WorldWideScience

Sample records for surface pressures induced

  1. Temperature effects on surface pressure-induced changes in rat skin perfusion: implications in pressure ulcer development.

    Science.gov (United States)

    Patel, S; Knapp, C F; Donofrio, J C; Salcido, R

    1999-07-01

    The effect of varying local skin temperature on surface pressure-induced changes in skin perfusion and deformation was determined in hairless fuzzy rats (13.5+/-3 mo, 474+/-25 g). Skin surface pressure was applied by a computer-controlled plunger with corresponding skin deformation measured by a linear variable differential transformer while a laser Doppler flowmeter measured skin perfusion. In Protocol I, skin surface perfusion was measured without heating (control, T=28 degrees C), with heating (T=36 degrees C), for control (probe just touching skin, 3.7 mmHg), and at two different skin surface pressures, 18 mmHg and 73 mmHg. Heating caused perfusion to increase at control and 18 mmHg pressure, but not at 73 mmHg. In Protocol II, skin perfusion was measured with and without heating as in Protocol I, but this time skin surface pressure was increased from 3.7 to 62 mmHg in increments of 3.7 mmHg. For unheated skin, perfusion increased as skin surface pressure increased from 3.7 to 18 mmHg. Further increases in surface pressure caused a decrease in perfusion until zero perfusion was reached for pressures over 55 mmHg. Heating increased skin perfusion for surface pressures from 3.7 to 18 mmHg, but not for pressures greater than 18 mmHg. After the release of surface pressure, the reactive hyperemia peak of perfusion increased with heating. In Protocol III, where skin deformation (creep and relaxation) was measured during the application of 3.7 and 18 mmHg, heating caused the tissue to be stiffer, allowing less deformation. It was found that for surface pressures below 18 mmHg, increasing skin temperature significantly increased skin perfusion and tissue stiffness. The clinical significance of these findings may have relevance in evaluating temperature and pressure effects on skin blood flow and deformation as well as the efficacy of using temperature as a therapeutic modality in the treatment of pressure ulcers.

  2. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  3. Surface-nitriding treatment of steels using microwave-induced nitrogen plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Sato, Shigeo; Arai, Yuuki; Yamashita, Noboru; Kojyo, Atsushi; Kodama, Kenji; Ohtsu, Naofumi; Okamoto, Yukio; Wagatsuma, Kazuaki

    2012-01-01

    A rapid surface-nitriding system using microwave-induced nitrogen plasma at atmospheric pressure was developed for modifying iron and steel surfaces. Since the conventional plasma nitriding technique requires a low-pressure atmosphere in the treatment chamber, the population of excited nitrogen molecules in the plasma is limited. Accordingly, several hours are required for nitriding treatment. By contrast, the developed nitriding system can use atmospheric-pressure plasma through application of the Okamoto cavity for excitation of nitrogen plasma. The high population of excited nitrogen molecules induced by the atmospheric-pressure plasma allowed the formation of a nitriding layer that was several micrometers thick within 1 min and produced an expanded austenite iron phase with a high nitrogen concentration close to the solubility limit on the iron substrate. In addition, the nitriding treatment on high-chromium steel was performed by introducing a reducing gas such as NH 3 and H 2 into the treatment chamber. While the nitriding reaction did not proceed in a simple N 2 atmosphere due to surface oxidation, the surface reduction induced by the NH 3 or H 2 gas promoted the nitriding reaction at the surface. These nitriding phenomena characteristics of the atmospheric-pressure plasma are discussed in this paper based on the effects of the specimen temperature and plasma atmosphere on the thickness, the chemical states, and the nitride compounds of the nitrided layer as investigated by X-ray diffraction, glow-discharge optical emission spectroscopy, and X-ray photoelectron spectroscopy.

  4. Stability of Atmospheric-Pressure Plasma Induced Changes on Polycarbonate Surfaces

    Science.gov (United States)

    Sharma, Rajesh; Holcomb, Edward; Trigwell, Steve

    2006-01-01

    Polycarbonate films are subjected to plasma treatment in a number of applications such as improving adhesion between polycarbonate and silicon alloy in protective and optical coatings. The changes in surface chemistry due to plasma treatment have tendency to revert back. Thus stability of the plasma induced changes on polymer surfaces over desired time period is very important. The objective of this study was to examine the effect of ageing on atmospheric pressure helium-plasma treated polycarbonate (PC) sample as a function of treatment time. The ageing effects were studied over a period of 10 days. The samples were plasma treated for 0.5, 2, 5 and 10 minutes. Contact angle measurements were made to study surface energy changes. Modification of surface chemical structure was examined using, X-ray Photoelectron Spectroscopy (XPS). Contact angle measurements on untreated and plasma treated surfaces were made immediately, 24, 48, 72 and 96 hrs after treatment. Contact angle decreased from 93 deg for untreated sample to 30 deg for sample plasma treated for 10 minutes. After 10 days the contact angles for the 10 minute plasma treated sample increased to 67 deg, but it never reverted back to that of untreated surface. Similarly the O/C ratio increased from 0.136 for untreated sample to 0.321 for 10 minute plasma treated sample indication increase in surface energy.

  5. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    Formation of meta-stable surface-alloys can be used as a way to tune the binding strength of reaction intermediates and could therefore be used as improved catalyst materials for heterogeneous catalysis. Understanding the role of adsorbates on such alloy surfaces can provide new insights for engi...... and bulk Pt contributions. The study provides direct evidence on how it is possible to monitor the surface structure under near operation conditions. © 2014 Elsevier B.V. All rights reserved.......Formation of meta-stable surface-alloys can be used as a way to tune the binding strength of reaction intermediates and could therefore be used as improved catalyst materials for heterogeneous catalysis. Understanding the role of adsorbates on such alloy surfaces can provide new insights...... for engineering of more active or selective catalyst materials. Dynamical surface changes on alloy surfaces due to the adsorption of reactants in high gas pressures are challenging to investigate using standard characterization tools. Here we apply synchrotron illuminated near ambient pressure X-ray photoelectron...

  6. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  7. Fermi Surface, Pressure-Induced Antiferromagnetic Order, and Superconductivity in FeSe

    Science.gov (United States)

    Ishizuka, Jun; Yamada, Takemi; Yanagi, Yuki; Ōno, Yoshiaki

    2018-01-01

    The pressure dependence of the structural (Ts), antiferromagnetic (Tm), and superconducting (Tc) transition temperatures in FeSe is investigated on the basis of the 16-band d-p model. At ambient pressure, a shallow hole pocket disappears due to the correlation effect, as observed in the angular-resolved photoemission spectroscopy (ARPES) and quantum oscillation (QO) experiments, resulting in the suppression of the antiferromagnetic order, in contrast to the other iron pnictides. The orbital-polarization interaction between the Fe d orbital and Se p orbital is found to drive the ferro-orbital order responsible for the structural transition without accompanying the antiferromagnetic order. The pressure dependence of the Fermi surfaces is derived from the first-principles calculation and is found to well account for the opposite pressure dependences of Ts and Tm, around which the enhanced orbital and magnetic fluctuations cause the double-dome structure of the eigenvalue λ in the Eliashberg equation, as consistent with that of Tc in FeSe.

  8. Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure

    International Nuclear Information System (INIS)

    Wang Wei-long; Li Jun; Song Hui-min; Jin Di; Jia Min; Wu Yun

    2017-01-01

    Thermal and induced flow velocity characteristics of radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins. After several seconds (typically 100 s), the temperature reaches equilibrium among the actuator’s surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of kHz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s. (paper)

  9. High pressure induced superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K

    2003-10-15

    We have developed complex extreme condition of very low temperature down to 30 mK and ultra high pressure exceeding 200 GPa by assembling compact diamond anvil cell (DAC) on a powerful {sup 3}He/{sup 4}He dilution refrigerator. We have also developed measuring techniques of electrical resistance, magnetization and optical measurement for the sample confined in the sample space of the DAC. Using the newly developed apparatus and techniques, we have searched for superconductivity in various materials under pressure. In this paper, we will shortly review our newly developed experimental apparatus and techniques and discuss a few examples of pressure induced superconductivity which were observed recently.

  10. Pressure relieving support surfaces (PRESSURE) trial: cost effectiveness analysis.

    Science.gov (United States)

    Iglesias, Cynthia; Nixon, Jane; Cranny, Gillian; Nelson, E Andrea; Hawkins, Kim; Phillips, Angela; Torgerson, David; Mason, Su; Cullum, Nicky

    2006-06-17

    To assess the cost effectiveness of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers in patients admitted to hospital. Cost effectiveness analysis carried out alongside the pressure relieving support surfaces (PRESSURE) trial; a multicentre UK based pragmatic randomised controlled trial. 11 hospitals in six UK NHS trusts. Intention to treat population comprising 1971 participants. Kaplan Meier estimates of restricted mean time to development of pressure ulcers and total costs for treatment in hospital. Alternating pressure mattresses were associated with lower overall costs (283.6 pounds sterling per patient on average, 95% confidence interval--377.59 pounds sterling to 976.79 pounds sterling) mainly due to reduced length of stay in hospital, and greater benefits (a delay in time to ulceration of 10.64 days on average,--24.40 to 3.09). The differences in health benefits and total costs for hospital stay between alternating pressure mattresses and alternating pressure overlays were not statistically significant; however, a cost effectiveness acceptability curve indicated that on average alternating pressure mattresses compared with alternating pressure overlays were associated with an 80% probability of being cost saving. Alternating pressure mattresses for the prevention of pressure ulcers are more likely to be cost effective and are more acceptable to patients than alternating pressure overlays.

  11. Support surfaces for pressure ulcer prevention.

    Science.gov (United States)

    McInnes, Elizabeth; Jammali-Blasi, Asmara; Bell-Syer, Sally E M; Dumville, Jo C; Middleton, Victoria; Cullum, Nicky

    2015-09-03

    Pressure ulcers (i.e. bedsores, pressure sores, pressure injuries, decubitus ulcers) are areas of localised damage to the skin and underlying tissue. They are common in the elderly and immobile, and costly in financial and human terms. Pressure-relieving support surfaces (i.e. beds, mattresses, seat cushions etc) are used to help prevent ulcer development. This systematic review seeks to establish:(1) the extent to which pressure-relieving support surfaces reduce the incidence of pressure ulcers compared with standard support surfaces, and,(2) their comparative effectiveness in ulcer prevention. In April 2015, for this fourth update we searched The Cochrane Wounds Group Specialised Register (searched 15 April 2015) which includes the results of regular searches of MEDLINE, EMBASE and CINAHL and The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 3). Randomised controlled trials (RCTs) and quasi-randomised trials, published or unpublished, that assessed the effects of any support surface for prevention of pressure ulcers, in any patient group or setting which measured pressure ulcer incidence. Trials reporting only proxy outcomes (e.g. interface pressure) were excluded. Two review authors independently selected trials. Data were extracted by one review author and checked by another. Where appropriate, estimates from similar trials were pooled for meta-analysis. For this fourth update six new trials were included, bringing the total of included trials to 59.Foam alternatives to standard hospital foam mattresses reduce the incidence of pressure ulcers in people at risk (RR 0.40 95% CI 0.21 to 0.74). The relative merits of alternating- and constant low-pressure devices are unclear. One high-quality trial suggested that alternating-pressure mattresses may be more cost effective than alternating-pressure overlays in a UK context.Pressure-relieving overlays on the operating table reduce postoperative pressure ulcer incidence

  12. Critical cerebral perfusion pressure at high intracranial pressure measured by induced cerebrovascular and intracranial pressure reactivity.

    Science.gov (United States)

    Bragin, Denis E; Statom, Gloria L; Yonas, Howard; Dai, Xingping; Nemoto, Edwin M

    2014-12-01

    The lower limit of cerebral blood flow autoregulation is the critical cerebral perfusion pressure at which cerebral blood flow begins to fall. It is important that cerebral perfusion pressure be maintained above this level to ensure adequate cerebral blood flow, especially in patients with high intracranial pressure. However, the critical cerebral perfusion pressure of 50 mm Hg, obtained by decreasing mean arterial pressure, differs from the value of 30 mm Hg, obtained by increasing intracranial pressure, which we previously showed was due to microvascular shunt flow maintenance of a falsely high cerebral blood flow. The present study shows that the critical cerebral perfusion pressure, measured by increasing intracranial pressure to decrease cerebral perfusion pressure, is inaccurate but accurately determined by dopamine-induced dynamic intracranial pressure reactivity and cerebrovascular reactivity. Cerebral perfusion pressure was decreased either by increasing intracranial pressure or decreasing mean arterial pressure and the critical cerebral perfusion pressure by both methods compared. Cortical Doppler flux, intracranial pressure, and mean arterial pressure were monitored throughout the study. At each cerebral perfusion pressure, we measured microvascular RBC flow velocity, blood-brain barrier integrity (transcapillary dye extravasation), and tissue oxygenation (reduced nicotinamide adenine dinucleotide) in the cerebral cortex of rats using in vivo two-photon laser scanning microscopy. University laboratory. Male Sprague-Dawley rats. At each cerebral perfusion pressure, dopamine-induced arterial pressure transients (~10 mm Hg, ~45 s duration) were used to measure induced intracranial pressure reactivity (Δ intracranial pressure/Δ mean arterial pressure) and induced cerebrovascular reactivity (Δ cerebral blood flow/Δ mean arterial pressure). At a normal cerebral perfusion pressure of 70 mm Hg, 10 mm Hg mean arterial pressure pulses had no effect on

  13. Fermi surface studies of the pressure induced organic superconductor (ET){sub 3}Cl{sub 2}.2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Lubczynski, W. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Caulfield, J. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Singleton, J. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Hayes, W. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Kurmoo, M. [Royal Institution, London (United Kingdom); Day, P. [Royal Institution, London (United Kingdom)

    1995-03-15

    The effects of temperature, pressure and magnetic field on the electrical transport of single crystal of (ET){sub 3}Cl{sub 2}.2H{sub 2}O are reported. Increasing pressure gradually reduces the ordering temperature of a charge density wave ground state from {approx}160 K at 1 bar to 6 K at 10.2 kbar. A superconducting state with T{sub c}>4 K is stabilised between 10.2 kbar and 13.5 kbar. Above 12.5 kbar, the observation of Shubnikov-de Haas oscillations allows the pressure dependences of the area of a closed Fermi surface pocket and the associated carrier effective mass to be deduced. (orig.)

  14. Induced topological pressure for topological dynamical systems

    International Nuclear Information System (INIS)

    Xing, Zhitao; Chen, Ercai

    2015-01-01

    In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure

  15. Seismic induced earth pressures in buried vaults

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.

    1994-01-01

    The magnitude and distribution of earth pressures acting on buried structures and induced by a seismic event are considered in this paper. A soil-structure-interaction analysis is performed for typical Department of Energy high level waste storage tanks using a lumped parameter model. The resulting soil pressure distributions are determined and compared with the static soil pressure to assess the design significance of the seismic induced soil pressures. It is found that seismic pressures do not control design unless the peak ground acceleration exceeds about 0.3 G. The effect of soil non linearities (resulting from local soil failure) are also found to have little effect on the predictions of the seismic response of the buried structure. The seismic induced pressures are found to be very similar to those predicted using the elastic model in ASCE 4-86

  16. The role of electron induced secondary electron emission from SiO2 surfaces in capacitively coupled radio frequency plasmas operated at low pressures

    Science.gov (United States)

    Horváth, B.; Daksha, M.; Korolov, I.; Derzsi, A.; Schulze, J.

    2017-12-01

    The effects of electron induced secondary electron (SE) emission from SiO2 electrodes in single-frequency capacitively coupled plasmas (CCPs) are studied by particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations in argon gas at 0.5 Pa for different voltage amplitudes. Unlike conventional simulations, we use a realistic model for the description of electron-surface interactions, which takes into account the elastic reflection and the inelastic backscattering of electrons, as well as the emission of electron induced SEs (δ-electrons). The emission coefficients corresponding to these elementary processes are determined as a function of the electron energy and angle of incidence, taking the properties of the surface into account. Compared to the results obtained by using a simplified model for the electron-surface interaction, widely used in PIC/MCC simulations of CCPs, which includes only elastic electron reflection at a constant probability of 0.2, strongly different electron power absorption and ionization dynamics are observed. We find that ion induced SEs (γ-electrons) emitted at one electrode and accelerated to high energies by the local sheath electric field propagate through the plasma almost collisionlessly and impinge on the opposing sheath within a few nanoseconds. Depending on the instantaneous local sheath voltage these energetic electrons are either reflected by the sheath electric field or they hit the electrode surface, where each γ-electron can generate multiple δ-electrons upon impact. These electron induced SEs are accelerated back into the plasma by the momentary sheath electric field and can again generate δ-electrons at the opposite electrode after propagating through the plasma bulk. Overall, a complex dynamics of γ- and δ-electrons is observed including multiple reflections between the boundary sheaths. At high voltages, the electron induced SE emission is found to strongly affect the plasma density and the ionization dynamics and

  17. Pressure relieving support surfaces: a randomised evaluation.

    Science.gov (United States)

    Nixon, J; Nelson, E A; Cranny, G; Iglesias, C P; Hawkins, K; Cullum, N A; Phillips, A; Spilsbury, K; Torgerson, D J; Mason, S

    2006-07-01

    To determine differences between alternating pressure overlays and alternating pressure replacement mattresses with respect to the development of new pressure ulcers, healing of existing pressure ulcers, patient acceptability and cost-effectiveness of the different pressure-relieving surfaces. Also to investigate the specific additional impact of pressure ulcers on patients' well-being. A multicentre, randomised, controlled, open, fixed sample, parallel-group trial with equal randomisation was undertaken. The trial used remote, concealed allocation and intention-to-treat (ITT) analysis. The main trial design was supplemented with a qualitative study involving a purposive sample of 20-30 patients who developed pressure ulcers, to assess the impact of the pressure ulcers on their well-being. In addition, a focus group interview was carried out with clinical research nurses, who participated in the PRESSURE (Pressure RElieving Support SUrfaces: a Randomised Evaluation) Trial, to explore the experiences of their role and observations of pressure area care. The study took place in 11 hospital-based research centres within six NHS trusts in England. Acute and elective patients aged 55 years or older and admitted to vascular, orthopaedic, medical or care of the elderly wards in the previous 24 hours were investigated. Patients were randomised to either an alternating pressure overlay or an alternating pressure mattress replacement, with mattress specifications clearly defined to enable the inclusion of centres using products from different manufacturers, and to exclude hybrid mattress systems (which either combine foam or constant low pressure with alternating pressure in one mattress, or can be used as either an overlay or a replacement mattress). Development of a new pressure ulcer (grade pressures ulcers, patient acceptability and cost-effectiveness. In total, 6155 patients were assessed for eligibility to the trial and 1972 were randomised: 990 to the alternating

  18. High sensitive and high temporal and spatial resolved image of reactive species in atmospheric pressure surface discharge reactor by laser induced fluorescence.

    Science.gov (United States)

    Gao, Liang; Feng, Chun-Lei; Wang, Zhi-Wei; Ding, Hongbin

    2017-05-01

    The current paucity of spatial and temporal characterization of reactive oxygen and nitrogen species (RONS) concentration has been a major hurdle to the advancement and clinical translation of low temperature atmospheric plasmas. In this study, an advanced laser induced fluorescence (LIF) system has been developed to be an effective antibacterial surface discharge reactor for the diagnosis of RONS, where the highest spatial and temporal resolution of the LIF system has been achieved to ∼100 μm scale and ∼20 ns scale, respectively. Measurements on an oxidative OH radical have been carried out as typical RONS for the benchmark of the whole LIF system, where absolute number density calibration has been performed on the basis of the laser Rayleigh scattering method. Requirements for pixel resolved spatial distribution and outer plasma region detection become challenging tasks due to the low RONS concentration (∼ppb level) and strong interference, especially the discharge induced emission and pulsed laser induced stray light. In order to design the highly sensitive LIF system, a self-developed fluorescence telescope, the optimization of high precision synchronization among a tunable pulsed laser, a surface discharge generator, intensified Charge Coupled Device (iCCD) camera, and an oscilloscope have been performed. Moreover, an image BOXCAR approach has been developed to remarkably improve the sensitivity of the whole LIF system by optimizing spatial and temporal gating functions via both hardware and software, which has been integrated into our automatic control and data acquisition system on the LabVIEW platform. In addition, a reciprocation averaging measurement has been applied to verify the accuracy of the whole LIF detecting system, indicating the relative standard deviation of ∼3%.

  19. Sensitivity of the hand to surface pressure.

    Science.gov (United States)

    Fransson-Hall, C; Kilbom, A

    1993-06-01

    A new method of measuring pain-pressure threshold (PPT) of the hand has been developed. Externally applied surface pressure (EASP) was exerted at a certain rate of increase and the level where the feeling of pressure turned into pain was recorded. Also, the effects of sustained EASP were elucidated. Sixteen healthy right-handed subjects (eight female, eight male) participated. The distribution of the hand's sensitivity to EASP is presented. The most sensitive areas were the thenar area, the skinfold between thumb and index finger and the area around os pisiforme. When the hand was repeatedly exposed to EASP, the PPT decreased with increasing number of pressure incidents. For sustained EASP, the time of exposure was found to be important also for the quality of the sensation. Our results show that sustained EASP does not hurt at once, but becomes painful after a short time. On average, the female PPT corresponded to two-thirds of the male PPT. Females experienced pain faster than males when exposed to sustained EASP, and chose lower levels when estimating acceptable sustained EASP.

  20. Vacuum surface flashover and high pressure gas streamers

    International Nuclear Information System (INIS)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.; Stolz, D.; Wright, S.N.

    1997-07-01

    Pre-breakdown current traces obtained during high pressure gas breakdown and vacuum surface flashover show similar signatures. The initial pre-breakdown current spike, a flat constant current phase, and the breakdown phase with voltage collapse and current surge differ mostly in magnitude. Given these similarities, a model, consisting of the initial current spike corresponding to a fast precursor streamer (ionization wave led by a photoionizing front), the flat current stage as the heating or glow phase, and the terminal avalanche and gap closure, is applied to vacuum surface flashover. A simple analytical approximation based on the resistivity changes induced in the vacuum and dielectric surface is presented. The approximation yields an excellent fit to pre-breakdown time delay vs applied field for previously published experimental data. A detailed kinetics model that includes surface and gas contributions is being developed based in the initial approximation

  1. Pressure-Induced Melting of Confined Ice

    NARCIS (Netherlands)

    Sotthewes, Kai; Bampoulis, Pantelis; Zandvliet, Henricus J.W.; Lohse, Detlef; Poelsema, B.

    2017-01-01

    The classic regelation experiment of Thomson in the 1850s deals with cutting an ice cube, followed by refreezing. The cutting was attributed to pressure-induced melting but has been challenged continuously, and only lately consensus emerged by understanding that compression shortens the O:H nonbond

  2. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    International Nuclear Information System (INIS)

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-01-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH

  3. Beam Induced Pressure Rise at RHIC

    CERN Document Server

    Zhang, S Y; Bai, Mei; Blaskiewicz, Michael; Cameron, Peter; Drees, Angelika; Fischer, Wolfram; Gullotta, Justin; He, Ping; Hseuh Hsiao Chaun; Huang, Haixin; Iriso, Ubaldo; Lee, Roger C; Litvinenko, Vladimir N; MacKay, William W; Nicoletti, Tony; Oerter, Brian; Peggs, Steve; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smart, Loralie; Snydstrup, Louis; Thieberger, Peter; Trbojevic, Dejan; Wang, Lanfa; Wei, Jie; Zeno, Keith

    2005-01-01

    Beam induced pressure rise in RHIC warm sections is currently one of the machine intensity and luminosity limits. This pressure rise is mainly due to electron cloud effects. The RHIC warm section electron cloud is associated with longer bunch spacings compared with other machines, and is distributed non-uniformly around the ring. In addition to the countermeasures for normal electron cloud, such as the NEG coated pipe, solenoids, beam scrubbing, bunch gaps, and larger bunch spacing, other studies and beam tests toward the understanding and counteracting RHIC warm electron cloud are of interest. These include the ion desorption studies and the test of anti-grazing ridges. For high bunch intensities and the shortest bunch spacings, pressure rises at certain locations in the cryogenic region have been observed during the past two runs. Beam studies are planned for the current 2005 run and the results will be reported.

  4. Pressure Induced Phase Transformations in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Reimanis, Ivar [Colorado School of Mines, Golden, CO (United States); Cioabanu, Cristian [Colorado School of Mines, Golden, CO (United States)

    2017-10-15

    The study of materials with unusual properties offers new insight into structure-property relations as well as promise for the design of novel composites. In this spirit, the PIs seek to (1) understand fundamental mechanical phenomena in ceramics that exhibit pressure-induced phase transitions, negative coefficient of thermal expansion (CTE), and negative compressibility, and (2) explore the effect of these phenomena on the mechanical behavior of composites designed with such ceramics. The broad and long-term goal is to learn how to utilize these unusual behaviors to obtain desired mechanical responses. While the results are expected to be widely applicable to many ceramics, most of the present focus is on silicates, as they exhibit remarkable diversity in structure and properties. Eucryptite, a lithium aluminum silicate (LiAlSiO4), is specifically targeted because it exhibits a pressure-induced phase transition at a sufficiently low pressure to be accessible during conventional materials processing. Thus, composites with eucryptite may be designed to exhibit a novel type of transformation toughening. The PIs have performed a combination of activities that encompass synthesis and processing to control structures, atomistic modeling to predict and understand structures, and characterization to study mechanical behavior. Several materials behavior discoveries were made. It was discovered that small amounts of Zn (as small as 0.1 percent by mol) reverse the sign of the coefficient of thermal expansion of beta-eucryptite from negative to slightly positive. The presence of Zn also significantly mitigates microcracking that occurs during thermal cycling of eucryptite. It is hypothesized that Zn disrupts the Li ordering in beta-eucryptite, thereby altering the thermal expansion behavior. A nanoindentation technique developed to characterize incipient plasticity was applied to examine the initial stages of the pressure induced phase transformation from beta to

  5. Pressure ulcer prevention and pressure-relieving surfaces.

    Science.gov (United States)

    Benbow, Maureen

    Although rarely subject to media attention, political interest or research funding, pressure ulcers, and their almost inevitable increase in incidence, detrimentally affect the quality of life of thousands of patients, both in the hospital and community setting. In addition, the costs to the NHS of pressure-ulcer-related care in hospitals is estimated to be pounds sterling 1.8-pounds sterling 2.5 billion annually. Many pressure ulcers that develop could have been prevented, and there are several up-to-date, easily-accessible sources of evidence to guide decision-making regarding appropriate interventions in pressure care. Consideration and assessment of the patient holistically, followed by appropriate intervention and evaluation, is the key to any prevention strategy.

  6. Beds: practical pressure management for surfaces/mattresses.

    Science.gov (United States)

    Norton, Linda; Coutts, Patricia; Sibbald, R Gary

    2011-07-01

    The prevention and management of pressure ulcers, including support surface selection, are a primary focus of healthcare providers. This article discusses the forces contributing to pressure ulcer formation and explores choosing therapeutic support surface features based on the patient's clinical needs and on using the evidence-informed support surface algorithm and decision trees.

  7. Support surfaces for pressure ulcer prevention

    OpenAIRE

    Cullum, N; McInnes, E; Bell-Syer, SE; Legood, R

    2004-01-01

    : Pressure ulcers (also known as bedsores, pressure sores, decubitus ulcers) are areas of localised damage to the skin and underlying tissue due to pressure, shear or friction. They are common in the elderly and immobile and costly in financial and human terms. Pressure-relieving beds, mattresses and seat cushions are widely used as aids to prevention in both institutional and non-institutional settings. : This systematic review seeks to answer the following questions: to what extent do press...

  8. Support surfaces for pressure ulcer prevention

    OpenAIRE

    McInnes, E; Bell-Syer, SE; Dumville, JC; Legood, R; Cullum, NA

    2008-01-01

    Background Pressure ulcers (also known as bedsores, pressure sores, decubitus ulcers) are areas of localised damage to the skin and underlying tissue due to pressure, shear or friction. They are common in the elderly and immobile and costly in financial and human terms. Pressure-relieving beds, mattresses and seat cushions are widely used as aids to prevention in both institutional and non-institutional settings. Objectives This systematic review seeks to answer the following questions: (1) t...

  9. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  10. Dysglycemia induces abnormal circadian blood pressure variability

    Directory of Open Access Journals (Sweden)

    Kumarasamy Sivarajan

    2011-11-01

    Full Text Available Abstract Background Prediabetes (PreDM in asymptomatic adults is associated with abnormal circadian blood pressure variability (abnormal CBPV. Hypothesis Systemic inflammation and glycemia influence circadian blood pressure variability. Methods Dahl salt-sensitive (S rats (n = 19 after weaning were fed either an American (AD or a standard (SD diet. The AD (high-glycemic-index, high-fat simulated customary human diet, provided daily overabundant calories which over time lead to body weight gain. The SD (low-glycemic-index, low-fat mirrored desirable balanced human diet for maintaining body weight. Body weight and serum concentrations for fasting glucose (FG, adipokines (leptin and adiponectin, and proinflammatory cytokines [monocyte chemoattractant protein-1 (MCP-1 and tumor necrosis factor-α (TNF-α] were measured. Rats were surgically implanted with C40 transmitters and blood pressure (BP-both systolic; SBP and diastolic; DBP and heart rate (HR were recorded by telemetry every 5 minutes during both sleep (day and active (night periods. Pulse pressure (PP was calculated (PP = SBP-DBP. Results [mean(SEM]: The AD fed group displayed significant increase in body weight (after 90 days; p Conclusion These data validate our stated hypothesis that systemic inflammation and glycemia influence circadian blood pressure variability. This study, for the first time, demonstrates a cause and effect relationship between caloric excess, enhanced systemic inflammation, dysglycemia, loss of blood pressure control and abnormal CBPV. Our results provide the fundamental basis for examining the relationship between dysglycemia and perturbation of the underlying mechanisms (adipose tissue dysfunction induced local and systemic inflammation, insulin resistance and alteration of adipose tissue precursors for the renin-aldosterone-angiotensin system which generate abnormal CBPV.

  11. Interface pressure mapping pilot study to select surfaces that effectively redistribute pediatric occipital pressure.

    Science.gov (United States)

    Higer, Samantha; James, Thomas

    2016-02-01

    The aim of this pilot study was to better inform clinical decisions to prevent pediatric occipital pressure ulcers with quantitative data to choose an appropriate reactive support surface. A commercially available capacitive pressure mapping system (XSENSOR, X3 Medical Seat System, Calgary, Canada) was used to evaluate a standard pediatric mattress and four commercially available pressure-redistributing support surfaces. The pressure mapping system was validated for use in the pediatric population through studies on sensitivity, accuracy, creep, and repeatability. Then, a pilot pressure mapping study on healthy children under 6 years old (n = 22) was performed to determine interface pressure and pressure distribution between the occipital region of the skull and each surface: standard mattress, gel, foam, air and fluidized. The sensor was adequate to measure pressure generated by pediatric occipital loading, with 0.5-9% error in accuracy in the 25-95 mmHg range. The air surface had the lowest mean interface pressure (p pressure index (PPI), defined as the peak pressure averaged over four sensels, (p pressure for mattress, foam, fluidized, gel, and air materials were 24.8 ± 4.42, 24.1 ± 1.89, 19.4 ± 3.25, 17.9 ± 3.10, and 14.2 ± 1.41 mmHg, respectively. The air surface also had the most homogenous pressure distribution, with the highest mean to PPI ratio (p surfaces (p surface was the most effective pressure-redistributing material for pediatric occipital pressure as it had the lowest interface pressure and a homogeneous pressure distribution. This implies effective envelopment of the bony prominence of the occiput and increasing contact area to decrease peak pressure points. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  12. Noise Evaluation Technique Based on Surface Pressure

    DEFF Research Database (Denmark)

    Fischer, Andreas

    2012-01-01

    In this chapter the relevant theory for the understanding of TE noise modeling is collected. It contains the acoustic formulations of [31] and [57]. Both give a relation for the far field sound pressure in dependence of the frequency wave number spectral density of the pressure on the airfoil...

  13. Social Stress Induced Pressure Breathing and Consequent Blood Pressure Oscillation

    NARCIS (Netherlands)

    Fokkema, Dirk S.; Koolhaas, Jaap M.; Meulen, Jan van der; Schoemaker, Regien

    1986-01-01

    A large amplitude blood pressure oscillation occurs during social defeat in a territorial fight between male rats, and during the application of a psychosocial stimulus associated with this defeat. Synchronous recording of blood pressure, intrathoracic pressure and diaphragm activity shows that the

  14. The extended surface forces apparatus. IV. Precision static pressure control

    OpenAIRE

    Schurtenberger E; Heuberger M

    2011-01-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under am...

  15. Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    where the time history pressure data are recorded by the surface pressure microphones. After the flow-field is stabilized, the generated noise from the airfoil Trailing Edge (TE) is predicted using the acoustic analogy solver, where the results from LES are the input. It is found that there is a strong......In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...... relation between TE noise and the aerodynamic pressure. The results of power spectrum density show that the fluctuation of aerodynamic pressure is responsible for noise generation....

  16. The Breathing Snowpack: Pressure-induced Vapor Flux of Temperate Snow

    Science.gov (United States)

    Drake, S. A.; Selker, J. S.; Higgins, C. W.

    2017-12-01

    As surface air pressure increases, hydrostatic compression of the air column forces atmospheric air into snowpack pore space. Likewise, as surface air pressure decreases, the atmospheric air column decompresses and saturated air exits the snow. Alternating influx and efflux of air can be thought of as a "breathing" process that produces an upward vapor flux when air above the snow is not saturated. The impact of pressure-induced vapor exchange is assumed to be small and is thus ignored in model parameterizations of surface processes over snow. Rationale for disregarding this process is that large amplitude pressure changes as caused by synoptic weather patterns are too infrequent to credibly impact vapor flux. The amplitude of high frequency pressure changes is assumed to be too small to affect vapor flux, however, the basis for this hypothesis relies on pressure measurements collected over an agricultural field (rather than snow). Resolution of the impact of pressure changes on vapor flux over seasonal cycles depends on an accurate representation of the magnitude of pressure changes caused by changes in wind as a function of the frequency of pressure changes. High precision in situ pressure measurements in a temperature snowpack allowed us to compute the spectra of pressure changes vs. wind forcing. Using a simplified model for vapor exchange we then computed the frequency of pressure changes that maximize vapor exchange. We examine and evaluate the seasonal impact of pressure-induced vapor exchange relative to other snow ablation processes.

  17. Pressure-induced superconductivity in Li and Fe

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Katsuya; Takao, Daigoroh; Furomoto, Shigeyuki; Amaya, Kiichi

    2004-08-01

    We have developed complex extreme condition of very low temperature down to 30 mK and very high pressure exceeding 200 GPa by assembling compact diamond anvil cell (DAC) on a powerful {sup 3}He/{sup 4}He dilution refrigerator. Using the apparatus and techniques, we have searched for pressure-induced superconductivity in various materials under pressures. In this paper, our experimental techniques and the examples of pressure-induced superconductivity in Li and Fe are reviewed.

  18. Support surface interface pressure, microenvironment, and the prevalence of pressure ulcers: an analysis of the literature.

    Science.gov (United States)

    Reger, Steven I; Ranganathan, Vinoth K; Sahgal, Vinod

    2007-10-01

    External pressure is the most frequently considered stress factor in the formation of ulcers. A review and analysis of existing literature addressing the relationship between pressure ulcer prevalence and interface pressures at various anatomic sites was conducted. Results suggest a nearly non-existent or slightly negative correlation between interface pressure and ulcer prevalence in general and spinal cord injured populations, respectively. Despite limitations of the analysis methods used, the observed lack of a direct relationship confirms the results of other studies and suggests that ulcer formation also may involve factors secondary to pressure and mechanical factors (eg, temperature, moisture, duration of the applied load, atrophy, and posture). Based on currently available information, clinicians should include these considerations when selecting a support surface. Studies directly relating primary stress factors and tissue viability with prevalence and incidence of pressure ulcers are needed to better understand the benefits of pressure-relieving support surfaces and to improve the effectiveness of prevention and treatment.

  19. Plastic collapse pressure of cylindrical vessels containing longitudinal surface cracks

    Energy Technology Data Exchange (ETDEWEB)

    Zarrabi, K. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.; Zhang, H. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.; Nhim, K. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.

    1997-05-01

    Based on nonlinear finite element analysis, the plastic collapse pressures of cylindrical vessels with longitudinal surface cracks are computed. A general formula of plastic collapse pressure of such structures are given and compared with the literature solutions. The results of the present study could be applied for the integrity assessments, failure analyses, remanent life assessment, and licence extensions of the vessels. (orig.)

  20. Surface texturing of superconductors by controlled oxygen pressure

    Science.gov (United States)

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  1. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  2. The extended surface forces apparatus. IV. Precision static pressure control.

    Science.gov (United States)

    Schurtenberger, E; Heuberger, M

    2011-10-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under ambient conditions. The surface separation is thus pre-adjusted to approximately ~3 μm before sliding the apparatus into the autoclave. Inside the autoclave, the surface separation can be further controlled with a magnetic drive at sub-Ångstrom precision over a 14 μm range. The autoclave pressure can then be set and maintained between 20 mbar and 170 bars with few mbar precision. The autoclave is connected to a specially designed pressurization system to precondition the fluids. The temperature can be controlled between -20 and 60 °C with few mK precision. We demonstrate the operation of the instrument in the case of gaseous or liquid carbon dioxide. Thanks to a consequent decoupling of the eSFA mechanical loop from the autoclave structure, the obtained measurement stability and reproducibility, at elevated pressures, is comparable to the one established for the conventional eSFA, operated under ambient conditions.

  3. The extended surface forces apparatus. IV. Precision static pressure control

    Science.gov (United States)

    Schurtenberger, E.; Heuberger, M.

    2011-10-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under ambient conditions. The surface separation is thus pre-adjusted to approximately ˜3 μm before sliding the apparatus into the autoclave. Inside the autoclave, the surface separation can be further controlled with a magnetic drive at sub-Ångstrom precision over a 14 μm range. The autoclave pressure can then be set and maintained between 20 mbar and 170 bars with few mbar precision. The autoclave is connected to a specially designed pressurization system to precondition the fluids. The temperature can be controlled between -20 and 60 °C with few mK precision. We demonstrate the operation of the instrument in the case of gaseous or liquid carbon dioxide. Thanks to a consequent decoupling of the eSFA mechanical loop from the autoclave structure, the obtained measurement stability and reproducibility, at elevated pressures, is comparable to the one established for the conventional eSFA, operated under ambient conditions.

  4. Pressure-induced phase transition in a ternary microemulsion system

    International Nuclear Information System (INIS)

    Nagao, Michihiro; Seto, Hideki

    2002-01-01

    Static and dynamic structure of a ternary microemulsion system including AOT (Aerosol-OT; dioctyl sulfosuccinate sodium salt) were investigated in order to clarify the mechanism of the structural phase transition induced by pressure. From the static measurement by means of small-angle x-ray and neutron scattering (SAXS and SANS), it was observed that the dense water-in-oil droplet structure at ambient temperature and pressure transformed to two-phase coexistence with the lamellar phase and the bicontinuous phase with increasing pressure as the case of increasing temperature. The characteristic features of pressure-induced phase transition were quite similar to the temperature-induced one below the phase transition temperature and pressure, however, above the transition temperature and pressure, they were different. From the dynamical measurement by means of the neutron spin echo (NSE), membrane dynamics at high-pressure phase was observed completely different from the high temperature phase. The result showed that with increasing temperature the membrane became flexible and, on the other hand, it became rigid with increasing pressure. These differences suggested the different mechanism of the pressure-induced phase transition from the temperature-induced one. (author)

  5. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  6. Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations

    Science.gov (United States)

    Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.

    2014-01-01

    Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.

  7. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  8. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.

    1993-01-01

    that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing......Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... temperature (decreasing pressure) the overall entropy increases through the inverted micellar crystallization characteristic....

  9. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment......Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... are separated using a polyethylene film. The gliding arc was extended by a high speed air flow into ambient air, directed the polyester surface at an angle of approximately 30o. The ultrasonic waves were introduced vertically to the surface. After the plasma treatment using each plasma source without ultrasonic...

  10. Are pressure redistribution surfaces or heel protection devices effective for preventing heel pressure ulcers?

    Science.gov (United States)

    Junkin, Joan; Gray, Mikel

    2009-01-01

    Heel pressure ulcers are recognized as second in prevalence only to pressure ulcer (PU) on the heel among hospitalized patients, and recent studies suggest their incidence may be higher than even sacral ulcers. We systematically reviewed the literature to identify and evaluate whether pressure redistribution surfaces or heel protection devices are effective for the prevention of heel ulcers. We searched CINAHL and MEDLINE databases, using the keywords "pressure ulcer" and "heel," which we also searched the Cochrane Library, using the key terms "pressure ulcer," "heel," and "support surface." We hand searched the ancestry of pertinent research reports and review articles in order to identify additional studies. Inclusion criteria were (1) any study that compared one or more pressure redistribution surfaces or heel protection devices designed specifically to prevent heel PU and (2) any study comparing 2 or more pressure redistribution surfaces designed to prevent PU that specifically reported differences in the incidence of heel PU. Exclusion criteria were (1) studies that did not measure heel PU incidence as an outcome, (2) studies without an English language abstract, and (3) studies that reported overall PU incidence but did not analyze heel PU incidence separately. Clinical evidence concerning the efficacy of pressure redistribution surfaces or heel protection devices is sparse. Existing evidence suggests that pressure redistribution surfaces vary in their ability to prevent heel pressure ulcers, but there is insufficient evidence to determine which surfaces are optimal for this purpose. A single study suggests that a wedge-shaped viscoelastic foam cushion is superior to standard foam pillows for preventing heel PU, but further research is needed before a definitive conclusion concerning this issue can be reached. There is insufficient evidence to determine whether heel protection devices are more effective than a standard hospital foam pillow for the prevention

  11. Inducing peer pressure to promote cooperation.

    Science.gov (United States)

    Mani, Ankur; Rahwan, Iyad; Pentland, Alex

    2013-01-01

    Cooperation in a large society of self-interested individuals is notoriously difficult to achieve when the externality of one individual's action is spread thin and wide on the whole society. This leads to the 'tragedy of the commons' in which rational action will ultimately make everyone worse-off. Traditional policies to promote cooperation involve Pigouvian taxation or subsidies that make individuals internalize the externality they incur. We introduce a new approach to achieving global cooperation by localizing externalities to one's peers in a social network, thus leveraging the power of peer-pressure to regulate behavior. The mechanism relies on a joint model of externalities and peer-pressure. Surprisingly, this mechanism can require a lower budget to operate than the Pigouvian mechanism, even when accounting for the social cost of peer pressure. Even when the available budget is very low, the social mechanisms achieve greater improvement in the outcome.

  12. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved....... The ultrasonic irradiation during the plasma treatment consistently enhanced the treatment efficiency. The principal effect of ultrasonic irradiation can be attributed to enhancing surface oxidation during plasma treatment. In addition, ultrasonic irradiation can suppress arcing, and the uniformity...

  13. Characterization of an induced pressure pumping force for microfluidics

    Science.gov (United States)

    Jiang, Hai; Fan, Na; Peng, Bei; Weng, Xuan

    2017-05-01

    The electro-osmotic pumping and pressure-driven manipulation of fluids are considered as the most common strategies in microfluidic devices. However, both of them exhibit major disadvantages such as hard integration and high reagent consumption, and they are destructive methods for detection and photo bleaching. In this paper, an electric field-effect flow control approach, combining the electro-osmotic pumping force and the pressure-driven pumping force, was developed to generate the induced pressure-driven flow in a T-shaped microfluidic chip. Electro-osmotic flow between the T-intersection and two reservoirs was demonstrated, and it provided a stable, continuous, and electric field-free flow in the section of the microchannel without the electrodes. The velocity of the induced pressure-driven flow was linearly proportional to the applied voltages. Both numerical and experimental investigations were conducted to prove the concept, and the experimental results showed good agreement with the numerical simulations. In comparison to other induced pressure pumping methods, this approach can induce a high and controllable pressure drop in the electric field-free segment, subsequently causing an induced pressure-driven flow for transporting particles or biological cells. In addition, the generation of bubbles and the blocking of the microchannel are avoided.

  14. Capillarity Induced Negative Pressure of Water Plugs in Nanochannels

    NARCIS (Netherlands)

    Tas, Niels Roelof; Mela, P.; Kramer, Tobias; Berenschot, Johan W.; van den Berg, Albert

    2003-01-01

    We have found evidence that water plugs in hydrophilic nanochannels can be at significant negative pressure due to tensile capillary forces. The negative pressure of water plugs in nanochannels induces bending of the thin channel capping layer, which results in a visible curvature of the liquid

  15. Wave-induced stresses and pore pressures near a mudline

    Directory of Open Access Journals (Sweden)

    Andrzej Sawicki

    2008-12-01

    Full Text Available Conventional methods for the determination of water-wave induced stresses inseabeds composed of granular soils are based on Biot-type models, in which the soilskeleton is treated as an elastic medium. Such methods predict effective stressesin the soil that are unacceptable from the physical point of view, as they permittensile stresses to occur near the upper surface of the seabed. Therefore, in thispaper the granular soil is assumed to behave as an elastic-ideally plastic material,with the Coulomb-Mohr yield criterion adopted to bound admissible stress states inthe seabed. The governing equations are solved numerically by a~finite differencemethod. The results of simulations, carried out for the case of time-harmonicwater waves, illustrate the depth distributions of the excess pore pressures and theeffective stresses in the seabed, and show the shapes of zones of soil in the plastic state.~In particular, the effects on the seabed behaviour of suchparameters as the degree of pore water saturation, the soil permeability, and theearth pressure coefficient, are illustrated.

  16. Active Intracystic Negative Pressure Could Induce Osteogenesis.

    Science.gov (United States)

    Castro-Núñez, Jaime

    2018-02-23

    Based on previous findings, the author introduces the term "sugosteogenesis," a biological phenomenon that occurs by using the Evocyst, a device that exerts active intracystic negative pressure. The term "sugosteogenesis" comes from the Latin word "sugo-," meaning "suck," and Greek words "osteo-," meaning "bone," and genesis, "origin."

  17. Drop impact on a solid surface at reduced air pressure

    Science.gov (United States)

    Langley, Kenneth; Li, E. Q.; Tian, Y. S.; Hicks, P. D.; Thoroddsen, S. T.

    2017-11-01

    When a drop approaches a solid surface at atmospheric pressure, the lubrication pressure within the air forms a dimple in the bottom of the drop resulting in the entrainment of an air disc upon impact. Reducing the ambient air pressure below atmospheric has been shown to suppress splashing and the compression of the intervening air could be significant on the air disc formation; however, to date there have been no experimental studies showing how the entrainment of the air disc is affected by reducing the ambient pressure. Using ultra-high-speed interferometry, at up to 5 Mfps, we investigate droplet impacts onto dry solid surfaces in reduced ambient air pressures with particular interest in what happens as rarified gas effects become important, i.e. when the thickness of the air layer is of the same magnitude as the mean free path of the air molecules. Experimental data will be presented showing novel phenomena and comparisons will be drawn with theoretical models from the literature.

  18. Pressure-induced phenomena in U intermetallics

    Czech Academy of Sciences Publication Activity Database

    Sechovský, V.; Honda, F.; Prokeš, K.; Syshchenko, O.; Andreev, Alexander V.; Kamarád, Jiří

    2003-01-01

    Roč. 34, č. 2 (2003), s. 1377-1386 ISSN 0587-4254. [International Conference on Strongly Correlated Electron Systems (SCES 02). Cracow, 10.07.2002-13.07.2002] R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914; CEZ:MSM 113200002 Keywords : pressure effect * intermetallics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.752, year: 2003

  19. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, He....../O2 and Ar plasma treatments, mainly attributed to an increase in the density of the C-O single bond at the carbon fibre surfaces. The O/C ratio increased to 0.182 after 1-s He plasma treatment, and remained approximately constant after longer treatment. After exposure in an ambient air at room...

  20. Candesartan restores pressure-induced vasodilation and prevents skin pressure ulcer formation in diabetic mice.

    Science.gov (United States)

    Danigo, Aurore; Nasser, Mohamad; Bessaguet, Flavien; Javellaud, James; Oudart, Nicole; Achard, Jean-Michel; Demiot, Claire

    2015-02-18

    Angiotensin II type 1 receptor (AT1R) blockers have beneficial effects on neurovascular complications in diabetes and in organ's protection against ischemic episodes. The present study examines whether the AT1R blocker candesartan (1) has a beneficial effect on diabetes-induced alteration of pressure-induced vasodilation (PIV, a cutaneous physiological neurovascular mechanism which could delay the occurrence of tissue ischemia), and (2) could be protective against skin pressure ulcer formation. Male Swiss mice aged 5-6 weeks were randomly assigned to four experimental groups. In two groups, diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ, 200 mg.kg(-1)). After 6 weeks, control and STZ mice received either no treatment or candesartan (1 mg/kg-daily in drinking water) during 2 weeks. At the end of treatment (8 weeks of diabetes duration), C-fiber mediated nociception threshold, endothelium-dependent vasodilation and PIV were assessed. Pressure ulcers (PUs) were then induced by pinching the dorsal skin between two magnetic plates for three hours. Skin ulcer area development was assessed during three days, and histological examination of the depth of the skin lesion was performed at day three. After 8 weeks of diabetes, the skin neurovascular functions (C-fiber nociception, endothelium-dependent vasodilation and PIV) were markedly altered in STZ-treated mice, but were fully restored by treatment with candesartan. Whereas in diabetes mice exposure of the skin to pressure induced wide and deep necrotic lesions, treatment with candersartan restored their ability to resist to pressure-induced ulceration as efficiently as the control mice. Candesartan decreases the vulnerability to pressure-induced ulceration and restores skin neurovascular functions in mice with STZ-induced established diabetes.

  1. Ion-induced surface modification of alloys

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1983-11-01

    In addition to the accumulation of the implanted species, a considerable number of processes can affect the composition of an alloy in the surface region during ion bombardment. Collisions of energetic ions with atoms of the alloy induce local rearrangement of atoms by displacements, replacement sequences and by spontaneous migration and recombination of defects within cascades. Point defects form clusters, voids, dislocation loops and networks. Preferential sputtering of elements changes the composition of the surface. At temperatures sufficient for thermal migration of point defects, radiation-enhanced diffusion promotes alloy component redistribution within and beyond the damage layer. Fluxes of interstitials and vacancies toward the surface and into the interior of the target induce fluxes of alloying elements leading to depth-dependent compositional changes. Moreover, Gibbsian surface segregation may affect the preferential loss of alloy components by sputtering when the kinetics of equilibration of the surface composition becomes competitive with the sputtering rate. Temperature, time, current density and ion energy can be used to influence the individual processes contributing to compositional changes and, thus, produce a rich variety of composition profiles near surfaces. 42 references

  2. Pressure-Redistributing Support Surface Use and Pressure Ulcer Incidence in Elderly Hip Fracture Patients

    Science.gov (United States)

    Rich, Shayna E.; Shardell, Michelle; Hawkes, William G.; Margolis, David J.; Amr, Sania; Miller, Ram; Baumgarten, Mona

    2013-01-01

    OBJECTIVES To evaluate the association between pressure-redistributing support surface (PRSS) use and incident pressure ulcers in older adults with hip fracture. DESIGN Secondary analysis of data from prospective cohort with assessments performed as soon as possible after hospital admission and on alternating days for 21 days. SETTING Nine hospitals in the Baltimore Hip Studies network and 105 postacute facilities to which participants were discharged. PARTICIPANTS Six hundred fifty-eight people aged 65 and older who underwent surgery for hip fracture. MEASUREMENTS Full-body examination for pressure ulcers; bedbound status; and PRSS use, recorded as none, powered (alternating pressure mattresses, low-air-loss mattresses, and alternating pressure overlays), or nonpowered (high-density foam, static air, or gel-filled mattresses or pressure-redistributing overlays except for alternating pressure overlays). RESULTS Incident pressure ulcers (IPUs), Stage 2 or higher, were observed at 4.2% (195/4,638) of visits after no PRSS use, 4.5% (28/623) of visits after powered PRSS use, and 3.6% (54/1,496) of visits after nonpowered PRSS use. The rate of IPU per person-day of follow-up did not differ significantly between participants using powered PRSSs and those not using PRSSs. The rate also did not differ significantly between participants using nonpowered PRSSs and those not using PRSSs, except in the subset of bedbound participants (incidence rate ratio = 0.3, 95% confidence interval = 0.1–0.7). CONCLUSION PRSS use was not associated with a lower IPU rate. Clinical guidelines may need revision for the limited effect of PRSS use, and it may be appropriate to target PRSS use to bedbound patients at risk of pressure ulcers. PMID:21649630

  3. Anatomy of a pressure-induced, ferromagnetic-to-paramagnetic transition in pyrrhotite: Implications for the formation pressure of diamonds

    Science.gov (United States)

    Gilder, Stuart A.; Egli, Ramon; Hochleitner, Rupert; Roud, Sophie C.; Volk, Michael W. R.; Le Goff, Maxime; de Wit, Maarten

    2011-10-01

    Meteorites and diamonds encounter high pressures during their formation or subsequent evolution. These materials commonly contain magnetic inclusions of pyrrhotite. Because magnetic properties are sensitive to strain, pyrrhotite can potentially record the shock or formation pressures of its host. Moreover, pyrrhotite undergoes a pressure-induced phase transition between 1.6 and 6.2 GPa, but the magnetic signature of this transition is poorly known. Here we report room temperature magnetic measurements on multidomain and single-domain pyrrhotite under nonhydrostatic pressure. Magnetic remanence in single-domain pyrrhotite is largely insensitive to pressure until 2 GPa, whereas the remanence of multidomain pyrrhotite increases 50% over that of initial conditions by 2 GPa, and then decreases until only 33% of the original remanence remains by 4.5 GPa. In contrast, magnetic coercivity increases with increasing pressure to 4.5 GPa. Below ˜1.5 GPa, multidomain pyrrhotite obeys Néel theory with a positive correlation between coercivity and remanence; above ˜1.5 GPa, it behaves single domain-like yet distinctly different from uncompressed single-domain pyrrhotite. The ratio of magnetic coercivity and remanence follows a logarithmic law with respect to pressure, which can potentially be used as a geobarometer. Owing to the greater thermal expansion of pyrrhotite with respect to diamond, pyrrhotite inclusions in diamonds experience a confining pressure at Earth's surface. Applying our experimentally derived magnetic geobarometer to pyrrhotite-bearing diamonds from Botswana and the Central African Republic suggests the pressures of the pyrrhotite inclusions in the diamonds range from 1.3 to 2.1 GPa. These overpressures constrain the mantle source pressures from 5.4 to 9.5 GPa, depending on which bulk modulus and thermal expansion coefficients of the two phases are used.

