that food availability is a potentially stronger driver of variation in PLD than temperature, especially in highly oligotrophic regions. Additionally, variations in PLDs were particularly high among specimens of D. marginatus, suggesting a stronger response to local environmental differences for endemic species. We also report the first average PLD for this species over a broad geographic range (19.82 ± 2.92 days). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Productivity and sea surface temperature are correlated with the pelagic larval duration of damselfishes in the Red Sea

    KAUST Repository

    Robitzch, Vanessa S.N.

    2015-12-01

    We examined the variation of pelagic larval durations (PLDs) among three damselfishes, Dascyllus aruanus, D. marginatus, and D. trimaculatus, which live under the influence of an environmental gradient in the Red Sea. PLDs were significantly correlated with latitude, sea surface temperature (SST), and primary production (CHLA; chlorophyll a concentrations). We find a consistent decrease in PLDs with increasing SST and primary production (CHLA) towards the southern Red Sea among all species. This trend is likely related to higher food availability and increased metabolic rates in that region. We suggest that food availability is a potentially stronger driver of variation in PLD than temperature, especially in highly oligotrophic regions. Additionally, variations in PLDs were particularly high among specimens of D. marginatus, suggesting a stronger response to local environmental differences for endemic species. We also report the first average PLD for this species over a broad geographic range (19.82 ± 2.92 days).

  6. Productivity and sea surface temperature are correlated with the pelagic larval duration of damselfishes in the Red Sea

    KAUST Repository

    Robitzch, Vanessa S.N.; Lozano-Corté s, Diego; Kandler, Nora; Salas, Eva; Berumen, Michael L.

    2015-01-01

    We examined the variation of pelagic larval durations (PLDs) among three damselfishes, Dascyllus aruanus, D. marginatus, and D. trimaculatus, which live under the influence of an environmental gradient in the Red Sea. PLDs were significantly correlated with latitude, sea surface temperature (SST), and primary production (CHLA; chlorophyll a concentrations). We find a consistent decrease in PLDs with increasing SST and primary production (CHLA) towards the southern Red Sea among all species. This trend is likely related to higher food availability and increased metabolic rates in that region. We suggest that food availability is a potentially stronger driver of variation in PLD than temperature, especially in highly oligotrophic regions. Additionally, variations in PLDs were particularly high among specimens of D. marginatus, suggesting a stronger response to local environmental differences for endemic species. We also report the first average PLD for this species over a broad geographic range (19.82 ± 2.92 days).

  7. The distribution feature of size-fractionated chlorophyll a and primary productivity in Prydz Bay and its north sea area during the austral summer

    Institute of Scientific and Technical Information of China (English)

    刘子琳; 陈忠元

    2003-01-01

    The investigation of size-fractionated chlorophyll a and primary productivity were carried out in three longitudinal sections (63°-69°12′S, 70°30′E, 73°E and 75(30′E) at December 18 -26, 1998 and January 12 -18, 1999 in Prydz Bay and its north sea area, Antarctica. The results showed that surface chlorophyll a concentration were 0.16 - 3.99 μg dm -3. The high values of chlorophyll a concentration ( more than 3.5 μg dm -3 ) were in Prydz Bay and in the west Ladies Bank. The average chlorophyll a concentration at sub-surface layer was higher than that at surface layer; its concentration at the deeper layers of 50 m decreased with increasing depth and that at 200 m depth was only 0.01 -0.95 μg dm-3. The results of size-fractionated chlorophyll a showed that the contribution of the netplanktion to total chlorophyll a was 56% , those of the nanoplankton and the picoplankton were 24% and 20% respectively in the surveyed area. The potential primary productivity at the euphotic zone in the surveyed area was 0. 11 - 11.67 mgC m-3 h -1 and average value was 2.00 ±2.80 mgC m-3h-1. The in-situ productivity in the bay and the continental shelf was higher and that in the deep-sea area was lower. The assimilation number of ted primary productivity show that the contribution of the netplanktion to total productivity was 58% , those of the nanoplankton and the picoplankton were 26% and 16% respectively. The cell abundance of phytoplankton was 1. 6 + 103 - 164. 8 + 103 cell dm-3 in the surface water.

  8. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics

    DEFF Research Database (Denmark)

    Gunnarsson, Nina; Eliasson Lantz, Anna; Nielsen, Jacob

    2004-01-01

    Yield improvements in antibiotic-producing strains have classically been obtained through random mutagenesis and screening. An attractive alternative to this strategy is the rational design of producer strains via metabolic engineering, an approach that offers the possibility to increase yields...... in the metabolic network. Here we describe and discuss available methods for identification of these steps, both in antibiotic biosynthesis pathways and in the primary metabolism, which serves as the supplier of precursors and cofactors for the secondary metabolism. Finally, the importance of precursor...... and cofactor supply from primary metabolism in the biosynthesis of different types of antibiotics is discussed and recent developments in metabolic engineering towards increased product yields in antibiotic producing strains are reviewed....

  9. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity

    KAUST Repository

    Pinedo-González, Paulina

    2015-10-25

    The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions.

  10. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity

    KAUST Repository

    Pinedo-Gonzá lez, Paulina; West, A. Joshua; Tovar-Sá nchez, Antonio; Duarte, Carlos M.; Marañ ó n, Emilio; Cermeñ o, Pedro; Gonzá lez, Natalia; Sobrino, Cristina; Huete-Ortega, Marí a; Ferná ndez, Ana; Ló pez-Sandoval, Daffne C.; Vidal, Montserrat; Blasco, Dolors; Estrada, Marta; Sañ udo-Wilhelmy, Sergio A.

    2015-01-01

    The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions.

  11. Thermodynamics and the transport of corrosion products in PWR primary circuits

    International Nuclear Information System (INIS)

    Turner, D.J.

    1992-01-01

    It is argued that practically useful models for the activation, transport and deposition of corrosion products in PWR primary circuits can only be produced on the basis of an improved understanding of the chemical processes which control them. In particular, if a model is to make reliable predictions it is essential that its thermodynamic basis be sound. This is not the case with most current models which employ the erroneous concept of a corrosion product 'solubility'. In addition to the misuse of this term, other complications are discussed. These include the need to take account of the consequences of Gibbs' phase rule and the fact that, for mixed spinels, neither the concept of a thermodynamic solubility nor of a solubility product is valid. There is no reason to believe that measured apparent solubilities of nickel ferrites or spinel mixtures containing cobalt can give any direct guidance on the direction of transport of Ni or Co in PWR primary circuits. This is more likely to be determined by the distribution of stable and unstable ferrites and chromites than by any temperature coefficient of apparent solubility. Most of the transport of Ni and Co into and out of the core probably occurs as a consequence of either chemical or mechanical transients. Most important is likely to be the oxidative destruction and subsequent re-precipitation of chromites which occurs as a consequence of the oxygenated conditions employed during plant shutdown. (author)

  12. Palaeoceanographic controls on geochemical characteristics of organic-rich Exshaw mudrocks: role of enhanced primary production

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M.L.; Bustin, R.M. [University of British Columbia, Vancouver (Canada). Dept. of Earth and Ocean Sciences

    1999-07-01

    Organic-rich source rocks have generally been attributed to enhanced preservation of organic matter under anoxic bottom waters. Here geochemical analysis of kerogen and whole rock samples of organic-rich (lithofacies B{sub 1}) and organic-lean (lithofacies B{sub 2}) laminated mudrocks of the Devonian-Carboniferous Exshaw Formation, Alberta, highlight the importance of primary production in governing the quantity and quality of organic matter. Lower Si/Al, K/Al, Ti/Al and quartz/clay ratios in lithofacies B{sub 2}, similar maceral types and the laminated fabric of the two lithofacies indicate that the quality and quantity of organic matter are not related to grain size, redox or organic matter source changes. High Total Organic Carbon (TOC) and Hydrogen Index (HI), low Oxidation Index (Ox.I. ratio of oxygen functional groups to aliphatic groups derived by FTIR), lighter {delta}{sup 15}N{sub tot} and heavier {delta}{sup 13}C{sub org} isotopes indicate that kerogen of lithofacies B{sub 1} accumulated during periods of high organic-carbon production and delivery of relatively fresh, labile, well-preserved organic matter to the sea floor. In contrast, low TOC, HI, high Ox.I., heavier {delta}{sup 15}N{sub tot} and lighter {delta}{sup 13}C{sub org} isotopes indicate low primary productivity and delivery, high recycling and poor preservation of organic matter during accumulation of lithofacies B{sub 2}. (author)

  13. Decreasing Net Primary Productivity in Response to Urbanization in Liaoning Province, China

    Directory of Open Access Journals (Sweden)

    Tan Chen

    2017-01-01

    Full Text Available Regional ecosystems have been greatly affected by the rapid expansion of urban areas. In order to explore the impact of land use change on net primary productivity (NPP in rapidly developing cities during the current urbanization process, we quantified land use change in Liaoning province between 2000 and 2010 using net primary productivity as an indicator of ecosystem productivity and health. The Carnegie–Ames–Stanford Approach model was used to estimate NPP by region and land use. We used a unit circle-based evaluation model to quantify local urbanization effects on NPP around eight representative cities. The dominant land use types were farmland, woodland and urban, with urban rapidly replacing farmland. Mean annual NPP and total NPP decreased faster from 2005 to 2010 than from 2000 to 2005, reflecting increasing urbanization rates. The eastern, primarily woodland part of Liaoning province had the greatest reduction in NPP, while the western part, which was primarily farmland and grassland, had the lowest reduction.

  14. Natural forcings on a transformed territory overshoot thresholds of primary productivity in the Guadalquivir estuary

    Science.gov (United States)

    Ruiz, J.; Macías, D.; Navarro, G.

    2017-09-01

    A three year-long quasi continuum sampling dataset on the Guadalquivir estuary water quality was used to assess the role of light availability on its biological production. We found that inorganic nutrients within the estuary are very high (with mean values for inorganic nitrogen and phosphorous of 285 and 2.4 μM respectively) while phytoplankton biomass remains low most of the time (with a mean value of 2.6 mg/m3). A strong relationship between phytoplankton biomass and water turbidity was found indicating that, indeed, light availability is the major constraint of primary production in this system. Most of the time this limitation of primary production is not associated to enhanced turbidity connected to fresh water inputs. Instead, our data indicate that, independently of freshwater inputs, the photosynthesis is restricted by tidal forcings enhancing turbidity in an estuary that has been highly modified. Our results match with classical theories on the functioning of well-mixed, estuarine ecosystems as well as with recent modeling exercises. We also discuss the potential impacts of this particular characteristic of some estuarine systems for their management and regulatory control.

  15. Estimating crop net primary production using inventory data and MODIS-derived parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  16. Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation

    Directory of Open Access Journals (Sweden)

    Shufen Pan

    2014-01-01

    Full Text Available There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1 ground-based field measurements, (2 satellite-based observations, and (3 process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP and net primary production (NPP. To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2 and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment.

  17. Biopharmaceutical production: Applications of surface plasmon resonance biosensors.

    Science.gov (United States)

    Thillaivinayagalingam, Pranavan; Gommeaux, Julien; McLoughlin, Michael; Collins, David; Newcombe, Anthony R

    2010-01-15

    Surface plasmon resonance (SPR) permits the quantitative analysis of therapeutic antibody concentrations and impurities including bacteria, Protein A, Protein G and small molecule ligands leached from chromatography media. The use of surface plasmon resonance has gained popularity within the biopharmaceutical industry due to the automated, label free, real time interaction that may be exploited when using this method. The application areas to assess protein interactions and develop analytical methods for biopharmaceutical downstream process development, quality control, and in-process monitoring are reviewed. 2009 Elsevier B.V. All rights reserved.

  18. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  19. Neural computation of visual imaging based on Kronecker product in the primary visual cortex

    Directory of Open Access Journals (Sweden)

    Guozheng Yao

    2010-03-01

    Full Text Available Abstract Background What kind of neural computation is actually performed by the primary visual cortex and how is this represented mathematically at the system level? It is an important problem in the visual information processing, but has not been well answered. In this paper, according to our understanding of retinal organization and parallel multi-channel topographical mapping between retina and primary visual cortex V1, we divide an image into orthogonal and orderly array of image primitives (or patches, in which each patch will evoke activities of simple cells in V1. From viewpoint of information processing, this activated process, essentially, involves optimal detection and optimal matching of receptive fields of simple cells with features contained in image patches. For the reconstruction of the visual image in the visual cortex V1 based on the principle of minimum mean squares error, it is natural to use the inner product expression in neural computation, which then is transformed into matrix form. Results The inner product is carried out by using Kronecker product between patches and function architecture (or functional column in localized and oriented neural computing. Compared with Fourier Transform, the mathematical description of Kronecker product is simple and intuitive, so is the algorithm more suitable for neural computation of visual cortex V1. Results of computer simulation based on two-dimensional Gabor pyramid wavelets show that the theoretical analysis and the proposed model are reasonable. Conclusions Our results are: 1. The neural computation of the retinal image in cortex V1 can be expressed to Kronecker product operation and its matrix form, this algorithm is implemented by the inner operation between retinal image primitives and primary visual cortex's column. It has simple, efficient and robust features, which is, therefore, such a neural algorithm, which can be completed by biological vision. 2. It is more suitable

  20. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    Science.gov (United States)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  1. Cellular Microenvironment Dictates Androgen Production by Murine Fetal Leydig Cells in Primary Culture1

    Science.gov (United States)

    Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.

    2014-01-01

    ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  2. Fine-Root Production in an Amazon Rain Forest: Deep Roots are an Important Component of Net Primary Productivity

    Science.gov (United States)

    Norby, R.; Cordeiro, A. L.; Oblitas, E.; Valverde-Barrantes, O.; Quesada, C. A.

    2017-12-01

    Fine-root production is a significant component of net primary production (NPP), but it is the most difficult of the major components to measure. Data on fine-root production are especially sparse from tropical forests, and therefore the estimates of tropical forest NPP may not be accurate. Many estimates of fine-root production are based on observations in the top 15 or 30 cm of soil, with the implicit assumption that this approach will capture most of the root distribution. We measured fine-root production in a 30-m tall, old-growth, terra firme rain forest near Manaus, Brazil, which is the site for a free-air CO2 enrichment (FACE) experiment. Ten minirhizotrons were installed at a 45 degree angle to a depth of 1.1 meters; the tubes were installed 2 years before any measurements were made to allow the root systems to recover from disturbance. Images were collected biweekly, and measurements of root length per area of minirhizotron window were scaled up to grams of root per unit land area. Scaling up minirhizotron measurments is problematic, but our estimate of fine-root standing crop in the top 15 cm of soil (281 ± 37 g dry matter m-2) compares well with a direct measurement of fine roots in two nearby 15-cm soil cores (290 ± 37 g m-2). Although the largest fraction of the fine-root standing crop was in the upper soil horizons, 44% of the fine-root mass was deeper than 30 cm, and 17% was deeper than 60 cm. Annual fine-root production was 934 ± 234 g dry matter m-2 (453 ± 113 g C m-2), which was 35% of estimated NPP of the forest stand (1281 g C m-2). A previous estimate of NPP of the forest at this site was smaller (1010 g m-2), but that estimate relied on fine-root production measured elsewhere and only in the top 10 or 30 cm of soil; fine roots accounted for 21% of NPP in that analysis. Extending root observations deeper into the soil will improve estimates of the contribution of fine-root production to NPP, which will in turn improve estimates of ecosystem

  3. Production of molecules on a surface under plasma exposure: example of NO on pyrex

    International Nuclear Information System (INIS)

    Marinov, D; Guaitella, O; Rousseau, A; Ionikh, Y

    2010-01-01

    We propose a new experimental approach to the study of surface-catalysed nitric oxide production under plasma exposure. Stable nitrogen species are grafted to the surface of a pyrex discharge tube during N 2 plasma pretreatment. These species are trapped by surface active sites and on being exposed to O 2 plasma, they initiate the production of NO molecules, which are detected using tunable diode laser absorption spectroscopy. Supposing that nitrogen species are adsorbed N atoms, we estimate the initial surface coverage as [N ads ] = 3 x 10 13 cm -2 . This gives an assessment of the lower boundary of the density of surface active sites.

  4. Nutrient dynamics and primary production in a pristine coastal mangrove ecosystem: Andaman Islands, India

    Science.gov (United States)

    Jenkins, E. N.; Nickodem, K.; Siemann, A. L.; Hoeher, A.; Sundareshwar, P. V.; Ramesh, R.; Purvaja, R.; Banerjee, K.; Manickam, S.; Haran, H.

    2012-12-01

    Mangrove ecosystems play a key role in supporting coastal food webs and nutrient cycles in the coastal zone. Their strategic position between the land and the sea make them important sites for land-ocean interaction. As part of an Indo-US summer field course we investigated changes in the water chemistry in a pristine mangrove creek located at Wright Myo in the Andaman Islands, India. This study was conducted during the wet season (June 2012) to evaluate the influence of the coastal mangrove wetlands on the water quality and productivity in adjoining pelagic waters. Over a full tidal cycle spanning approximately 24 hrs, we measured nutrient concentrations and other ancillary parameters (e.g. dissolved oxygen, turbidity, salinity, etc.) hourly to evaluate water quality changes in incoming and ebbing tides. Nutrient analyses had the following concentration ranges (μM): nitrite 0.2-0.9, nitrate 2.0-11.5, ammonium 1.3-7.5, dissolved inorganic phosphate 0.7-2.8. The dissolved inorganic nitrogen to dissolved inorganic phosphate (DIN/DIP) ratio was very low relative to an optimal ratio, suggesting growth is nitrogen limited. In addition, we conducted primary production assays to investigate the factors that controlled primary production in this pristine creek. The experiment was carried out in situ using the Winkler method at low and high tide. Four-hour incubation of light and dark bottles representing a fixed control, non-fertilized, fertilized with nitrate, and fertilized with phosphate enabled the measurement of both net oxygen production and dark respiration. The low tide experiment suggests the ecosystem is heterotrophic because the oxygen measured in the light bottles was consistently less than that of the dark bottles. This result may be an experimental artifact of placing the glass bottles in the sun for too long prior to incubation, potentially leading to photolysis of large organic molecules in the light bottles. The high tide experiment also displayed

  5. Primary structure of the human fgr proto-oncogene product p55/sup c-fgr/

    Energy Technology Data Exchange (ETDEWEB)

    Katamine, S.; Notario, V.; Rao, C.D.; Miki, T.; Cheah, M.S.C.; Tronick, S.R.; Robbins, K.C.

    1988-01-01

    Normal human c-fgr cDNA clones were constructed by using normal peripheral blood mononuclear cell mRNA as a template. Nucleotide sequence analysis of two such clones revealed a 1,587-base-pair-long open reading frame which predicted the primary amino acid sequence of the c-fgr translational product. Homology of this protein with the v-fgr translational product stretched from codons 128 to 516, where 32 differences among 388 codons were observed. Sequence similarity with human c-src, c-yes, and fyn translations products began at amino acid position 76 of the predicted c-fgr protein and extended nearly to its C-terminus. In contrast, the stretch of 75 amino acids at the N-terminus demonstrated a greatly reduced degree of relatedness to these same proteins. To verify the deduced amino acid sequence, antibodies were prepared against peptides representing amino- and carboxy-terminal regions of the predicted c-fgr translational product. Both antibodies specifically recognized a 55-kilodalton protein expressed in COS-1 cells transfected with a c-fgr cDNA expression plasmid. Moreover, the same protein was immunoprecipitated from an Epstein-Barr virus-infected Burkitt's lymphoma cell line which expressed c-fgr mRNA but not in its uninfected fgr mRNA-negative counterpart. These findings identified the 55-kilodalton protein as the product of the human fgr proto-oncogene.