  4. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Science.gov (United States)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  5. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  6. Model of Structural Fragmentation Induced by High Pressure Torsion

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, J.; Kružík, Martin; Sedláček, R.

    2010-01-01

    Roč. 25, č. 1 (2010), s. 88-98 ISSN 1606-5131 Institutional research plan: CEZ:AV0Z10750506 Keywords : High-pressure torsion * intergranular glide * homogeneous deformation mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.649, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/kruzik-model of structural fragmentation induced by high pressure torsion.pdf

  7. Flame-induced atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Cheng, Sy-Chyi; Chen, Yen-Ting; Jhang, Siou-Sian; Shiea, Jentaie

    2016-04-15

    Charged species such as formylium (CHO(+) ), hydronium (H3 O(+) ), and water clusters [H3 O(+) (H2 O)n ] are commonly found in flames. These highly reactive species can react with analytes via ion-molecule reactions (IMRs) to form analyte ions. A new mass spectrometric technique, named flame-induced atmospheric pressure chemical ionization mass spectrometry (FAPCI-MS), was developed to characterize organic compounds via these mechanisms. A commercial corona-discharge atmospheric pressure chemical ionization (APCI) source was modified by replacing the corona needle with a flame to make a FAPCI source. Liquid samples were vaporized in a heated tube and delivered to the IMRs region by nitrogen to react with the charged species generated by a flame. Analytes on surfaces were directly desorbed and ionized by a flame using the technique called desorption-FAPCI-MS (DFAPCI-MS). Intact molecular ions of various chemical and biological compounds were successfully characterized by FAPCI-MS. The FAPCI mass spectra are nearly identical to those obtained by traditional APCI-MS. The limit of detection (LOD) of reserpine by FAPCI-MS was 50 μg L(-1) with a linear calibration curve (R(2) = 0.9947) from 100 μg L(-1) to 10 mg L(-1) . The LOD for ketamine by DFAPCI-MS was estimated to be less than 0.1 ng. In FAPCI, analytes are not incinerated but vaporized and introduced into the ion source to react with the reactive charged species generated by a flame. The features of the FAPCI source include: configuration is very simple, operation is easy, high voltage or inert gas is unnecessary, and the source is maintenance free. Various combustible gases, solvents and solids are useful flame fuels for FAPCI. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Pressure-induced referred pain is expanded by persistent soreness.

    Science.gov (United States)

    Doménech-García, V; Palsson, T S; Herrero, P; Graven-Nielsen, T

    2016-05-01

    Several chronic pain conditions are accompanied with enlarged referred pain areas. This study investigated a novel method for assessing referred pain. In 20 healthy subjects, pressure pain thresholds (PPTs) were recorded and pressure stimuli (120% PPT) were applied bilaterally for 5 and 60 seconds at the infraspinatus muscle to induce local and referred pain. Moreover, PPTs were measured bilaterally at the shoulder, neck, and leg before, during, and after hypertonic saline-induced referred pain in the dominant infraspinatus muscle. The pressure and saline-induced pain areas were assessed on drawings. Subsequently, delayed onset muscle soreness was induced using eccentric exercise of the dominant infraspinatus muscle. The day-1 assessments were repeated the following day (day 2). Suprathreshold pressure stimulations and saline injections into the infraspinatus muscle caused referred pain to the frontal aspect of the shoulder/arm in all subjects. The 60-second pressure stimulation caused larger referred pain areas compared with the 5-second stimulation (P soreness side (P soreness, indicating that the referred pain area may be a sensitive biomarker for sensitization of the pain system.

  9. Pressure-induced phase transition in GaN nanocrystals

    CERN Document Server

    Cui, Q; Zhang, W; Wang, X; Zhang, J; Cui, T; Xie, Y; Liu, J; Zou, G

    2002-01-01

    High-pressure in situ energy-dispersive x-ray diffraction experiments on GaN nanocrystals with 50 nm diameter have been carried out using a synchrotron x-ray source and a diamond-anvil cell up to about 79 GPa at room temperature. A pressure-induced first-order structural phase transition from the wurtzite-type structure to the rock-salt-type structure starts at about 48.8 GPa. The rock-salt-type phase persists to the highest pressure in our experimental range.

  10. Surface modifications by field induced diffusion.

    Directory of Open Access Journals (Sweden)

    Martin Olsen

    Full Text Available By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages.

  11. [Measurements of surface ocean carbon dioxide partial pressure during WOCE

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This paper discusses the research progress of the second year of research under Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' and proposes to continue measurements of underway pCO[sub 2]. During most of the first year of this grant, our efforts to measure pCO[sub 2] on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO[sub 2] in air and surface seawater indicate air-sea equilibrium.

  12. The dependence of lipid monolayer lipolysis on surface pressure.

    OpenAIRE

    Hall, D G

    1992-01-01

    Brönsted-Bjerrum theory [Brönsted (1922) Z. Phys. Chem. 102, 169-207; (1925) Z. Phys. Chem. 115, 337-364; Bjerrum (1924) Z. Phys. Chem. 108, 82-100] as applied to reactions at interfaces is used to interpret published data on the lipolysis of dinonanoyl phosphatidylcholine monolayers by pancreatic phospholipase A2. Reasonable quantitative agreement between theoretical and experimental results occurs when the reported effects of surface pressure on the amount of adsorbed enzyme are used togeth...

  13. Osmotic pressure of the cutaneous surface fluid of Rana esculenta

    DEFF Research Database (Denmark)

    Hviid Larsen, Erik; Ramløv, Hans

    2012-01-01

    The osmotic pressure of the cutaneous surface fluid (CSF) in vivo was measured for investigating whether evaporative water loss (EWL) derives from water diffusing through the skin or fluid secreted by exocrine subepidermal mucous glands. EWL was stimulated by subjecting R. esculenta to 30–34 °C....../Kg, n = 16. Osmolality of lymph was, 239 ± 4 mosmol/Kg, n = 8. Thus the flow of water across the epidermis would be in the direction from CSF to the interstitial fluid driven by the above osmotic gradients and/or coupled to the inward active Na+ flux via the slightly hyperosmotic paracellular...

  14. A simulation of earthquake induced undrained pore pressure ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 112; Issue 3. A simulation of earthquake induced undrained pore pressure changes with bearing on some soil liquefaction observations following the 2001 Bhuj earthquake. Irene Sarkar Ramesh Chander. Volume 112 Issue 3 September 2003 pp 471-477 ...

  15. Prediction of propeller-induced hull-pressure fluctuations

    NARCIS (Netherlands)

    Van Wijngaarden, H.C.J.

    2011-01-01

    The cavitating propeller often forms the primary source of noise and vibration on board ships. The propeller induces hydroacoustic pressure fluctuations due to the passing blades and, more importantly, the dynamic activity of cavities in the propeller’s immediate vicinity. The accurate prediction of

  16. The Effect of 200 MPa Pressure on Specific Surface Area of Clay

    Directory of Open Access Journals (Sweden)

    Koszela-Marek Ewa

    2015-02-01

    Full Text Available The paper presents the results of laboratory studies of the 200 MPa pressure effect on specific surface area of clay. The original high-pressure investigation stand was used for the pressure tests. Determination of the specific surface area was performed by the methylene blue adsorption method. The results of the specific surface area test were compared for non-pressurized clays and for clays pressured in a high-pressure chamber. It was found that the specific surface area of pressurized soil clearly increased. This shows that some microstructural changes take place in the soil skeleton of clays.

  17. Drag reduction induced by superhydrophobic surfaces in turbulent pipe flow

    Science.gov (United States)

    Costantini, Roberta; Mollicone, Jean-Paul; Battista, Francesco

    2018-02-01

    The drag reduction induced by superhydrophobic surfaces is investigated in a turbulent pipe flow. Wetted superhydrophobic surfaces are shown to trap gas bubbles in their asperities. This stops the liquid from coming in direct contact with the wall in that location, allowing the flow to slip over the air bubbles. We consider a well-defined texture with streamwise grooves at the walls in which the gas is expected to be entrapped. This configuration is modeled with alternating no-slip and shear-free boundary conditions at the wall. With respect to the classical turbulent pipe flow, a substantial drag reduction is observed which strongly depends on the grooves' dimension and on the solid fraction, i.e., the ratio between the solid wall surface and the total surface of the pipe's circumference. The drag reduction is due to the mean slip velocity at the wall which increases the flow rate at a fixed pressure drop. The enforced boundary conditions also produce peculiar turbulent structures which on the contrary decrease the flow rate. The two concurrent effects provide an overall flow rate increase as demonstrated by means of the mean axial momentum balance. This equation provides the balance between the mean pressure gradient, the Reynolds stress, the mean flow rate, and the mean slip velocity contributions.

  18. Pressurized Rover for Moon and Mars Surface Missions

    Science.gov (United States)

    Imhof, Barbara; Ransom, Stephen; Mohanty, Susmita; Özdemir, Kürsad; Häuplik-Meusburger, Sandra; Frischauf, Norbert; Hoheneder, Waltraut; Waclavicek, René

    The work described in this paper was done under ESA and Thales Alenia Space contract in the frame of the Analysis of Surface Architecture for European Space Exploration -Element Design. Future manned space missions to the Moon or to Mars will require a vehicle for transporting astronauts in a controlled and protected environment and in relative comfort during surface traverses of these planetary bodies. The vehicle that will be needed is a pressurized rover which serves the astronauts as a habitat, a refuge and a research laboratory/workshop. A number of basic issues influencing the design of such a rover, e.g. habitability, human-machine interfaces, safety, dust mitigation, interplanetary contamination and radiation protection, have been analysed in detail. The results of these analyses were subsequently used in an investigation of various designs for a rover suitable for surface exploration, from which a single concept was developed that satisfied scientific requirements as well as environmental requirements encoun-tered during surface exploration of the Moon and Mars. This concept was named in memory of the late Sir Arthur C. Clark RAMA (Rover for Advanced Mission Applications, Rover for Advanced Moon Applications, Rover for Advanced Mars Applications) The concept design of the pressurized rover meets the scientific and operational requirements defined during the course of the Surface Architecture Study. It is designed for surface missions with a crew of two or three lasting up to approximately 40 days, its source of energy, a liquid hydrogen/liquid oxygen fuel cell, allowing it to be driven and operated during the day as well as the night. Guidance, navigation and obstacle avoidance systems are foreseen as standard equipment to allow it to travel safely over rough terrain at all times of the day. The rover allows extra-vehicular activity and a remote manipulator is provided to recover surface samples, to deploy surface instruments and equipment and, in general

  19. Multiple pathways in pressure-induced phase transition of coesite

    Science.gov (United States)

    Liu, Wei; Wu, Xuebang; Liang, Yunfeng; Liu, Changsong; Miranda, Caetano R.; Scandolo, Sandro

    2017-12-01

    High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture.

  20. High-frequency pressure variations in the vicinity of a surface CO2 flux chamber

    Science.gov (United States)

    Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice

    2003-01-01

    We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...

  1. Characterizing developing adverse pressure gradient flows subject to surface roughness

    Science.gov (United States)

    Brzek, Brian; Chao, Donald; Turan, Özden; Castillo, Luciano

    2010-04-01

    An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T ∞, U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41-60, surfaces with Reynolds number based on momentum thickness, 3,000 carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91-108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33-79, 1998a) scaling of the mean velocity deficit, U ∞δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.

  2. Pressure-induced transition in the grain boundary of diamond

    Science.gov (United States)

    Chen, J.; Tang, L.; Ma, C.; Fan, D.; Yang, B.; Chu, Q.; Yang, W.

    2017-12-01

    Equation of state of diamond powder with different average grain sizes was investigated using in situ synchrotron x-ray diffraction and a diamond anvil cell (DAC). Comparison of compression curves was made for two samples with average grain size of 50nm and 100nm. The two specimens were pre-pressed into pellets and loaded in the sample pressure chamber of the DAC separately to minimized differences of possible systematic errors for the two samples. Neon gas was used as pressure medium and ruby spheres as pressure calibrant. Experiments were conducted at room temperature and high pressures up to 50 GPa. Fitting the compression data in the full pressure range into the third order Birch-Murnaghan equation of state yields bulk modulus (K) and its pressure derivative (K') of 392 GPa and 5.3 for 50nm sample and 398GPa and 4.5 for 100nm sample respectively. Using a simplified core-shell grain model, this result indicates that the grain boundary has an effective bulk modulus of 54 GPa. This value is similar to that observed for carbon nanotube[1] validating the recent theoretical diamond surface modeling[2]. Differential analysis of the compression cures demonstrates clear relative compressibility change at the pressure about 20 GPa. When fit the compression data below and above this pressure separately, the effect of grain size on bulk modulus reverses in the pressure range above 20 GPa. This observation indicates a possible transition of grain boundary structure, likely from sp2 hybridization at the surface[2] towards sp3like orbital structure which behaves alike the inner crystal. [1] Jie Tang, Lu-Chang Qin, Taizo Sasaki, Masako Yudasaka, Akiyuki Matsushita, and Sumio Iijima, Compressibility and Polygonization of Single-Walled Carbon Nanotubes under Hydrostatic Pressure, Physical Review Letters, 85(9), 1187-1198, 2000. [2] Shaohua Lu, Yanchao Wang, Hanyu Liu, Mao-sheng Miao, and Yanming Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nature

  3. Sensitivity of Spores of Eight Bacillus Cereus Strains to Pressure-Induced Germination by Moderate Hydrostatic Pressure, Time and Temperature

    National Research Council Canada - National Science Library

    Kalchayanand, Norasak; Ray, Bibek; Dunne, C. P; Sikes, Anthony

    2005-01-01

    The spores of eight Bacillus cereus strains were pressurized at 138 to 483 MPa for 5 to 20 min at 25 to 70 C in order to determine the sensitive and the resistant strains to pressure-induced germination...

  4. Pressure induced phase transitions studies using advanced synchrotron techniques

    Science.gov (United States)

    Liu, Haozhe; Liu, Lisa; Zhao, Jinggeng; HIT Overseas Collaborative Base at Argonne Collaboration

    2013-06-01

    In this presentation, the joint effort on high pressure research through program of Harbin Institute of Technology (HIT) Overseas Collaborative Base at Argonne will be introduced. Selected research projects on pressure induced phase transitions at room temperature and high/low temperature conditions, such as A2B3 type topological insulators, iron arsenide superconductors, piezoelectric/ferroelectric materials, ABO3 type single crystals and metallic glasses, will be presented. Recent development on imaging and diffraction tomography techniques in diamond anvil cell will be reviewed as well.

  5. Pressure RElieving Support SUrfaces: a Randomised Evaluation 2 (PRESSURE 2): study protocol for a randomised controlled trial

    OpenAIRE

    Brown, Sarah; Smith, Isabelle L.; Brown, Julia M.; Hulme, Claire; McGinnis, Elizabeth; Stubbs, Nikki; Nelson, E. Andrea; Muir, Delia; Rutherford, Claudia; Walker, Kay; Henderson, Valerie; Wilson, Lyn; Gilberts, Rachael; Collier, Howard; Fernandez, Catherine

    2016-01-01

    Background Pressure ulcers represent a major burden to patients, carers and the healthcare system, affecting approximately 1 in 17 hospital and 1 in 20 community patients. They impact greatly on an individual?s functional status and health-related quality of life. The mainstay of pressure ulcer prevention practice is the provision of pressure redistribution support surfaces and patient repositioning. The aim of the PRESSURE 2 study is to compare the two main mattress types utilised within the...

  6. Measuring Global Surface Pressures on a Circulation Control Concept Using Pressure Sensitive Paint

    Science.gov (United States)

    Watkins, Anthony N.; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.

    2012-01-01

    This report will present the results obtained from the Pressure Sensitive Paint (PSP) technique on a circulation control concept model. This test was conducted at the National Transonic Facility (NTF) at the NASA Langley Research Center. PSP was collected on the upper wing surface while the facility was operating in cryogenic mode at 227 K (-50 oF). The test envelope for the PSP portion included Mach numbers from 0.7 to 0.8 with angle of attack varying between 0 and 8 degrees and a total pressure of approximately 168 kPa (24.4 psi), resulting in a chord Reynolds number of approximately 15 million. While the PSP results did exhibit high levels of noise in certain conditions (where the oxygen content of the flow was very small), some conditions provided good correlation between the PSP and pressure taps, showing the ability of the PSP technique. This work also served as a risk reduction opportunity for future testing in cryogenic conditions at the NTF.

  7. Surface wave propagation characteristics in atmospheric pressure plasma column

    International Nuclear Information System (INIS)

    Pencheva, M; Benova, E; Zhelyazkov, I

    2007-01-01

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance

  8. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  9. Evaluating road surface conditions using dynamic tire pressure sensor

    Science.gov (United States)

    Zhao, Yubo; Wu, H. Felix; McDaniel, J. Gregory; Wang, Ming L.

    2014-03-01

    In order to best prioritize road maintenance, the level of deterioration must be known for all roads in a city's network. Pavement Condition Index (PCI) and International Roughness Index (IRI) are two standard methods for obtaining this information. However, IRI is substantially easier to measure. Significant time and money could be saved if a method were developed to estimate PCI from IRI. This research introduces a new method to estimate IRI and correlate IRI with PCI. A vehicle-mounted dynamic tire pressure sensor (DTPS) system is used. The DTPS measures the signals generated from the tire/road interaction while driving. The tire/road interaction excites surface waves that travel through the road. DTPS, which is mounted on the tire's valve stem, measures tire/road interaction by analyzing the pressure change inside the tire due to the road vibration, road geometry and tire wall vibration. The road conditions are sensible to sensors in a similar way to human beings in a car. When driving on a smooth road, tire pressure stays almost constant and there are minimal changes in the DTPS data. When driving on a rough road, DTPS data changes drastically. IRI is estimated from the reconstructed road profile using DTPS data. In order to correlate IRI with PCI, field tests were conducted on roads with known PCI values in the city of Brockton, MA. Results show a high correlation between the estimated IRI values and the known PCI values, which suggests that DTPS-based IRI can provide accurate predictions of PCI.

  10. Pressure-induced switching in ferroelectrics: Phase-field modeling, electrochemistry, flexoelectric effect, and bulk vacancy dynamics

    Science.gov (United States)

    Cao, Ye; Morozovska, Anna; Kalinin, Sergei V.

    2017-11-01

    Pressure-induced polarization switching in ferroelectric thin films has emerged as a powerful method for domain patterning, allowing us to create predefined domain patterns on free surfaces and under thin conductive top electrodes. However, the mechanisms for pressure-induced polarization switching in ferroelectrics remain highly controversial, with flexoelectricity, polarization rotation and suppression, and bulk and surface electrochemical processes all being potentially relevant. Here we classify possible pressure-induced switching mechanisms, perform elementary estimates, and study in depth using phase-field modeling. We show that magnitudes of these effects are remarkably close and give rise to complex switching diagrams as a function of pressure and film thickness with nontrivial topology or switchable and nonswitchable regions.

  11. Randomised, controlled trial of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers: PRESSURE (pressure relieving support surfaces) trial

    OpenAIRE

    2006-01-01

    Objective To compare whether differences exist between alternating pressure overlays and alternating pressure mattresses in the development of new pressure ulcers, healing of existing pressure ulcers, and patient acceptability. Design Pragmatic, open, multicentre, randomised controlled trial. Setting 11 hospitals in six NHS trusts. Participants 1972 people admitted to hospital as acute or elective patients. Interventions Participants were randomised to an alternating pressure mattress (n = 98...

  12. Diagnostics and modeling of high pressure streamer induced discharges

    International Nuclear Information System (INIS)

    Marode, E.; Dessante, P.; Deschamps, N.; Deniset, C.

    2001-01-01

    A great variety of diagnostic has been applied to gain information on basic parameter governing high pressure nonthermal filamentary plasmas (and namely streamer induced filamentary discharges). Apart from electrical diagnostics, gas discharge, in contrast with solid state physics, can greatly benefit from all optical techniques owing to its ''transparent'' state. Emission and absorption spectroscopy, as well as LIF or CARS (talk are given during this meeting on these two techniques) are among such specific possibilities. The figures gained from these diagnostic measurements has generally no meaning by itself. They must be worked out, by means of calibrated former results, and/or by using them as input in high pressure plasma modeling. Mixing experimental and modeling approach is necessary for reaching relevant physical knowledge of the high pressure filamentary discharges processes. It is shown that diffusion, and thermal space and time distribution, must fully be taken into account

  13. Surface modification with a remote atmospheric pressure plasma: dc glow discharge and surface streamer regime

    International Nuclear Information System (INIS)

    Temmerman, Eef; Akishev, Yuri; Trushkin, Nikolay; Leys, Christophe; Verschuren, Jo

    2005-01-01

    A remote atmospheric pressure discharge working with ambient air is used for the near room temperature treatment of polymer foils and textiles of varying thickness. The envisaged plasma effect is an increase in the surface energy of the treated material, leading, e.g., to a better wettability or adhesion. Changes in wettability are examined by measuring the contact angle or the liquid absorptive capacity. Two regimes of the remote atmospheric pressure discharge are investigated: the glow regime and the streamer regime. These regimes differ mainly in power density and in the details of the electrode design. The results show that this kind of discharge makes up a convenient non-thermal plasma source to be integrated into a treatment installation working at atmospheric pressure

  14. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  15. Laser-induced plasma spectrometry: truly a surface analytical tool

    International Nuclear Information System (INIS)

    Vadillo, Jose M.; Laserna, J.

    2004-01-01

    For a long period, analytical applications of laser induced plasma spectrometry (LIPS) have been mainly restricted to overall and quantitative determination of elemental composition in bulk, solid samples. However, introduction of new compact and reliable solid state lasers and technological development in multidimensional intensified detectors have made possible the seeking of new analytical niches for LIPS where its analytical advantages (direct sampling from any material irrespective of its conductive status without sample preparation and with sensitivity adequate for many elements in different matrices) could be fully exploited. In this sense, the field of surface analysis could take advantage from the cited advantages taking into account in addition, the capability of LIPS for spot analysis, line scan, depth-profiling, area analysis and compositional mapping with a single instrument in air at atmospheric pressure. This review paper outlines the fundamental principles of laser-induced plasma emission relevant to sample surface studies, discusses the experimental parameters governing the spatial (lateral and in-depth) resolution in LIPS analysis and presents the applications concerning surface examination

  16. Stability of beam-induced tensor pressure tokamaks

    International Nuclear Information System (INIS)

    Cooper, W.A.; Nelson, D.B.; Bateman, G.; Kammash, T.

    1979-10-01

    Necessary and sufficient criteria are obtained for the high toroidal mode number stability of a guiding center plasma in low aspect ratio, D-shaped, beam-induced tensor pressure tokamaks. The difference between the two criteria is significant for interchange stability, while the difference is small for ballooning stability. The critical β value imposed by stability to ballooning modes is higher for perpendicular than for parallel beam injection

  17. Radiation pressure induced difference-sideband generation beyond linearized description

    OpenAIRE

    Xiong, Hao; Fan, Y. W.; Yang, X.; Wu, Y.

    2016-01-01

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals...

  18. Pressure-induced polymerization of nitrogen in potassium azides

    Science.gov (United States)

    Li, Jianfu; Wang, Xiaoli; Xu, Ning; Li, Daoyong; Wang, Dongchao; Chen, Li

    2013-10-01

    The phase transition and structural evolution of KN3 are systematically studied using first-principles density functional (DFT) methods and the particle swarm optimization (PSO) structure search algorithm under pressures up to 400 GPa. For the first time, we identify three stable phases with C2/m , P6/\\textit{mmm} and C2/m{\\_}\\text{II} structure at pressures of 15.7, 41.4 and 298.6 GPa. The analysis of the crystal structures of three new predicted phases reveals that the transition of N3- ions goes from linear molecules to benzene-like rings and then to polymer chains induced by pressure. The study of atomic and electronic structures of three predicted phases reveals that the structural changes are accompanied and driven by the change of atomic orbital hybridization, first from sp to sp2, and then from sp2 to sp3. Our result provides a new view of the pressure-induced polymerization process of metal azides.

  19. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Sugiyama, Y.; Hosseini, S.H.R.; Akiyama, H.; Lukeš, Petr; Akiyama, M.

    2016-01-01

    Roč. 49, č. 41 (2016), č. článku 415202. ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : water surface * spectroscopy * high-speed photography * pulsed plasma discharge * Atmospheric-pressure plasmas * electric discharges * liquids * water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/41/415202

  20. Pressure induced FFLO instability in multi-band superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Padilha, I T; Continentino, M A [Instituto de Fisica, Universidade Federal Fluminense, Campus da Praia Vermelha, 24210-340, Niteroi, JR (Brazil)], E-mail: mucio@if.uff.br

    2009-03-04

    Multi-band systems such as inter-metallic and heavy fermion compounds have quasi-particles arising from different orbitals at their Fermi surface. Since these quasi-particles have different masses or densities, there is a natural mismatch of the Fermi wavevectors associated with different orbitals. This makes these materials potential candidates to observe exotic superconducting phases as Sarma or FFLO phases, even in the absence of an external magnetic field. The distinct orbitals coexisting at the Fermi surface are generally hybridized and their degree of mixing can be controlled by external pressure. In this work we investigate the existence of an FFLO type of phase in a two-band BCS superconductor controlled by hybridization. At zero temperature, as hybridization (pressure) increases we find that the BCS state becomes unstable with respect to an inhomogeneous superconducting state characterized by a single wavevector q.

  1. Acoustic Pressure Oscillations Induced in I-Burner

    Science.gov (United States)

    Matsui, Kiyoshi

    Iwama et al. invented the I-burner to investigate acoustic combustion instability in solid-propellant rockets (Proceedings of ICT Conference, 1994, pp. 26-1 26-14). Longitudinal pressure oscillations were induced in the combustion chamber of a thick-walled rocket by combustion of a stepped-perforation grain (I-burner). These oscillations were studied here experimentally. Two I-burners with an internal diameter of 80 mm and a length of 1208 mm or 2240 mm were made. The grain had stepped perforations (20 and 42 mm in diameter and 657 and 160 mm in length, respectively). Longitudinal pressure oscillations always occur in two stages when an HTPB (hydroxyl-terminated polybutadiene)/AP (ammonium perchlorate)/aluminum-powder propellant burns (54 tests; the highest average pressure in the combustion chamber was 9.5 29 MPa), but no oscillations occur when an HTPB/AP propellant burns (29 tests). The pressure oscillations are essentially linear, but dissipation adds a nonlinear nature to them. In the first stage, the amplitudes are small and the first wave group predominates. In the next stage, the amplitudes are large and many wave groups are present. The change in the grain form accompanying the combustion affects the pressure oscillations.

  2. Pressure induced reactions amongst calcium aluminate hydrate phases

    KAUST Repository

    Moon, Ju-hyuk

    2011-06-01

    The compressibilities of two AFm phases (strätlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt volume contraction regardless of the molecular size of the pressure-transmitting media. This volume discontinuity could be associated to a structural transition or to the movement of the weakly bound interlayer water molecules in the AFm structure. The experimental results seem to indicate that the pressure-induced dehydration is the dominant mechanism especially with hygroscopic pressure medium. The Birch-Murnaghan equation of state was used to compute the bulk modulus of the minerals. Due to the discontinuity in the pressure-volume diagram, a two stage bulk modulus of each AFm phase was calculated. The abnormal volume compressibility for the AFm phases caused a significant change to their bulk modulus. The reliability of this experiment is verified by comparing the bulk modulus of hydrogarnet with previous studies. © 2011 Elsevier Ltd. All rights reserved.

  3. Randomised, controlled trial of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers: PRESSURE (pressure relieving support surfaces) trial.

    Science.gov (United States)

    Nixon, Jane; Cranny, Gillian; Iglesias, Cynthia; Nelson, E Andrea; Hawkins, Kim; Phillips, Angela; Torgerson, David; Mason, Su; Cullum, Nicky

    2006-06-17

    To compare whether differences exist between alternating pressure overlays and alternating pressure mattresses in the development of new pressure ulcers, healing of existing pressure ulcers, and patient acceptability. Pragmatic, open, multicentre, randomised controlled trial. 11 hospitals in six NHS trusts. 1972 people admitted to hospital as acute or elective patients. Participants were randomised to an alternating pressure mattress (n = 982) or an alternating pressure overlay (n = 990). The proportion of participants developing a new pressure ulcer of grade 2 or worse; time to development of new pressure ulcers; proportions of participants developing a new ulcer within 30 days; healing of existing pressure ulcers; and patient acceptability. Intention to treat analysis found no difference in the proportions of participants developing a new pressure ulcer of grade 2 or worse (10.7% overlay patients, 10.3% mattress patients; difference 0.4%, 95% confidence interval--2.3% to 3.1%, P = 0.75). More overlay patients requested change owing to dissatisfaction (23.3%) than mattress patients (18.9%, P = 0.02). No difference was found between alternating pressure mattresses and alternating pressure overlays in the proportion of people who develop a pressure ulcer. ISRCTN 78646179.

  4. Parallel molecular dynamics simulations of pressure-induced structural transformations in cadmium selenide nanocrystals

    Science.gov (United States)

    Lee, Nicholas Jabari Ouma

    Parallel molecular dynamics (MD) simulations are performed to investigate pressure-induced solid-to-solid structural phase transformations in cadmium selenide (CdSe) nanorods. The effects of the size and shape of nanorods on different aspects of structural phase transformations are studied. Simulations are based on interatomic potentials validated extensively by experiments. Simulations range from 105 to 106 atoms. These simulations are enabled by highly scalable algorithms executed on massively parallel Beowulf computing architectures. Pressure-induced structural transformations are studied using a hydrostatic pressure medium simulated by atoms interacting via Lennard-Jones potential. Four single-crystal CdSe nanorods, each 44A in diameter but varying in length, in the range between 44A and 600A, are studied independently in two sets of simulations. The first simulation is the downstroke simulation, where each rod is embedded in the pressure medium and subjected to increasing pressure during which it undergoes a forward transformation from a 4-fold coordinated wurtzite (WZ) crystal structure to a 6-fold coordinated rocksalt (RS) crystal structure. In the second so-called upstroke simulation, the pressure on the rods is decreased and a reverse transformation from 6-fold RS to a 4-fold coordinated phase is observed. The transformation pressure in the forward transformation depends on the nanorod size, with longer rods transforming at lower pressures close to the bulk transformation pressure. Spatially-resolved structural analyses, including pair-distributions, atomic-coordinations and bond-angle distributions, indicate nucleation begins at the surface of nanorods and spreads inward. The transformation results in a single RS domain, in agreement with experiments. The microscopic mechanism for transformation is observed to be the same as for bulk CdSe. A nanorod size dependency is also found in reverse structural transformations, with longer nanorods transforming more

  5. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    Science.gov (United States)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  6. Non-gyrotropic pressure anisotropy induced by velocity shear.

    Science.gov (United States)

    Tenerani, A.; Del Sarto, D.; Pegoraro, F.; Califano, F.

    2015-12-01

    We discuss how, in a collisionless magnetized plasma, a sheared velocity field may lead to the anisotropization of an initial Maxwellian state. By including the full pressure tensor dynamics in a fluid plasma model, we show, analytically and numerically, that a sheared velocity field makes an initial isotropic state anisotropic and non-gyrotropic [1], i.e., makes the plasma pressure tensor anisotropic also in the plane perpendicular to the magnetic field. The propagation of transverse magneto-elastic waves in the anisotropic plasma affects the process of formation of a non-gyrotropic pressure and can lead to its spatial filamentation. This plasma dynamics implies in particular that isotropic MHD equilibria cease to be equilibria in presence of a stationary sheared flow. Similarly, in the case of turbulence, where small-scale spatial inhomogeneities are naturally developed during the direct cascade, we may expect that isotropic turbulent states are not likely to exist whenever a full pressure tensor evolution is accounted for. These results may be relevant to understanding the agyrotropic pressure configurations which are well documented in solar wind measurements and possibly correlated to plasma flows (see e.g. Refs.[2,3]), and which have also been measured in Vlasov simulations of Alfvenic turbulence [4]. [1] D. Del Sarto, F. Pegoraro, F. Califano, "Pressure anisotropy and small spatial scales induced by a velocity shear", http://arxiv.org/abs/1507.04895 [2] H.F. Astudillo, E. Marsch, S. Livi, H. Rosenbauer, "TAUS measurements of non-gyrotropic distribution functions of solar wind alpha particles", AIP Conf. Proc. 328, 289 (1996). [3] A. Posner, M.W. Liemhon, T.H. Zurbuchen, "Upstream magnetospheric ion flux tube within a magnetic cloud: Wind/STICS", Geophys. Res. Lett. 30, (2003). [4] S. Servidio, F. Valentini, F. Califano, P. Veltri, "Local kinetic effects in Two-Dimensional Plasma Turbulence", Phys. Rev. Lett. 108, 045001 (2012).

  7. Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens.

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; White, Thomas W; Delamere, Nicholas A; Mathias, Richard T

    2015-11-03

    In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Bezafibrate Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis

    Directory of Open Access Journals (Sweden)

    Si-Chi Xu

    2017-01-01

    Full Text Available Background. Peroxisome proliferator-activated receptor-α (PPAR-α is closely associated with the development of cardiac hypertrophy. Previous studies have indicated that bezafibrate (BZA, a PPAR-α agonist, could attenuate insulin resistance and obesity. This study was designed to determine whether BZA could protect against pressure overload-induced cardiac hypertrophy. Methods. Mice were orally given BZA (100 mg/kg for 7 weeks beginning 1 week after aortic banding (AB surgery. Cardiac hypertrophy was assessed based on echocardiographic, histological, and molecular aspects. Moreover, neonatal rat ventricular cardiomyocytes (NRVMs were used to investigate the effects of BZA on the cardiomyocyte hypertrophic response in vitro. Results. Our study demonstrated that BZA could alleviate cardiac hypertrophy and fibrosis in mice subjected to AB surgery. BZA treatment also reduced the phosphorylation of protein kinase B (AKT/glycogen synthase kinase-3β (GSK3β and mitogen-activated protein kinases (MAPKs. BZA suppressed phenylephrine- (PE- induced hypertrophy of cardiomyocyte in vitro. The protective effects of BZA were abolished by the treatment of the PPAR-α antagonist in vitro. Conclusions. BZA could attenuate pressure overload-induced cardiac hypertrophy and fibrosis.

  9. Pressure exerted by a vesicle on a surface

    International Nuclear Information System (INIS)

    Owczarek, A L; Prellberg, T

    2014-01-01

    Several recent works have considered the pressure exerted on a wall by a model polymer. We extend this consideration to vesicles attached to a wall, and hence include osmotic pressure. We do this by considering a two-dimensional directed model, namely that of area-weighted Dyck paths. Not surprisingly, the pressure exerted by the vesicle on the wall depends on the osmotic pressure inside, especially its sign. Here, we discuss the scaling of this pressure in the different regimes, paying particular attention to the crossover between positive and negative osmotic pressure. In our directed model, there exists an underlying Airy function scaling form, from which we extract the dependence of the bulk pressure on small osmotic pressures. (paper)

  10. Indirect measurement of near-surface velocity and pressure fields based on measurement of moving free surface profiles

    International Nuclear Information System (INIS)

    Sibamoto, Yasuteru; Nakamura, Hideo

    2005-01-01

    A non-intrusive technique for measurement of the velocity and pressure fields adjacent to a moving fluid surface is developed. The technique is based on the measurement of fluid surface profile. The velocity and pressure fields are derived with use of the boundary element method (BEM) by seeking for an incompressible flow field that satisfies the kinematic boundary condition imposed by the time-dependent fluid surface profile. The proposed technique is tested by deriving the velocity and pressure fields inversely from the fluid surface profiles obtained by a forward BEM calculation of fluid surface response to externally-imposed pressure. The inverse calculation results show good agreement with the imposed pressure distribution in the forward calculation. (author)

  11. Pressure-induced elastic anomaly in a polyamorphous metallic glass

    Science.gov (United States)

    Zeng, Qiaoshi; Zeng, Zhidan; Lou, Hongbo; Kono, Yoshio; Zhang, Bo; Kenney-Benson, Curtis; Park, Changyong; Mao, Wendy L.

    2017-05-01

    The pressure-induced transitions discovered in metallic glasses (MGs) have attracted considerable research interest offering an exciting opportunity to study polyamorphism in densely packed systems. Despite the large body of work on these systems, the elastic properties of the MGs during polyamorphic transitions remain unclear. Here, using an in situ high-pressure ultrasonic sound velocity technique integrated with x-ray radiography and x-ray diffraction in a Paris-Edinburgh cell, we accurately determined both the compressional and shear wave velocities of a polyamorphous Ce68Al10Cu20Co2 MG up to 5.8 GPa. We observed elastic anomalies of a MG with minima (at ˜1.5 GPa) in the sound velocities, bulk modulus, and Poisson's ratio during its polyamorphic transition. This behavior was discussed in comparison to the elastic anomalies of silica glass and crystalline Ce.

  12. Polyamorphism in Yb-based metallic glass induced by pressure

    Science.gov (United States)

    Li, Liangliang; Luo, Qiang; Li, Renfeng; Zhao, Haiyan; Chapman, Karena W.; Chupas, Peter J.; Wang, Luhong; Liu, Haozhe

    2017-04-01

    The Yb62.5Zn15Mg17.5Cu5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. This discovery in Yb-based metallic glass, combined with the previous reports on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses.

  13. Laboratory measurement of the interface pressures applied by active therapy support surfaces: a consensus document.

    Science.gov (United States)

    2010-02-01

    A key element in pressure ulcer prevention and management is the selection of appropriate pressure redistributing (PR) patient support surfaces for use while seated and in bed. However little explicit guidance exists allowing standardised quantitative comparison of different PR surfaces based upon their ability to redistribute pressure from anatomical landmarks such as the heels and sacrum. In 2008 a working group was established in Europe through the US National Pressure Ulcer Advisory Panel (NPUAP) support surface standardisation initiative (S3I) and under the aegis of the European Pressure Ulcer Advisory Panel with the specific remit of developing test methods for the evaluation of active therapy support surfaces (alternating pressure air mattresses). This report describes a consensus development process to agree test methods appropriate to compare active therapy surfaces based upon their ability to redistribute pressure from the sacrum and the heels. Copyright 2009 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  14. In vivo near-infrared spectral detection of pressure-induced changes in breast tissue

    Science.gov (United States)

    Jiang, Shudong; Pogue, Brian W.; Paulsen, Keith D.; Kogel, Christine; Poplack, Steven P.

    2003-07-01

    A diffuse near-infrared tomography system was used to measure dynamic changes in the absolute optical properties of the human breast that were induced through pressure applied to the tissue surface. Results from five subjects show that absorption and scattering coefficients changed measurably when pressure was increased and that these relative changes correlated with the subjects' body-mass index, indicating that the effect depends on tissue composition. Fitting the absolute absorption and scattering coefficients at six wavelengths to the molar absorption spectra of the three predominant chromophores revealed that both the average total hemoglobin and oxygen saturation increased by 10%, while water concentration decreased by more than 12%. These changes indicate that the pressure-induced variation is likely due to water displacement and vascular volume increase in the region being imaged, for mild application of pressure to the breast. These results suggest that the pressure applied during optical measurements of tissue may alter the tissue physiology, and care should be taken to factor this effect into the design of optical medical instrumentation. In addition, the technique provides a unique approach to measuring tissue elastic changes in vivo in the female breast and may offer a new method for dynamic contrast imaging based on elasto-optical measurements.

  15. Surface diagnostics of evaporating droplets of nanosphere suspension: Fano interference and surface pressure.

    Science.gov (United States)

    Kolwas, Maciej; Kolwas, Krystyna; Derkachov, Gennadiy; Jakubczyk, Daniel

    2015-03-14

    The evaporation of a single, levitating microdroplet of glycols containing SiO2 nanospheres, both of similar refraction indices, was studied by observing changes in the interference pattern and intensities of polarized and depolarized scattered laser light. The evolution of the effective radius of the droplet has been found on the basis of Mie scattering theory supplemented by the "electrical weighting" measurement of droplet mass evolution. During formation of a layer of nanospheres on the droplet surface, the asymmetric Fano profile was observed which was found to be due to the destructive and constructive interference of overlapping processes: (i) the scattering on single nanospheres emerging on the droplet surface and (ii) the scattering on ensembles of closely spaced (comparing to the light wavelength) nanospheres of an evolving surface film. Therefore we report the first observation of the Fano interference in the time domain rather than in the spectral domain. The optical surface diagnostics was complemented with the thermodynamics-like analysis in terms of the effective droplet surface pressure isotherm and with numerical simulations illustrating evaporation driven changes in the distribution of nanospheres. The reported study can serve as the basis for a wide range of novel diagnostic methods for studying configuration changes in complex systems of nano- and microparticles evolving at the sub-wavelength scale.

  16. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  17. High-pressure coolant effect on the surface integrity of machining titanium alloy Ti-6Al-4V: a review

    Science.gov (United States)

    Liu, Wentao; Liu, Zhanqiang

    2018-03-01

    Machinability improvement of titanium alloy Ti-6Al-4V is a challenging work in academic and industrial applications owing to its low thermal conductivity, low elasticity modulus and high chemical affinity at high temperatures. Surface integrity of titanium alloys Ti-6Al-4V is prominent in estimating the quality of machined components. The surface topography (surface defects and surface roughness) and the residual stress induced by machining Ti-6Al-4V occupy pivotal roles for the sustainability of Ti-6Al-4V components. High-pressure coolant (HPC) is a potential choice in meeting the requirements for the manufacture and application of Ti-6Al-4V. This paper reviews the progress towards the improvements of Ti-6Al4V surface integrity under HPC. Various researches of surface integrity characteristics have been reported. In particularly, surface roughness, surface defects, residual stress as well as work hardening are investigated in order to evaluate the machined surface qualities. Several coolant parameters (including coolant type, coolant pressure and the injection position) deserve investigating to provide the guidance for a satisfied machined surface. The review also provides a clear roadmap for applications of HPC in machining Ti-6Al4V. Experimental studies and analysis are reviewed to better understand the surface integrity under HPC machining process. A distinct discussion has been presented regarding the limitations and highlights of the prospective for machining Ti-6Al4V under HPC.

  18. Pressure-Induced Electronic Transition in Black Phosphorus

    Science.gov (United States)

    Xiang, Z. J.; Ye, G. J.; Shang, C.; Lei, B.; Wang, N. Z.; Yang, K. S.; Liu, D. Y.; Meng, F. B.; Luo, X. G.; Zou, L. J.; Sun, Z.; Zhang, Y.; Chen, X. H.

    2015-10-01

    In a semimetal, both electrons and holes contribute to the density of states at the Fermi level. The small band overlaps and multiband effects engender novel electronic properties. We show that a moderate hydrostatic pressure effectively suppresses the band gap in the elemental semiconductor black phosphorus. An electronic topological transition takes place at approximately 1.2 GPa, above which black phosphorus evolves into a semimetal state that is characterized by a colossal positive magnetoresistance and a nonlinear field dependence of Hall resistivity. The Shubnikov-de Haas oscillations detected in magnetic field reveal the complex Fermi surface topology of the semimetallic phase. In particular, we find a nontrivial Berry phase in one Fermi surface that emerges in the semimetal state, as evidence of a Dirac-like dispersion. The observed semimetallic behavior greatly enriches the material property of black phosphorus and sets the stage for the exploration of novel electronic states in this material.

  19. Preventing pressure ulcers--Are pressure-redistributing support surfaces effective? A Cochrane systematic review and meta-analysis.

    Science.gov (United States)

    McInnes, Elizabeth; Jammali-Blasi, Asmara; Bell-Syer, Sally; Dumville, Jo; Cullum, Nicky

    2012-03-01

    To undertake a systematic review of the effectiveness of pressure redistributing support surfaces in the prevention of pressure ulcers. Systematic review and meta-analysis. Cochrane Wound Group Specialised Register, The Cochrane Central Register of Controlled Trials, Ovid MEDLINE, Ovid EMBASE and EBSCO CINAHL. The reference sections of included trials were searched for further trials. Randomised controlled trials and quasi-randomised trials, published or unpublished, which assessed the effects of support surfaces in preventing pressure ulcers (of any grade), in any patient group, in any setting compared to any other support surface, were sought. Two reviewers extracted and summarised details of eligible trials using a standardised form and assessed the methodological quality of each trial using the Cochrane risk of bias tool. Fifty-three eligible trials were identified with a total of 16,285 study participants. Overall the risk of bias in the included trials was high. Pooled analysis showed that: (i) foam alternatives to the standard hospital foam mattress reduce the incidence of pressure ulcers in people at risk (RR 0.40, 95% CI 0.21-0.74) and Australian standard medical sheepskins prevent pressure ulcers compared to standard care (RR 0.48, 95% CI 0.31-0.74). Pressure-redistributing overlays on the operating table compared to standard care reduce postoperative pressure ulcer incidence (RR 0.53, 95% CI 0.33-0.85). While there is good evidence that higher specification foam mattresses, sheepskins, and that some overlays in the operative setting are effective in preventing pressure ulcers, there is insufficient evidence to draw conclusions on the value of seat cushions, limb protectors and various constant low pressure devices. The relative merits of higher-tech constant low pressure and alternating pressure for prevention are unclear. More robust trials are required to address these research gaps. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Energy Technology Data Exchange (ETDEWEB)

    Abuzairi, Tomy [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424 (Indonesia); Okada, Mitsuru [Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Nagatsu, Masaaki, E-mail: nagatsu.masaaki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2016-12-30

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10{sup 17} m{sup −3}. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  1. Role of crushing-induced fragmentation in the consolidation of quartz ceramic and glass powders during high-pressure torsion

    Science.gov (United States)

    Greenberg, B. A.; Ivanov, M. A.; Pilyugin, V. P.; Patselov, A. M.; Tolmachev, T. P.

    2017-10-01

    The consolidation of a quartz powders in crystalline (ceramics) and amorphous (glass) states is detected during high-pressure torsion in Bridgman anvils. The consolidation is shown to depend on preceding crushing-induced fragmentation. The role of the surfaces that appear during crushing and cracking is discussed. The dissipative channels that compete with fracture are determined.

  2. Pressure cycling induced modification of a cemented carbide

    International Nuclear Information System (INIS)

    Beste, U.; Engqvist, H.; Jacobson, S.

    2001-01-01

    The wear of cemented carbide rock drill buttons is due to a complex mixture of mechanisms. One important of such mechanism is the surface fatigue that occurs due to the percussive conditions of rock drilling. To isolate the effects of this mechanism, a mechanical pressure cycling test has been performed on a cemented carbide with 11 % Co and 2 μm WC grain size. The test was ended after 60000 pressure cycles. No signs of fatigue crack nucleation were found. The changes in hardness, fracture toughness, erosion resistance, magnetical coercivity and thermal shock resistance were measured. The microstructure of the sample was investigated with x-ray diffraction, plus scanning and transmission electron microscopy. The fracture toughness decreased 14 % due to the pressure cycling while the hardness did not change. In addition, the thermal shock resistance and the erosion resistance decreased. The magnetical coercivity increased 90 % indicating significant phase transformations or high defect density in the Co binder phase. The TEM revealed no deformation of the WC phase, but important alterations of the Co phase. The Co phase was transformed from fcc into a new unidentified phase, characterized by atomic inter planar distance present in fcc and hcp plus an unfamiliar distance of 2.35 Aa. This phase is suggested to be due to a more complex stacking sequence of the close-packed planes than in hcp or fcc. (author)

  3. Investigation of the spatial variability and possible origins of wind-induced air pressure fluctuations responsible for pressure pumping

    Science.gov (United States)

    Mohr, Manuel; Laemmel, Thomas; Maier, Martin; Zeeman, Matthias; Longdoz, Bernard; Schindler, Dirk

    2017-04-01

    The exchange of greenhouse gases between the soil and the atmosphere is highly relevant for the climate of the Earth. Recent research suggests that wind-induced air pressure fluctuations can alter the soil gas transport and therefore soil gas efflux significantly. Using a newly developed method, we measured soil gas transport in situ in a well aerated forest soil. Results from these measurements showed that the commonly used soil gas diffusion coefficient is enhanced up to 30% during periods of strong wind-induced air pressure fluctuations. The air pressure fluctuations above the forest floor are only induced at high above-canopy wind speeds (> 5 m s-1) and lie in the frequency range 0.01-0.1 Hz. Moreover, the amplitudes of air pressure fluctuations in this frequency range show a clear quadratic dependence on mean above-canopy wind speed. However, the origin of these wind-induced pressure fluctuations is still unclear. Airflow measurements and high-precision air pressure measurements were conducted at three different vegetation-covered sites (conifer forest, deciduous forest, grassland) to investigate the spatial variability of dominant air pressure fluctuations, their origin and vegetation-dependent characteristics. At the conifer forest site, a vertical profile of air pressure fluctuations was measured and an array consisting of five pressure sensors were installed at the forest floor. At the grassland site, the air pressure measurements were compared with wind observations made by ground-based LIDAR and spatial temperature observations from a fibre-optic sensing network (ScaleX Campaign 2016). Preliminary results show that at all sites the amplitudes of relevant air pressure fluctuations increase with increasing wind speed. Data from the array measurements reveal that there are no time lags between the air pressure signals of different heights, but a time lag existed between the air pressure signals of the sensors distributed laterally on the forest floor

  4. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Derek Robert [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    are present on the Pt(100) hex reconstructed phase, but not the (100)-(1x1) surface. The increase in ethylene pressure caused the adsorbate interactions to dominate the crystal morphology and imposed a surface layer structure that matched the ethylidyne binding geometry. The STM results also showed that the surface was reversibly deformed during imaging due to increases in Pt mobility at high pressure. The size dependence on the activity and surface chemistry of Rh nanoparticles was studied using AP-XPS. The activity was found to increase with particle size. The XPS spectra show that in reaction conditions the particle surface has an oxide layer which is chemically distinct from the surface structure formed by heating in oxygen alone. This surface oxide which is stabilized in the catalytically active CO oxidation conditions was found to be more prevalent on the smaller nanoparticles. The reaction-induced surface segregation behavior of bimetallic noble metal nanoparticles was observed with APXPS. Monodisperse 15 nm RhPd and PdPt nanoparticles were synthesized with well controlled Rh/Pd and Pd/Pt compositions. In-situ XPS studies showed that at 300 C in the presence of an oxidizing environment (100 mTorr NO or O2) the surface concentration of the more easily oxidized element (Rh in RhPd and Pd in PdPt) was increased. Switching the gas environment to more reducing conditions (100 mTorr NO and 100 mTorr CO) caused the surface enrichment of the element with the lowest surface energy in its metallic state. Using in-situ characterization, the redox chemistry and the surface composition of bimetallic nanoparticle samples were monitored in reactive conditions. The particle surfaces were shown to reversibly restructure in response to the gas environment at high temperature. The oxidation behavior of the Pt(110) surface was studied using surface sensitive in-situ characterization by APXPS and STM. In the presence of 500 mTorr O2 and temperatures between 25

  5. Perception of surface pressure applied to the hand.

    Science.gov (United States)

    Johansson, L; Kjellberg, A; Kilbom, A; Hägg, G M

    1999-10-01

    The study aimed to determine the relationship between the physical magnitude and the subjective perception of applied pressure, and to determine discomfort and pain thresholds. Free modulus magnitude estimation of the subjective pressure level was made on three points: on the finger, the palm and the thenar area. The pressure was judged to be higher at the thenar point than at the finger and palm points. The slopes of the linear functions (log magnitude estimates as a function of log pressure) were 0.66, 0.78 and 0.76 for the finger, palm and thenar points respectively. The discomfort threshold was 38% of the pain pressure threshold at the finger point, 40% at the palm and 22% at the thenar point. The results are probably of importance in the performance of hand-intensive work, in particular in the design of hand tools.

  6. Radiation induced diffusion as a method to protect surface

    International Nuclear Information System (INIS)

    Baumvol, I.J.R.

    1980-01-01

    Radiation induced diffusion forms a coating adeherent and without interface on the surface of metalic substrates. This coating improves the behaviour of metal to corrosion and abrasion. The effect of radiation induced diffusion of tin and calcium on pure iron surface is described and analyzed in this work. (author) [pt

  7. High Hydrostatic Pressure (HHP-Induced Structural Modification of Patatin and Its Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Rizwan Elahi

    2017-03-01

    Full Text Available Patatin represents a group of homologous primary storage proteins (with molecular weights ranging from 40 kDa to 45 kDa found in Solanum tuberosum L. This group comprises 40% of the total soluble proteins in potato tubers. Here, patatin (40 kDa was extracted from potato fruit juice using ammonium sulfate precipitation (ASP and exposed to high hydrostatic pressure (HHP treatment (250, 350, 450, and 550 MPa. We investigated the effect of HHP treatment on the structure, composition, heat profile, and antioxidant potential, observing prominent changes in HHP-induced patatin secondary structure as compared with native patatin (NP. Additionally, significant (p < 0.05 increases in β-sheet content along with decreases in α-helix content were observed following HHP treatment. Thermal changes observed by differential scanning calorimetry (DSC also showed a similar trend following HHP treatment; however, the enthalpy of patatin was also negatively affected by pressurization, and free sulfhydryl content and surface hydrophobicity significantly increased with pressurization up to 450 MPa, although both interactions progressively decreased at 550 MPa. The observed physicochemical changes suggested conformational modifications in patatin induced by HHP treatment. Moreover, our results indicated marked enhancement of antioxidant potential, as well as iron chelation activities, in HHP-treated patatin as compared with NP. These results suggested that HHP treatment offers an effective and green process for inducing structural modifications and improving patatin functionality.

  8. Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows

    Science.gov (United States)

    Manikantan, Harishankar; Squires, Todd M.

    2017-02-01

    The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.

  9. Acoustic propagation operators for pressure waves on an arbitrarily curved surface in a homogeneous medium

    Science.gov (United States)

    Sun, Yimin; Verschuur, Eric; van Borselen, Roald

    2018-03-01

    The Rayleigh integral solution of the acoustic Helmholtz equation in a homogeneous medium can only be applied when the integral surface is a planar surface, while in reality almost all surfaces where pressure waves are measured exhibit some curvature. In this paper we derive a theoretically rigorous way of building propagation operators for pressure waves on an arbitrarily curved surface. Our theory is still based upon the Rayleigh integral, but it resorts to matrix inversion to overcome the limitations faced by the Rayleigh integral. Three examples are used to demonstrate the correctness of our theory - propagation of pressure waves acquired on an arbitrarily curved surface to a planar surface, on an arbitrarily curved surface to another arbitrarily curved surface, and on a spherical cap to a planar surface, and results agree well with the analytical solutions. The generalization of our method for particle velocities and the calculation cost of our method are also discussed.

  10. Prevention and management of pressure ulcers: support surfaces.

    Science.gov (United States)

    Moore, Zena; Stephen Haynes, Jackie; Callaghan, Rosie

    Pressure ulcers are a common and debilitating problem in health care, impacting negatively on health-related quality of life and compounding challenges in achieving patient safety targets. Pressure ulcer prevention is a multidisciplinary team effort, involving a myriad of interventions, such as nutrition, skin care and repositioning. This article discusses the factors influencing pressure ulcer development, and then elaborates on the principles of prevention. This is followed by a focused discussion on the use of redistribution devices and the importance of the cover of such equipment in contributing to achieving good standards in prevention.

  11. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Rosinski, M.; Krouský, Eduard; Kucharik, M.; Liska, R.; Ullschmied, Jiří

    2015-01-01

    Roč. 22, č. 3 (2015), s. 1-11, č. článku 032709. ISSN 1070-664X R&D Projects: GA MŠk(CZ) LD14089; GA MŠk LM2010014 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * ultra-high-pressure shocks * laser-induced cavity pressure acceleration Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.207, year: 2015

  12. Pressure loss reduction in hydrogen pipelines by surface restructuring

    Energy Technology Data Exchange (ETDEWEB)

    Peet, Y.; Sagaut, P. [Insitut Jean Le Rond d' Alembert, UMR CNRS 7190, Universite Pierre et Marie Curie - Paris 6, 4 place Jussieu - case 162, F-75252 Paris Cedex 5 (France); Charron, Y. [IFP- Institut Francais du Petrole, Rueil Malmaison Cedex, 92852 (France)

    2009-11-15

    This paper concerns the reduction of pressure losses during pipeline hydrogen transportation, as the cost of hydrogen compression is a significant obstacle for efficient hydrogen pumping on a large-scale basis. The use of organized micro-structures on pipeline walls is proposed to obtain lower values of pressure losses with respect to smooth walls. Three-dimensional micro-structures of a sinusoidal shape are investigated as potentially more efficient counterparts to conventional two-dimensional structures (riblets) developed in aerospace industry. Aerodynamic performance of three-dimensional structures is investigated computationally in terms of both skin friction and pressure drag, two constituents of the total drag. Three-dimensional structures are shown to provide larger total drag reduction than two-dimensional structures for some range of geometrical parameters (14.5% versus 11%). Parametric dependence of both pressure and skin friction drag on structure geometry is analyzed, and an optimum configuration maximizing the total drag reduction is proposed. (author)

  13. Correlation of surface pressure and hue of planarizable push–pull chromophores at the air/water interface

    Directory of Open Access Journals (Sweden)

    Frederik Neuhaus

    2017-06-01

    Full Text Available It is currently not possible to directly measure the lateral pressure of a biomembrane. Mechanoresponsive fluorescent probes are an elegant solution to this problem but it requires first the establishment of a direct correlation between the membrane surface pressure and the induced color change of the probe. Here, we analyze planarizable dithienothiophene push–pull probes in a monolayer at the air/water interface using fluorescence microscopy, grazing-incidence angle X-ray diffraction, and infrared reflection–absorption spectroscopy. An increase of the lateral membrane pressure leads to a well-packed layer of the ‘flipper’ mechanophores and a clear change in hue above 18 mN/m. The fluorescent probes had no influence on the measured isotherm of the natural phospholipid DPPC suggesting that the flippers probe the lateral membrane pressure without physically changing it. This makes the flipper probes a truly useful addition to the membrane probe toolbox.

  14. Monitoring inner ear pressure changes in normal guinea pigs induced by the Meniett (R) 20

    NARCIS (Netherlands)

    Feijen, RA; Segenhout, JM; Wit, HP; Albers, FWJ

    2000-01-01

    The inner ear fluid pressure of guinea pigs was measured during a series of complex escalating middle ear pressure changes induced by the Meniett(R)20 (Pascal Medical, Sweden), a possible therapeutic pressure generator to be used by patients with Meniere's disease. Middle ear pressure changes were

  15. Support surfaces for pressure ulcer prevention: A network meta-analysis.

    Science.gov (United States)

    Shi, Chunhu; Dumville, Jo C; Cullum, Nicky

    2018-01-01

    Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or

  16. Modeling laser-induced periodic surface structures: an electromagnetic approach

    NARCIS (Netherlands)

    Skolski, J.Z.P.

    2014-01-01

    This thesis presents and discusses laser-induced periodic surface structures (LIPSSs), as well as a model explaining their formation. LIPSSs are regular wavy surface structures with dimensions usually in the submicrometer range, which can develop on the surface of many materials exposed to laser

  17. Surface-initiated phase transition in solid hydrogen under the high-pressure compression

    Science.gov (United States)

    Lei, Haile; Lin, Wei; Wang, Kai; Li, Xibo

    2018-03-01

    The large-scale molecular dynamics simulations have been performed to understand the microscopic mechanism governing the phase transition of solid hydrogen under the high-pressure compression. These results demonstrate that the face-centered-cubic-to-hexagonal close-packed phase transition is initiated first at the surfaces at a much lower pressure than in the volume and then extends gradually from the surface to volume in the solid hydrogen. The infrared spectra from the surface are revealed to exhibit a different pressure-dependent feature from those of the volume during the high-pressure compression. It is thus deduced that the weakening intramolecular H-H bonds are always accompanied by hardening surface phonons through strengthening the intermolecular H2-H2 coupling at the surfaces with respect to the counterparts in the volume at high pressures. This is just opposite to the conventional atomic crystals, in which the surface phonons are softening. The high-pressure compression has further been predicted to force the atoms or molecules to spray out of surface to degrade the pressure. These results provide a glimpse of structural properties of solid hydrogen at the early stage during the high-pressure compression.

  18. Carbon induced magnetism of SnO2 surfaces

    International Nuclear Information System (INIS)

    Lu, Ying-Bo; Ling, Z.C.; Cong, Wei-Yan; Zhang, Peng; Dai, Ying

    2015-01-01

    The magnetism induced by Carbon (C) in SnO 2 surfaces are investigated by first principle calculations. The results show that C substitution at the outmost surface oxygen sites can induce magnetism in (110), (001) and (101) surfaces of SnO 2 . (110) surface is the most stable surface and the magnetism in which is stronger than that in other two surfaces, indicating that it is (110), but not other surfaces provides the main contribution to the surface magnetism of C-doped SnO 2 (SnO 2 :C). The magnetic moments predominantly come from C-2p orbitals, which arise from the crystal field transformation induced by the loss of coordinated atoms and the destroy of the local symmetry, and is enhanced by the local lattice distortion due to the Jahn–Teller effect. In all three surface slabs, the magnetism decays when C dopants are deeper from the outmost surfaces and disappears eventually. This work provides more rational understanding to the observed magnetism in SnO 2 :C materials than ever. - Highlights: • We investigate surface magnetism in (110), (001) and (101) surfaces of SnO 2 :C. • (110) surface provides the main contribution to the surface magnetism of SnO 2 :C. • Magnetism predominantly come from C-2p orbitals and crystal field transformation

  19. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    Science.gov (United States)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  20. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  1. Unsteady Surface Pressure Measurements on a Pitching Airfoil

    Science.gov (United States)

    1985-03-12

    through 8 Dynamics 7512B amplifiers. The pitching motions of the airfoil were generated by 6°jN\\! 920O/_ a PDP 11/03 computer controlling a Control...acquisition system. The pressure data were used to calculate pressure 2 coefficients which were in turn integrated to compute lift coefficients. Both...Airfoils," AIAA J., Vol. 13, No. 1, 17. Gormont, R.E., "A Mathenatical Model pp 71-79, Jan 1975. of Unsteady Aerodynamics and Radial 4. McAlister, K.W

  2. Understanding the Hydromechanical Behavior of a Fault Zone From Transient Surface Tilt and Fluid Pressure Observations at Hourly Time Scales

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédérick; Lavenant, Nicolas; Davy, Philippe

    2017-12-01

    Flow through reservoirs such as fractured media is powered by head gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of surface deformation and subsurface pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Among all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically induced deformations over a broad range of time scales with a remarkable precision. Here we investigate the information content of transient surface tilt generated by the pressurization a kilometer scale subvertical fault zone. Our approach involves the combination of field data and results of a fully coupled poromechanical model. The signature of pressure changes in the fault zone due to pumping cycles is clearly recognizable in field tilt data and we aim to explain the peculiar features that appear in (1) tilt time series alone from a set of four instruments and 2) the ratio of tilt over pressure. We evidence that the shape of tilt measurements on both sides of a fault zone is sensitive to its diffusivity and its elastic modulus. The ratio of tilt over pressure predominantly encompasses information about the system's dynamic behavior and extent of the fault zone and allows separating contributions of flow in the different compartments. Hence, tiltmeters are well suited to characterize hydromechanical processes associated with fault zone hydrogeology at short time scales, where spaceborne surveying methods fail to recognize any deformation signal.

  3. Pressure-redistribution surfaces for prevention of surgery-related pressure ulcers: a meta-analysis .

    Science.gov (United States)

    Huang, Hai-Yan; Chen, Hong-Lin; Xu, Xu-Juan

    2013-04-01

    Pressure-redistribution surfaces are generally recommended to prevent pressure ulcers (PUs) in high-risk patients, but their use in surgery-related PU prevention remains controversial. A meta-analysis was conducted to assess the relative preventive impact of pressure-redistribution surfaces versus standard hospital mattresses (usually a hospital-issue, foam-based mattress) on the incidence of surgery-related PUs. Systematic literature searches were performed using the terms pressure ulcer, operation, surgery, mattress, foam, polymer, pad, overlay, surface, and interface. Country, race, language, and publication year of articles was not restricted; randomized or quasi-randomized controlled trials were eligible for analysis. Odds ratio (OR) with 95% confidence intervals (CIs) for surgery-related PU incidence in patients using support surfaces versus standard mattress were calculated by random-effects model. Of the 316 studies identified, 10 involving a total of 1,895 patients were eligible for inclusion in the meta-analysis. Seven studies were randomized, controlled and three were quasi-randomized controlled trials. Patients who were provided a support surface had a significantly decreased incidence of surgery-related PUs (OR 0.31 [95% CI 0.17-0.59]) compared to patients using a standard mattress. Subgroup analysis showed pressure-redistribution surfaces used intra-operatively did not decrease the incidence of surgery-related PUs (OR 0.59, [95% CI 0.34-1.01]), but PU incidence decreased with postoperative (OR 0.07 [95% CI 0.01-0.49]) as well as with intra-operative and postoperative use (OR 0.20 [95% CI 0.06-0.73]). Funnel plot diagrams suggest a minimal risk of bias. Sensitivity analysis did not materially change the result of the main metaanalysis. Postoperative use of pressure-redistribution surfaces can effectively decrease the incidence of surgery-related PUs, but evidence to substantiate intra-operative use is insufficient. Patients at high risk for surgery

  4. Surface Pressure Measurements of Atmospheric Tides Using Smartphones

    Science.gov (United States)

    Price, Colin; Maor, Ron

    2017-04-01

    Similar to the oceans, the atmosphere also has tides that are measured in variations of atmospheric pressure. However, unlike the gravitational tides in the oceans, the atmospheric tides are caused primarily in the troposphere and stratosphere when the atmosphere is periodically heated by the sun, due to tropospheric absorption by water vapor and stratospheric absorption by ozone. Due to the forcing being always on the day side of the globe, the tides migrate around the globe following the sun (migrating tides) with a dominant periodicity of 12 hours (and less so at 24 hours). In recent years smartphones have been equipped with sensitive, cheap and reliable pressure sensors that can easily detect these atmospheric tides. By 2020 it is expected that there will be more than 6 billion smartphones globally, each measuring continuously atmospheric pressure at 1Hz temporal resolution. In this presentation we will present some control experiments we have performed with smartphones to monitor atmospheric tides, while also using random pressure data from more than 50,000 daily users via the WeatherSignal application. We conclude that smartphones are a useful tool for studying atmospheric tides on local and global scales.

  5. Modelling surface pressure fluctuation on medium-rise buildings

    NARCIS (Netherlands)

    Snæbjörnsson, J.T.; Geurts, C.P.W.

    2006-01-01

    This paper describes the results of two experiments into the fluctuating characteristics of windinduced pressures on buildings in a built-up environment. The experiments have been carried out independently in Iceland and The Netherlands and can be considered to represent two separate cases of

  6. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    Science.gov (United States)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  7. Further insights into blood pressure induced premature beats: Transient depolarizations are associated with fast myocardial deformation upon pressure decline.

    Science.gov (United States)

    Haemers, Peter; Sutherland, George; Cikes, Maja; Jakus, Nina; Holemans, Patricia; Sipido, Karin R; Willems, Rik; Claus, Piet

    2015-11-01

    An acute increase in blood pressure is associated with the occurrence of premature ventricular complexes (PVCs). We aimed to study the timing of these PVCs with respect to afterload-induced changes in myocardial deformation in a controlled, preclinically relevant, novel closed-chest pig model. An acute left ventricular (LV) afterload challenge was induced by partial balloon inflation in the descending aorta, lasting 5-10 heartbeats (8 pigs; 396 inflations). Balloon inflation enhanced the reflected wave (augmentation index 30% ± 8% vs 59% ± 6%; P blood pressure by 35% ± 4%. This challenge resulted in a more abrupt LV pressure decline, which was delayed beyond ventricular repolarization (rate of pressure decline 0.16 ± 0.01 mm Hg/s vs 0.27 ± 0.04 mm Hg/ms; P pressure 1 ± 12 ms vs 36 ± 9 ms; P = .008), during which the velocity of myocardial shortening at the basal septum increased abruptly (ie, postsystolic shortening) (peak strain rate -0.6 ± 0.5 s(-1) vs -2.5 ± 0.8 s(-1); P pressure decline, with increased postsystolic shortening, and not at peak pressure, that PVCs occur (22% of inflations). These PVCs preferentially occurred at the basal and apical segments. In the same regions, monophasic action potentials demonstrated the appearance of delayed afterdepolarization-like transient depolarizations as origin of PVCs. An acute blood pressure increase results in a more abrupt LV pressure decline, which is delayed after ventricular repolarization. This has a profound effect on myocardial mechanics with enhanced postsystolic shortening. Coincidence with induced transient depolarizations and PVCs provides support for the mechanoelectrical origin of pressure-induced premature beats. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  8. Microstructural and hardness gradients in Cu processed by high pressure surface rolling

    DEFF Research Database (Denmark)

    He, Q. Y.; Zhu, X.-M.; Mei, Q. S.

    2017-01-01

    The surface of an annealed Cu plate was processed by a high pressure surface rolling (HPSR) process. It is found that the deformed surface layer in the Cu plate after HPSR can be as thick as 2 mm and is characterized by a gradient microstructure, with grain sizes varying from the nanoscale...

  9. Io meteorology - How atmospheric pressure is controlled locally by volcanos and surface frosts

    Science.gov (United States)

    Ingersoll, Andrew P.

    1989-01-01

    The present modification of the Ingersoll et al. (1985) hydrodynamic model of the SO2 gas sublimation-driven flow from the day to the night side of Io includes the effects of nonuniform surface properties noted in observational studies. Calculations are conducted for atmospheric pressures, horizontal winds, sublimation rates, and condensation rates for such surface conditions as patchy and continuous frost cover, volcanic venting, surface temperature discontinuities, subsurface cold trapping, and the propagation of insolation into the frost. While pressure is found to follow local vapor pressure away from the plumes, it becomes higher inside them.

  10. The selection pressures induced non-smooth infectious disease model and bifurcation analysis

    International Nuclear Information System (INIS)

    Qin, Wenjie; Tang, Sanyi

    2014-01-01

    Highlights: • A non-smooth infectious disease model to describe selection pressure is developed. • The effect of selection pressure on infectious disease transmission is addressed. • The key factors which are related to the threshold value are determined. • The stabilities and bifurcations of model have been revealed in more detail. • Strategies for the prevention of emerging infectious disease are proposed. - Abstract: Mathematical models can assist in the design strategies to control emerging infectious disease. This paper deduces a non-smooth infectious disease model induced by selection pressures. Analysis of this model reveals rich dynamics including local, global stability of equilibria and local sliding bifurcations. Model solutions ultimately stabilize at either one real equilibrium or the pseudo-equilibrium on the switching surface of the present model, depending on the threshold value determined by some related parameters. Our main results show that reducing the threshold value to a appropriate level could contribute to the efficacy on prevention and treatment of emerging infectious disease, which indicates that the selection pressures can be beneficial to prevent the emerging infectious disease under medical resource limitation

  11. Surface treatment for inducing nanotopography on titanium

    International Nuclear Information System (INIS)

    Oliveira, S.V. de; Ribeiro, A.A.; Oliveira, M.V. de

    2014-01-01

    The titanium implant surface plays extremely important role in the biological response. Therefore, the objective of this research was to study the titanium surface nanotopography modified by chemical treatment, in order to improve its bioactivity. Commercially pure titanium samples, ASTM F67 grade 2, were immersed in H 2 SO 4 /H 2 O 2 solution for 2 or 4 hours. The samples were characterized by Scanning Electron Microscopy, Scanning Confocal Optical Microscopy, X-ray Photoelectron Spectroscopy and Diffuse Reflectance Infrared Fourier Transform Spectroscopy. The results revealed nanostructured surfaces with TiO 2 layer, average roughness of 0.86 ± 0.06 μm and 1.07 ± 0.05 μm for 2 or 4 hours, respectively and nanopores with 18 ± 6.82 nm average diameter. (author)

  12. Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dmowski, W.; Gierlotka, S.; Wang, Z.; Yokoyama, Y.; Palosz, B.; Egami, T.

    2017-07-26

    Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids, but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.

  13. [Analysis of statutory health insurance data concerning utilization of support surfaces for pressure ulcers].

    Science.gov (United States)

    Hoffmann, Falk; Scharnetzky, Elke; Deitermann, Bernhilde; Glaeske, Gerd

    2006-10-01

    Support surfaces are commonly used to prevent and treat pressure ulcers. Up to now little is known about their application in Germany. We conducted a cross-sectional study using claims data of the Gmuender ErsatzKasse (GEK) for the year 2004 to analyse the utilization of support surfaces for pressure ulcers in primary care. Based on age- and sex-specific treatment prevalences for individuals with at least one prescription, prevalence ratios (PR) were calculated. A total of 1999 subjects with a mean age of 63.4 years (SD: 20.7) received support surfaces for pressure ulcers. With respect to the numbers of prescriptions (n = 2421) alternating pressure mattresses (31.6%), air-filled rings (13.5%) and various seat cushions (13.0%) were used frequently, whereas foam mattresses only came to 4.7%. The treatment prevalence increases continuously with age with no sex-specific differences. Using the 50-59 year olds as a reference, men aged 90+ (PR: 43.94; 95% CI: 31.46-61.37) as well as women aged 90+ (PR: 40.61; 95% CI: 30.77-53.60) received approximately 40-times more often support surfaces for pressure ulcers. Support surfaces for pressure ulcers are commonly used in the elderly. Our study suggests that their application does not correspond to the best available evidence. Prevention and treatment of pressure ulcers as well as the selection of support surfaces should be seen as an interdisciplinary task.

  14. Experimental and numerical investigations of stable crack growth of axial surface flaws in a pressure vessel

    International Nuclear Information System (INIS)

    Brocks, W.; Krafka, H.; Mueller, W.; Wobst, K.

    1988-01-01

    In connection with the problem of the transferability of parameters obtained experimentally with the help of fracture-mechanical test specimens and used for the initiation and the stable propagation of cracks in cases of pulsating stress and of the elasto-plastic behaviour of construction components, a pressure vessel with an inside diameter of 1500 mm, a cylindrical length of 3000 mm and a wall thickness of 40 mm was hydraulically loaded with the help of internal pressure in the first stage, to attain an average crack growth of 1 mm at Δ a ≅, the loading taking place at about 21deg C. This stress-free annealed vessel exhibited an axial semielliptical vibration-induced surface crack about 181 mm long and 20 mm deep, as a test defect, in a welded circular blank made of the steel 20MnMoNi 55. The fractographic analysis of the first stable crack revealed that its growth rate of Δa was highest in the area of transition from the weak to the strong bend of the crack front (55deg m /σ v (average principal stress: σ m , Mises' reference stress: σ v v). A comparison of the experimental with the numerical results from the first stable crack shows that the local stable crack growth Δa cannot be calculated solely with reference to J, because Δa appears to depend essentially on the quotient σ m /σ v . (orig./MM) [de

  15. Pressure induced by Na entrapped in molten UO2

    International Nuclear Information System (INIS)

    Clerici, G.; Schins, H.

    1978-01-01

    In a first approach the constraint supplied by the solidifying UO 2 -shell is evaluated. The mass of the injected sodium is assumed to have a spherical form. Its dimensions are negligible in respect to the extension of the UO 2 . Using the Von Karman Pohlhausen method for solving the Fourier equation, the temperature distributions in UO 2 and sodium are determined. The physical properties are taken to be independent of temperature. Once these temperature profiles are obtained, the pressure induced into the heated sodium by the hypothesised mechanical constraint of the rigid shell and the tangential stress produced in this shell, can be calculated. In a second approach then, a liquid-liquid contact between UO 2 and Na is considered. The interface temperature, however, is calculated by means of an adjusted initial temperature of UO 2 . Following an idea of Cho and Wright, to the actual temperature of UO 2 is added a value obtained by dividing its latent heat of fusion by its heat capacity. The thermal expansion of the sodium drop is initially delayed by the inertial constraint of the surrounding heavy UO 2 . The expansion of the liquid drop of sodium continues up to the moment where the average temperature of the entrapped sodium becomes equal to the homogeneous nucleation temperature. At this instant vaporisation starts and the process goes on described by the formation of a two-phase mixture for the sodium. In this way the interaction of an entrapped sodium drop is calculated as a superheat limited explosion

  16. Radiation-induced embrittlement in light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.

    1987-01-01

    In operating light water reactor (LWR) commercial power plants, neutron radiation induces embrittlement of the pressure vessel (PV) and its support structures. As a consequence, LWR-PV integrity is a primary safety consideration. LWR-PV integry is a significant economic consideration because the PV and its support structures are nonreplaceable power plant components and embrittlement of these components can therefore limit the effective operating lifetime of the plant. In addition to plant life considerations, LWR-PV embrittlement creates significant cycle-to-cycle impact through the restriction of normal heat-up and cool-down reactor operations. Recent LWR-PV benchmark experiments are analyzed. On this bases, it is established that an exponential representation accurately describes the spatial dependence of neutron exposure in LWR-PV. Implications produced by simple exponental behavior are explained and trend-curve models for the predictions of PV embrittelment are derived. These derivations provide for a clearer understanding and assessment of the assumptions underlying these trend-curve models. It is demonstrated that LWR-PV embrittlement possesses significant material dependence. (orig.)

  17. Sound pressure around dipole source above porous surface.

    Science.gov (United States)

    Prezelj, Jurij; Steblaj, Peter; Cudina, Mirko

    2014-06-01

    A technique for in situ measurements of acoustic properties of a fibrous porous material is proposed in this paper. Proposed technique exploits a directivity pattern of a dipole source in its very near field. Theoretical analysis for the proposed technique is based on the Rayleigh integral with a complex reflection included. Results are compared with results of FEM analysis and show that flow resistivity of a porous material placed in the very near field of the dipole source has significant influence on the sound pressure at its ring. Results provide an excellent starting point for the design of the sensor for sound absorption.

  18. Pressure RElieving Support SUrfaces: a Randomised Evaluation 2 (PRESSURE 2): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Brown, Sarah; Smith, Isabelle L; Brown, Julia M; Hulme, Claire; McGinnis, Elizabeth; Stubbs, Nikki; Nelson, E Andrea; Muir, Delia; Rutherford, Claudia; Walker, Kay; Henderson, Valerie; Wilson, Lyn; Gilberts, Rachael; Collier, Howard; Fernandez, Catherine; Hartley, Suzanne; Bhogal, Moninder; Coleman, Susanne; Nixon, Jane E

    2016-12-20

    Pressure ulcers represent a major burden to patients, carers and the healthcare system, affecting approximately 1 in 17 hospital and 1 in 20 community patients. They impact greatly on an individual's functional status and health-related quality of life. The mainstay of pressure ulcer prevention practice is the provision of pressure redistribution support surfaces and patient repositioning. The aim of the PRESSURE 2 study is to compare the two main mattress types utilised within the NHS: high-specification foam and alternating pressure mattresses, in the prevention of pressure ulcers. PRESSURE 2 is a multicentre, open-label, randomised, double triangular, group sequential, parallel group trial. A maximum of 2954 'high-risk' patients with evidence of acute illness will be randomised on a 1:1 basis to receive either a high-specification foam mattress or alternating-pressure mattress in conjunction with an electric profiling bed frame. The primary objective of the trial is to compare mattresses in terms of the time to developing a new Category 2 or above pressure ulcer by 30 days post end of treatment phase. Secondary endpoints include time to developing new Category 1 and 3 or above pressure ulcers, time to healing of pre-existing Category 2 pressure ulcers, health-related quality of life, cost-effectiveness, incidence of mattress change and safety. Validation objectives are to determine the responsiveness of the Pressure Ulcer Quality of Life-Prevention instrument and the feasibility of having a blinded endpoint assessment using photography. The trial will have a maximum of three planned analyses with unequally spaced reviews at event-driven coherent cut-points. The futility boundaries are constructed as non-binding to allow a decision for stopping early to be overruled by the Data Monitoring and Ethics Committee. The double triangular, group sequential design of the PRESSURE 2 trial will provide an efficient design through the possibility of early stopping for

  19. High Sensitivity Semiconductor Sensor Skins for Multi-Axis Surface Pressure Characterization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase II SBIR program would fabricate high sensitivity semiconductor nanomembrane 'sensor skins' capable of multi-axis surface pressure characterization on...

  20. High Sensitivity Semiconductor Sensor Skins for Multi-Axis Surface Pressure Characterization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR program would fabricate high sensitivity semiconductor nanomembrane 'sensor skins' capable of multi-axis surface pressure characterization on...

  1. Fluorination of poly(dimethylsiloxane) surfaces by low pressure CF4 plasma : physicochemical and antifouling properties

    NARCIS (Netherlands)

    Cordeiro, A.L.; Nitschke, M.; Janke, A.; Helbig, R.; D'Souza, F.; Donnelly, G.T.; Willemsen, P.R.; Werner, C.

    2009-01-01

    Fluorinated surface groups were introduced into poly(dimethylsiloxane) (PDMS) coatings by plasma treatment using a low pressure radio frequency discharge operated with tetrafluoromethane. Substrates were placed in a remote position downstream the discharge. Discharge power and treatment time were

  2. Surface-induced charge at the Ge (001) surface and its interaction with self-interstitials

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji; Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama-ken 719-1197 (Japan); Vanhellemont, Jan [Department of Solid State Sciences, Ghent University, B-9000 Gent (Belgium)

    2014-02-21

    The Ge (001) surface with dimer structure, is negatively charged while into the bulk, positive charges are observed even deeper than the fifteenth layer from the surface. This is different from the Si case. This charge distribution can lead to the repulsion of positively charged self-interstitials by the positively charged near surface layer in an implantation or irradiation process. Self-interstitial reflection by Ge surfaces had been proposed to explain the results of diffusion experiments during irradiation whereby positively charged self-interstitials are generated by collisions of highly energetic particles with Ge atoms. We investigated different Ge (001) surface comparing an as-cleaved surface with dangling bonds to a surface with dimer structure, and to a surface terminated by hydrogen atoms. The effect of these different surface terminations on the surface-induced charges in the near surface bulk were calculated by ab initio techniques.

  3. Hydrophilic surface modification of coronary stent using an atmospheric pressure plasma jet for endothelialization.

    Science.gov (United States)

    Shim, Jae Won; Bae, In-Ho; Park, Dae Sung; Lee, So-Youn; Jang, Eun-Jae; Lim, Kyung-Seob; Park, Jun-Kyu; Kim, Ju Han; Jeong, Myung Ho

    2018-03-01

    The first two authors contributed equally to this study. Bioactivity and cell adhesion properties are major factors for fabricating medical devices such as coronary stents. The aim of this study was to evaluate the advantages of atmospheric-pressure plasma jet in enhancing the biocompatibility and endothelial cell-favorites. The experimental objects were divided into before and after atmospheric-pressure plasma jet treatment with the ratio of nitrogen:argon = 3:1, which is similar to air. The treated surfaces were basically characterized by means of a contact angle analyzer for the activation property on their surfaces. The effect of atmospheric-pressure plasma jet on cellular response was examined by endothelial cell adhesion and XTT analysis. It was difficult to detect any changeable morphology after atmospheric-pressure plasma jet treatment on the surface. The roughness was increased after atmospheric-pressure plasma jet treatment compared to nonatmospheric-pressure plasma jet treatment (86.781 and 7.964 nm, respectively). The X-ray photoelectron spectroscopy results showed that the surface concentration of the C-O groups increased slightly from 6% to 8% after plasma activation. The contact angle dramatically decreased in the atmospheric-pressure plasma jet treated group (22.6 ± 15.26°) compared to the nonatmospheric-pressure plasma jet treated group (72.4 ± 15.26°) ( n = 10, p atmospheric-pressure plasma jet on endothelial cell migration and proliferation was 85.2% ± 12.01% and 34.2% ± 2.68%, respectively, at 7 days, compared to the nonatmospheric-pressure plasma jet treated group (58.2% ± 11.44% in migration, n = 10, p atmospheric-pressure plasma jet method. Moreover, the atmospheric-pressure plasma jet might affect re-endothelialization after stenting.

  4. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the nearsurface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the ...

  5. Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure

    Science.gov (United States)

    Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.

    2017-07-01

    Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.

  6. Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-23

    Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.

  7. Vertical structure of pore pressure under surface gravity waves on a steep, megatidal, mixed sand-gravel-cobble beach

    Science.gov (United States)

    Guest, Tristan B.; Hay, Alex E.

    2017-01-01

    The vertical structure of surface gravity wave-induced pore pressure is investigated within the intertidal zone of a natural, steeply sloping, megatidal, mixed sand-gravel-cobble beach. Results from a coherent vertical array of buried pore pressure sensors are presented in terms of signal phase lag and attenuation as functions of oscillatory forcing frequency and burial depth. Comparison of the observations with the predictions of a theoretical poro-elastic bed response model indicates that the large observed phase lags and attenuation are attributable to interstitial trapped air. In addition to the dependence on entrapped air volume, the pore pressure phase and attenuation are shown to be sensitive to the hydraulic conductivity of the sediment, to the changing mean water depth during the tidal cycle, and to the redistribution/rearrangement of beach face material by energetic wave action during storm events. The latter result indicates that the effects on pore pressure of sediment column disturbance during instrument burial can persist for days to weeks, depending upon wave forcing conditions. Taken together, these results raise serious questions as to the practicality of using pore pressure measurements to estimate the kinematic properties of surface gravity waves on steep, mixed sand-gravel beaches.

  8. Mesoscale Surface Pressure and Temperature Features Associated with Bow Echoes

    Science.gov (United States)

    2010-01-01

    contain several bowing segments. These multiple segments could occur at the same time and be located within the same bow, such as the serial derecho ...Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329–342. Fovell, R. G., 2002: Upstream influence of numerically...Se- vere Local Storms, Hyannis, MA, Amer. Meteor. Soc., 4.6. Johns, R. H., and W. D. Hirt, 1987: Derechos : Widespread con- vectively induced

  9. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    A new aerodynamic modelling approach is proposed for the longitudinal static characteristics of a simple delta wing. It captures the static variation of normal force and pitching moment characteristics throughout the angle of attack range. The pressure model is based on parametrizing the surface pressure distribution on a ...

  10. Pyridinium salt investigations under high pressure: pressure-induced phase transitions in ferroelectric pyridinium perrhenate

    International Nuclear Information System (INIS)

    Czarnecki, P; Beskrovny, A I; Bobrowicz-Sarga, L; Lewicki, S; Wasicki, J

    2005-01-01

    The properties of pyridinium perrhenate have been studied by three methods: dielectric spectroscopy, neutron powder diffractometry and NMR spectrometry under high pressure. It has been shown that under high pressure the temperatures of the two phase transitions in the crystal are shifted towards lower ones. Moreover, the results have shown the occurrence of a new high pressure phase with a triple point corresponding to the pressure of 100 MPa and the temperature of 240 K

  11. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    Science.gov (United States)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  12. Atomic hydrogen emission induced by TEA CO(2) laser bombardment on solid samples at low pressure and its analytical application.

    Science.gov (United States)

    Idris, Nasrullah; Terai, Sumito; Lie, Tjung Jie; Kurniawan, Hendrik; Kobayashi, Takao; Maruyama, Tadashi; Kagawa, Kiichiro

    2005-01-01

    Hydrogen emission has been studied in laser plasmas by focusing a TEA CO(2) laser (10.6 microm, 500 mJ, 200 ns) on various types of samples, such as glass, quartz, black plastic sheet, and oil on copper plate sub-target. It was found that H(alpha) emission with a narrow spectral width occurs with high efficiency when the laser plasma is produced in the low-pressure region. On the contrary, the conventional well-known laser-induced breakdown spectroscopy (LIBS), which is usually carried out at atmospheric air pressure, cannot be applied to the analysis of hydrogen as an impurity. By combining low-pressure laser-induced plasma spectroscopy with laser surface cleaning, a preliminary quantitative analysis was made on zircaloy pipe samples intentionally doped with hydrogen. As a result, a good linear relationship was obtained between H(alpha) emission intensity and its concentration.

  13. Support surfaces in the prevention of pressure ulcers in surgical patients: An integrative review.

    Science.gov (United States)

    de Oliveira, Karoline Faria; Nascimento, Kleiton Gonçalves; Nicolussi, Adriana Cristina; Chavaglia, Suzel Regina Ribeiro; de Araújo, Cleudmar Amaral; Barbosa, Maria Helena

    2017-08-01

    To assess the scientific evidence about the types of support surfaces used in intraoperative surgical practice in the prevention of pressure ulcers due to surgical positioning. This is an integrative literature review. The electronic databases Cochrane, PubMed, Web of Science, Scopus, Lilacs, and CINAHL were used. The descriptors surgical patients, support surfaces, perioperative care, patient positioning, and pressure ulcer were used in the search strategy. Articles that addressed the use of support surfaces intraoperatively, published between 1990 and 2016, were selected. The PRISMA guidelines were used to structure the review. Of 18 evaluated studies, most were in English, followed by Portuguese and Spanish; most were performed by nurses. The most commonly cited support surfaces were viscoelastic polymer, micropulse mattresses, gel based mattresses, and foam devices. There are gaps in knowledge regarding the most efficient support surfaces and the specifications of the products used to prevent pressure ulcers due to surgical positioning. © 2017 John Wiley & Sons Australia, Ltd.

  14. Photometric measurement of pressure-induced blanching of livor mortis as an aid to estimating time of death. Application of a new system for quantifying pressure-induced blanching in lividity.

    Science.gov (United States)

    Kaatsch, H J; Schmidtke, E; Nietsch, W

    1994-01-01

    A newly developed digital system employs photometric measurement of pressure-induced blanching of livor mortis to estimate time of death. The conventional method of applying pressure with thumb or forceps relies largely on subjective interpretation. Our system improves on this method by photometric quantification of color changes produced by defined magnitudes of pressure. We tested the new system by applying increasing levels of pressure to lividity in 50 cadavers with known time of death. Characteristics courses for pressure-induced changes were found for the brightness component of livor mortis, revealing distinct differences between the respective postmortem intervals. The surface areas under these curves were then calculated and distributed into 10-hour postmortem time categories. Variance analysis of these surface values revealed clear differences between the time categories, especially in the medians. Distinct differences between the various postmortem time categories were also evident for the chroma component of livor mortis. The new system offers a further method--in addition to body temperature, rigor mortis, and the electrical responsiveness of skeletal muscles--for estimating time of death, especially after long postmortem intervals.

  15. Estimation of methane emission flux at landfill surface using laser methane detector: Influence of gauge pressure.

    Science.gov (United States)

    Park, Jin-Kyu; Kang, Jong-Yun; Lee, Nam-Hoon

    2016-08-01

    The aim of this study was to investigate the possibility of measuring methane emission fluxes, using surface methane concentration and gauge pressure, by analyzing the influence of gauge pressure on the methane emission flux and the surface methane concentration, as well as the correlation between the methane emission flux and surface methane concentrations. The surface methane concentration was measured using a laser methane detector. Our results show a positive linear relationship between the surface methane concentration and the methane emission flux. Furthermore, the methane emission flux showed a positive linear relationship with the gauge pressure; this implies that when the surface methane concentration and the surface gauge pressure are measured simultaneously, the methane emission flux can be calculated using Darcy's law. A decrease in the vertical permeability was observed when the gauge pressure was increased, because reducing the vertical permeability may lead to a reduced landfill gas emission to the atmosphere, and landfill gas would be accumulated inside the landfill. Finally, this method is simple and can allow for a greater number of measurements during a relatively shorter period. Thus, it provides a better representation of the significant space and time variations in methane emission fluxes. © The Author(s) 2016.

  16. Molecular simulation of the pressure-induced crystallographic phase transition of p-terphenyl.

    Science.gov (United States)

    Schatschneider, Bohdan; Chronister, Eric L

    2011-01-27

    The pressure- and temperature-induced polymorphic crystal phase transitions of p-terphenyl (PTP) have been modeled using a modified PCFF interaction force field. Modifications of the interaction potential were necessary to simultaneously model both the temperature-induced phase transition at ambient pressure and the pressure-induced phase transition at low temperature. Although the high-temperature and high-pressure phases are both characterized by flattening of the PTP molecule, the mechanisms of the temperature- and pressure-induced phase transitions are different. At high temperature thermal energy exceeds the torsional barrier, resulting in a bimodal phenyl ring twist angle distribution that averages to zero. In contrast, compression of PTP at high pressure results in a static planar structure. At high pressure the compression of the unit cell is also characterized by large compression of the a lattice parameter and weak compression of c, but some expansion of the b lattice parameter. The expansion of the b lattice parameter is likely associated with pressure-induced soft mode behavior of some lattice vibrations as well as soft mode behavior of pseudolocal phonons associated with impurities in PTP. The crystallographic angles α, β, and γ also indicate a triclinic crystal phase above the critical phase transition pressure of P(c) ~ 0.5 GPa at low temperature, suggesting a distinct phase separate from the monoclinic high-pressure phase at high temperature.

  17. Pressure-mediated reduction of ultrasonically induced cell lysis

    International Nuclear Information System (INIS)

    Ciaravino, V.E.; Miller, M.W.; Carstensen, E.L.

    1981-01-01

    Chinese hamster V-79 cells, exposed in polystyrene tubes for 5 min to 1-MHz continuous-wave ultrasound, were lysed more by a 10 than a 5 W/cm 2 intensity. Higher atmospheric pressure was needed to eliminate lysis with the former relative to the latter intensity, but lysis by 10 W/cm 2 was completely climinated with 2 atm of hydrostatic pressure. The reduction in lysis per unit increase in atmospheric pressure was comparable for both ultrasound intensities

  18. Formation Mechanism of Surface Crack in Low Pressure Casting of A360 Alloy

    Science.gov (United States)

    Liu, Shan-Guang; Cao, Fu-Yang; Ying, Tao; Zhao, Xin-Yi; Liu, Jing-Shun; Shen, Hong-Xian; Guo, Shu; Sun, Jian-Fei

    2017-12-01

    A surface crack defect is normally found in low pressure castings of Al alloy with a sudden contraction structure. To further understand the formation mechanism of the defect, the mold filling process is simulated by a two-phase flow model. The experimental results indicate that the main reason for the defect deformation is the mismatching between the height of liquid surface in the mold and pressure in the crucible. In the case of filling, a sudden contraction structure with an area ratio smaller than 0.5 is obtained, and the velocity of the liquid front increases dramatically with the influence of inertia. Meanwhile, the pressurizing speed in the crucible remains unchanged, resulting in the pressure not being able to support the height of the liquid level. Then the liquid metal flows back to the crucible and forms a relatively thin layer solidification shell on the mold wall. With the increasing pressure in the crucible, the liquid level rises again, engulfing the shell and leading to a surface crack. As the filling velocity is characterized by the damping oscillations, surface cracks will form at different heights. The results shed light on designing a suitable pressurizing speed for the low pressure casting process.

  19. Ultrafast dynamics in CeTe{sub 3} near the pressure-induced charge-density-wave transition

    Energy Technology Data Exchange (ETDEWEB)

    Tauch, Jonas; Obergfell, Manuel [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Schaefer, Hanjo [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Demsar, Jure [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Institute of Physics, Johannes Gutenberg-University Mainz (Germany); Giraldo, Paula; Fisher, Ian R. [Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University (United States); Pashkin, Alexej [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2015-07-01

    Femtosecond pump-probe spectroscopy is an efficient tool for studying ultrafast dynamics in strongly correlated electronic systems, in particular, compounds with a charge-density-wave (CDW) order. Application of external pressure often leads to a suppression of a CDW state due to an impairment of the Fermi surface nesting. We combine time-resolved optical spectroscopy and diamond anvil cell technology to study electron and lattice dynamics in tri-telluride compound CeTe{sub 3}. Around pressures of 4 GPa we observe a gradual vanishing of the relaxation process related to the recombination of the photoexcited quasiparticles. The coherent oscillations of the phonon modes coupled to the CDW order parameter demonstrate even more dramatic suppression with increasing pressure. These observations clearly indicate a transition into the metallic state of CeTe{sub 3} induced by the external pressure.

  20. Pressure-induced reinforcement of interfacial superconductivity in a Bi2Te3/Fe1+yTe heterostructure

    Science.gov (United States)

    Shen, Junying; Heuckeroth, Claire; Deng, Yuhang; He, Qinglin; Liu, Hong Chao; Liang, Jing; Wang, Jiannong; Sou, Iam Keong; Schilling, James S.; Lortz, Rolf

    2017-12-01

    We investigate the hydrostatic pressure dependence of interfacial superconductivity occurring at the atomically sharp interface between two non-superconducting materials: the topological insulator (TI) Bi2Te3 and the parent compound Fe1+yTe of the chalcogenide iron-based superconductors. Under pressure, a significant increase in the superconducting transition temperature Tc is observed. We interpret our data in the context of a pressure-induced enhanced coupling of the Fe1+yTe interfacial layer with the Bi2Te3 surface state, which modifies the electronic properties of the interface layer in a way that superconductivity emerges and becomes further enhanced under pressure. This demonstrates the important role of the TI in the interfacial superconducting mechanism.

  1. Support surfaces for pressure ulcer prevention: A network meta-analysis.

    Directory of Open Access Journals (Sweden)

    Chunhu Shi

    Full Text Available Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult.To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness.We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence.We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR 0.42, 95% confidence intervals (CI 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively. The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence.This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was

  2. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.

    Science.gov (United States)

    Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff

    2012-04-03

    A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.

  3. Attenuation of wave-induced groundwater pressure in shallow water. Part 2. Theory

    Directory of Open Access Journals (Sweden)

    Stanisław R. Massel

    2005-09-01

    Full Text Available In this Part 2 of the paper (Part 1 was published by Massel et al. 2004 an exact close-form solution for the pore-water pressure component and velocity circulation pattern induced by surface waves is developed. This comprehensive theoretical model, based on Biot's theory, takes into account soil deformations, volume change and pore-water flow. The calculations indicate that for the stiffness ratio G/E'w ≥ 100, the vertical distribution of the pore pressure becomes very close to the Moshagen & Tørum (1975 approach, when the soil is rigid and the fluid is incompressible.     The theoretical results of the paper have been compared with the experimental data collected during the laboratory experiment in the Large Wave Channel in Hannover (see Massel et al. 2004 and showed very good agreement. The apparent bulk modulus of pore water was not determined in the experiment but was estimated from the best fit of the experimental pore-water pressure with the theoretical one. In the paper only a horizontal bottom is considered and the case of an undulating bottom will be dealt with in another paper.

  4. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the

  5. Pressure effects on interfacial surface contacts and performance of organic solar cells

    NARCIS (Netherlands)

    Agyei-Tuffour, B.; Doumon, Nutifafa Y.; Rwenyagila, E. R.; Asare, J.; Oyewole, O. K.; Shen, Z.; Petoukhoff, C. E.; Zebaze Kana, M. G.; Ocarroll, D. M.; Soboyejo, W. O.

    2017-01-01

    This paper explores the effects of pressure on the interfacial surface contacts and the performance of organic solar cells. A combination of experimental techniques and analytical/computational models is used to study the evolving surface contacts profiles that occur when compliant, semi-rigid and

  6. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)

  7. Deployment of a Pressure Sensitive Paint System for Measuring Global Surface Pressures on Rotorcraft Blades in Simulated Forward Flight

    Science.gov (United States)

    Watkins, A. Neal; Leighty, Bradley; Lipford, William E.; Wong, Oliver D.; Goodman, Kyle Z.; Crafton, Jim; Forlines, Alan; Goss, Larry P.; Gregory, James W.; Juliano, Thomas J.

    2012-01-01

    This paper will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel at the NASA Langley Research Center. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. Preliminary results show that the PSP agrees both qualitatively and quantitatively with both the expected results as well as with the pressure taps. Several areas of improvement have been indentified and are currently being developed.

  8. Quantitative deuterium analysis of titanium samples in ultraviolet laser-induced low-pressure helium plasma.

    Science.gov (United States)

    Abdulmadjid, Syahrun Nur; Lie, Zener Sukra; Niki, Hideaki; Pardede, Marincan; Hedwig, Rinda; Lie, Tjung Jie; Jobiliong, Eric; Kurniawan, Koo Hendrik; Fukumoto, Ken-Ichi; Kagawa, Kiichiro; Tjia, May On

    2010-04-01

    An experimental study of ultraviolet (UV) laser-induced plasma spectroscopy (LIPS) on Ti samples with low-pressure surrounding He gas has been carried out to demonstrate its applicability to quantitative micro-analysis of deuterium impurities in titanium without the spectral interference from the ubiquitous surface water. This was achieved by adopting the optimal experimental condition ascertained in this study, which is specified by 5 mJ laser energy, 10 Torr helium pressure, and 1-50 mus measurement window, which resulted in consistent D emission enhancement and effective elimination of spectral interference from surface water. As a result, a linear calibration line exhibiting a zero intercept was obtained from Ti samples doped with various D impurity concentrations. An additional measurement also yielded a detection limit of about 40 ppm for D impurity, well below the acceptable threshold of damaging H concentration in Ti and its alloys. Each of these measurements was found to produce a crater size of only 25 mum in diameter, and they may therefore qualify as nondestructive measurements. The result of this study has therefore paved the way for conducting further experiments with hydrogen-doped Ti samples and the technical implementation of quantitative micro-analysis of detrimental hydrogen impurity in Ti metal and its alloys, which is the ultimate goal of this study.

  9. Effects of velocity profile and inclination on dual-jet-induced pressures on a flat plate in a crosswind

    Science.gov (United States)

    Jakubowski, A. L.; Schetz, J. A.; Moore, C. L.; Joag, R.

    1985-01-01

    An experimental study was conducted to determine surface pressure distributions on a flat plate with dual subsonic, circular jets exhausting from the surface into a crossflow. The jets were arranged in both side-by-side and tandem configurations and were injected at 90 deg and 60 deg angles to the plate, with jet-to-crossflow velocity ratio of 2.2 and 4. The major objective of the study was to determine the effect of a nonuniform (vs uniform) jet velocity profile, simulating the exhaust of a turbo-fan engine. Nonuniform jets with a high-velocity outer annulus and a low-velocity core induced stronger negative pressure fields than uniform jets with the same mass flow rate. However, nondimensional lift losses (lift loss/jet thrust lift) due to such nonuniform jets were lower than lift losses due to uniform jets. Changing the injection angle from 90 deg to 60 deg resulted in moderate (for tandem jets) to significant (for side-by-side jets) increases in the induced negative pressures, even though the surface area influenced by the jets tended to reduce as the angle decreased. Jets arranged in the side-by-side configuration led to significant jet-induced lift losses exceeding, in some cases, lift losses reported for single jets.

  10. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.

    2013-12-17

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  11. Pressure-induced structural transition of nonionic micelles

    Indian Academy of Sciences (India)

    increased. On addition of KF, rod-like micelles exist at ambient pressure, which results in rod-like to lamellar structural transition at a much lower pressure in the presence of KF. Micellar structural transitions have been observed to be reversible. Keywords. Micelles; dynamic light scattering, small angle neutron scattering.