  6. Preliminary study of radionuclide corrosion products in primary cooling water at RSG-GAS

    International Nuclear Information System (INIS)

    Lestari, D.E.; Pudjojanto, M.S.; Subiharto; Budi, S.

    1998-01-01

    Analysis of radionuclides emitting gamma rays at the primary cooling water at RSG-GAS has been carried out. The water coolant samples was performed using a low level background gamma spectrometer unit, including of high resolution of gamma detector HP-Ge Tennelec and Multichannel Analyzer (MCA) ADCAM 100 ORTEC. The result indicated Na-24 and Mn-56 radionuclides that may be as corrosion product and should studied deeply in the future. The expected activity concentration radionuclide for Mn-56 is lower than those written in the Safety Analysis Report (SAR), while for Na-24 is in agreement

  7. Study of the formation and transport of corrosion products in PWR primary circuit simulators

    International Nuclear Information System (INIS)

    Noe, M.; Frejaville, G.; Camp, J.J.

    1983-01-01

    The formation, migration and deposition of corrosion products in PWR primary circuits are studied in out-of-reactor loops. The aim of these studies is to limit the build-up of the radiation fields impinging on out-of-flux walls and to reduce the danger of rapid corrosion of fuel cans, taking into account the tougher conditions imposed on current trends in the operation of such industrial plants. Four simulator loops and their respective possibilities and research methods are described. (author)

  8. Worldwide estimates and bibliography of net primary productivity derived from pre-1982 publications

    Energy Technology Data Exchange (ETDEWEB)

    Esser, G. [Justus-Liebig-Univ., Giessen (Germany). Inst. for Plant Ecology; Lieth, H.F.H. [Univ. of Osnabrueck (Germany). Systems Research Group; Scurlock, J.M.O.; Olson, R.J. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    An extensive compilation of more than 700 field estimates of net primary productivity of natural and agricultural ecosystems worldwide was synthesized in Germany in the 1970s and early 1980s. Although the Osnabrueck data set has not been updated since the 1980s, it represents a wealth of information for use in model development and validation. This report documents the development of this data set, its contents, and its recent availability on the Internet from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. Caution is advised in using these data, which necessarily include assumptions and conversions that may not be universally applicable to all sites.

  9. MODIFICATION OF SURFACE KONDENSITSIONNYH AEROSOLS WELDING AND METALLURGICHESKIH PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    A. A. Ennan

    2016-04-01

    Full Text Available Chemical modification of surface kondensitsionnyh aerosols (KA which formation when heat treatment metals (process of weld, foundry processes with application chlorosilanes are suggested. Adsorbtion vapor of water on modification powders KA decreases and changes in varies from modifier and conditions modification are setted.

  10. Monoclonal Antibody Production against Human Spermatozoal Surface Antigens

    Directory of Open Access Journals (Sweden)

    M Jedi-Tehrani

    2005-10-01

    Full Text Available Introduction: As monoclonal antibodies are potential tools for characterization of soluble or cellular surface antigens, use of these proteins has always been considered in infertility and reproduction research. Therefore, in this study, monoclonal antibodies against human sperm surface antigens were produced. Material and Methods: To produce specific clones against human sperm surface antigens, proteins were extracted using solubilization methods. Balb/c mice were immunized intraperitoneally with the proteins using complete Freund’s adjuvant in the first injection and incomplete Adjuvant in the following booster injections. Hybridoma cells producing ASA were cloned by limiting dilution. Results: Five stable ASA producing hybridoma clones were achieved and their antibody isotypes were determined by ELISA. All the isotypes were of IgG class. Their cross reactivity with rat and mice spermatozoa was examined but they did not have any cross reactivity. Conclusion: The produced antibodies can be used in further studies to characterize and evaluate each of the antigens present on human sperm surface and determining their role in fertilization.

  11. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Golda-Cepa, M., E-mail: golda@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Syrek, K. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Brzychczy-Wloch, M. [Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow (Poland); Sulka, G.D. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kotarba, A., E-mail: kotarba@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  12. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    International Nuclear Information System (INIS)

    Golda-Cepa, M.; Syrek, K.; Brzychczy-Wloch, M.; Sulka, G.D.; Kotarba, A.

    2016-01-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  13. Fueling primary productivity: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Science.gov (United States)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, D.

    2010-06-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be catastrophically reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global primary productivity between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, the high preformed nutrients subducted in the SAMW layer are converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  14. On the role of tides and strong wind events in promoting summer primary production in the Barents Sea

    Science.gov (United States)

    Le Fouest, Vincent; Postlethwaite, Clare; Morales Maqueda, Miguel Angel; Bélanger, Simon; Babin, Marcel

    2011-11-01

    Tides and wind-driven mixing play a major role in promoting post-bloom productivity in subarctic shelf seas. Whether this is also true in the high Arctic remains unknown. This question is particularly relevant in a context of increasing Arctic Ocean stratification in response to global climatic change. We have used a three-dimensional ocean-sea ice-plankton ecosystem model to assess the contribution of tides and strong wind events to summer (June-August 2001) primary production in the Barents Sea. Tides are responsible for 20% (60% locally) of the post-bloom primary production above Svalbard Bank and east of the Kola Peninsula. By contrast, more than 9% of the primary production is due to winds faster than 8 m s -1 in the central Barents Sea. Locally, this contribution reaches 25%. In the marginal ice zone, both tides and wind events have only a limited effect on primary production (central Barents Sea), respectively. When integrated over all Barents Sea sub-regions, tides and strong wind events account, respectively, for 6.8% (1.55 Tg C; 1 Tg C=10 12 g C) and 4.1% (0.93 Tg C) of the post-bloom primary production (22.6 Tg C). To put this in context, this contribution to summer primary production is equivalent to the spring bloom integrated over the Svalbard area. Tides and winds are significant drivers of summer plankton productivity in the Barents Sea.

  15. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  16. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  17. Observation and simulation of net primary productivity in Qilian Mountain, western China.

    Science.gov (United States)

    Zhou, Y; Zhu, Q; Chen, J M; Wang, Y Q; Liu, J; Sun, R; Tang, S

    2007-11-01

    We modeled net primary productivity (NPP) at high spatial resolution using an advanced spaceborne thermal emission and reflection radiometer (ASTER) image of a Qilian Mountain study area using the boreal ecosystem productivity simulator (BEPS). Two key driving variables of the model, leaf area index (LAI) and land cover type, were derived from ASTER and moderate resolution imaging spectroradiometer (MODIS) data. Other spatially explicit inputs included daily meteorological data (radiation, precipitation, temperature, humidity), available soil water holding capacity (AWC), and forest biomass. NPP was estimated for coniferous forests and other land cover types in the study area. The result showed that NPP of coniferous forests in the study area was about 4.4 tCha(-1)y(-1). The correlation coefficient between the modeled NPP and ground measurements was 0.84, with a mean relative error of about 13.9%.

  18. Seasonal rates of benthic primary production in a Greenland fjord measured by aquatic eddy correlation

    DEFF Research Database (Denmark)

    M. Attard, Karl; Glud, Ronnie; McGinnis, Daniel F.

    2014-01-01

    -quality multiple-day EC data sets document the presence of a year-round productive benthic phototrophic community. The shallow-water sites were on average autotrophic during the spring and summer months, up to 43.6 mmol O2 m22 d21, and heterotrophic or close to metabolic balance during the autumn and winter....... Substantial benthic gross primary production (GPP) was measured year-round. The highest GPP rates were measured during the spring, up to 5.7 mmol O2 m22 h21 (136.8 mmol O2 m22 d21), and even at low light levels (, 80 mmol quanta m22 s21) during late autumn and winter we measured rates of up to 1.8 mmol O2 m22...

  19. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.

    Science.gov (United States)

    Zhao, Maosheng; Running, Steven W

    2010-08-20

    Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

  20. A novel free ammonia based pretreatment technology to enhance anaerobic methane production from primary sludge.

    Science.gov (United States)

    Wei, Wei; Zhou, Xu; Xie, Guo-Jun; Duan, Haoran; Wang, Qilin

    2017-10-01

    This study proposed a novel free ammonia (FA, i.e., NH 3 ) pretreatment technology to enhance anaerobic methane production from primary sludge for the first time. The solubilization of primary sludge was substantially enhanced following 24 h FA pretreatment (250-680 mg NH 3 -N/L), by which the release of soluble chemical oxygen demand (SCOD) (i.e., 0.4 mg SCOD/mg VS added; VS: volatile solids) was approximately 10 times as much as that without pretreatment (i.e., 0.03 mg SCOD/mg VS added). Then, biochemical methane potential (BMP) tests demonstrated that FA pretreatment of 250-680 mg NH 3 -N/L was capable of enhancing anaerobic methane production while the digestion time was more than 7 days. Model based analysis indicated that the improved anaerobic methane production was due to an increased biochemical methane potential (B 0 ) of 8-17% (i.e., from 331 to 357-387 L CH 4 /kg VS added), with the highest B 0 achieved at 420 mg NH 3 -N/L pretreatment. However, FA pretreatment of 250-680 mg NH 3 -N/L decreased hydrolysis rate (k) by 24-38% compared with control (i.e., from 0.29 d -1 to 0.18-0.22 d -1 ), which explained the lower methane production over the first 7 days' digestion period. Economic analysis and environmental evaluation demonstrated that FA pretreatment technology was environmentally friendly and economically favorable. Biotechnol. Bioeng. 2017;114: 2245-2252. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Metrology requirements for the serial production of ELT primary mirror segments

    Science.gov (United States)

    Rees, Paul C. T.; Gray, Caroline

    2015-08-01

    The manufacture of the next generation of large astronomical telescopes, the extremely large telescopes (ELT), requires the rapid manufacture of greater than 500 1.44m hexagonal segments for the primary mirror of each telescope. Both leading projects, the Thirty Meter Telescope (TMT) and the European Extremely Large Telescope (E-ELT), have set highly demanding technical requirements for each fabricated segment. These technical requirements, when combined with the anticipated construction schedule for each telescope, suggest that more than one optical fabricator will be involved in the delivery of the primary mirror segments in order to meet the project schedule. For one supplier, the technical specification is challenging and requires highly consistent control of metrology in close coordination with the polishing technologies used in order to optimize production rates. For production using multiple suppliers, however the supply chain is structured, consistent control of metrology along the supply chain will be required. This requires a broader pattern of independent verification than is the case of a single supplier. This paper outlines the metrology requirements for a single supplier throughout all stages of the fabrication process. We identify and outline those areas where metrology accuracy and duration have a significant impact on production efficiency. We use the challenging ESO E-ELT technical specification as an example of our treatment, including actual process data. We further develop this model for the case of a supply chain consisting of multiple suppliers. Here, we emphasize the need to control metrology throughout the supply chain in order to optimize net production efficiency.

  2. Ion Production by Laser Impact on a Silver Surface

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    Even at moderate fluence (0.6 -2.4 J/cm2) laser impact on metals in the UV regime results in a significant number of ions emitted from the surface. Even at this low fluence the particles ejected from a surface interact with each other in a so-called laser ablation plume. The ablated particles...... are largely neutrals at low fluence, but the fraction of ions increases strongly with fluence. We have irradiated silver in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes...... range considered is also a typical range for pulsed laser deposition (PLD), by which the material is collected on a suitable substrate for thin film growth. PLD has the advantage compared with other film deposition methods, that even a complicated stoichiometry, e.g. metal oxides or alloys, can...

  3. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells

    Science.gov (United States)

    McMurray, R. J.; Wann, A. K. T.; Thompson, C. L.; Connelly, J. T.; Knight, M. M.

    2013-01-01

    The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation. PMID:24346024

  4. Modeling of primary production of phytoplankton in the wetland Jaboque, Bogotá D.C.

    Directory of Open Access Journals (Sweden)

    Julio Eduardo Beltrán Vargas

    2016-02-01

    Full Text Available A dynamic simulation model is presented to explain the general behavior of the  primary production of phytoplankton in the wetland Jaboque - Bogota, Colombia, in three sections with differential physical and chemical characteristics. The model takes into account the physicochemical variables, the basin area, depth, annual rainfall, water temperature, pH and concentration of chlorophyll _a. The dynamic modeling is based on differential equations and the Euler integration method is used, the modeling was developed using Stella 9.1® computer program. The model allows quantifying the primary production of phytoplankton in wetland Jaboque from chlorophyll _a monthly average concentration for each section. The results of the Ppf modeling show that Ppf concentration variations  in each section of the wetland follow a reverse pattern to the bimodal behavior of precipitation. A high degree of correspondence between the values of chlorophyll_a Ppf field and modeled in the following manner r2 = 0.86 for the first section and r2 = 0.86 and r2 = 0.79 for the remaining sections was found. Error determination was 0,57 relative to the first section and 0,35; 0,46, indicating that the results are not overstated. The model shows in general terms the functional aspects of behavior Ppf and its relation to the process of eutrophication, and it allows recommendations for the management and restoration of wetlands.

  5. Spatial extrapolation of light use efficiency model parameters to predict gross primary production

    Directory of Open Access Journals (Sweden)

    Karsten Schulz

    2011-12-01

    Full Text Available To capture the spatial and temporal variability of the gross primary production as a key component of the global carbon cycle, the light use efficiency modeling approach in combination with remote sensing data has shown to be well suited. Typically, the model parameters, such as the maximum light use efficiency, are either set to a universal constant or to land class dependent values stored in look-up tables. In this study, we employ the machine learning technique support vector regression to explicitly relate the model parameters of a light use efficiency model calibrated at several FLUXNET sites to site-specific characteristics obtained by meteorological measurements, ecological estimations and remote sensing data. A feature selection algorithm extracts the relevant site characteristics in a cross-validation, and leads to an individual set of characteristic attributes for each parameter. With this set of attributes, the model parameters can be estimated at sites where a parameter calibration is not possible due to the absence of eddy covariance flux measurement data. This will finally allow a spatially continuous model application. The performance of the spatial extrapolation scheme is evaluated with a cross-validation approach, which shows the methodology to be well suited to recapture the variability of gross primary production across the study sites.

  6. Assessing ozone and nitrogen impact on net primary productivity with a Generalised non-Linear Model

    International Nuclear Information System (INIS)

    De Marco, Alessandra; Screpanti, Augusto; Attorre, Fabio; Proietti, Chiara; Vitale, Marcello

    2013-01-01

    Some studies suggest that in Europe the majority of forest growth increment can be accounted for N deposition and very little by elevated CO 2 . High ozone (O 3 ) concentrations cause reductions in carbon fixation in native plants by offsetting the effects of elevated CO 2 or N deposition. The cause-effect relationships between primary productivity (NPP) of Quercus cerris, Q. ilex and Fagus sylvatica plant species and climate and pollutants (O 3 and N deposition) in Italy have been investigated by application of Generalised Linear/non-Linear regression model (GLZ model). The GLZ model highlighted: i) cumulative O 3 concentration-based indicator (AOT40F) did not significantly affect NPP; ii) a differential action of oxidised and reduced nitrogen depositions to NPP was linked to the geographical location; iii) the species-specific variation of NPP caused by combination of pollutants and climatic variables could be a potentially important drive-factor for the plant species' shift as response to the future climate change. - Highlights: ► GLZ Models emphasized the role of combination of variables affecting NPP. ► A differential action of ox-N and red-N deposition to NPP was observed for plants. ► Different responses to climate and pollutants could affect the plant species' shift. - Ozone and nitrogen depositions have non-linear effects on primary productivity of tree species differently distributed in Italy.

  7. Predictive factors of user acceptance on the primary educational mathematics aids product

    Science.gov (United States)

    Hidayah, I.; Margunani; Dwijanto

    2018-03-01

    Mathematics learning in primary schools requires instructional media. According to Piaget's theory, students are still in the concrete operational stage. For this reason, the development of the primary level mathematics aids is needed to support the development of successful mathematics learning. The stages of this research are the stages of commercialization with preparatory, marketing, and measurement analysis procedures. Promotion as part of marketing is done by doing a demonstration to the teacher. Measurements were performed to explore the predictive factors of user feasibility in adopting the product. Measurements were conducted using the concept of Technology Acceptance Model (TAM). Measurement variables include external variables, perceived usefulness, perceived ease of use, attitude, intention to use, and actual use. The result of this research shows that the contribution of predictive factors of mathematics teachers on the teaching aids product as follows: the external variable and perceived ease of use at 74%, perceived usefulness at 72%, intention to use (behavioral) at 58%, attitude at 52%, and the consequence factor (actual use) at 42%.

  8. High temperature filtration of radioactivable corrosion products in the primary circuit of PWR type reactors

    International Nuclear Information System (INIS)

    Dolle, L.

    1976-01-01

    A effective limitation to the deposition of radioactive corrosion products in the core of a reactor at power operation, is to be obtained by filtering the water of the primary circuit at a flow rate upper than 1% of the coolant flow rate. However, in view of accounting for more important release of corrosion products during the reactor start-up and also for some possible variations in the efficiency of the system, it is better that the flow rate to be treated by the cleaning circuit is stated at 5%. Filtration must be effected at the temperature of the primary circuit and preferably on each loop. To this end, the feasibility of electromagnetic filtration or filtration through a deep bed of granulated graphite has been studied. The on-loop tests effected on each filter gave efficiencies and yields respectively upper than 90% and 99% for magnetite and ferrite particles in suspension in water at 250 deg C. Such results confirm the interest lying in high temperature filtration and lead to envisage its application to reactors [fr

  9. Combining remote sensing and climatic data to estimate net primary production across Oregon

    International Nuclear Information System (INIS)

    Law, B.E.; Waring, R.H.

    1994-01-01

    A range in productivity and climate exists along an east—west transect in Oregon. Remote sensing and climatic data for several of the Oregon Transect Ecosystem Research Project (OTTER) forested sites and neighboring shrub sites were combined to determined whether percentage intercepted photosynthetically active radiation (%IPAR) can be estimated from remotely sensed observations and to evaluate climatic constraints on the ability of vegetation to utilize intercepted of radiation for production. The Thematic Mappers Simulator (TMS) normalized difference vegetation index (NDVI) provided a good linear estimate of %IPAR (R 2 = 0.97). Vegetation intercepted from 24.8% to 99.9% of incident photosynthetically active radiation (PAR), and aboveground net primary production (ANPP) ranged from 53 to 1310 g·m —2 ·yr —1 . The ANPP was linearly related to annual IPAR across sites (R 2 = 0.70). Constraints on the ability of each species to utilize intercepted light, as defined by differential responses to freezing temperatures, drought, and vapor pressure deficit, were quantified from hourly meteorological station measurements near the sites and field physiological measurements. Vegetation could utilize from 30% of intercepted radiation at the eastside semiarid juniper woodland and shrub sites to 97% at the maritime coastal sites. Energy—size efficiency (ϵu), calculated from aboveground production and IPAR modified by the environmental limits, averaged 0.5 g/MJ for the shrub sites and 0.9 g/MJ for the forested sites. (author)

  10. Annual Gross Primary Production from Vegetation Indices: A Theoretically Sound Approach

    Directory of Open Access Journals (Sweden)

    María Amparo Gilabert

    2017-02-01

    Full Text Available A linear relationship between the annual gross primary production (GPP and a PAR-weighted vegetation index is theoretically derived from the Monteith equation. A semi-empirical model is then proposed to estimate the annual GPP from commonly available vegetation indices images and a representative PAR, which does not require actual meteorological data. A cross validation procedure is used to calibrate and validate the model predictions against reference data. As the calibration/validation process depends on the reference GPP product, the higher the quality of the reference GPP, the better the performance of the semi-empirical model. The annual GPP has been estimated at 1-km scale from MODIS NDVI and EVI images for eight years. Two reference data sets have been used: an optimized GPP product for the study area previously obtained and the MOD17A3 product. Different statistics show a good agreement between the estimates and the reference GPP data, with correlation coefficient around 0.9 and relative RMSE around 20%. The annual GPP is overestimated in semiarid areas and slightly underestimated in dense forest areas. With the above limitations, the model provides an excellent compromise between simplicity and accuracy for the calculation of long time series of annual GPP.