  12. High Intracranial Pressure Induced Injury in the Healthy Rat Brain.

    Science.gov (United States)

    Dai, Xingping; Bragina, Olga; Zhang, Tongsheng; Yang, Yirong; Rao, Gutti R; Bragin, Denis E; Statom, Gloria; Nemoto, Edwin M

    2016-08-01

    We recently showed that increased intracranial pressure to 50 mm Hg in the healthy rat brain results in microvascular shunt flow characterized by tissue hypoxia, edema, and increased blood-brain barrier permeability. We now determined whether increased intracranial pressure results in neuronal injury by Fluoro-Jade stain and whether changes in cerebral blood flow and cerebral metabolic rate for oxygen suggest nonnutritive microvascular shunt flow. Intracranial pressure was elevated by a reservoir of artificial cerebrospinal fluid connected to the cisterna magna. Arterial blood gases, cerebral arterial-venous oxygen content difference, and cerebral blood flow by MRI were measured. Fluoro-Jade stain neurons were counted in histologic sections of the right and left dorsal and lateral cortices and hippocampus. University laboratory. Male Sprague Dawley rats. Arterial pressure support if needed by IV dopamine infusion and base deficit corrected by sodium bicarbonate. Fluoro-Jade stain neurons increased 2.5- and 5.5-fold at intracranial pressures of 30 and 50 mm Hg and cerebral perfusion pressures of 57 ± 4 (mean ± SEM) and 47 ± 6 mm Hg, respectively (p intracranial pressure and decreased cerebral metabolic rate for oxygen. High intracranial pressure likely caused neuronal injury because of a transition from normal capillary flow to nonnutritive microvascular shunt flow resulting in tissue hypoxia and edema, and it is manifest by a reduction in the cerebral metabolic rate for oxygen.

  13. Pressure-induced changes in the structural and absorption ...

    Indian Academy of Sciences (India)

    and absorption properties of NADNP under hydrostatic pressure of 0–140 GPa. The atomic positions and the unit cell parameters were allowed to relax to the min- imum energy configuration to investigate the crystal structure at different pressures. Then, we examined the variations in electronic structure under compres-.

  14. Pressure-induced structural transformation in radiation-amorphized zircon.

    Science.gov (United States)

    Trachenko, Kostya; Brazhkin, V V; Tsiok, O B; Dove, Martin T; Salje, E K H

    2007-03-30

    We study the response of a radiation-amorphized material to high pressure. We have used zircon ZrSiO4 amorphized by natural radiation over geologic times, and have measured its volume under high pressure, using the precise strain-gauge technique. On pressure increase, we observe apparent softening of the material, starting from 4 GPa. Using molecular dynamics simulation, we associate this softening with the amorphous-amorphous transformation accompanied by the increase of local coordination numbers. We observe permanent densification of the quenched sample and a nontrivial "pressure window" at high temperature. These features point to a new class of amorphous materials that show a response to pressure which is distinctly different from that of crystals.

  15. Pressure-induced Invar effect in Fe-Ni alloys.

    Science.gov (United States)

    Dubrovinsky, L; Dubrovinskaia, N; Abrikosov, I A; Vennström, M; Westman, F; Carlson, S; van Schilfgaarde, M; Johansson, B

    2001-05-21

    We have measured the pressure-volume (P-V) relations for cubic iron-nickel alloys for three different compositions: Fe 0.64Ni (0.36), Fe 0.55Ni (0.45), and Fe 0.20Ni (0.80). It is observed that for a certain pressure range the bulk modulus does not change or can even decrease to some minimum value, after which it begins to increase under still higher pressure. In our experiment, we observe for the first time a new effect, namely, that the Fe-Ni alloys with high Ni concentrations, which show positive thermal expansion at ambient pressure, become Invar system upon compression over a certain pressure range.

  16. Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures

    DEFF Research Database (Denmark)

    Zambrano, H.A.; Walther, Jens Honore; Jaffe, R.L.

    2014-01-01

    of air in water at different pressures. Using the calibrated force field, we conduct MD simulations to study the interface between a hydrophilic silica substrate and water surrounded by air at different pressures. We find that the static water contact angle is independent of the air pressure imposed......Wepresent a force field forMolecular Dynamics (MD) simulations ofwater and air in contactwith an amorphous silica surface. We calibrate the interactions of each species present in the systemusing dedicated criteria such as the contact angle of a water droplet on a silica surface, and the solubility...... on the system. Our simulations reveal the presence of a nanometer thick layer of gas at the water–silica interface. We believe that this gas layer could promote nucleation and stabilization of surface nanobubbles at amorphous silica surfaces. © 2014 Elsevier B.V. All rights reserved....

  17. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    Science.gov (United States)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  18. Simultaneous and long-lasting hydrophilization of inner and outer wall surfaces of polytetrafluoroethylene tubes by transferring atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Chen, Faze; Song, Jinlong; Huang, Shuai; Xu, Wenji; Sun, Jing; Liu, Xin; Xu, Sihao; Xia, Guangqing; Yang, Dezheng

    2016-01-01

    Plasma hydrophilization is a general method to increase the surface free energy of materials. However, only a few works about plasma modification focus on the hydrophilization of tube inner and outer walls. In this paper, we realize simultaneous and long-lasting plasma hydrophilization on the inner and outer walls of polytetrafluoroethylene (PTFE) tubes by atmospheric pressure plasmas (APPs). Specifically, an Ar atmospheric pressure plasma jet (APPJ) is used to modify the PTFE tube’s outer wall and meanwhile to induce transferred He APP inside the PTFE tube to modify its inner wall surface. The optical emission spectrum (OES) shows that the plasmas contain many chemically active species, which are known as enablers for various applications. Water contact angle (WCA) measurements, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) are used to characterize the plasma hydrophilization. Results demonstrate that the wettability of the tube walls are well improved due to the replacement of the surface fluorine by oxygen and the change of surface roughness. The obtained hydrophilicity decreases slowly during more than 180 d aging, indicating a long-lasting hydrophilization. The results presented here clearly demonstrate the great potential of transferring APPs for surface modification of the tube’s inner and outer walls simultaneously. (paper)

  19. Highly porous micro-roughened structures developed on aluminum surface using the jet of rotating arc discharges at atmospheric pressure

    Science.gov (United States)

    Asadollahi, Siavash; Farzaneh, Masoud; Stafford, Luc

    2018-02-01

    Aluminum 6061 samples were exposed to the jet of an atmospheric pressure rotating arc discharge operated in either nitrogen or air. After multiple passes of treatment with an air-based plasma jet at very short source-to-substrate distances, scanning electron microscopy combined with x-ray photoelectron spectroscopy revealed a highly porous micro-roughened alumina-based structure on the surface of aluminum. Based on optical emission spectroscopy and high-speed optical imaging of the jet interacting with aluminum samples, it was found that the process is mainly driven by the energy transfer from the plasma source to the surface through transient plasma-transferred arcs. The occurrence of multiple arc discharges over very short time scales can induce rapid phase transformations of aluminum with characteristics similar to the ones usually observed during laser ablation of materials with femto- to nanosecond laser pulses or during the formation of cathode spots on the surface of metals.

  20. Unusual neurological syndrome induced by atmospheric pressure change.

    Science.gov (United States)

    Ptak, Judy A; Yazinski, Nancy A; Block, Clay A; Buckey, Jay C

    2013-05-01

    We describe a case of a 46-yr-old female who developed hypertension, tachycardia, dysarthria, and leg weakness provoked by pressure changes associated with flying. Typically during the landing phase of flight, she would feel dizzy and note that she had difficulty with speech and leg weakness. After the flight the leg weakness persisted for several days. The symptoms were mitigated when she took a combined alpha-beta blocker (labetalol) prior to the flight. To determine if these symptoms were related to atmospheric pressure change, she was referred for testing in a hyperbaric chamber. She was exposed to elevated atmospheric pressure (maximum 1.2 ATA) while her heart rate and blood pressure were monitored. Within 1 min she developed tachycardia and hypertension. She also quickly developed slurred speech, left arm and leg weakness, and sensory changes in her left leg. She was returned to sea level pressure and her symptoms gradually improved. A full neurological workup has revealed no explanation for these findings. She has no air collections, cysts, or other anatomic findings that could be sensitive to atmospheric pressure change. The pattern is most consistent with a vascular event stimulated by altitude exposure. This case suggests that atmospheric pressure change can produce neurological symptoms, although the mechanism is unknown.

  1. Pressure-induced Phase Transitions in Defect Pyrochlores

    Directory of Open Access Journals (Sweden)

    Claudio A. Perottoni

    2013-12-01

    Full Text Available In this paper the influence of pressure and temperature on four compounds with defect pyrochlore structure (NH4NbWO6, RbNbWO6, CsNbWO6 and p-WO3 is explored by means of X-ray diffraction, vibrational (Raman and infrared absorption spectroscopy and computer simulations. Several structural transitions were observed, including an unusual insertion reaction with volume increase at high pressures. This latter transition is further explored to reveal the influence on the transition pressure of the nature and ionic radius of the cation residing inside the cages formed by the pyrochlore framework.

  2. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  3. Ion induced optical emission for surface and depth profile analysis

    International Nuclear Information System (INIS)

    White, C.W.

    1977-01-01

    Low-energy ion bombardment of solid surfaces results in the emission of infrared, visible, and ultraviolet radiation produced by inelastic ion-solid collision processes. The emitted optical radiation provides important insight into low-energy particle-solid interactions and provides the basis for an analysis technique which can be used for surface and depth profile analysis with high sensitivity. The different kinds of collision induced optical radiation emitted as a result of low-energy particle-solid collisions are reviewed. Line radiation arising from excited states of sputtered atoms or molecules is shown to provide the basis for surface and depth profile analysis. The spectral characteristics of this type of radiation are discussed and applications of the ion induced optical emission technique are presented. These applications include measurements of ion implant profiles, detection sensitivities for submonolayer quantities of impurities on elemental surfaces, and the detection of elemental impurities on complex organic substrates

  4. Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder

    Science.gov (United States)

    You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.

    2018-01-01

    To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.

  5. Mechanism of Hydrophilicity by Radiation-Induced Surface Activation

    Science.gov (United States)

    Honjo, Yoshio; Furuya, Masahiro; Takamasa, Tomoji; Okamoto, Koji

    When a metal oxide is irradiated by gamma rays, the irradiated surface becomes hydrophilic. This surface phenomenon is called as radiation-induced surface activation (RISA) hydrophilicity. In order to investigate gamma ray-induced and photoinduced hydrophilicity, the contact angles of water droplets on a titanium dioxide surface were measured in terms of irradiation intensity and time for gamma rays of cobalt-60 and for ultraviolet rays. Reciprocals of the contact angles increased in proportion to the irradiation time before the contact angles reached its super-hydrophilic state. The irradiation time dependency is equal to each other qualitatively. In addition, an effect of ambient gas was investigated. In pure argon gas, the contact angle remains the same against the irradiation time. This clearly indicates that certain humidity is required in ambient gas to take place of RISA hydrophilicity. A single crystal titanium dioxide (100) surface was analyzed by X-ray photoelectron spectrometry (XPS). After irradiation with gamma rays, a peak was found in the O1s spectrum, which indicates the adsorption of dissociative water to a surface 5-fold coordinate titanium site, and the formation of a surface hydroxyl group. We conclude that the RISA hydrophilicity is caused by chemisorption of the hydroxyl group on the surface.

  6. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    Science.gov (United States)

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-03-29

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We

  7. Photogenerated carrier-induced reactions on uhv semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Osgood, R.M. Jr.

    1992-05-28

    The objective for this experimental work was to examine the reaction mechanisms, half-collision dynamics, and other optically induced chemical effects, that are operable on a well characterized single-crystal semiconductor surface. Of particular interest were reactions induced by charge transfer from the semiconductor surface including hot carrier and thermalized carrier processes. The primary technique to measure the desorbed fragment translational energies was time-of-flight mass-spectroscopy, used in conjunction with a pulsed tunable laser source. The work was carried out in ultrahigh vacuum, thus other surface spectroscopies such as temperature-programmed desorption, (TPD), (LEED), etc. were used as needed. In the project, the photoreactions of several halogen-containing molecules on GaAs(110) surfaces have been investigated. The studies have made the first observations of several new photochemical processes on uhv prepared surfaces including intermolecular charge transfer; desorption by thermal-carrier-induced reactions (including the measurement of coverage-dependent changes in the translational energies of the desorbed products); interferometric oscillation of photoinduced reactions; and self-quenching of thermal carrier reactions on surfaces.

  8. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  9. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  10. Experimental Study and Numerical Modeling of Wave Induced Pore Pressure Attenuation Inside a Rubble Mound Breakwater

    DEFF Research Database (Denmark)

    Troch, Peter; Rouck, Julien De; Burcharth, Hans Falk

    2003-01-01

    The main objective of this paper is to study the attenuation of the wave induced pore pressures inside the core of a rubble mound breakwater. The knowledge of the distribution and the attenuation of the pore pressures is important for the design of a stable and safe breakwater. The pore pressure...... and have been re-analysed in detail with respect to the attenuation characteristics. The analysis follows the method by Burcharth et al. (1999) and confirms the practical calculation method for the attenuation of the pore pressure in the core given in this reference. The attenuation of pore pressures...

  11. Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.

    2015-01-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.

  12. Surface pressure fluctuations on aircraft flaps and their correlation with far-field noise

    Science.gov (United States)

    Guo, Y. P.; Joshi, M. C.; Bent, P. H.; Yamamoto, K. J.

    2000-07-01

    This paper discusses unsteady surface pressures on aircraft flaps and their correlation with far-field noise. Analyses are made of data from a 4.7% DC-10 aircraft model test, conducted in the 40 × 80 feet wind tunnel at NASA Ames Research Center. Results for various slat/wing/flap configurations and various flow conditions are discussed in detail to reveal major trends in surface pressure fluctuations. Spectral analysis, including cross-correlation/coherence, both among unsteady surface pressures and between far-field noise and near-field fluctuations, is used to reveal the most coherent motions in the near field and identify potential sources of noise related to flap flows. Dependencies of surface pressure fluctuations on mean flow Mach numbers, flap settings and slat angles are discussed. Dominant flow features in flap side edge regions, such as the formation of double-vortex structures, are shown to manifest themselves in the unsteady surface pressures as a series of spectral humps. The spectral humps are shown to correlate well with the radiated noise, indicating the existence of major noise sources in flap side edge regions. Strouhal number scaling is used to collapse the data with satisfactory results. The effects of flap side edge fences on surface pressures are also discussed. It is shown that the application of fences effectively increases the thickness of the flaps so that the double-vortex structures have more time to evolve. As a result, the characteristic timescale of the unsteady sources increases, which in turn leads to a decrease in the dominant frequency of the source process. Based on this, an explanation is proposed for the noise reduction mechanism of flap side edge fences.

  13. Effect of an end plate on surface pressure distributions of two swept wings

    Directory of Open Access Journals (Sweden)

    Mohammad Reza SOLTANI

    2017-10-01

    Full Text Available A series of wind tunnel tests was conducted to examine how an end plate affects the pressure distributions of two wings with leading edge (LE sweep angles of 23° and 40°. All the experiments were carried out at a midchord Reynolds number of 8×105, covering an angle of attack (AOA range from −2° to 14°. Static pressure distribution measurements were acquired over the upper surfaces of the wings along three chordwise rows and one spanwise direction at the wing quarter-chord line. The results of the tests confirm that at a particular AOA, increasing the sweep angle causes a noticeable decrease in the upper-surface suction pressure. Furthermore, as the sweep angle increases, the development of a laminar separation bubble near the LEs of the wings takes place at higher AOAs. On the other hand, spanwise pressure measurements show that increasing the wing sweep angle results in forming a stronger vortex on the quarter-chord line which has lower sensitivity to AOA variation and remains substantially attached to the wing surface for higher AOAs than that can be achieved in the case of a lower sweep angle. In addition, data obtained indicate that installing an end plate further reinforces the spanwise flow over the wing surface, thus affecting the pressure distribution.

  14. Does Pressure Accentuate General Relativistic Gravitational Collapse and Formation of Trapped Surfaces?

    Science.gov (United States)

    Mitra, Abhas

    2013-04-01

    It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.

  15. FINITE ELEMENT MODELS FOR COMPUTING SEISMIC INDUCED SOIL PRESSURES ON DEEPLY EMBEDDED NUCLEAR POWER PLANT STRUCTURES.

    Energy Technology Data Exchange (ETDEWEB)

    XU, J.; COSTANTINO, C.; HOFMAYER, C.

    2006-06-26

    PAPER DISCUSSES COMPUTATIONS OF SEISMIC INDUCED SOIL PRESSURES USING FINITE ELEMENT MODELS FOR DEEPLY EMBEDDED AND OR BURIED STIFF STRUCTURES SUCH AS THOSE APPEARING IN THE CONCEPTUAL DESIGNS OF STRUCTURES FOR ADVANCED REACTORS.

  16. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  17. Effects of radiation pressure on the equipotential surfaces in x-ray binaries

    International Nuclear Information System (INIS)

    Kondo, Y.; McCluskey, G.E. Jr.; Gulden, S.L.

    1976-01-01

    Equipotential surfaces incorporating the effect of radiation pressure were computed for the x-ray binaries Cen X-3, Cyg X-1 = HDE 226868, Vela XR-1 = 3U 0900-40 = HD 77581, and 3U 1700-37 = HD 153919. The topology of the equipotential surfaces is significantly affected by radiation pressure. In particular, the so-called critical Roche (Jacobian) lobes, the traditional figure 8's, do not exist. The effects of these results on modeling x-ray binaries are discussed

  18. High hydrostatic pressure treatment of porcine oocytes induces parthenogenetic activation

    DEFF Research Database (Denmark)

    Lin, Lin; Pribenszky, Csaba; Molnár, Miklós

    2010-01-01

    An innovative technique called high hydrostatic pressure (HHP) treatment has recently been reported to improve the cryosurvival of gametes and embryos in certain mammalian species, including the mouse, pig, and cattle. In the present study the parthenogenetic activation (PA) of pig oocytes caused...... by HHP treatment was investigated in different holding media with or without Ca(2+). The efficiency of activation was tested at different pressure levels and media including T2 (HEPES-buffered TCM-199 containing 2% cattle serum), and mannitol-PVA fusion medium with (MPVA + Ca(2+)) or without Ca(2...

  19. Dynamic modeling method of the bolted joint with uneven distribution of joint surface pressure

    Science.gov (United States)

    Li, Shichao; Gao, Hongli; Liu, Qi; Liu, Bokai

    2018-03-01

    The dynamic characteristics of the bolted joints have a significant influence on the dynamic characteristics of the machine tool. Therefore, establishing a reasonable bolted joint dynamics model is helpful to improve the accuracy of machine tool dynamics model. Because the pressure distribution on the joint surface is uneven under the concentrated force of bolts, a dynamic modeling method based on the uneven pressure distribution of the joint surface is presented in this paper to improve the dynamic modeling accuracy of the machine tool. The analytic formulas between the normal, tangential stiffness per unit area and the surface pressure on the joint surface can be deduced based on the Hertz contact theory, and the pressure distribution on the joint surface can be obtained by the finite element software. Futhermore, the normal and tangential stiffness distribution on the joint surface can be obtained by the analytic formula and the pressure distribution on the joint surface, and assigning it into the finite element model of the joint. Qualitatively compared the theoretical mode shapes and the experimental mode shapes, as well as quantitatively compared the theoretical modal frequencies and the experimental modal frequencies. The comparison results show that the relative error between the first four-order theoretical modal frequencies and the first four-order experimental modal frequencies is 0.2% to 4.2%. Besides, the first four-order theoretical mode shapes and the first four-order experimental mode shapes are similar and one-to-one correspondence. Therefore, the validity of the theoretical model is verified. The dynamic modeling method proposed in this paper can provide a theoretical basis for the accurate dynamic modeling of the bolted joint in machine tools.

  20. Piston slap induced pressure fluctuation in the water coolant passage of an internal combustion engine

    Science.gov (United States)

    Ohta, Kazuhide; Wang, Xiaoyu; Saeki, Atsushi

    2016-02-01

    Liner cavitation is caused by water pressure fluctuation in the water coolant passage (WCP). When the negative pressure falls below the saturated vapor pressure, the impulsive pressure following the implosion of cavitation bubbles causes cavitation erosion of the wet cylinder liner surface. The present work establishes a numerical model for structural-acoustic coupling between the crankcase and the acoustic field in the WCP considering their dynamic characteristics. The coupling effect is evaluated through mutual interaction terms that are calculated from the mode shapes of the acoustic field and of the crankcase vibration on the boundary. Water pressure fluctuations in the WCP under the action of piston slap forces are predicted and the contributions of the uncoupled mode shapes of the crankcase and the acoustic field to the pressure waveform are analyzed. The influence of sound speed variations on the water pressure response is discussed, as well as the pressure on the thrust sides of the four cylinders.

  1. Multi-phase-field method for surface tension induced elasticity

    Science.gov (United States)

    Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah

    2018-01-01

    A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.

  2. Disturbance induced by surface preparation on instrumented indentation test

    International Nuclear Information System (INIS)

    Li, Yugang; Kanouté, Pascale; François, Manuel

    2015-01-01

    Surface preparation, which may induce considerable sample disturbance, plays an important role in instrumented indentation test (IIT). In this study, the sample disturbance (mainly divided into residual stresses and plastic strain) induced by the surface preparation process of instrumented indentation test specimens were investigated with both experimental tests and numerical simulations. Grazing incidence X-ray diffractions (GIXRD) and uniaxial tensile tests were conducted for characterizing the residual stresses and high plastic strain in the top surface layers of a carefully mechanically polished indentation sample, which, in the present work, is made of commercially pure titanium. Instrumented indentation tests and the corresponding finite element simulations were performed as well. For comparison, a reference sample (carefully mechanically polished & electrolytically polished) which represents the raw material was prepared and tested. Results showed that a careful mechanical polishing procedure can effectively reduce the level of residual stresses induced by this process. However, the high plastic strain in the surface region imposed by the polishing process is significant. The induced plastic strain can affect a depth up to 5 µm, which is deeper than the maximum penetration depth h max (3 µm) used for the instrumented indentation tests. In the near surface layer (in the range of depth about 350 nm), the plastic strain levels are fairly high. In the very top layer, the plastic strain was even estimated to reach more than 60%. The simultaneous use of indentation tests and numerical simulations showed that the existence of high plastic strain in the surface region will make the load vs depth (P–h) curve shift upwards, the contact hardness (H) increase and the contact stiffness (S) decrease

  3. Parameters of the center of pressure displacement on the saddle during hippotherapy on different surfaces

    Directory of Open Access Journals (Sweden)

    Fabiana M. Flores

    2015-06-01

    Full Text Available Background: Hippotherapy uses horseback riding movements for therapeutic purposes. In addition to the horse's movement, the choice of equipment and types of floor are also useful in the intervention. The quantification of dynamic parameters that define the interaction of the surface of contact between horse and rider provides insight into how the type of floor surface variations act upon the subject's postural control. Objective: To test whether different types of surfaces promote changes in the amplitude (ACOP and velocity (VCOP of the center of pressure (COP displacement during the rider's contact with the saddle on the horse's back. Method: Twenty two healthy adult male subjects with experience in riding were evaluated. The penetration resistances of asphalt, sand and grass surfaces were measured. The COP data were collected on the three surfaces using a pressure measurement mat. Results: ACOP values were higher in sand, followed by grass and asphalt, with significant differences between sand and asphalt (anteroposterior, p=0.042; mediolateral, p=0.019. The ACOP and VCOP values were higher in the anteroposterior than in the mediolateral direction on all surfaces (ACOP, p=0.001; VCOP, p=0.006. The VCOP did not differ between the surfaces. Conclusion: Postural control, measured by the COP displacement, undergoes variations in its amplitude as a result of the type of floor surface. Therefore, these results reinforce the importance of the choice of floor surface when defining the strategy to be used during hippotherapy intervention.

  4. Parameters of the center of pressure displacement on the saddle during hippotherapy on different surfaces.

    Science.gov (United States)

    Flores, Fabiana M; Dagnese, Frederico; Mota, Carlos B; Copetti, Fernando

    2015-01-01

    Hippotherapy uses horseback riding movements for therapeutic purposes. In addition to the horse's movement, the choice of equipment and types of floor are also useful in the intervention. The quantification of dynamic parameters that define the interaction of the surface of contact between horse and rider provides insight into how the type of floor surface variations act upon the subject's postural control. To test whether different types of surfaces promote changes in the amplitude (ACOP) and velocity (VCOP) of the center of pressure (COP) displacement during the rider's contact with the saddle on the horse's back. Twenty two healthy adult male subjects with experience in riding were evaluated. The penetration resistances of asphalt, sand and grass surfaces were measured. The COP data were collected on the three surfaces using a pressure measurement mat. ACOP values were higher in sand, followed by grass and asphalt, with significant differences between sand and asphalt (anteroposterior, p=0.042; mediolateral, p=0.019). The ACOP and VCOP values were higher in the anteroposterior than in the mediolateral direction on all surfaces (ACOP, p=0.001; VCOP, p=0.006). The VCOP did not differ between the surfaces. Postural control, measured by the COP displacement, undergoes variations in its amplitude as a result of the type of floor surface. Therefore, these results reinforce the importance of the choice of floor surface when defining the strategy to be used during hippotherapy intervention.

  5. Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Joerg [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland); Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Martonak, Roman [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F2, 84248 Bratislava (Slovakia); Donadio, Davide [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland); Department of Chemistry, UC Davis, One Shields Ave., Davis, CA 95616 (United States); Parrinello, Michele [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland)

    2008-12-15

    We present a combination of the metadynamics method for the investigation of pressure-induced phase transitions in solids with a neural network representation of high-dimensional density-functional theory (DFT) potential-energy surfaces. In a recent illustration of the method for the complex high-pressure phase diagram of silicon[Behler et al., Phys. Rev. Lett. 100, 185501 (2008)] we have shown that the full sequence of phases can be reconstructed by a series of subsequent simulations. In the present paper we give a detailed account of the underlying methodology and discuss the scope and limitations of the approach, which promises to be a valuable tool for the investigation of a variety of inorganic materials. The method is several orders of magnitude faster than a direct coupling of metadynamics with electronic structure calculations, while the accuracy is essentially maintained, thus providing access to extended simulations of large systems. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Calculated Fermi surface properties of LaSn3 and YSn3 under pressure

    International Nuclear Information System (INIS)

    Kanchana, V.

    2012-01-01

    The electronic structure, Fermi surface and elastic properties of the iso-structural and iso-electronic LaSn 3 and YSn 3 intermetallic compounds are studied under pressure within the frame work of density functional theory including spin-orbit coupling. The LaSn 3 Fermi surface consists of two sheets, of which the second is very complex. Under pressure a third sheet appears around compression V/V 0 =0.94, while a small topology changes in the second sheet is seen at compression V/V 0 =0.90. This may be in accordance with the anomalous behavior in the superconducting transition temperature observed in LaSn 3 , which has been suggested to reflect a Fermi surface topological transition, along with a non-monotonic pressure dependence of the density of states at the Fermi level. The similar behavior is not observed in YSn 3 for which the Fermi surface includes three sheets already at ambient conditions, and the topology remains unchanged under pressure. The reason for the difference in behavior between LaSn 3 and YSn 3 is the role of spin-orbit coupling and the hybridization of La-4f state with the Sn-p state in the vicinity of the Fermi level, which is well explained using the band structure calculation. The elastic constants and related mechanical properties are calculated at ambient as well as at elevated pressures. The elastic constants increase with pressure for both compounds and satisfy the conditions for mechanical stability under pressure. (author)

  7. Kinetics of pressure induced structural phase transitions—A review

    Indian Academy of Sciences (India)

    The current status of experimental as well as theoretical advances in the understanding of kinetics of structural phase transitions is reviewed. A brief outline of the classification of phase transitions and classical ideas in the theory of kinetics of phase change is presented first. High pressure experimental techniques ...

  8. Changes in blood pressure and plasma urate induced by the ...

    African Journals Online (AJOL)

    ... as yet another risk factor for hypertension, known to be common amongst habitual ethanol drinkers. Further research is however, required to establish the mechanism (s) involved in such relationships. Key Words: Blood pressure, plasma urate, hypertension, alcohol. Global Jnl Medical Sciences Vol.2(2) 2003: 157-160 ...

  9. Pressure induced graft-co-polymerization of acrylonitrile onto ...

    Indian Academy of Sciences (India)

    WINTEC

    such as pressure, time, pH, concentrations of initiator and monomer were optimized to get maximum graft yield (35⋅59%). Grafted and ungrafted Saccharum cilliare fibres were then subjected to evaluation of some of their properties like swelling behaviour in different solvents, moisture absorbance under different humidity.

  10. Pressure induced Superconductivity in the Charge Density Wave Compound Tritelluride

    Energy Technology Data Exchange (ETDEWEB)

    Hamlin, J.J.; Zocco, D.A.; Sayles, T.A.; Maple, M.B.; /UC, Davis; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2010-02-15

    A series of high-pressure electrical resistivity measurements on single crystals of TbTe{sub 3} reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave order. The onset of superconductivity reaches a maximum of almost 4 K (onset) near {approx} 12.4 GPa.

  11. Pressure-induced phase transformations in L-alanine crystals

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Gerward, Leif; Freire, P.T.C.

    2008-01-01

    Raman scattering and synchrotron X-ray diffraction have been used to investigate the high-pressure behavior of L-alanine. This study has confirmed a structural phase transition observed by Raman scattering at 2.3 GPa and identified it as a change from orthorhombic to tetragonal structure. Another...

  12. Coupling of temperature with pressure induced initial decomposition ...

    Indian Academy of Sciences (India)

    H··· O intermolecular hydrogen transfer, while at 4 and 5 GPa, it was triggered by N-H··· N intermolecular hydrogen transfer. This indicates that the initial decomposition mechanism was dependent on the pressure. Our study may provide new insights into initial mechanisms and decomposition reactions of molecular crystal.

  13. Coupling of temperature with pressure induced initial decomposition ...

    Indian Academy of Sciences (India)

    ForNTO, two different initial decomposition mechanisms were found. At 1, 2, and 3 GPa, it was triggered by NH....O intermolecular hydrogen transfer, while at 4 and 5 GPa, it was triggered by N-H.....N intermolecularhydrogen transfer. This indicates that the initial decomposition mechanism was dependent on the pressure.

  14. Kinetics of pressure induced structural phase transitions—A review

    Indian Academy of Sciences (India)

    Unknown

    the equilibrium line. Results of extensive high pressure–high temperature experimental studies of graphitization of diamond over a range of pressures from vacuum up to over 3 GPa at tem- perature up to 2500 K were used (Bundy 1969; Gomon et al 1974) to plot log (heating time) versus 10/T K, with data circles blacked out ...

  15. Irreversible particle motion in surfactant-laden interfaces due to pressure-dependent surface viscosity

    Science.gov (United States)

    Manikantan, Harishankar; Squires, Todd M.

    2017-09-01

    The surface shear viscosity of an insoluble surfactant monolayer often depends strongly on its surface pressure. Here, we show that a particle moving within a bounded monolayer breaks the kinematic reversibility of low-Reynolds-number flows. The Lorentz reciprocal theorem allows such irreversibilities to be computed without solving the full nonlinear equations, giving the leading-order contribution of surface pressure-dependent surface viscosity. In particular, we show that a disc translating or rotating near an interfacial boundary experiences a force in the direction perpendicular to that boundary. In unbounded monolayers, coupled modes of motion can also lead to non-intuitive trajectories, which we illustrate using an interfacial analogue of the Magnus effect. This perturbative approach can be extended to more complex geometries, and to two-dimensional suspensions more generally.

  16. Surface energy-tunable iso decyl acrylate based molds for low pressure-nanoimprint lithography

    Science.gov (United States)

    Tak, Hyowon; Tahk, Dongha; Jeong, Chanho; Lee, Sori; Kim, Tae-il

    2017-10-01

    We presented surface energy-tunable nanoscale molds for unconventional lithography. The mold is highly robust, transparent, has a minimized haze, does not contain additives, and is a non-fluorinated isodecyl acrylate and trimethylolpropane triacrylate based polymer. By changing the mixing ratio of the polymer components, the cross-linking density, mechanical modulus, and surface energy (crucial factors in low pressure ((1-2) × 105 N m-2) low pressure-nanoimprint lithography (LP-NIL)), can be controlled. To verify these properties of the molds, we also characterized the surface energy by measuring the contact angles and calculating the work of adhesion among the wafer, polymer film, and mold for successful demolding in nanoscale structures. Moreover, the molds showed high optical clarity and precisely tunable mechanical and surface properties, capable of replicating sub-100 nm patterns by thermal LP-NIL and UV-NIL.

  17. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations

    DEFF Research Database (Denmark)

    Holm, René; Borkenfelt, Simon; Allesø, Morten

    2016-01-01

    for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.......g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed......, however for six out of seven compounds similar results were obtained by applying a standard pressure (866MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle...

  18. Kidney Dysfunction Mediates Salt-Induced Increases in Blood Pressure

    Science.gov (United States)

    Hall, John E.

    2016-01-01

    Chronic excess salt intake increases the risk for hypertension and moderation of salt intake is an important strategy for prevention of cardiovascular and kidney disease, especially in salt-sensitive subjects. Although short-term blood pressure (BP) responses to high salt intake over several days are highly variable, chronic high salt intake worsens BP salt-sensitivity. Aging, diabetes, hypertension, and various acquired and genetic kidney disorders also exacerbate salt-sensitivity of BP. Kidney dysfunction, characterized by impaired pressure natriuresis, has been demonstrated in all forms of experimental and human genetic or acquired salt-sensitive hypertension studied thus far. Abnormalities of kidney function that directly or indirectly increase NaCl reabsorption, decrease glomerular capillary filtration coefficient, or cause nephron injury/loss exacerbate BP salt-sensitivity. In most cases, salt-sensitive hypertension is effectively treated with drugs that increase glomerular filtration rate or reduce renal NaCl reabsorption (e.g. diuretics, renin-angiotensin-aldosterone system blockers). Increased vascular resistance may occur concomitantly or secondarily to kidney dysfunction and increased BP in salt-sensitive hypertension. However, primary increases in non-renal vascular resistance have not been shown to cause salt-sensitive hypertension or long-term changes in BP in the absence of impaired renal-pressure natriuresis. The mechanisms responsible for increased total peripheral resistance (TPR) during high salt intake in salt-sensitive subjects are not fully understood but likely involve pressure-dependent and/or flow-dependent autoregulation in peripheral tissues as well as neurohormonal factors that occur concomitantly with kidney dysfunction. Physiological studies have demonstrated that increased BP almost invariably initiates secondary pressure-dependent functional and structural vascular changes that increase TPR. PMID:26927007

  19. Improved adhesion at titanium surfaces via laser-induced surface oxidation and roughening

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, S. [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, 28359 Bremen (Germany); Institut fuer Mikro- und Nanotechnologien, Technische Universitaet Ilmenau, PF 100565, 98684 Ilmenau (Germany); Specht, U., E-mail: uwe.specht@ifam.fraunhofer.de [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, 28359 Bremen (Germany); Spiess, L.; Romanus, H.; Krischok, S.; Himmerlich, M. [Institut fuer Mikro- und Nanotechnologien, Technische Universitaet Ilmenau, PF 100565, 98684 Ilmenau (Germany); Ihde, J. [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, 28359 Bremen (Germany)

    2012-12-15

    Commercial titanium was treated in ambient atmosphere using pulsed Nd:YAG ({lambda}=1064nm) laser irradiation. Repeated laser treatments induce a removal of surface contaminants as well as the formation of a nanostructured top layer exhibiting a large effective surface and nanometer roughness. The laser induced oxidation leads to the presence of a surface layer with strongly improved, hydrothermally stable adhesion when joined to a one-component, hot-curing epoxy-based adhesive. Changes in the material properties have been characterized with respect to the topography, the chemical composition and the crystal structure using SEM, cross-beam FIB, XPS and XRD analyses in order to correlate the adhesion behavior with the structural and chemical characteristics of the surface.

  20. The effect of surface pressure modification on the speed of vortex rings

    Energy Technology Data Exchange (ETDEWEB)

    Partridge, Matthew; Davis, Frank; Higson, Seamus P J [Centre of Biomedical Imaging, Cranfield University, Cranfield MK43 0AL (United Kingdom); James, Stephen W; Tatam, Ralph P, E-mail: f.davis@cranfield.ac.uk [Engineering Photonics, School of Engineering, Cranfield University, Cranfield MK43 0AL (United Kingdom)

    2014-10-01

    A series of experiments investigating the relationship between surface pressure, monolayer elasticity and the speed of vortex rings is presented. A drop of water, when touched to the surface of a larger body of water, will coalesce and form a vortex ring that moves perpendicularly to the surface of the water. The speed of the vortex ring movement away from the surface of the water has been seen to be sensitive to the presence of monolayer materials. Here we explore the influence of four monolayer forming materials, stearic acid, tricosanoic acid, 4-tert butyl calix[4]arene and calix[4]resorcarene (C11), on the properties of vortex rings. For each material, the speed of the vortex rings through the water was measured at a range of surface pressures. The speed was found to increase in a linear fashion until surface pressures greater than 30 mN m{sup −1}, where the ring’s speed decreased towards the value measured in the absence of a monolayer. Analysis of the results suggests a future route toward a better understanding of the mechanisms involved.

  1. Durability of simulated waste glass: effects of pressure and formation of surface layers

    International Nuclear Information System (INIS)

    Wicks, G.G.; Mosley, W.C.; Whitkop, P.G.; Saturday, K.A.

    1981-01-01

    The leaching behavior of simulated Savannah River Plant (SRP) waste glass was studied at elevated pressures and anticipated storage temperatures. An integrated approach, which combined leachate solution analyses with both bulk and surface studies, was used to study the corrosion process. Compositions of leachates were evaluated by colorimetry and atomic absorption. Used in the bulk and surface analyses were optical microscopy, scanning electron microscopy, x-ray energy spectroscopy, wide-angle x-ray, diffraction, electron microprobe analysis, infrared reflectance spectroscopy, electron spectroscopy for chemical analysis, and Auger electron spectroscopy. Results from this study show that there is no significant adverse effect of pressure, up to 1500 psi and 90 0 C, on the chemical durability of simulated SPR waste glass leached for one month in deionized water. In addition, the leached glass surface layer was characterized by an adsorbed film rich in minor constituents from the glass. This film remained on the glass surface even after leaching in relatively alkaline solutions at elevated pressures at 90 0 C for one month. The sample surface area to volume of leachant ratios (SA/V) was 10:1 cm -1 and 1:10 cm -1 . The corrosion mechanisms and surface and subsurface layers produced will be discussed along with the potential importance of these results to repository storage

  2. On the Pressure Distribution in a Porous Media under a Spherical Loading Surface

    Science.gov (United States)

    Wang, Qiuyun; Zhu, Zenghao; Nathan, Rungun; Wu, Qianhong

    2017-11-01

    The phenomenon of pressure generation and relaxation inside a porous media is widely observed in biological systems. Herein, we report a biomimetic study to examine the pressure distribution inside a soft porous layer when a spherical loaded surface suddenly impacts on it. A novel experimental setup was developed that includes a fully instrumented spherical piston and a soft fibrous porous layer underneath. Extensive experimental study was performed with different porous materials, different loadings and different sized loading surfaces. The pore pressure generation and the motion of the loading surface were recorded. A novel theoretical model was developed to characterize the pressure field during the process. Excellent agreement was observed between the experimental results and the theoretically predictions. It shows that the pressure generation is governed by the Brinkman parameter, α = h/Kp0.5, where h is the porous layer thickness, and Kp is the undeformed permeability. The study improves our understanding of the dynamic response of soft porous media under rapid compression. It has board impact on the study of transient load bearing in biological systems and industry applications. This work was supported by the National Science Foundation (NSF CBET) under Award #1511096.

  3. Frequency and wavelength prediction of ultrasonic induced liquid surface waves.

    Science.gov (United States)

    Mahravan, Ehsan; Naderan, Hamid; Damangir, Ebrahim

    2016-12-01

    A theoretical investigation of parametric excitation of liquid free surface by a high frequency sound wave is preformed, using potential flow theory. Pressure and velocity distributions, resembling the sound wave, are applied to the free surface of the liquid. It is found that for impinging wave two distinct capillary frequencies will be excited: One of them is the same as the frequency of the sound wave, and the other is equal to the natural frequency corresponding to a wavenumber equal to the horizontal wavenumber of the sound wave. When the wave propagates in vertical direction, mathematical formulation leads to an equation, which has resonance frequency equal to half of the excitation frequency. This can explain an important contradiction between the frequency and the wavelength of capillary waves in the two cases of normal and inclined interaction of the sound wave and the free surface of the liquid. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of electrical stimulation-induced gluteal versus gluteal and hamstring muscles activation on sitting pressure distribution in persons with a spinal cord injury.

    Science.gov (United States)

    Smit, C A J; Haverkamp, G L G; de Groot, S; Stolwijk-Swuste, J M; Janssen, T W J

    2012-08-01

    Ten participants underwent two electrical stimulation (ES) protocols applied using a custom-made electrode garment with built-in electrodes. Interface pressure was measured using a force-sensitive area. In one protocol, both the gluteal and hamstring (g+h) muscles were activated, in the other gluteal (g) muscles only. To study and compare the effects of electrically induced activation of g+h muscles versus g muscles only on sitting pressure distribution in individuals with a spinal cord injury (SCI). Ischial tuberosities interface pressure (ITs pressure) and pressure gradient. In all participants, both protocols of g and g+h ES-induced activation caused a significant decrease in IT pressure. IT pressure after g+h muscles activation was reduced significantly by 34.5% compared with rest pressure, whereas a significant reduction of 10.2% after activation of g muscles only was found. Pressure gradient reduced significantly only after stimulation of g+h muscles (49.3%). g+h muscles activation showed a decrease in pressure relief (Δ IT) over time compared with g muscles only. Both protocols of surface ES-induced of g and g+h activation gave pressure relief from the ITs. Activation of both g+h muscles in SCI resulted in better IT pressure reduction in sitting individuals with a SCI than activation of g muscles only. ES might be a promising method in preventing pressure ulcers (PUs) on the ITs in people with SCI. Further research needs to show which pressure reduction is sufficient in preventing PUs.

  5. Coalescence-Induced Jumping of Nanodroplets on Textured Surfaces.

    Science.gov (United States)

    Gao, Shan; Liao, Quanwen; Liu, Wei; Liu, Zhichun

    2018-01-04

    Conducting experimental studies on nanoscale droplet coalescence using traditional microscopes is a challenging research topic, and views differ as to whether the spontaneous removal can occur in the coalescing nanodroplets. Here, a molecular dynamics simulation is carried out to investigate the coalescence process of two equally sized nanodroplets. On the basis of atomic coordinates, we compute the liquid bridge radii for various cases, which is described by a power law of spreading time, and these nanodroplets undergo coalescence in the inertially limited-viscous regime. Moreover, coalescence-induced jumping is also possible for the nanodroplets, and the attraction force between surface and water molecules plays a crucial role in this process, where the merged nanodroplets prefer to jump away from those surfaces with lower attraction force. When the solid-liquid interaction intensity and surface structure parameters are varied, the attraction force is shown to decrease with decreasing surface wettability intensity and solid fraction.

  6. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    and that the outcome of IgG adsorption is much more sensitive to surface characteristics than the outcome of albumin adsorption. Using high concentrations of protein solution and hydrophobic polymer surfaces during adsorption can induce IgG aggregation, which is observed as extremely high IgG adsorptions. Besides......In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...

  7. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  8. In-induced stable ordering of stepped Si(553) surface

    Science.gov (United States)

    Chauhan, Amit Kumar Singh; Niazi, Asad; Nair, Lekha; Gupta, Govind

    2015-05-01

    The growth mechanism and adsorbate-induced surface morphology of metal atoms on semiconducting surfaces crucially determines the electronic and physicochemical properties of these metal/semiconductor systems. In this study, we investigate the kinetically controlled growth of indium (In) atoms on the high index stepped Si(553)-7 × 7 surface and the thermal stability of various novel In-induced superstructural phases formed during adsorption/desorption process. Auger electron spectroscopy analysis reveals that In adsorption at room temperature (RT) and at 350 °C, with a controlled incident flux of 0.0016 ML/s, proceeds in the Stranski-Krastanov growth mode where two dimensional (2D)/three dimensional (3D) islands are formed on top of two complete monolayers. At higher substrate temperature up to 450 °C, the growth of In atoms occurs in the form of islands on the bare Si(553) surface, and In coverage is limited to the sub-monolayer regime. During the thermal desorption of the RT grown In/Si(553) system, the In clusters rearrange themselves and an unusual "cluster to layer" transformation occurs on top of the stable monolayer. In situ low energy electron diffraction analysis during adsorption and desorption shows the development of various coverage and temperature dependent In-induced superstructural phases on Si(553) surface, such as: (8 × 2) after annealing at 520 °C with coverage 0.5 ML, (8 × 4) after annealing at 580 °C (∼1 ML coverage) and (553)-7 × 1 + (111)-√3 × √3-R30° at 0.3 ML (630 °C). These adsorbate-induced superstructural phases could potentially be utilized as templates for pattern assisted growth of various exotic 1D/2D structures for optoelectronics and photovoltaic applications.

  9. Load-following induced xenon oscillations in pressurized water reactors

    International Nuclear Information System (INIS)

    Silvennoinen, P.; Tiihonen, O.

    1977-01-01

    A new computer code is introduced for studying xenon oscillations during load following operation of a pressurized water reactor. In the code all major feedback effects occurring in PWRs are incorporated through nonlinear correlations. These effects include fuel and coolant temperatures, control rods, and soluble poison density. The code is capable of simulating xenon transients due to flux distribution changes, e.g., during load following procedures. As an example a single xenon transient run is included. (author)

  10. Negative chemical pressure effects induced by Y substitution for Ca ...

    Indian Academy of Sciences (India)

    the magnetic chain may be useful to the overall understanding of the novel magnetism of the parent compound. Keywords. Spin-chains; Ca3Co2O6; chemical pressure; magnetic order; quantum tun- neling. PACS Nos 75.50.-y; 75.30.Cr; 75.40.Cx. 1. Introduction. Among spin-chain systems, the compound, Ca3Co2O6 [1,2], ...

  11. Pressure-induced changes in the structural and absorption ...

    Indian Academy of Sciences (India)

    of the kinetic energy cutoff and the k-point grid were determined to ensure the convergence of total ..... static pressure. partial DOS of the C, N states, O and H states of. NADNP at 0 GPa. The PDOS of the O states and N states are larger than those of the H states and C states. It may be expected that the former makes more ...

  12. Negative chemical pressure effects induced by Y substitution for Ca ...

    Indian Academy of Sciences (India)

    Negative chemical pressure effects on Ca3Co2O6. Figure 3. Inverse of magnetic susceptibility (χ) as a function of tempera- ture (30–300 K) for Ca3−xYxCo2O6, obtained in a field of 5 kOe. A straight line is drawn through the high-temperature linear region to highlight the x-dependence of θp. The low-temperature data ...

  13. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    characteristics. Flight mechanics analysis is primarily concerned with the aerodynamic data composed ... static data are the limiting case of unsteady flow pattern as time tends to infinity (or at least a few times the .... as the qualitative changes in the surface pressure model are independently confirmed by Roos. & Kegelman ...

  14. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air...... are obtained from the literature. The silica surface is modeled by a large 32 ⨯ 32 ⨯ 2 nm amorphous SiO2 structure consisting of 180000 atoms. The water consists of 18000 water molecules surrounded by N2 and O2 air molecules corresponding to air pressures of 0 bar (vacuum), 50 bar, 100 bar and 200 bar. We...... the effect of air and find a consistent increase in the water contact angle reaching 53º at 200 bar air pressure. These results are important for the creation and stability of nanobubbles at hydrophilic interfaces....

  15. [Focusing on the ocular surface problems induced by cosmetology].

    Science.gov (United States)

    Gong, L

    2018-02-11

    Making oneself more beautiful has always been part of humans' civilized life. Accordingly, the side effects of various cosmetic product and cosmetic procedure long exist. The ocular-surface problems induced by cosmetology mainly include cornea and conjunctiva damages, and tear film damages. Specifically, cornea and conjunctiva damage included: (1) physical injury caused by nonstandard operational procedure, (2) toxic and side effect of cosmetic product, and (3) infection induced by using cosmetic contact lenses, while tear film damage included: (1) injury of normal eyelid structure, (2) decrease of tear production from lacrimal gland, and (3) function and morphology injury of meibomian gland. (Chin J Ophthalmol, 2018, 54: 84-86) .

  16. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.

    Science.gov (United States)

    Wong, Tak-Sing; Kang, Sung Hoon; Tang, Sindy K Y; Smythe, Elizabeth J; Hatton, Benjamin D; Grinthal, Alison; Aizenberg, Joanna

    2011-09-21

    Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging. Inspirations from natural nonwetting structures, particularly the leaves of the lotus, have led to the development of liquid-repellent microtextured surfaces that rely on the formation of a stable air-liquid interface. Despite over a decade of intense research, these surfaces are, however, still plagued with problems that restrict their practical applications: limited oleophobicity with high contact angle hysteresis, failure under pressure and upon physical damage, inability to self-heal and high production cost. To address these challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency. Our approach-inspired by Nepenthes pitcher plants-is conceptually different from the lotus effect, because we use nano/microstructured substrates to lock in place the infused lubricating fluid. We define the requirements for which the lubricant forms a stable, defect-free and inert 'slippery' interface. This surface outperforms its natural counterparts and state-of-the-art synthetic liquid-repellent surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low contact angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice adhesion, and function at high pressures (up to about 680 atm). We show that these properties are insensitive to the precise geometry of the underlying substrate, making our approach applicable to various inexpensive, low-surface-energy structured materials (such as porous Teflon membrane). We envision that these slippery surfaces will be useful in fluid handling and

  17. Stabilization of axisymmetric liquid bridges through vibration-induced pressure fields.

    Science.gov (United States)

    Haynes, M; Vega, E J; Herrada, M A; Benilov, E S; Montanero, J M

    2018-03-01

    Previous theoretical studies have indicated that liquid bridges close to the Plateau-Rayleigh instability limit can be stabilized when the upper supporting disk vibrates at a very high frequency and with a very small amplitude. The major effect of the vibration-induced pressure field is to straighten the liquid bridge free surface to compensate for the deformation caused by gravity. As a consequence, the apparent Bond number decreases and the maximum liquid bridge length increases. In this paper, we show experimentally that this procedure can be used to stabilize millimeter liquid bridges in air under normal gravity conditions. The breakup of vibrated liquid bridges is examined experimentally and compared with that produced in absence of vibration. In addition, we analyze numerically the dynamics of axisymmetric liquid bridges far from the Plateau-Rayleigh instability limit by solving the Navier-Stokes equations. We calculate the eigenfrequencies characterizing the linear oscillation modes of vibrated liquid bridges, and determine their stability limits. The breakup process of a vibrated liquid bridge at that stability limit is simulated too. We find qualitative agreement between the numerical predictions for both the stability limits and the breakup process and their experimental counterparts. Finally, we show the applicability of our technique to control the amount of liquid transferred between two solid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  19. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  20. Relationship between functional properties and aggregation changes of whey protein induced by high pressure microfluidization.

    Science.gov (United States)

    Liu, Cheng-Mei; Zhong, Jun-Zhen; Liu, Wei; Tu, Zong-Cai; Wan, Jie; Cai, Xiao-Fei; Song, Xin-Yun

    2011-05-01

    Aggregation changes of whey protein induced by high-pressure microfluidization (HPM) treatment have been investigated in relation with their functional properties. Whey protein was treated with HPM under pressure from 40 to 160 MPa. Functional properties (solubility, foaming, and emulsifying properties) of whey protein concentrate (WPC) ultrafiltered from fluid whey were evaluated. The results showed significant modifications in the solubility (30% to 59%) and foaming properties (20% to 65%) of WPC with increasing pressure. However, emulsifying property of WPC treated at different pressures was significantly worse than untreated sample. To better understand the mechanism of the modification by HPM, the HPM-induced aggregation changes were examined using particle size distribution, scanning electron microscopy, and hydrophobicity. It was indicated that HPM induced 2 kinds of aggregation changes on WPC: deaggregation and reaggregation of WPC, which resulted in the changes of functional properties of WPC modified by HPM. © 2011 Institute of Food Technologists®

  1. Field-emitting Townsend regime of surface dielectric barrier discharges generated in CO2 emerging at high pressure

    Science.gov (United States)

    Pai, David; Stauss, Sven; Terashima, Kazuo

    2015-09-01

    Surface dielectric barrier discharges (DBDs) in CO2 from atmospheric pressure up to supercritical conditions (Tc = 304.13 K, pc = 7.4 MPa) generated using 10-kHz ac excitation are studied experimentally. Two discharge regimes are obtained: the standard and field-emitting Townsend regimes. The former resembles typical surface DBDs that have streamer-like characteristics, but the latter has not been reported previously. Here we present an analysis of the electrical and optical diagnostics of the field-emitting Townsend discharge regime using current-voltage and charge-voltage measurements, imaging, optical emission spectroscopy, and spontaneous Raman spectroscopy. Using an electrical model, it is possible to calculate the discharge-induced capacitances of the plasma and the dielectric, as well as the space-averaged values of the surface potential and the potential drop across the discharge. The model also accounts for the space-averaged Laplacian field by including the capacitance due to the fringe electric field from the electrode edge. The electrical characteristics are similar to those of atmospheric-pressure Townsend DBDs, i.e. self-sustained DBDs with minimal space-charge effects. The purely continuum emission spectrum is due to electron-neutral bremsstrahlung, with a corresponding average electron temperature of 2600 K. Raman spectra of CO2 near the critical point demonstrate that the discharge increases the average gas temperature by less than 1 K. This work was supported financially in part by MEXT and JSPS.

  2. Comparative study on two different seal surface structure for reactor pressure vessel sealing behavior

    International Nuclear Information System (INIS)

    Chen Jun; Xiong Guangming; Deng Xiaoyun

    2014-01-01

    The seal surface structure is very important to reactor pressure vessel (RPV) sealing behavior. In this paper, two 3-D RPV sealing analysis finite models have been established with different seal surface structures, in order to study the influence of two structures. The separation of RPV upper and lower flanges, bolt loads and etc. are obtained, which are used to evaluate the sealing behavior of the RPV. Meanwhile, the comparative analysis of safety margin of two seal surface structural had been done, which provides the theoretical basis for RPV seal structure design optimization. (authors)

  3. Surface modification of nanofibrillated cellulose films by atmospheric pressure dielectric barrier discharge

    DEFF Research Database (Denmark)

    Siró, Istvan; Kusano, Yukihiro; Norrman, Kion

    2013-01-01

    of atmospheric pressure plasma treatment, the water contact angle of NFC films increased and the values were comparable with those of PLA films. On the other hand, surface chemical characterization revealed inhomogeneity of the plasma treatment and limited improvement in adhesion between NFC and PLA films......A dielectric barrier discharge in a gas mixture of tetrafluoromethane (CF4) and O2 was used for tailoring the surface properties of nanofibrillated cellulose (NFC) films. The surface chemical composition of plasma-modified NFC was characterized by means of X-ray photoelectron spectroscopy and time....... Further research in this direction is required in order to enhance the uniformity of the plasma treatment results....

  4. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-06

    Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work will be discussed.

  5. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.

    Science.gov (United States)

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J

    2017-05-01

    The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.

  6. Earthquakes in Kansas Induced by Extremely Far-Field Pressure Diffusion

    Science.gov (United States)

    Peterie, Shelby L.; Miller, Richard D.; Intfen, John W.; Gonzales, Julio B.

    2018-02-01

    Pressure diffusion from high-volume saltwater disposal wells near the Kansas-Oklahoma border appears to have contributed to triggering earthquakes as far as 90 km away. Elevated seismicity that began in southern Kansas in 2013 is largely believed to be induced by pore pressure increase from dozens of disposal wells injecting unprecedented volumes. Earthquakes initially occurred in dense swarms near the wells, and in subsequent years migrated into surrounding areas with minimal fluid injection. By 2017, earthquakes advanced 90 km from areas surrounding the high-volume injection wells into areas with considerable fluid injection volumes but historically consistent rates. Fluid pressure within the injection interval in southern Kansas increased subsequent to high-volume saltwater disposal in southern Kansas and northern Oklahoma. Temporal pressure trends across central Kansas suggest that fluid migration and pressure diffusion from cumulative disposal to the south likely induced earthquakes much farther than previously documented for individual injection wells.

  7. Capillary Pressure-induced Lung Injury: Fact or Fiction?

    African Journals Online (AJOL)

    QuickSilver

    2003-05-07

    May 7, 2003 ... initial safety factor, the low interstitial compliance, which coun- teracts the further progression of ... the release thromboxane A2 and by alveolar hypoxia following hydrostatic oedema. Promising clinical ... monary gene transfer of endothelial or inducible nitric oxide synthase. The rise in intra-cellular calcium ...

  8. A simulation of earthquake induced undrained pore pressure ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The Bhuj earthquake of January 26th, 2001, induced wide spread liquefaction within the Kachch peninsula. It has been pointed out that inundation due to soil liquefaction was short lived in some parts than in others in the affected region. Several geological, seismological and hydrological factors would have cumulatively ...

  9. Study on hot melt pressure sensitive coil material for removing surface nuclear pollution dust

    Science.gov (United States)

    Wang, Jing; Li, Jiao; Wang, Jianhui; Zheng, Li; Li, Jian; Lv, Linmei

    2018-02-01

    A new method for removing surface nuclear pollution by using hot melt pressure sensitive membrane was presented. The hot melt pressure sensitive membrane was designed and prepared by screening hot melt pressure sensitive adhesive and substrate. The simulated decontamination test of the hot melt pressure sensitive membrane was performed by using 100 mesh and 20 mesh standard sieve dust for simulation of nuclear explosion fall ash and radioactive contaminated particles, respectively. It was found that the single decontamination rate of simulated fall ash and contaminated particles were both above 80% under pressure conditions of 25kPa or more at 140°C. And the maximum single decontamination rate was 92.5%. The influence of heating temperature and pressure on the decontamination rate of the membrane was investigated at the same time. The results showed that higher heating temperature could increase the decontamination rate by increasing the viscosity of the adhesive. When the adhesive amount of the adhesive layer reached saturation, a higher pressure could increase the single decontamination rate also.

  10. Meal-induced blood pressure fall in patients with isolated morning hypertension.

    Science.gov (United States)

    Barochiner, Jessica; Alfie, José; Aparicio, Lucas S; Cuffaro, Paula E; Rada, Marcelo A; Morales, Margarita S; Galarza, Carlos R; Marín, Marcos J; Waisman, Gabriel D

    2015-01-01

    We aimed to determine a possible association between isolated morning hypertension (IMH) and meal-induced blood pressure (BP) fall in adult treated hypertensive patients who underwent home BP measurements. A total of 230 patients were included, median age 73.6, 65.2% women. After adjusting for age, sex, number of antihypertensive drugs, office and home BP levels, the association between IMH and meal-induced BP fall was statistically significant. In conclusion, meal-induced BP fall and IMH detected through home blood pressure monitoring (HBPM) are independently associated in hypertensive patients. The therapeutic implications of such observation need to be clarified in large-scale prospective studies.

  11. High-pressure catalytic reactions over single-crystal metal surfaces

    Science.gov (United States)

    Rodriguez, JoséA.; Wayne Goodman, D.

    1991-11-01

    Studies dealing with high-pressure catalytic reactions over single-crystal surfaces are reviewed. The coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis allows detailed study of structure sensitivity, the effects of promoters and inhibitors on catalytic activity, and, in certain cases, identification of reaction intermediates by post-reaction surface analysis. Examples are provided which demonstrate the relevance of single-crystal studies for modeling the behaviour of high-surface-area supported catalysts. Studies of CO methanation and CO oxidation over single-crystal surfaces provide convincing evidence that these reactions are structure insensitive. For structure-sensitive reactions (ammonia synthesis, alkane hydrogenolysis, alkane isomerization, water-gas shift reaction, etc.) model single-crystal studies allow correlations to be established between surface structure and catalytic activity. The effects of both electronegative (S and P) and electropositive (alkali metals) impurities upon the catalytic activity of metal single crystals for ammonia synthesis, CO methanation, alkane hydrogenolysis, ethylene epoxidation and water-gas shift are discussed. The roles of "ensemble" and "ligand" effects in bimetallic catalysts are examined in light of data obtained using surfaces prepared by vapor-depositing one metal onto a crystal face of a dissimilar metal.

  12. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Kan, C.W.; Kwong, C.H.; Ng, S.P.

    2015-01-01

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment

  13. Development of bio/blood compatible polypropylene through low pressure nitrogen plasma surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Gomathi, N., E-mail: gomathi@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Department of Space, Trivandrum, 695547 (India); Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, 721302 (India); Rajasekar, R. [Materials Science Center, Indian Institute of Technology, Kharagpur, 721302 (India); Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, 561-756 (Korea, Republic of); Babu, R. Rajesh [Rubber Technology Center, Indian Institute of Technology, Kharagpur, 721302 (India); Advanced Tyre Research, Apollo Tyres, Baroda, 391750 (India); Mishra, Debasish [Department of Biotechnolgy, Indian Institute of Technology, Kharagpur, 721302 (India); Neogi, S. [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, 721302 (India)

    2012-10-01

    Surface modification of polypropylene by nitrogen containing plasma was performed in this work in order to improve the wettability which resulted in enhanced biocompatibility and blood compatibility. Various nitrogen containing functional groups as well as oxygen containing functional groups were found to be incorporated to the polymer surface during plasma treatment and post plasma reaction respectively. Wettability of the polymers was evaluated by static contact angle measurement to show the improvement in hydrophilicity of plasma treated polypropylene. Cross linking and surface modification were reported to be dominating in the case of nitrogen plasma treatment compared to degradation. The effect of various process variables namely power, pressure, flow rate and treatment time on surface energy and weight loss was studied at various levels according to the central composite design of response surface methodology (RSM). Except pressure the other variables resulted in increased weight loss due to etching whereas with increasing pressure weight loss was found to increase and then decrease. The effect of process variables on surface morphology of polymers was evaluated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Well spread fibroblast cells on nitrogen plasma treated polypropylene due to the presence of CO, NH{sup 2+} and NH{sup +} was observed. Reduced platelet adhesion and increased partial thromboplastin time evidenced the increased blood compatibility. - Highlights: Black-Right-Pointing-Pointer Improved biocompatibility and blood compatibility of polypropylene. Black-Right-Pointing-Pointer Nitrogen plasma surface modification. Black-Right-Pointing-Pointer Maintaining a balance between polar group incorporation and weight loss due to etching. Black-Right-Pointing-Pointer Optimization of process conditions by response surface methodology.

  14. Development of bio/blood compatible polypropylene through low pressure nitrogen plasma surface modification

    International Nuclear Information System (INIS)

    Gomathi, N.; Rajasekar, R.; Babu, R. Rajesh; Mishra, Debasish; Neogi, S.

    2012-01-01

    Surface modification of polypropylene by nitrogen containing plasma was performed in this work in order to improve the wettability which resulted in enhanced biocompatibility and blood compatibility. Various nitrogen containing functional groups as well as oxygen containing functional groups were found to be incorporated to the polymer surface during plasma treatment and post plasma reaction respectively. Wettability of the polymers was evaluated by static contact angle measurement to show the improvement in hydrophilicity of plasma treated polypropylene. Cross linking and surface modification were reported to be dominating in the case of nitrogen plasma treatment compared to degradation. The effect of various process variables namely power, pressure, flow rate and treatment time on surface energy and weight loss was studied at various levels according to the central composite design of response surface methodology (RSM). Except pressure the other variables resulted in increased weight loss due to etching whereas with increasing pressure weight loss was found to increase and then decrease. The effect of process variables on surface morphology of polymers was evaluated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Well spread fibroblast cells on nitrogen plasma treated polypropylene due to the presence of CO, NH 2+ and NH + was observed. Reduced platelet adhesion and increased partial thromboplastin time evidenced the increased blood compatibility. - Highlights: ► Improved biocompatibility and blood compatibility of polypropylene. ► Nitrogen plasma surface modification. ► Maintaining a balance between polar group incorporation and weight loss due to etching. ► Optimization of process conditions by response surface methodology.

  15. Cloud-Induced Stabilization of Greenland Surface Melt

    Science.gov (United States)

    Wang, W.; Zender, C. S.; van As, D.; Smeets, P.; van den Broeke, M. R.

    2016-12-01

    Surface melt and mass loss of the Greenland ice sheet (GrIS) may play crucial roles in global climate change due to its large fresh water storage and positive feedbacks. Complemented by clear-sky simulations from a radiative transfer model, we use measurements from 30+ automatic weather stations (AWSs) to estimate the strong and most variable contribution to Greenland's surface energy budget: the cloud radiative effects (CREs). AWSs are the only in-situ data source for long term surface energy budget studies across the GrIS. The primary bias in its radiation measurements stem from station tilt caused by spatially heterogeneous snow melt, snow compaction, and glacier dynamics. Over all AWSs on GrIS, hourly absolute biases in insolation can reach up to 200 W/m2, and insolation on fewer than 40% of clear days peaks within ±0.5 hr of the true solar noon time. We developed and used the Retrospective, Iterative, Geometry-Based (RIGB) tilt-correction method to identify and remove per-station mean-absolute biases that average 18 W/m2 over GrIS during melt seasons. We demonstrate using the tilt-adjusted radiation that surface albedo, among other environmental factors and cloud properties, determines the net CRE, a competition between shortwave shading and longwave heating. At stations where surface albedo is high and close to cloud albedo, shortwave shading is suppressed and longwave heating dominates. At stations where albedo is low (e.g., due to temperature-induced snow metamorphism and/or melt), shading effect increases faster than greenhouse effect, driving net CRE toward cooling. We found that a 0.57 albedo threshold distinguishes areas of positive from negative CREs with 99% accuracy. The cooling effect intensifies at lower albedo. During the extensive surface melt across GrIS in 2012, clouds exerted anomalously strong cooling in the southern ablation zone, and only climatological-mean warming in the accumulation zone. Clouds reduced more than promoted surface melt

  16. Investigations on ion-beam induced desorption from cryogenic surfaces

    International Nuclear Information System (INIS)

    Maurer, Christoph

    2017-01-01

    pumps can be taken into account. This method can be extended to any desorption experiment employing the single shot method for measurement. Of special interest for the operation of the SIS100 at high intensities is the minimization of desorption from cryogenic surfaces. A previous examination of this topic found a breakdown of the familiar scaling of the desorption yield with the beam's energy loss for cryogenic targets. Further examination of this effect with the techniques described above is another goal of this thesis. Simultaneously, desorption measurements at room temperature for several other targets have been conducted. An unexpected result of these experiments is the influence of target surface properties, which was found to be very weak in comparison to previous results. The methods developed during this thesis, along with the results gained by their application, represent another step towards the comprehension of (heavy) ion beam induced desorption.

  17. Effect of surface wettability caused by radiation induced surface activation on leidenfrost condition

    Energy Technology Data Exchange (ETDEWEB)

    Takamasa, T.; Hazuku, T.; Tamura, N.; Okamoto, K. [Tokyo Univ., Tokyo (Japan); Mishima, K. [Kyoto Univ., Kyoto (Japan); Furuya, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2003-07-01

    Improving the limit of boiling heat transfer or critical heat flux requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. From this basis, we investigated surface wettability and Leidenfrost condition using metal oxides irradiated by {gamma}-rays. In our previous study, contact angle, an indicator of macroscopic wettability, of a water droplet on metal oxide at room temperature was measured by image processing of the images obtained by a CCD video camera. The results showed that the surface wettability on metal oxide pieces of titanium, Zircaloy No. 4, SUS-304, and copper was improved significantly by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of Radiation Induced Surface Activation (RISA) on heat transferring phenomena, the Leidenfrost condition and quenching of metal oxides irradiated by {gamma}-rays were investigated. In the Leidenfrost experiment, when the temperature of the heating surface reached the wetting limit temperature, water-solid contact vanished because a stable vapor film existed between the droplet and the metal surface; i.e., a Leidenfrost condition obtained. The wetting limit temperature increased with integrated irradiation dose. After irradiation, the wet length and the duration of contact increased, and the contact angle decreased. In the quenching test, high surface wettability, or a highly hydrophilic condition, of a simulated fuel rod made of SUS was achieved, and the quenching velocities were increased up to 20-30% after 300 kGy 60Co {gamma}-ray irradiation.

  18. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  19. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    International Nuclear Information System (INIS)

    Özen, Soner; Pat, Suat; Korkmaz, Şadan; Şenay, Volkan

    2016-01-01

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the range of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.

  20. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    Energy Technology Data Exchange (ETDEWEB)

    Özen, Soner, E-mail: osoner@ogu.edu.tr; Pat, Suat; Korkmaz, Şadan [Eskişehir Osmangazi University, Physics Department, 26480 (Turkey); Şenay, Volkan [Eskişehir Osmangazi University, Physics Department, 26480 (Turkey); Bayburt University, Primary Science Education Department, 69000 (Turkey)

    2016-03-25

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the range of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.

  1. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    International Nuclear Information System (INIS)

    Štěpánová, Vlasta; Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana; Černák, Mirko

    2015-01-01

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  2. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  3. Heat-Induced, Pressure-Induced and Centrifugal-Force-Induced Exact Axisymmetric Thermo-Mechanical Analyses in a Thick-Walled Spherical Vessel, an Infinite Cylindrical Vessel, and a Uniform Disk Made of an Isotropic and Homogeneous Material

    Directory of Open Access Journals (Sweden)

    Vebil Yıldırım

    2017-07-01

    Full Text Available Heat-induced, pressure-induced, and centrifugal force-induced axisymmetric exact deformation and stresses in a thick-walled spherical vessel, a cylindrical vessel, and a uniform disk are all determined analytically at a specified constant surface temperature and at a constant angular velocity. The inner and outer pressures are both included in the formulation of annular structures made of an isotropic and homogeneous linear elastic material. Governing equations in the form of Euler-Cauchy differential equation with constant coefficients are solved and results are presented in compact forms. For disks, three different boundary conditions are taken into account to consider mechanical engineering applications. The present study is also peppered with numerical results in graphical forms.

  4. Sub-nanometer glass surface dynamics induced by illumination

    International Nuclear Information System (INIS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-01-01

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10 4 s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses

  5. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  6. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  7. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  8. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Directory of Open Access Journals (Sweden)

    O. A. Godin

    2009-07-01

    Full Text Available Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  9. Stability and symmetry of ion-induced surface patterning

    Science.gov (United States)

    Matthes, Christopher S. R.; Ghoniem, Nasr M.; Walgraef, Daniel

    2017-12-01

    We present a continuum model of ion-induced surface patterning. The model incorporates the atomic processes of sputtering, re-deposition and surface diffusion, and is shown to display the generic features of the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear and non-linear stability analyses of the evolution equation give estimates of the emerging pattern wavelength and spatial symmetry. The analytical theory is confirmed by numerical simulations of the evolution equation with the Fast Fourier Transform method, where we show the influence of the incident ion angle, flux, and substrate surface temperature. It is shown that large local geometry variations resulting in quadratic non-linearities in the evolution equation dominate pattern selection and stability at long time scales.

  10. Osmotic pressure induced tensile forces in tendon collagen

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  11. Osmotic pressure induced tensile forces in tendon collagen.

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J; Fratzl, Peter

    2015-01-22

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  12. In-induced stable ordering of stepped Si(553) surface

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Amit Kumar Singh [Physics of Energy Harvesting, (CSIR-NPL) , Dr. K.S. KrishnanRoad, New Delhi -110012 (India); Department of Physics, JMI, New Delhi 110025 (India); Niazi, Asad; Nair, Lekha [Department of Physics, JMI, New Delhi 110025 (India); Gupta, Govind, E-mail: govind@nplindia.org [Physics of Energy Harvesting, (CSIR-NPL) , Dr. K.S. KrishnanRoad, New Delhi -110012 (India)

    2015-05-15

    Highlights: • Control growth of In on step Si(553) & thermal stability of novel superstructure. • Influence of temperature on growth modes (SK,VB) under different growth conditions. • In-induced superstructure: (8 × 2), (8 × 4), mixed (553)-7 × 1 + (111)√3 × √3R30° phases. - Abstract: The growth mechanism and adsorbate-induced surface morphology of metal atoms on semiconducting surfaces crucially determines the electronic and physicochemical properties of these metal/semiconductor systems. In this study, we investigate the kinetically controlled growth of indium (In) atoms on the high index stepped Si(553)-7 × 7 surface and the thermal stability of various novel In-induced superstructural phases formed during adsorption/desorption process. Auger electron spectroscopy analysis reveals that In adsorption at room temperature (RT) and at 350 °C, with a controlled incident flux of 0.0016 ML/s, proceeds in the Stranski–Krastanov growth mode where two dimensional (2D)/three dimensional (3D) islands are formed on top of two complete monolayers. At higher substrate temperature up to 450 °C, the growth of In atoms occurs in the form of islands on the bare Si(553) surface, and In coverage is limited to the sub-monolayer regime. During the thermal desorption of the RT grown In/Si(553) system, the In clusters rearrange themselves and an unusual “cluster to layer” transformation occurs on top of the stable monolayer. In situ low energy electron diffraction analysis during adsorption and desorption shows the development of various coverage and temperature dependent In-induced superstructural phases on Si(553) surface, such as: (8 × 2) after annealing at 520 °C with coverage 0.5 ML, (8 × 4) after annealing at 580 °C (∼1 ML coverage) and (553)-7 × 1 + (111)-√3 × √3-R30° at 0.3 ML (630 °C). These adsorbate-induced superstructural phases could potentially be utilized as templates for pattern assisted growth of various exotic 1D/2D structures for

  13. Surface modification of polytetrafluoroethylene film using the atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Luo, Y

    2003-01-01

    The atmospheric pressure glow discharge (APGD) is more promising in industrial applications compared with glow discharges in a gas other than air or in low-pressure air, which needs an expensive vacuum system. In this paper, the APGD and dielectric barrier discharge (DBD) are generated in atmospheric air using a power-frequency voltage source, and the transition from DBD to APGD is achieved by varying the electrode arrangement. The differences between their discharge characteristics are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena. The effects of APGD and DBD on polytetrafluoroethylene (PTFE) surface modification are studied. The surface properties are characterized by contact angle measurement, x-ray photoelectron spectroscopy and scanning electron microscopy. It is found that the APGD and DBD treatments modify the PTFE surface in both morphology and composition. APGD is more effective in PTFE surface modification than DBD as it can modify the surface more uniformly, implant more oxygen atoms into the surface and make the contact angle decline to a lower level. The experimental results are discussed

  14. Surface treatment of polyethylene terephthalate film using atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19 degree, respectively. (authors)

  15. The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling

    Science.gov (United States)

    Mischna, M.; Piqueux, S.

    2017-12-01

    On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may

  16. Gluteal blood flow and oxygenation during electrical stimulation-induced muscle activation versus pressure relief movements in wheelchair users with a spinal cord injury.

    Science.gov (United States)

    Smit, C A J; Zwinkels, M; van Dijk, T; de Groot, S; Stolwijk-Swuste, J M; Janssen, T W J

    2013-09-01

    Prolonged high ischial tuberosities pressure (IT pressure), decreased regional blood flow (BF) and oxygenation (%SO2) are risk factors for developing pressure ulcers (PUs) in patients with spinal cord injury (SCI). Electrical stimulation (ES)-induced gluteal and hamstring muscle activation may improve pressure distribution by changing the shape of the buttocks while sitting and also increase BF and %SO2. To compare acute effects of ES-induced gluteal and hamstring muscle activation with pressure relief movements (PRMs) on IT pressure, BF and %SO2. Twelve men with SCI performed PRMs - push-ups, bending forward and leaning sideward - and received surface ES (87±19 mA) to the gluteal and hamstring muscles while sitting in their wheelchair. Ischial tuberosities pressure was measured using a pressure mapping system; (sub)cutaneous BF and %SO2 were measured using reflection spectroscopy and laser Doppler, respectively. Compared with rest (156±26 mm Hg), IT pressure was significantly lower during all other conditions (push-ups 19±44; bending forward 56±33; leaning sideward 44±38; ES 67±45 mm Hg). For the whole group, all PRMs significantly augmented BF (+39 to -96%) and %SO2 (+6.0 to -7.9%-point), whereas ES-induced muscle activation did only for peak BF. In all, 63% of the participants showed an increased BF (average 52%) with ES. PRMs acutely reduced IT pressure and improved oxygenation and BF in SCI. The currently used ES method cannot replace PRMs, but it may be used additionally. ES-induced muscle activation is not as effective for acute pressure relief, but the frequency of stimulation is much higher than the performance of PRMs and can therefore be more effective in the long term.

  17. Synchronous Surface Pressure and Velocity Measurements of standard model in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Zhijun Sun

    2018-01-01

    Full Text Available Experiments in the Hypersonic Wind tunnel of NUAA(NHW present synchronous measurements of bow shockwave and surface pressure of a standard blunt rotary model (AGARD HB-2, which was carried out in order to measure the Mach-5-flow above a blunt body by PIV (Particle Image Velocimetry as well as unsteady pressure around the rotary body. Titanium dioxide (Al2O3 Nano particles were seeded into the flow by a tailor-made container. With meticulous care designed optical path, the laser was guided into the vacuum experimental section. The transient pressure was obtained around model by using fast-responding pressure-sensitive paint (PSPsprayed on the model. All the experimental facilities were controlled by Series Pulse Generator to ensure that the data was time related. The PIV measurements of velocities in front of the detached bow shock agreed very well with the calculated value, with less than 3% difference compared to Pitot-pressure recordings. The velocity gradient contour described in accord with the detached bow shock that showed on schlieren. The PSP results presented good agreement with the reference data from previous studies. Our work involving studies of synchronous shock-wave and pressure measurements proved to be encouraging.

  18. Development of Maximum Bubble Pressure Method for Surface Tension Measurement of High Viscosity Molten Silicate

    Science.gov (United States)

    Takeda, Osamu; Iwamoto, Hirone; Sakashita, Ryota; Iseki, Chiaki; Zhu, Hongmin

    2017-07-01

    A surface tension measurement method based on the maximum bubble pressure (MBP) method was developed in order to precisely determine the surface tension of molten silicates in this study. Specifically, the influence of viscosity on surface tension measurements was quantified, and the criteria for accurate measurement were investigated. It was found that the MBP apparently increased with an increase in viscosity. This was because extra pressure was required for the flowing liquid inside the capillary due to viscous resistance. It was also expected that the extra pressure would decrease by decreasing the fluid velocity. For silicone oil with a viscosity of 1000 \\hbox {mPa}{\\cdot }\\hbox {s}, the error on the MBP could be decreased to +1.7 % by increasing the bubble detachment time to 300 \\hbox {s}. However, the error was still over 1 % even when the bubble detachment time was increased to 600 \\hbox {s}. Therefore, a true value of the MBP was determined by using a curve-fitting technique with a simple relaxation function, and that was succeeded for silicone oil at 1000 \\hbox {mPa}{\\cdot } \\hbox {s} of viscosity. Furthermore, for silicone oil with a viscosity as high as 10 000 \\hbox {mPa}{\\cdot }\\hbox {s}, the apparent MBP approached a true value by interrupting the gas introduction during the pressure rising period and by re-introducing the gas at a slow flow rate. Based on the fundamental investigation at room temperature, the surface tension of the \\hbox {SiO}2-40 \\hbox {mol}%\\hbox {Na}2\\hbox {O} and \\hbox {SiO}2-50 \\hbox {mol}%\\hbox {Na}2\\hbox {O} melts was determined at a high temperature. The obtained value was slightly lower than the literature values, which might be due to the influence of viscosity on surface tension measurements being removed in this study.

  19. Use of Pressure-Redistributing Support Surfaces among Elderly Hip Fracture Patients across the Continuum of Care: Adherence to Pressure Ulcer Prevention Guidelines

    Science.gov (United States)

    Baumgarten, Mona; Margolis, David; Orwig, Denise; Hawkes, William; Rich, Shayna; Langenberg, Patricia; Shardell, Michelle; Palmer, Mary H.; McArdle, Patrick; Sterling, Robert; Jones, Patricia S.; Magaziner, Jay

    2010-01-01

    Purpose: To estimate the frequency of use of pressure-redistributing support surfaces (PRSS) among hip fracture patients and to determine whether higher pressure ulcer risk is associated with greater PRSS use. Design and Methods: Patients (n = 658) aged [greater than or equal] 65 years who had surgery for hip fracture were examined by research…

  20. Surface-Induced Near-Field Scaling in the Knudsen Layer of a Rarefied Gas

    Science.gov (United States)

    Gazizulin, R. R.; Maillet, O.; Zhou, X.; Cid, A. Maldonado; Bourgeois, O.; Collin, E.

    2018-01-01

    We report on experiments performed within the Knudsen boundary layer of a low-pressure gas. The noninvasive probe we use is a suspended nanoelectromechanical string, which interacts with He 4 gas at cryogenic temperatures. When the pressure P is decreased, a reduction of the damping force below molecular friction ∝P had been first reported in Phys. Rev. Lett. 113, 136101 (2014), 10.1103/PhysRevLett.113.136101 and never reproduced since. We demonstrate that this effect is independent of geometry, but dependent on temperature. Within the framework of kinetic theory, this reduction is interpreted as a rarefaction phenomenon, carried through the boundary layer by a deviation from the usual Maxwell-Boltzmann equilibrium distribution induced by surface scattering. Adsorbed atoms are shown to play a key role in the process, which explains why room temperature data fail to reproduce it.

  1. Mechanisms of lower body negative pressure-induced syncope

    Science.gov (United States)

    Davrath, Linda Ruble

    Although extensively investigated, the mechanisms of post-spaceflight orthostatic intolerance have not been elucidated. The working hypothesis was that a markedly reduced left ventricular end-systolic volume (LVESV) would be achieved during progressive, presyncopal-limited LBNP and would cause bradycardia and a fall in blood pressure, thus triggering syncope. Eight healthy men, age 25.1 ± 1.3 years, volunteered for the study. Subjects were exposed to graded levels of LBNP on two separate occasions. Changes in left ventricular end-diastolic volume and LVESV were measured, using two-dimensional echocardiography, at each stage of LBNP from rest to presyncope. Plasma venous blood samples were withdrawn at the end of each stage of the LBNP protocol for the measurement of plasma venous catecholamines and plasma renin activity (PRA). Catecholamines were analyzed by HPLC with electro-chemical detection, and PRA was determined by radioimmunoassay. All subjects reached presyncope during the LBNP. LVESV decreased by 28% at presyncope with no evidence of ventricular cavity obliteration. Norepinephrine (NE) increased by 44% from rest to presyncope, but no epinephrine surge was detected (35% increase from rest to presyncope). These data indicate that it is possible to initiate syncope with only a 28% decrease in LVESV, and that sympatho-inhibition and bradycardia are not required elements for syncope to occur. To investigate the effect of moderate sodium restriction on cardiovascular hemodynamics and orthostatic tolerance, presyncopal LBNP testing was performed. Urinary sodium excretion was significantly higher on the normal-sodium diet when compared with the sodium-restricted diet, but urinary potassium was not different. Cumulative stress index (655 ± 460 on normal-sodium diet vs. 639 ± 388 on sodium-restricted diet) scores were not different. Cardiac volumes, blood pressure and total peripheral resistance were not different at any stage of the LBNP between the diets, nor

  2. Oxidation of elemental mercury by chlorine: Gas phase, Surface,and Photo-induced reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

    2004-10-22

    Accurate oxidation rate constants of mercury gas are needed for determining its dispersion and lifetime in the atmosphere. They would also help in developing a technology for the control of mercury emissions from coal-fired power plants. However, it is difficult to establish the accurate rate constants primarily due to the fact that mercury easily adsorbs on solid surface and its reactions can be catalyzed by the surface. We have demonstrated a procedure that allows the determination of gas phase, surface-induced, and photo-induced contributions in the kinetic study of the oxidation of mercury by chlorine gas. The kinetics was studied using reactors with various surface to volume ratios. The effect of the surface and the photo irradiation on the reaction was taken into consideration. The pressure dependent study revealed that the gas phase oxidation was a three-body collision process. The third order rate constant was determined to be 7.5({+-}0.2) x 10{sup -39} mL{sup 2} molecules{sup -2}s{sup -1} with N{sub 2} as the third body at 297 {+-} 1 K. The surface induced reaction on quartz window was second order and the rate constant was 2.7 x 10{sup -17} mL{sup 2} molecules{sup -1} cm{sup -2} sec. Meanwhile, the 253.7 nm photon employed for mercury detection was found to accelerate the reaction. The utilization efficiency of 253.7 nm photon for Hg{sup 0} oxidation was 6.7 x 10{sup -4} molecules photon{sup -1} under the conditions employed in this study.

  3. Non-Newtonian Flow-Induced Deformation From Pressurized Cavities in Absorbing Porous Tissues

    Science.gov (United States)

    Ahmed, Aftab; Siddique, Javed

    2017-11-01

    We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. The absorption in the biological tissue increases as a consequence of flow induced deformation for power law fluids. In most cases non-Newtonian results are compared with viscous fluid case to magnify the differences.

  4. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis

    OpenAIRE

    Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P.; De Geest, Bart

    2017-01-01

    Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher (p < 0.05) in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (h...

  5. Refining femtosecond laser induced periodical surface structures with liquid assist

    International Nuclear Information System (INIS)

    Jiao, L.S.; Ng, E.Y.K.; Zheng, H.Y.

    2013-01-01

    Highlights: ► LIPSS on silicon wafer was made in air and in ethanol environment. ► Ethanol environment produce cleaner surface ripples. ► Ethanol environment decrease spatial wavelength of the LIPSS by 30%. ► More number of pulses produce smaller spatial wavelength in air. ► Number of pulses do not influence spatial wavelength in ethanol environment. - Abstract: Laser induced periodic surface structures were generated on silicon wafer using femtosecond laser. The medium used in this study is both air and ethanol. The laser process parameters such as wavelength, number of pulse, laser fluence were kept constant for both the mediums. The focus of the study is to analyze spatial wavelength. When generating surface structures with air as a medium and same process parameter of the laser, spatial wavelength results showed a 30% increase compared to ethanol. The cleanliness of the surface generated using ethanol showed considerably less debris than in air. The results observed from the above investigation showed that the medium plays a predominant role in the generation of surface structures.

  6. Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure

    Science.gov (United States)

    Ordaz, Irian; Li, Wu

    2013-01-01

    The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.

  7. Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Menard, Etienne; Rogers, John A.; Kim, Seok; Carlson, Andrew

    2016-08-09

    In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.

  8. Surface Modification of Polypropylene Microporous Membrane by Atmospheric-Pressure Plasma Immobilization of N,N-dimethylamino Ethyl Methacrylate

    International Nuclear Information System (INIS)

    Zhong Shaofeng

    2010-01-01

    Surface modification of polypropylene microporous membrane (PPMM) was performed by atmospheric pressure dielectric barrier discharge plasma immobilization of N,N-dimethylamino ethyl methacrylate (DMAEMA). Structural and morphological changes on the membrane surface were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscope (XPS) and field emission scanning electron microscopy (FE-SEM). Water contact angles of the membrane surfaces were also measured by the sessile drop method. Results reveal that both the plasma-treating conditions and the adsorbed DMAEMA amount have remarkable effects on the immobilization degree of DMAEMA. Peroxide determination by 1,1-diphenyl-2-picrvlhydrazyl (DPPH) method verifies the exsistence of radicals induced by plasma, which activize the immobilization reaction. Pure water contact angle on the membrane surface decreased with the increase of DMAEMA immobilization degree, which indicates an enhanced hydrophilicity for the modified membranes. The effects of immobilization degrees on pure water fluxes were also measured. It is shown that pure water fluxes first increased with immobilization degree and then decreased. Finally, permeation of bovine serum albumin (BSA) and lysozyme solution were measured to evaluate the antifouling property of the DMAEMA-modified membranes, from which it is shown that both hydrophilicity and electrostatic repulsion are beneficial for membrane antifouling.

  9. Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification

    International Nuclear Information System (INIS)

    Chen Guangliang; Chen Shihua; Zhou Mingyan; Feng Wenran; Gu Weichao; Yang Size

    2006-01-01

    A novel atmospheric pressure plasma fluidized bed (APPFB) with one liquid electrode was designed, and its preliminary discharge characteristics were studied. The glow discharge in the APPFB was generated by applying a low power with helium (He) gas, and the plasma gas temperature was no higher than 320 K when the applied power was lower than 11 W. The plasma optical emission spectrum (OES) of the gas mixture consisting of He and hexamethyldisiloxane (HMDSO) was recorded by a UV-visible monochromator. The calcium carbonate powders were modified by APPFB using HMDSO in the He plasma. The powder surface energy was decreased greatly by coating an organosilicon polymer onto the powder surface. This surface modification process changed the wettability of the powder from super-hydrophilicity to super-hydrophobicity, and the contact angle of water on the modified powders surface was greater than 160 0

  10. Picosecond laser induced periodic surface structure on copper thin films

    International Nuclear Information System (INIS)

    Huynh, Thi Trang Dai; Petit, Agnès; Semmar, Nadjib

    2014-01-01

    LIPSS (Laser Induced Periodic Surface Structure) formation on copper thin films induced by a picosecond laser beam (Nd:YAG laser at 266 nm, 42 ps and 10 Hz) was studied experimentally. Copper thin films were deposited on glass and silicon substrates by magnetron sputtering. The surface modifications of irradiated zones were analyzed by scanning electron microscopy. Two distinct types of LIPSS were identified with respect to the laser fluence (F), number of laser shots (N) and substrate material. Namely, with a number of laser shots (1000 2 2 ), Low Spatial Frequency LIPSS (LSFL with a spatial period of Λ ∼ 260 nm and an orientation perpendicular to polarization) and High Spatial Frequency LIPSS (HSFL with a spatial period of Λ ∼ 130 nm and an orientation parallel to the polarization) were observed. The regime of regular spikes formation was determined for N ≥ 1000. Moreover, the 2D-map of the relationship among LIPSS formation, laser fluence and number of laser shots on copper thin film with two different substrates was established. A physics interpretation of regular spikes and LIPSS formation on copper thin film induced by ps laser with overlapping multi-shots is proposed based on experimental data and the theory of Plateau-Rayleigh instability.

  11. Simulation of Effective Slip and Drag in Pressure-Driven Flow on Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2016-01-01

    Full Text Available The flow on superhydrophobic surfaces was investigated using finite element modeling (FEM. Surfaces with different textures like grooves, square pillars, and cylinders immersed in liquid forming Cassie state were modeled. Nonslip boundary condition was assumed at solid-liquid interface while slip boundary condition was supposed at gas-liquid interface. It was found that the flow rate can be affected by the shape of the texture, the fraction of the gas-liquid area, the height of the channel, and the driving pressure gradient. By extracting the effective boundary slip from the flow rate based on a model, it was found that the shape of the textures and the fraction of the gas-liquid area affect the effective slip significantly while the height of the channel and the driving pressure gradient have no obvious effect on effective slip.

  12. Quantitative spatial analysis of the mouse brain lipidome by pressurized liquid extraction surface analysis

    DEFF Research Database (Denmark)

    Almeida, Reinaldo; Berzina, Zane; Christensen, Eva Arnspang

    2015-01-01

    Here we describe a novel surface sampling technique termed pressurized liquid extraction surface analysis (PLESA), which in combination with a dedicated high-resolution shotgun lipidomics routine enables both quantification and in-depth structural characterization of molecular lipid species...... extracted directly from tissue sections. PLESA uses a sealed and pressurized sampling probe that enables the use of chloroform-containing extraction solvents for efficient in situ lipid microextraction with a spatial resolution of 400 μm. Quantification of lipid species is achieved by the inclusion...... of internal lipid standards in the extraction solvent. The analysis of lipid microextracts by nanoelectrospray ionization provides long-lasting ion spray which in conjunction with a hybrid ion trap-orbitrap mass spectrometer enables identification and quantification of molecular lipid species using a method...

  13. DPPC Monolayers Exhibit an Additional Phase Transition at High Surface Pressure

    DEFF Research Database (Denmark)

    Shen, Chen; de la Serna, Jorge B.; Struth, Bernd

    2015-01-01

    Pulmonary surfactant forms a monolayer at the air/aqueous interface within the lung. During the breath process, the surface pressure (Π) periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. Pulmonary surfactant consists of ~90......% of lipid with 10% integrated proteins. Among its lipid compounds, di-palmitoyl-phosphatidylcholine (DPPC) dominates (~45wt%). DPPC is the only known lipid that can be compressed to very high surface pressure (~70mN/m) before its monolayer collapses. Most probably, this feature contributes to the mechanical...... stability of the alveoli monolayer. Still, to the best of our knowledge, some details of the compression isotherm presented here and the related structures of the DPPC monolayer were not studied so far. The liquid-expanded/liquid-condensed phase transition of the DPPC monolayer at ~10mN/m is well known...

  14. Atmospheric pressure surface sampling/ionization techniques for direct coupling of planar separations with mass spectrometry.

    Science.gov (United States)

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-06-18

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Expressions to Rayleigh circumferential phase velocity and dispersion relation for a cylindrical surface under mechanical pressure

    Science.gov (United States)

    Sebold, Jean Eduardo; de Lacerda, Luiz Alkimin

    2018-04-01

    This paper describes a substantiated mathematical theory for Rayleigh waves propagated on some types of metal cylinders. More specifically, it presents not only a new way to express the dispersion relation of Rayleigh waves propagated on the cylindrical surface, but also how it can be used to construct a mathematical equation showing that the applied static mechanical pressure affects the shear modulus of the metal cylinder. All steps, required to conclude the process, consider the equation of motion as a function of radial and circumferential coordinates only, while the axial component can be overlooked without causing any problems. Some numerical experiments are done to illustrate the changes in the Rayleigh circumferential phase velocity in a metal cylindrical section due to static mechanical pressure around its external surface.

  16. Interfacial instability induced by lateral vapor pressure fluctuation in bounded thin liquid-vapor layers

    OpenAIRE

    Kanatani, Kentaro

    2008-01-01

    We study an instability of thin liquid-vapor layers bounded by rigid parallel walls from both below and above. In this system, the interfacial instability is induced by lateral vapor pressure fluctuation, which is in turn attributed to the effect of phase change: evaporation occurs at a hotter portion of the interface and condensation at a colder one. The high vapor pressure pushes the interface downward and the low one pulls it upward. A set of equations describing the temporal evolution of ...

  17. Spreading and atomization of droplets on a vibrating surface in a standing pressure field

    Science.gov (United States)

    Deepu, P.; Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan

    2012-10-01

    We report the first observation and analytical model of deformation and spreading of droplets on a vibrating surface under the influence of an ultrasonic standing pressure field. The standing wave allows the droplet to spread, and the spreading rate varies inversely with viscosity. In low viscosity droplets, the synergistic effect of radial acoustic force and the transducer surface acceleration also leads to capillary waves. These unstable capillary modes grow to cause ultimate disintegration into daughter droplets. We find that using nanosuspensions, spreading and disintegration can be prevented by suppressing the development of capillary modes and subsequent break-up.

  18. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Zhang Ruiyun; Pan Xianlin; Jiang Muwen; Peng Shujing; Qiu Yiping

    2012-01-01

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  19. Tactile surface classification for limbed robots using a pressure sensitive robot skin

    International Nuclear Information System (INIS)

    Shill, Jacob J; Collins Jr, Emmanuel G; Coyle, Eric; Clark, Jonathan

    2015-01-01

    This paper describes an approach to terrain identification based on pressure images generated through direct surface contact using a robot skin constructed around a high-resolution pressure sensing array. Terrain signatures for classification are formulated from the magnitude frequency responses of the pressure images. The initial experimental results for statically obtained images show that the approach yields classification accuracies >98%. The methodology is extended to accommodate the dynamic pressure images anticipated when a robot is walking or running. Experiments with a one-legged hopping robot yield similar identification accuracies ≈99%. In addition, the accuracies are independent with respect to changing robot dynamics (i.e., when using different leg gaits). The paper further shows that the high-resolution capabilities of the sensor enables similarly textured surfaces to be distinguished. A correcting filter is developed to accommodate for failures or faults that inevitably occur within the sensing array with continued use. Experimental results show using the correcting filter can extend the effective operational lifespan of a high-resolution sensing array over 6x in the presence of sensor damage. The results presented suggest this methodology can be extended to autonomous field robots, providing a robot with crucial information about the environment that can be used to aid stable and efficient mobility over rough and varying terrains. (paper)

  20. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    Science.gov (United States)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  1. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Directory of Open Access Journals (Sweden)

    Cheng Guo

    2018-02-01

    Full Text Available The sulfur induced embrittlement of polycrystalline nickel (Ni metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC X-ray diffraction (XRD techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  2. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Science.gov (United States)

    Guo, Cheng; Yang, Yan; Tan, Liuxi; Lei, Jialin; Guo, Shengmin; Chen, Bin; Yan, Jinyuan; Yang, Shizhong

    2018-02-01

    The sulfur induced embrittlement of polycrystalline nickel (Ni) metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC) X-ray diffraction (XRD) techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD) simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  3. A prospective, in vivo evaluation of two pressure-redistribution surfaces in healthy volunteers using pressure mapping as a quality control instrument .

    Science.gov (United States)

    Miller, Stephannie; Parker, Michael; Blasiole, Nicole; Beinlich, Nancy; Fulton, Judith

    2013-02-01

    Deep tissue injury (DTI) can rapidly evolve into a higher stage pressure ulcer. Use of pressure-redistribution surfaces is a widely accepted practice for the prevention of pressure ulcers in acute care patients, particularly in departments where care processes limit mobility. A 15-year-old patient developed a sacral DTI 24 hours after completion of a lengthy (12- hour) electrophysiology (EP) study and catheter ablation. A root cause analysis (RCA) conducted to investigate the origin of the hospital-acquired suspected DTI prompted a small investigation to evaluate the pressure-distribution properties of the EP lab surface and an OR table pad. Five healthy adult employee volunteers were evaluated in the supine position by placing a sensing mat between the volunteer and the test surface. Interface pressures (on a scale of 0 mm Hg to 100 mm Hg) were captured after a "settling in" time of 4 minutes, and the number of sensors registering very high pressures (above 90 mm Hg) across the surface were recorded. On the OR table pad, zero to six sensors registered >90 mm Hg compared to two to 20 sensors on the EP lab surface. These data, combined with the acquired DTI, initiated a change in EP lab surfaces. Although interface pressure measurements only provide information about one potential support surface characteristic, it can be helpful during an RCA. Studies to compare the effect of support surfaces in all hospital units on patient outcomes are needed.

  4. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump

    OpenAIRE

    Zhang, Xu; Wang, Pengfei; Ruan, Xiaodong; Xu, Zhongbin; Fu, Xin

    2017-01-01

    The internal flow of reactor coolant pump (RCP) is much more complex than the flow of a general mixed-flow pump due to high temperature, high pressure, and large flow rate. The pressure pulsation that is induced by rotor-stator interaction (RSI) has significant effects on the performance of pump; therefore, it is necessary to figure out the distribution and propagation characteristics of pressure pulsation in the pump. The study uses CFD method to calculate the behavior of the flow. Results s...

  5. Pressure-induced structural change in liquid GaIn eutectic alloy

    DEFF Research Database (Denmark)

    Yu, Q.; Ahmad, A. S.; Ståhl, Kenny

    2017-01-01

    Synchrotron x-ray diffraction reveals a pressure induced crystallization at about 3.4 GPa and a polymorphic transition near 10.3 GPa when compressed a liquid GaIn eutectic alloy up to ~13 GPa at room temperature in a diamond anvil cell. Upon decompression, the high pressure crystalline phase...... remains almost unchanged until it transforms to the liquid state at around 2.3 GPa. The ab initio molecular dynamics calculations can reproduce the low pressure crystallization and give some hints on the understanding of the transition between the liquid and the crystalline phase on the atomic level...

  6. Pressure Overload-Induced Cardiac Hypertrophy Response Requires Janus Kinase 2-Histone Deacetylase 2 Signaling

    Directory of Open Access Journals (Sweden)

    Huang Ying

    2014-11-01

    Full Text Available Pressure overload induces cardiac hypertrophy through activation of Janus kinase 2 (Jak2, however, the underlying mechanisms remain largely unknown. In the current study, we tested whether histone deacetylase 2 (HDAC2 was involved in the process. We found that angiotensin II (Ang-II-induced re-expression of fetal genes (Atrial natriuretic peptide (ANP and brain natriuretic peptide (BNP in cultured cardiomyocytes was prevented by the Jak2 inhibitor AG-490 and HDAC2 inhibitor Trichostatin-A (TSA, or by Jak2/HDAC2 siRNA knockdown. On the other hand, myocardial cells with Jak2 or HDAC2 over-expression were hyper-sensitive to Ang-II. In vivo, pressure overload by transverse aorta binding (AB induced a significant cardiac hypertrophic response as well as re-expression of ANP and BNP in mice heart, which were markedly reduced by AG-490 and TSA. Significantly, AG-490, the Jak2 inhibitor, largely suppressed pressure overload-/Ang-II-induced HDAC2 nuclear exportation in vivo and in vitro. Meanwhile, TSA or HDAC2 siRNA knockdown reduced Ang-II-induced ANP/BNP expression in Jak2 over-expressed H9c2 cardiomyocytes. Together, these results suggest that HDAC2 might be a downstream effector of Jak2 to mediate cardiac hypertrophic response by pressure overload or Ang-II.

  7. The pressure-induced, lactose-dependent changes in the composition and size of casein micelles.

    Science.gov (United States)

    Wang, Pengjie; Jin, Shaoming; Guo, Huiyuan; Zhao, Liang; Ren, Fazheng

    2015-04-15

    The effects of lactose on the changes in the composition and size of casein micelles induced by high-pressure treatment and the related mechanism of action were investigated. Dispersions of ultracentrifuged casein micelle pellets with 0-10% (w/v) lactose were subjected to high pressure (400 MPa) at 20 °C for 40 min. The results indicated that the level of non-sedimentable caseins was positively related to the amount of lactose added prior to pressure treatment, and negatively correlated to the size. A mechanism for the pressure-induced, lactose-dependent changes in the casein micelles is proposed. Lactose inhibits the hydrophobic interactions between the micellar fragments during or after pressure release, through the hydrophilic layer formed by their hydrogen bonds around the micellar fragments. In addition, lactose does not favour the association between calcium and the casein aggregates after pressure release. Due to these two functions, lactose inhibited the formation of larger micelles after pressure treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Surface plasmon polariton-induced hot carrier generation for photocatalysis.

    Science.gov (United States)

    Ahn, Wonmi; Ratchford, Daniel C; Pehrsson, Pehr E; Simpkins, Blake S

    2017-03-02

    Non-radiative plasmon decay in noble metals generates highly energetic carriers under visible light irradiation, which opens new prospects in the fields of photocatalysis, photovoltaics, and photodetection. While localized surface plasmon-induced hot carrier generation occurs in diverse metal nanostructures, inhomogeneities typical of many metal-semiconductor plasmonic nanostructures hinder predictable control of photocarrier generation and therefore reproducible carrier-mediated photochemistry. Here, we generate traveling surface plasmon polaritons (SPPs) at the interface between a noble metal/titanium dioxide (TiO 2 ) heterostructure film and aqueous solution, enabling simultaneous optical and electrochemical interrogation of plasmon-mediated chemistry in a system whose resonance may be continuously tuned via the incident optical excitation angle. To the best of our knowledge, this is the first experimental demonstration of SPP-induced hot carrier generation for photocatalysis. We found electrochemical photovoltage and photocurrent responses as SPP-induced hot carriers drive both solution-based oxidation of methanol and the anodic half-reaction of photoelectrochemical water-splitting in sodium hydroxide solution. A strong excitation angle dependence and linear power dependence in the electrochemical photocurrent confirm that the photoelectrochemical reactions are SPP-driven. SPP-generated hot carrier chemistry was recorded on gold and silver and with two different excitation wavelengths, demonstrating potential for mapping resonant charge transfer processes with this technique. These results will provide the design criteria for a metal-semiconductor hybrid system with enhanced hot carrier generation and transport, which is important for the understanding and application of plasmon-induced photocatalysis.

  9. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    Science.gov (United States)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  10. Inexpensive laser-induced surface modification in bismuth thin films

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A. Reyes [Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca, Ixtlahuaca Kilómetro 15.5, C.P. 50200 Edo. de México (Mexico); Hautefeuille, M., E-mail: mathieu_h@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Exterior S/N, Coyoacán, Ciudad Universitaria, C.P. 04510 D.F. Mexico (Mexico); García, A. Esparza [Fotofísica y Películas Delgadas, Departamento de Tecnociencias, CCADET-UNAM, Circuito exterior s/n C.P. 04510 Cd. Universitaria, D.F. Mexico (Mexico); Mejia, O. Olea [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Unidad El Rosedal, 50200 San Cayetano, Estado de México (Mexico); López, M.A. Camacho [Facultad de Química, Universidad Autónoma del Estado de México, Tollocan s/n, esq. Paseo Colón, Toluca, Estado de México 50110 (Mexico)

    2015-05-01

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  11. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    Science.gov (United States)

    2014-08-01

    Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic by John D Clayton ARL-RP...Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic John D Clayton Weapons and Materials Research Directorate, ARL...and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  12. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  13. Climate Impacts of Fire-Induced Land-Surface Changes

    Science.gov (United States)

    Liu, Y.; Hao, X.; Qu, J. J.

    2017-12-01

    One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.

  14. La Substitution and Pressure Studies on CeCoSi: A Possible Antiferroquadrupolar Ordering Induced by Pressure

    Science.gov (United States)

    Tanida, Hiroshi; Muro, Yuji; Matsumura, Takeshi

    2018-02-01

    The La-substitution and pressure effects on antiferromagnet CeCoSi with a tetragonal crystal structure were investigated in order to clarify the origin of the pressure induced ordered phase (PIOP) with an enormously high transition temperature of T0 ˜ 38 K. By substituting Ce with La, the PIOP shifts to high pressures, and the maximum value of T0 is suppressed, indicating that the PIOP originates from a Ce-Ce interaction. At T0, the magnetic susceptibility exhibits not a cusp, but an increase with decreasing temperature, as is frequently observed in antiferroquadrupolar (AFQ) ordering. Based on these results, we propose that a possible origin of the PIOP is an AFQ ordered phase of Ce-4f electron. Due to the lack of local inversion symmetry at the Ce sites, the AFQ order could be accompanied by odd parity multipolar moments. Since there is no clear evidence of successive transitions below T0, the remaining Kramers degeneracy could be lifted by the Kondo coupling.