  11. Net primary productivity of some aquatic macrophytes in sewage-sullage mixture.

    Science.gov (United States)

    Kanungo, V K; Sinha, S; Naik, M L

    2001-07-01

    Sewage-sullage mixture from Raipur city is spread over a vast area surrounding the city. This mixture has a pH always above neutrality with high turbidity. Transparency was nil with the absence of phenolphthalein alkalinity and dissolved oxygen. Hardness was high with low nitrogen and phosphorus concentration. Human consumable. acquatic macrophytes are cultivated in such waste water. Net primary productivity of three macrophytes: Ipomoea aquatica, Marsilea quadrifolia and Nelumbo nucifera were evaluated while being cultivated in such sewage-sullage mixture. Productivity was determined either with periodic biomass removal (I. aquatica and M. quadrifolia) or through removing the biomass only once at the time of growing season (N. nucifera). Growing season productivity of up to 27.48. 19.81 and 9.49 g m(-2) and day(-1) and extrapolated productivity of up to 100.30, 72.31 and 34.64 mt. ha(-1) yr(-1) was recorded for I. aquatica. M. quadrifolia and N. nucifera respectively. Thus, these macrophytes are yielding a high amount of human consumable biomass from an area which neither be a useless wetland.

  12. Primary production and chlorophyll distributions in the subtropical and tropical waters of the Atlantic Ocean in the autumn of 2002

    Science.gov (United States)

    Vedernikov, V. I.; Gagarin, V. I.; Demidov, A. B.; Burenkov, V. I.; Stunzhas, P. A.

    2007-06-01

    In October and November 2002, high and relatively high values of the chlorophyll a concentration at the sea surface ( C chl) were observed in the English Channel (0.47 mg/m3), in the waters of the North Atlantic Current (0.25 mg/m3), in the tropical and subtropical anticyclonic gyres (0.07-0.42 mg/m3), and also in the southwestern region of the southern subtropical anticyclonic gyre (usually 0.11-0.23 mg/m3). The central regions of the southern subtropical anticyclonic gyre (SATG) and the North Atlantic tropical gyre (NATR) were characterized by lower values of C chl (0.02-0.08 mg/m3 for the SATG and 0.07-0.14 mg/m3 for the NATR). At most of the SATG stations, the values of the surface primary production ( C phs) varied from 2.5 to 5.5 mg C/m3 per day and were mainly defined by the fluctuations of C chl ( r = +0.78) rather than by those of the assimilation number ( r = +0.54). The low assimilation activity of phytoplankton in these waters (1.3-4.6 mg chl a per hour) pointed to a lack of nutrients. An analysis of the variability of their concentration and the composition of photosynthetic pigments showed that, in the waters north of 30° N, the growth of phytoplankton was mostly restricted by the deficiency of nitrogen, while, in more southern areas, at the majority of stations (about 60%), the phosphorus concentrations were the minimum. At the low concentrations of nitrates and nitrites, ammonium represented itself as a buffer that prevented planktonic algae from extreme degrees of nitric starvation. In the tropical waters and in the waters of the SATG, the primary production throughout the water column varied from 240 to 380 mg C/m2 30° per day. This level of productivity at stations with low values of C chl (photosynthesis based on in situ measurements point to the high efficiency of utilizing the penetrating solar radiation by phytoplankton on cloudy days.

  13. Optimization of lysine production in Corynebacteriumglutamicum ATCC15032 by Response surface methodology

    Directory of Open Access Journals (Sweden)

    Mehrnaz Haghi

    2017-03-01

    Discussion and conclusion: According to the results, the proposed culture media by response surface methodology causes 1400 times increase in the lysine production compared with M9 culture media and methionine had an important role in the production of lysine, probably by inhibiting the other metabolic pathway which has common metabolic precursor with lysine production metabolic pathway.

  14. Calcium ion dependency of ethylene production in segments of primary roots of Zea mays

    Science.gov (United States)

    Hasenstein, K. H.; Evans, M. L.

    1986-01-01

    We investigated the effect of Ca2+ on ethylene production in 2-cm long apical segments from primary roots of corn (Zea mays L., B73 x Missouri 17) seedlings. The seedlings were raised under different conditions of Ca2+ availability. Low-Ca and high-Ca seedlings were raised by soaking the grains and watering the seedlings with distilled water or 10 mM CaCl2, respectively. Segments from high-Ca roots produced more than twice as much ethylene as segments from low-Ca roots. Indoleacetic acid (IAA; 1 micromole) enhanced ethylene production in segments from both low-Ca and high-Ca roots but auxin-induced promotion of ethylene production was consistently higher in segments from high-Ca roots. Addition of 1-aminocyclopropane-1-carboxylic acid (ACC) to root segments from low-Ca seedlings doubled total ethylene production and the rate of production remained fairly constant during a 24 h period of monitoring. In segments from high-Ca seedlings ACC also increased total ethylene production but most of the ethylene was produced within the first 6 h. The data suggest that Ca2+ enhances the conversion of ACC to ethylene. The terminal 2 mm of the root tip were found to be especially important to ethylene biosynthesis by apical segments and, experiments using 45Ca2+ as tracer indicated that the apical 2 mm of the root is the region of strongest Ca2+ accumulation. Other cations such as Mn2+, Mg2+, and K+ could largely substitute for Ca2+. The significance of these findings is discussed with respect to recent evidence for gravity-induced Ca2+ redistribution and its relationship to the establishment of asymmetric growth during gravitropic curvature.

  15. Chlorophyll fluorescence better captures seasonal and interannual gross primary productivity dynamics across dryland ecosystems of southwestern North America

    Science.gov (United States)

    Satellite remote sensing provides unmatched spatiotemporal information on vegetation gross primary productivity (GPP). Yet, understanding of the relationship between GPP and remote sensing observations and how it changes as a function of factors such as scale, biophysical constraint, and vegetation ...

  16. Primary productivity, phytoplankton standing crop and physico-chemical characteristics of the Antarctic and adjacent central Indian Ocean waters

    Digital Repository Service at National Institute of Oceanography (India)

    JiyalalRam, M.

    Primary productivity, phytoplankton pigments and physico-chemical properties were studied in Antarctic waters and adjoining Indian Ocean between 11 degrees and 67 degrees E longitudes from polynya region (60 degrees S) to equator during the austral...

  17. Exploring the Potential Impact of Greenland Meltwater on Stratification, Photosynthetically Active Radiation, and Primary Production in the Labrador Sea

    Science.gov (United States)

    Oliver, Hilde; Luo, Hao; Castelao, Renato M.; van Dijken, Gert L.; Mattingly, Kyle S.; Rosen, Joshua J.; Mote, Thomas L.; Arrigo, Kevin R.; Rennermalm, Åsa K.; Tedesco, Marco; Yager, Patricia L.

    2018-04-01

    In July 2012, the surface of the Greenland Ice Sheet (GrIS) melted to an extent unprecedented over the last 100 years; we questioned the potential for such an extreme melt event to impact marine phytoplankton offshore. We hypothesized that stratification from meltwater could reduce light limitation for phytoplankton, and used a suite of numerical models to quantify the impact for 2003-2012. Because much of the 2012 meltwater discharged from southern Greenland, our study focused on the southwestern and southeastern coasts of Greenland, and the Labrador Sea. A 1-D phytoplankton model used output from a Regional Ocean Modeling System (ROMS) coupled with a Regional Climate Model and a hydrological model of meltwater from runoff sources on the ice sheet, peripheral glaciers, and tundra. ROMS was run with and without meltwater to test the sensitivity of phytoplankton photosynthetic rates to the meltwater input. With meltwater, the pycnocline was shallower during late summer and early fall and thus light limitation on photosynthesis was reduced. Averaged over all years, added meltwater had the potential to increase gross primary production by 3-12% in the summer (July-August), and 13-60% in the fall (September-October). This meltwater effect was amplified when light was more limiting, and thus was greatest in the fall, under cloudier conditions, with higher self-shading, and with more light-sensitive phytoplankton groups. As the GrIS melt is projected to increase, late summer primary production in this region has the potential to increase as well, which could constitute an important biosphere response to high-latitude climate change.

  18. Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    Directory of Open Access Journals (Sweden)

    B. Schneider

    2008-04-01

    Full Text Available Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP and export production (EP of particulate organic carbon (POC. Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006 with stronger stratification (higher sea surface temperature; SST being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL also reproduces the inverse relationship between stratification (SST and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

  19. Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone

    OpenAIRE

    Gervais, F.; Riebesell, Ulf; Gorbunov, MY

    2002-01-01

    EisenEx�the second in situ iron enrichment experiment in the Southern Ocean�was performed in the Atlantic sector over 3 weeks in November 2000 with the overarching goal to test the hypothesis that primary productivity in the Southern Ocean is limited by iron availability in the austral spring. Underwater irradiance, chlorophyll a (Chl a), photochemical efficiency, and primary productivity were measured inside and outside of an iron-enriched patch in order to quantify the response of phytoplan...

  20. Seasonal variability of mixed layer in the central Arabian Sea and its implication on nutrients and primary productivity

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Narvekar, J.

    -1 Seasonal variability of mixed layer in the central Arabian Sea and its implication on nutrients and primary productivity S. Prasanna Kumar and Jayu Narvekar National Institute of Oceanography, Dona Paula, Goa-403 004, India... on a 2? x 4? grids up to a depth of 500m. Monthly mean temperature and salinity data were used to calculate the sigma-t values (UNESCO, 1981). We also used nitrate, chlorophyll a and primary productivity data in the upper 120m water column...

  1. Development of experimental method to simulate the corrosion products in the primary system of nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Sang Hyun; Kim, In Sup; Jang, Chang Heui

    2005-01-01

    Corrosion products are recognized as one of the major sources of occupational radiation exposure for nuclear power plant workers. Numerous studies have been conducted on the primary water chemistry to reduce the amount of crud in the primary circuit to avoid the radioactivity build-up in the plant. However, experiments with crud are restricted in laboratory because the crud is highly radioactive material. The objective of this study is to develop the simulating method of corrosion product in nuclear power plant

  2. Absorption of Nickel, Chromium, and Iron by the Root Surface of Primary Molars Covered with Stainless Steel Crowns

    Directory of Open Access Journals (Sweden)

    David Keinan

    2010-01-01

    Full Text Available Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ, was analyzed. An energy dispersive X-ray spectrometer (EDS was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (<.001. Significance. Stainless-steel crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible.

  3. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    Science.gov (United States)

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  4. THE MICROBIOLOGICAL LOAD OF SHEEP MILK FROM PRIMARY PRODUCTION TO ITS PROCESSING

    Directory of Open Access Journals (Sweden)

    Zuzana Farkašová

    2010-05-01

    Full Text Available In the breeding with the average number of 220 sheep (zošľachtená valaška with traditional hand milking in the Eastern Slovakia the microbiological load of milk during the process of primary production, transport, before and after pasteurisation as well as during dairy processing to cheese curd was observed. The results in three seasons were compared to those obtained at finishing of milking in the season before. The microbiological load of milk was observed using the bacteriological methods for determination of the presence of Staphylococcus sp. and other bacteria, and determination of the total number of staphylococci: a  in milliliter of pool milk sample; b  the transport control – smears from transport tank and determination of the total number of staphylococci in the tank milk sample; c bacteriological examination of bulk tank milk in the dairy plant before and after pasteurisation, including examination of cheese curd. After pasteurisation no staphylococci were recorded as in milk as in cheese. Out of 112 strains of Staphylococcus aureus only four strain produced staphylococcal enterotoxins (SE, but in another 7 strains a gene for production of SE, type C was found. The measures introduced during the following season led to the fact that total numbers of coagulase-positive staphylococci in milk within the process of primary production and transport did not exceed the limit permitted by legislation, and after pasteurisation of milk and cheese curd they were not found at all.  doi:10.5219/58

  5. Changes in Nutrients and Primary Production in Barrow Tundra Ponds Over the Past 40 Years

    Science.gov (United States)

    Lougheed, V.; Andresen, C.; Hernandez, C.; Miller, N.; Reyes, F.

    2012-12-01

    The Arctic tundra ponds at the International Biological Program (IBP) site in Barrow, Alaska were studied extensively in the 1970's; however, very little research has occurred there since that time. Due to the sensitivity of this region to climate warming, understanding any changes in the ponds' structure and function over the past 40 years can help identify any potential climate-related impacts. The goal of this study was to determine if the structure and function of primary producers had changed through time, and the association between these changes, urban encroachment and nutrient limitation. Nutrient levels, as well as the biomass of aquatic graminoids (Carex aquatilis and Arctophila fulva), phytoplankton and periphyton were determined in the IBP tundra ponds in both 1971-3 and 2010-12, and in 2010-11 from nearby ponds along an anthropogenic disturbance gradient. Uptake of 14C was also used to measure algal primary production in both time periods and nutrient addition experiments were performed to identify the nutrients limiting algal growth. Similar methods were utilized in the past and present studies. Overall, biomass of graminoids, phytoplankton and periphyton was greater in 2010-12 than that observed in the 1970s. This increased biomass was coincident with warmer water temperatures, increased water column nutrients and deeper active layer depth. Biomass of plants and algae was highest in the ponds closest to the village of Barrow, but no effect of urban encroachment was observed at the IBP ponds. Laboratory incubations indicated that nutrient release from thawing permafrost can explain part of these increases in nutrients and has likely contributed to changes in the primary limiting nutrient. Further studies are necessary to better understand the implications of these trends in primary production to nutrient budgets in the Arctic. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on

  6. Consequences of buffelgrass pasture development for primary productivity, perennial plant richness, and vegetation structure in the drylands of Sonora, Mexico.

    Science.gov (United States)

    Franklin, Kimberly; Molina-Freaner, Francisco

    2010-12-01

    In large parts of northern Mexico native plant communities are being converted to non-native buffelgrass (Pennisetum ciliare) pastures, and this conversion could fundamentally alter primary productivity and species richness. In Sonora, Mexico land conversion is occurring at a regional scale along a rainfall-driven gradient of primary productivity, across which native plant communities transition from desert scrub to thorn scrub. We used a paired sampling design to compare a satellite-derived index of primary productivity, richness of perennial plant species, and canopy-height profiles of native plant communities with buffelgrass pastures. We sampled species richness across a gradient of primary productivity in desert scrub and thorn scrub vegetation to examine the influence of site productivity on the outcomes of land conversion. We also examined the influence of pasture age on species richness of perennial plants. Index values of primary productivity were lower in buffelgrass pastures than in native vegetation, which suggests a reduction in primary productivity. Land conversion reduced species richness by approximately 50% at local and regional scales, reduced tree and shrub cover by 78%, and reduced canopy height. Land conversion disproportionately reduced shrub species richness, which reflects the common practice among Sonoran ranchers of conserving certain tree and cactus species. Site productivity did not affect the outcomes of land conversion. The age of a buffelgrass pasture was unrelated to species richness within the pasture, which suggests that passive recovery of species richness to preconversion levels is unlikely. Our findings demonstrate that land conversion can result in large losses of plant species richness at local and regional scales and in substantial changes to primary productivity and vegetation structure, which casts doubt on the feasibility of restoring native plant communities without active intervention on the part of land managers.

  7. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    Directory of Open Access Journals (Sweden)

    Nadine Schibille

    Full Text Available The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS. The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  8. Kinetic computer modeling of microwave surface-wave plasma production

    International Nuclear Information System (INIS)

    Ganachev, Ivan P.

    2004-01-01

    Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)

  9. Directional and Spectral Irradiance in Ocean Models: Effects on Simulated Global Phytoplankton, Nutrients, and Primary Production

    Science.gov (United States)

    Gregg, Watson W.; Rousseaux, Cecile S.

    2016-01-01

    The importance of including directional and spectral light in simulations of ocean radiative transfer was investigated using a coupled biogeochemical-circulation-radiative model of the global oceans. The effort focused on phytoplankton abundances, nutrient concentrations and vertically-integrated net primary production. The importance was approached by sequentially removing directional (i.e., direct vs. diffuse) and spectral irradiance and comparing results of the above variables to a fully directionally and spectrally-resolved model. In each case the total irradiance was kept constant; it was only the pathways and spectral nature that were changed. Assuming all irradiance was diffuse had negligible effect on global ocean primary production. Global nitrate and total chlorophyll concentrations declined by about 20% each. The largest changes occurred in the tropics and sub-tropics rather than the high latitudes, where most of the irradiance is already diffuse. Disregarding spectral irradiance had effects that depended upon the choice of attenuation wavelength. The wavelength closest to the spectrally-resolved model, 500 nm, produced lower nitrate (19%) and chlorophyll (8%) and higher primary production (2%) than the spectral model. Phytoplankton relative abundances were very sensitive to the choice of non-spectral wavelength transmittance. The combined effects of neglecting both directional and spectral irradiance exacerbated the differences, despite using attenuation at 500 nm. Global nitrate decreased 33% and chlorophyll decreased 24%. Changes in phytoplankton community structure were considerable, representing a change from chlorophytes to cyanobacteria and coccolithophores. This suggested a shift in community function, from light-limitation to nutrient limitation: lower demands for nutrients from cyanobacteria and coccolithophores favored them over the more nutrient-demanding chlorophytes. Although diatoms have the highest nutrient demands in the model, their

  10. Improving Global Gross Primary Productivity Estimates by Computing Optimum Light Use Efficiencies Using Flux Tower Data

    Science.gov (United States)

    Madani, Nima; Kimball, John S.; Running, Steven W.