  15. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.

    Directory of Open Access Journals (Sweden)

    Ronald Y Kwon

    Full Text Available Interstitial fluid flow (IFF is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of

  16. Aluminum metal surface cleaning and activation by atmospheric-pressure remote plasma

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, J., E-mail: jmespadero@uco.es; Bravo, J.A.; Calzada, M.D.

    2017-06-15

    Highlights: • Atmospheric-pressure postdischarges have been applied on aluminium surfaces. • The outer hydrocarbon layer is reduced by the action of the postdischarge. • The treatment promotes the appearance of hydrophilic OH radicals in the surface. • Effectivity for distances up to 5 cm allows for treating irregular surfaces. • Ageing in air due to the disappearance of OH radicals has been reported. - Abstract: The use of the remote plasma (postdischarge) of argon and argon-nitrogen microwave plasmas for cleaning and activating the surface of metallic commercial aluminum samples has been studied. The influence of the nitrogen content and the distance between the treated samples and the end of the discharge on the hydrophilicity and the surface energy has been analyzed by means of the sessile drop technique and the Owens-Wendt method. A significant increase in the hydrophilicity has been noted in the treated samples, together with an increase in the surface energy from values around 37 mJ/m{sup 2} to 77 mJ/m{sup 2}. Such increase weakly depends on the nitrogen content of the discharge, and the effectivity of the treatment extends to distances up to 5 cm from the end of the discharge, much longer than those reported in other plasma-based treatments. The analysis of the treated samples using X-ray photoelectron spectroscopy reveals that such increase in the surface energy takes place due to a reduction of the carbon content and an increase in the amount of OH radicals in the surface. These radicals tend to disappear within 24–48 h after the treatment when the samples are stored in contact with ambient air, resulting in the ageing of the treated surface and a partial retrieval of the hydrophobicity of the surface.

  17. Cytocompatibility evaluation and surface characterization of TiNi deformed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Awang Shri, Dayangku Noorfazidah, E-mail: AWANGSHRI.Dayangku@nims.go.jp [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Tsuchiya, Koichi [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Yamamoto, Akiko [Biomaterials Unit, International Center for Material Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-01

    Effect of high-pressure torsion (HPT) deformation on biocompatibility and surface chemistry of TiNi was systematically investigated. Ti–50 mol% Ni was subjected to HPT straining for different numbers of turns, N = 0.25, 0.5, 1, 5 and 10 at a rotation speed of 1 rpm. X-ray photoelectron spectroscopy observations after 7 days of cell culture revealed the changes in the surface oxide composition, enrichment of Ti and detection of nitrogen derived from organic molecules in the culture medium. Plating efficiency of L929 cells was slightly increased by HPT deformation though no significant difference was observed. Albumin adsorption was higher in HPT-deformed samples, while vitronectin adsorption was peaked at N = 1. HPT deformation was also found to effectively suppress the Ni ion release from the TiNi samples into the cell culture medium even after the low degree of deformation at N = 0.25. - Highlights: • Nanostructured Ti–50 mol%Ni alloy was produced using high-pressure torsion. • HPT deformation improved L929 growth on TiNi samples. • Changes in surface chemistry were observed in HPT deformed samples. • Protein adsorption behavior was influenced by the surface chemistry. • Ni ion release was suppressed in HPT deformed samples.

  18. Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry

    International Nuclear Information System (INIS)

    Ragni, D; Ashok, A; Van Oudheusden, B W; Scarano, F

    2009-01-01

    The present investigation assesses a procedure to extract the aerodynamic loads and pressure distribution on an airfoil in the transonic flow regime from particle image velocimetry (PIV) measurements. The wind tunnel model is a two-dimensional NACA-0012 airfoil, and the PIV velocity data are used to evaluate pressure fields, whereas lift and drag coefficients are inferred from the evaluation of momentum contour and wake integrals. The PIV-based results are compared to those derived from conventional loads determination procedures involving surface pressure transducers and a wake rake. The method applied in this investigation is an extension to the compressible flow regime of that considered by van Oudheusden et al (2006 Non-intrusive load characterization of an airfoil using PIV Exp. Fluids 40 988–92) at low speed conditions. The application of a high-speed imaging system allows the acquisition in relatively short time of a sufficient ensemble size to compute converged velocity statistics, further translated in turbulent fluctuations included in the pressure and loads calculation, notwithstanding their verified negligible influence in the computation. Measurements are performed at varying spatial resolution to optimize the loads determination in the wake region and around the airfoil, further allowing us to assess the influence of spatial resolution in the proposed procedure. Specific interest is given to the comparisons between the PIV-based method and the conventional procedures for determining the pressure coefficient on the surface, the drag and lift coefficients at different angles of attack. Results are presented for the experiments at a free-stream Mach number M = 0.6, with the angle of attack ranging from 0° to 8°

  19. Absolute local sea surface in the Vanuatu Archipelago from GPS, satellite altimetry and pressure gauge data

    Science.gov (United States)

    Cheng, K. K.; Ballu, V.; Bouin, M.; Calmant, S.; Shum, C.

    2004-12-01

    Water height measurements provided by seafloor tide gauges are a combination of sea level variation and local ground motion. Both signals are of scientific interest, but they must be separated in order to be useful. A reliable estimation of the vertical ground motion is important in very seismically areas such as the Pacific Ocean rim. One promising method to separate the two contributions is to use satellite altimetry which gives absolute water height that is independent of the local ground motion. However, the altimeter data must be calibrated using ground truth measurements. Once different components of the signal are separated, bottom pressure gauges can be used to detect vertical movements of the seafloor. The Vanuatu Archipelago is part of the Pacific "ring of fire", where plates are quickly converging. In this area, movements are very rapid and the seismic activity is intense, which gives a good opportunity to study deformation and seismic cycle. To get an integrate picture of vertical deformation over one plate and between the two plates, one needs to be able to monitor vertical movements on both underwater and emerged areas. We conducted an experiment in this area to compare measurements from bottom pressure gauges located beneath altimetry satellite tracks with sea surface altitude measurements from GPS. Two bottom pressure gauge are immerged since Nov. 1999 in this region. In order to perform absolute calibration for multiple satellite altimeters that overfly the region, we conducted 2 campaigns of GPS measurements of instantaneous sea surface height onboard the R/V Alis and using a GPS buoy. We present results of GPS computations for the March 2003 and March 2004 campaigns. These sea level GPS measurements are compared with multiple altimeter-measured sea surface heights, and sampling differences and high frequency variations were removed using continuous pressure gauge data. The observed discrepancies are likely to be explained by local geoid

  20. Development of an Organosilicon-Based Superhydrophobic/Icephobic Surface Using an Atmospheric Pressure Plasma Jet =

    Science.gov (United States)

    Asadollahi, Siavash

    During the past few decades, plasma-based surface treatment methods have gained a lot of interest in various applications such as thin film deposition, surface etching, surface activation and/or cleaning, etc. Generally, in plasma-based surface treatment methods, high-energy plasma-generated species are utilized to modify the surface structure or the chemical composition of a substrate. Unique physical and chemical characteristics of the plasma along with the high controllability of the process makes plasma treatment approaches very attractive in several industries. Plasma-based treatment methods are currently being used or investigated for a number of practical applications, such as adhesion promotion in auto industry, wound management and cancer treatment in biomedical industry, and coating development in aerospace industry. In this study, a two-step procedure is proposed for the development of superhydrophobic/icephobic coatings based on atmospheric-pressure plasma treatment of aluminum substrates using air and nitrogen plasma. The effects of plasma parameters on various surface properties are studied in order to identify the optimum conditions for maximum coating efficiency against icing and wetting. In the first step, the interactions between air or nitrogen plasma and the aluminum surface are studied. It is shown that by reducing jet-to-substrate distance, air plasma treatment, unlike nitrogen plasma treatment, is capable of creating micro-porous micro-roughened structures on the surface, some of which bear a significant resemblance to the features observed in laser ablation of metals with short and ultra-short laser pulses. The formation of such structures in plasma treatment is attributed to a transportation of energy from the jet to the surface over a very short period of time, in the range of picoseconds to microseconds. This energy transfer is shown to occur through a streamer discharge from the rotating arc source in the jet body to a close proximity of

  1. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas

    2013-01-01

    the mass exchange between compartments. A benchmark test, which is based on a classic experimental data set on infiltration excess (Horton) overland flow, identified a feedback mechanism between surface runoff and soil air pressures. Our study suggests that air compression in soils amplifies surface runoff......This work introduces the soil air system into integrated hydrology by simulating the flow processes and interactions of surface runoff, soil moisture and air in the shallow subsurface. The numerical model is formulated as a coupled system of partial differential equations for hydrostatic (diffusive...... wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...

  2. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  3. Pressure induced by the interaction of water waves with nearly equal frequencies and nearly opposite directions

    Directory of Open Access Journals (Sweden)

    L. Pellet

    2017-05-01

    Full Text Available We present second-order expressions for the free-surface elevation, velocity potential and pressure resulting from the interaction of surface waves in water of arbitrary depth. When the surface waves have nearly equal frequencies and nearly opposite directions, a second-order pressure can be felt all the way to the sea bottom. There are at least two areas of applications: reflective structures and microseisms. Microseisms generated by water waves in the ocean are small vibrations of the ground resulting from pressure oscillations associated with the coupling of ocean surface gravity waves and the sea floor. They are recorded on land-based seismic stations throughout the world and they are divided into primary and secondary types, as a function of spectral content. Secondary microseisms are generated by the interaction of surface waves with nearly equal frequencies and nearly opposite directions. The efficiency of microseism generation thus depends in part on ocean wave frequency and direction. Based on the second-order expressions for the dynamic pressure, a simple theoretical analysis that quantifies the degree of nearness in amplitude, frequency, and incidence angle, which must be reached to observe the phenomenon, is presented.

  4. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-01-01

    Full Text Available The internal flow of reactor coolant pump (RCP is much more complex than the flow of a general mixed-flow pump due to high temperature, high pressure, and large flow rate. The pressure pulsation that is induced by rotor-stator interaction (RSI has significant effects on the performance of pump; therefore, it is necessary to figure out the distribution and propagation characteristics of pressure pulsation in the pump. The study uses CFD method to calculate the behavior of the flow. Results show that the amplitudes of pressure pulsation get the maximum between the rotor and stator, and the dissipation rate of pressure pulsation in impellers passage is larger than that in guide vanes passage. The behavior is associated with the frequency of pressure wave in different regions. The flow rate distribution is influenced by the operating conditions. The study finds that, at nominal flow, the flow rate distribution in guide vanes is relatively uniform and the pressure pulsation amplitude is the smallest. Besides, the vortex shedding or backflow from the impeller blade exit has the same frequency as pressure pulsation but there are phase differences, and it has been confirmed that the absolute value of phase differences reflects the vorticity intensity.

  5. Effects of low-pressure nitrogen plasma treatment on the surface properties and electrochemical performance of the polyethylene separator used lithium-ion batteries

    Science.gov (United States)

    Li, Chun; Li, Hsiao-Ling; Li, Chi-Heng; Liu, Yu-Shuan; Sung, Yu-Ching; Huang, Chun

    2018-01-01

    In this paper, we describe the surface transition of the polyethylene (PE) separator used in lithium-ion batteries treated by low-pressure nitrogen plasma discharge. The nitrogen-plasma-treated PE separator was characterized by contact angle measurement, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical performance of the lithium ion batteries fabricated with the nitrogen-plasma-treated separator was also evaluated. Results showed that polar functionalization groups were induced on the PE surface by the nitrogen plasma discharge, causing the surface to become hydrophilic. The increases in surface wettability and surface free energy result in electrolyte retention improvement. Moreover, the nitrogen plasma-treated PE separator leads to superior performance in lithium-ion battery assembly.

  6. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Zheng Peichao; Liu Keming; Wang Jinmei; Dai Yu; Yu Bin; Zhou Xianju; Hao Honggang; Luo Yuan

    2012-01-01

    Highlights: ► Equipment called water cathode atmospheric pressure glow discharge was used to improve the hydrophilicity of polyimide films. ► The data shows good homogeneity and the variation trends of contact angles are different for polar and non-polar testing liquids. ► The thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. ► Surface hydrophilicity after plasma treatment is improved partly due to the increase in the roughness. ► The hydrophilicity of polyimide films is still better than untreated ones after long-term storage. - Abstract: The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the

  7. Effect of nanoscale surface texture on the contact-pressure-dependent conduction characteristics of a carbon-nanotube thin-film tactile pressure sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chaehyun; Lee, Kunhak; Choi, Eunsuk; Kim, Ahsung; Kim, Jinoh; Lee, Seungbeck [Hanyang University, Seoul (Korea, Republic of)

    2011-01-15

    We report on a novel tactile pressure sensor structure that transfers the vertical pressure applied to the sample's surface to lateral strain in the carbon-nanotube thin film embedded in an elastomer by using a 'wavy' structured substrate contact surface. When pressure was applied to the poly(dimethylsiloxane) (PDMS) surface, it was transferred to a carbon-nanotube thin film (CNTF) underneath, where it stretched to conform to the wavy substrate surface. This resulted in an elongation, or lateral strain, in the CNTF layer, their reducing its conductance. The measurements showed that with an applied vertical pressure of 30 kPa, a 15% reduction in conductance was achieved with only a 500-nm deflection in the CNTF, and repeatedly applied pressures for 3,600 cycles (12 hours) resulted in only a 2% reduction in sensitivity, demonstrating the their film's high sensitivity and reliability. The mechanical stability and high sensitivity of the CNTF/PDMS hybrid with wavy substrate structures may make possible applications to future tactile pressure sensors.

  8. Surface transition on ice induced by the formation of a grain boundary.

    Directory of Open Access Journals (Sweden)

    Christian Pedersen

    Full Text Available Interfaces between individual ice crystals, usually referred to as grain boundaries, play an important part in many processes in nature. Grain boundary properties are, for example, governing the sintering processes in snow and ice which transform a snowpack into a glacier. In the case of snow sintering, it has been assumed that there are no variations in surface roughness and surface melting, when considering the ice-air interface of an individual crystal. In contrast to that assumption, the present work suggests that there is an increased probability of molecular surface disorder in the vicinity of a grain boundary. The conclusion is based on the first detailed visualization of the formation of an ice grain boundary. The visualization is enabled by studying ice crystals growing into contact, at temperatures between -20°C and -15°C and pressures of 1-2 Torr, using Environmental Scanning Electron Microscopy. It is observed that the formation of a grain boundary induces a surface transition on the facets in contact. The transition does not propagate across facet edges. The surface transition is interpreted as the spreading of crystal dislocations away from the grain boundary. The observation constitutes a qualitatively new finding, and can potentially increase the understanding of specific processes in nature where ice grain boundaries are involved.

  9. Significance of Shrinkage Induced Clamping Pressure in Fiber-Matrix Bonding in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    used in high performance cementitious composite materials.Assuming a Coulomb type of friction on the fiber/matrix interface andusing typical values for the frictional coefficient it is shownthat the shrinkage induced clamping pressure could be one of the mostimportant factors determining the frictional...

  10. Effects of external fields, dimension and pressure on the electromagnetically induced transparency of quantum dots

    International Nuclear Information System (INIS)

    Vaseghi, B.; Mohebi, N.

    2013-01-01

    Effects of external electric and magnetic fields, dimension and pressure on the electromagnetically induced transparency of a pumped-probe GaAs quantum dot are investigated. To study the electromagnetically induced transparency, the probe absorption and group velocity along with refractive index of the medium are discussed. It is found that electromagnetically induced transparency occurs in the system and its frequency, transparency window and group velocity of the probe field strongly depend on the external fields, pressure and the dot size. Significant effects of external factors on the quantum dot structures have the potential applications for implementation of electromagnetically induce transparency, slow lights, optical switches and quantum information storages. - Highlights: ► Sub-band energy states of a spherical QD are used to study the EIT. ► EIT strongly depends on the external fields, dimension and pressure. ► GI of a pulse strongly depends on the external fields, dimension and pressure. ► The production and controlling EIT and GI in QDs can be used for real applications.

  11. Utilizing High Pressure Processing to Induce Structural Changes in Dairy and Meat Products

    DEFF Research Database (Denmark)

    Orlien, Vibeke

    2017-01-01

    . In this article the HP modification of milk and meat proteins is evaluated in relation to the changed molecular functionality and product texture. The underlying mechanisms of the pressure-induced molecular changes are surveyed and related to practical applications in the view of HP-produced milk and meat...

  12. The enhanced interface effect induced by thermal pressure in Nd0 ...

    Indian Academy of Sciences (India)

    The enhanced interface effect induced by thermal pressure in. Nd0.7Sr0.3MnOy ceramics. SHUNSHENG CHEN1,2, DAWEI SHI2, SHAOZHEN LI1, CHANGPING YANG2,∗ and. YALI ZHANG3. 1Institute for Quantum Materials and School of Mathematics and Physics, Hubei Polytechnic University,. Huangshi 435003, PR ...

  13. High pressure induced changes in beef muscle proteome: correlation with quality parameters.

    Science.gov (United States)

    Marcos, Begonya; Mullen, Anne Maria

    2014-05-01

    The relationship between pressure induced changes on individual proteins and selected quality parameters in bovine longissimus thoracis et lumborum (LTL) muscle was studied. Pressures ranging from 200 to 600 MPa at 20°C were used. High pressure processing (HPP) at pressures above 200 MPa induced strong modifications of protein solubility, meat colour and water holding capacity (WHC). The protein profiles of non-treated and pressure treated meat were observed using two dimensional electrophoresis. Proteins showing significant differences in abundance among treatments were identified by mass spectrometry. Pressure levels above 200 MPa strongly modified bovine LTL proteome with main effects being insolubilisation of sarcoplasmic proteins and solubilisation of myofibrillar proteins. Sarcoplasmic proteins were more susceptible to HPP effects than myofibrillar. Individual protein changes were significantly correlated with protein solubility, L, b and WHC, providing further insights into the mechanistic processes underlying HPP influence on quality and providing the basis for the future development of protein markers to assess the quality of processed meats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Study of discharges produced by surface waves under medium and high pressure: application to chemical analysis

    International Nuclear Information System (INIS)

    Laye epouse Granier, Agnes

    1986-01-01

    This report deals with the study of microwave discharges produced in argon gas by surface waves in the 20-760 Torr pressure range. Application to chemical analysis by emission optical spectroscopy is also investigated. First of all we study the propagation of a surface wave in a bounded plasma in which the effective collision frequency for momentum transfer ν is higher than the excitation one. The axial electron density profile is determined from two diagnostic techniques, i.e., phase variations of the wave field and Stark broadening of H β line. Then we deduce the discharge characteristics ν, θ (maintaining power of an electron-ion pair) and E eff (effective electric field for discharge sustaining) from the electron density profile. Then an energy balance of the discharge is developed. It explains the change of operating conditions in the 20-50 Torr range. At low pressure the discharge is governed by ambipolar diffusion whereas at high pressure, the electrons are mainly lost by volume recombination of Ar 2 + . Finally, we report on chemical analysis experiment of gases (optimum sensibility in found near 100 Torr) and of metallic solutions sprayed by a graphite oven. Performances of such a design and ICP plasma torches are compared. (author) [fr

  15. Capillary pressure in a porous medium with distinct pore surface and pore volume fractal dimensions.

    Science.gov (United States)

    Deinert, M R; Dathe, A; Parlange, J-Y; Cady, K B

    2008-02-01

    The relationship between capillary pressure and saturation in a porous medium often exhibits a power-law dependence. The physical basis for this relation has been substantiated by assuming that capillary pressure is directly related to the pore radius. When the pore space of a medium exhibits fractal structure this approach results in a power-law relation with an exponent of 3-D(v), where D(v) is the pore volume fractal dimension. However, larger values of the exponent than are realistically allowed by this result have long been known to occur. Using a thermodynamic formulation for equilibrium capillary pressure we show that the standard result is a special case of the more general exponent (3-D(v))(3-D(s)) where D(s) is the surface fractal dimension of the pores. The analysis reduces to the standard result when D(s)=2, indicating a Euclidean relationship between a pore's surface area and the volume it encloses, and allows for a larger value for the exponent than the standard result when D(s)>2 .

  16. On the stability of the CO adsorption-induced and self-organized CuPt surface alloy

    DEFF Research Database (Denmark)

    Andersson, Klas Jerker; Chorkendorff, Ib

    2010-01-01

    The stability of the recently discovered CO-induced and self-organized CuPt surface alloy was explored at near ambient pressures of O-2 (200 mbar) at room temperature, in a CO + H-2 mix (P-tot = 220 mbar, 4% CO) from room temperature to 573 K, as well as in a CO + H2O mix (P-tot = 17 mbar, 50% CO...

  17. Surface-Induced Hybridization between Graphene and Titanium

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Allen L. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Koch, Roland J. [Technische Universitat, Chemnitz (Germany); Ong, Mitchell T. [Stanford Univ., CA (United States); Fang, Wenjing [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Hofmann, Mario [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Kim, Ki Kang [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Seyller, Thomas [Technische Universitat, Chemnitz (Germany); Dresselhaus, Mildred S. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Reed, Evan J. [Stanford Univ., CA (United States); Kong, Jing [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Palacios, Tomás [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-08-26

    Carbon-based materials such as graphene sheets and carbon nanotubes have inspired a broad range of applications ranging from high-speed flexible electronics all the way to ultrastrong membranes. However, many of these applications are limited by the complex interactions between carbon-based materials and metals. In this work, we experimentally investigate the structural interactions between graphene and transition metals such as palladium (Pd) and titanium (Ti), which have been confirmed by density functional simulations. We find that the adsorption of titanium on graphene is more energetically favorable than in the case of most metals, and density functional theory shows that a surface induced p-d hybridization occurs between atomic carbon and titanium orbitals. This strong affinity between the two materials results in a short-range ordered crystalline deposition on top of graphene as well as chemical modifications to graphene as seen by Raman and X-ray photoemission spectroscopy (XPS). This induced hybridization is interface-specific and has major consequences for contacting graphene nanoelectronic devices as well as applications toward metal-induced chemical functionalization of graphene.

  18. Homemade-device-induced negative pressure promotes wound healing more efficiently than VSD-induced positive pressure by regulating inflammation, proliferation and remodeling.

    Science.gov (United States)

    Liu, Jinyan; Hu, Feng; Tang, Jintian; Tang, Shijie; Xia, Kun; Wu, Song; Yin, Chaoqi; Wang, Shaohua; He, Quanyong; Xie, Huiqing; Zhou, Jianda

    2017-04-01

    Vacuum sealing drainage (VSD) is an effective technique used to promote wound healing. However, recent studies have shown that it exerts positive pressure (PP) rather than negative pressure (NP) on skin. In this study, we created a homemade device that could maintain NP on the wound, and compared the therapeutic effects of VSD-induced PP to those of our homemade device which induced NP on wound healing. The NP induced by our device required less time for wound healing and decreased the wound area more efficiently than the PP induced by VSD. NP and PP both promoted the inflammatory response by upregulating neutrophil infiltration and interleukin (IL)‑1β expression, and downregulating IL‑10 expression. Higher levels of epidermal growth factor (EGF), transforming growth factor (TGF)‑β and platelet-derived growth factor (PDGF), and lower levels of basic fibroblast growth factor (bFGF) were observed in the wound tissue treated with NP compared to the wound tissue exposed to PP. Proliferation in the wound tissue exposed to NP on day 10 was significantly higher than that in wound tissue exposed to PP. NP generated more fibroblasts, keratinized stratified epithelium, and less epithelia with stemness than PP. The levels of ccollagen Ⅰ and Ⅲ were both decreased in both the NP and PP groups. NP induced a statistically significant increase in the expression of fibronectin (FN) on days 3 and 10 compared to PP. Furthermore, the level of matrix metalloproteinase (MMP)‑13 increased in the NP group, but decreased in the PP group on day 3. NP also induced a decrease in the levels of tissue inhibitor of metalloproteinase (TIMP)‑1 and TIMP‑2 during the early stages of wound healing, which was significantly different from the increasing effect of PP on TIMP‑1 and TIMP‑2 levels at the corresponding time points. On the whole, our data indicate that our homemade device which induced NP, was more efficient than VSD‑induced PP on wound healing by

  19. Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability.

    Science.gov (United States)

    Lee, Kilsoo; Lee, Jaehong; Kim, Gwangmook; Kim, Youngjae; Kang, Subin; Cho, Sungjun; Kim, SeulGee; Kim, Jae-Kang; Lee, Wooyoung; Kim, Dae-Eun; Kang, Shinill; Kim, DaeEun; Lee, Taeyoon; Shim, Wooyoung

    2017-11-01

    Fabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes. This study utilizes a writing activity with a pencil and paper, which enables the construction of a fundamental capacitor that can be used as a flexible capacitive pressure sensor with high pressure sensitivity and short response time and that it can be inexpensively fabricated over large areas. Furthermore, the paper-based pressure sensors are integrated into a fully functional 3D touch-pad device, which is a step toward the realization of omnipresent electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of

  1. Pressure-Induced Polymerization of Acetylene: Structure-Directed Stereoselectivity and a Possible Route to Graphane.

    Science.gov (United States)

    Sun, Jiangman; Dong, Xiao; Wang, Yajie; Li, Kuo; Zheng, Haiyan; Wang, Lijuan; Cody, George D; Tulk, Christopher A; Molaison, Jamie J; Lin, Xiaohuan; Meng, Yufei; Jin, Changqing; Mao, Ho-Kwang

    2017-06-01

    Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Following this route produces a pure cis-isomer and more surprisingly, predicts that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Modelling the pressurization induced by solar radiation on above ground installations of LPG pipeline systems

    Science.gov (United States)

    Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Polonara, F.; Corvaro, F.; Cocci Grifoni, R.

    2017-11-01

    Pipelining Liquefied Petroleum Gas (LPG) is a mode of LPG transportation more environmentally-friendly than others due to the lower energy consumption and exhaust emissions. Worldwide, there are over 20000 kilometers of LPG pipelines. There are a number of codes that industry follows for the design, fabrication, construction and operation of liquid LPG pipelines. However, no standards exist to modelling particular critical phenomena which can occur on these lines due to external environmental conditions like the solar radiation pressurization. In fact, the solar radiation can expose above ground pipeline sections at pressure values above the maximum Design Pressure with resulting risks and problems. The present work presents an innovative practice suitable for the Oil & Gas industry to modelling the pressurization induced by the solar radiation on above ground LPG pipeline sections with the application to a real case.

  3. Significance of Shrinkage Induced Clamping Pressure in Fiber-Matrix Bonding in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    used in high performance cementitious composite materials.Assuming a Coulomb type of friction on the fiber/matrix interface andusing typical values for the frictional coefficient it is shownthat the shrinkage induced clamping pressure could be one of the mostimportant factors determining the frictional......The present paper accesses the significance of shrinkage inducedclamping pressure in fiber/matrix bonding mechanisms incementitious composite materials. The paper contains a description of an experimental setup whichallows mbox{measurement} of the clamping pressure which develops on anelastic...... inhomogeneity embedded in a matrix consisting of acementitious material undergoing shrinkage during hydration(autogenous shrinkage). Furthermore, the paperpresents the analysis necessary to perform an interpretation of the experimental results and which allows for thedetermination of the clamping pressure...

  4. Surface reconstruction of GaAs(001) nitrided under the controlled As partial pressure [rapid communication

    Science.gov (United States)

    Imayoshi, Takahiro; Oigawa, Haruhiro; Shigekawa, Hidemi; Tokumoto, Hiroshi

    2003-08-01

    Under the controlled As partial pressure, the nitridation process of GaAs(0 0 1)-(2 × 4) surface was studied using a scanning tunneling microscope (STM) combined with an electron cyclotron resonance plasma-assisted molecular beam epitaxy system. With either prolonging the nitridation time or decreasing the As partial pressure, the previously reported (3 × 3) structure with two dimers per surface cell ((3 × 3)-2D) was found to progressively convert into a new (3 × 3) structure characterized by one dimer per surface cell ((3 × 3)-1D). Reversely the exposure to arsenic transformed the structure from (3 × 3)-1D to (3 × 3)-2D, suggesting that the topmost layer is composed of As 2-dimers. Based on these STM images together with the X-ray photoelectron spectroscopy data, we propose the new As 2-dimer coverage models to explain both (3 × 3)-1D and -2D structures involving the exchange reaction of arsenic with nitrogen in the subsurface region of GaAs.

  5. FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

    Directory of Open Access Journals (Sweden)

    GYUN-HO GIM

    2014-10-01

    Full Text Available In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI. The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency of pump, and fluid-structure interaction.

  6. Static Air Support Surfaces to Prevent Pressure Injuries: A Multicenter Cohort Study in Belgian Nursing Homes.

    Science.gov (United States)

    Serraes, Brecht; Beeckman, Dimitri

    2016-01-01

    The aim of this study was to investigate the incidence and risk factors for developing pressure injuries (PIs) in patients placed on a static air support surfaces: mattress overlay, heel wedge, and seat cushion. Multicenter cohort study. The sample comprised 176 residents; their mean age was 87 (SD = 6.76) years; their mean Braden Scale score was 14 (SD = 2.54). The study was performed on a convenience sample of 6 nursing homes in Belgium. Data were collected on 23 care units. The primary outcome measure, cumulative PI incidence (category [stage] II-IV) over a 30-day observation period, was calculated. Pressure injury occurrence was defined according to the 2014 European and US National Pressure Injury Advisory panels, Pan Pacific Pressure Injury Alliance classification system. The PI incidence for category (stage) II-IV was 5.1%. Six residents (3.4%) developed a category II PI, and 3 (1.7%) developed a category III PI; no category IV ulcers occurred. No significant risk factors for category II-IV PIs were identified using multivariate logistic regression. Time of sitting in a chair was found to be a risk factor for development of nonblanchable erythema (category I PI) (odds ratio = 21.608; 95% confidence interval [CI], 20.510-22.812; P = .013). The median time to develop a category II-IV PI was 16 days (interquartile range = 2-26). The interrater reliability between the observations of the researcher and nurses on-site was almost perfect (0.86; 95% CI, 0.81-0.91). We found a low incidence of PIs when using a static air overlay mattress for patients at risk in a nursing home population. Static air support surfaces, alongside patient-tailored patient repositioning protocols, should be considered to prevent PIs in this patient population.

  7. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    Science.gov (United States)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  8. Pressure-induced phase transitions in acentric BaHf(BO{sub 3}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Szymborska-Małek, Katarzyna [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Sousa Pinheiro, Gardenia de [Departamento de Física, Universidade Federal do Piauí, Teresina, PI 64049-550 (Brazil); Cavalcante Freire, Paulo Tarso [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza CE-60455-970 (Brazil); Majchrowski, Andrzej [Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warszawa (Poland)

    2015-08-15

    High-pressure Raman scattering studies revealed that BaHf(BO{sub 3}){sub 2} is more compressible than calcite-type orthoborates and calcite, aragonite or dolomite carbonates. It undergoes a first-order reversible pressure-induced phase transition in the 3.9–4.4 GPa pressure range. Second structural change is observed at 9.2 GPa. The intermediate phase is most likely trigonal. However, Raman results suggest increase in the number of distinct BO{sub 3} groups from two in the ambient pressure phase to at least three in the intermediate phase. This intermediate phase is also strongly compressible and strong pressure dependence of the lattice modes proves that the main changes under pressure occur within the layers built from BaO{sub 6} and HfO{sub 6} octahedra. The second phase transition leads most likely to lowering of the trigonal symmetry, as evidenced by significant increase of the number of observed bands. The pressure coefficients of the Raman bands of the high-pressure phase are relatively small, suggesting more dense arrangement of the metal–oxygen polyhedra and BO{sub 3} groups in this phase. It is worth noting that the high-pressure phase was not reached in the second compression experiment up to 10 GPa. This behavior can be most likely attributed to worse hydrostatic conditions of the first experiment. - Graphical abstract: Raman spectra of BaHf(BO{sub 3}){sub 2} recorded at different pressures during compression showing onset of pressure-induced phase transitions. - Highlights: • High-pressure Raman spectra were measured for BaHf(BO{sub 3}){sub 2.} • BaHf(BO{sub 3}){sub 2} undergoes a reversible first-order phase transition at 3.9–4.4 GPa into a trigonal phase. • The intermediate trigonal phase is strongly compressible second structural transformation is observed at 9.2 GPa under non-perfect hydrostatic conditions.

  9. Laser Induced Fluorescence Measurements in a Hall Thruster Plume as a Function of Background Pressure

    Science.gov (United States)

    Spektor, R.; Tighe, W. G.; Kamhawi, H.

    2016-01-01

    A set of Laser Induced Fluorescence (LIF) measurements in the near-field region of the NASA- 173M Hall thruster plume is presented at four background pressure conditions varying from 9.4 x 10(exp -6) torr to 3.3 x 10(exp -5) torr. The xenon ion velocity distribution function was measured simultaneously along the axial and radial directions. An ultimate exhaust velocity of 19.6+/-0.25 km/s achieved at a distance of 20 mm was measured, and that value was not sensitive to pressure. On the other hand, the ion axial velocity at the thruster exit was strongly influenced by pressure, indicating that the accelerating electric field moved inward with increased pressure. The shift in electric field corresponded to an increase in measured thrust. Pressure had a minor effect on the radial component of ion velocity, mainly affecting ions exiting close to the channel inner wall. At that radial location the radial component of ion velocity was approximately 1000 m/s greater at the lowest pressure than at the highest pressure. A reduction of the inner magnet coil current by 0.6 A resulted in a lower axial ion velocity at the channel exit while the radial component of ion velocity at the channel inner wall location increased by 1300 m/s, and at the channel outer wall location the radial ion velocity remained unaffected. The ultimate exhaust velocity was not significantly affected by the inner magnet current.

  10. Investigation of surface treatment of conductive wire in cylindrical atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Ye Rubin; Kagohashi, Tsutomu; Zheng Wei

    2009-01-01

    Polyethylene insulated electric wire was treated in He and Ar dielectric barrier discharge atmospheric pressure plasmas generated in a quartz tube wound with tubular electrodes. The wire was put penetrating through the high voltage and the grounded electrodes, improving the discharge and facilitating uniform surface treatment. In this work, the influences of conductivity of the wire on the effects of surface treatment and discharge behavior were investigated. Surface properties of the wire samples were analyzed by means of surface energy measurement and X-ray photoelectron spectroscopy. In order to reveal the mechanism for treating the conductive wire, I-V discharge waveforms were measured and time-resolved plasma images were taken. It was demonstrated that the conductive wire was involved in the discharge process, reducing the breakdown voltage significantly and enhancing the discharge. It shows that the discharge mode was strongly dependent on the conductivity of a wire. Intensive surface discharges developed along the conductive wire were found to be mainly responsible for noticeable improvement in the treatment effect.

  11. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  12. Hydrophilic film polymerized on the inner surface of PMMA tube by an atmospheric pressure plasma jet

    Science.gov (United States)

    Yin, Mengmeng; Huang, Jun; Yu, Jinsong; Chen, Guangliang; Qu, Shanqing

    2017-07-01

    Polymethyl methacrylate (PMMA) tube is widely used in biomedical and mechanical engineering fields. However, it is hampered for some special applications as the inner surface of PMMA tube exhibts a hydrophobic characteristic. The aim of this work is to explore the hydrophilic modification of the inner surface of the PMMA tubes using an atmospheric pressure plasma jet (APPJ) system that incorporates the acylic acid monomer (AA). Polar groups were grafted onto the inner surface of PMMA tube via the reactive radicals (•OH, •H, •O) generated in the Ar/O2/AA plasma, which were observed by the optical emission spectroscopy (OES). The deposition of the PAA thin layer on the PMMA surface was verified through the ATR-FTIR spectra, which clearly showed the strengthened stretching vibration of the carbonyl group (C=O) at 1700 cm-1. The XPS data show that the carbon ratios of C-OH/R and COOH/R groups increased from 9.50% and 0.07% to 13.49% and 17.07% respectively when a discharge power of 50 W was used in the APPJ system. As a result, the static water contat angle (WCA) of the modified inner surface of PMMA tube decreased from 100° to 48°. Furthermore, the biocompatibility of the APP modified PMMA tubes was illustrated by the study of the adhesion of the cultured MC3T3-E1 osteocyte cells, which exhibted a significantly enhanced adhesion density.

  13. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  14. [Measurements of surface ocean carbon dioxide partial pressure during WOCE]. Summary of research progress

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This paper discusses the research progress of the second year of research under ``Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE`` and proposes to continue measurements of underway pCO{sub 2}. During most of the first year of this grant, our efforts to measure pCO{sub 2} on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO{sub 2} in air and surface seawater indicate air-sea equilibrium.

  15. Post effect of repetitive exposures to pressure nitrogen-induced narcosis on the dopaminergic activity at atmospheric pressure.

    Science.gov (United States)

    Lavoute, C; Weiss, M; Sainty, J M; Risso, J J; Rostain, J C

    2008-01-01

    Nitrogen at pressure produces a neurological syndrome called nitrogen narcosis. Neurochemical experiments indicated that a single exposure to 3 MPa of nitrogen reduced the concentration of dopamine by 20% in the striatum, a structure involved in the control of extrapyramidal motor activity. This effect of nitrogen was explained by enhanced GABAergic neurotransmission through GABAA receptors and, to a lesser extent, by a decreased glutamatergic input to DA cells through NMDA receptors. The aim of this study was to study, under normobaric conditions, possible alterations of NMDA receptor activity in the substantia nigra pars compacta (SNc) induced by repetitive exposures to nitrogen pressure. Under general anesthesia, male Sprague-Dawley rats were implanted in the striatum with multifiber carbon dopamine-sensitive electrodes and in the SNc with guide cannulae for drug injections. After recovery from surgery, the striatal dopamine level was recorded by voltammetry in freely-moving rats, in normobaric conditions, before and after 5 repetitive exposures to 1MPa of nitrogen (threshold of nitrogen narcosis occurrence in rat). The effect of NMDA receptor activity on DA concentration was investigated using agonist (NMDA) and specific antagonist (AP7) SNc administration. Following repetitive nitrogen exposures, the ability of NMDA to elevate DA concentrations was enhanced. In contrast, after nitrogen exposure AP7 produced a paradoxical increase in DA concentration compared to its inhibitory effect before any exposure. Similar responses were obtained after a single exposure to 3MPa nitrogen. Thus, repetitive exposures to nitrogen narcosis produced a sensitization of postsynaptic NMDA receptors on DA cells, related to a decreased glutamatergic input in SNc. Consequently, successive nitrogen narcosis exposures disrupted ion-channel receptor activity revealing a persistent nitrogen-induced neurochemical change underlying the pathologic process.

  16. Study on the reforming of alcohols in a surface wave discharge (SWD) at atmospheric pressure

    International Nuclear Information System (INIS)

    Jimenez, M; Yubero, C; Calzada, M D

    2008-01-01

    Surface wave plasma at atmospheric pressure has been used to produce the decomposition of the alcohol molecules introduced into it, in order to obtain hydrogen. Four alcohols, methanol, ethanol, propanol and butanol, have been used for this purpose. Optical emission spectroscopy was the tool used to analyse the radiation emitted by the plasma. Hydrogen atoms and other species such as C 2 and CH in alcohols have been detected but no CO molecular bands. Also, a mass spectrometer has been used in order to detect molecular hydrogen production in methanol decomposition

  17. Functionalized Surface Geometries Induce: “Bone: Formation by Autoinduction”

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2018-02-01

    Full Text Available The induction of tissue formation, and the allied disciplines of tissue engineering and regenerative medicine, have flooded the twenty-first century tissue biology scenario and morphed into high expectations of a fulfilling regenerative dream of molecularly generated tissues and organs in assembling human tissue factories. The grand conceptualization of deploying soluble molecular signals, first defined by Turing as forms generating substances, or morphogens, stemmed from classic last century studies that hypothesized the presence of morphogens in several mineralized and non-mineralized mammalian matrices. The realization of morphogens within mammalian matrices devised dissociative extractions and chromatographic procedures to isolate, purify, and finally reconstitute the cloned morphogens, found to be members of the transforming growth factor-β (TGF-β supergene family, with insoluble signals or substrata to induce de novo tissue induction and morphogenesis. Can we however construct macroporous bioreactors per se capable of inducing bone formation even without the exogenous applications of the osteogenic soluble molecular signals of the TGF-β supergene family? This review describes original research on coral-derived calcium phosphate-based macroporous constructs showing that the formation of bone is independent of the exogenous application of the osteogenic soluble signals of the TGF-β supergene family. Such signals are the molecular bases of the induction of bone formation. The aim of this review is to primarily describe today's hottest topic of biomaterials' science, i.e., to construct and define osteogenetic biomaterials' surfaces that per se, in its own right, do initiate the induction of bone formation. Biomaterials are often used to reconstruct osseous defects particularly in the craniofacial skeleton. Edentulism did spring titanium implants as tooth replacement strategies. No were else that titanium surfaces require functionalized

  18. Use of Pressure-Redistributing Support Surfaces Among Elderly Hip Fracture Patients Across the Continuum of Care: Adherence to Pressure Ulcer Prevention Guidelines

    OpenAIRE

    Baumgarten, Mona; Margolis, David; Orwig, Denise; Hawkes, William; Rich, Shayna; Langenberg, Patricia; Shardell, Michelle; Palmer, Mary H.; McArdle, Patrick; Sterling, Robert; Jones, Patricia S.; Magaziner, Jay

    2009-01-01

    Purpose: To estimate the frequency of use of pressure-redistributing support surfaces (PRSS) among hip fracture patients and to determine whether higher pressure ulcer risk is associated with greater PRSS use. Design and Methods: Patients (n = 658) aged ≥65 years who had surgery for hip fracture were examined by research nurses at baseline and on alternating days for 21 days. Information on PRSS use and pressure ulcer risk factors was recorded at each assessment visit. Other information was o...

  19. Ventilator-induced central venous pressure variation can predict fluid responsiveness in post-operative cardiac surgery patients

    NARCIS (Netherlands)

    Cherpanath, T. G. V.; Geerts, B. F.; Maas, J. J.; de Wilde, R. B. P.; Groeneveld, A. B.; Jansen, J. R.

    2016-01-01

    Ventilator-induced dynamic hemodynamic parameters such as stroke volume variation (SVV) and pulse pressure variation (PPV) have been shown to predict fluid responsiveness in contrast to static hemodynamic parameters such as central venous pressure (CVP). We hypothesized that the ventilator-induced

  20. Laser induced surface modification of low temperature cofired ceramics (LTCC)

    Energy Technology Data Exchange (ETDEWEB)

    Duitsch, U.; Rohde, M.; Heidinger, R. [Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany). Inst. for Materials Research

    2004-07-01

    In the present study a laser induced surface modification process is used to increase the electrical conductivity of ceramic substrates locally. The laser experiments were carried out with a CO{sub 2}-Laser ({lambda}=10,6 {mu}m, cw) on LTCC-Substrates DuPont 951 by using tungsten powder as additive. The resulting microstructures within the modified lines were characterised and changes in the electrical properties have been determined. By means of the laser process and using preheating substrates to avoid thermoshock a composite of LTCC and tungsten particles was produced. The tungsten volume fraction within the modified lines was determined between 15.. 50 vol.%. The electrical conductivity in the paths reached a level of {sigma}=10{sup 5}-10{sup 6} S/m, which is only one or two orders of magnitude below the value of bulk tungsten. (orig.)

  1. Blood pressure reduction induced by low dose of epinephrine via different routes in rats.

    Science.gov (United States)

    Wu, Jing; Ji, Mu-Huo; Wang, Zhong-Yun; Zhu, Wei; Yang, Jian-Jun; Peng, Yong G

    2013-09-01

    Epinephrine was recently shown to induce a hypotension episode. Activation of β₂-adrenoceptors with smooth muscle relaxation may be the underlying mechanism. This study investigated the effects of ICI 118551, a β₂-adrenoceptors antagonist, on epinephrine-induced blood pressure reduction via different administration routes in rats. A total of 144 Sprague Dawley rats were equally randomized into 3 groups (intranasal, intravenous, and intra-arterial administration), each with 4 subgroups: saline + saline, ICI 118551 + saline, saline + epinephrine, and ICI 118551 + epinephrine. All rats were anesthetized while spontaneously breathing. Epinephrine was administered at doses of 5 μg/kg via nose, 0.25 μg/kg via femoral vein, and 0.1 μg/kg via aorta. Mean arterial pressure and heart rate were monitored. Mean arterial pressure decreased in all 3 saline + epinephrine subgroups after administration (P blood pressure reduction can be prevented by ICI 118551 in rats, suggesting that the activation of β₂-adrenoceptors contributes to blood pressure reduction.

  2. Electrical stimulation-induced Gluteal and Hamstring muscle activation can reduce sitting pressure in individuals with a spinal cord injury

    NARCIS (Netherlands)

    Janssen, T. W J; De Koning, A.; Legemate, K. J A; Smit, C. A J

    2010-01-01

    Individuals with spinal cord injury (SCI) are at high risk of developing pressure sores, in part due to high sitting pressures under the buttocks. PURPOSE: To evaluate the effect of ES-induced activation of the gluteal and hamstring muscles on the sitting pressure in individuals with SCI. METHODS:

  3. High-Pressure-Induced Comminution and Recrystallization of CH3NH3PbBr3Nanocrystals as Large Thin Nanoplates.

    Science.gov (United States)

    Yin, Tingting; Fang, Yanan; Chong, Wee Kiang; Ming, Koh Teck; Jiang, Shaojie; Li, Xianglin; Kuo, Jer-Lai; Fang, Jiye; Sum, Tze Chien; White, Timothy J; Yan, Jiaxu; Shen, Ze Xiang

    2018-01-01

    High pressure (HP) can drive the direct sintering of nanoparticle assemblies for Ag/Au, CdSe/PbS nanocrystals (NCs). Instead of direct sintering for the conventional nanocrystals, this study experimentally observes for the first time high-pressure-induced comminution and recrystallization of organic-inorganic hybrid perovskite nanocrystals into highly luminescent nanoplates with a shorter carrier lifetime. Such novel pressure response is attributed to the unique structural nature of hybrid perovskites under high pressure: during the drastic cubic-orthorhombic structural transformation at ≈2 GPa, (301) the crystal plane fully occupied by organic molecules possesses a higher surface energy, triggering the comminution of nanocrystals into nanoslices along such crystal plane. Beyond bulk perovskites, in which pressure-induced modifications on crystal structures and functional properties will disappear after pressure release, the pressure-formed variants, i.e., large (≈100 nm) and thin (recrystallization treatment offer the possibilities of engineering the advanced hybrid perovskites with specific properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of a pressure based room acoustic model using impedance descriptions of surfaces

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2013-01-01

    and acoustic radiosity will account for the diffuse reflections. This paper presents the motivation for the new model in the form of results in literature, which show the importance of retaining the angle dependence and phase information in reflections along with simple examples of angle dependent reflection......If a simulation tool is to be used for the optimization of absorbent ceilings, it is important that the simulation tool includes a good description of the surface. This study therefore aims at developing a model which can describe surfaces by their impedance values and not just by their statistical...... absorption coefficient, thus retaining the phase and the angle dependence. The approach of the proposed model will be to calculate the pressure impulse response using a combination of the image source method and acoustic radiosity. The image source method will account for the specular reflections...

  5. Interfacial effects of surface-active agents under zinc pressure leach conditions

    Science.gov (United States)

    Owusu, George; Dreisinger, David B.; Peters, Ernest

    1995-02-01

    Liquid sulfur-zinc sulfate solution interfacial tensions and liquid sulfur-zinc sulfate solution-zinc sulfide (marmatite) contact angles were measured in the absence and presence of surface-active agents. Interfacial tensions measured varied between 54 ± 1 mN/m in the surfactant-free system and 20 ± 1 mN/m in the presence of a surfactant. The liquid sulfur-zinc sulfide mineral-zinc sulfate solution contact angle varies between 80 ± 5 deg, in the absence of any surfactant, and 148 ± 5 deg, depending on the surfactant used. The surface-active agents were used as dispersants for sulfur in bench-scale zinc pressure-leaching experiments. The observed extent of zinc extraction depends on the surfactant and varies from 40 to 96 pct.

  6. Exercise excess pressure and exercise-induced albuminuria in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Climie, Rachel E D; Srikanth, Velandai; Keith, Laura J; Davies, Justin E; Sharman, James E

    2015-05-01

    Exercise-induced albuminuria is common in patients with type 2 diabetes mellitus (T2DM) in response to maximal exercise, but the response to light-moderate exercise is unclear. Patients with T2DM have abnormal central hemodynamics and greater propensity for exercise hypertension. This study sought to determine the relationship between light-moderate exercise central hemodynamics (including aortic reservoir and excess pressure) and exercise-induced albuminuria. Thirty-nine T2DM (62 ± 9 yr; 49% male) and 39 nondiabetic controls (53 ± 9 yr; 51% male) were examined at rest and during 20 min of light-moderate cycle exercise (30 W; 50 revolutions/min). Albuminuria was assessed by the albumin-creatinine ratio (ACR) at rest and 30 min postexercise. Hemodynamics recorded included brachial and central blood pressure (BP), aortic stiffness, augmented pressure (AP), aortic reservoir pressure, and excess pressure integral (Pexcess). There was no difference in ACR between groups before exercise (P > 0.05). Exercise induced a significant rise in ACR in T2DM but not controls (1.73 ± 1.43 vs. 0.53 ± 1.0 mg/mol, P = 0.002). All central hemodynamic variables were significantly higher during exercise in T2DM (i.e., Pexcess, systolic BP and AP; P exercise Pexcess was associated with postexercise ACR (r = 0.51, P = 0.002), and this relationship was independent of age, sex, body mass index, heart rate, aortic stiffness, antihypertensive medication, and ambulatory daytime systolic BP (β = 0.003, P = 0.003). Light-moderate exercise induced a significant rise in ACR in T2DM, and this was independently associated with Pexcess, a potential marker of vascular dysfunction. These novel findings suggest that Pexcess could be important for appropriate renal function in T2DM. Copyright © 2015 the American Physiological Society.

  7. Studies on micro-structures at vapor-liquid interfaces of film boiling on hot liquid surface at arriving of a shock pressure

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Lee, S. [Tokyo Inst. of Tech. (Japan)

    1998-01-01

    In vapor explosions, a pressure wave (shock wave) plays a fundamental role in the generation, propagation and escalation of the explosion. Transient volume change by rapid heat flow from a high temperature liquid to a low temperature volatile one and phase change generate micro-scale flow and the pressure wave. One of key issues for the vapor explosion is to make clear the mechanism to support the explosive energy release from hot drop to cold liquid. According to our observations by an Image Converter Camera, growth rate of vapor film around a hot tin drop became several times higher than that around a hot Platinum tube at the same conditions when a pressure pulse collapsed the film. The thermally induced fragmentation was followed by the explosive growth rate of the hot drop. In the previous report, we have proposed that the interface instability and fragmentation model in which the fine Taylor instability of vapor-liquid interface at the collapsing and re-growth phase of vapor film and the instability induced by the high pressure spots at the drop surface were assumed. In this study, the behavior of the vapor-liquid interface region at arrival of a pressure pulse was investigated by the CIPRIS code which is able to simulate dynamics of transient multi-phase interface regions. It is compared with the observation results. Through detailed investigations of these results, the mechanisms of the thermal fragmentation of single drop are discussed. (J.P.N.)

  8. Low energy ion induced desorption on technical surfaces at room temperature

    CERN Document Server

    Hulla, Georg

    2009-01-01

    The ion-induced pressure instability is a hard limitation for the maximum intensity, and hence the ultimate luminosity achievable in a proton accelerator. This instability is due to the interaction of high intensity proton beams with the residual gas generating positive ions. These ions, accelerated by the beam space charge, impact on the vaccuum chamber wall and lead to the desorption of gaseous species like $H_{2}, CH_{4}, C_{2}H_{4}, C_{2}H_{6}, CO$ and $CO_{2}$. These gases can in turn be ionized by the circulating beam, and initiate a pressure run-away process causing the loss of the stored beam. This phenomenon was first registered right at the beginning of operation of the Intersecting Storage Rings (ISR) at CERN in 1970. Later on, a long term evolution of the pressure was recorded for a stable stored beam current where a change of the residual gas composition was measured. In order to adapt the pumping speed and the surface treatments to the desired circulating beam currents, mathematical tools (e.g. ...

  9. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis.

    Science.gov (United States)

    Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P; De Geest, Bart

    2017-07-18

    Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher ( p coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold ( p coconut oil mice than in standard chow mice. Myocardial capillary density ( p coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold ( p coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower ( p coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  10. Assessment of Cerebral Autoregulation Patterns with Near-infrared Spectroscopy during Pharmacological-induced Pressure Changes.

    Science.gov (United States)

    Moerman, Annelies T; Vanbiervliet, Valerie M; Van Wesemael, Astrid; Bouchez, Stefaan M; Wouters, Patrick F; De Hert, Stefan G

    2015-08-01

    Previous work has demonstrated paradoxical increases in cerebral oxygen saturation (ScO2) as blood pressure decreases and paradoxical decreases in ScO2 as blood pressure increases. It has been suggested that these paradoxical responses indicate a functional cerebral autoregulation mechanism. Accordingly, the authors hypothesized that if this suggestion is correct, paradoxical responses will occur exclusively in patients with intact cerebral autoregulation. Thirty-four patients undergoing elective cardiac surgery were included. Cerebral autoregulation was assessed with the near-infrared spectroscopy-derived cerebral oximetry index (COx), computed by calculating the Spearman correlation coefficient between mean arterial pressure and ScO2. COx less than 0.30 was previously defined as functional autoregulation. During cardiopulmonary bypass, 20% change in blood pressure was accomplished with the use of nitroprusside for decreasing pressure and phenylephrine for increasing pressure. Effects on COx were assessed. Data were analyzed using two-way ANOVA, Kruskal-Wallis test, and Wilcoxon and Mann-Whitney U test. Sixty-five percent of patients had a baseline COx less than 0.30, indicating functional baseline autoregulation. In 50% of these patients (n = 10), COx became highly negative after vasoactive drug administration (from -0.04 [-0.25 to 0.16] to -0.63 [-0.83 to -0.26] after administration of phenylephrine, and from -0.05 [-0.19 to 0.17] to -0.55 [-0.94 to -0.35] after administration of nitroprusside). A negative COx implies a decrease in ScO2 with increase in pressure and, conversely, an increase in ScO2 with decrease in pressure. In this study, paradoxical changes in ScO2 after pharmacological-induced pressure changes occurred exclusively in patients with intact cerebral autoregulation, corroborating the hypothesis that these paradoxical responses might be attributable to a functional cerebral autoregulation.

  11. Irradiation induced surface segregation in concentrated alloys: a contribution

    International Nuclear Information System (INIS)

    Grandjean, Y.

    1996-01-01

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe 50 Ni 50 and Fe 49 Ni 50 Hf 1 alloys. (author)

  12. Pressure-induced phase transitions of multiferroic BiFeO3

    OpenAIRE

    XiaoLi, Zhang; Ye, Wu; Qian, Zhang; JunCai, Dong; Xiang, Wu; Jing, Liu; ZiYu, Wu; DongLiang, Chen

    2013-01-01

    Pressure-induced phase transitions of multiferroic BiFeO3 have been investigated using synchrotron radiation X-ray diffraction with diamond anvil cell technique at room temperature. Present experimental data clearly show that rhombohedral (R3c) phase of BiFeO3 first transforms to monoclinic (C2/m) phase at 7 GPa, then to orthorhombic (Pnma) phase at 11 GPa, which is consistent with recent theoretical ab initio calculation. However, we observe another peak at 2{\\theta}=7{\\deg} in the pressure ...

  13. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  14. Topical cyclosporine a for mustard gas induced ocular surface disorders.

    Science.gov (United States)

    Jadidi, Khosrow; Ebrahimi, Ali; Panahi, Yunes; Alishiri, Ali; Hosseini, Bagher; Heydarzadeh, Sepideh; Akbarikia, Sona; Mafi, Mostafa

    2015-01-01

    To evaluate the effectiveness of topical cyclosporine A 0.05% for treatment of mustard gas-induced ocular surface disorders with special attention to conjunctival goblet cell density in patients with severe dry eye. This prospective clinical study included 20 eyes of 20 patients previously exposed to mustard gas with dry eye syndrome unresponsive to artificial tears. Before and after treatment with topical cyclosporine A 0.05% twice daily for 3 months, subjects were evaluated for improvement in symptoms using the ocular surface disease index (OSDI) and signs by tear breakup time (TBUT), Schirmer test and measurement of superior bulbar conjunctival goblet cell density. Limbal stem cell deficiency (LSCD) and the degree of corneal squamous cell metaplasia were also assessed before and after treatment. Before treatment, mean OSDI score, Schirmer test I value and mean TBUT were 42.8 ± 6.1, 4.2 ± 1.2 mm and 2.5 ± 1.3 s, respectively. After 3 months of treatment with topical cyclosporine A, these scores reached 36.4 ± 5.2, 5.8 ± 1.6 mm and 4.9 ± 2.1 s, respectively showing a statistically significant improvement (P 0.05). Treatment with topical cyclosporine A 0.05% in patients with severe dry eye due to mustard gas injury increases goblet cell density in the bulbar conjunctiva and improves symptoms of the disease.

  15. Topical cyclosporine A for mustard gas induced ocular surface disorders

    Directory of Open Access Journals (Sweden)

    Khosrow Jadidi

    2015-01-01

    Full Text Available Purpose: To evaluate the effectiveness of topical cyclosporine A 0.05% for treatment of mustard gas-induced ocular surface disorders with special attention to conjunctival goblet cell density in patients with severe dry eye. Methods: This prospective clinical study included 20 eyes of 20 patients previously exposed to mustard gas with dry eye syndrome unresponsive to artificial tears. Before and after treatment with topical cyclosporine A 0.05% twice daily for 3 months, subjects were evaluated for improvement in symptoms using the ocular surface disease index (OSDI and signs by tear breakup time (TBUT, Schirmer test and measurement of superior bulbar conjunctival goblet cell density. Limbal stem cell deficiency (LSCD and the degree of corneal squamous cell metaplasia were also assessed before and after treatment. Results: Before treatment, mean OSDI score, Schirmer test I value and mean TBUT were 42.8 ± 6.1, 4.2 ± 1.2 mm and 2.5 ± 1.3 s, respectively. After 3 months of treatment with topical cyclosporine A, these scores reached 36.4 ± 5.2, 5.8 ± 1.6 mm and 4.9 ± 2.1 s, respectively showing a statistically significant improvement (P 0.05. Conclusion: Treatment with topical cyclosporine A 0.05% in patients with severe dry eye due to mustard gas injury increases goblet cell density in the bulbar conjunctiva and improves symptoms of the disease.

  16. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.

    Science.gov (United States)

    Sum, K S; Pan, J

    2007-07-01

    Distributions of sound pressure and intensity on the surface of a flat impedance strip flush-mounted on a rigid baffle are studied for a grazing incident plane wave. The distributions are obtained by superimposing the unperturbed wave (the specularly reflected wave as if the strip is rigid plus the incident wave) with the radiated wave from the surface vibration of the strip excited by the unperturbed pressure. The radiated pressure interferes with the unperturbed pressure and distorts the propagating plane wave. When the plane wave propagates in the baffle-strip-baffle direction, it encounters discontinuities in acoustical impedance at the baffle-strip and strip-baffle interfaces. The radiated pressure is highest around the baffle-strip interface, but decreases toward the strip-baffle interface where the plane wave distortion reduces accordingly. As the unperturbed and radiated waves have different magnitudes and superimpose out of phase, the surface pressure and intensity increase across the strip in the plane wave propagation direction. Therefore, the surface absorption of the strip is nonzero and nonuniform. This paper provides an understanding of the surface pressure and intensity behaviors of a finite impedance strip for a grazing incident plane wave, and of how the distributed intensity determines the sound absorption coefficient of the strip.

  17. The Pressure Field Measurement for Researching Inducer Flow of Booster Rocket Engine Turbopump

    Directory of Open Access Journals (Sweden)

    N. S. Dorosh

    2014-01-01

    Full Text Available When designing a feed system for modern main rocket engine development, designers have to pay special attention to energy efficiency of units and their reliability. One of the most important conditions of reliability is to provide non-cavitation operation of the main turbo-pump, which is impossible without using the booster turbo-pumps, considering the current levels of pressure in the combustion chamber. Thanks to high suction properties and processability, axial inducers with screw geometry became the most widely used in booster turbo-pumps. At the same time, the flow in the inducers of progressive geometry has complex spatial nature that makes their designing and detailed flow studying to be a difficult task.Based on the need of detailed understanding the flow structure in inducer channels a number of investigation methods are considered, including: analytical calculation, visual research methods, direct flow measurement, and numerical simulation. Analysis of the characteristics of each method shows the need to combine several methods to achieve the best results. Using a numerical simulation becomes the most effective strategy to obtain a wide range of data and confirm their authenticity by experimental measurements at characteristic points. The features of such kind of measurements in the inducer flow and measuring device requirements are considered.Based on this, an original design experimental booster turbo-pump, equipped with a pressure measuring system behind the inducer and automatic unloader device simulator is developed. Using these systems a radial pressure diagram of inducer flow as well as axial the force acting on the inducer can be experimentally obtained. It is shown that the offered measuring system satisfies those requirements and provides data at the various operation modes of the booster turbopump unit. A developed test program allows us to obtain required data: the pressure values in the flow behind inducer and axial force

  18. The effect of ambient pressure on ejecta sheets from free-surface ablation

    KAUST Repository

    Marston, J. O.

    2016-04-16

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

  19. Role of west Asian surface pressure in summer monsoon onset over central India

    Science.gov (United States)

    Chakraborty, Arindam; Agrawal, Shubhi

    2017-07-01

    Using rain-gauge measurements and reanalysis data sets for 1948-2015, we propose a mechanism that controls the interannual variation of summer monsoon onset over central India. In May, about a month before the onset, the low level jet over the Arabian Sea is about 40% stronger and about 2.5 degrees northward during years of early onset as compared to years of late onset. A stronger and northward shifted low level jet carries about 50% more moisture in early onset years, which increases low level moist static energy over central India in the pre-monsoon season. The increase in low level moist static energy decreases the stability of the atmosphere and makes it conducive for convection. The strength and position of the low level jet are determined by surface pressure gradient between western Asia and the west-equatorial Indian Ocean. Thus, an anomalous surface pressure low over western Asia in the pre-monsoon season increases this gradient and strengthens the jet. Moreover, a stronger low level jet increases the meridional shear of zonal wind and supports the formation of an onset vortex in a stronger baroclinic atmosphere. These developments are favourable for an early onset of the monsoon over the central Indian region. Our study postulates a new physical mechanism for the interannual variation of onset over central India, the core of the Indian monsoon region and relevant to Indian agriculture, and could be tested for real-time prediction.

  20. Shear-induced pressure anisotropization and correlation with fluid vorticity in a low collisionality plasma

    Science.gov (United States)

    Del Sarto, Daniele; Pegoraro, Francesco

    2018-03-01

    The momentum anisotropy contained in a sheared flow may be transferred to a pressure anisotropy, both gyrotropic and non-gyrotropic, via the action of the fluid strain on the pressure tensor components. In particular, it is the traceless symmetric part of the strain tensor (i.e. the so-called shear tensor) that drives the mechanism, the fluid vorticity just inducing rotations of the pressure tensor components. This possible mechanism of anisotropy generation from an initially isotropic pressure is purely dynamical and can be described in a fluid framework where the full pressure tensor evolution is retained. Here, we interpret the correlation between vorticity and anisotropy, often observed in numerical simulations of solar wind turbulence, as due to the correlation between shear rate tensor and fluid vorticity. We then discuss some implications of this analysis for the onset of the Kelvin-Helmholtz instability in collisionless plasmas where a full pressure tensor evolution is allowed, and for the modelling of secondary reconnection in turbulence.

  1. Evolution of kinetically controlled In-induced surface structure on Si(5 5 7) surface

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Amit Kumar Singh [Physics of Energy Harvesting, (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Department of Physics, JMI, New Delhi 110025 (India); Eldose, Nirosh M.; Mishra, Monu [Physics of Energy Harvesting, (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Niazi, Asad; Nair, Lekha [Department of Physics, JMI, New Delhi 110025 (India); Gupta, Govind, E-mail: govind@nplindia.org [Physics of Energy Harvesting, (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2014-09-30

    Highlights: • Evolution of In induced superstructures on Si(5 5 7) surface during RT and HT adsorption/desorption process. • Kinetics is governed by substrate temperature which exhibits various growth modes (FM, SK, VB) under different conditions. • Strain relaxation play significant role in the commencement of desorption/rearrangement of atoms. • A consolidated phase diagram of In/Si(5 5 7) interface has been reported with new √3 × √3-R30° and 4 × 1 phases. - Abstract: This paper introduces issue of kinetically controlled and temperature driven superstructural phase transition of Indium (In) on atomically clean high index Si(5 5 7)-7 × 1 surface. Auger electron spectroscopy analysis reveals that at room-temperature (RT) with a controlled incident flux of 0.002 ML/s; In overlayers evolve through the Frank-van der Merwe growth mode and yield a (1 × 1) diffraction pattern for coverage ≥1 ML. For substrate temperature <500°C, growth of In follows Stranski–Krastanov growth mode while for temperature >500°C island growth is observed. On annealing the In/Si(5 5 7) interface in the temperature range 250–340°C, clusters to two dimensional (2D) layer transformation on top of a stable monolayer is predominated. In-situ RT and HT adsorption and thermal desorption phenomena revealed the formation of coverage and temperature dependent thermally stable In induced superstructural phases such as (4 × 1) at 0.5 ML (520°C), (√3 × √3-R30°) at 0.3 ML (560°C) and (7 × 7) at 0.1 ML (580°C). These indium induced superstructures could be utilized as potential substrate for the growth of various exotic 1D/2D structures.

  2. A novel pressure-induced polymorphic transition from fumed silica to transparent amorphous SiO sub 2 at room temperature

    CERN Document Server

    Uchino, T; Azuma, M; Takano, M; Takahashi, M; Yoko, T

    2002-01-01

    We show that when we use highly dispersed oxides called fumed silica, a pressure-induced structural transition occurs at lower pressures (2-8 GPa) than would normally be expected for bulk a-SiO sub 2 (over 10 GPa). Furthermore, this transition finally results in a transparent monolith at 6-8 GPa, accompanied by densification, even at room temperature. We suggest that this novel polymorphic modification of a-SiO sub 2 results from the highly reactive nature surface strained Si-O bonds that are formed particularly in the compressed fumed silica samples.

  3. Stress response of Escherichia coli induced by surface streamer discharge in humid air

    Science.gov (United States)

    Doležalová, Eva; Prukner, Václav; Lukeš, Petr; Šimek, Milan

    2016-02-01

    Inactivation of Escherichia coli by means of surface streamer discharge has been investigated to obtain new insights into the key mechanisms involved, with a particular emphasis placed on the microbial response to plasma-induced stress. The surface streamer discharge was produced in coplanar dielectric barrier discharge electrode geometry, and was driven by an amplitude-modulated ac high voltage in humid synthetic air at atmospheric pressure. The response to plasma-induced stress was evaluated by using conventional cultivation, sublethal injury and resazurin assay and the LIVE/DEAD® BacLight™ Bacterial Viability kit. Compared to conventional cultivation, the LIVE/DEAD® test labels bacteria with damaged membranes, while resazurin assay tracks their metabolic activity. Our results clearly demonstrate that the treated bacteria partly lost their ability to grow properly, i.e. they became injured and culturable, or even viable but nonculturable (VBNC). The ability to develop colonies could have been lost due to damage of the bacterial membrane. Damage of the membranes was mainly caused by the lipid peroxidation, evidencing the key role of oxygen reactive species, in particular ozone. We conclude that the conventional cultivation method overestimates the decontamination efficiency of various plasma sources, and must therefore be complemented by alternative techniques capable of resolving viable but nonculturable bacteria.

  4. The dynamics of ultraviolet-induced oxygen vacancy at the surface of insulating SrTiO{sub 3}(0 0 1)

    Energy Technology Data Exchange (ETDEWEB)

    Suwanwong, S. [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Program in General Science Teaching, Faculty of Education, Vongchavalitkul University, Nakhon Ratchasima 30000 (Thailand); Eknapakul, T. [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Rattanachai, Y. [Department of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000 (Thailand); Masingboon, C. [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000 (Thailand); Rattanasuporn, S.; Phatthanakun, R.; Nakajima, H. [Synchrotron Light Research Institute, Nakhon Ratchasima 30000 (Thailand); King, P.D.C. [SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife KY16 9SS (United Kingdom); Hodak, S.K. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Meevasana, W., E-mail: worawat@g.sut.ac.th [School of Physics, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Thailand Center of Excellence in Physics, CHE, Bangkok 10400 (Thailand)

    2015-11-15

    Highlights: • The dynamics of UV-induced oxygen vacancy is studied from the change of surface resistance. • The formation of 2DEG at the insulating surface of SrTiO{sub 3} is confirmed by ARPES. • The UV-induced change in resistance responds differently to oxygen/gas exposure. • The behavior of resistance recovery suggests an alternative method of low-pressure sensing. - Abstract: The effect of ultra-violet (UV) irradiation on the electronic structure and the surface resistance of an insulating SrTiO{sub 3}(0 0 1) crystal is studied in this work. Upon UV irradiation, we show that the two-dimensional electron gas (2DEG) emerges at the insulating SrTiO{sub 3} surface and there is a pronounced change in the surface resistance. By combining the observations of the change in valance band and the resistance change under different environments of gas pressure and gas species, we find that UV-induced oxygen vacancies at the surface plays a major role in the resistance change. The dynamic of the resistance change at different oxygen pressures also suggests an alternative method of low-pressure sensing.

  5. The dynamics of ultraviolet-induced oxygen vacancy at the surface of insulating SrTiO3(0 0 1)

    International Nuclear Information System (INIS)

    Suwanwong, S.; Eknapakul, T.; Rattanachai, Y.; Masingboon, C.; Rattanasuporn, S.; Phatthanakun, R.; Nakajima, H.; King, P.D.C.; Hodak, S.K.; Meevasana, W.

    2015-01-01

    Highlights: • The dynamics of UV-induced oxygen vacancy is studied from the change of surface resistance. • The formation of 2DEG at the insulating surface of SrTiO 3 is confirmed by ARPES. • The UV-induced change in resistance responds differently to oxygen/gas exposure. • The behavior of resistance recovery suggests an alternative method of low-pressure sensing. - Abstract: The effect of ultra-violet (UV) irradiation on the electronic structure and the surface resistance of an insulating SrTiO 3 (0 0 1) crystal is studied in this work. Upon UV irradiation, we show that the two-dimensional electron gas (2DEG) emerges at the insulating SrTiO 3 surface and there is a pronounced change in the surface resistance. By combining the observations of the change in valance band and the resistance change under different environments of gas pressure and gas species, we find that UV-induced oxygen vacancies at the surface plays a major role in the resistance change. The dynamic of the resistance change at different oxygen pressures also suggests an alternative method of low-pressure sensing.

  6. Direct monitoring of wind-induced pressure-pumping on gas transport in soil

    Science.gov (United States)

    Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin

    2017-04-01

    Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non

  7. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Energy Technology Data Exchange (ETDEWEB)

    He Jinsong; Yang Hongwei; Zhu Wanpeng [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Mu Taihua, E-mail: mutaihuacaas@126.co [Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100094 (China)

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I{sub m} and the corresponding wavenumber q{sub m} could be described in terms of the power-law relationship as I{sub m}{approx}f{sup {beta}} and q{sub m}{approx}f{sup -}{alpha}, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  8. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    International Nuclear Information System (INIS)

    He Jinsong; Yang Hongwei; Zhu Wanpeng; Mu Taihua

    2010-01-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I m and the corresponding wavenumber q m could be described in terms of the power-law relationship as I m ∼f β and q m ∼f -α , respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  9. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Science.gov (United States)

    He, Jin-Song; Yang, Hongwei; Zhu, Wanpeng; Mu, Tai-Hua

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum Im and the corresponding wavenumber qm could be described in terms of the power-law relationship as Im~fβ and qm~f-α, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  10. Giant Pressure-Induced Enhancement of Seebeck Coefficient and Thermoelectric Efficiency in SnTe

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Jason; Kumar, Ravhi; Park, Changyong; Kenney-Benson, Curtis; Cornelius, Andrew; Velisavljevic, Nenad (CIW); (LANL); (UNLV)

    2017-10-30

    The thermoelectric properties of polycrystalline SnTe have been measured up to 4.5 GPa at 330 K. SnTe shows an enormous enhancement in Seebeck coefficient, greater than 200 % after 3 GPa, which correlates to a known pressure-induced structural phase transition that is observed through simultaneous in situ X-ray diffraction measurement. Electrical resistance and relative changes to the thermal conductivity were also measured, enabling the determination of relative changes in the dimensionless figure of merit (ZT), which increases dramatically after 3 GPa, reaching 350 % of the lowest pressure ZT value. The results demonstrate a fundamental relationship between structure and thermoelectric behaviours and suggest that pressure is an effective tool to control them.

  11. Pressure-induced phase transitions of multiferroic BiFeO3

    International Nuclear Information System (INIS)

    Zhang Xiaoli; Dong Juncai; Liu Jing; Chen Dongliang; Wu Ye; Zhang Qian; Wu Xiang; Wu Ziyu

    2013-01-01

    Pressure-induced phase transitions of multiferroic BiFeO 3 have been investigated using synchrotron radiation X-ray diffraction with diamond anvil cell technique at room temperature. Present experimental data clearly show that rhombohedral (R3c) phase of BiFeO 3 first transforms to monoclinic (C2/m) phase at 7 GPa, then to orthorhombic (Pnma) phase at 11 GPa, which is consistent with recent theoretical ab initio calculation. However, we observe another peak at 2θ=7° in the pressure range of 5-7 GPa that has not been reported previously. Further analysis reveals that this reflection peak is attributed to the orthorhombic (Pbam) phase, indicating the coexistence of monoclinic phase with orthorhombic phase in low pressure range. (authors)

  12. Pressure-induced structure phase transition on Y sub 2 O sub 3

    CERN Document Server

    Ma Yan Ming; Ma Hong An; Pan Yue Wu; Cui Qi Liang; Liu Bing Bing; Cui Tian; Zou Guang Tian; LiuJing

    2002-01-01

    Diamond anvil cell (DAC) is adopted to carry out in situ high pressure measurements for Y sub 2 O sub 3 powder sample in the range from ambient to 23 GPa, by using synchrotron X-ray diffraction method. Two structural phase transitions were observed in the pressure range. At P = 12.8 GPa, Y sub 2 O sub 3 transforms from cubic to monoclinic structure. At P = 21.8 GPa, Y sub 2 O sub 3 transforms from monoclinic to another new phase. However, the crystal structure of the new phase cannot be determined, because the diffraction pattern of the sample disappears. The decompressed sample is monoclinic structure, indicating that the first pressure-induced phase transition is irreversible

  13. Pressure-induced forces and shear stresses on rubble mound breakwater armour layers in regular waves

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2014-01-01

    This paper presents the results from an experimental investigation of the pressure-induced forces in the core material below the main armour layer and shear stresses on the armour layer for a porous breakwater structure. Two parallel experiments were performed which both involved pore pressure...... measurements in the core material: (1) core material with an idealized armour layer made out of spherical objects that also allowed for detailed velocity measurements between and above the armour, and (2) core material with real rock armour stones. The same core material was applied through the entire...... and turbulence measurements showed that the large outward directed pressure gradients in general coincide, both in time and space, with the maximum bed-shear stresses on the armour layer based on the Reynolds-stresses. The bed-shear stresses were found to result in a Shields parameter in the same order...

  14. Fluctuation of a Piston in Vacuum Induced by Thermal Radiation Pressure

    Science.gov (United States)

    Inui, Norio

    2017-10-01

    We consider the displacement of a piston dividing a vacuum cavity at a finite temperature T induced by fluctuations in the thermal radiation pressure. The correlation function of the thermal radiation pressure is calculated using the theoretical framework developed by Barton, which was first applied to the fluctuation of the Casimir force at absolute zero. We show that the variance of the radiation pressure at a fixed point is proportional to T8 and evaluate the mean square displacement for a piston with a small cross section in a characteristic correlation timescale ħ/(kBT). At room temperature, the contribution of the thermal radiation to the fluctuation is larger than that of the vacuum fluctuation.

  15. Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glass

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Thirion, Lynn M.; Youngman, Randall E.

    Glass exhibits a significant change in microstructure and properties when subjected to high pressure, since the short- and intermediate-range structures of a glass are tunable through compression. Understanding the link between the microscopic structure and macroscopic properties of glasses under...... and more damage resistant glasses. However, the interplay among isostatic compression, pressure-induced changes in alkali diffusivity, compressive stress generated through ion exchange, and the resulting mechanical properties are poorly understood. In this work, we employ a specially designed gas pressure...... stress, and slightly increased hardness. Compression after the ion exchange treatment changes the shape of the potassium-sodium diffusion profiles and significantly increases glass hardness. We discuss these results in terms of the underlying structural changes in network-modifier environments...

  16. Pressure-induced Novel Electronic State of Fe70Ni30 Invar Alloy

    Science.gov (United States)

    Oomi, Gendo; Saito, Ryohei; Ohashi, Masashi; Nakano, Tomohito

    The electrical resistance and magnetoresistance of Fe70Ni30 Invar alloy have been measured at high pressure up to 15 GPa. It is found that the coefficients of T2 term in the electrical resistance increases with increasing pressure but tends to saturate above 12 GPa suggesting a peak above 15 GPa, which implies a pressure-induced quantum phase transition. We found for the first time that the magnetoresistance at 4.2 K is negative below 11 GPa but becomes positive above 12 GPa. This corresponds to a crossover in the electronic state from localized moment regime to a paramagnetic or new magnetic state. The origins will be discussed briefly in connection with the recent experimental results and theoretical calculation.

  17. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Kittur, Jayant K.; Herwadkar, T. V.; Parappagoudar, M. B.

    2010-01-01

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  18. The effect of varying levels of induced duct leakage on differential pressures in a Florida house

    International Nuclear Information System (INIS)

    Kozik, A.C.; Oppenheim, P.; Hintenlang, D.

    1995-01-01

    The objective of this research is to quantify the effect of varying levels of induced duct leakage on differential pressures and subsequent radon levels in a typical Florida residence. The heating and air conditioning (HAC) system of a residence was modified with the addition of a fresh air ventilation system. This modification provided the ability to simulate either a return leak or a supply leak in the HAC system. The amount of leakage induced can be varied using flow control dampers and an auxiliary fan located in the ventilation system ductwork. The house was pressurized and depressurized by adding 0.06 m 3 /s of ventilation air into the return side and removing 0.05 m 3 /s of ventilation air from the supply side of the air handling system, respectively. The subsequent changes in house pressure and ventilation rates reduced the indoor radon concentrations from 1,865 Bq/m 3 to 170 Bq/m 3 under pressurized conditions and to 305 Bq/m 3 under depressurized conditions

  19. Prevention of pressure ulcers in the intensive care unit: a randomized trial of 2 viscoelastic foam support surfaces.

    Science.gov (United States)

    Ozyurek, Pakize; Yavuz, Meryem

    2015-01-01

    The aim of this study is to compare whether differences exist between 2 viscoelastic foam support surfaces in the development of new pressure ulcers. There is evidence to support the use of viscoelastic foam over standard hospital foam to reduce pressure. A comparative effectiveness study was done to compare 2 viscoelastic foam support surfaces. A randomized controlled trial was carried out. The study was performed in 2 intensive care units between October 1, 2008, and January 4, 2010. Patients (n = 105) admitted to intensive care unit were randomly assigned to viscoelastic foam 1 (n = 53) or viscoelastic foam 2 support surface (n = 52). In total, 42.8% of all patients developed a new pressure ulcer of stage 1 or worse. By stages, pressure ulcer incidence was 28.6%, 13.3%, and 1.0% for stages 1, 2, and 3, respectively. There was no significant difference in pressure ulcer incidence between the viscoelastic foam 1 and 2 groups (X2 = 0.07, df = 1, P > .05). No difference was found between 2 different viscoelastic foam surfaces in the prevention of pressure ulcers in patients treated in intensive care. Pressure ulcer incidence in critically ill patients remains high. Nurses must compare current products for effectiveness and develop innovative systems, processes, or devices to deliver best practices.

  20. Attraction induced frictionless sliding of rare gas monolayer on metallic surfaces: an efficient strategy for superlubricity.

    Science.gov (United States)

    Sun, Junhui; Zhang, Yanning; Lu, Zhibin; Xue, Qunji; Wang, Liping

    2017-05-10

    Friction on a nanoscale revealed rich load-dependent behavior, which departs strongly from the long-standing Amonton's law. Whilst electrostatic repulsion-induced friction collapse for rare gas sliding over metallic surfaces in a high-load regime was reported by Righi et al. (Phys. Rev. Lett., 2007, 99, 176101), the significant role of attraction on frictional properties has not been reported to date. In this study, the frictional motion of Xe/Cu(111), Xe/Pd(111) and Ar/Cu(111) was studied using van der Waals corrected density functional calculations. An attraction-induced zero friction, which is a signal of superlubricity, was found for the sliding systems. The superlubric state results from the disappearance of the potential corrugation along the favored sliding path as a consequence of the potential crossing in the attractive regime when the interfacial pressure approaches a critical-value. The finding of an attraction-driven friction drop, together with the repulsion-induced collapse in the high-load regime, which breaks down the classic Amonton's law, provides a distinct approach for the realization of inherent superlubricity in some adsorbate/substrate interfaces.

  1. Investigation of working pressure on the surface roughness controlling technology of glow discharge polymer films based on the diagnosed plasma

    Science.gov (United States)

    Zhang, Ling; Chen, Guo; He, Zhibing; Ai, Xing; Huang, Jinglin; Liu, Lei; Tang, Yongjian; He, Xiaoshan

    2017-07-01

    The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on plasma characteristics diagnosis. The composition and ion energy distributions of a multi-carbon (C4H8/H2) plasma mixture at different working pressures were diagnosed by an energy-resolved mass spectrometer (MS) during the GDP film deposition process. The Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (SEM) and white-light interferometer (WLI) results were obtained to investigate the structure, morphology and roughness characterization of the deposited films, respectively. It was found that the degree of ionization of the C4H8/H2 plasma reduces with an increase in the working pressure. At a low working pressure, the C-H fragments exhibited small-mass and high ion energy in plasma. In this case, the film had a low CH3/CH2 ratio, and displayed a smooth surface without any holes, cracks or asperities. While the working pressure increased to 15 Pa, the largest number of large-mass fragments led to the deposition rate reaching a maximum of 2.11 μm h-1, and to hole defects on the film surface. However, continuing to increase the working pressure, the film surface became smooth again, and the interface between clusters became inconspicuous without etching pits.

  2. Changes in Land Surface Water Dynamics since the 1990s and Relation to Population Pressure

    Science.gov (United States)

    Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W. B.; Matthews, E.

    2012-01-01

    We developed a remote sensing approach based on multi-satellite observations, which provides an unprecedented estimate of monthly distribution and area of land-surface open water over the whole globe. Results for 1993 to 2007 exhibit a large seasonal and inter-annual variability of the inundation extent with an overall decline in global average maximum inundated area of 6% during the fifteen-year period, primarily in tropical and subtropical South America and South Asia. The largest declines of open water are found where large increases in population have occurred over the last two decades, suggesting a global scale effect of human activities on continental surface freshwater: denser population can impact local hydrology by reducing freshwater extent, by draining marshes and wetlands, and by increasing water withdrawals. Citation: Prigent, C., F. Papa, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure, in section 4, insisting on the potential applications of the wetland dataset.

  3. Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure

    Science.gov (United States)

    Ridenti, Marco Antonio; de Amorim, Jayr; Dal Pino, Arnaldo; Guerra, Vasco; Petrov, George

    2018-01-01

    In this work we compute the main features of a surface-wave-driven plasma in argon at atmospheric pressure in view of a better understanding of the contraction phenomenon. We include the detailed chemical kinetics dynamics of Ar and solve the mass conservation equations of the relevant neutral excited and charged species. The gas temperature radial profile is calculated by means of the thermal diffusion equation. The electric field radial profile is calculated directly from the numerical solution of the Maxwell equations assuming the surface wave to be propagating in the TM00 mode. The problem is considered to be radially symmetrical, the axial variations are neglected, and the equations are solved in a self-consistent fashion. We probe the model results considering three scenarios: (i) the electron energy distribution function (EEDF) is calculated by means of the Boltzmann equation; (ii) the EEDF is considered to be Maxwellian; (iii) the dissociative recombination is excluded from the chemical kinetics dynamics, but the nonequilibrium EEDF is preserved. From this analysis, the dissociative recombination is shown to be the leading mechanism in the constriction of surface-wave plasmas. The results are compared with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar2+. An explanation is proposed for the trends seen by Thomson scattering diagnostics that shows a substantial increase of electron temperature towards the plasma borders where the electron density is small.

  4. Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction

    Science.gov (United States)

    Afzal, Muhammad R.; Samanta, Anweshan; Xuan, Yu-Ting; Girgis, Magdy; Elias, Harold K; Zhu, Yanqing; Davani, Arash; Yang, Yanjuan; Chen, Xing; Ye, Sheng; Wang, Ou-Li; Chen, Lei; Hauptman, Jeryl; Vincent, Robert J.; Dawn, Buddhadeb

    2016-01-01

    Rationale The role of interleukin (IL)-6 in the pathogenesis of cardiac myocyte hypertrophy remains controversial. Objective To conclusively determine whether IL-6 signaling is essential for the development of pressure overload-induced left ventricular (LV) hypertrophy, and to elucidate the underlying molecular pathways. Methods and Results Wild-type (WT) and IL-6 knockout (IL-6−/−) mice underwent sham surgery or transverse aortic constriction (TAC) to induce pressure overload. Serial echocardiograms and terminal hemodynamic studies revealed attenuated LV hypertrophy and superior preservation of LV function in IL-6−/− mice after TAC. The extents of LV remodeling, fibrosis, and apoptosis were reduced in IL-6−/− hearts after TAC. Transcriptional and protein assays of myocardial tissue identified CaMKII and STAT3 activation as important underlying mechanisms during cardiac hypertrophy induced by TAC. The involvement of these pathways in myocyte hypertrophy was verified in isolated cardiac myocytes from WT and IL-6−/− mice exposed to pro-hypertrophy agents. Furthermore, overexpression of CaMKII in H9c2 cells increased STAT3 phosphorylation, and exposure of H9c2 cells to IL-6 resulted in STAT3 activation that was attenuated by CaMKII inhibition. Together these results identify the importance of CaMKII-dependent activation of STAT3 during cardiac myocyte hypertrophy via IL-6 signaling. Conclusions Genetic deletion of IL-6 attenuates TAC-induced LV hypertrophy and dysfunction, indicating a critical role played by IL-6 in the pathogenesis of LV hypertrophy in response to pressure overload. CaMKII plays an important role in IL-6-induced STAT3 activation and consequent cardiac myocyte hypertrophy. These findings may have significant therapeutic implications for LV hypertrophy and failure in patients with hypertension. PMID:27126808

  5. Absolute Height of Sea Surface by Trajectory of GPS Antennae Over Submerged Pressure Gauges

    Science.gov (United States)

    Bouin, M.; Calmant, S.; Cheng, K.; Ballu, V.; Shum, C. K.; Testut, L.

    2003-12-01

    Water height data provided by seafloor tide gauges is a combination of sea-level variations and ground motion. Both of these signals are of scientific interest, but they must be separated in order to be useful. Estimating ground motion is specially important in very tectonically active areas such as the Pacific Ocean rim. One promising method to separate the two contributions is to use satellite altimetry data which gives absolute water height, but these data must be calibrated using ground truth measurements. Once different components of the signal are separated, bottom pressure gauges can be used to detect vertical movements of the seafloor such as co-seismic or slow inter-seismic motions. The Vanuatu archipelago is part of the Pacific ring of fire, where plates are rapidly converging. In the area, movements are very rapid and the seismic activity is intense, which gives a good opportunity to study deformation and seismic cycle. To get an integrate picture of vertical deformation over one plate and between the two plates, one needs to be able to monitor vertical movements on both underwater and emerged areas. We conducted an experiment in the Vanuatu archipelago, South-West Pacific, to compare measurements from bottom pressure gauges located beneath altimetry satellite tracks with sea surface altitude measurements from GPS. Two bottom pressure gauges are immerged since Nov. 1999 on Sabine bank (15.90° S, 166.14° E) and Wusi Bank (15.34° S, 166.55° E), West of Santo island, Vanuatu. In order to perform absolute calibrations of JASON and ENVISAT altimeters that overfly the Wusi and Sabine banks, respectively, we performed GPS measurements of instantaneous sea surface altitude. The GPS antennae were fixed on top of the 30m long R/V Alis. An inertial unit also recorded the high frequency vessel motions. The height of the antennae over the sea surface was measured using a laser distancemeter in calibration sessions during particularly calm sea states. We present

  6. Pressure-induced α->ω transition in titanium metal: a systematic study of the effects of uniaxial stress

    International Nuclear Information System (INIS)

    Errandonea, Daniel; Meng, Y.; Somayazulu, M.; Haeusermann, D.

    2005-01-01

    The effects of uniaxial stress on the pressure-induced α->ω transition in pure titanium (Ti) are investigated by means of angle dispersive X-ray diffraction in a diamond-anvil cell. Experiments under four different pressure environments reveal that: (1) the onset of the transition depends on the pressure medium used, going from 4.9GPa (no pressure medium) to 10.5GPa (argon pressure medium); (2) the α and ω phases coexist over a rather large pressure range, which depends on the pressure medium employed; (3) the hysteresis and quenchability of the ω phase is affected by differences in the sample pressure environment; and (4) a short-term laser heating of Ti lowers the α->ω transition pressure. Possible transition mechanisms are discussed in the light of the present results, which clearly demonstrate the influence of uniaxial stress in the α->ω transition

  7. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    Science.gov (United States)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  8. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3.

    Science.gov (United States)

    Zhu, Jinlong; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C; Jin, Changqing; Frantti, Johannes; Zhao, Yusheng

    2014-01-15

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal PbTiO3 we observed pressure-induced reversals between thermal contraction and expansion between ambient pressure and 0.9 GPa. This hybrid behavior leads to a mathematically infinite number of crossover points in the pressure-volume-temperature space and near-zero thermal expansion coefficients comparable to or even smaller than those attained by chemical routes. The observed pressures for this unusual phenomenon are within a small range of 0.1-0.9 GPa, potentially feasible for designing stress-engineered materials, such as thin films and nano-crystals, for thermal management applications.

  9. Pressure-Induced Intermetallic Valence Transition in BiNiO3

    Science.gov (United States)

    Azuma, Masaki; Tsujimoto, Masahiko; Ishiwata, Shintaro; Isoda, Seiji; Shimakawa, Yuichi; Takano, Mikio; Carlsson, Sandra; Rodgers, Jennifer; Attfield, J. Paul; Tucker, Matthew G.

    2008-03-01

    The valence state change of BiNiO3 perovskite under pressure has been investigated by a powder neutron diffraction study and electronic state calculations. At ambient pressure, BiNiO3 has the unusual charge distribution Bi^3+0.5Bi^5+0.5Ni^2+O3 with ordering of Bi^3+ and Bi^5+ charges on the A sites of a highly distorted perovskite structure. High pressure neutron diffraction measurements and Bond valence sum calculations show that the pressure-induced melting of the charge disproportionated state leads to a simultaneous charge transfer from Ni to Bi, so that the high pressure phase is metallic Bi^3+Ni^3+O3. This unprecedented charge transfer between A and B site cations coupled to electronic instabilities at both sites leads to a variety of ground states, and it is predicted that a Ni-charge disproportionated state should also be observable. [1] M. Azuma et al., J. Am. Chem. Soc., 129, (2007) 14433.

  10. RAYLEIGH-TAYLOR STRENGTH EXPERIMENTS OF THE PRESSURE-INDUCED alpha->epsilon->alpha' PHASE TRANSITION IN IRON

    Energy Technology Data Exchange (ETDEWEB)

    Belof, J L; Cavallo, R M; Olson, R T; King, R S; Gray, G T; Holtkamp, D B; Chen, S R; Rudd, R E; Barton, N R; Arsenlis, A; Remington, B A; Park, H; Prisbrey, S T; Vitello, P A; Bazan, G; Mikaelian, K O; Comley, A J; Maddox, B R; May, M J

    2011-08-10

    We present here the first dynamic Rayleigh-Taylor (RT) strength measurement of a material undergoing solid-solid phase transition. Iron is quasi-isentropically driven across the pressure-induced bcc ({alpha}-Fe) {yields} hcp ({var_epsilon}-Fe) phase transition and the dynamic strength of the {alpha}, {var_epsilon} and reverted {alpha}{prime} phases have been determined via proton radiography of the resulting Rayleigh-Taylor unstable interface between the iron target and high-explosive products. Simultaneous velocimetry measurements of the iron free surface yield the phase transition dynamics and, in conjunction with detailed hydrodynamic simulations, allow for determination of the strength of the distinct phases of iron. Forward analysis of the experiment via hydrodynamic simulations reveals significant strength enhancement of the dynamically-generated {var_epsilon}-Fe and reverted {alpha}{prime}-Fe, comparable in magnitude to the strength of austenitic stainless steels.

  11. Electron kinetics dependence on gas pressure in laser-induced oxygen plasma experiment: Theoretical analysis

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Abdellatif, Galila

    2017-08-01

    A study is performed to investigate the dependency of threshold intensity on gas pressure observed in the measurements of the breakdown of molecular oxygen that carried out by Phuoc (2000) [1]. In this experiment, the breakdown was induced by 532 nm laser radiation of pulse width 5.5 ns and spot size of 8.5 μm, in oxygen over a wide pressure range (190-3000 Torr). The analysis aimed to explore the electron kinetic reliance on gas pressure for the separate contribution of each of the gain and loss processes encountered in this study. The investigation is based on an electron cascade model applied previously in Gamal and Omar (2001) [2] and Gaabour et al. (2013) [3]. This model solves numerically a differential equation designates the time evolution of the electron energy distribution, and a set of rate equations that describe the change of excited states population. The numerical examination of the electron energy distribution function and its parameters revealed that photo-ionization of the excited molecules plays a significant role in enhancing the electron density growth rate over the whole tested gas pressure range. This process is off set by diffusion of electrons out of the focal volume in the low-pressure regime. At atmospheric pressure electron, collisional processes dominate and act mainly to populate the excited states. Hence photo-ionization becomes efficient and compete with the encountered loss processes (electron diffusion, vibrational excitation of the ground state molecules as well as two body attachments). At high pressures ( 3000 Torr) three body attachments are found to be the primary cause of losses which deplete the electron density and hence results in the slow decrease of the threshold intensity.

  12. Free microparticles—An inducing mechanism of pre-firing in high pressure gas switches for fast linear transformer drivers

    Science.gov (United States)

    Li, Xiaoang; Pei, Zhehao; Wu, Zhicheng; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2018-03-01

    Microparticle initiated pre-firing of high pressure gas switches for fast linear transformer drivers (FLTDs) is experimentally and theoretically verified. First, a dual-electrode gas switch equipped with poly-methyl methacrylate baffles is used to capture and collect the microparticles. By analyzing the electrode surfaces and the collecting baffles by a laser scanning confocal microscope, microparticles ranging in size from tens of micrometers to over 100 μm are observed under the typical working conditions of FLTDs. The charging and movement of free microparticles in switch cavity are studied, and the strong DC electric field drives the microparticles to bounce off the electrode. Three different modes of free microparticle motion appear to be responsible for switch pre-firing. (i) Microparticles adhere to the electrode surface and act as a fixed protrusion which distorts the local electric field and initiates the breakdown in the gap. (ii) One particle escapes toward the opposite electrode and causes a near-electrode microdischarge, inducing the breakdown of the residual gap. (iii) Multiple moving microparticles are occasionally in cascade, leading to pre-firing. Finally, as experimental verification, repetitive discharges at ±90 kV are conducted in a three-electrode field-distortion gas switch, with two 8 mm gaps and pressurized with nitrogen. An ultrasonic probe is employed to monitor the bounce signals. In pre-firing incidents, the bounce is detected shortly before the collapse of the voltage waveform, which demonstrates that free microparticles contribute significantly to the mechanism that induces pre-firing in FLTD gas switches.

  13. Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission

    International Nuclear Information System (INIS)

    Arp, Zane A.; Cremers, David A.; Harris, Ronny D.; Oschwald, David M.; Parker, Gary R.; Wayne, David M.

    2004-01-01

    Laser-induced breakdown spectroscopy (LIBS) is being developed for future use on landers and rovers to Mars. The method also has potential for use on probes to other planets, the Moon, asteroids and comets. Like Mars, Venus is of strong interest because of its proximity to earth, but unlike Mars, conditions at the surface are far more hostile with temperatures in excess of 700 K and pressures on the order of 9.1 MPa (90 atm). These conditions present a significant challenge to spacecraft design and demand that rapid methods of chemical data gathering be implemented. The advantages of LIBS (e.g. stand-off and very rapid analysis) make the method particularly attractive for Venus exploration because of the expected short operational lifetimes (∼2 h) of surface instrumentation. Although the high temperature of Venus should pose no problem to the analytical capabilities of the LIBS spark, the demonstrated strong dependence of laser plasma characteristics on ambient gas pressures below earth atmospheric pressure requires that LIBS measurements be evaluated at the high Venus surface pressures. Here, we present a preliminary investigation of LIBS at 9.1 MPa for application to the analysis of a basalt rock sample. The results suggest the feasibility of the method for a Venus surface probe and that further study is justified

  14. Low pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    DEFF Research Database (Denmark)

    Fumagalli, F; Kylian, O; Amato, Letizia

    2012-01-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can...... be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several...... operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water...

  15. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    International Nuclear Information System (INIS)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D; Kylian, O

    2009-01-01

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O 2 mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  16. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via E. Fermi 2749, 21027 Ispra (Vatican City State, Holy See) (Italy); Kylian, O [Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, Prague 8, 180 00 (Czech Republic)], E-mail: francois.rossi@jrc.ec.europa.eu

    2009-11-15

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O{sub 2} mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  17. Evolution of kinetically controlled In-induced surface structure on Si(5 5 7) surface

    Science.gov (United States)

    Chauhan, Amit Kumar Singh; Eldose, Nirosh M.; Mishra, Monu; Niazi, Asad; Nair, Lekha; Gupta, Govind

    2014-09-01

    This paper introduces issue of kinetically controlled and temperature driven superstructural phase transition of Indium (In) on atomically clean high index Si(5 5 7)-7 × 1 surface. Auger electron spectroscopy analysis reveals that at room-temperature (RT) with a controlled incident flux of 0.002 ML/s; In overlayers evolve through the Frank-van der Merwe growth mode and yield a (1 × 1) diffraction pattern for coverage ≥1 ML. For substrate temperature 500 °C island growth is observed. On annealing the In/Si(5 5 7) interface in the temperature range 250-340 °C, clusters to two dimensional (2D) layer transformation on top of a stable monolayer is predominated. In-situ RT and HT adsorption and thermal desorption phenomena revealed the formation of coverage and temperature dependent thermally stable In induced superstructural phases such as (4 × 1) at 0.5 ML (520 °C), (√3 × √3-R30°) at 0.3 ML (560 °C) and (7 × 7) at 0.1 ML (580 °C). These indium induced superstructures could be utilized as potential substrate for the growth of various exotic 1D/2D structures.

  18. Theoretical estimates of magnitudes of earthquakes induced by pore-pressure perturbations with large aspect ratios

    Science.gov (United States)

    Galis, Martin; Ampuero, Jean-Paul; Mai, P. Martin; Cappa, Frédéric

    2017-04-01

    Being able to reliably and accurately estimate the possible maximum magnitude of fluid-injection-induced earthquakes is of critical importance to quantify the associated seismic hazard and to define operational constraints for geo-reservoirs. In previous studies, we developed theoretical estimates of the magnitude of fluid-injection-induced earthquakes based fracture mechanics, assuming circular pressure perturbations. However, natural reservoirs are typically much wider than thicker. Therefore, here we discuss the application of our model to horizontally elongated pressurized regions with realistic aspect ratios. Assuming circular pressure perturbations, we derived a physical model estimating how large a rupture will grow on a given fault and for a given pore-pressure perturbation. We used two approaches. The first, semi-analytical approach is based on pore pressure evolution obtained by solving the diffusion equation for a cylindrical reservoir with no-flow boundaries. The second approach is an approximation to the first one, based on a point-load approximation of the pres-sure perturbation on the fault, allowing derivation of a complete analytical formula relating the magnitude of the largest arrested rupture, Mmax-arr, to injection and slip-weakening friction parameters. We found that the Mmax-arr scales with cumulative injected fluid volume as a power law with exponent of 3/2. In contrast, the Mmax relation by McGarr (2014) is a linear scaling (exponent of 1). While for the dataset used by McGarr (2014) the difference between our and McGarr's models is relatively small, inclusion of datasets with broad range of injected fluid volumes (from 10-10m3 to 1010m3) suggests better agreement with our model. However, inclusion of extended pressure perturbations into our two models, while maintaining the (semi-)analytical character, is not viable. Therefore, we perform numerical dynamic-rupture simulations to investigate rupture nucleation and arrest for pressure

  19. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis

    Directory of Open Access Journals (Sweden)

    Ilayaraja Muthuramu

    2017-07-01

    Full Text Available Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC in C57BL/6 mice. Mortality rate after TAC was higher (p < 0.05 in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64 during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold (p < 0.01 higher in coconut oil mice than in standard chow mice. Myocardial capillary density (p < 0.001 was decreased, interstitial fibrosis was 1.88-fold (p < 0.001 higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold (p < 0.001 higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower (p < 0.05 in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  20. Arterial Blood Pressure Induces Transient C4b-Binding Protein in Human Saphenous Vein Grafts.

    Science.gov (United States)

    Kupreishvili, Koba; Meischl, Christof; Vonk, Alexander B A; Stooker, Wim; Eijsman, Leon; Blom, Anna M; Quax, Paul H A; van Hinsbergh, Victor W M; Niessen, Hans W M; Krijnen, Paul A J

    2017-05-01

    Complement is an important mediator in arterial blood pressure-induced vein graft failure. Previously, we noted activation of cell protective mechanisms in human saphenous veins too. Here we have analyzed whether C4b-binding protein (C4bp), an endogenous complement inhibitor, is present in the vein wall. Human saphenous vein segments obtained from patients undergoing coronary artery bypass grafting (n = 55) were perfused in vitro at arterial blood pressure with either autologous blood for 1, 2, 4, or 6 hr or with autologous blood supplemented with reactive oxygen species scavenger N-acetylcysteine. The segments were subsequently analyzed quantitatively for presence of C4bp and complement activation product C3d using immunohistochemistry. Perfusion induced deposition of C3d and C4bp within the media of the vessel wall, which increased reproducibly and significantly over a period of 4 hr up to 3.8% for C3d and 81% for C4bp of the total vessel area. Remarkably after 6 hr of perfusion, the C3d-positive area decreased significantly to 1.3% and the C4bp-positive area to 19% of the total area of the vein. The areas positive for both C4bp and C3d were increased in the presence of N-acetylcysteine. Exposure to arterial blood pressure leads to a transient presence of C4bp in the vein wall. This may be part of a cell-protective mechanism to counteract arterial blood pressure-induced cellular stress and inflammation in grafted veins. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Diagnostics of surface wave driven low pressure plasmas based on indium monoiodide-argon system

    International Nuclear Information System (INIS)

    Ögün, C M; Kaiser, C; Kling, R; Heering, W

    2015-01-01

    Indium monoiodide is proposed as a suitable alternative to hazardous mercury, i.e. the emitting component inside the compact fluorescent lamps (CFL), with comparable luminous efficacy. Indium monoiodide-argon low pressure lamps are electrodelessly driven with surface waves, which are launched and coupled into the lamp by the ‘surfatron’, a microwave coupler optimized for an efficient operation at a frequency of 2.45 GHz. A non intrusive diagnostic method based on spatially resolved optical emission spectroscopy is employed to characterize the plasma parameters. The line emission coefficients of the plasma are derived by means of Abel’s inversion from the measured spectral radiance data. The characteristic plasma parameters, e.g. electron temperature and density are determined by comparing the experimentally obtained line emission coefficients with simulated ones from a collisional-radiative model. Additionally, a method to determine the absolute plasma efficiency via irradiance measurements without any goniometric setup is presented. In this way, the relationship between the plasma efficiency and the plasma parameters can be investigated systematically for different operating configurations, e.g. electrical input power, buffer gas pressure and cold spot temperature. The performance of indium monoiodide-argon plasma is compared with that of conventional CFLs. (paper)

  2. Exercise-induced albuminuria and circadian blood pressure abnormalities in type 2 diabetes

    Science.gov (United States)

    Tankeu, Aurel T; Kaze, François Folefack; Noubiap, Jean Jacques; Chelo, David; Dehayem, Mesmin Yefou; Sobngwi, Eugene

    2017-01-01

    AIM To investigate the relationship between circadian variations in blood pressure (BP) and albuminuria at rest, and during exercise in non-hypertensive type 2 diabetes (T2D) patients. METHODS We conducted a cross-sectional study in well controlled T2D patients, non-hypertensive, without clinical proteinuria and normal creatinine clearance. In each participant, we recorded the BP using ambulatory blood pressure monitoring (ABPM) for 24-h, and albuminuria at rest and after a standardized treadmill exercise. RESULTS We enrolled 27 type 2 patients with a median age of 52; and a mean duration of diabetes and HbA1c of 3.6 ± 0.8 years and 6.3% ± 0.5% respectively. Using a 24-h ABPM, we recorded a mean diurnal systolic blood pressure (SBP) of 128 ± 17 mmHg vs nocturnal of 123 ± 19 mmHg (P = 0.004), and mean diurnal diastolic blood pressure (DBP) of 83 ± 11 mmHg vs nocturnal 78 ± 14 mmHg (P = 0.002). There was a significant difference between albuminuria at rest [median = 23 mg, interquartile range (IQR) = 10-51] and after exercise (median = 35 mg, IQR = 23-80, P albuminuria had an increase in nocturnal BP values on all three components (128 mmHg vs 110 mmHg, P = 0.03 for SBP; 83 mmHg vs 66 mmHg, P = 0.04; 106 vs 83, P = 0.02 for mean arterial pressure), as well as albuminuric patients at rest. Moreover, exercise induced albuminuria detect a less increase in nocturnal DBP (83 vs 86, P = 0.03) than resting albuminuria. CONCLUSION Exercise induced albuminuria is associated with an increase in nocturnal BP values in T2D patients. PMID:28729969

  3. Structure of the Clean and Oxygen-Covered Cu(100) Surface at Room Temperature in the Presence of Methanol Vapor in the 10-200 mTorr Pressure Range.