    2017-11-01

    In the light use efficiency (LUE) approach of estimating the gross primary productivity (GPP), plant productivity is linearly related to absorbed photosynthetically active radiation assuming that plants absorb and convert solar energy into biomass within a maximum LUE (LUEmax) rate, which is assumed to vary conservatively within a given biome type. However, it has been shown that photosynthetic efficiency can vary within biomes. In this study, we used 149 global CO2 flux towers to derive the optimum LUE (LUEopt) under prevailing climate conditions for each tower location, stratified according to model training and test sites. Unlike LUEmax, LUEopt varies according to heterogeneous landscape characteristics and species traits. The LUEopt data showed large spatial variability within and between biome types, so that a simple biome classification explained only 29% of LUEopt variability over 95 global tower training sites. The use of explanatory variables in a mixed effect regression model explained 62.2% of the spatial variability in tower LUEopt data. The resulting regression model was used for global extrapolation of the LUEopt data and GPP estimation. The GPP estimated using the new LUEopt map showed significant improvement relative to global tower data, including a 15% R2 increase and 34% root-mean-square error reduction relative to baseline GPP calculations derived from biome-specific LUEmax constants. The new global LUEopt map is expected to improve the performance of LUE-based GPP algorithms for better assessment and monitoring of global terrestrial productivity and carbon dynamics.

  11. Regional crop gross primary production and yield estimation using fused Landsat-MODIS data

    Science.gov (United States)

    He, M.; Kimball, J. S.; Maneta, M. P.; Maxwell, B. D.; Moreno, A.

    2017-12-01

    Accurate crop yield assessments using satellite-based remote sensing are of interest for the design of regional policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations are generally too coarse to capture cropland heterogeneity. Merging information from sensors with reciprocal spatial and temporal resolution can improve the accuracy of these retrievals. In this study, we estimate annual crop yields for seven important crop types -alfalfa, barley, corn, durum wheat, peas, spring wheat and winter wheat over Montana, United States (U.S.) from 2008 to 2015. Yields are estimated as the product of gross primary production (GPP) and a crop-specific harvest index (HI) at 30 m spatial resolution. To calculate GPP we used a modified form of the MOD17 LUE algorithm driven by a 30 m 8-day fused NDVI dataset constructed by blending Landsat (5 or 7) and MODIS Terra reflectance data. The fused 30-m NDVI record shows good consistency with the original Landsat and MODIS data, but provides better spatiotemporal information on cropland vegetation growth. The resulting GPP estimates capture characteristic cropland patterns and seasonal variations, while the estimated annual 30 m crop yield results correspond favorably with county-level crop yield data (r=0.96, pcrop yield performance was generally lower, but still favorable in relation to field-scale crop yield surveys (r=0.42, p<0.01). Our methods and results are suitable for operational applications at regional scales.

  12. MODIS-based global terrestrial estimates of gross primary productivity and evapotranspiration

    Science.gov (United States)

    Ryu, Y.; Baldocchi, D. D.; Kobayashi, H.; Li, J.; van Ingen, C.; Agarwal, D.; Jackson, K.; Humphrey, M.

    2010-12-01

    We propose a novel approach to quantify gross primary productivity (GPP) and evapotranspiration (ET) at global scale (5 km resolution with 8-day interval). The MODIS-based, process-oriented approach couples photosynthesis, evaporation, two-leaf energy balance and nitrogen, which are different from the previous satellite-based approaches. We couple information from MODIS with flux towers to assess the drivers and parameters of GPP and ET. Incoming shortwave radiation components (direct and diffuse PAR, NIR) under all sky condition are modeled using a Monte-Carlo based atmospheric radiative transfer model. The MODIS Level 2 Atmospheric products are gridded and overlaid with MODIS Land products to produce spatially compatible forcing variables. GPP is modeled using a two-leaf model (sunlit and shaded leaf) and the maximum carboxylation rate is estimated using albedo-Nitrogen-leaf trait relations. The GPP is used to calculate canopy conductance via Ball-Berry model. Then, we apply Penman-Monteith equation to calculate evapotranspiration. The process-oriented approach allows us to investigate the main drivers of GPP and ET at global scale. Finally we explore the spatial and temporal variability of GPP and ET at global scale.

  13. Local Adaptive Calibration of the GLASS Surface Incident Shortwave Radiation Product Using Smoothing Spline

    Science.gov (United States)

    Zhang, X.; Liang, S.; Wang, G.

    2015-12-01

    Incident solar radiation (ISR) over the Earth's surface plays an important role in determining the Earth's climate and environment. Generally, can be obtained from direct measurements, remotely sensed data, or reanalysis and general circulation models (GCMs) data. Each type of product has advantages and limitations: the surface direct measurements provide accurate but sparse spatial coverage, whereas other global products may have large uncertainties. Ground measurements have been normally used for validation and occasionally calibration, but transforming their "true values" spatially to improve the satellite products is still a new and challenging topic. In this study, an improved thin-plate smoothing spline approach is presented to locally "calibrate" the Global LAnd Surface Satellite (GLASS) ISR product using the reconstructed ISR data from surface meteorological measurements. The influences of surface elevation on ISR estimation was also considered in the proposed method. The point-based surface reconstructed ISR was used as the response variable, and the GLASS ISR product and the surface elevation data at the corresponding locations as explanatory variables to train the thin plate spline model. We evaluated the performance of the approach using the cross-validation method at both daily and monthly time scales over China. We also evaluated estimated ISR based on the thin-plate spline method using independent ground measurements at 10 sites from the Coordinated Enhanced Observation Network (CEON). These validation results indicated that the thin plate smoothing spline method can be effectively used for calibrating satellite derived ISR products using ground measurements to achieve better accuracy.

  14. Assessment of primary production in a eutrophic lake from carbon and nitrogen isotope ratios of a carnivorous fish

    International Nuclear Information System (INIS)

    Yoshioka, Takahito

    1991-01-01

    The carbon and nitrogen isotope ratios of Hypomesus transpacificus (a pond smelt) in a eutrophic lake, Lake Suwa, were measured from April to September in 1986 and 1987. The differences in the isotope ratios between these two years were observed. The stable isotopes were transferred from phytoplankton to zooplankton and pond smelt, associated with organic matters. Therefore, the difference in the isotope ratios in two years seemed to reflect the differences of the proceeding of primary production. It was suggested that the carbon and nitrogen isotope ratios of animal, whose trophic level is far from primary producer, can be the qualitative indicators for assessing the primary production in a lake ecosystem. (author)

  15. Analysis of corrosion product transport in PWR primary system under non-convective condition

    International Nuclear Information System (INIS)

    Han, Byoung Sub

    1992-02-01

    Product TRANsport), which can predict the corrosion product and radioactivity transport within the primary coolant system, and also can be utilized for the computer simulation with actual plant data of currently operating Korean nuclear power plants to predict the transport of the radionuclides. In this study, the following problems will be updated, improved and compared with the already existing codes: 1) development and analysis of recent mechanistic modelling of corrosion product deposition, 2) application and modification due to the temperature kinetic effect, 3) separation of the effect of Fe, Co, Ni and Mn solubility rather than Fe solubility alone, and 4) consideration of Ni activation and recoil process. By applying the above updated and improved mechanisms, the corrosion product behavior in PWR of currently operating Korean unclear power plants has been simulated. In addition, the evaluation of particulate transport, independent solubility data of major radionuclides and acute nodalization were included and extended. Then, with the developed computer code, we have evaluated and analyzed the activity and corrosion product build-up controlled by many parameters such as pH, composition of metal, and auxiliary system performance

  16. Organic carbon fluxes in the Atlantic and the Southern Ocean: relationship to primary production compiled from satellite radiometer data

    Science.gov (United States)

    Fischer, G.; Ratmeyer, V.; Wefer, G.

    Fluxes of organic carbon normalised to a depth of 1000 m from 18 sites in the Atlantic and the Southern Ocean are presented, comprising nine biogeochemical provinces as defined by Longhurst et al. (1995. Journal of Plankton Research 17, 1245-1271). For comparison with primary production, we used a recent compilation of primary production values derived from CZCS data (Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69). In most cases, the seasonal patterns stood reasonably well in accordance with the carbon fluxes. Particularly, organic carbon flux records from two coastal sites off northwest and southwest Africa displayed a more distinct correlation to the primary production in sectors (1×1°) which are situated closer to the coastal environments. This was primarily caused by large upwelling filaments streaming far offshore, resulting in a cross-shelf carbon transport. With respect to primary production, organic carbon export to a water depth of 1000 m, and the fraction of primary production exported to a depth of 1000 m (export fraction=EF 1000), we were able to distinguish between: (1) the coastal environments with highest values (EF 1000=1.75-2.0%), (2) the eastern equatorial upwelling area with moderately high values (EF 1000=0.8-1.1%), (3) and the subtropical oligotrophic gyres that yielded lowest values (EF 1000=0.6%). Carbon export in the Southern Ocean was low to moderate, and the EF 1000 value seems to be quite low in general. Annual organic carbon fluxes were proportional to primary production, and the export fraction EF 1000 increased with primary production up to 350 gC m -2 yr-1. Latitudinal variations in primary production were reflected in the carbon flux pattern. A high temporal variability of primary production rates and a pronounced seasonality of carbon export were observed in the polar environments, in particular in coastal domains, although primary production (according to Antoine et al., 1996. Global Biogeochemical Cycles 10, 57

  17. Surface effects and impurity production in tokamak machines

    International Nuclear Information System (INIS)

    Staib, P.; Staudenmaier, G.

    1978-01-01

    Plasma-wall interactions are presently investigated in two ways: a) The a priori assumption of a mechanism responsible for impurity release. Relevant experimental data can be used in a model and calculations made in order to understand the observed impurity behaviour in plasma. b) The comprehensive investigation of samples exposed to a plasma. Recent investigations have confirmed the earlier assumption that the interactions occur only in the topmost atomic layers of the wall, and so emphasize the major role of surface physics on this field. These investigations have further shown that besides atomic processes, such a desorption or sputtering, other processes occur, extending on a microscopic rather than an atomic scale. These are for example evaporation, arcing, and mechanical stress. Both aspects are discussed as far as possible in a quantitative way. The contribution of most probable processes is estimated using data available on flux and energy of particles and yields of single processes. The conclusion is reached that no process can be disregarded. Several processes seem to contribute to the impurity release and are different at different phases of the discharge. An interdependence between these processes is likely. (Auth.)

  18. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    Science.gov (United States)

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO 2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO 2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO 2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Current /sup 14/C methods for measuring primary production: gross underestimates in oceanic waters

    Energy Technology Data Exchange (ETDEWEB)

    Gieskes, W W.C.; Kraay, G W; Baars, M A [Netherlands Institute for Sea Research, Texel, Netherlands

    1979-10-01

    The amount of organic matter produced through autotrophic processes in the euphotic zone of the tropical open ocean and available for respiration of autotrophs and heterotrophs was at least 5 to 15 times higher than values derived from the common /sup 14/C method suggested. The new estimates are based on measurements of /sup 14/C incorporation in organic matter of ocean samples incubated in bottles of up to 4 litres. Oceanic phytoplankton appeared to have a high growth rate, with generation times of hours, not days. High heterotrophic activity, finding its expression in high dark fixation rates of /sup 14/C, took place in conjunction with this high primary production of organic matter.

  20. Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mechanistic Modeling and Remote Sensing

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Smith, Benjamin; Løfgren, Anders

    2009-01-01

    and the Beer-Lambert law. LAI estimates were compared with satellite-extrapolated field estimates of LAI, and the results were generally acceptable. NPP estimates directly from the dynamic vegetation model and estimates obtained by combining the model estimates with remote sensing information were, on average......The aim of this study was to investigate a combination of satellite images of leaf area index (LAI) with processbased vegetation modeling for the accurate assessment of the carbon balances of Swedish forest ecosystems at the scale of a landscape. Monthly climatologic data were used as inputs...... in a dynamic vegetation model, the Lund Potsdam Jena-General Ecosystem Simulator. Model estimates of net primary production (NPP) and the fraction of absorbed photosynthetic active radiation were constrained by combining them with satellite-based LAI images using a general light use efficiency (LUE) model...

  1. Phenomenology and modeling of particulate corrosion product behavior in Hanford N Reactor primary coolant

    International Nuclear Information System (INIS)

    Bechtold, D.B.

    1983-01-01

    The levels and composition of filterable corrosion products in the Hanford N Reactor Primary Loop are measurable by filtration. The suspended crud level has ranged from 0.0005 ppM to 6.482 ppM with a median 0.050 ppM. The composition approximates magnetite. The particle size distribution has been found in 31 cases to be uniformly a log normal distribution with a count median ranging from 1.10 to 2.31 microns with a median of 1.81 microns, and the geometric standard deviation ranging from 1.60 to 2.34 with a median of 1.84. An auto-correcting inline turbidimeter was found to respond to linearly to suspended crud levels over a range 0.05 to at least 6.5 ppM by direct comparison with filter sample weights. Cause of crud bursts in the primary loop were found to be power decreases. The crud transients associated with a reactor power drop, several reactor shutdowns, and several reactor startups could be modeled consistently with each other using a simple stirred-tank, first order exchange model of particulate between makeup, coolant, letdown, and loosely adherent crud on pipe walls. Over 3/10 of the average steady running particulate crud level could be accounted for by magnetically filterable particulate in the makeup feed. A simulation model of particulate transport has been coded in FORTRAN

  2. UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley

    Science.gov (United States)

    Logemann, Elke; Tavernaro, Annette; Schulz, Wolfgang; Somssich, Imre E.; Hahlbrock, Klaus

    2000-01-01

    The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells. PMID:10677554

  3. Topographical effects of climate dataset and their impacts on the estimation of regional net primary productivity

    Science.gov (United States)

    Sun, L. Qing; Feng, Feng X.

    2014-11-01

    In this study, we first built and compared two different climate datasets for Wuling mountainous area in 2010, one of which considered topographical effects during the ANUSPLIN interpolation was referred as terrain-based climate dataset, while the other one did not was called ordinary climate dataset. Then, we quantified the topographical effects of climatic inputs on NPP estimation by inputting two different climate datasets to the same ecosystem model, the Boreal Ecosystem Productivity Simulator (BEPS), to evaluate the importance of considering relief when estimating NPP. Finally, we found the primary contributing variables to the topographical effects through a series of experiments given an overall accuracy of the model output for NPP. The results showed that: (1) The terrain-based climate dataset presented more reliable topographic information and had closer agreements with the station dataset than the ordinary climate dataset at successive time series of 365 days in terms of the daily mean values. (2) On average, ordinary climate dataset underestimated NPP by 12.5% compared with terrain-based climate dataset over the whole study area. (3) The primary climate variables contributing to the topographical effects of climatic inputs for Wuling mountainous area were temperatures, which suggest that it is necessary to correct temperature differences for estimating NPP accurately in such a complex terrain.

  4. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA Using Satellite and Surface Observations

    Directory of Open Access Journals (Sweden)

    Xiaotong Zhang

    2016-03-01

    Full Text Available Solar radiation incident at the Earth’s surface (Rs is an essential component of the total energy exchange between the atmosphere and the surface. Reanalysis data have been widely used, but a comprehensive validation using surface measurements is still highly needed. In this study, we evaluated the Rs estimates from six current representative global reanalyses (NCEP–NCAR, NCEP-DOE; CFSR; ERA-Interim; MERRA; and JRA-55 using surface measurements from different observation networks [GEBA; BSRN; GC-NET; Buoy; and CMA] (674 sites in total and the Earth’s Radiant Energy System (CERES EBAF product from 2001 to 2009. The global mean biases between the reanalysis Rs and surface measurements at all sites ranged from 11.25 W/m2 to 49.80 W/m2. Comparing with the CERES-EBAF Rs product, all the reanalyses overestimate Rs, except for ERA-Interim, with the biases ranging from −2.98 W/m2 to 21.97 W/m2 over the globe. It was also found that the biases of cloud fraction (CF in the reanalyses caused the overestimation of Rs. After removing the averaged bias of CERES-EBAF, weighted by the area of the latitudinal band, a global annual mean Rs values of 184.6 W/m2, 180.0 W/m2, and 182.9 W/m2 were obtained over land, ocean, and the globe, respectively.

  5. Comparison of the surface roughness of gypsum models constructed using various impression materials and gypsum products

    Directory of Open Access Journals (Sweden)

    Yi-Chih Chang

    2016-03-01

    Conclusion: The surface roughness of stone models was mainly determined by the type of alginate impression material, and was less affected by the type of silicone rubber impression material or gypsum product, or the storage time before repouring.

  6. Surface Coating of Wood Building Products: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Science.gov (United States)

    Learn about the NESHAP for surface coating of wood building products by reading the rule summary and history, with links to the federal register notices, additional documents, related rules and compliance information

  7. Inferring biome-scale net primary productivity from tree-ring isotopes

    Science.gov (United States)

    Pederson, N.; Levesque, M.; Williams, A. P.; Hobi, M. L.; Smith, W. K.; Andreu-Hayles, L.

    2017-12-01

    Satellite estimates of vegetation growth (net primary productivity; NPP), tree-ring records, and forest inventories indicate that ongoing climate change and rising atmospheric CO2 concentration are altering productivity and carbon storage of forests worldwide. The impact of global change on the trends of NPP, however, remain unknown because of the lack of long-term high-resolution NPP data. For the first time, we tested if annually resolved carbon (δ13C) and oxygen (δ18O) stable isotopes from the cellulose of tree rings from trees in temperate regions could be used as a tool for inferring NPP across spatiotemporal scales. We compared satellite NPP estimates from the moderate-resolution imaging spectroradiometer sensor (MODIS, product MOD17A) and a newly developed global NPP dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset to annually resolved tree-ring width and δ13C and δ18O records from four sites along a hydroclimatic gradient in Eastern and Central United States. We found strong correlations across large geographical regions between satellite-derived NPP and tree-ring isotopes that ranged from -0.40 to -0.91. Notably, tree-ring derived δ18O had the strongest relation to climate. The results were consistent among the studied tree species (Quercus rubra and Liriodendron tulipifera) and along the hydroclimatic conditions of our network. Our study indicates that tree-ring isotopes can potentially be used to reconstruct NPP in time and space. As such, our findings represent an important breakthrough for estimating long-term changes in vegetation productivity at the biome scale.

  8. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology

    Directory of Open Access Journals (Sweden)

    Melissa Koontz

    2016-02-01

    Full Text Available This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008–2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m−2·year−1, the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m−2·year−1·to 2874.2 ± 794.0 g·m−2·year−1. The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  9. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology.

    Science.gov (United States)

    Koontz, Melissa; Lundberg, Christopher; Lane, Robert; Day, John; Pezeshki, Reza

    2016-02-04

    This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008-2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m(-2)·year(-1)), the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m(-2)·year(-1)·to 2874.2 ± 794.0 g·m(-2)·year(-1). The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  10. Looking Past Primary Productivity: Benchmarking System Processes that Drive Ecosystem Level Responses in Models

    Science.gov (United States)

    Cowdery, E.; Dietze, M.

    2017-12-01

    As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentration are highly variable and contain a considerable amount of uncertainty. Benchmarking model predictions against data are necessary to assess their ability to replicate observed patterns, but also to identify and evaluate the assumptions causing inter-model differences. We have implemented a novel benchmarking workflow as part of the Predictive Ecosystem Analyzer (PEcAn) that is automated, repeatable, and generalized to incorporate different sites and ecological models. Building on the recent Free-Air CO2 Enrichment Model Data Synthesis (FACE-MDS) project, we used observational data from the FACE experiments to test this flexible, extensible benchmarking approach aimed at providing repeatable tests of model process representation that can be performed quickly and frequently. Model performance assessments are often limited to traditional residual error analysis; however, this can result in a loss of critical information. Models that fail tests of relative measures of fit may still perform well under measures of absolute fit and mathematical similarity. This implies that models that are discounted as poor predictors of ecological productivity may still be capturing important patterns. Conversely, models that have been found to be good predictors of productivity may be hiding error in their sub-process that result in the right answers for the wrong reasons. Our suite of tests have not only highlighted process based sources of uncertainty in model productivity calculations, they have also quantified the patterns and scale of this error. Combining these findings with PEcAn's model sensitivity analysis and variance decomposition strengthen our ability to identify which processes

  11. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments.

    Science.gov (United States)

    Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Gilgen, Anna K; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi

    2017-10-01

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change

  12. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  13. Mucosal surface nodularity on upper gastrointestinal series (UGIS) : prospective analysis of its primary cause and prevalence of gastric malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Youn; Kim, Sun Mi; Kim, Ah Young; Kim, Tae Kyoung; Kim, Pyo Nyun; Ha, Hyun Kwon [Univ. of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2001-10-01

    Mucosal surface nodularity was defined as present at UGIS when multiple nodular defects larger than 5 mm were scattered in the gastric mucosa in an area greater than 5 x 5 cm. The purpose of this study was to determine the primary causes of this radiographic finding and to assess the incidence of gastric malignancy in these patients. During a one-year period were prospectively collected among patients who underwent UGIS, data for 51 [aged 30-78 (mean, 51) years] above who met the criteria of mucosal surface nodularity. Whether or not this was present was decided by two radiologists who in reaching a consensus excluded the possibility of erosive gastritis, indicated by central barium collection in the nodular defects. The primary causes of mucosal nodularity and associated gastric pathologies were determined by the histopathological results obtained from the specimens after surgery (n=18) or endoscopic biopsy (n=33). Pathological examinations revealed that the primary causes of the mucosal nodularity in these 51 patients were intestinal metaplasia in 28 (54.9%), MALT lymphoma in seven (13.7%), early gastric cancer in six (11.8%), chronic gastritis in five (9.8%), low grade dysplasia in four (7.8%), and gastritis cystica profunda in one (2%). Gastric malignancy was present either in or outside the area of mucosal nodularity in 34 (66/7%) of the 51 (27 carcinomas and 7 MALT lymphomas). No different patterns of mucosal surface nodularity were noted between the groups of each disease entity. Mucosal surface nodularity is observed at UGIS in various gastric pathologies. Because of the high incidence of gastric malignancy in these patients, close follow-up or gastrofiberscopic biopsy is mandatory.

  14. Mucosal surface nodularity on upper gastrointestinal series (UGIS) : prospective analysis of its primary cause and prevalence of gastric malignancy

    International Nuclear Information System (INIS)

    Park, Soo Youn; Kim, Sun Mi; Kim, Ah Young; Kim, Tae Kyoung; Kim, Pyo Nyun; Ha, Hyun Kwon

    2001-01-01

    Mucosal surface nodularity was defined as present at UGIS when multiple nodular defects larger than 5 mm were scattered in the gastric mucosa in an area greater than 5 x 5 cm. The purpose of this study was to determine the primary causes of this radiographic finding and to assess the incidence of gastric malignancy in these patients. During a one-year period were prospectively collected among patients who underwent UGIS, data for 51 [aged 30-78 (mean, 51) years] above who met the criteria of mucosal surface nodularity. Whether or not this was present was decided by two radiologists who in reaching a consensus excluded the possibility of erosive gastritis, indicated by central barium collection in the nodular defects. The primary causes of mucosal nodularity and associated gastric pathologies were determined by the histopathological results obtained from the specimens after surgery (n=18) or endoscopic biopsy (n=33). Pathological examinations revealed that the primary causes of the mucosal nodularity in these 51 patients were intestinal metaplasia in 28 (54.9%), MALT lymphoma in seven (13.7%), early gastric cancer in six (11.8%), chronic gastritis in five (9.8%), low grade dysplasia in four (7.8%), and gastritis cystica profunda in one (2%). Gastric malignancy was present either in or outside the area of mucosal nodularity in 34 (66/7%) of the 51 (27 carcinomas and 7 MALT lymphomas). No different patterns of mucosal surface nodularity were noted between the groups of each disease entity. Mucosal surface nodularity is observed at UGIS in various gastric pathologies. Because of the high incidence of gastric malignancy in these patients, close follow-up or gastrofiberscopic biopsy is mandatory

  15. Assessment of Export Efficiency Equations in the Southern Ocean Applied to Satellite-Based Net Primary Production

    Science.gov (United States)

    Arteaga, Lionel; Haëntjens, Nils; Boss, Emmanuel; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2018-04-01

    Carbon export efficiency (e-ratio) is defined as the fraction of organic carbon fixed through net primary production (NPP) that is exported out of the surface productive layer of the ocean. Recent observations for the Southern Ocean suggest a negative e-ratio versus NPP relationship, and a reduced dependency of export efficiency on temperature, different than in the global domain. In this study, we complement information from a passive satellite sensor with novel space-based lidar observations of ocean particulate backscattering to infer NPP over the entire annual cycle, and estimate Southern Ocean export rates from five different empirical models of export efficiency. Inferred Southern Ocean NPP falls within the range of previous studies, with a mean estimate of 15.8 (± 3.9) Pg C yr-1 for the region south of 30°S during the 2005-2016 period. We find that an export efficiency model that accounts for silica(Si)-ballasting, which is constrained by observations with a negative e-ratio versus NPP relationship, shows the best agreement with in situ-based estimates of annual net community production (annual export of 2.7 ± 0.6 Pg C yr-1 south of 30°S). By contrast, models based on the analysis of global observations with a positive e-ratio versus NPP relationship predict annually integrated export rates that are ˜ 33% higher than the Si-dependent model. Our results suggest that accounting for Si-induced ballasting is important for the estimation of carbon export in the Southern Ocean.

  16. Absorption-based algorithm of primary production for total and size-fractionated phytoplankton in coastal waters

    NARCIS (Netherlands)

    Barnes, M.K.; Tilstone, G.H.; Smyth, T.J.; Suggett, D.J.; Astoreca, R.; Lancelot, C.; Kromkamp, J.C.

    2014-01-01

    Most satellite models of production have been designed and calibrated for use in the open ocean. Coastal waters are optically more complex, and the use of chlorophyll a (chl a) as a first-order predictor of primary production may lead to substantial errors due to significant quantities

  17. Primary production and microbial activity in the euphotic zone of Lake Baikal (Southern Basin) during late winter

    Czech Academy of Sciences Publication Activity Database

    Straškrábová, Viera; Izmest’yeva, L. R.; Maksimova, E. A.; Fietz, S.; Nedoma, Jiří; Borovec, Jakub; Kobanova, G. I.; Shchetinina, E. V.; Pislegina, E. V.

    2005-01-01

    Roč. 46, 1-4 (2005), s. 57-73 ISSN 0921-8181 Grant - others:EU(XE) CONTINENT EVK2-2000-0057 Institutional research plan: CEZ:AV0Z6017912 Keywords : primary production * bacterial production * microbial loop Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.223, year: 2005

  18. Optimized estimation and its uncertainties of gross primary production over oasis-desert ecosystems in an arid region of China

    Science.gov (United States)

    Wang, H.; Li, X.; Xiao, J.; Ma, M.

    2017-12-01

    Arid and semi-arid ecosystems cover more than one-third of the Earth's land surface, it is of great important to the global carbon cycle. However, the magnitude of carbon sequestration and its contribution to global atmospheric carbon cycle is poorly understood due to the worldwide paucity of measurements of carbon exchange in the arid ecosystems. Accurate and continuous monitoring the production of arid ecosystem is of great importance for regional carbon cycle estimation. The MOD17A2 product provides high frequency observations of terrestrial Gross Primary Productivity (GPP) over the world. Although there have been plenty of studies to validate the MODIS GPP products with ground based measurements over a range of biome types, few have comprehensively validated the performance of MODIS estimates in arid and semi-arid ecosystems. Thus, this study examined the performance of the MODIS-derived GPP comparing with the EC observed GPP at different timescales for the main arid ecosystems in the arid and semi-arid ecosystems in China, and optimized the performance of the MODIS GPP calculations by using the in-situ metrological forcing data, and optimization of biome-specific parameters with the Bayesian approach. Our result revealed that the MOD17 algorithm could capture the broad trends of GPP at 8-day time scales for all investigated sites on the whole. However, the GPP product was underestimated in most ecosystems in the arid region, especially the irrigated cropland and forest ecosystems, while the desert ecosystem was overestimated in the arid region. On the annual time scale, the best performance was observed in grassland and cropland, followed by forest and desert ecosystems. On the 8-day timescale, the RMSE between MOD17 products and in-situ flux observations of all sites was 2.22 gC/m2/d, and R2 was 0.69. By using the in-situ metrological data driven, optimizing the biome-based parameters of the algorithm, we improved the performances of the MODIS GPP calculation

  19. NW European shelf under climate warming: implications for open ocean – shelf exchange, primary production, and carbon absorption

    Directory of Open Access Journals (Sweden)

    M. Gröger

    2013-06-01

    Full Text Available Shelves have been estimated to account for more than one-fifth of the global marine primary production. It has been also conjectured that shelves strongly influence the oceanic absorption of anthropogenic CO2 (carbon shelf pump. Owing to their coarse resolution, currently applied global climate models are inappropriate to investigate the impact of climate change on shelves and regional models do not account for the complex interaction with the adjacent open ocean. In this study, a global ocean general circulation model and biogeochemistry model were set up with a distorted grid providing a maximal resolution for the NW European shelf and the adjacent northeast Atlantic. Using model climate projections we found that already a~moderate warming of about 2.0 K of the sea surface is linked with a reduction by ~ 30% of the biological production on the NW European shelf. If we consider the decline of anthropogenic riverine eutrophication since the 1990s, the reduction of biological production amounts is even larger. The relative decline of NW European shelf productivity is twice as strong as the decline in the open ocean (~ 15%. The underlying mechanism is a spatially well confined stratification feedback along the continental shelf break. This feedback reduces the nutrient supply from the deep Atlantic to about 50%. In turn, the reduced productivity draws down CO2 absorption in the North Sea by ~ 34% at the end of the 21st century compared to the end of the 20th century implying a strong weakening of shelf carbon pumping. Sensitivity experiments with diagnostic tracers indicate that not more than 20% of the carbon absorbed in the North Sea contributes to the long-term carbon uptake of the world ocean. The rest remains within the ocean's mixed layer where it is exposed to the atmosphere. The predicted decline in biological productivity, and decrease of phytoplankton concentration (in the North Sea by averaged 25% due to reduced nutrient imports from

  20. Efficacy of pyriproxyfen for control of stored-product psocids (Psocoptera) on concrete surfaces

    Science.gov (United States)

    The insect growth regulator pyriproxyfen was evaluated as a surface treatment for control of three stored-product psocid pests, Liposcelis bostrychophila Badonnel, L. decolor (Pearman), and L. paeta Pearman (Psocoptera: Liposcelididae). Nymphs were exposed for 35 d on a concrete surface treated with...

  1. Model for H-, D- production by hydrogen backscattering from alkali and alkali/transition-metal surfaces

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Schneider, P.J.

    1980-01-01

    A model for H - , D - production by energetic particles reflecting from metal surfaces is discussed. The model employs the energy and angular distribution data derived from the Marlowe code. The model is applied to particles incident normally upon Cs, Ni, and Cs/Ni surfaces

  2. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Science.gov (United States)

    Vincent Jerald. Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  3. New photodegradation products of chlorpyrifos and their detection on glass, soil, and leaf surfaces

    International Nuclear Information System (INIS)

    Walia, S.; Dureja, P.; Mukerjee, S.K.

    1988-01-01

    The organophosphate insecticide chlorpyrifos was irradiated under different photochemical conditions and the products characterized by gas chromatography, mass spectrometry, and NMR spectroscopy. Irradiation of chlorpyrifos in hexane yielded dechlorinated photoproducts and cleavage products. In methanol, besides these products, chlorpyrifos gave oxons. Several new photoproducts, the formation of which apparently occurs by the displacement of 5-chloro by a methoxy substituent in the pyridyl moiety. The possibility of formation of such products on glass, soil, and leaf surfaces under the influence of UV and solar simulated light have also been explored and many new products presumably formed due to simultaneous photo-dechlorination, oxidation and hydrolytic processes were detected. Photodegradation of chlorpyrifos was rapid on a soil surface but comparatively slow on glass and leaf surfaces

  4. Correlation of H- production and the work function of a surface in a hydrogen plasma

    International Nuclear Information System (INIS)

    Wada, M.

    1983-03-01

    Surface-plasma negative hydrogen ion sources are being developed as possible parts for future neutral beam systems. In these ion sources, negative hydrogen ions (H - ) are produced at low work function metal surfaces immersed in hydrogen plasmas. To investigate the correlation between the work function and the H - production at the surface with a condition similar to the one in the actual plasma ion source, these two parameters were simultaneously measured in the hydrogen plasma environment

  5. Estimates of primary productivity over the Thar Desert based upon Nimbus-7 37 GHz data - 1979-1985

    Science.gov (United States)

    Choudhury, B. J.

    1987-01-01

    An empirical relationship has been determined between the difference of vertically and horizontally polarized brightness temperatures noted at the 37 GHz frequency of the Nimbus-7 SMMR and primary productivity over hot arid and semiarid regions of Africa and Australia. This empirical relationship is applied to estimate the primary productivity over the Thar Desert between 1979 and 1985, giving an average value of 0.271 kg/sq m per yr. The spatial variability of the productivity values is found to be quite significant, with a standard deviation about the mean of 0.08 kg/sq m per yr.

  6. Changes in upwelling and surface productivity in the Eastern Pacific during Terminations I and II

    Science.gov (United States)

    Erdem, Z.; De Bar, M.; Stolwijk, D.; Schneider, R. R.; S Sinninghe Damsté, J.; Schouten, S.

    2017-12-01

    The Eastern Pacific coastal system is characterized by intense upwelling and consequently by an enhanced surface primary productivity. Combination of this high organic matter flux with sluggish bottom water ventilation results in one of the most pronounced oxygen minimum zones reaching from offshore California in the North to offshore Chile in the South. As a result of this process, the region is particularly interesting in view of nutrient and carbon cycling as well as ecosystem dynamics. The dynamics of the upwelling and oxygen concentrations are closely related to climatic conditions. Therefore, paleo-reconstructions of different settings are crucial in order to improve our understanding of the response of these nutrient-rich, oxygen-deficient, environments in relation to the recent global ocean warming, acidification and deoxygenation. In this study, we present downcore results from three different sites in the Eastern Pacific: offshore California (IODP site 1012), Peru (M77/2-52-2) and Chile (IODP site 1234). We applied different biomarkers as proxies to decipher changes in phytoplankton community composition, including the upwelling index based on long chain diols, and other common productivity indicators such as bulk organic carbon, carbonate and biogenic opal. In addition, application of carbon and nitrogen isotope ratios of total organic carbon and benthic foraminifera complement our multiproxy approach. Herewith we aim to compare at least two glacial-interglacial transitions with different magnitudes of deglacial warming along the Eastern Pacific upwelling systems at different latitudes. The data presented will cover the last 160 ka BP offshore California and Chile, and 30 ka BP offshore Peru enabling comparison between glacial Terminations I and II.

  7. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products

    Directory of Open Access Journals (Sweden)

    Ying Qu

    2015-01-01

    Full Text Available Surface albedo is one of the key controlling geophysical parameters in the surface energy budget studies, and its temporal and spatial variation is closely related to the global climate change and regional weather system due to the albedo feedback mechanism. As an efficient tool for monitoring the surfaces of the Earth, remote sensing is widely used for deriving long-term surface broadband albedo with various geostationary and polar-orbit satellite platforms in recent decades. Moreover, the algorithms for estimating surface broadband albedo from satellite observations, including narrow-to-broadband conversions, bidirectional reflectance distribution function (BRDF angular modeling, direct-estimation algorithm and the algorithms for estimating albedo from geostationary satellite data, are developed and improved. In this paper, we present a comprehensive literature review on algorithms and products for mapping surface broadband albedo with satellite observations and provide a discussion of different algorithms and products in a historical perspective based on citation analysis of the published literature. This paper shows that the observation technologies and accuracy requirement of applications are important, and long-term, global fully-covered (including land, ocean, and sea-ice surfaces, gap-free, surface broadband albedo products with higher spatial and temporal resolution are required for climate change, surface energy budget, and hydrological studies.

  8. Assessment of Primary Production of Horticultural Safety Management Systems of Mushroom Farms in South Africa.

    Science.gov (United States)

    Dzingirayi, Garikayi; Korsten, Lise

    2016-07-01

    Growing global consumer concern over food safety in the fresh produce industry requires producers to implement necessary quality assurance systems. Varying effectiveness has been noted in how countries and food companies interpret and implement food safety standards. A diagnostic instrument (DI) for global fresh produce industries was developed to measure the compliancy of companies with implemented food safety standards. The DI is made up of indicators and descriptive grids for context factors and control and assurance activities to measure food safety output. The instrument can be used in primary production to assess food safety performance. This study applied the DI to measure food safety standard compliancy of mushroom farming in South Africa. Ten farms representing almost half of the industry farms and more than 80% of production were independently assessed for their horticultural safety management system (HSMS) compliance via in-depth interviews with each farm's quality assurance personnel. The data were processed using Microsoft Office Excel 2010 and are represented in frequency tables. The diagnosis revealed that the mushroom farming industry had an average food safety output. The farms were implementing an average-toadvanced HSMS and operating in a medium-risk context. Insufficient performance areas in HSMSs included inadequate hazard analysis and analysis of control points, low specificity of pesticide assessment, and inadequate control of suppliers and incoming materials. Recommendations to the industry and current shortcomings are suggested for realization of an improved industry-wide food safety assurance system.

  9. Distribution of phototrophic populations and primary production in a microbial mat from the Ebro Delta, Spain.

    Science.gov (United States)

    Martínez-Alonso, Maira; Mir, Joan; Caumette, Pierre; Gaju, Núria; Guerrero, Ricardo; Esteve, Isabel

    2004-03-01

    Microbial mats arising in the sand flats of the Ebro Delta (Tarragona, Spain) were investigated during the summer season, when the community was highly developed. These mats are composed of three pigmented layers of phototrophic organisms, an upper brown layer mainly composed of Lyngbya aestuarii and diatoms, an intermediate green layer of the cyanobacterium Microcoleus chthonoplastes, and an underlying pink layer of a so-far unidentified purple sulfur bacterium. In the photic zone, oxygenic phototrophs constitute about 58% of total photosynthetic biomass, measured as biovolume, and anoxygenic phototrophs represent 42%. Diatoms constitute 11.8% of the oxygenic biomass, M. chthonoplastes 61.2%, and L. aestuarii and coccoid cyanobacteria 20.6 and 6.4%, respectively. In this laminated community, organic matter has an autochthonous origin, and photosynthesis is the most important source of organic carbon. Oxygen production reaches up to 27.2 mmol O(2) m(-2) h(-1), measured at 1000 microE m(-2) s(-1) light intensity, whereas oxidation of sulfide in the light has been calculated to be 18.6 mmol S m(-2) h(-1). This amount represents 26% of the total photosynthetic production in terms of photoassimilated carbon, demonstrating the important role of anoxygenic phototrophs as primary producers in the pink layer of Ebro Delta microbial mats.

  10. Zika Virus Persistently and Productively Infects Primary Adult Sensory Neurons In Vitro

    Directory of Open Access Journals (Sweden)

    Brianna K. Swartwout

    2017-10-01

    Full Text Available Zika virus (ZIKV has recently surged in human populations, causing an increase in congenital and Guillain-Barré syndromes. While sexual transmission and presence of ZIKV in urine, semen, vaginal secretions, and saliva have been established, the origin of persistent virus shedding into biological secretions is not clear. Using a primary adult murine neuronal culture model, we have determined that ZIKV persistently and productively infects sensory neurons of the trigeminal and dorsal root ganglia, which innervate glands and mucosa of the face and the genitourinary tract, respectively, without apparent injury. Autonomic neurons that innervate these regions are not permissive for infection. However, productive ZIKV infection of satellite glial cells that surround and support sensory and autonomic neurons in peripheral ganglia results in their destruction. Persistent infection of sensory neurons, without affecting their viability, provides a potential reservoir for viral shedding in biological secretions for extended periods of time after infection. Furthermore, viral destruction of satellite glial cells may contribute to the development of Guillain-Barré Syndrome via an alternative mechanism to the established autoimmune response.

  11. Effects of topography on simulated net primary productivity at landscape scale.

    Science.gov (United States)

    Chen, X F; Chen, J M; An, S Q; Ju, W M

    2007-11-01

    Local topography significantly affects spatial variations of climatic variables and soil water movement in complex terrain. Therefore, the distribution and productivity of ecosystems are closely linked to topography. Using a coupled terrestrial carbon and hydrological model (BEPS-TerrainLab model), the topographic effects on the net primary productivity (NPP) are analyzed through four modelling experiments for a 5700 km(2) area in Baohe River basin, Shaanxi Province, northwest of China. The model was able to capture 81% of the variability in NPP estimated from tree rings, with a mean relative error of 3.1%. The average NPP in 2003 for the study area was 741 gCm(-2)yr(-1) from a model run including topographic effects on the distributions of climate variables and lateral flow of ground water. Topography has considerable effect on NPP, which peaks near 1350 m above the sea level. An elevation increase of 100 m above this level reduces the average annual NPP by about 25 gCm(-2). The terrain aspect gives rise to a NPP change of 5% for forests located below 1900 m as a result of its influence on incident solar radiation. For the whole study area, a simulation totally excluding topographic effects on the distributions of climatic variables and ground water movement overestimated the average NPP by 5%.

  12. Measurements and simulation of forest leaf area index and net primary productivity in Northern China.

    Science.gov (United States)

    Wang, P; Sun, R; Hu, J; Zhu, Q; Zhou, Y; Li, L; Chen, J M

    2007-11-01

    Large scale process-based modeling is a useful approach to estimate distributions of global net primary productivity (NPP). In this paper, in order to validate an existing NPP model with observed data at site level, field experiments were conducted at three sites in northern China. One site is located in Qilian Mountain in Gansu Province, and the other two sites are in Changbaishan Natural Reserve and Dunhua County in Jilin Province. Detailed field experiments are discussed and field data are used to validate the simulated NPP. Remotely sensed images including Landsat Enhanced Thematic Mapper plus (ETM+, 30 m spatial resolution in visible and near infrared bands) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, 15m spatial resolution in visible and near infrared bands) are used to derive maps of land cover, leaf area index, and biomass. Based on these maps, field measured data, soil texture and daily meteorological data, NPP of these sites are simulated for year 2001 with the boreal ecosystem productivity simulator (BEPS). The NPP in these sites ranges from 80 to 800 gCm(-2)a(-1). The observed NPP agrees well with the modeled NPP. This study suggests that BEPS can be used to estimate NPP in northern China if remotely sensed images of high spatial resolution are available.

  13. A biophysical process based approach for estimating net primary production using satellite and ground observations

    Science.gov (United States)

    Choudhury, Bhaskar J.

    An approach is presented for calculating interannual variation of net primary production (C) of terrestrial plant communities at regional scale using satellite and ground measurements. C has been calculated as the difference of gross photosynthesis (A g) and respiration (R), recognizing that different biophysical factors exert major control on these two processes. A g has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R g and R m. The R m has been determined from nitrogen content of plant tissue per unit ground area, while R g has been obtained as a fraction of the difference of A g and R m. Model parameters have not been determined by matching the calculated fluxes against observations at any location. Results are presented for cultivated and temperate deciduous forest areas over North America for five consecutive years (1986-1990) and compared with observations.

  14. Dominant role of plant physiology in trend and variability of gross primary productivity in North America

    Science.gov (United States)

    Zhou, Sha; Zhang, Yao; Ciais, Philippe; Xiao, Xiangming; Luo, Yiqi; Caylor, Kelly K.; Huang, Yuefei; Wang, Guangqian

    2017-02-01

    Annual gross primary productivity (GPP) varies considerably due to climate-induced changes in plant phenology and physiology. However, the relative importance of plant phenology and physiology on annual GPP variation is not clear. In this study, a Statistical Model of Integrated Phenology and Physiology (SMIPP) was used to evaluate the relative contributions of maximum daily GPP (GPPmax) and the start and end of growing season (GSstart and GSend) to annual GPP variability, using a regional GPP product in North America during 2000-2014 and GPP data from 24 AmeriFlux sites. Climatic sensitivity of the three indicators was assessed to investigate the climate impacts on plant phenology and physiology. The SMIPP can explain 98% of inter-annual variability of GPP over mid- and high latitudes in North America. The long-term trend and inter-annual variability of GPP are dominated by GPPmax both at the ecosystem and regional scales. During warmer spring and autumn, GSstart is advanced and GSend delayed, respectively. GPPmax responds positively to summer temperature over high latitudes (40-80°N), but negatively in mid-latitudes (25-40°N). This study demonstrates that plant physiology, rather than phenology, plays a dominant role in annual GPP variability, indicating more attention should be paid to physiological change under futher climate change.

  15. Net primary productivity and its partitioning in response to precipitation gradient in an alpine meadow.

    Science.gov (United States)

    Zhang, Fangyue; Quan, Quan; Song, Bing; Sun, Jian; Chen, Youjun; Zhou, Qingping; Niu, Shuli

    2017-11-09

    The dynamics of net primary productivity (NPP) and its partitioning to the aboveground versus belowground are of fundamental importance to understand carbon cycling and its feedback to climate change. However, the responses of NPP and its partitioning to precipitation gradient are poorly understood. We conducted a manipulative field experiment with six precipitation treatments (1/12 P, 1/4 P, 1/2 P, 3/4 P, P, and 5/4 P, P is annual precipitation) in an alpine meadow to examine aboveground and belowground NPP (ANPP and BNPP) in response to precipitation gradient in 2015 and 2016. We found that changes in precipitation had no significant impact on ANPP or belowground biomass in 2015. Compared with control, only the extremely drought treatment (1/12 P) significantly reduced ANPP by 37.68% and increased BNPP at the depth of 20-40 cm by 80.59% in 2016. Across the gradient, ANPP showed a nonlinear response to precipitation amount in 2016. Neither BNPP nor NPP had significant relationship with precipitation changes. The variance in ANPP were mostly due to forbs production, which was ultimately caused by altering soil water content and soil inorganic nitrogen concentration. The nonlinear precipitation-ANPP relationship indicates that future precipitation changes especially extreme drought will dramatically decrease ANPP and push this ecosystem beyond threshold.

  16. A computer analysis code of radioactive corrosion product behaviour in primary circuits of LMFBRs (PSYCHE)

    International Nuclear Information System (INIS)

    Iizawa, Katsuyuki; Seki, Seiichi; Kawasaki, Yuji; Kano, Shigeki; Nihei, Isao

    1986-01-01

    Recently it has become an important subject to reduce exposure to radiation from radioactive corrosion products (CPs) during maintenance and repair works in reactor plants. Metallic sodium is used as cooling material in fast reactor plants, leading to different CP behaviours compared to light water reactors. In the present study, a computer code for analyzing behaviours of CPs in fast reactor plants is developed. The analysis code, called PSYCHE, makes it possible to perform consistent analysis of production, migration and deposition of CPs in primary circuits together with dose rate around piping of apparatus in cooling systems. An analysis model is developed based on test results on CP behaviour in out-pile sodium. The model, called the ''dissolution-deposition model'', can reproduce atom-selective behaviour, transient phenomenon and downstream effect of CPs, which represent mass transfer phenomena in sodium. Verification of this code is carried out on the basis of CP measurements made in ''Joyo''. The calculation vs. measurement ratio is found to be 0.5 - 2 for CP deposition density in piping for cooling systems and 0.7 - 1.3 for dose rate, demonstrating that this code can give reasonable results. Analysis is also made to predict future changes in total amount of deposited CP in ''Joyo''. (Nogami, K.)

  17. Zika Virus Persistently and Productively Infects Primary Adult Sensory Neurons In Vitro.

    Science.gov (United States)

    Swartwout, Brianna K; Zlotnick, Marta G; Saver, Ashley E; McKenna, Caroline M; Bertke, Andrea S

    2017-10-13

    Zika virus (ZIKV) has recently surged in human populations, causing an increase in congenital and Guillain-Barré syndromes. While sexual transmission and presence of ZIKV in urine, semen, vaginal secretions, and saliva have been established, the origin of persistent virus shedding into biological secretions is not clear. Using a primary adult murine neuronal culture model, we have determined that ZIKV persistently and productively infects sensory neurons of the trigeminal and dorsal root ganglia, which innervate glands and mucosa of the face and the genitourinary tract, respectively, without apparent injury. Autonomic neurons that innervate these regions are not permissive for infection. However, productive ZIKV infection of satellite glial cells that surround and support sensory and autonomic neurons in peripheral ganglia results in their destruction. Persistent infection of sensory neurons, without affecting their viability, provides a potential reservoir for viral shedding in biological secretions for extended periods of time after infection. Furthermore, viral destruction of satellite glial cells may contribute to the development of Guillain-Barré Syndrome via an alternative mechanism to the established autoimmune response.

  18. IR laser induced reactions: temperature distributions and detection of primary products

    International Nuclear Information System (INIS)

    Bachmann, F.

    1981-12-01

    The products of laser-driven pyrolysis in the gas phase often differ drastically from those of conventional pyrolysis. In this work some reasons for this behaviour are considered. First, temperature distributions in cylindrical cells, filled with SF 6 at low pressure and heated by cw CO 2 laser radiation, are calculated by a simple model. The influence of convection is not taken into account. Comparison of theoretical prediction and corresponding experiments included the temperature-dependent absorption cross section. In the second part we describe a molecular-beam sampling system for real time monitoring of primary products in laser-driven reactions. With this system initial tests were made in nonreacting SF 6 /rare-gas mixtures. The influence of thermal diffusion was indicated by changes in concentration when the laser was switched on and off. A theoretical treatment is given solving the time-dependent heat-conduction and diffusion equation numerically. As an example for reacting systems, the laser-driven pyrolysis of methanol with SF 6 as an absorber was studied. (orig./HT)

  19. Human resources in primary health care: investments and the driving force of production.

    Science.gov (United States)

    Maeda, Sayuri Tanaka; Moleiro, Priscilla Francescucci; Egry, Emiko Yoshikawa; Ciosak, Suely Itsuko

    2011-12-01

    The present study describes the composition, the qualification, the salary investment, the workforce produce, and discusses users' accessibility in terms of time at Basic Health Units (BHUs). The study was performed at two BHUs from January to December 2008, and developed by analyzing administrative documents. In both, the composition of professionals according to education level revealed: 21% with a university degree, 27% with a secondary education, and50% with a primary education; showing a positive salary variation. The medical and nursing conducts were the majority at both. The production indicators confirmed: 25 and 37 min/person/month for accessibility, respectively for BHU A and B; R$ 8.43 and R$ 12.11/person/month for the salary investment at both BHUs, and 0.07 appointments/person/month at both BHUs. The professionals' available time is scarce compared to the potential of the demand. The production indicated an opportunity of care < 1 per person/month at a reduced cost.

  20. The most important structures utilizing primary and secondary hydroenergetic potential for electric energy production

    International Nuclear Information System (INIS)

    Zacharovsky, M.

    1997-01-01

    In this paper the construction, technological parameters and operation of Gabcikovo (primary hydro energy power) and Cierny Vah (secondary hydro energy power) are described. Construction of the hydroelectric power plant (HPP) Gabcikovo started in 1978 as a part of a system of hydro power projects Gabcikovo-Nagymaros. Basic technical data are: installed capacity 8 x 90 MW, production in an average aqueous year 2.650 GWh, number of hydroelectric generating sets (HGS) 8, turbine flow 8 x 413-636 m 3 /s, head 12.9-24 m.The Gabcikovo plant produced 9.163 GWh of electricity from the beginning of its operation till the end of 1966. The construction of the pumped storage plant (PSP) Cierny Vah started in 1976 and it was put into operation at the end of 1980. The main goal of the PSP Cierny Vah is to meet the control functions of an electrification system of the Slovak Republic, a substitute function in the cases of unexpected power outages and a planned electricity production from re-pumping. Technological parts are: six re-pumping vertical HGS in a three machine arrangement - a motor-generator, a turbine, a pump - are located in three double-blocks. Basic technical data: installed capacity 6 x 122.4 MW + 0.768 MW, yearly production 1,281 GWh, number of HGS 6, number of domestic hydroelectric generating sets 1, turbine flow 3 x 30 m / s, pump flow 6 x 22 m 3 /s, upper reservoir volume 3.7 mil. m 3 , max. head 434 m, peak time 5.71 hour, pumping time 7.78 hour, re-pumping cycle efficiency 74.36%. From putting the PSP into operation till the end of 1996, the HGS in operation 145,269 hours in total, including 53,332 hours in a turbine mode of operation, 70,293 hours in a pumping mode operation and 21,644 hours in a compensation mode operation. Whereas they supplied 5,346 GWh in the mains and the consumed 6,933 GWh of electricity for pumping. Hydroenergetic potential is a primary source of energy which is recyclable, i.e. unexhaustible and also ecologically the most tolerable

  1. The most important structures utilizing primary and secondary hydroenergetic potential for electric energy production

    Energy Technology Data Exchange (ETDEWEB)

    Zacharovsky, M [Slovenske elektrarne, a.s., Vodne elektrarne Trencin (Slovakia)

    1997-12-01

    In this paper the construction, technological parameters and operation of Gabcikovo (primary hydro energy power) and Cierny Vah (secondary hydro energy power) are described. Construction of the hydroelectric power plant (HPP) Gabcikovo started in 1978 as a part of a system of hydro power projects Gabcikovo-Nagymaros. Basic technical data are: installed capacity 8 x 90 MW, production in an average aqueous year 2.650 GWh, number of hydroelectric generating sets (HGS) 8, turbine flow 8 x 413-636 m{sup 3}/s, head 12.9-24 m.The Gabcikovo plant produced 9.163 GWh of electricity from the beginning of its operation till the end of 1966. The construction of the pumped storage plant (PSP) Cierny Vah started in 1976 and it was put into operation at the end of 1980. The main goal of the PSP Cierny Vah is to meet the control functions of an electrification system of the Slovak Republic, a substitute function in the cases of unexpected power outages and a planned electricity production from re-pumping. Technological parts are: six re-pumping vertical HGS in a three machine arrangement - a motor-generator, a turbine, a pump - are located in three double-blocks. Basic technical data: installed capacity 6 x 122.4 MW + 0.768 MW, yearly production 1,281 GWh, number of HGS 6, number of domestic hydroelectric generating sets 1, turbine flow 3 x 30 m{sup /}s, pump flow 6 x 22 m{sup 3}/s, upper reservoir volume 3.7 mil. m{sup 3}, max. head 434 m, peak time 5.71 hour, pumping time 7.78 hour, re-pumping cycle efficiency 74.36%. From putting the PSP into operation till the end of 1996, the HGS in operation 145,269 hours in total, including 53,332 hours in a turbine mode of operation, 70,293 hours in a pumping mode operation and 21,644 hours in a compensation mode operation. Whereas they supplied 5,346 GWh in the mains and the consumed 6,933 GWh of electricity for pumping. Hydroenergetic potential is a primary source of energy which is recyclable, i.e. unexhaustible and also ecologically the

  2. Estimating Net Primary Productivity Beneath Snowpack Using Snowpack Radiative Transfer Modeling and Global Satellite Data

    Science.gov (United States)

    Barber, D. E.; Peterson, M. C.

    2002-05-01

    Sufficient photosynthetically active radiation (PAR) penetrates snow for plants to grow beneath snowpack during late winter or early spring in tundra ecosystems. During the spring in this ecosystem, the snowpack creates an environment with higher humidity and less variable and milder temperatures than on the snow-free land. Under these conditions, the amount of PAR available is likely to be the limiting factor for plant growth. Current methods for determining net primary productivity (NPP) of tundra ecosystems do not account for this plant growth beneath snowpack, apparently resulting in underestimating plant production there. We are currently in the process of estimating the magnitude of this early growth beneath snow for tundra ecosystems. Our method includes a radiative transfer model that simulates diffuse and direct PAR penetrating snowpack based on downwelling PAR values and snow depth data from global satellite databases. These PAR levels are convolved with plant growth for vegetation that thrives beneath snowpacks, such as lichen. We expect to present the net primary production for Cladonia species (a common Arctic lichen) that has the capability of photosynthesizing at low temperatures beneath snowpack. This method may also be used to study photosynthesis beneath snowpacks in other hardy plants. Lichens are used here as they are common in snow-covered regions, flourish under snowpack, and provide an important food source for tundra herbivores (e.g. caribou). In addition, lichens are common in arctic-alpine environments and our results can be applied to these ecosystems as well. Finally, the NPP of lichen beneath snowpack is relatively well understood compared to other plants, making it ideal vegetation for this first effort at estimating the potential importance of photosynthesis at large scales. We are examining other candidate plants for their photosynthetic potential beneath snowpack at this time; however, little research has been done on this topic. We

  3. Development of an autoclave with zirconia crystal windows for in-situ observation of sample surface under primary water conditions of pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Takuya; Totsuka, Nobuo; Arioka, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Nakajima, Nobuo

    2002-09-01

    Elucidating the mechanism for primary water stress corrosion cracking (PWSCC) is important for improving the reliability of structural materials in the primary system of pressurized water reactors (PWR). For this purpose, visualization of corrosion material surface in the primary coolant environment is effective, but it was impossible because of lack of suitable window material. Yttria stabilized zirconia was newly selected as a candidate for in-situ window material in the primary coolant environment of PWR. Its sufficient corrosion resistance was proved by measuring the transmissivity of light after being immersed in the primary coolant environment. A new autoclave with two windows of yttria-stabilized zirconia was developed. The corrosion material surfaces of Alloy600 and SUS304 in the primary coolant environment were clearly observed with this autoclave. Observations of cracks generated on the surface of SUS304 specimen, suggest that its generation time depends on temperature. (author)

  4. New electron-ion-plasma equipment for modification of materials and products surface

    International Nuclear Information System (INIS)

    Koval', N.N.

    2013-01-01

    Electron-ion-plasma treatment of materials and products, including surface clearing and activation, formation surface layers with changed chemical and phase structure, increased hardness and corrosion resistance; deposition of various functional coatings, has received a wide distribution in a science and industry. Widespread methods of ion-plasma modification of material and product surfaces are ion etching and activation, ion-plasma nitriding, arc or magnetron deposition of functional coatings, including nanostructured. The combination of above methods of surface modification allows essentially to improve exploitation properties of treated products and to optimize the characteristics of modified surfaces for concrete final requirements. For the purpose of a combination of various methods of ion-plasma treatment in a single work cycle at Institute of High Current Electronics of SB RAS (IHCE SB RAS) specialized technological equipment 'DUET', 'TRIO' and 'QUADRO' and 'KVINTA' have been developed. This equipment allow generating uniform low-temperature gas plasma at pressures of (0.1-1) Pa with concentration of (10 9 -10 11 ) cm -3 in volume of (0.1-1) m 3 . In the installations consistent realization of several various operations of materials and products treatment in a single work cycle is possible. The operations are preliminary heating and degassing, ion clearing, etching and activation of materials and products surface by plasma of arc discharges; chemicothermal treatment (nitriding) for formation of diffusion layer on a surface of treated sample using plasma of nonself-sustained low-pressure arc discharge; deposition of single- or multilayered superhard (≥40 GPa) nanocrystalline coatings on the basis of pure metals or their compounds (nitrides, carbides, carbonitrides) by the arc plasma-assisted method. For realization of the modes all installations are equipped by original sources of gas and metal plasma. Besides, in

  5. H2O2 Production in Microbial Electrochemical Cells Fed with Primary Sludge.

    Science.gov (United States)

    Ki, Dongwon; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2017-06-06

    We developed an energy-efficient, flat-plate, dual-chambered microbial peroxide producing cell (MPPC) as an anaerobic energy-conversion technology for converting primary sludge (PS) at the anode and producing hydrogen peroxide (H 2 O 2 ) at the cathode. We operated the MPPC with a 9 day hydraulic retention time in the anode. A maximum H 2 O 2 concentration of ∼230 mg/L was achieved in 6 h of batch cathode operation. This is the first demonstration of H 2 O 2 production using PS in an MPPC, and the energy requirement for H 2 O 2 production was low (∼0.87 kWh/kg H 2 O 2 ) compared to previous studies using real wastewaters. The H 2 O 2 gradually decayed with time due to the diffusion of H 2 O 2 -scavenging carbonate ions from the anode. We compared the anodic performance with a H 2 -producing microbial electrolysis cell (MEC). Both cells (MEC and MPPC) achieved ∼30% Coulombic recovery. While similar microbial communities were present in the anode suspension and anode biofilm for the two operating modes, aerobic bacteria were significant only on the side of the anode facing the membrane in the MPPC. Coupled with a lack of methane production in the MPPC, the presence of aerobic bacteria suggests that H 2 O 2 diffusion to the anode side caused inhibition of methanogens, which led to the decrease in chemical oxygen demand removal. Thus, the Coulombic efficiency was ∼16% higher in the MPPC than in the MEC (64% versus 48%, respectively).

  6. Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data

    Directory of Open Access Journals (Sweden)

    Ramakrishna R. Nemani

    2012-01-01

    Full Text Available Algorithms that use remotely-sensed vegetation indices to estimate gross primary production (GPP, a key component of the global carbon cycle, have gained a lot of popularity in the past decade. Yet despite the amount of research on the topic, the most appropriate approach is still under debate. As an attempt to address this question, we compared the performance of different vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS in capturing the seasonal and the annual variability of GPP estimates from an optimal network of 21 FLUXNET forest towers sites. The tested indices include the Normalized Difference Vegetation Index (NDVI, Enhanced Vegetation Index (EVI, Leaf Area Index (LAI, and Fraction of Photosynthetically Active Radiation absorbed by plant canopies (FPAR. Our results indicated that single vegetation indices captured 50–80% of the variability of tower-estimated GPP, but no one index performed universally well in all situations. In particular, EVI outperformed the other MODIS products in tracking seasonal variations in tower-estimated GPP, but annual mean MODIS LAI was the best estimator of the spatial distribution of annual flux-tower GPP (GPP = 615 × LAI − 376, where GPP is in g C/m2/year. This simple algorithm rehabilitated earlier approaches linking ground measurements of LAI to flux-tower estimates of GPP and produced annual GPP estimates comparable to the MODIS 17 GPP product. As such, remote sensing-based estimates of GPP continue to offer a useful alternative to estimates from biophysical models, and the choice of the most appropriate approach depends on whether the estimates are required at annual or sub-annual temporal resolution.

  7. Reconstructed Solar-Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME-2 Solar-Induced Fluorescence

    Science.gov (United States)

    Gentine, P.; Alemohammad, S. H.

    2018-04-01

    Solar-induced fluorescence (SIF) observations from space have resulted in major advancements in estimating gross primary productivity (GPP). However, current SIF observations remain spatially coarse, infrequent, and noisy. Here we develop a machine learning approach using surface reflectances from Moderate Resolution Imaging Spectroradiometer (MODIS) channels to reproduce SIF normalized by clear sky surface irradiance from the Global Ozone Monitoring Experiment-2 (GOME-2). The resulting product is a proxy for ecosystem photosynthetically active radiation absorbed by chlorophyll (fAPARCh). Multiplying this new product with a MODIS estimate of photosynthetically active radiation provides a new MODIS-only reconstruction of SIF called Reconstructed SIF (RSIF). RSIF exhibits much higher seasonal and interannual correlation than the original SIF when compared with eddy covariance estimates of GPP and two reference global GPP products, especially in dry and cold regions. RSIF also reproduces intense productivity regions such as the U.S. Corn Belt contrary to typical vegetation indices and similarly to SIF.

  8. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2010-05-01

    Full Text Available We synthesised observations of total particle number (CN concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT and 1000–10 000 cm−3 in the continental boundary layer (BL. Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46 but fail to explain the observed seasonal cycle (R2=0.1. The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88% unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%. Simulated CN concentrations in the continental BL were also biased low (NMB=−74% unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one or kinetic-type mechanism (J proportional to sulfuric acid to the power two with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3 than by increasing the number emission from primary anthropogenic sources (R2=0.18. The nucleation constants that resulted in best overall match between model and observed CN concentrations were

  9. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Science.gov (United States)

    Spracklen, D. V.; Carslaw, K. S.; Merikanto, J.; Mann, G. W.; Reddington, C. L.; Pickering, S.; Ogren, J. A.; Andrews, E.; Baltensperger, U.; Weingartner, E.; Boy, M.; Kulmala, M.; Laakso, L.; Lihavainen, H.; Kivekäs, N.; Komppula, M.; Mihalopoulos, N.; Kouvarakis, G.; Jennings, S. G.; O'Dowd, C.; Birmili, W.; Wiedensohler, A.; Weller, R.; Gras, J.; Laj, P.; Sellegri, K.; Bonn, B.; Krejci, R.; Laaksonen, A.; Hamed, A.; Minikin, A.; Harrison, R. M.; Talbot, R.; Sun, J.

    2010-05-01

    We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300-2000 cm-3 in the marine boundary layer and free troposphere (FT) and 1000-10 000 cm-3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2-10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=-88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=-25%). Simulated CN concentrations in the continental BL were also biased low (NMB=-74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation

  10. Counterintuitive effects of global warming-induced wind patterns on primary production in the Northern Humboldt Current System.

    Science.gov (United States)

    Mogollón, Rodrigo; R Calil, Paulo H

    2018-04-14

    It has been hypothesized that global warming will strengthen upwelling-favorable winds in the Northern Humboldt Current System (NHCS) as a consequence of the increase of the land-sea thermal gradient along the Peruvian coast. The effect of strengthened winds in this region is assessed with the use of a coupled physical-biogeochemical model forced with projected and climatological winds. Strengthened winds induce an increase in primary production of 2% per latitudinal degree from 9.5°S to 5°S. In some important coastal upwelling sites primary production is reduced. This is due to a complex balance between nutrient availability, nutrient use efficiency, as well as eddy- and wind-driven factors. Mesoscale activity induces a net offshore transport of inorganic nutrients, thus reducing primary production in the coastal upwelling region. Wind mixing, in general disadvantageous for primary producers, leads to shorter residence times in the southern and central coastal zones. Overall, instead of a proportional enhancement in primary production due to increased winds, the NHCS becomes only 5% more productive (+5 mol C m -2 year -1 ), 10% less limited by nutrients and 15% less efficient due to eddy-driven effects. It is found that regions with a initial strong nutrient limitation are more efficient in terms of nutrient assimilation which makes them more resilient in face of the acceleration of the upwelling circulation. © 2018 John Wiley & Sons Ltd.

  11. Study on Net Primary Productivity over Complicated Mountainous Area based on Multi-Source Remote Sensing Data

    Science.gov (United States)

    Guan, X.; Shen, H.; Li, X.; Gan, W.

    2017-12-01

    Mountainous area hosts approximately a quarter of the global land surface, with complex climate and ecosystem conditions. More knowledge about mountainous ecosystem could highly advance our understanding of the global carbon cycle and climate change. Net Primary Productivity (NPP), the biomass increment of plants, is a widely used ecological indicator that can be obtained by remote sensing methods. However, limited by the defective characteristic of sensors, which cannot be long-term with enough spatial details synchronously, the mountainous NPP was far from being understood. In this study, a multi-sensor fusion framework was applied to synthesize a 1-km NPP series from 1982 to 2014 in mountainous southwest China, where elevation ranged from 76m to 6740m. The validation with field-measurements proved this framework greatly improved the accuracy of NPP (r=0.79, prun-off. What is more, it was indicated that the NPP variation showed three distinct stages at the year break-point of 1992 and 2002 over the region. The NPP in low-elevation area varied almost triple more drastic than the high-elevation area for all the three stages, due to the much greater change rate of precipitation. In summary, this study innovatively conducted a long-term and accurate NPP study on the not understood mountainous ecosystem with multi-source data, the framework and conclusions will be beneficial for the further cognition of global climate change.

  12. Probabilistic study of primary pump trip in a P.W.R. reactor: use of response surface methodology

    International Nuclear Information System (INIS)

    Bars, C.; Duchemin, B.; Maigret, N.; Peltier, J.; Rostan, O.; Villeneuve, M.J. de; Lanore, J.M.

    1981-09-01

    This paper describes a probabilistic study about the consequences of the trip or blockage of one of the three PWR reactor primary pumps. The distribution of the input parameters is taken into account and the resulting distribution of the consequence (number of failed fuel rods) is assessed. The necessity to do this study with the response surface methodology and the precautions to take are outlined. The results show that the probability to have failed fuel rods is about 10 -4 for pump trip and 0.16 for blockage with, in this case, a mean of 196 failed rods, that is 0.5 % of total number of rods

  13. Process for recovering, destroying or displacing a petroleum product on the surface of a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Godin, G H.F.; Bringer Quertier, G M.L.

    1969-01-06

    This process consists in first immobilizing the petroleum product on the surface of water by means of pieces or strips of polyethylene plastic. The petroleum product is then either collected and separated from water, or burned in place. After burning, the solid residue is towed to shore and burned a second time, after which neither ash nor residue is left. The proportion of polyethylene to be used is 1:20 if the product is collected, 1:35 if it is burned.

  14. Versatile microbial surface-display for environmental remediation and biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cindy H.; Mulchandani, Ashok; Chen, wilfred

    2008-02-14

    Surface display is a powerful technique that utilizes natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.

  15. A high volume cost efficient production macrostructuring process. [for silicon solar cell surface treatment

    Science.gov (United States)

    Chitre, S. R.

    1978-01-01

    The paper presents an experimentally developed surface macro-structuring process suitable for high volume production of silicon solar cells. The process lends itself easily to automation for high throughput to meet low-cost solar array goals. The tetrahedron structure observed is 0.5 - 12 micron high. The surface has minimal pitting with virtually no or very few undeveloped areas across the surface. This process has been developed for (100) oriented as cut silicon. Chemi-etched, hydrophobic and lapped surfaces were successfully texturized. A cost analysis as per Samics is presented.

  16. Influence of the Phytoplankton Community Structure on the Spring and Annual Primary Production in the Northwestern Mediterranean Sea

    Science.gov (United States)

    Mayot, Nicolas; D'Ortenzio, Fabrizio; Uitz, Julia; Gentili, Bernard; Ras, Joséphine; Vellucci, Vincenzo; Golbol, Melek; Antoine, David; Claustre, Hervé

    2017-12-01

    Satellite ocean color observations revealed that unusually deep convection events in 2005, 2006, 2010, and 2013 led to an increased phytoplankton biomass during the spring bloom over a large area of the northwestern Mediterranean Sea (NWM). Here we investigate the effects of these events on the seasonal phytoplankton community structure, we quantify their influence on primary production, and we discuss the potential biogeochemical impact. For this purpose, we compiled in situ phytoplankton pigment data from five ship surveys performed in the NWM and from monthly cruises at a fixed station in the Ligurian Sea. We derived primary production rates from a light photosynthesis model applied to these in situ data. Our results confirm that the maximum phytoplankton biomass during the spring bloom is larger in years associated with intense deep convection events (+51%). During these enhanced spring blooms, the contribution of diatoms to total phytoplankton biomass increased (+33%), as well as the primary production rate (+115%). The occurrence of a highly productive bloom is also related to an increase in the phytoplankton bloom area (+155%) and in the relative contribution of diatoms to primary production (+63%). Therefore, assuming that deep convection in the NWM could be significantly weakened by future climate changes, substantial decreases in the spring production of organic carbon and of its export to deep waters can be expected.

  17. Environmental impact at primary production of biofuels; Miljoeeffekter vid primaerproduktion av biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Bergstedt, Johan; Westerberg, Lars; Tonderski, Karin (Linkoepings Univ, Linkoeping (Sweden). Dept. of Physics, Chemistry and Biology, Div. of Ecology)

    2009-02-15

    Sweden has a policy objective that the forest and agricultural production of renewable energy must increase. Several of the traditionally cultivated annual crops can be used to biofuels, such as wheat, oilseed rape and sugar beet, but other crops are also interesting. Apart from an increase in Salix cultivation we discuss the cultivation of plants we have not cultivated, such as hemp, poplar and aspen, and intensive cultivation of spruce. Reed canary grass and grassland with several species are other candidates. The old reproductive systems environment are well known but what the new ones mean for the environment is poorly known. In this report, the state of knowledge regarding environmental impacts of primary bio-fuel production in Sweden is compiled. Based on the assumption that the reference crop is a plowed field the crops that can be grown on agricultural land are discussed. For the forest soil analyzed GROT (Tree-branches and -tops), root harvesting and intensive farmed spruce. The environmental impacts treated are carbon sinks in soil, compaction (with accompanying erosion problems), nutrient leaching, pesticides, landscape diversity, and biodiversity. One conclusion of the study is that it generally that there are many positive environmental effects of converting agricultural land to perennial crops for bioenergy, at least to some degree. On the other hand, increased collection of primary bio-energy from forests has mainly negative environmental impacts. The size of the effects are strongly linked to how much and where to grow and harvest, so a study of scale problems should be urgently implemented. This applies to both nutrient leaching and on the biological and landscape diversity. Use of ecosystem- and geographic models can be effective tools to generate different scenarios. The greatest potential of all crops, however, appears to be for aquatic systems with harvest of blue-green algae and bacteria, which probably would have mainly positive effects on

  18. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD.

    Science.gov (United States)

    Jiao, Na; Baker, Susan S; Chapa-Rodriguez, Adrian; Liu, Wensheng; Nugent, Colleen A; Tsompana, Maria; Mastrandrea, Lucy; Buck, Michael J; Baker, Robert D; Genco, Robert J; Zhu, Ruixin; Zhu, Lixin

    2017-08-03

    Bile acids are regulators of lipid and glucose metabolism, and modulate inflammation in the liver and other tissues. Primary bile acids such as cholic acid and chenodeoxycholic acid (CDCA) are produced in the liver, and converted into secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid by gut microbiota. Here we investigated the possible roles of bile acids in non-alcoholic fatty liver disease (NAFLD) pathogenesis and the impact of the gut microbiome on bile acid signalling in NAFLD. Serum bile acid levels and fibroblast growth factor 19 (FGF19), liver gene expression profiles and gut microbiome compositions were determined in patients with NAFLD, high-fat diet-fed rats and their controls. Serum concentrations of primary and secondary bile acids were increased in patients with NAFLD. In per cent, the farnesoid X receptor (FXR) antagonistic DCA was increased, while the agonistic CDCA was decreased in NAFLD. Increased mRNA expression for cytochrome P450 7A1, Na + -taurocholate cotransporting polypeptide and paraoxonase 1, no change in mRNA expression for small heterodimer partner and bile salt export pump, and reduced serum FGF19 were evidence of impaired FXR and fibroblast growth factor receptor 4 (FGFR4)-mediated signalling in NAFLD. Taurine and glycine metabolising bacteria were increased in the gut of patients with NAFLD, reflecting increased secondary bile acid production. Similar changes in liver gene expression and the gut microbiome were observed in high-fat diet-fed rats. The serum bile acid profile, the hepatic gene expression pattern and the gut microbiome composition consistently support an elevated bile acid production in NAFLD. The increased proportion of FXR antagonistic bile acid explains, at least in part, the suppression of hepatic FXR-mediated and FGFR4-mediated signalling. Our study suggests that future NAFLD intervention may target the components of FXR signalling, including the bile acid converting gut microbiome. © Article

  19. Abiotic Degradation and Toxicological Impacts of Pharmaceuticals and Personal Care Products (PPCPs) in Surface Waters: Roles of Mineral Sediments and Solar Radiation

    Science.gov (United States)

    Rubasinghege, G. R. S.; Rijal, H.; Maldonado-Torres, S.; Gurung, R.; Rogelj, S.; Piyasena, M.

    2017-12-01

    The growing medical and personal needs of human populations have escalated release of pharmaceuticals and personal care products into surface waters. This work investigates abiotic degradation pathways of a particular PPCP, ibuprofen, in the presence of a major mineral component of sedimentation (kaolinite clay), as well as the health effects of the primary compound and its degradation products. Results from these studies showed that the rate and extent of ibuprofen degradation is greatly influenced by the presence of sedimentation particles and solar radiation. In the absence of solar radiation, the dominant reaction mechanism was observed to be the adsorption of ibuprofen onto sedimentation particle surface where surface silanol groups play a key role. In contrast, under solar radiation and in the presence of clay particles, ibuprofen breaks down to several fractions. The decay rates were at least 6-fold higher for irradiated samples compared to those of dark conditions. Toxicity of primary ibuprofen and its secondary residues were tested on three microorganisms: Bacillus megaterium, Pseudoaltermonas atlantica; and algae from the Chlorella genus. The results from the biological assays show that primary PPCP is more toxic than the mixture of secondary products. Overall, however, biological assays carried out using only 4-acetylbenzoic acid, the most abundant secondary product, show a higher toxic effect on algae compared to its parent compound.

  20. Accounting for graduate medical education production of primary care physicians and general surgeons: timing of measurement matters.

    Science.gov (United States)

    Petterson, Stephen; Burke, Matthew; Phillips, Robert; Teevan, Bridget

    2011-05-01

    Legislation proposed in 2009 to expand GME set institutional primary care and general surgery production eligibility thresholds at 25% at entry into training. The authors measured institutions' production of primary care physicians and general surgeons on completion of first residency versus two to four years after graduation to inform debate and explore residency expansion and physician workforce implications. Production of primary care physicians and general surgeons was assessed by retrospective analysis of the 2009 American Medical Association Masterfile, which includes physicians' training institution, residency specialty, and year of completion for up to six training experiences. The authors measured production rates for each institution based on physicians completing their first residency during 2005-2007 in family or internal medicine, pediatrics, or general surgery. They then reassessed rates to account for those who completed additional training. They compared these rates with proposed expansion eligibility thresholds and current workforce needs. Of 116,004 physicians completing their first residency, 54,245 (46.8%) were in primary care and general surgery. Of 683 training institutions, 586 met the 25% threshold for expansion eligibility. At two to four years out, only 29,963 physicians (25.8%) remained in primary care or general surgery, and 135 institutions lost eligibility. A 35% threshold eliminated 314 institutions collectively training 93,774 residents (80.8%). Residency expansion thresholds that do not account for production at least two to four years after completion of first residency overestimate eligibility. The overall primary care production rate from GME will not sustain the current physician workforce composition. Copyright © by the Association of American medical Colleges.

  1. Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community.

    Directory of Open Access Journals (Sweden)

    Tim Eberlein

    Full Text Available We studied the effect of ocean acidification (OA on a coastal North Sea plankton community in a long-term mesocosm CO2-enrichment experiment (BIOACID II long-term mesocosm study. From March to July 2013, 10 mesocosms of 19 m length with a volume of 47.5 to 55.9 m3 were deployed in the Gullmar Fjord, Sweden. CO2 concentrations were enriched in five mesocosms to reach average CO2 partial pressures (pCO2 of 760 μatm. The remaining five mesocosms were used as control at ambient pCO2 of 380 μatm. Our paper is part of a PLOS collection on this long-term mesocosm experiment. Here, we here tested the effect of OA on total primary production (PPT by performing 14C-based bottle incubations for 24 h. Furthermore, photoacclimation was assessed by conducting 14C-based photosynthesis-irradiance response (P/I curves. Changes in chlorophyll a concentrations over time were reflected in the development of PPT, and showed higher phytoplankton biomass build-up under OA. We observed two subsequent phytoplankton blooms in all mesocosms, with peaks in PPT around day 33 and day 56. OA had no significant effect on PPT, except for a marginal increase during the second phytoplankton bloom when inorganic nutrients were already depleted. Maximum light use efficiencies and light saturation indices calculated from the P/I curves changed simultaneously in all mesocosms, and suggest that OA did not alter phytoplankton photoacclimation. Despite large variability in time-integrated productivity estimates among replicates, our overall results indicate that coastal phytoplankton communities can be affected by OA at certain times of the seasonal succession with potential consequences for ecosystem functioning.

  2. Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests

    Directory of Open Access Journals (Sweden)

    Mathias Neumann

    2016-06-01

    Full Text Available Net primary production (NPP is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily gridded European climate data set with the MOD17 algorithm to create the regional NPP dataset MODIS EURO. For evaluation of this new dataset, we compare MODIS EURO with terrestrial driven NPP from analyzing and harmonizing forest inventory data (NFI from 196,434 plots in 12 European countries as well as the global MODIS NPP dataset for the years 2000 to 2012. Comparing these three NPP datasets, we found that the global MODIS NPP dataset differs from NFI NPP by 26%, while MODIS EURO only differs by 7%. MODIS EURO also agrees with NFI NPP across scales (from continental, regional to country and gradients (elevation, location, tree age, dominant species, etc.. The agreement is particularly good for elevation, dominant species or tree height. This suggests that using improved climate data allows the MOD17 algorithm to provide realistic NPP estimates for Europe. Local discrepancies between MODIS EURO and NFI NPP can be related to differences in stand density due to forest management and the national carbon estimation methods. With this study, we provide a consistent, temporally continuous and spatially explicit productivity dataset for the years 2000 to 2012 on a 1-km resolution, which can be used to assess climate change impacts on ecosystems or the potential biomass supply of the European forests for an increasing bio-based economy. MODIS EURO data are made freely available at ftp://palantir.boku.ac.at/Public/MODIS_EURO.

  3. Controls of vegetation structure and net primary production in restored grasslands

    Science.gov (United States)

    Munson, Seth M.; Lauenroth, William K.

    2014-01-01

    1. Vegetation structure and net primary production (NPP) are fundamental properties of ecosystems. Understanding how restoration practices following disturbance interact with environmental factors to control these properties can provide insight on how ecosystems recover and guide management efforts. 2. We assessed the relative contribution of environmental and restoration factors in controlling vegetation structure, above- and below-ground investment in production across a chronosequence of semiarid Conservation Reserve Program (CRP) fields recovering from dryland wheat cropping relative to undisturbed grassland. Importantly, we determined the role of plant diversity and how seeding either native or introduced perennial grasses influenced the recovery of vegetation properties. 3. Plant basal cover increased with field age and was highest in CRP fields seeded with native perennial grasses. In contrast, fields seeded with introduced perennial grasses had tall-growing plants with relatively low basal cover. These vegetation structural characteristics interacted with precipitation, but not soil characteristics, to influence above-ground NPP (ANPP). Fields enrolled in the CRP program for >7 years supported twice as much ANPP as undisturbed shortgrass steppe in the first wet year of the study, but all CRP fields converged on a common low amount of ANPP in the following dry year and invested less than half as much as the shortgrass steppe in below-ground biomass. 4. ANPP in CRP fields seeded with native perennial grasses for more than 7 years was positively related to species richness, whereas ANPP in CRP fields seeded with introduced perennial grasses were controlled more by dominant species. 5. Synthesis and applications. Seeding with introduced, instead of native, perennial grasses had a strong direct influence on vegetation structure, including species richness, which indirectly affected NPP through time. However, the effects of restoring either native or introduced

  4. Development of a nuclear spallation simulation code and calculations of primary spallation products

    International Nuclear Information System (INIS)

    Nishida, Takahiko; Nakahara, Yasuaki; Tsutsui, Tsuneo

    1986-08-01

    In order to make evaluations of computational models for the nuclear spallation reaction from a nuclear physics point of view, a simulation code NUCLEUS has been developed by modifying and combining the Monte Carlo codes NMTC/JAERI and NMTA/JAERI for calculating only the nuclear spallation reaction (intranuclear cascade + evaporation and/or fast fission) between a nucleus and a projectile without taking into consideration of internuclear transport. New several plotting routines have been provided for the rapid process of much more event data, obtained by using the ARGUS plotting system. The results obtained by our code can be directly compared with the experimental results using by thin foil experiments in which internuclear multiple collisions have little effects, and will serve to upgrade the calculational methods and the values of nuclear parameters currently used in the calculations. Some discussions are done about the preliminary computational results obtained by using NUCLEUS. The mass distribution and charge dispersion of reaction products are examined in some detail for the nuclear spallation reaction between incident protons and target nuclei, such as U, Pb and Ag, in the energy range from 0.5 GeV to 3.0 GeV. These results show that the distribution of reaction products ceases to change its form as the proton energy increases over about 2 GeV. The same tendency is seen in the energy dependence of the number of primary particles emitted from a nucleus. After spallation reactions, a variety of nuclei, especially many neutron deficient nuclides with nuclear charges nearly equal to ones of a target nucleus, are produced. Due to their short lifetime most of them will change to stable nuclides in due time. Finally, some important issues are discussed to improve the present simulation method. (author)

  5. Estimating primary productivity of tropical oil palm in Malaysia using remote sensing technique and ancillary data

    Science.gov (United States)

    Kanniah, K. D.; Tan, K. P.; Cracknell, A. P.

    2014-10-01

    The amount of carbon sequestration by vegetation can be estimated using vegetation productivity. At present, there is a knowledge gap in oil palm net primary productivity (NPP) at a regional scale. Therefore, in this study NPP of oil palm trees in Peninsular Malaysia was estimated using remote sensing based light use efficiency (LUE) model with inputs from local meteorological data, upscaled leaf area index/fractional photosynthetically active radiation (LAI/fPAR) derived using UK-DMC 2 satellite data and a constant maximum LUE value from the literature. NPP values estimated from the model was then compared and validated with NPP estimated using allometric equations developed by Corley and Tinker (2003), Henson (2003) and Syahrinudin (2005) with diameter at breast height, age and the height of the oil palm trees collected from three estates in Peninsular Malaysia. Results of this study show that oil palm NPP derived using a light use efficiency model increases with respect to the age of oil palm trees, and it stabilises after ten years old. The mean value of oil palm NPP at 118 plots as derived using the LUE model is 968.72 g C m-2 year-1 and this is 188% - 273% higher than the NPP derived from the allometric equations. The estimated oil palm NPP of young oil palm trees is lower compared to mature oil palm trees (oil palm trees contribute to lower oil palm LAI and therefore fPAR, which is an important variable in the LUE model. In contrast, it is noted that oil palm NPP decreases with respect to the age of oil palm trees as estimated using the allomeric equations. It was found in this study that LUE models could not capture NPP variation of oil palm trees if LAI/fPAR is used. On the other hand, tree height and DBH are found to be important variables that can capture changes in oil palm NPP as a function of age.

  6. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity

    Science.gov (United States)

    Chen, Jing M.; Mo, Gang; Pisek, Jan; Liu, Jane; Deng, Feng; Ishizawa, Misa; Chan, Douglas

    2012-03-01

    Sunlit and shaded leaf separation proposed by Norman (1982) is an effective way to upscale from leaf to canopy in modeling vegetation photosynthesis. The Boreal Ecosystem Productivity Simulator (BEPS) makes use of this methodology, and has been shown to be reliable in modeling the gross primary productivity (GPP) derived from CO2flux and tree ring measurements. In this study, we use BEPS to investigate the effect of canopy architecture on the global distribution of GPP. For this purpose, we use not only leaf area index (LAI) but also the first ever global map of the foliage clumping index derived from the multiangle satellite sensor POLDER at 6 km resolution. The clumping index, which characterizes the degree of the deviation of 3-dimensional leaf spatial distributions from the random case, is used to separate sunlit and shaded LAI values for a given LAI. Our model results show that global GPP in 2003 was 132 ± 22 Pg C. Relative to this baseline case, our results also show: (1) global GPP is overestimated by 12% when accurate LAI is available but clumping is ignored, and (2) global GPP is underestimated by 9% when the effective LAI is available and clumping is ignored. The clumping effects in both cases are statistically significant (p < 0.001). The effective LAI is often derived from remote sensing by inverting the measured canopy gap fraction to LAI without considering the clumping. Global GPP would therefore be generally underestimated when remotely sensed LAI (actually effective LAI by our definition) is used. This is due to the underestimation of the shaded LAI and therefore the contribution of shaded leaves to GPP. We found that shaded leaves contribute 50%, 38%, 37%, 39%, 26%, 29% and 21% to the total GPP for broadleaf evergreen forest, broadleaf deciduous forest, evergreen conifer forest, deciduous conifer forest, shrub, C4 vegetation, and other vegetation, respectively. The global average of this ratio is 35%.

  7. Assessment of SMAP soil moisture for global simulation of gross primary production

    Science.gov (United States)

    He, Liming; Chen, Jing M.; Liu, Jane; Bélair, Stéphane; Luo, Xiangzhong

    2017-07-01

    In this study, high-quality soil moisture data derived from the Soil Moisture Active Passive (SMAP) satellite measurements are evaluated from a perspective of improving the estimation of the global gross primary production (GPP) using a process-based ecosystem model, namely, the Boreal Ecosystem Productivity Simulator (BEPS). The SMAP soil moisture data are assimilated into BEPS using an ensemble Kalman filter. The correlation coefficient (r) between simulated GPP from the sunlit leaves and Sun-induced chlorophyll fluorescence (SIF) measured by Global Ozone Monitoring Experiment-2 is used as an indicator to evaluate the performance of the GPP simulation. Areas with SMAP data in low quality (i.e., forests), or with SIF in low magnitude (e.g., deserts), or both are excluded from the analysis. With the assimilated SMAP data, the r value is enhanced for Africa, Asia, and North America by 0.016, 0.013, and 0.013, respectively (p r appears in single-cropping agricultural land where the irrigation is not considered in the model but well captured by SMAP (e.g., 0.09 in North America, p < 0.05). With the assimilation of SMAP, areas with weak model performances are identified in double or triple cropping cropland (e.g., part of North China Plain) and/or mountainous area (e.g., Spain and Turkey). The correlation coefficient is enhanced by 0.01 in global average for shrub, grass, and cropland. This enhancement is small and insignificant because nonwater-stressed areas are included.

  8. Evaluation of CRUDTRAN code to predict transport of corrosion products and radioactivity in the PWR primary coolant system

    International Nuclear Information System (INIS)

    Lee, C.B.

    2002-01-01

    CRUDTRAN code is to predict transport of the corrosion products and their radio-activated nuclides such as cobalt-58 and cobalt-60 in the PWR primary coolant system. In CRUDTRAN code the PWR primary circuit is divided into three principal sections such as the core, the coolant and the steam generator. The main driving force for corrosion product transport in the PWR primary coolant comes from coolant temperature change throughout the system and a subsequent change in corrosion product solubility. As the coolant temperature changes around the PWR primary circuit, saturation status of the corrosion products in the coolant also changes such that under-saturation in steam generator and super-saturation in the core. CRUDTRAN code was evaluated by comparison with the results of the in-reactor loop tests simulating the PWR primary coolant system and PWR plant data. It showed that CRUDTRAN could predict variations of cobalt-58 and cobalt-60 radioactivity with time, plant cycle and coolant chemistry in the PWR plant. (author)

  9. Study of the Effect of Nanoparticles and Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Productivity

    Directory of Open Access Journals (Sweden)

    Steven J. Duranceau

    2013-08-01

    Full Text Available To evaluate the significance of reverse osmosis (RO and nanofiltration (NF surface morphology on membrane performance, productivity experiments were conducted using flat-sheet membranes and three different nanoparticles, which included SiO2, TiO2 and CeO2. In this study, the productivity rate was markedly influenced by membrane surface morphology. Atomic force microscopy (AFM analysis of membrane surfaces revealed that the higher productivity decline rates associated with polyamide RO membranes as compared to that of a cellulose acetate NF membrane was due to the inherent ridge-and-valley morphology of the active layer. The unique polyamide active layer morphology was directly related to the surface roughness, and was found to contribute to particle accumulation in the valleys causing a higher flux decline than in smoother membranes. Extended RO productivity experiments using laboratory grade water and diluted pretreated seawater were conducted to compare the effect that different nanoparticles had on membrane active layers. Membrane flux decline was not affected by particle type when the feed water was laboratory grade water. On the other hand, membrane productivity was affected by particle type when pretreated diluted seawater served as feed water. It was found that CeO2 addition resulted in the least observable flux decline, followed by SiO2 and TiO2. A productivity simulation was conducted by fitting the monitored flux data into a cake growth rate model, where the model was modified using a finite difference method to incorporate surface thickness variation into the analysis. The ratio of cake growth term (k1 and particle back diffusion term (k2 was compared in between different RO and NF membranes. Results indicated that k2 was less significant for surfaces that exhibited a higher roughness. It was concluded that the valley areas of thin-film membrane surfaces have the ability to capture particles, limiting particle back diffusion.

  10. Study of surface potential contamination in radioisotope and radiopharmaceutical production facilities and alternative solutions

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Farida Tusafariah; Djarwanti Rahayu Pipin Soedjarwo

    2013-01-01

    Radioisotope and radiopharmaceutical production facilities that exist in their operations around the world in the form of radiological impacts of radiation exposure, contamination of surface and air contamination. Given the number of existing open source in radioisotope and radiopharmaceutical production facility, then the possibility of surface contamination in the work area is quite high. For that to protect the safety and health of both workers, the public and the environment, then the licensee must conduct an inventory of some of the potential that could result in contamination of surfaces in radioisotope and radiopharmaceutical production facilities. Several potential to cause surface contamination in radioisotope and radiopharmaceutical production facilities consist of loss of resources, the VAC system disorders, impaired production facilities, limited resources and lack of work discipline and radioactive waste handling activities. From the study of some potential, there are several alternative solutions that can be implemented by the licensee to address the contamination of the surface so as not to cause adverse radiological impacts for both radiation workers, the public or the environment. (author)

  11. Enhancement of Biomass and Lipid Productivities of Water Surface-Floating Microalgae by Chemical Mutagenesis.

    Science.gov (United States)

    Nojima, Daisuke; Ishizuka, Yuki; Muto, Masaki; Ujiro, Asuka; Kodama, Fumito; Yoshino, Tomoko; Maeda, Yoshiaki; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-05-27

    Water surface-floating microalgae have great potential for biofuel applications due to the ease of the harvesting process, which is one of the most problematic steps in conventional microalgal biofuel production. We have collected promising water surface-floating microalgae and characterized their capacity for biomass and lipid production. In this study, we performed chemical mutagenesis of two water surface-floating microalgae to elevate productivity. Floating microalgal strains AVFF007 and FFG039 (tentatively identified as Botryosphaerella sp. and Chlorococcum sp., respectively) were exposed to ethyl methane sulfonate (EMS) or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), and pale green mutants (PMs) were obtained. The most promising FFG039 PM formed robust biofilms on the surface of the culture medium, similar to those formed by wild type strains, and it exhibited 1.7-fold and 1.9-fold higher biomass and lipid productivities than those of the wild type. This study indicates that the chemical mutation strategy improves the lipid productivity of water surface-floating microalgae without inhibiting biofilm formation and floating ability.

  12. Exploring how pain leads to productivity loss in primary care consulters for osteoarthritis: a prospective cohort study.

    Science.gov (United States)

    Wilkie, Ross; Hay, Elaine M; Croft, Peter; Pransky, Glenn

    2015-01-01

    Osteoarthritis pain has become a leading cause of decreased productivity and work disability in older workers, a major concern in primary care. How osteoarthritis pain leads to decreased productivity at work is unclear; the aim of this study was to elucidate causal mechanisms and thus identify potential opportunities for intervention. Population-based prospective cohort study of primary care consulters with osteoarthritis. Path analysis was used to test proposed mechanisms by examining the association between pain at baseline, and onset of work productivity loss at three years for mediation by physical limitation, depression, poor sleep and poor coping mechanisms. High pain intensity was associated with onset of work productivity loss (Adjusted Odds Ratio 2.5; 95%CI 1.3, 4.8). About half of the effect of pain on work productivity was a direct effect, and half was mediated by the impact of pain on physical function. Depression, poor sleep quality and poor coping did not mediate the association between high pain intensity and onset of work productivity loss. As pain is a major cause of work productivity loss, results suggest that decreasing pain should be a major focus. However, successfully improving function may have an indirect effect by decreasing the impact of pain on work productivity, especially important as significant pain reduction is often difficult to achieve. Although depression, sleep problems, and coping strategies may be directly related to work productivity loss, addressing these issues may not have much effect on the significant impact of pain on work productivity.

  13. Simulation of Net Primary Productivity in Mongolia Using CASA Model, During 2000-2004

    Directory of Open Access Journals (Sweden)

    Narangarav Dugarsuren

    2016-12-01

    Full Text Available Vegetation net primary productivity (NPP is always used as an indicator of carbon cycling in terrestrial ecosystems at landscape and reg