    Science.gov (United States)

    Eren, Baran; Kersell, Heath; Weatherup, Robert S; Heine, Christian; Crumlin, Ethan J; Friend, Cynthia M; Salmeron, Miquel B

    2018-01-18

    Using ambient pressure X-ray photoelectron spectroscopy (APXPS) and high pressure scanning tunneling microscopy (HPSTM), we show that in equilibrium with 0.01-0.2 Torr of methanol vapor, at room temperature, the Cu(100) surface is covered with methoxy species forming a c(2 × 2) overlayer structure. In contrast, no methoxy is formed if the surface is saturated with an ordered oxygen layer, even when the methanol pressure is 0.2 Torr. At oxygen coverages below saturation, methanol dissociates and reacts with the atomic oxygen, producing methoxy and formate on the surface, and formaldehyde that desorbs to the gas phase. Unlike the case of pure carbon monoxide and carbon dioxide, methanol does not induce the restructuring of the Cu(100) surface. These results provide insight into catalytic anhydrous production of aldehydes.

  4. Laser-Induced Graphite Plasma Kinetic Spectroscopy under Different Ambient Pressures

    International Nuclear Information System (INIS)

    Chaudhary, K.; Rosalan, S.; Aziz, M. S.; Bohadoran, M.; Ali, J; Bidin, N.; Saktioto; Yupapin, P. P.

    2015-01-01

    The laser induced plasma dynamics of graphite material are investigated by optical emission spectroscopy. Ablation and excitation of the graphite material is performed by using an 1064nm Nd:YAG laser in different ambient pressures. Characteristics of graphite spectra as line intensity variations and signal-to-noise ratio are presented with a main focus on the influence of the ambient pressure on the interaction of laser-induced graphite plasma with an ambient environment. Atomic emission lines are utilized to investigate the dynamical behavior of plasma, such as the excitation temperature and electron density, to describe emission differences under different ambient conditions. The excitation temperature and plasma electron density are the primary factors which contribute to the differences among the atomic carbon emission at different ambient pressures. Reactions between the plasma species and ambient gas, and the total molecular number are the main factors influencing molecular carbon emission. The influence of laser energy on the plasma interaction with environment is also investigated to demonstrate the dynamical behavior of carbon species so that it can be utilized to optimize plasma fluctuations. (paper)

  5. Pressure-Induced Shifts in Trophic Linkages in a Simplified Aquatic Food Web

    Directory of Open Access Journals (Sweden)

    Maarten Schrama

    2017-12-01

    Full Text Available It is essential to understand effects of existing and emerging anthropogenic stressors on the structure of aquatic food webs in more natural settings, to obtain realistic predictions on how they can affect major ecosystem properties and functioning. We therefore examined whether (1 realistic concentrations of key agricultural pesticides and nutrients induce shifts in trophic linkages (2 observed changes in trophic linkages are qualitatively different between the green (algal-based and brown (detritus-based part of the food web. To this end, we exposed a simplified, yet realistic freshwater invertebrate community to environmentally relevant concentrations of three anthropogenic pressures (eutrophication; the herbicide terbuthylazine; and the insecticide imidacloprid in a full factorial mesocosm design. Trophic linkages and the changes therein were assessed measuring stable isotopes of natural carbon and nitrogen. Results show that the green and brown part of the food web react qualitatively different to interacting pressures. Whereas, herbivorous species react mainly to the nutrients and herbicides and the synergistic interaction between these, species in the detritivore part of the food web were affected by insecticide applications and interactions with nutrients. These results suggest that agricultural pressures can induce shifts in trophic linkages, but that they can have contrasting effects on the different parts of the food web. Such antagonistic and synergistic interactions can provide powerful explanations for observed responses of ecosystems to interacting stressors. These findings may have important implications for our understanding on interactions of agricultural stressors and their propagation in aquatic food webs.

  6. Pressure-induced transformations of confined diatomic molecules inside the one-dimensional channels

    Science.gov (United States)

    Liu, Bingbing

    2013-06-01

    Studies of the control and manipulation of atoms/molecules and their assemblies generate remarkable new insights into how physical and chemical systems function. Confining iodine into single crystal zeolite AlPO4-5(AFI), which consists of, well packed, one-dimensional (1D) channels with homogeneous inner diameter of 0.73 nm, has been recently identified to be an effective way to create 1D (I2)n chains. Here, iodine and bromine doped AFI were obtained by a high temperature vapor method. The confined iodine and bromine inside the 1D channels are found to exist as molecular chains, as well as small amount of standing and lying neutral molecules. Using polarized Raman scattering measurement, synchrotron X-ray diffraction and theoretical calculations, we have discovered a unique transition dynamics of the confined species inside the 1D channel of AFI under pressure. The pronounced pressure-induced prolongation of molecular chains, pressure-induced rotation of the confined neutral molecules, and the abrupt transition in the vibrational frequency of the confined iodine due to the change of the interaction between the confined species and host wall have been observed.

  7. Pressure-induced phase transitions of hexagonal perovskite-like oxides

    International Nuclear Information System (INIS)

    Aoba, Tomoya; Tiittanen, Taneli; Suematsu, Hisayuki; Karppinen, Maarit

    2016-01-01

    We have stabilized two new cubic (3C structured) A 2 B′B′′O 6 -type double-perovskite phases, Ba 2 CoSbO 6 and Ba 2 ZnTeO 6 , by means of a high-pressure heat-treatment of corresponding hexagonal (6H and 12R structured, respectively) non-perovskite phases at 4 GPa and 1000 °C. Similar treatments on hexagonal Ba 2 TiMnO 6 (12R) and Ba 2 NiTeO 6 (12R) phases did not yield the 3C double-perovskite structure but converted the 12R structure to the 6H structure. The pressure-induced phase conversion in each A 2 B′B′′O 6 system apparently goes from the 12R structure towards the 6H and 3C structures with increasing pressure, where the pressure ranges required most likely depend (among other possible factors) on the tolerance factor for the particular combination of A, B′ and B′′. We foresee that yet a number of novel B-site ordered double-perovskite compounds are to be discovered through the high-pressure high-temperature treatment. - Graphical abstract: High-pressure (HP) heat-treatment is an efficient tool to synthesize novel B-site ordered double-perovskite materials. This is demonstrated for two new cubic (3C structured) perovskite phases, Ba 2 CoSbO 6 and Ba 2 ZnTeO 6 , obtained through a HP conversion of corresponding hexagonal (6H and 12R structured, respectively) non-perovskite phases at 4 GPa and 1000 °C. Similar treatments on hexagonal Ba 2 TiMnO 6 (12R) and Ba 2 NiTeO 6 (12R) phases yield the intermediate 6H structure.

  8. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    Science.gov (United States)

    Li, Zhanguo; Li, Ying; Cao, Peng; Zhao, Hongjie

    2013-07-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.

  9. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    International Nuclear Information System (INIS)

    Li Zhanguo; Li Ying; Cao Peng; Zhao Hongjie

    2013-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet

  10. Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch

    International Nuclear Information System (INIS)

    Yonson, S; Coulombe, S; Leveille, V; Leask, R L

    2006-01-01

    A miniature atmospheric pressure glow discharge plasma torch was used to detach cells from a polystyrene Petri dish. The detached cells were successfully transplanted to a second dish and a proliferation assay showed the transplanted cells continued to grow. Propidium iodide diffused into the cells, suggesting that the cell membrane had been permeabilized, yet the cells remained viable 24 h after treatment. In separate experiments, hydrophobic, bacteriological grade polystyrene Petri dishes were functionalized. The plasma treatment reduced the contact angle from 93 0 to 35 0 , and promoted cell adhesion. Two different torch nozzles, 500 μm and 150 μm in internal diameter, were used in the surface functionalization experiments. The width of the tracks functionalized by the torch, as visualized by cell adhesion, was approximately twice the inside diameter of the nozzle. These results indicate that the miniature plasma torch could be used in biological micropatterning, as it does not use chemicals like the present photolithographic techniques. Due to its small size and manouvrability, the torch also has the ability to pattern complex 3D surfaces

  11. Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma.

    Science.gov (United States)

    Dorraki, Naghme; Mahdavi, Vahideh; Ghomi, Hamid; Ghasempour, Alireza

    2016-12-06

    The food industry is in a constant search for new technologies to improve the commercial sterilization process of agricultural commodities. Plasma treatment may offer a novel and efficient method for pesticide removal from agricultural product surfaces. To study the proposed technique of plasma food treatment, the degradation behavior of diazinon insecticide by air-dielectric barrier discharge (DBD) plasma was investigated. The authors studied the effect of different plasma powers and treatment times on pesticide concentration in liquid form and coated on the surface of cucumbers, where the diazinon residue was analyzed with mass spectroscopy gas chromatography. Our results suggest that atmospheric pressure air-DBD plasma is potentially effective for the degradation of diazinon insecticide, and mainly depends on related operating parameters, including plasma treatment time, discharge power, and pesticide concentrations. Based on the interaction between reactive oxygen species and electrons in the plasma with the diazinon molecule, two degradation pathway of diazinon during plasma treatment are proposed. It was also found that produced organophosphate pesticides are harmless and less hazardous compounds than diazinon.

  12. Investigation of the flow field around a propeller-rudder configuration: on-surface pressure measurements and velocity-pressure-phase-locked correlations

    OpenAIRE

    Felli, Mario; Falchi, Massimo; Pereira, Francisco

    2011-01-01

    The present paper deals with the problem of the propeller induced perturbation on the rudder . The study aims at providing insights on the key mechanisms governing the complex interaction between the propeller wake structures and the rudder. In this regard, a wide experimental activity that concerned PIV and LDV velocity measurements and wall-pressure-measurements on the two faces of the rudder was performed in a cavitation tunnel. The major flow features that distinguish the flow field aroun...

  13. Comparison of air-fluidized therapy with other support surfaces used to treat pressure ulcers in nursing home residents.

    Science.gov (United States)

    Ochs, Rachel F; Horn, Susan D; van Rijswijk, Lia; Pietsch, Catherine; Smout, Randall J

    2005-02-01

    To provide empirical evidence comparing pressure ulcer healing rates between different support surfaces, data were analyzed from eligible residents with pressure ulcers (N = 664) enrolled in the National Pressure Ulcer Long-Term Care Study, a retrospective pressure ulcer prevention and treatment study. Support surfaces were categorized as: Group 1 (static overlays and replacement mattresses), Group 2 (low-air-loss beds, alternating pressure, and powered/non-powered overlays/mattresses), and Group 3 (air-fluidized beds). Calculation of healing rates, using the largest ulcer from each resident, found mean healing rates greatest for air-fluidized therapy (Group 3) (mean = 5.2 cm(2)/week) versus Group 1 (mean =1.5 cm(2)/week) and Group 2 (mean = 1.8 cm(2)/week) surfaces (P = 0.007). Healing rates also were assessed using 7- to 10-day "episodes"; each ulcer generated separate episode(s) that included all ulcers when residents had multiple ulcers. Mean healing rates were significantly greater for Stage III/IV ulcers on Group 3 surfaces (mean = 3.1 cm(2)/week) versus Group 1 (mean = 0.6 cm(2)/week) and Group 2 (mean = 0.7 cm(2)/week) surfaces (Group 2 versus Group 3: P = 0.0211). This finding persisted for ulcers with comparable initial baseline areas (20 cm(2) to 75 cm(2)) on Group 2 and Group 3 surfaces; healing improved on Group 3 surfaces (+2.3 cm(2)/week) versus Group 2 surfaces (-2.1 cm(2)/week, P = 0.0399). Residents on Group 3 (6 out of 82; 7.3%) and Group 1 (47 out of 461; 10.2%) surfaces had fewer hospitalizations and emergency room visits than those on Group 2 surfaces (23 out of 121; 19.0%, P = 0.01) despite significantly greater illness in residents on Group 2 and 3 versus Group 1 surfaces (P is less than 0.0001). Despite limitations inherent in retrospective studies, ulcers on Group 3 surfaces versus Groups 1 and Group 2 surfaces had statistically significant faster healing rates (particularly for Stage III/IV ulcers) with significantly fewer

  14. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Seyed Mahdi [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of); Karimi-Sabet, Javad, E-mail: j_karimi@alum.sharif.edu [NFCRS, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Shariaty-Niassar, Mojtaba, E-mail: mshariat@ut.ac.ir [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-31

    Highlights: • Manipulation of the Cu surface morphology in a wide range by electropolishing treatment. • Comparison of the nucleation density of graphene at low pressure and atmospheric pressure CVD processes. • Controlling the evolution of the Cu surface morphology inside a novel confined space. • Growth of large-size graphene domains. - Abstract: In this work, we study the influence of the surface morphology of the catalytic copper substrate on the nucleation density and the growth rate of graphene domains at low and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) processes. In order to obtain a wide range of initial surface morphology, precisely controlled electropolishing methods were developed to manipulate the roughntreess value of the as-received Cu substrate (RMS = 30 nm) to ultra-rough (RMS = 130 nm) and ultra-smooth (RMS = 2 nm) surfaces. The nucleation and growth of graphene domains show obviously different trends at LPCVD and APCVD conditions. In contrast to APCVD condition, the nucleation density of graphene domains is almost equal in substrates with different initial roughness values at LPCVD condition. We show that this is due to the evolution of the surface morphology of the Cu substrate during the graphene growth steps. By stopping the surface sublimation of copper substrate in a confined space saturated with Cu atoms, the evolution of the Cu surface was impeded. This results in the reduction of the nucleation density of graphene domains up to 24 times in the pre-smoothed Cu substrates at LPCVD condition.

  15. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Guru Prasad, A S; Sharath, U; Asokan, S; Nagarjun, V; Hegde, G M

    2013-01-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other. (paper)

  16. Diamond detectors with laser induced surface graphite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Komlenok, M. [A.M. Prokorhov General Physics Institute, Russian Academy of Sciences, 38 Vavilova Str., 119991 Moscow (Russian Federation); Bolshakov, A. [A.M. Prokorhov General Physics Institute, Russian Academy of Sciences, 38 Vavilova Str., 119991 Moscow (Russian Federation); Harbin Institute of Technology, 92 Xidazhi Str., 150001 Harbin (China); Ralchenko, V. [A.M. Prokorhov General Physics Institute, Russian Academy of Sciences, 38 Vavilova Str., 119991 Moscow (Russian Federation); Harbin Institute of Technology, 92 Xidazhi Str., 150001 Harbin (China); National Research Nuclear University “MEPhI”, Kashirskoye shosse, 31, 115409 Moscow (Russian Federation); Konov, V. [A.M. Prokorhov General Physics Institute, Russian Academy of Sciences, 38 Vavilova Str., 119991 Moscow (Russian Federation); National Research Nuclear University “MEPhI”, Kashirskoye shosse, 31, 115409 Moscow (Russian Federation); Conte, G. [Department of Sciences, University Roma Tre and INFN, Via Vasca Navale, 84-00148 Rome (Italy); CNR-ISM, Institute for Structure of Matter, National Research Council, Via Salaria km 29, 300, Montelibretti (Italy); Girolami, M. [CNR-ISM, Institute for Structure of Matter, National Research Council, Via Salaria km 29, 300, Montelibretti (Italy); Oliva, P. [University Niccolò Cusano, Via don Carlo Gnocchi, 3-00166 Rome (Italy); Mediterranean Institute of Fundamental Physics ‘MIFP’, Via Appia Nuova, 31-00040 Marino (Rome) (Italy); Salvatori, S. [University Niccolò Cusano, Via don Carlo Gnocchi, 3-00166 Rome (Italy)

    2016-11-21

    We report on the response of metal-less CVD polycrystalline-diamond pixel sensors under β-particles irradiation. A 21×21 array of 0.18×0.18 mm{sup 2} pixels was realized on one side of a 10.0×10.0×0.5 mm{sup 3} polycrystalline diamond substrate by means of laser induced surface graphitization. With the same technique, a large graphite contact, used for detector biasing, was fabricated on the opposite side. A coincidence detecting method was used with two other reference polycrystalline diamond detectors for triggering, instead of commonly used scintillators, positioned in the front and on the back of the sensor-array with respect to the impinging particles trajectory. The collected charge distribution at each pixel was analyzed as a function of the applied bias. No change in the pulse height distribution was recorded by inverting the bias voltage polarity, denoting contacts ohmicity and symmetry. A fairly good pixel response uniformity was obtained: the collected charge most probable value saturates for all the pixels at an electric field strength of about ±0.6 V/μm. Under saturation condition, the average collected charge was equal to =1.64±0.02 fC, implying a charge collection distance of about 285 µm. A similar result, within 2%, was also obtained for 400 MeV electrons at beam test facility at INFN Frascati National Laboratory. Experimental results highlighted that more than 84% of impinging particles involved only one pixel, with no significant observed cross-talk effects.

  17. Effective macroscopic adhesive contact behavior induced by small surface roughness

    Science.gov (United States)

    Kesari, Haneesh; Lew, Adrian J.

    2011-12-01

    In this paper we study a model contact problem involving adhesive elastic frictionless contact between rough surfaces. The problem's most notable feature is that it captures the phenomenon of depth-dependent-hysteresis (DDH) (e.g., see Kesari et al., 2010), which refers to the observation of different contact forces during the loading and unloading stages of a contact experiment. We specifically study contact between a rigid axi-symmetric punch and an elastic half-space. The roughness is represented as arbitrary periodic undulations in the punch's radial profile. These undulations induce multiple equilibrium contact regions between the bodies at each indentation-depth. Assuming that the system evolves so as to minimize its potential energy, we show that different equilibrium contact regions are selected during the loading and unloading stages at each indentation-depth, giving rise to DDH. When the period and amplitude of our model's roughness is reduced, we show that the evolution of the contact force and radius with the indentation-depth can be approximated with simpler curves, the effective macroscopic behavior, which we compute. Remarkably, the effective behavior depends solely on the amplitude and period of the model's roughness. The effective behavior is useful for estimating material properties from contact experiments displaying DDH. We show one such example here. Using the effective behavior for a particular roughness model (sinusoidal) we analyze the energy loss during a loading/unloading cycle, finding that roughness can toughen the interface. We also estimate the energy barriers between the different equilibrium contact regions at a fixed indentation-depth, which can be used to assess the importance of ambient energy fluctuations on DDH.

  18. Pressure-induced crossing of the core levels in 5 d metals

    Science.gov (United States)

    Tal, Alexey A.; Katsnelson, Mikhail I.; Ekholm, Marcus; Jönsson, H. Johan M.; Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Abrikosov, Igor A.

    2016-05-01

    A pressure-induced interaction between core electrons, the core-level crossing (CLC) transition, has been observed in hcp Os at P ≈400 GPa [L. Dubrovinsky et al., Nature (London) 525, 226 (2015)], 10.1038/nature14681. By carrying out a systematic theoretical study for all metals of the 5 d series (Hf, Ta, W, Re, Os, Ir, Pt, Au) we have found that the CLC transition is a general effect for this series of metals. While in Pt it occurs at ≈1500 GPa , at a pressure substantially higher than in Os, in Ir it occurs already at 80 GPa. Moreover, we predict that in Re the CLC transition may take place already at ambient pressure. We explain the effect of the CLC and analyze the shift of the transition pressure across the series within the Thomas-Fermi model. In particular, we show that the effect has many common features with the atomic collapse in rare-earth elements.

  19. Pressure-induced phase transition in KxFe2-yS2

    International Nuclear Information System (INIS)

    Tsuchiya, Yuu; Ikeda, Shugo; Kobayashi, Hisao; Zhang, Xiao-Wei; Kishimoto, Shunji; Kikegawa, Takumi; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo

    2017-01-01

    The structural and electronic properties of high-quality K 0.66(6) Fe 1.75(10) S 2 single crystals have been investigated by angle-resolved X-ray diffraction and 57 Fe nuclear forward scattering using synchrotron radiation under pressure at room temperature. The samples exhibit phase separation into antiferromagnetic ordered K 2 Fe 4 S 5 and nonmagnetic K x Fe 2 S 2 phases. It was found that a pressure-induced phase transition occurs at p c = 5.9(4) GPa with simultaneous suppression of the antiferromagnetic and Fe vacancy orders. >From the results of 57 Fe nuclear forward scattering, the refined magnetic hyperfine field remains unchanged with pressure below p c , suggesting that the Néel temperature does not decrease with pressure up to p c . Above p c , all Fe atoms in K 0.66 Fe 1.75 S 2 are in the same nonmagnetic state. A discontinuous increase in the center shift was observed at p c , reflecting a change in the Fe electronic state in K 0.66 Fe 1.75 S 2 . (author)

  20. Insights into alternative prion protein topologies induced under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Torrent, Joan; Alvarez-Martinez, Maria Teresa; Heitz, Frederic; Liautard, Jean-Pierre; Balny, Claude; Lange, Reinhard

    2004-01-01

    The critical step in the pathogenesis of transmissible spongiform encephalopathies (TSEs) appears to be a conformational transition of a normal prion protein (PrP C ) into a misfolded isoform (PrP Sc ). To gain insight into the structural conversion of the prion protein we have exploited the use of high hydrostatic pressure combined with various spectroscopic techniques. In vitro transitions of the recombinant PrP to a scrapie-like form have never resulted in an infectious structure. It is our hypothesis that the acquisition of the disease-causing conformation depends on folding pathways which are difficult to attain. We attempt to favour, via specific reaction conditions at high pressure, alternative routes of misfolding leading to a stable infectious amyloidogenic conformer. Our results have demonstrated the potential of high pressure to reveal various prion structural changes, which are inaccessible by conventional methods. Especially, we have characterized a pressure-induced conformer in which the normal α-helical structure is changed into a highly aggregated β-sheet conformation showing markedly increased resistance to proteolysis (key markers of potential infectious agents). Our work may have important implications, not only for ultimately proving the protein-only hypothesis and for understanding the basic mechanism of the disease, but also for developing preventative and therapeutic measures

  1. Apelin elevates blood pressure in ICR mice with L-NAME-induced endothelial dysfunction

    Science.gov (United States)

    NAGANO, KATSUMASA; ISHIDA, JUNJI; UNNO, MADOKA; MATSUKURA, TANOMU; FUKAMIZU, AKIYOSHI

    2013-01-01

    Apelin is the endogenous ligand of APJ, which belongs to the family of G protein-coupled receptors. Apelin and APJ are highly expressed in various cardiovascular tissues, including the heart, kidney and vascular endothelial and smooth muscle cells. Although apelin exerts hypotensive effects via activation of endothelial nitric oxide synthase (eNOS), the ability of apelin to regulate blood pressure under pathological conditions is poorly understood. In the current study, NG-nitro-L-arginine methyl ester (L-NAME), a potent NOS inhibitor, was administered chronically, to induce peripheral vascular damage in mice. L-NAME-treated mice exhibited hypertension, increased vascular cell adhesion molecule-1 and plasminogen activator inhibitor-1 mRNA levels in the aorta and impaired vasodilatation associated with decreased aortic eNOS expression, consistent with endothelial damage. Three days following withdrawal of L-NAME treatment, the blood pressure response to apelin stimulation was assessed. Although apelin reduced blood pressure in non-treated mice, it was found to transiently elevate blood pressure in L-NAME-treated mice. These results indicate that apelin functions as a vasopressor peptide under pathological conditions, including vascular endothelial dysfunction in mice. PMID:23525196

  2. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  3. Insights into alternative prion protein topologies induced under high hydrostatic pressure

    Science.gov (United States)

    Torrent, Joan; Alvarez-Martinez, Maria Teresa; Heitz, Frédéric; Liautard, Jean-Pierre; Balny, Claude; Lange, Reinhard

    2004-04-01

    The critical step in the pathogenesis of transmissible spongiform encephalopathies (TSEs) appears to be a conformational transition of a normal prion protein (PrPC) into a misfolded isoform (PrPSc). To gain insight into the structural conversion of the prion protein we have exploited the use of high hydrostatic pressure combined with various spectroscopic techniques. In vitro transitions of the recombinant PrP to a scrapie-like form have never resulted in an infectious structure. It is our hypothesis that the acquisition of the disease-causing conformation depends on folding pathways which are difficult to attain. We attempt to favour, via specific reaction conditions at high pressure, alternative routes of misfolding leading to a stable infectious amyloidogenic conformer. Our results have demonstrated the potential of high pressure to reveal various prion structural changes, which are inaccessible by conventional methods. Especially, we have characterized a pressure-induced conformer in which the normal agr-helical structure is changed into a highly aggregated bgr-sheet conformation showing markedly increased resistance to proteolysis (key markers of potential infectious agents). Our work may have important implications, not only for ultimately proving the protein-only hypothesis and for understanding the basic mechanism of the disease, but also for developing preventative and therapeutic measures.

  4. The pipeline fracture behavior and pressure assessment under HIC (Hydrogen induced cracking) environment

    Energy Technology Data Exchange (ETDEWEB)

    Shaohua, Dong [China National Petroleum Corporation (CNPC), Beijing (China); Lianwei, Wang [University of Science and Technology Beijing (USTB), Beijing (China)

    2009-07-01

    As Hydrogen's transmit and diffuse, after gestating for a while, the density of hydrogen around crack tip of pipeline will get to the critical density, and the pipeline material will descend, make critical stress factor, the reason of pipeline Hydrogen Induced Cracking is Hydrogen's transmit and diffuse. The stress factor of Hydrogen Induced Cracking under surroundings-condition of stress is the key that estimate material's rupture behavior. The paper study the relationship among hydrogen concentrate, crack tip stress, stain field, hydrogen diffusion and inner pressure for crack tip process zone, then determined the length of HIC (hydrogen induced cracking) process zone. Based on the theory of propagation which reason micro-crack making core, dislocation model is produced for fracture criteria of HIC, the influence between material and environments under the HIC is analyzed, step by step pipeline maximum load pressure and threshold of J-integrity ( J{sub ISCC} ) is calculated, which is very significant for pipeline safety operation. (author)

  5. Blade Section Design of Marine Propellers with Minimum Cavitation Induced Pressure Fluctuations

    Science.gov (United States)

    Zeng, Zhibo; Kuiper, Gert

    2015-12-01

    To minimize cavitation induced pressure fluctuations by marine propellers with minimum efficiency loss, the paper presents a new design and optimization method using a blade section design method. The sheet cavity volume variation on a two-dimensional blade section in quasi-steady condition has been simplified to a relation with only a limited number of non-dimensional parameters. This results in a fast prediction method of the cavity volume of a blade section passing a wake peak, using a pre-calculated database. This makes optimization feasible. The optimization method was applied to the propeller of a container ship. Extensive tests in a towing tank and a cavitation channel validated the reduction of pressure fluctuations: 33% reduction in the first blade frequency amplitude and 18% reduction in the second blade frequency amplitude, with the same open water efficiency.

  6. Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection

    Science.gov (United States)

    McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.

    2013-12-01

    High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been

  7. The role of electron scattering in electron-induced surface chemistry

    NARCIS (Netherlands)

    van Dorp, Willem F.

    2012-01-01

    Electron-induced chemistry on surfaces plays a key role in focused electron beam induced processing (FEBIP), a single-step lithography technique that has increasingly gained interest in the past decade. It is crucial for the understanding and modelling of this process to know the role of the surface

  8. Adipose tissue ATGL modifies the cardiac lipidome in pressure-overload-induced left ventricular failure.

    Directory of Open Access Journals (Sweden)

    Janek Salatzki

    2018-01-01

    Full Text Available Adipose tissue lipolysis occurs during the development of heart failure as a consequence of chronic adrenergic stimulation. However, the impact of enhanced adipose triacylglycerol hydrolysis mediated by adipose triglyceride lipase (ATGL on cardiac function is unclear. To investigate the role of adipose tissue lipolysis during heart failure, we generated mice with tissue-specific deletion of ATGL (atATGL-KO. atATGL-KO mice were subjected to transverse aortic constriction (TAC to induce pressure-mediated cardiac failure. The cardiac mouse lipidome and the human plasma lipidome from healthy controls (n = 10 and patients with systolic heart failure (HFrEF, n = 13 were analyzed by MS-based shotgun lipidomics. TAC-induced increases in left ventricular mass (LVM and diastolic LV inner diameter were significantly attenuated in atATGL-KO mice compared to wild type (wt -mice. More importantly, atATGL-KO mice were protected against TAC-induced systolic LV failure. Perturbation of lipolysis in the adipose tissue of atATGL-KO mice resulted in the prevention of the major cardiac lipidome changes observed after TAC in wt-mice. Profound changes occurred in the lipid class of phosphatidylethanolamines (PE in which multiple PE-species were markedly induced in failing wt-hearts, which was attenuated in atATGL-KO hearts. Moreover, selected heart failure-induced PE species in mouse hearts were also induced in plasma samples from patients with chronic heart failure. TAC-induced cardiac PE induction resulted in decreased PC/ PE-species ratios associated with increased apoptotic marker expression in failing wt-hearts, a process absent in atATGL-KO hearts. Perturbation of adipose tissue lipolysis by ATGL-deficiency ameliorated pressure-induced heart failure and the potentially deleterious cardiac lipidome changes that accompany this pathological process, namely the induction of specific PE species. Non-cardiac ATGL-mediated modulation of the cardiac lipidome may play an

  9. High temperature and high pressure oxidation behavior of Zr-2.5Nb pressure tube material – Effect of β phase composition and surface machining

    Energy Technology Data Exchange (ETDEWEB)

    Nouduru, S.K., E-mail: nouduru@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kumar, M. Kiran; Kain, Vivekanand [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Khanna, A.S. [Dept. of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Saibaba, N. [Nuclear Fuel Complex, ECILPost, Hyderabad 500062 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-03-15

    Pressure tube material, Zr-2.5Nb, of pressurized heavy water reactors was given selective heat-treatments. The objective was to generate microstructures with different compositions of the second phase β namely, Νb depleted β{sub Zr} phase and Nb rich β{sub Nb} phase. The material with β{sub Zr} was then subjected to surface machining. The presence of phases after different heat-treatments was confirmed by X-ray diffraction and the resultant microstructures were characterized by transmission electron microscopy and electron back scattered diffraction. The Nb content in the β phase after heat-treatments and residual stresses before and after surface machining were measured using X-ray diffraction. Oxidation was carried out in steam at 400 °C and 10 MPa up to 30 days and the oxides were characterized by Raman spectroscopy. It is shown that the presence of Nb rich β{sub Nb} in the microstructure and faster diffusion of Nb into β phase brought about by surface machining resulted in an enhanced oxidation resistance. - Highlights: • Effect of heat treatments in formation of Nb rich/depleted phases established. • Microstructure with β{sub Nb} and Nb depleted α shown to have high oxidation resistance. • Surface machining resulted in grain refinement, strain and tensile residual stress. • Surface machining improved oxidation resistance and its extent increased with time. • Machined specimen showed higher fraction of tetragonal zirconia.

  10. High temperature and high pressure oxidation behavior of Zr-2.5Nb pressure tube material – Effect of β phase composition and surface machining

    International Nuclear Information System (INIS)

    Nouduru, S.K.; Kumar, M. Kiran; Kain, Vivekanand; Khanna, A.S.; Saibaba, N.; Dey, G.K.

    2016-01-01

    Pressure tube material, Zr-2.5Nb, of pressurized heavy water reactors was given selective heat-treatments. The objective was to generate microstructures with different compositions of the second phase β namely, Νb depleted β Zr phase and Nb rich β Nb phase. The material with β Zr was then subjected to surface machining. The presence of phases after different heat-treatments was confirmed by X-ray diffraction and the resultant microstructures were characterized by transmission electron microscopy and electron back scattered diffraction. The Nb content in the β phase after heat-treatments and residual stresses before and after surface machining were measured using X-ray diffraction. Oxidation was carried out in steam at 400 °C and 10 MPa up to 30 days and the oxides were characterized by Raman spectroscopy. It is shown that the presence of Nb rich β Nb in the microstructure and faster diffusion of Nb into β phase brought about by surface machining resulted in an enhanced oxidation resistance. - Highlights: • Effect of heat treatments in formation of Nb rich/depleted phases established. • Microstructure with β Nb and Nb depleted α shown to have high oxidation resistance. • Surface machining resulted in grain refinement, strain and tensile residual stress. • Surface machining improved oxidation resistance and its extent increased with time. • Machined specimen showed higher fraction of tetragonal zirconia.

  11. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface ...... of soil surface temperature are often more important to plants and animals than the average ... shrub, and a long light shadow is obvious on the lee side. At 14:00, shadow is much ...

  12. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hedwig, Rinda [Department of Computer Engineering, Faculty of Computer Studies, Bina Nusantara University, 9 K.H. Syahdan, Jakarta Barat 11480 (Indonesia); Budi, Wahyu Setia [Department of Physics, Faculty of Mathematics and Natural Sciences, Diponegoro University, Tembalang Campus, Semarang, Central Java (Indonesia); Abdulmadjid, Syahrun Nur [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh, Nanggroe Aceh Darussalam (Indonesia); Pardede, Marincan [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Suliyanti, Maria Margaretha [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Lie, Tjung Jie [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Kurniawan, Davy Putra [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Kurniawan, Koo Hendrik [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia)]. E-mail: kurnia18@cbn.net.id; Kagawa, Kiichiro [Department of Physics, Faculty of Education and Regional Studies, 9-1 bunkyo 3-chome, Fukui 910-8507 (Japan); Tjia, May On [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia)

    2006-12-15

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process.

  13. pH-Induced Changes in the Surface Viscosity of Unsaturated Phospholipids Monitored Using Active Interfacial Microrheology.

    Science.gov (United States)

    Ghazvini, Saba; Alonso, Ryan; Alhakamy, Nabil; Dhar, Prajnaparamita

    2018-01-23

    Lipid membranes, a major component of cells, are subjected to significant changes in pH depending on their location in the cell: the outer leaflet of the cell membrane is exposed to a pH of 7.4 whereas lipid membranes that make up late endosomes and lysosomes are exposed to a pH of as low as 4.4. The purpose of this study is to evaluate how changes in the environmental pH within cells alter the fluidity of phospholipid membranes. Specifically, we studied pH-induced alterations in the surface arrangement of monounsaturated lipids with zwitterionic headgroups (phosphoethanolamine (PE) and phosphocholine (PC)) that are abundant in plasma membranes as well as anionic lipids (phosphatidylserine (PS) and phosphatidylglycerol (PG)) that are abundant in inner membranes using a combination of techniques including surface tension vs area measurements, interfacial microrheology, and fluorescence/atomic force microscopy. Using an active interfacial microrheology technique, we find that phospholipids with zwitterionic headgroups show a significant increase in their surface viscosity at acidic pH. This increase in surface viscosity is also found to depend on the size of the lipid headgroup, with a smaller headgroup showing a greater increase in viscosity. The observed pH-induced increase in viscosity is also accompanied by an increase in the cohesion pressure between zwitterionic molecules at acidic pH and a decrease in the average molecular area of the lipids, as measured by fitting the surface pressure isotherms to well-established equations of state. Because fluorescent images show no change in the phase of the lipids, we attribute this change in surface viscosity to the pH-induced reorientation of the P - -N + dipoles that form part of the polar lipid headgroup, resulting in increased lipid-lipid interactions. Anionic PG headgroups do not demonstrate this pH-induced change in viscosity, suggesting that the presence of a net negative charge on the headgroup causes

  14. Evaluation of defects induced by neutron radiation in reactor pressure vessels steels

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.

    1978-01-01

    We have developed a method for calculating the production of neutron induced defects (depleted zone and crowdions) in ferritic pressure vessel steels for different neutron spectra. They have been analysed both the recoil primary atoms produced by elastic and inelastic collisions with fast neutrons and the ones produced by gamma-ray emission by thermal neutron absorption. Theoretical modelling of increasing in the ductile-brittle transition temperature of ferritic steels has been correlated with experimental data at irradiation temperature up to 400 degree centigree (Author) 15 refs

  15. Canard orbits in Fabry-Perot cavities induced by radiation pressure and photothermal effects

    Science.gov (United States)

    Marino, F.; de Rosa, M.; Marin, F.

    2006-02-01

    A theoretical study of a high-finesse Fabry-Perot cavity considering radiation pressure and photothermal displacement is reported. We show that the competition between these two effects induces a different kind of dynamic behavior in such a system, consisting of canard orbits and excitability. The transition between the excitable regime and the canard oscillations, occurring through a supercritical Hopf bifurcation, appears in an order compatible with the van der Pol FitzHugh-Nagumo equations. Besides its interest as a study of general nonlinear dynamics, the characterization of the effects described is critical for high sensitivity interferometric displacement measurements as those employed for gravitational waves detection.

  16. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    Science.gov (United States)

    de Vries, N.; Palomares, J. M.; Iordanova, E. I.; van Veldhuizen, E. M.; van der Mullen, J. J. A. M.

    2008-10-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, ne, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, Te, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the ne values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) × 1019 m-3, whereas the ne value (2 ± 0.5) × 1019 m-3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (~1020 m-3). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the Te values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  17. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vries, N de; Iordanova, E I; Van Veldhuizen, E M; Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Palomares, J M [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain)], E-mail: j.j.a.m.v.d.Mullen@tue.nl

    2008-10-21

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, n{sub e}, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, T{sub e}, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the n{sub e} values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 {+-} 0.5) x 10{sup 19} m{sup -3}, whereas the n{sub e} value (2 {+-} 0.5) x 10{sup 19} m{sup -3} obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high ({approx}10{sup 20} m{sup -3}). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the T{sub e} values obtained with TS are equal to 13 400 {+-} 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  18. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to

  19. Acute kidney injuries induced by various irrigation pressures in rat models of mild and severe hydronephrosis.

    Science.gov (United States)

    Cao, Zhixiu; Yu, Weimin; Li, Wei; Cheng, Fan; Xia, Yue; Rao, Ting; Yao, Xiaobing; Zhang, Xiaobin; Larré, Stéphane

    2013-12-01

    To clarify whether tolerance to irrigation pressure could be modified over varying degrees of kidney obstruction during the endoscopic treatment of kidney stones in a rat model. A total of 126 rats were randomly allocated into 2 experimental groups and a control group. The experimental groups underwent a surgical procedure to induce mild (group M, n = 60) or severe (group S, n = 60) hydronephrosis. In each group, the rats were then randomly allocated into 4 subgroups (M0 to M3 and S0 to S3) of respectively 6, 18, 18, and 18 rats. Groups 0 to 3 were respectively perfused with 0 (no irrigation), 20, 60, and 100 mm Hg pressure fluid. The control group underwent no surgical procedures and was only perfused with 100 mm Hg pressure fluid. Acute kidney injuries were assessed by analyzing the kidney microstructure, tubular cell apoptosis, kidney injury molecule-1, and cysteine-rich 61 (Cyr61/CCN1) expression using immunohistochemistry. No abnormalities were observed for the control group, groups 0, or 1. In group 2, abnormalities were observed only in the S group, whereas all kidneys in group 3 suffered acute kidneys injuries, along with occurrence of tubular cells necrosis, increased apoptosis, and increased expression of kidney injury molecule-1 and Cyr61. Rats with severely obstructed kidneys were more likely to suffer acute kidney injuries than those with less obstructed kidneys when exposed to higher kidney irrigation pressures. This suggests that the pressure should be controlled and reduced when performing endourologic procedures in the context of kidney obstruction. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  20. Potential of high pressure homogenization to induce autolysis of wine yeasts.

    Science.gov (United States)

    Comuzzo, Piergiorgio; Calligaris, Sonia; Iacumin, Lucilla; Ginaldi, Federica; Palacios Paz, Anthony Efrain; Zironi, Roberto

    2015-10-15

    High pressure homogenization (HPH) was tested for inducing autolysis in a commercial strain of Saccharomyces bayanus for winemaking. The effects on cell viability, the release of soluble proteins, glucidic colloids and amino acids in wine-like medium and the volatile composition of the autolysates were investigated after processing, in comparison with thermolysis. HPH seemed a promising technique for inducing autolysis of wine yeasts. One pass at 150 MPa was the best operating conditions. Soluble colloids, proteins and free amino acids were similar after HPH and thermolysis, but the former gave a more interesting volatile composition after processing, with higher concentrations of ethyl esters (fruity odors) and lower fatty acids (potential off-flavors). This might allow different winemaking applications for HPH, such as the production of yeast derivatives for wine ageing. In the conditions tested, HPH did not allow the complete inactivation of yeast cells; the treatment shall be optimized before winemaking use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Dynamic cerebral autoregulation to induced blood pressure changes in human experimental and clinical sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Plovsing, Ronni R; Bailey, Damian M

    2016-01-01

    : 2 ng kg(-1) ). Mean arterial blood pressure (MAP, arterial transducer) and middle cerebral artery blood flow velocity (MCAv, transcranial Doppler ultrasound) were recorded continuously during thigh-cuff deflation-induced changes in MAP for the determination of a modified rate of regulation (Ro......R). This was performed before and after LPS infusion in healthy volunteers, and within 72 h following clinical diagnosis of sepsis in patients. In healthy volunteers, thigh-cuff deflation caused a MAP reduction of 16 (13-20) % at baseline and 18 (16-20) % after LPS, while the MAP reduction was 12 (11-13) % in patients......(-1) ; P = 0·91 versus baseline; P = 0·14 versus LPS]. While our findings support the concept that dynamic cerebral autoregulation is enhanced during the very early stages of sepsis, they remain inconclusive with regard to more advanced stages of disease, because thigh-cuff deflation failed to induce...

  2. Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure

    Directory of Open Access Journals (Sweden)

    Elena Beltrán-Heredia

    2017-05-01

    Full Text Available Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force. We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive

  3. Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE; FINAL

    International Nuclear Information System (INIS)

    Weiss, R.F.

    1998-01-01

    All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0(sub 2)) and nitrous oxide (N(sub 2)O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in th e global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO(sub 2) and N(sub 2)O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N(sub 2)O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO(sub 2), roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N(sub 2)O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone

  4. Charge exchange, surface-induced dissociation and reactions of doubly charged molecular ions SF42+ upon impact on a stainless steel surface: A comparison with surface-induced dissociation of singly charged SF4+ molecular ions

    Czech Academy of Sciences Publication Activity Database

    Feketeová, L.; Grill, V.; Zappa, F.; Endstrasser, N.; Rasul, B.; Herman, Zdeněk; Scheier, P.; Märk, T. D.

    2008-01-01

    Roč. 276, č. 1 (2008), s. 37-42 ISSN 1387-3806 Institutional research plan: CEZ:AV0Z40400503 Keywords : doubly charged ion * surface-induced dissociations * surface-induced reaction * charge exchange Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.445, year: 2008

  5. Experimental and numerical characterization of wind-induced pressure coefficients on nuclear buildings and chimney exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, Laurent, E-mail: laurent.ricciardi@irsn.fr; Gélain, Thomas; Soares, Sandrine

    2015-10-15

    Highlights: • Experiments on scale models of nuclear buildings and chimney exhausts were performed. • Pressure coefficient fields on buildings are shown for various wind directions. • Evolution of pressure coefficient vs U/W ratio is given for various chimney exhausts. • RANS simulations using SST k–ω turbulence model were performed on most studied cases. • A good agreement is overall observed, with Root Mean Square Deviation lower than 0.15. - Abstract: Wind creates pressure effects on different surfaces of buildings according to their exposure to the wind, in particular at external communications. In nuclear facilities, these effects can change contamination transfers inside the building and can even lead to contamination release into the environment, especially in damaged (ventilation stopped) or accidental situations. The diversity of geometries of facilities requires the use of a validated code for predicting pressure coefficients, which characterize the wind effect on the building walls and the interaction between the wind and chimney exhaust. The first aim of a research program launched by the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN), was therefore to acquire experimental data of the mean pressure coefficients for different geometries of buildings and chimneys through wind tunnel tests and then to validate a CFD code (ANSYS CFX) from these experimental results. The simulations were performed using a steady RANS approach and a two-equation SST k–ω turbulence model. After a mesh sensitivity study for one configuration of building and chimney, a comparison was carried out between the numerical and experimental values for other studied configurations. This comparison was generally satisfactory, averaged over all measurement points, with values of Root Mean Square Deviations lower than 0.15 for most cases.

  6. On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Hochbauer, Tobias [Univ. of Marburg (Germany)

    2001-11-01

    The “Ion-Cut”, a layer splitting process by hydrogen ion implantation and subsequent annealing is a versatile and efficient technique of transferring thin silicon surface layers from bulk substrates onto other substrates, thus enabling the production of silicon-oninsulator (SOI) materials. Cleavage is induced by the coalescence of the highly pressurized sub-surface H2-gas bubbles, which form upon thermal annealing. A fundamental understanding of the basic mechanisms on how the cutting process occurs is still unclear, inhibiting further optimization of the Ion-Cut process. This work elucidates the physical mechanisms behind the Ion-Cut process in hydrogen-implanted silicon. The investigation of the cleavage process reveals the cut to be largely controlled by the lattice damage, generated by the hydrogen ion irradiation process, and its effects on the local stress field and the fracture toughness within the implantation zone rather than by the depth of maximum H-concentration. Furthermore, this work elucidates the different kinetics in the H-complex formations in silicon crystals with different conductivity types, and examines the mechanically induced damage accumulation caused by the crack propagation through the silicon sample in the splitting step of the Ion-Cut process. Additionally, the influence of boron pre-implantation on the Ion-Cut in hydrogen implanted silicon is investigated. These studies reveal, that both, the atomic interaction between the boron implant and the hydrogen implant and the shift of the Fermi level due to the electrical activation of the implanted boron have a tremendous enhancing effect on the Ion-Cut process.

  7. On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Hochbauer, Tobias Franz [Univ. of Marburg (Germany)

    2002-08-01

    The “Ion-Cut”, a layer splitting process by hydrogen ion implantation and subsequent annealing is a versatile and efficient technique of transferring thin silicon surface layers from bulk substrates onto other substrates, thus enabling the production of silicon-oninsulator (SOI) materials. Cleavage is induced by the coalescence of the highly pressurized sub-surface H2-gas bubbles, which form upon thermal annealing. A fundamental understanding of the basic mechanisms on how the cutting process occurs is still unclear, inhibiting further optimization of the Ion-Cut process. This work elucidates the physical mechanisms behind the Ion-Cut process in hydrogen-implanted silicon. The investigation of the cleavage process reveals the cut to be largely controlled by the lattice damage, generated by the hydrogen ion irradiation process, and its effects on the local stress field and the fracture toughness within the implantation zone rather than by the depth of maximum H-concentration. Furthermore, this work elucidates the different kinetics in the H-complex formations in silicon crystals with different conductivity types, and examines the mechanically induced damage accumulation caused by the crack propagation through the silicon sample in the splitting step of the Ion-Cut process. Additionally, the influence of boron pre-implantation on the Ion-Cut in hydrogen implanted silicon is investigated. These studies reveal, that both, the atomic interaction between the boron implant and the hydrogen implant and the shift of the Fermi level due to the electrical activation of the implanted boron have a tremendous enhancing effect on the Ion-Cut process.

  8. Effect of skin surface lipid on the skin permeation of lidocaine from pressure sensitive adhesives.

    Science.gov (United States)

    Cheng, Y H; Hosoya, O; Sugibayashi, K; Morimoto, Y

    1994-12-01

    Pressure sensitive adhesives (PSA) tapes containing different concentrations of lidocaine were prepared by a general casting method using styrene-isoprene-styrene block copolymer, and the in vitro skin permeation of lidocaine from each tape was evaluated using diffusion cell and excised hairless rat skin. The skin permeation was proportionally increased by up to 40% lidocaine in the PSA tape and did not change after this concentration. Although the bending point of the steady-state flux via skin concentration curve was found at 40%, saturated concentration or solubility of lidocaine in the tape was estimated to be about 20% by differential scanning calorimetry (DSC) measurement. In addition, the steady-state flux of lidocaine through skin from water or silicone fluid suspension (92 or 120 micrograms/cm2.h, respectively) was very similar to those of 40, 50 and 60% tapes (105, 101 and 112 micrograms/cm2.h, respectively). Decrease in the concentration in tapes during the permeation experiment explained only part of these phenomena. To analyze them further, the drug free PSA tape with or without (control) skin surface lipid was affixed to 50% lidocaine PSA tape for 48 h, and the amount of lidocaine crystal in the layered tapes was measured by DSC. The amount was found to be lower in the lipid-containing tape than in the lipid-free tape, suggesting that skin surface lipid can dissolve lidocaine crystal or solid in PSA tape to decrease its thermodynamic activity. Thus it is important to follow the concentration and thermodynamic activity of lidocaine in PSA tape, skin and the interface between the two layers to exactly assess its skin permeation flux.

  9. Highway-railway at-grade crossing structures : trackbed and surface pressure measurements and assessments.

    Science.gov (United States)

    2009-05-01

    Techniques are described for installing instrumentation within highway/railway crossings - to measure vertical pressures under moving highway and railway loadings - using earth pressure cells. Also, techniques are described for installing instrumenta...

  10. Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization.

    Science.gov (United States)

    Chen, Sheng-Han; Chang, Yung; Lee, Kueir-Rarn; Wei, Ta-Chin; Higuchi, Akon; Ho, Feng-Ming; Tsou, Chia-Chun; Ho, Hsin-Tsung; Lai, Juin-Yih

    2012-12-21

    In this work, the hemocompatibility of zwitterionic polypropylene (PP) fibrous membranes with varying grafting coverage of poly(sulfobetaine methacrylate) (PSBMA) via plasma-induced surface polymerization was studied. Charge neutrality of PSBMA-grafted layers on PP membrane surfaces was controlled by the low-pressure and atmospheric plasma treatment in this study. The effects of grafting composition, surface hydrophilicity, and hydration capability on blood compatibility of the membranes were determined. Protein adsorption onto the different PSBMA-grafted PP membranes from human fibrinogen solutions was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Blood platelet adhesion and plasma clotting time measurements from a recalcified platelet-rich plasma solution were used to determine if platelet activation depends on the charge bias of the grafted PSBMA layer. The charge bias of PSBMA layer deviated from the electrical balance of positively and negatively charged moieties can be well-controlled via atmospheric plasma-induced interfacial zwitterionization and was further tested with human whole blood. The optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and keeps its original blood-inert property of antifouling, anticoagulant, and antithrmbogenic activities when it comes into contact with human blood. This work suggests that the hemocompatible nature of grafted PSBMA polymers by controlling grafting quality via atmospheric plasma treatment gives a great potential in the surface zwitterionization of hydrophobic membranes for use in human whole blood.

  11. Zeeman-induced gapless superconductivity with a partial Fermi surface

    Science.gov (United States)

    Yuan, Noah F. Q.; Fu, Liang

    2018-03-01

    We show that an in-plane magnetic field can drive two-dimensional spin-orbit-coupled systems under the superconducting proximity effect into a gapless phase where parts of the normal state Fermi surface are gapped, and the ungapped parts are reconstructed into a small Fermi surface of Bogoliubov quasiparticles at zero energy. The charge distribution, spin texture, and density of states of such a "partial Fermi surface" are discussed. Material platforms for its physical realization are proposed.

  12. Laser-induced damage threshold of ZrO2 thin films prepared at different oxygen partial pressures by electron-beam evaporation

    International Nuclear Information System (INIS)

    Zhang Dongping; Shao Jianda; Zhao Yuanan; Fan Shuhai; Hong Ruijing; Fan Zhengxiu

    2005-01-01

    ZrO 2 films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3x10 -3 Pa to 11x10 -3 Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064 nm Nd: yttritium-aluminum-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO 2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples de