WorldWideScience

Sample records for surface pressure increase

  1. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  2. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  3. Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet

    Science.gov (United States)

    Jofre-Reche, José Antonio; Pulpytel, Jérôme; Arefi-Khonsari, Farzaneh; Martín-Martínez, José Miguel

    2016-08-01

    The surface properties of polydimethylsiloxane (PDMS) were modified by treatment with an atmospheric pressure rotating plasma jet (APPJ) and the surface modifications were studied to assess its hydrophilicity and adhesion to acrylic adhesive tape intended for medical applications. Furthermore, the extent of hydrophobic recovery under different storage conditions was studied. The surface treatment of PDMS with the APPJ under optimal conditions noticeably increased the oxygen content and most of the surface silicon species were fully oxidized. A brittle silica-like layer on the outermost surface was created showing changes in topography due to the formation of grooves and cracks. A huge improvement in T-peel and the shear adhesive strength of the APPJ-treated PDMS surface/acrylic tape joints was obtained. On the other hand, the hydrophilicity of the PDMS surface increased noticeably after the APPJ treatment, but 24 h after treatment almost 80% hydrophobicity was recovered and the adhesive strength was markedly reduced with time after the APPJ treatment. However, the application of an acrylic adhesive layer on the just-APPJ-treated PDMS surface retained the adhesive strength, limiting the extent of hydrophobic recovery.

  4. Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet

    International Nuclear Information System (INIS)

    Jofre-Reche, José Antonio; Martín-Martínez, José Miguel; Pulpytel, Jérôme; Arefi-Khonsari, Farzaneh

    2016-01-01

    The surface properties of polydimethylsiloxane (PDMS) were modified by treatment with an atmospheric pressure rotating plasma jet (APPJ) and the surface modifications were studied to assess its hydrophilicity and adhesion to acrylic adhesive tape intended for medical applications. Furthermore, the extent of hydrophobic recovery under different storage conditions was studied. The surface treatment of PDMS with the APPJ under optimal conditions noticeably increased the oxygen content and most of the surface silicon species were fully oxidized. A brittle silica-like layer on the outermost surface was created showing changes in topography due to the formation of grooves and cracks. A huge improvement in T-peel and the shear adhesive strength of the APPJ-treated PDMS surface/acrylic tape joints was obtained. On the other hand, the hydrophilicity of the PDMS surface increased noticeably after the APPJ treatment, but 24 h after treatment almost 80% hydrophobicity was recovered and the adhesive strength was markedly reduced with time after the APPJ treatment. However, the application of an acrylic adhesive layer on the just-APPJ-treated PDMS surface retained the adhesive strength, limiting the extent of hydrophobic recovery. (paper)

  5. Increased delignification by white rot fungi after pressure refining Miscanthus.

    Science.gov (United States)

    Baker, Paul W; Charlton, Adam; Hale, Mike D C

    2015-01-01

    Pressure refining, a pulp making process to separate fibres of lignocellulosic materials, deposits lignin granules on the surface of the fibres that could enable increased access to lignin degrading enzymes. Three different white rot fungi were grown on pressure refined (at 6 bar and 8 bar) and milled Miscanthus. Growth after 28 days showed highest biomass losses on milled Miscanthus compared to pressure refined Miscanthus. Ceriporiopsis subvermispora caused a significantly higher proportion of lignin removal when grown on 6 bar pressure refined Miscanthus compared to growth on 8 bar pressure refined Miscanthus and milled Miscanthus. RM22b followed a similar trend but Phlebiopsis gigantea SPLog6 did not. Conversely, C. subvermispora growing on pressure refined Miscanthus revealed that the proportion of cellulose increased. These results show that two of the three white rot fungi used in this study showed higher delignification on pressure refined Miscanthus than milled Miscanthus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Pressure relieving support surfaces: a randomised evaluation.

    Science.gov (United States)

    Nixon, J; Nelson, E A; Cranny, G; Iglesias, C P; Hawkins, K; Cullum, N A; Phillips, A; Spilsbury, K; Torgerson, D J; Mason, S

    2006-07-01

    To determine differences between alternating pressure overlays and alternating pressure replacement mattresses with respect to the development of new pressure ulcers, healing of existing pressure ulcers, patient acceptability and cost-effectiveness of the different pressure-relieving surfaces. Also to investigate the specific additional impact of pressure ulcers on patients' well-being. A multicentre, randomised, controlled, open, fixed sample, parallel-group trial with equal randomisation was undertaken. The trial used remote, concealed allocation and intention-to-treat (ITT) analysis. The main trial design was supplemented with a qualitative study involving a purposive sample of 20-30 patients who developed pressure ulcers, to assess the impact of the pressure ulcers on their well-being. In addition, a focus group interview was carried out with clinical research nurses, who participated in the PRESSURE (Pressure RElieving Support SUrfaces: a Randomised Evaluation) Trial, to explore the experiences of their role and observations of pressure area care. The study took place in 11 hospital-based research centres within six NHS trusts in England. Acute and elective patients aged 55 years or older and admitted to vascular, orthopaedic, medical or care of the elderly wards in the previous 24 hours were investigated. Patients were randomised to either an alternating pressure overlay or an alternating pressure mattress replacement, with mattress specifications clearly defined to enable the inclusion of centres using products from different manufacturers, and to exclude hybrid mattress systems (which either combine foam or constant low pressure with alternating pressure in one mattress, or can be used as either an overlay or a replacement mattress). Development of a new pressure ulcer (grade pressures ulcers, patient acceptability and cost-effectiveness. In total, 6155 patients were assessed for eligibility to the trial and 1972 were randomised: 990 to the alternating

  7. Pressure relieving support surfaces (PRESSURE) trial: cost effectiveness analysis.

    Science.gov (United States)

    Iglesias, Cynthia; Nixon, Jane; Cranny, Gillian; Nelson, E Andrea; Hawkins, Kim; Phillips, Angela; Torgerson, David; Mason, Su; Cullum, Nicky

    2006-06-17

    To assess the cost effectiveness of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers in patients admitted to hospital. Cost effectiveness analysis carried out alongside the pressure relieving support surfaces (PRESSURE) trial; a multicentre UK based pragmatic randomised controlled trial. 11 hospitals in six UK NHS trusts. Intention to treat population comprising 1971 participants. Kaplan Meier estimates of restricted mean time to development of pressure ulcers and total costs for treatment in hospital. Alternating pressure mattresses were associated with lower overall costs (283.6 pounds sterling per patient on average, 95% confidence interval--377.59 pounds sterling to 976.79 pounds sterling) mainly due to reduced length of stay in hospital, and greater benefits (a delay in time to ulceration of 10.64 days on average,--24.40 to 3.09). The differences in health benefits and total costs for hospital stay between alternating pressure mattresses and alternating pressure overlays were not statistically significant; however, a cost effectiveness acceptability curve indicated that on average alternating pressure mattresses compared with alternating pressure overlays were associated with an 80% probability of being cost saving. Alternating pressure mattresses for the prevention of pressure ulcers are more likely to be cost effective and are more acceptable to patients than alternating pressure overlays.

  8. Sensitivity of the hand to surface pressure.

    Science.gov (United States)

    Fransson-Hall, C; Kilbom, A

    1993-06-01

    A new method of measuring pain-pressure threshold (PPT) of the hand has been developed. Externally applied surface pressure (EASP) was exerted at a certain rate of increase and the level where the feeling of pressure turned into pain was recorded. Also, the effects of sustained EASP were elucidated. Sixteen healthy right-handed subjects (eight female, eight male) participated. The distribution of the hand's sensitivity to EASP is presented. The most sensitive areas were the thenar area, the skinfold between thumb and index finger and the area around os pisiforme. When the hand was repeatedly exposed to EASP, the PPT decreased with increasing number of pressure incidents. For sustained EASP, the time of exposure was found to be important also for the quality of the sensation. Our results show that sustained EASP does not hurt at once, but becomes painful after a short time. On average, the female PPT corresponded to two-thirds of the male PPT. Females experienced pain faster than males when exposed to sustained EASP, and chose lower levels when estimating acceptable sustained EASP.

  9. Support surfaces for pressure ulcer prevention.

    Science.gov (United States)

    McInnes, Elizabeth; Jammali-Blasi, Asmara; Bell-Syer, Sally E M; Dumville, Jo C; Middleton, Victoria; Cullum, Nicky

    2015-09-03

    Pressure ulcers (i.e. bedsores, pressure sores, pressure injuries, decubitus ulcers) are areas of localised damage to the skin and underlying tissue. They are common in the elderly and immobile, and costly in financial and human terms. Pressure-relieving support surfaces (i.e. beds, mattresses, seat cushions etc) are used to help prevent ulcer development. This systematic review seeks to establish:(1) the extent to which pressure-relieving support surfaces reduce the incidence of pressure ulcers compared with standard support surfaces, and,(2) their comparative effectiveness in ulcer prevention. In April 2015, for this fourth update we searched The Cochrane Wounds Group Specialised Register (searched 15 April 2015) which includes the results of regular searches of MEDLINE, EMBASE and CINAHL and The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 3). Randomised controlled trials (RCTs) and quasi-randomised trials, published or unpublished, that assessed the effects of any support surface for prevention of pressure ulcers, in any patient group or setting which measured pressure ulcer incidence. Trials reporting only proxy outcomes (e.g. interface pressure) were excluded. Two review authors independently selected trials. Data were extracted by one review author and checked by another. Where appropriate, estimates from similar trials were pooled for meta-analysis. For this fourth update six new trials were included, bringing the total of included trials to 59.Foam alternatives to standard hospital foam mattresses reduce the incidence of pressure ulcers in people at risk (RR 0.40 95% CI 0.21 to 0.74). The relative merits of alternating- and constant low-pressure devices are unclear. One high-quality trial suggested that alternating-pressure mattresses may be more cost effective than alternating-pressure overlays in a UK context.Pressure-relieving overlays on the operating table reduce postoperative pressure ulcer incidence

  10. Interface pressure mapping pilot study to select surfaces that effectively redistribute pediatric occipital pressure.

    Science.gov (United States)

    Higer, Samantha; James, Thomas

    2016-02-01

    The aim of this pilot study was to better inform clinical decisions to prevent pediatric occipital pressure ulcers with quantitative data to choose an appropriate reactive support surface. A commercially available capacitive pressure mapping system (XSENSOR, X3 Medical Seat System, Calgary, Canada) was used to evaluate a standard pediatric mattress and four commercially available pressure-redistributing support surfaces. The pressure mapping system was validated for use in the pediatric population through studies on sensitivity, accuracy, creep, and repeatability. Then, a pilot pressure mapping study on healthy children under 6 years old (n = 22) was performed to determine interface pressure and pressure distribution between the occipital region of the skull and each surface: standard mattress, gel, foam, air and fluidized. The sensor was adequate to measure pressure generated by pediatric occipital loading, with 0.5-9% error in accuracy in the 25-95 mmHg range. The air surface had the lowest mean interface pressure (p pressure index (PPI), defined as the peak pressure averaged over four sensels, (p pressure for mattress, foam, fluidized, gel, and air materials were 24.8 ± 4.42, 24.1 ± 1.89, 19.4 ± 3.25, 17.9 ± 3.10, and 14.2 ± 1.41 mmHg, respectively. The air surface also had the most homogenous pressure distribution, with the highest mean to PPI ratio (p surfaces (p surface was the most effective pressure-redistributing material for pediatric occipital pressure as it had the lowest interface pressure and a homogeneous pressure distribution. This implies effective envelopment of the bony prominence of the occiput and increasing contact area to decrease peak pressure points. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  11. Alanine increases blood pressure during hypotension

    Science.gov (United States)

    Conlay, L. A.; Maher, T. J.; Wurtman, R. J.

    1990-01-01

    The effect of L-alanine administration on blood pressure (BP) during haemorrhagic shock was investigated using anesthetized rats whose left carotid arteries were cannulated for BP measurement, blood removal, and drug administration. It was found that L-alanine, in doses of 10, 25, 50, 100, and 200 mg/kg, increased the systolic BP of hypotensive rats by 38 to 80 percent (while 100 mg/kg pyruvate increased BP by only 9.4 mmhg, not significantly different from saline). The results suggest that L-alanine might influence cardiovascular function.

  12. Pressure ulcer prevention and pressure-relieving surfaces.

    Science.gov (United States)

    Benbow, Maureen

    Although rarely subject to media attention, political interest or research funding, pressure ulcers, and their almost inevitable increase in incidence, detrimentally affect the quality of life of thousands of patients, both in the hospital and community setting. In addition, the costs to the NHS of pressure-ulcer-related care in hospitals is estimated to be pounds sterling 1.8-pounds sterling 2.5 billion annually. Many pressure ulcers that develop could have been prevented, and there are several up-to-date, easily-accessible sources of evidence to guide decision-making regarding appropriate interventions in pressure care. Consideration and assessment of the patient holistically, followed by appropriate intervention and evaluation, is the key to any prevention strategy.

  13. Predicting Increased Blood Pressure Using Machine Learning

    Directory of Open Access Journals (Sweden)

    Hudson Fernandes Golino

    2014-01-01

    Full Text Available The present study investigates the prediction of increased blood pressure by body mass index (BMI, waist (WC and hip circumference (HC, and waist hip ratio (WHR using a machine learning technique named classification tree. Data were collected from 400 college students (56.3% women from 16 to 63 years old. Fifteen trees were calculated in the training group for each sex, using different numbers and combinations of predictors. The result shows that for women BMI, WC, and WHR are the combination that produces the best prediction, since it has the lowest deviance (87.42, misclassification (.19, and the higher pseudo R2 (.43. This model presented a sensitivity of 80.86% and specificity of 81.22% in the training set and, respectively, 45.65% and 65.15% in the test sample. For men BMI, WC, HC, and WHC showed the best prediction with the lowest deviance (57.25, misclassification (.16, and the higher pseudo R2 (.46. This model had a sensitivity of 72% and specificity of 86.25% in the training set and, respectively, 58.38% and 69.70% in the test set. Finally, the result from the classification tree analysis was compared with traditional logistic regression, indicating that the former outperformed the latter in terms of predictive power.

  14. Increased plantar foot pressure in persons affected by leprosy

    NARCIS (Netherlands)

    Slim, Frederik J.; van Schie, Carine H.; Keukenkamp, Renske; Faber, William R.; Nollet, Frans

    2012-01-01

    Although foot pressure has been reported to be increased in people affected by leprosy, studies on foot pressure and its determinants are limited. Therefore, the aim was to assess barefoot plantar foot pressure and to identify clinical determinants of increased plantar foot pressure in leprosy

  15. The Effect of 200 MPa Pressure on Specific Surface Area of Clay

    Directory of Open Access Journals (Sweden)

    Koszela-Marek Ewa

    2015-02-01

    Full Text Available The paper presents the results of laboratory studies of the 200 MPa pressure effect on specific surface area of clay. The original high-pressure investigation stand was used for the pressure tests. Determination of the specific surface area was performed by the methylene blue adsorption method. The results of the specific surface area test were compared for non-pressurized clays and for clays pressured in a high-pressure chamber. It was found that the specific surface area of pressurized soil clearly increased. This shows that some microstructural changes take place in the soil skeleton of clays.

  16. Herbivore pressure increases toward the equator

    OpenAIRE

    Salazar, Diego; Marquis, Robert J.

    2012-01-01

    Increases in species diversity and density from higher to lower latitudes are well documented. Nevertheless, the consequences of these changes in diversity for structuring ecological communities and influencing biotic evolution are largely unknown. It is widely believed that this increase in species diversity is associated with increased intensity of ecological interactions closer to the equator. For plant–herbivore interactions in particular, the predictions are that, at lower latitudes, pla...

  17. Improving BWR fuel critical power without increasing bundle pressure drop

    International Nuclear Information System (INIS)

    Matzner, B.; Shiraishi, L.M.; Danielson, D.W.; Congdon, S.P.

    2004-01-01

    It has been almost axiomatic that BWR fuel bundle critical power performance could not be improved without an accompanying increase in bundle pressure drop. It appeared that in order to increase the bundle dryout resistance it was necessary to perturb the bundle coolant flow paths in some fashion. This resulted in an unacceptable bundle pressure drop increase. However, by adding part length rods to decrease bundle pressure drop and by inserting an extra spacer with rearranged spacer pitch and flow trippers on the channel wall at the top of the bundle to increase critical power it was possible to achieve the goal of increased bundle critical power without pressure drop increase. (author)

  18. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, He....../O2 and Ar plasma treatments, mainly attributed to an increase in the density of the C-O single bond at the carbon fibre surfaces. The O/C ratio increased to 0.182 after 1-s He plasma treatment, and remained approximately constant after longer treatment. After exposure in an ambient air at room...

  19. Temperature effects on surface pressure-induced changes in rat skin perfusion: implications in pressure ulcer development.

    Science.gov (United States)

    Patel, S; Knapp, C F; Donofrio, J C; Salcido, R

    1999-07-01

    The effect of varying local skin temperature on surface pressure-induced changes in skin perfusion and deformation was determined in hairless fuzzy rats (13.5+/-3 mo, 474+/-25 g). Skin surface pressure was applied by a computer-controlled plunger with corresponding skin deformation measured by a linear variable differential transformer while a laser Doppler flowmeter measured skin perfusion. In Protocol I, skin surface perfusion was measured without heating (control, T=28 degrees C), with heating (T=36 degrees C), for control (probe just touching skin, 3.7 mmHg), and at two different skin surface pressures, 18 mmHg and 73 mmHg. Heating caused perfusion to increase at control and 18 mmHg pressure, but not at 73 mmHg. In Protocol II, skin perfusion was measured with and without heating as in Protocol I, but this time skin surface pressure was increased from 3.7 to 62 mmHg in increments of 3.7 mmHg. For unheated skin, perfusion increased as skin surface pressure increased from 3.7 to 18 mmHg. Further increases in surface pressure caused a decrease in perfusion until zero perfusion was reached for pressures over 55 mmHg. Heating increased skin perfusion for surface pressures from 3.7 to 18 mmHg, but not for pressures greater than 18 mmHg. After the release of surface pressure, the reactive hyperemia peak of perfusion increased with heating. In Protocol III, where skin deformation (creep and relaxation) was measured during the application of 3.7 and 18 mmHg, heating caused the tissue to be stiffer, allowing less deformation. It was found that for surface pressures below 18 mmHg, increasing skin temperature significantly increased skin perfusion and tissue stiffness. The clinical significance of these findings may have relevance in evaluating temperature and pressure effects on skin blood flow and deformation as well as the efficacy of using temperature as a therapeutic modality in the treatment of pressure ulcers.

  20. Enhanced monoclonal antibody production by gradual increase of osmotic pressure

    OpenAIRE

    Lin, Jianqiang; Takagi, Mutsumi; Qu, Yinbo; Gao, Peiji; Yoshida, Toshiomi

    1999-01-01

    The time length required for the adaptation of AFP-27 hybridoma cells to high osmotic pressure and the effect of a gradual increase of osmotic pressure on monoclonal antibody production were investigated. When the cells were subjected to an increase of osmotic pressure from 300 mOsmol kg-1 to 366 mOsmol kg- 1, the intracellular content of osmoprotective free amino acids reached a maximum level 6 h after the osmotic pressure was increased to 366 mOsmol kg-1. The same time period of 6 h incubat...

  1. Increased intrathoracic pressure affects cerebral oxygenation following cardiac surgery

    DEFF Research Database (Denmark)

    Pedersen, Lars M; Nielsen, Jonas; Østergaard, Morten

    2012-01-01

    Cerebral oximetry reflects circulatory stability during surgery. We evaluated whether frontal lobe oxygenation is influenced by a transient increase in intrathoracic pressure as induced by a lung recruitment manoeuvre.......Cerebral oximetry reflects circulatory stability during surgery. We evaluated whether frontal lobe oxygenation is influenced by a transient increase in intrathoracic pressure as induced by a lung recruitment manoeuvre....

  2. Beds: practical pressure management for surfaces/mattresses.

    Science.gov (United States)

    Norton, Linda; Coutts, Patricia; Sibbald, R Gary

    2011-07-01

    The prevention and management of pressure ulcers, including support surface selection, are a primary focus of healthcare providers. This article discusses the forces contributing to pressure ulcer formation and explores choosing therapeutic support surface features based on the patient's clinical needs and on using the evidence-informed support surface algorithm and decision trees.

  3. Support surfaces for pressure ulcer prevention

    OpenAIRE

    Cullum, N; McInnes, E; Bell-Syer, SE; Legood, R

    2004-01-01

    : Pressure ulcers (also known as bedsores, pressure sores, decubitus ulcers) are areas of localised damage to the skin and underlying tissue due to pressure, shear or friction. They are common in the elderly and immobile and costly in financial and human terms. Pressure-relieving beds, mattresses and seat cushions are widely used as aids to prevention in both institutional and non-institutional settings. : This systematic review seeks to answer the following questions: to what extent do press...

  4. Support surfaces for pressure ulcer prevention

    OpenAIRE

    McInnes, E; Bell-Syer, SE; Dumville, JC; Legood, R; Cullum, NA

    2008-01-01

    Background Pressure ulcers (also known as bedsores, pressure sores, decubitus ulcers) are areas of localised damage to the skin and underlying tissue due to pressure, shear or friction. They are common in the elderly and immobile and costly in financial and human terms. Pressure-relieving beds, mattresses and seat cushions are widely used as aids to prevention in both institutional and non-institutional settings. Objectives This systematic review seeks to answer the following questions: (1) t...

  5. The Idea of a University and the Increasing Pressures of ...

    African Journals Online (AJOL)

    The paper then gives us an overview of the history of Addis Ababa University with particular emphasis to the pressures that have affected its missions and aims. As hinted by the very topic, the central thesis of this paper is that Addis Ababa University has increasingly come under the pressures of capitalist consumerism.

  6. Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens.

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; White, Thomas W; Delamere, Nicholas A; Mathias, Richard T

    2015-11-03

    In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Noise Evaluation Technique Based on Surface Pressure

    DEFF Research Database (Denmark)

    Fischer, Andreas

    2012-01-01

    In this chapter the relevant theory for the understanding of TE noise modeling is collected. It contains the acoustic formulations of [31] and [57]. Both give a relation for the far field sound pressure in dependence of the frequency wave number spectral density of the pressure on the airfoil...

  8. The effect of increased intra-abdominal pressure on orbital subarachnoid space width and intraocular pressure

    Directory of Open Access Journals (Sweden)

    Su-meng Liu

    2018-01-01

    Full Text Available In accordance with the trans-lamina cribrosa pressure difference theory, decreasing the trans-lamina cribrosa pressure difference can relieve glaucomatous optic neuropathy. Increased intracranial pressure can also reduce optic nerve damage in glaucoma patients, and a safe, effective and noninvasive way to achieve this is by increasing the intra-abdominal pressure. The purpose of this study was to observe the changes in orbital subarachnoid space width and intraocular pressure at elevated intra-abdominal pressure. An inflatable abdominal belt was tied to each of 15 healthy volunteers, aged 22–30 years (12 females and 3 males, at the navel level, without applying pressure to the abdomen, before they laid in the magnetic resonance imaging machine. The baseline orbital subarachnoid space width around the optic nerve was measured by magnetic resonance imaging at 1, 3, 9, and 15 mm behind the globe. The abdominal belt was inflated to increase the pressure to 40 mmHg (1 mmHg = 0.133 kPa, then the orbital subarachnoid space width was measured every 10 minutes for 2 hours. After removal of the pressure, the measurement was repeated 10 and 20 minutes later. In a separate trial, the intraocular pressure was measured for all the subjects at the same time points, before, during and after elevated intra-abdominal pressure. Results showed that the baseline mean orbital subarachnoid space width was 0.88 ± 0.1 mm (range: 0.77–1.05 mm, 0.77 ± 0.11 mm (range: 0.60–0.94 mm, 0.70 ± 0.08 mm (range: 0.62–0.80 mm, and 0.68 ± 0.08 mm (range: 0.57–0.77 mm at 1, 3, 9, and 15 mm behind the globe, respectively. During the elevated intra-abdominal pressure, the orbital subarachnoid space width increased from the baseline and dilation of the optic nerve sheath was significant at 1, 3 and 9 mm behind the globe. After decompression of the abdominal pressure, the orbital subarachnoid space width normalized and returned to the baseline value. There was no

  9. The effect of increased intra-abdominal pressure on orbital subarachnoid space width and intraocular pressure.

    Science.gov (United States)

    Liu, Su-Meng; Wang, Ning-Li; Zuo, Zhen-Tao; Chen, Wei-Wei; Yang, Di-Ya; Li, Zhen; Cao, Yi-Wen

    2018-02-01

    In accordance with the trans-lamina cribrosa pressure difference theory, decreasing the trans-lamina cribrosa pressure difference can relieve glaucomatous optic neuropathy. Increased intracranial pressure can also reduce optic nerve damage in glaucoma patients, and a safe, effective and noninvasive way to achieve this is by increasing the intra-abdominal pressure. The purpose of this study was to observe the changes in orbital subarachnoid space width and intraocular pressure at elevated intra-abdominal pressure. An inflatable abdominal belt was tied to each of 15 healthy volunteers, aged 22-30 years (12 females and 3 males), at the navel level, without applying pressure to the abdomen, before they laid in the magnetic resonance imaging machine. The baseline orbital subarachnoid space width around the optic nerve was measured by magnetic resonance imaging at 1, 3, 9, and 15 mm behind the globe. The abdominal belt was inflated to increase the pressure to 40 mmHg (1 mmHg = 0.133 kPa), then the orbital subarachnoid space width was measured every 10 minutes for 2 hours. After removal of the pressure, the measurement was repeated 10 and 20 minutes later. In a separate trial, the intraocular pressure was measured for all the subjects at the same time points, before, during and after elevated intra-abdominal pressure. Results showed that the baseline mean orbital subarachnoid space width was 0.88 ± 0.1 mm (range: 0.77-1.05 mm), 0.77 ± 0.11 mm (range: 0.60-0.94 mm), 0.70 ± 0.08 mm (range: 0.62-0.80 mm), and 0.68 ± 0.08 mm (range: 0.57-0.77 mm) at 1, 3, 9, and 15 mm behind the globe, respectively. During the elevated intra-abdominal pressure, the orbital subarachnoid space width increased from the baseline and dilation of the optic nerve sheath was significant at 1, 3 and 9 mm behind the globe. After decompression of the abdominal pressure, the orbital subarachnoid space width normalized and returned to the baseline value. There was no significant difference in the

  10. Inhibition of natriuretic factors increases blood pressure in rats.

    Science.gov (United States)

    Banday, Anees Ahmad; Lokhandwala, Mustafa F

    2009-08-01

    Renal dopamine and nitric oxide contribute to natriuresis during high-salt intake which maintains sodium and blood pressure homeostasis. We wanted to determine whether concurrent inhibition of these natriuretic factors increases blood pressure during high-sodium intake. Male Sprague-Dawley rats were divided into the following groups: 1) vehicle (V)-tap water, 2) NaCl-1% NaCl drinking water, 3) 30 mM l-buthionine sulfoximine (BSO), an oxidant, 4) BSO plus NaCl, and 5) BSO plus NaCl with 1 mM tempol (antioxidant). Compared with V, NaCl intake for 10 days doubled sodium intake and increased urinary dopamine level but reduced urinary nitric oxide content. NaCl intake also reduced basal renal proximal tubular Na-K-ATPase activity with no effect on blood pressure. However, NaCl intake in BSO-treated rats failed to reduce basal Na-K-ATPase activity despite higher urinary dopamine levels. Also, dopamine failed to inhibit proximal tubular Na-K-ATPase activity and these rats exhibited reduced urinary nitric oxide levels and high blood pressure. Tempol supplementation in NaCl plus BSO-treated rats reduced blood pressure. BSO treatment alone did not affect the urinary nitric oxide and dopamine levels or blood pressure. However, dopamine failed to inhibit proximal tubular Na-K-ATPase activity in BSO-treated rats. BSO treatment also increased basal protein kinase C activity, D1 receptor serine phosphorylation, and oxidative markers like malondialdehyde and 8-isoprostane. We suggest that NaCl-mediated reduction in nitric oxide does not increase blood pressure due to activation of D1 receptor signaling. Conversely, oxidative stress-provoked inhibition of D1 receptor signaling fails to elevate blood pressure due to presence of normal nitric oxide. However, simultaneously decreasing nitric oxide levels with NaCl and inhibiting D1 receptor signaling with BSO elevated blood pressure.

  11. On stagnation pressure increases in calorically perfect, ideal gases

    International Nuclear Information System (INIS)

    Williams, D.M.; Kamenetskiy, D.S.; Spalart, P.R.

    2016-01-01

    Highlights: • Unaveraged transport equation is obtained for the stagnation pressure. • Reynolds-averaged transport equation is obtained for the stagnation pressure. • Transport equations apply to compressible flow of calorically perfect, ideal gas. • Stagnation pressure is shown to be capable of naturally or artificially increasing. • Spurious overshoots likely in shear layers displaying convex streamline curvature. - Abstract: When stagnation pressure rises in a natural or numerically simulated flow it is frequently a cause for concern, as one usually expects viscosity and turbulence to cause stagnation pressure to decrease. In fact, if stagnation pressure increases, one may suspect measurement or numerical errors. However, this need not be the case, as the laws of nature do not require that stagnation pressure continually decreases. In order to help clarify matters, the objective of this work is to understand the conditions under which stagnation pressure will rise in the unsteady/steady flows of compressible, viscous, calorically perfect, ideal gases. Furthermore, at a more practical level, the goal is to understand the conditions under which stagnation pressure will increase in flows simulated with the Reynolds averaged Navier–Stokes equations and eddy-viscosity turbulence models. In order to provide an improved understanding of increases in stagnation pressure for both these scenarios, transport equations are derived that govern its behavior in the unaveraged and Reynolds averaged settings. These equations are utilized to precisely determine the relationship between changes in stagnation pressure and zeroth, first, and second derivatives of fundamental flow quantities. Furthermore, these equations are utilized to demonstrate the relationship between changes in stagnation pressure and fundamental non-dimensional quantities that govern the conductivity, viscosity, and compressibility of the flow. In addition, based on an analysis of the Reynolds

  12. Goat Meat Does Not Cause Increased Blood Pressure

    Directory of Open Access Journals (Sweden)

    Katsunori Sunagawa

    2014-01-01

    Full Text Available While there are persistent rumors that the consumption of goat meat dishes increases blood pressure, there is no scientific evidence to support this. Two experiments were conducted to clarify whether or not blood pressure increases in conjunction with the consumption of goat meat dishes. In experiment 1, 24 Dahl/Iwai rats (15 weeks old, body weight 309.3±11.1 g were evenly separated into 4 groups. The control group (CP was fed a diet containing 20% chicken and 0.3% salt on a dry matter basis. The goat meat group (GM was fed a diet containing 20% goat meat and 0.3% salt. The goat meat/salt group (GS was fed a diet containing 20% goat meant and 3% to 4% salt. The Okinawan mugwort (Artemisia Princeps Pampan/salt group (GY was fed a diet containing 20% goat meat, 3% to 4% salt and 5% of freeze-dried mugwort powder. The experiment 1 ran for a period of 14 weeks during which time the blood pressure of the animals was recorded. The GS, and GY groups consumed significantly more water (p<0.01 than the CP and GM groups despite the fact that their diet consumption levels were similar. The body weight of animals in the CP, GM, and GS groups was similar while the animals in the GY group were significantly smaller (p<0.01. The blood pressure in the GM group was virtually the same as the CP group throughout the course of the experiment. In contrast, while the blood pressure of the animals in the GS and GY group from 15 to 19 weeks old was the same as the CP group, their blood pressures were significantly higher (p<0.01 after 20 weeks of age. The GY group tended to have lower blood pressure than the GS group. In experiment 2, in order to clarify whether or not the increase in blood pressure in the GS group and the GY group in experiment 1 was caused by an excessive intake of salt, the effects on blood pressure of a reduction of salt in diet were investigated. When amount of salt in the diet of the GS and GY group was reduced from 4% to 0.3%, the animal

  13. The extended surface forces apparatus. IV. Precision static pressure control

    OpenAIRE

    Schurtenberger E; Heuberger M

    2011-01-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under am...

  14. Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    where the time history pressure data are recorded by the surface pressure microphones. After the flow-field is stabilized, the generated noise from the airfoil Trailing Edge (TE) is predicted using the acoustic analogy solver, where the results from LES are the input. It is found that there is a strong......In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...... relation between TE noise and the aerodynamic pressure. The results of power spectrum density show that the fluctuation of aerodynamic pressure is responsible for noise generation....

  15. The last stage of Earth's formation: Increasing the pressure

    Science.gov (United States)

    Lock, S. J.; Stewart, S. T.; Mukhopadhyay, S.

    2017-12-01

    A range of high-energy, high-angular momentum (AM) giant impacts have been proposed as a potential trigger for lunar origin. High-energy, high-AM collisions create a previously unrecognized planetary object, called a synestia. Terrestrial synestias exceed the corotation limit for a rocky planet, forming an extended structure with a corotating inner region and disk-like outer region. We demonstrate that the internal pressures of Earth-like planets do not increase monotonically during the giant impact stage, but can vary substantially in response to changes in rotation and thermal state. The internal pressures in an impact-generated synestia are much lower than in condensed, slowly rotating planets of the same mass. For example, the core-mantle boundary (CMB) pressure can be as low as 60 GPa for a synestia with Earth mass and composition, compared to 136 GPa in the present-day Earth. The lower pressures are due to the low density and rapid rotation of the post-impact structure. After a high-AM Moon-forming impact, the internal pressures in the interior of the synestia would have increased to present-day Earth values in two stages: first by vapor condensation and second by removal of AM from the Earth during the tidal evolution of the Moon. The pressure evolution of the Earth has several implications. Metal-silicate equilibration after the impact would have occurred at much lower pressures than has previously been assumed. The observed moderately siderophile element abundances in the mantle may be consistent with equilibration at the bottom of a deep, lower-pressure magma ocean. In addition, the pressure at the CMB during cooling is coincident with, or lower than, the proposed intersection of liquid adiabats with the mantle liquidus. The mantle would hence freeze from the bottom up and there would be no basal magma ocean. The subsequent pressure increase and tidal heating due to the Moon's orbital evolution likely induces melting in the lowermost mantle. Increasing

  16. Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows

    Science.gov (United States)

    Manikantan, Harishankar; Squires, Todd M.

    2017-02-01

    The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.

  17. Time pressure increases cooperation in competitively framed social dilemmas.

    Directory of Open Access Journals (Sweden)

    Jeremy Cone

    Full Text Available What makes people willing to pay costs to benefit others? Does such cooperation require effortful self-control, or do automatic, intuitive processes favor cooperation? Time pressure has been shown to increase cooperative behavior in Public Goods Games, implying a predisposition towards cooperation. Consistent with the hypothesis that this predisposition results from the fact that cooperation is typically advantageous outside the lab, it has further been shown that the time pressure effect is undermined by prior experience playing lab games (where selfishness is the more advantageous strategy. Furthermore, a recent study found that time pressure increases cooperation even in a game framed as a competition, suggesting that the time pressure effect is not the result of social norm compliance. Here, we successfully replicate these findings, again observing a positive effect of time pressure on cooperation in a competitively framed game, but not when using the standard cooperative framing. These results suggest that participants' intuitions favor cooperation rather than norm compliance, and also that simply changing the framing of the Public Goods Game is enough to make it appear novel to participants and thus to restore the time pressure effect.

  18. Time pressure increases cooperation in competitively framed social dilemmas.

    Science.gov (United States)

    Cone, Jeremy; Rand, David G

    2014-01-01

    What makes people willing to pay costs to benefit others? Does such cooperation require effortful self-control, or do automatic, intuitive processes favor cooperation? Time pressure has been shown to increase cooperative behavior in Public Goods Games, implying a predisposition towards cooperation. Consistent with the hypothesis that this predisposition results from the fact that cooperation is typically advantageous outside the lab, it has further been shown that the time pressure effect is undermined by prior experience playing lab games (where selfishness is the more advantageous strategy). Furthermore, a recent study found that time pressure increases cooperation even in a game framed as a competition, suggesting that the time pressure effect is not the result of social norm compliance. Here, we successfully replicate these findings, again observing a positive effect of time pressure on cooperation in a competitively framed game, but not when using the standard cooperative framing. These results suggest that participants' intuitions favor cooperation rather than norm compliance, and also that simply changing the framing of the Public Goods Game is enough to make it appear novel to participants and thus to restore the time pressure effect.

  19. Kidney Dysfunction Mediates Salt-Induced Increases in Blood Pressure

    Science.gov (United States)

    Hall, John E.

    2016-01-01

    Chronic excess salt intake increases the risk for hypertension and moderation of salt intake is an important strategy for prevention of cardiovascular and kidney disease, especially in salt-sensitive subjects. Although short-term blood pressure (BP) responses to high salt intake over several days are highly variable, chronic high salt intake worsens BP salt-sensitivity. Aging, diabetes, hypertension, and various acquired and genetic kidney disorders also exacerbate salt-sensitivity of BP. Kidney dysfunction, characterized by impaired pressure natriuresis, has been demonstrated in all forms of experimental and human genetic or acquired salt-sensitive hypertension studied thus far. Abnormalities of kidney function that directly or indirectly increase NaCl reabsorption, decrease glomerular capillary filtration coefficient, or cause nephron injury/loss exacerbate BP salt-sensitivity. In most cases, salt-sensitive hypertension is effectively treated with drugs that increase glomerular filtration rate or reduce renal NaCl reabsorption (e.g. diuretics, renin-angiotensin-aldosterone system blockers). Increased vascular resistance may occur concomitantly or secondarily to kidney dysfunction and increased BP in salt-sensitive hypertension. However, primary increases in non-renal vascular resistance have not been shown to cause salt-sensitive hypertension or long-term changes in BP in the absence of impaired renal-pressure natriuresis. The mechanisms responsible for increased total peripheral resistance (TPR) during high salt intake in salt-sensitive subjects are not fully understood but likely involve pressure-dependent and/or flow-dependent autoregulation in peripheral tissues as well as neurohormonal factors that occur concomitantly with kidney dysfunction. Physiological studies have demonstrated that increased BP almost invariably initiates secondary pressure-dependent functional and structural vascular changes that increase TPR. PMID:26927007

  20. Surface modification with a remote atmospheric pressure plasma: dc glow discharge and surface streamer regime

    International Nuclear Information System (INIS)

    Temmerman, Eef; Akishev, Yuri; Trushkin, Nikolay; Leys, Christophe; Verschuren, Jo

    2005-01-01

    A remote atmospheric pressure discharge working with ambient air is used for the near room temperature treatment of polymer foils and textiles of varying thickness. The envisaged plasma effect is an increase in the surface energy of the treated material, leading, e.g., to a better wettability or adhesion. Changes in wettability are examined by measuring the contact angle or the liquid absorptive capacity. Two regimes of the remote atmospheric pressure discharge are investigated: the glow regime and the streamer regime. These regimes differ mainly in power density and in the details of the electrode design. The results show that this kind of discharge makes up a convenient non-thermal plasma source to be integrated into a treatment installation working at atmospheric pressure

  1. Long-Run Impact of Increased Wage Pressure

    DEFF Research Database (Denmark)

    Hansen, Claus Thustrup

    1999-01-01

    An unanticipated permanent increase in wage pressure is analyzed in a dynamic general-equilibrium model combining standard theory of capital accumulation and monopolistic wage setting. The long-run (steady-state) implications are identical percentage reduction in employment, consumption, and capi......An unanticipated permanent increase in wage pressure is analyzed in a dynamic general-equilibrium model combining standard theory of capital accumulation and monopolistic wage setting. The long-run (steady-state) implications are identical percentage reduction in employment, consumption...

  2. Transduction of pressure signal to electrical signal upon sudden increase in turgor pressure in Chara corallina.

    Science.gov (United States)

    Shimmen, Teruo; Ogata, Koreaki

    2013-05-01

    By taking advantage of large cell size of Chara corallina, we analyzed the membrane depolarization induced by decreased turgor pressure (Shimmen in J Plant Res 124:639-644, 2011). In the present study, the response to increased turgor pressure was analyzed. When internodes were incubated in media containing 200 mM dimethyl sulfoxide, their intracellular osmolality gradually increased and reached a steady level after about 3 h. Upon removal of dimethyl sulfoxide, turgor pressure quickly increased. In response to the increase in turgor pressure, the internodes generated a transient membrane depolarization at its nodal end. The refractory period was very long and it took about 2 h for full recovery after the depolarizing response. Involvement of protein synthesis in recovery from refractoriness was suggested, based on experiments using inhibitors.

  3. Support surface interface pressure, microenvironment, and the prevalence of pressure ulcers: an analysis of the literature.

    Science.gov (United States)

    Reger, Steven I; Ranganathan, Vinoth K; Sahgal, Vinod

    2007-10-01

    External pressure is the most frequently considered stress factor in the formation of ulcers. A review and analysis of existing literature addressing the relationship between pressure ulcer prevalence and interface pressures at various anatomic sites was conducted. Results suggest a nearly non-existent or slightly negative correlation between interface pressure and ulcer prevalence in general and spinal cord injured populations, respectively. Despite limitations of the analysis methods used, the observed lack of a direct relationship confirms the results of other studies and suggests that ulcer formation also may involve factors secondary to pressure and mechanical factors (eg, temperature, moisture, duration of the applied load, atrophy, and posture). Based on currently available information, clinicians should include these considerations when selecting a support surface. Studies directly relating primary stress factors and tissue viability with prevalence and incidence of pressure ulcers are needed to better understand the benefits of pressure-relieving support surfaces and to improve the effectiveness of prevention and treatment.

  4. Plastic collapse pressure of cylindrical vessels containing longitudinal surface cracks

    Energy Technology Data Exchange (ETDEWEB)

    Zarrabi, K. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.; Zhang, H. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.; Nhim, K. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.

    1997-05-01

    Based on nonlinear finite element analysis, the plastic collapse pressures of cylindrical vessels with longitudinal surface cracks are computed. A general formula of plastic collapse pressure of such structures are given and compared with the literature solutions. The results of the present study could be applied for the integrity assessments, failure analyses, remanent life assessment, and licence extensions of the vessels. (orig.)

  5. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    Science.gov (United States)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  6. Vasodilation increases pulse pressure variation, mimicking hypovolemic status in rabbits

    Directory of Open Access Journals (Sweden)

    Glauco A Westphal

    2010-01-01

    Full Text Available OBJECTIVE: To test the hypothesis that pulse pressure respiratory variation (PPV amplification, observed in hypovolemia, can also be observed during sodium nitroprusside (SNP-induced vasodilation. INTRODUCTION: PPV is largely used for early identification of cardiac responsiveness, especially when hypovolemia is suspected. PPV results from respiratory variation in transpulmonary blood flow and reflects the left ventricular preload variations during respiratory cycles. Any factor that decreases left ventricular preload can be associated with PPV amplification, as seen in hypovolemia. METHODS: Ten anesthetized and mechanically ventilated rabbits underwent progressive hypotension by either controlled hemorrhage (Group 1 or intravenous SNP infusion (Group 2. Animals in Group 1 (n = 5 had graded hemorrhage induced at 10% steps until 50% of the total volume was bled. Mean arterial pressure (MAP steps were registered and assumed as pressure targets to be reached in Group 2. Group 2 (n = 5 was subjected to a progressive SNP infusion to reach similar pressure targets as those defined in Group 1. Heart rate (HR, systolic pressure variation (SPV and PPV were measured at each MAP step, and the values were compared between the groups. RESULTS: SPV and PPV were similar between the experimental models in all steps (p > 0.16. SPV increased earlier in Group 2. CONCLUSION: Both pharmacologic vasodilation and graded hemorrhage induced PPV amplification similar to that observed in hypovolemia, reinforcing the idea that amplified arterial pressure variation does not necessarily represent hypovolemic status but rather potential cardiovascular responsiveness to fluid infusion.

  7. Increasingly, there are pressures to study entire eco- systems for ...

    African Journals Online (AJOL)

    Increasingly, there are pressures to study entire eco- systems for fisheries management and other purposes. Single species are only rarely caught in isolation from other species, and targeted and incidental removals of living organisms from the oceans impact their own populations as well as those of others. Fishing affects.

  8. Pressure Mapping in Elderly Care: A Tool to Increase Pressure Injury Knowledge and Awareness Among Staff.

    Science.gov (United States)

    Hultin, Lisa; Olsson, Estrid; Carli, Cheryl; Gunningberg, Lena

    The purpose of this study was to evaluate the use of a pressure mapping system with real-time feedback of pressure points in elderly care, with specific focus on pressure injury (PI) knowledge/attitudes (staff), interface pressure, and PI prevention activities (residents). Descriptive, 1-group pretest/posttest study. A convenience sample of 40 assistant nurses and aides participated in the study; staff members were recruited at daytime, and 1 nighttime meeting was held at the facility. A convenience sample of 12 residents with risk for PI were recruited, 4 from each ward. Inclusion criteria were participants older than 65 years, Modified Norton Scale score 20 or less, and in need of help with turning in order to prevent PI. The study setting was a care facility for the elderly in Uppsala, Sweden. A descriptive, comparative pretest/posttest study design was used. The intervention consisted of the use of a pressure mapping system, combined with theoretical and practical teaching. Theoretical and practical information related to PI prevention and the pressure mapping system was presented to the staff. The staff (n = 40) completed the Pressure Ulcer Knowledge and Assessment Tool (PUKAT) and Attitudes towards Pressure Ulcer (APuP) before and following study intervention. Residents' beds were equipped with a pressure mapping system during 7 consecutive days. Peak pressures and preventive interventions were registered 3 times a day by trained study nurses, assistant nurses, and aides. Staff members' PUKAT scores increased significantly (P = .002), while their attitude scores, which were high pretest, remained unchanged. Peak interface pressures were significantly reduced (P = .016), and more preventive interventions (n = 0.012) were implemented when the staff repositioned residents after feedback from the pressure mapping system. A limited educational intervention, combined with the use of a pressure mapping system, was successful as it improved staff members' knowledge

  9. Surface texturing of superconductors by controlled oxygen pressure

    Science.gov (United States)

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  10. Videographic analysis of glottic view with increasing cricoid pressure force.

    Science.gov (United States)

    Oh, Jaehoon; Lim, Taeho; Chee, Youngjoon; Kang, Hyunggoo; Cho, Youngsuk; Lee, Jongshill; Kim, Dongwon; Jeong, Miae

    2013-04-01

    Cricoid pressure may negatively affect laryngeal view and compromise airway patency, according to previous studies of direct laryngoscopy, endoscopy, and radiologic imaging. In this study, we assess the effect of cricoid pressure on laryngeal view with a video laryngoscope, the Pentax-AWS. This cross-sectional survey involved 50 American Society of Anesthesiologists status I and II patients who were scheduled to undergo elective surgery. The force measurement sensor for cricoid pressure and the video recording system using a Pentax-AWS video laryngoscope were newly developed by the authors. After force and video were recorded simultaneously, 11 still images were selected per 5-N (Newton; 1 N = 1 kg·m·s(-2)) increments, from 0 N to 50 N for each patient. The effect of cricoid pressure was assessed by relative percentage compared with the number of pixels on an image at 0 N. Compared with zero cricoid pressure, the median percentage of glottic view visible was 89.5% (interquartile range [IQR] 64.2% to 117.1%) at 10 N, 83.2% (IQR 44.2% to 113.7%) at 20 N, 76.4% (IQR 34.1% to 109.1%) at 30 N, 51.0% (IQR 21.8% to 104.2%) at 40 N, and 47.6% (IQR 15.2% to 107.4%) at 50 N. The number of subjects who showed unworsened views was 20 (40%) at 10 N, 17 (34%) at 20 and 30 N, and 13 (26%) at 40 and 50 N. Cricoid pressure application with increasing force resulted in a worse glottic view, as examined with the Pentax-AWS Video laryngoscope. There is much individual difference in the degree of change, even with the same force. Clinicians should be aware that cricoid pressure affects laryngeal view with the Pentax-AWS and likely other video laryngoscopes. Copyright © 2012. Published by Mosby, Inc.

  11. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  12. Characterizing developing adverse pressure gradient flows subject to surface roughness

    Science.gov (United States)

    Brzek, Brian; Chao, Donald; Turan, Özden; Castillo, Luciano

    2010-04-01

    An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T ∞, U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41-60, surfaces with Reynolds number based on momentum thickness, 3,000 carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91-108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33-79, 1998a) scaling of the mean velocity deficit, U ∞δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.

  13. Visual Impairment/Increased Intracranial Pressure (VIIP): Layman's Summary

    Science.gov (United States)

    Fogarty, Jennifer

    2011-01-01

    To date NASA has documented that seven long duration astronauts have experienced in-flight and post-flight changes in vision and eye anatomy including degraded distant vision, swelling of the back of the eye, and changes in the shape of the globe. We have also documented in a few of these astronauts post-flight, increases in the pressure of the fluid that surrounds the brain and spinal cord. This is referred to as increased intracranial pressure (ICP). The functional and anatomical changes have varied in severity and duration. In the post-flight time period, some individuals have experienced a return to a pre-flight level of visual function while others have experienced changes that remain significantly altered compared to pre-flight. In addition, the increased ICP also persists in the post-flight time period. Currently, the underlying cause or causes of these changes is/are unknown but the spaceflight community at NASA suspects that the shift of blood toward the head and the changes in physiology that accompany it, such as increased intracranial pressure, play a significant role.

  14. The Intracranial Volume Pressure Response in Increased Intracranial Pressure Patients: Clinical Significance of the Volume Pressure Indicator.

    Science.gov (United States)

    Lai, Hung-Yi; Lee, Ching-Hsin; Lee, Ching-Yi

    2016-01-01

    For patients suffering from primary brain injury, monitoring intracranial pressure alone is not enough to reflect the dynamic intracranial condition. In our previous study, a segment of the pressure-volume curve can be expressed by the parabolic regression model with single indicator "a". The aim of this study is to evaluate if the indicator "a" can reflect intracranial conditions. Patients with traumatic brain injury, spontaneous intracranial hemorrhage, and/or hydrocephalus who had external ventricular drainage from January 2009 to February 2010 were included. The successive volume pressure response values were obtained by successive drainage of cerebral spinal fluid from intracranial pressure 20-25 mm Hg to 10 mm Hg. The relationship between withdrawn cerebral spinal fluid volume and intracranial pressure was analyzed by the parabolic regression model with single parameter "a". The overall mean for indicator "a" was 0.422 ± 0.046. The mean of "a" in hydrocephalus was 0.173 ± 0.024 and in severe intracranial mass with slender ventricle, it was 0.663 ± 0.062. The two extreme intracranial conditions had a statistical significant difference (ppressure-volume curve can reflect the dynamic intracranial condition and is comparable in different situations. A significantly larger indicator "a" with increased intracranial pressure is always observed in severe intracranial mass lesions with cerebral edema. A significantly smaller indicator "a" with increased intracranial pressure is observed in hydrocephalus. Brain computed tomography should be performed early if a rapid elevation of indicator "a" is detected, as it can reveal some ongoing intracranial pathology prior to clinical deterioration. Increased intracranial pressure was frequently observed in patients with intracranial pathology. The progression can be differentiated using the pattern of the volume pressure indicator.

  15. Correlation of the intraocular pressure with increased intracranial pressure in rabbits

    Directory of Open Access Journals (Sweden)

    Eskandari H

    2000-08-01

    Full Text Available Although measurement of intracranial pressure by noninvasive methods has been suggested, but mainly invasive methods are used for this purpose-Increase in episcleral venous pressure can be expected to result in a linear increase in intraocular pressure. Congested oculat veins with capillary leakage and hemorrhage are seen when the ICP is increased, thus theoretically measurement of intraocular pressure can be a procedure for estimation of the ICP. This study was performed to find whether there is andy relationship between intraocular pressure and ICP, so we used 12 albino rabbits in two divided groups. Our study was not designed to elucidate the mechanism of change but merely to record any changes observed. All measures except an increase in ICP were applied on the test group as well as on the control group. After general anesthesia with the combination of ketamin, rampune, and pentobarbital a burr hole was made in the lambda region of the skull and a cannula was placed in the subdural space. The ICP in the test group increased up to 15 mmHg and was constant throughout the experiment. Intraocular pressure was measured by Schiotz tonometers afte general anesthesia, after cannulation of the skull, and immediately after increasing the ICP which was repated in 15 minutes interval for 4 hours. There was no statistical difference between the two groups (P:0.997 . results show that neither cannulation nor general anesthesia for 4 hours produce alteration in IOP in the control group nor increasing of the ICP to level of 15 mmHg produces any alteration in IOP on the test group.

  16. The extended surface forces apparatus. IV. Precision static pressure control.

    Science.gov (United States)

    Schurtenberger, E; Heuberger, M

    2011-10-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under ambient conditions. The surface separation is thus pre-adjusted to approximately ~3 μm before sliding the apparatus into the autoclave. Inside the autoclave, the surface separation can be further controlled with a magnetic drive at sub-Ångstrom precision over a 14 μm range. The autoclave pressure can then be set and maintained between 20 mbar and 170 bars with few mbar precision. The autoclave is connected to a specially designed pressurization system to precondition the fluids. The temperature can be controlled between -20 and 60 °C with few mK precision. We demonstrate the operation of the instrument in the case of gaseous or liquid carbon dioxide. Thanks to a consequent decoupling of the eSFA mechanical loop from the autoclave structure, the obtained measurement stability and reproducibility, at elevated pressures, is comparable to the one established for the conventional eSFA, operated under ambient conditions.

  17. The extended surface forces apparatus. IV. Precision static pressure control

    Science.gov (United States)

    Schurtenberger, E.; Heuberger, M.

    2011-10-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under ambient conditions. The surface separation is thus pre-adjusted to approximately ˜3 μm before sliding the apparatus into the autoclave. Inside the autoclave, the surface separation can be further controlled with a magnetic drive at sub-Ångstrom precision over a 14 μm range. The autoclave pressure can then be set and maintained between 20 mbar and 170 bars with few mbar precision. The autoclave is connected to a specially designed pressurization system to precondition the fluids. The temperature can be controlled between -20 and 60 °C with few mK precision. We demonstrate the operation of the instrument in the case of gaseous or liquid carbon dioxide. Thanks to a consequent decoupling of the eSFA mechanical loop from the autoclave structure, the obtained measurement stability and reproducibility, at elevated pressures, is comparable to the one established for the conventional eSFA, operated under ambient conditions.

  18. Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure

    Science.gov (United States)

    Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.

    2017-07-01

    Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.

  19. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  20. Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations

    Science.gov (United States)

    Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.

    2014-01-01

    Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.

  1. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  2. Human neuronal changes in brain edema and increased intracranial pressure.

    Science.gov (United States)

    Faragó, Nóra; Kocsis, Ágnes Katalin; Braskó, Csilla; Lovas, Sándor; Rózsa, Márton; Baka, Judith; Kovács, Balázs; Mikite, Katalin; Szemenyei, Viktor; Molnár, Gábor; Ozsvár, Attila; Oláh, Gáspár; Piszár, Ildikó; Zvara, Ágnes; Patócs, Attila; Barzó, Pál; Puskás, László G; Tamás, Gábor

    2016-08-04

    Functional and molecular changes associated with pathophysiological conditions are relatively easily detected based on tissue samples collected from patients. Population specific cellular responses to disease might remain undiscovered in samples taken from organs formed by a multitude of cell types. This is particularly apparent in the human cerebral cortex composed of a yet undefined number of neuron types with a potentially different involvement in disease processes. We combined cellular electrophysiology, anatomy and single cell digital PCR in human neurons identified in situ for the first time to assess mRNA expression and corresponding functional changes in response to edema and increased intracranial pressure. In single pyramidal cells, mRNA copy numbers of AQP1, AQP3, HMOX1, KCNN4, SCN3B and SOD2 increased, while CACNA1B, CRH decreased in edema. In addition, single pyramidal cells increased the copy number of AQP1, HTR5A and KCNS1 mRNAs in response to increased intracranial pressure. In contrast to pyramidal cells, AQP1, HMOX1and KCNN4 remained unchanged in single cell digital PCR performed on fast spiking cells in edema. Corroborating single cell digital PCR results, pharmacological and immunohistochemical results also suggested the presence of KCNN4 encoding the α-subunit of KCa3.1 channels in edema on pyramidal cells, but not on interneurons. We measured the frequency of spontaneous EPSPs on pyramidal cells in both pathophysiological conditions and on fast spiking interneurons in edema and found a significant decrease in each case, which was accompanied by an increase in input resistances on both cell types and by a drop in dendritic spine density on pyramidal cells consistent with a loss of excitatory synapses. Our results identify anatomical and/or physiological changes in human pyramidal and fast spiking cells in edema and increased intracranial pressure revealing cell type specific quantitative changes in gene expression. Some of the edema/increased

  3. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the

  4. [Analysis of statutory health insurance data concerning utilization of support surfaces for pressure ulcers].

    Science.gov (United States)

    Hoffmann, Falk; Scharnetzky, Elke; Deitermann, Bernhilde; Glaeske, Gerd

    2006-10-01

    Support surfaces are commonly used to prevent and treat pressure ulcers. Up to now little is known about their application in Germany. We conducted a cross-sectional study using claims data of the Gmuender ErsatzKasse (GEK) for the year 2004 to analyse the utilization of support surfaces for pressure ulcers in primary care. Based on age- and sex-specific treatment prevalences for individuals with at least one prescription, prevalence ratios (PR) were calculated. A total of 1999 subjects with a mean age of 63.4 years (SD: 20.7) received support surfaces for pressure ulcers. With respect to the numbers of prescriptions (n = 2421) alternating pressure mattresses (31.6%), air-filled rings (13.5%) and various seat cushions (13.0%) were used frequently, whereas foam mattresses only came to 4.7%. The treatment prevalence increases continuously with age with no sex-specific differences. Using the 50-59 year olds as a reference, men aged 90+ (PR: 43.94; 95% CI: 31.46-61.37) as well as women aged 90+ (PR: 40.61; 95% CI: 30.77-53.60) received approximately 40-times more often support surfaces for pressure ulcers. Support surfaces for pressure ulcers are commonly used in the elderly. Our study suggests that their application does not correspond to the best available evidence. Prevention and treatment of pressure ulcers as well as the selection of support surfaces should be seen as an interdisciplinary task.

  5. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment......Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... are separated using a polyethylene film. The gliding arc was extended by a high speed air flow into ambient air, directed the polyester surface at an angle of approximately 30o. The ultrasonic waves were introduced vertically to the surface. After the plasma treatment using each plasma source without ultrasonic...

  6. Hydrophilic surface modification of coronary stent using an atmospheric pressure plasma jet for endothelialization.

    Science.gov (United States)

    Shim, Jae Won; Bae, In-Ho; Park, Dae Sung; Lee, So-Youn; Jang, Eun-Jae; Lim, Kyung-Seob; Park, Jun-Kyu; Kim, Ju Han; Jeong, Myung Ho

    2018-03-01

    The first two authors contributed equally to this study. Bioactivity and cell adhesion properties are major factors for fabricating medical devices such as coronary stents. The aim of this study was to evaluate the advantages of atmospheric-pressure plasma jet in enhancing the biocompatibility and endothelial cell-favorites. The experimental objects were divided into before and after atmospheric-pressure plasma jet treatment with the ratio of nitrogen:argon = 3:1, which is similar to air. The treated surfaces were basically characterized by means of a contact angle analyzer for the activation property on their surfaces. The effect of atmospheric-pressure plasma jet on cellular response was examined by endothelial cell adhesion and XTT analysis. It was difficult to detect any changeable morphology after atmospheric-pressure plasma jet treatment on the surface. The roughness was increased after atmospheric-pressure plasma jet treatment compared to nonatmospheric-pressure plasma jet treatment (86.781 and 7.964 nm, respectively). The X-ray photoelectron spectroscopy results showed that the surface concentration of the C-O groups increased slightly from 6% to 8% after plasma activation. The contact angle dramatically decreased in the atmospheric-pressure plasma jet treated group (22.6 ± 15.26°) compared to the nonatmospheric-pressure plasma jet treated group (72.4 ± 15.26°) ( n = 10, p atmospheric-pressure plasma jet on endothelial cell migration and proliferation was 85.2% ± 12.01% and 34.2% ± 2.68%, respectively, at 7 days, compared to the nonatmospheric-pressure plasma jet treated group (58.2% ± 11.44% in migration, n = 10, p atmospheric-pressure plasma jet method. Moreover, the atmospheric-pressure plasma jet might affect re-endothelialization after stenting.

  7. Are pressure redistribution surfaces or heel protection devices effective for preventing heel pressure ulcers?

    Science.gov (United States)

    Junkin, Joan; Gray, Mikel

    2009-01-01

    Heel pressure ulcers are recognized as second in prevalence only to pressure ulcer (PU) on the heel among hospitalized patients, and recent studies suggest their incidence may be higher than even sacral ulcers. We systematically reviewed the literature to identify and evaluate whether pressure redistribution surfaces or heel protection devices are effective for the prevention of heel ulcers. We searched CINAHL and MEDLINE databases, using the keywords "pressure ulcer" and "heel," which we also searched the Cochrane Library, using the key terms "pressure ulcer," "heel," and "support surface." We hand searched the ancestry of pertinent research reports and review articles in order to identify additional studies. Inclusion criteria were (1) any study that compared one or more pressure redistribution surfaces or heel protection devices designed specifically to prevent heel PU and (2) any study comparing 2 or more pressure redistribution surfaces designed to prevent PU that specifically reported differences in the incidence of heel PU. Exclusion criteria were (1) studies that did not measure heel PU incidence as an outcome, (2) studies without an English language abstract, and (3) studies that reported overall PU incidence but did not analyze heel PU incidence separately. Clinical evidence concerning the efficacy of pressure redistribution surfaces or heel protection devices is sparse. Existing evidence suggests that pressure redistribution surfaces vary in their ability to prevent heel pressure ulcers, but there is insufficient evidence to determine which surfaces are optimal for this purpose. A single study suggests that a wedge-shaped viscoelastic foam cushion is superior to standard foam pillows for preventing heel PU, but further research is needed before a definitive conclusion concerning this issue can be reached. There is insufficient evidence to determine whether heel protection devices are more effective than a standard hospital foam pillow for the prevention

  8. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved....... The ultrasonic irradiation during the plasma treatment consistently enhanced the treatment efficiency. The principal effect of ultrasonic irradiation can be attributed to enhancing surface oxidation during plasma treatment. In addition, ultrasonic irradiation can suppress arcing, and the uniformity...

  9. Formation Mechanism of Surface Crack in Low Pressure Casting of A360 Alloy

    Science.gov (United States)

    Liu, Shan-Guang; Cao, Fu-Yang; Ying, Tao; Zhao, Xin-Yi; Liu, Jing-Shun; Shen, Hong-Xian; Guo, Shu; Sun, Jian-Fei

    2017-12-01

    A surface crack defect is normally found in low pressure castings of Al alloy with a sudden contraction structure. To further understand the formation mechanism of the defect, the mold filling process is simulated by a two-phase flow model. The experimental results indicate that the main reason for the defect deformation is the mismatching between the height of liquid surface in the mold and pressure in the crucible. In the case of filling, a sudden contraction structure with an area ratio smaller than 0.5 is obtained, and the velocity of the liquid front increases dramatically with the influence of inertia. Meanwhile, the pressurizing speed in the crucible remains unchanged, resulting in the pressure not being able to support the height of the liquid level. Then the liquid metal flows back to the crucible and forms a relatively thin layer solidification shell on the mold wall. With the increasing pressure in the crucible, the liquid level rises again, engulfing the shell and leading to a surface crack. As the filling velocity is characterized by the damping oscillations, surface cracks will form at different heights. The results shed light on designing a suitable pressurizing speed for the low pressure casting process.

  10. Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice

    Science.gov (United States)

    Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.

    2017-12-01

    Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and

  11. Drop impact on a solid surface at reduced air pressure

    Science.gov (United States)

    Langley, Kenneth; Li, E. Q.; Tian, Y. S.; Hicks, P. D.; Thoroddsen, S. T.

    2017-11-01

    When a drop approaches a solid surface at atmospheric pressure, the lubrication pressure within the air forms a dimple in the bottom of the drop resulting in the entrainment of an air disc upon impact. Reducing the ambient air pressure below atmospheric has been shown to suppress splashing and the compression of the intervening air could be significant on the air disc formation; however, to date there have been no experimental studies showing how the entrainment of the air disc is affected by reducing the ambient pressure. Using ultra-high-speed interferometry, at up to 5 Mfps, we investigate droplet impacts onto dry solid surfaces in reduced ambient air pressures with particular interest in what happens as rarified gas effects become important, i.e. when the thickness of the air layer is of the same magnitude as the mean free path of the air molecules. Experimental data will be presented showing novel phenomena and comparisons will be drawn with theoretical models from the literature.

  12. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.

    Science.gov (United States)

    Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff

    2012-04-03

    A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.

  13. Estimation of methane emission flux at landfill surface using laser methane detector: Influence of gauge pressure.

    Science.gov (United States)

    Park, Jin-Kyu; Kang, Jong-Yun; Lee, Nam-Hoon

    2016-08-01

    The aim of this study was to investigate the possibility of measuring methane emission fluxes, using surface methane concentration and gauge pressure, by analyzing the influence of gauge pressure on the methane emission flux and the surface methane concentration, as well as the correlation between the methane emission flux and surface methane concentrations. The surface methane concentration was measured using a laser methane detector. Our results show a positive linear relationship between the surface methane concentration and the methane emission flux. Furthermore, the methane emission flux showed a positive linear relationship with the gauge pressure; this implies that when the surface methane concentration and the surface gauge pressure are measured simultaneously, the methane emission flux can be calculated using Darcy's law. A decrease in the vertical permeability was observed when the gauge pressure was increased, because reducing the vertical permeability may lead to a reduced landfill gas emission to the atmosphere, and landfill gas would be accumulated inside the landfill. Finally, this method is simple and can allow for a greater number of measurements during a relatively shorter period. Thus, it provides a better representation of the significant space and time variations in methane emission fluxes. © The Author(s) 2016.

  14. YaAn earthquake increases blood pressure among hospitalized patients.

    Science.gov (United States)

    Li, Chuanwei; Luo, Xiaoli; Zhang, Wen; Zhou, Liang; Wang, Hongyong; Zeng, Chunyu

    YaAn, a city in Sichuan province, China, was struck by a major earthquake measuring 7.0 on the Richter scale on April 20, 2013. This study sought to investigate the impact of YaAn earthquake on the blood pressure (BP) among hospitalized patients in the department of cardiology. We enrolled 52 hospitalized patients who were admitted to our hospital at least three days before the day of earthquake in 2013 (disaster group) as compared with 52 patients during April 20, 2014 (nondisaster group). BP was measured three times per day and the prescription of antihypertensive medicine was recorded. The earthquake induced a 3.3 mm Hg significant increase in the mean postdisaster systolic blood pressure (SBP) in the disaster group as compared with the nondisaster group. SBP at admission was positively associated with the elevated SBP in the logistic regression model (odds ratio (OR) = 1.09, 95% confidence interval (CI):1.016-1.168, p = 0.015), but not other potential influencing factors, including antihypertensive medicine, sex, age, and body weight, excluding β-blockers. Patients with β-blockers prescription at the time of earthquake showed a blunt response to earthquake-induced SBP elevation than those who were taking other antihypertensive drugs (OR = 0.128, 95% CI: 0.019-0.876, p = 0.036). The YaAn earthquake induced significant increase in SBP even at a distance from the epicenter among hospitalized patients. The findings demonstrate that pure psychological components seem to be a cause of the pressor response and β-blockers might be better in controlling disaster-induced hypertension.

  15. Exercise increases pressure pain tolerance but not pressure and heat pain thresholds in healthy young men.

    Science.gov (United States)

    Vaegter, H B; Hoeger Bement, M; Madsen, A B; Fridriksson, J; Dasa, M; Graven-Nielsen, T

    2017-01-01

    Exercise causes an acute decrease in the pain sensitivity known as exercise-induced hypoalgesia (EIH), but the specificity to certain pain modalities remains unknown. This study aimed to compare the effect of isometric exercise on the heat and pressure pain sensitivity. On three different days, 20 healthy young men performed two submaximal isometric knee extensions (30% maximal voluntary contraction in 3 min) and a control condition (quiet rest). Before and immediately after exercise and rest, the sensitivity to heat pain and pressure pain was assessed in randomized and counterbalanced order. Cuff pressure pain threshold (cPPT) and pain tolerance (cPTT) were assessed on the ipsilateral lower leg by computer-controlled cuff algometry. Heat pain threshold (HPT) was recorded on the ipsilateral foot by a computer-controlled thermal stimulator. Cuff pressure pain tolerance was significantly increased after exercise compared with baseline and rest (p exercise. No significant correlation between exercise-induced changes in HPT and cPPT was found. Test-retest reliability before and after the rest condition was better for cPPT and CPTT (intraclass correlation > 0.77) compared with HPT (intraclass correlation = 0.54). The results indicate that hypoalgesia after submaximal isometric exercise is primarily affecting tolerance of pressure pain compared with the pain threshold. These data contribute to the understanding of how isometric exercise influences pain perception, which is necessary to optimize the clinical utility of exercise in management of chronic pain. The effect of isometric exercise on pain tolerance may be relevant for patients in chronic musculoskeletal pain as a pain-coping strategy. WHAT DOES THIS STUDY ADD?: The results indicate that hypoalgesia after submaximal isometric exercise is primarily affecting tolerance of pressure pain compared with the heat and pressure pain threshold. These data contribute to the understanding of how isometric exercise

  16. Vacuum surface flashover and high pressure gas streamers

    International Nuclear Information System (INIS)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.; Stolz, D.; Wright, S.N.

    1997-07-01

    Pre-breakdown current traces obtained during high pressure gas breakdown and vacuum surface flashover show similar signatures. The initial pre-breakdown current spike, a flat constant current phase, and the breakdown phase with voltage collapse and current surge differ mostly in magnitude. Given these similarities, a model, consisting of the initial current spike corresponding to a fast precursor streamer (ionization wave led by a photoionizing front), the flat current stage as the heating or glow phase, and the terminal avalanche and gap closure, is applied to vacuum surface flashover. A simple analytical approximation based on the resistivity changes induced in the vacuum and dielectric surface is presented. The approximation yields an excellent fit to pre-breakdown time delay vs applied field for previously published experimental data. A detailed kinetics model that includes surface and gas contributions is being developed based in the initial approximation

  17. Pressure-Redistributing Support Surface Use and Pressure Ulcer Incidence in Elderly Hip Fracture Patients

    Science.gov (United States)

    Rich, Shayna E.; Shardell, Michelle; Hawkes, William G.; Margolis, David J.; Amr, Sania; Miller, Ram; Baumgarten, Mona

    2013-01-01

    OBJECTIVES To evaluate the association between pressure-redistributing support surface (PRSS) use and incident pressure ulcers in older adults with hip fracture. DESIGN Secondary analysis of data from prospective cohort with assessments performed as soon as possible after hospital admission and on alternating days for 21 days. SETTING Nine hospitals in the Baltimore Hip Studies network and 105 postacute facilities to which participants were discharged. PARTICIPANTS Six hundred fifty-eight people aged 65 and older who underwent surgery for hip fracture. MEASUREMENTS Full-body examination for pressure ulcers; bedbound status; and PRSS use, recorded as none, powered (alternating pressure mattresses, low-air-loss mattresses, and alternating pressure overlays), or nonpowered (high-density foam, static air, or gel-filled mattresses or pressure-redistributing overlays except for alternating pressure overlays). RESULTS Incident pressure ulcers (IPUs), Stage 2 or higher, were observed at 4.2% (195/4,638) of visits after no PRSS use, 4.5% (28/623) of visits after powered PRSS use, and 3.6% (54/1,496) of visits after nonpowered PRSS use. The rate of IPU per person-day of follow-up did not differ significantly between participants using powered PRSSs and those not using PRSSs. The rate also did not differ significantly between participants using nonpowered PRSSs and those not using PRSSs, except in the subset of bedbound participants (incidence rate ratio = 0.3, 95% confidence interval = 0.1–0.7). CONCLUSION PRSS use was not associated with a lower IPU rate. Clinical guidelines may need revision for the limited effect of PRSS use, and it may be appropriate to target PRSS use to bedbound patients at risk of pressure ulcers. PMID:21649630

  18. Effect of an end plate on surface pressure distributions of two swept wings

    Directory of Open Access Journals (Sweden)

    Mohammad Reza SOLTANI

    2017-10-01

    Full Text Available A series of wind tunnel tests was conducted to examine how an end plate affects the pressure distributions of two wings with leading edge (LE sweep angles of 23° and 40°. All the experiments were carried out at a midchord Reynolds number of 8×105, covering an angle of attack (AOA range from −2° to 14°. Static pressure distribution measurements were acquired over the upper surfaces of the wings along three chordwise rows and one spanwise direction at the wing quarter-chord line. The results of the tests confirm that at a particular AOA, increasing the sweep angle causes a noticeable decrease in the upper-surface suction pressure. Furthermore, as the sweep angle increases, the development of a laminar separation bubble near the LEs of the wings takes place at higher AOAs. On the other hand, spanwise pressure measurements show that increasing the wing sweep angle results in forming a stronger vortex on the quarter-chord line which has lower sensitivity to AOA variation and remains substantially attached to the wing surface for higher AOAs than that can be achieved in the case of a lower sweep angle. In addition, data obtained indicate that installing an end plate further reinforces the spanwise flow over the wing surface, thus affecting the pressure distribution.

  19. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Science.gov (United States)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  20. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees.

    Science.gov (United States)

    Youngsteadt, Elsa; Appler, R Holden; López-Uribe, Margarita M; Tarpy, David R; Frank, Steven D

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators.

  1. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees

    Science.gov (United States)

    López-Uribe, Margarita M.; Tarpy, David R.; Frank, Steven D.

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators. PMID:26536606

  2. Liquid pressure amplifier increases refrigeration efficiency at Canada Safeway

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Canada Safeway Limited is a food retail store that operates some 80 stores in British Columbia. The company was interested in improving the energy efficiency and performance of their refrigeration systems. The store`s largest electrical load is refrigeration for produce, meat, deli, dairy and frozen foods. Safeway installed a liquid pressure amplifier (LPA) at one of their stores. LPA is a small magnetically-coupled pump which is installed in the liquid refrigerant line between the condenser outlet and the expansion valve. The LPA reduces the compressor`s work load. The technology works best with systems that use fluorinated hydrocarbon-based refrigerants and not ammonia-based systems. Total cost of the retrofit was estimated to be $7,000. The modification reduced the load on the compressor and increased the refrigeration capacity, resulting in reduced energy consumption. Annual energy savings were estimated to be $2,000 per year. Other potential applications for LPA technology, including air conditioning systems, thermal energy cold storage systems, skating rinks, and refrigerated warehouses, were also mentioned briefly. 1 fig.

  3. Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder

    Science.gov (United States)

    You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.

    2018-01-01

    To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.

  4. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  5. Surface pressure fluctuations on aircraft flaps and their correlation with far-field noise

    Science.gov (United States)

    Guo, Y. P.; Joshi, M. C.; Bent, P. H.; Yamamoto, K. J.

    2000-07-01

    This paper discusses unsteady surface pressures on aircraft flaps and their correlation with far-field noise. Analyses are made of data from a 4.7% DC-10 aircraft model test, conducted in the 40 × 80 feet wind tunnel at NASA Ames Research Center. Results for various slat/wing/flap configurations and various flow conditions are discussed in detail to reveal major trends in surface pressure fluctuations. Spectral analysis, including cross-correlation/coherence, both among unsteady surface pressures and between far-field noise and near-field fluctuations, is used to reveal the most coherent motions in the near field and identify potential sources of noise related to flap flows. Dependencies of surface pressure fluctuations on mean flow Mach numbers, flap settings and slat angles are discussed. Dominant flow features in flap side edge regions, such as the formation of double-vortex structures, are shown to manifest themselves in the unsteady surface pressures as a series of spectral humps. The spectral humps are shown to correlate well with the radiated noise, indicating the existence of major noise sources in flap side edge regions. Strouhal number scaling is used to collapse the data with satisfactory results. The effects of flap side edge fences on surface pressures are also discussed. It is shown that the application of fences effectively increases the thickness of the flaps so that the double-vortex structures have more time to evolve. As a result, the characteristic timescale of the unsteady sources increases, which in turn leads to a decrease in the dominant frequency of the source process. Based on this, an explanation is proposed for the noise reduction mechanism of flap side edge fences.

  6. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    Science.gov (United States)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  7. 46 CFR 52.01-55 - Increase in maximum allowable working pressure.

    Science.gov (United States)

    2010-10-01

    ... POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When the maximum allowable working pressure of a boiler has been established, an increase in the pressure... subchapter in effect at the time the boiler was contracted for or built; but in no case will a pressure...

  8. [Measurements of surface ocean carbon dioxide partial pressure during WOCE

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This paper discusses the research progress of the second year of research under Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' and proposes to continue measurements of underway pCO[sub 2]. During most of the first year of this grant, our efforts to measure pCO[sub 2] on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO[sub 2] in air and surface seawater indicate air-sea equilibrium.

  9. The dependence of lipid monolayer lipolysis on surface pressure.

    OpenAIRE

    Hall, D G

    1992-01-01

    Brönsted-Bjerrum theory [Brönsted (1922) Z. Phys. Chem. 102, 169-207; (1925) Z. Phys. Chem. 115, 337-364; Bjerrum (1924) Z. Phys. Chem. 108, 82-100] as applied to reactions at interfaces is used to interpret published data on the lipolysis of dinonanoyl phosphatidylcholine monolayers by pancreatic phospholipase A2. Reasonable quantitative agreement between theoretical and experimental results occurs when the reported effects of surface pressure on the amount of adsorbed enzyme are used togeth...

  10. Osmotic pressure of the cutaneous surface fluid of Rana esculenta

    DEFF Research Database (Denmark)

    Hviid Larsen, Erik; Ramløv, Hans

    2012-01-01

    The osmotic pressure of the cutaneous surface fluid (CSF) in vivo was measured for investigating whether evaporative water loss (EWL) derives from water diffusing through the skin or fluid secreted by exocrine subepidermal mucous glands. EWL was stimulated by subjecting R. esculenta to 30–34 °C....../Kg, n = 16. Osmolality of lymph was, 239 ± 4 mosmol/Kg, n = 8. Thus the flow of water across the epidermis would be in the direction from CSF to the interstitial fluid driven by the above osmotic gradients and/or coupled to the inward active Na+ flux via the slightly hyperosmotic paracellular...

  11. Pressurized Rover for Moon and Mars Surface Missions

    Science.gov (United States)

    Imhof, Barbara; Ransom, Stephen; Mohanty, Susmita; Özdemir, Kürsad; Häuplik-Meusburger, Sandra; Frischauf, Norbert; Hoheneder, Waltraut; Waclavicek, René

    The work described in this paper was done under ESA and Thales Alenia Space contract in the frame of the Analysis of Surface Architecture for European Space Exploration -Element Design. Future manned space missions to the Moon or to Mars will require a vehicle for transporting astronauts in a controlled and protected environment and in relative comfort during surface traverses of these planetary bodies. The vehicle that will be needed is a pressurized rover which serves the astronauts as a habitat, a refuge and a research laboratory/workshop. A number of basic issues influencing the design of such a rover, e.g. habitability, human-machine interfaces, safety, dust mitigation, interplanetary contamination and radiation protection, have been analysed in detail. The results of these analyses were subsequently used in an investigation of various designs for a rover suitable for surface exploration, from which a single concept was developed that satisfied scientific requirements as well as environmental requirements encoun-tered during surface exploration of the Moon and Mars. This concept was named in memory of the late Sir Arthur C. Clark RAMA (Rover for Advanced Mission Applications, Rover for Advanced Moon Applications, Rover for Advanced Mars Applications) The concept design of the pressurized rover meets the scientific and operational requirements defined during the course of the Surface Architecture Study. It is designed for surface missions with a crew of two or three lasting up to approximately 40 days, its source of energy, a liquid hydrogen/liquid oxygen fuel cell, allowing it to be driven and operated during the day as well as the night. Guidance, navigation and obstacle avoidance systems are foreseen as standard equipment to allow it to travel safely over rough terrain at all times of the day. The rover allows extra-vehicular activity and a remote manipulator is provided to recover surface samples, to deploy surface instruments and equipment and, in general

  12. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations

    DEFF Research Database (Denmark)

    Holm, René; Borkenfelt, Simon; Allesø, Morten

    2016-01-01

    for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.......g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed......, however for six out of seven compounds similar results were obtained by applying a standard pressure (866MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle...

  13. Development of bio/blood compatible polypropylene through low pressure nitrogen plasma surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Gomathi, N., E-mail: gomathi@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Department of Space, Trivandrum, 695547 (India); Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, 721302 (India); Rajasekar, R. [Materials Science Center, Indian Institute of Technology, Kharagpur, 721302 (India); Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, 561-756 (Korea, Republic of); Babu, R. Rajesh [Rubber Technology Center, Indian Institute of Technology, Kharagpur, 721302 (India); Advanced Tyre Research, Apollo Tyres, Baroda, 391750 (India); Mishra, Debasish [Department of Biotechnolgy, Indian Institute of Technology, Kharagpur, 721302 (India); Neogi, S. [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, 721302 (India)

    2012-10-01

    Surface modification of polypropylene by nitrogen containing plasma was performed in this work in order to improve the wettability which resulted in enhanced biocompatibility and blood compatibility. Various nitrogen containing functional groups as well as oxygen containing functional groups were found to be incorporated to the polymer surface during plasma treatment and post plasma reaction respectively. Wettability of the polymers was evaluated by static contact angle measurement to show the improvement in hydrophilicity of plasma treated polypropylene. Cross linking and surface modification were reported to be dominating in the case of nitrogen plasma treatment compared to degradation. The effect of various process variables namely power, pressure, flow rate and treatment time on surface energy and weight loss was studied at various levels according to the central composite design of response surface methodology (RSM). Except pressure the other variables resulted in increased weight loss due to etching whereas with increasing pressure weight loss was found to increase and then decrease. The effect of process variables on surface morphology of polymers was evaluated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Well spread fibroblast cells on nitrogen plasma treated polypropylene due to the presence of CO, NH{sup 2+} and NH{sup +} was observed. Reduced platelet adhesion and increased partial thromboplastin time evidenced the increased blood compatibility. - Highlights: Black-Right-Pointing-Pointer Improved biocompatibility and blood compatibility of polypropylene. Black-Right-Pointing-Pointer Nitrogen plasma surface modification. Black-Right-Pointing-Pointer Maintaining a balance between polar group incorporation and weight loss due to etching. Black-Right-Pointing-Pointer Optimization of process conditions by response surface methodology.

  14. Development of bio/blood compatible polypropylene through low pressure nitrogen plasma surface modification

    International Nuclear Information System (INIS)

    Gomathi, N.; Rajasekar, R.; Babu, R. Rajesh; Mishra, Debasish; Neogi, S.

    2012-01-01

    Surface modification of polypropylene by nitrogen containing plasma was performed in this work in order to improve the wettability which resulted in enhanced biocompatibility and blood compatibility. Various nitrogen containing functional groups as well as oxygen containing functional groups were found to be incorporated to the polymer surface during plasma treatment and post plasma reaction respectively. Wettability of the polymers was evaluated by static contact angle measurement to show the improvement in hydrophilicity of plasma treated polypropylene. Cross linking and surface modification were reported to be dominating in the case of nitrogen plasma treatment compared to degradation. The effect of various process variables namely power, pressure, flow rate and treatment time on surface energy and weight loss was studied at various levels according to the central composite design of response surface methodology (RSM). Except pressure the other variables resulted in increased weight loss due to etching whereas with increasing pressure weight loss was found to increase and then decrease. The effect of process variables on surface morphology of polymers was evaluated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Well spread fibroblast cells on nitrogen plasma treated polypropylene due to the presence of CO, NH 2+ and NH + was observed. Reduced platelet adhesion and increased partial thromboplastin time evidenced the increased blood compatibility. - Highlights: ► Improved biocompatibility and blood compatibility of polypropylene. ► Nitrogen plasma surface modification. ► Maintaining a balance between polar group incorporation and weight loss due to etching. ► Optimization of process conditions by response surface methodology.

  15. Does Pressure Accentuate General Relativistic Gravitational Collapse and Formation of Trapped Surfaces?

    Science.gov (United States)

    Mitra, Abhas

    2013-04-01

    It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.

  16. Study on hot melt pressure sensitive coil material for removing surface nuclear pollution dust

    Science.gov (United States)

    Wang, Jing; Li, Jiao; Wang, Jianhui; Zheng, Li; Li, Jian; Lv, Linmei

    2018-02-01

    A new method for removing surface nuclear pollution by using hot melt pressure sensitive membrane was presented. The hot melt pressure sensitive membrane was designed and prepared by screening hot melt pressure sensitive adhesive and substrate. The simulated decontamination test of the hot melt pressure sensitive membrane was performed by using 100 mesh and 20 mesh standard sieve dust for simulation of nuclear explosion fall ash and radioactive contaminated particles, respectively. It was found that the single decontamination rate of simulated fall ash and contaminated particles were both above 80% under pressure conditions of 25kPa or more at 140°C. And the maximum single decontamination rate was 92.5%. The influence of heating temperature and pressure on the decontamination rate of the membrane was investigated at the same time. The results showed that higher heating temperature could increase the decontamination rate by increasing the viscosity of the adhesive. When the adhesive amount of the adhesive layer reached saturation, a higher pressure could increase the single decontamination rate also.

  17. High-frequency pressure variations in the vicinity of a surface CO2 flux chamber

    Science.gov (United States)

    Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice

    2003-01-01

    We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...

  18. Surface modification of nanofibrillated cellulose films by atmospheric pressure dielectric barrier discharge

    DEFF Research Database (Denmark)

    Siró, Istvan; Kusano, Yukihiro; Norrman, Kion

    2013-01-01

    of atmospheric pressure plasma treatment, the water contact angle of NFC films increased and the values were comparable with those of PLA films. On the other hand, surface chemical characterization revealed inhomogeneity of the plasma treatment and limited improvement in adhesion between NFC and PLA films......A dielectric barrier discharge in a gas mixture of tetrafluoromethane (CF4) and O2 was used for tailoring the surface properties of nanofibrillated cellulose (NFC) films. The surface chemical composition of plasma-modified NFC was characterized by means of X-ray photoelectron spectroscopy and time....... Further research in this direction is required in order to enhance the uniformity of the plasma treatment results....

  19. Increased Intraocular Pressure after Extensive Conjunctival Removal: A Case Report

    OpenAIRE

    Lee, Young Rok; Na, Jung Hwa; Kim, Jae Yong; Sung, Kyung Rim

    2013-01-01

    A 50-year-old woman, who had undergone extensive removal of conjunctiva on the right eye for cosmetic purposes at a local clinic 8 months prior to presentation, was referred for uncontrolled intraocular pressure (IOP) elevation (up to 38 mmHg) despite maximal medical treatment. The superior and inferior conjunctival and episcleral vessels were severely engorged and the nasal and temporal bulbar conjunctival areas were covered with an avascular epithelium. Gonioscopic examination revealed an o...

  20. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air...... are obtained from the literature. The silica surface is modeled by a large 32 ⨯ 32 ⨯ 2 nm amorphous SiO2 structure consisting of 180000 atoms. The water consists of 18000 water molecules surrounded by N2 and O2 air molecules corresponding to air pressures of 0 bar (vacuum), 50 bar, 100 bar and 200 bar. We...... the effect of air and find a consistent increase in the water contact angle reaching 53º at 200 bar air pressure. These results are important for the creation and stability of nanobubbles at hydrophilic interfaces....

  1. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    International Nuclear Information System (INIS)

    Štěpánová, Vlasta; Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana; Černák, Mirko

    2015-01-01

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  2. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  3. Calculated Fermi surface properties of LaSn3 and YSn3 under pressure

    International Nuclear Information System (INIS)

    Kanchana, V.

    2012-01-01

    The electronic structure, Fermi surface and elastic properties of the iso-structural and iso-electronic LaSn 3 and YSn 3 intermetallic compounds are studied under pressure within the frame work of density functional theory including spin-orbit coupling. The LaSn 3 Fermi surface consists of two sheets, of which the second is very complex. Under pressure a third sheet appears around compression V/V 0 =0.94, while a small topology changes in the second sheet is seen at compression V/V 0 =0.90. This may be in accordance with the anomalous behavior in the superconducting transition temperature observed in LaSn 3 , which has been suggested to reflect a Fermi surface topological transition, along with a non-monotonic pressure dependence of the density of states at the Fermi level. The similar behavior is not observed in YSn 3 for which the Fermi surface includes three sheets already at ambient conditions, and the topology remains unchanged under pressure. The reason for the difference in behavior between LaSn 3 and YSn 3 is the role of spin-orbit coupling and the hybridization of La-4f state with the Sn-p state in the vicinity of the Fermi level, which is well explained using the band structure calculation. The elastic constants and related mechanical properties are calculated at ambient as well as at elevated pressures. The elastic constants increase with pressure for both compounds and satisfy the conditions for mechanical stability under pressure. (author)

  4. Application of atmospheric pressure plasma on polyethylene for increased prosthesis adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Van Vrekhem, S., E-mail: stijn.vanvrekhem@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Cools, P. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Declercq, H. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Tissue Engineering Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 6B3, 9000 Ghent (Belgium); Van Tongel, A. [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185 13K12, 9000 Ghent (Belgium); Vercruysse, C.; Cornelissen, M. [Tissue Engineering Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 6B3, 9000 Ghent (Belgium); De Geyter, N.; Morent, R. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium)

    2015-12-01

    Biopolymers are often subjected to surface modification in order to improve their surface characteristics. The goal of this study is to show the use of plasma technology to enhance the adhesion of ultra-high molecular weight polyethylene (UHMWPE) shoulder prostheses. Two different plasma techniques (low pressure plasma activation and atmospheric pressure plasma polymerization) are performed on UHMWPE to increase the adhesion between (1) the polymer and polymethylmethacrylate (PMMA) bone cement and (2) the polymer and osteoblast cells. Both techniques are performed using a dielectric barrier discharge (DBD). A previous paper showed that low pressure plasma activation of UHMWPE results in the incorporation of oxygen-containing functional groups, which leads to an increased surface wettability. Atmospheric pressure plasma polymerization of methylmethacrylate (MMA) on UHMWPE results in a PMMA-like coating, which could be deposited with a high degree of control of chemical composition and layer thickness. The thin film also proved to be relatively stable upon incubation in a phosphate buffer solution (PBS). This paper discusses the next stage of the study, which includes testing the adhesion of the plasma-activated and plasma-polymerized samples to bone cement through pull-out tests and testing the cell adhesion and proliferation on the samples. In order to perform the pull-out tests, all samples were cut to standard dimensions and fixed in bone cement in a reproducible way with a sample holder specially designed for this purpose. The cell adhesion and proliferation were tested by means of an MTS assay and live/dead staining after culturing MC3T3 osteoblast cells on UHMWPE samples. The results show that both plasma activation and plasma polymerization significantly improve the adhesion to bone cement and enhance cell adhesion and proliferation. In conclusion, it can be stated that the use of plasma technology can lead to an implant with improved quality and a subsequent

  5. Pressure RElieving Support SUrfaces: a Randomised Evaluation 2 (PRESSURE 2): study protocol for a randomised controlled trial

    OpenAIRE

    Brown, Sarah; Smith, Isabelle L.; Brown, Julia M.; Hulme, Claire; McGinnis, Elizabeth; Stubbs, Nikki; Nelson, E. Andrea; Muir, Delia; Rutherford, Claudia; Walker, Kay; Henderson, Valerie; Wilson, Lyn; Gilberts, Rachael; Collier, Howard; Fernandez, Catherine

    2016-01-01

    Background Pressure ulcers represent a major burden to patients, carers and the healthcare system, affecting approximately 1 in 17 hospital and 1 in 20 community patients. They impact greatly on an individual?s functional status and health-related quality of life. The mainstay of pressure ulcer prevention practice is the provision of pressure redistribution support surfaces and patient repositioning. The aim of the PRESSURE 2 study is to compare the two main mattress types utilised within the...

  6. The effect of surface pressure modification on the speed of vortex rings

    Energy Technology Data Exchange (ETDEWEB)

    Partridge, Matthew; Davis, Frank; Higson, Seamus P J [Centre of Biomedical Imaging, Cranfield University, Cranfield MK43 0AL (United Kingdom); James, Stephen W; Tatam, Ralph P, E-mail: f.davis@cranfield.ac.uk [Engineering Photonics, School of Engineering, Cranfield University, Cranfield MK43 0AL (United Kingdom)

    2014-10-01

    A series of experiments investigating the relationship between surface pressure, monolayer elasticity and the speed of vortex rings is presented. A drop of water, when touched to the surface of a larger body of water, will coalesce and form a vortex ring that moves perpendicularly to the surface of the water. The speed of the vortex ring movement away from the surface of the water has been seen to be sensitive to the presence of monolayer materials. Here we explore the influence of four monolayer forming materials, stearic acid, tricosanoic acid, 4-tert butyl calix[4]arene and calix[4]resorcarene (C11), on the properties of vortex rings. For each material, the speed of the vortex rings through the water was measured at a range of surface pressures. The speed was found to increase in a linear fashion until surface pressures greater than 30 mN m{sup −1}, where the ring’s speed decreased towards the value measured in the absence of a monolayer. Analysis of the results suggests a future route toward a better understanding of the mechanisms involved.

  7. Increased Biocompatibility and Bioactivity after Energetic PVD Surface Treatments

    Directory of Open Access Journals (Sweden)

    Stephan Mändl

    2009-09-01

    Full Text Available Ion implantation, a common technology in semiconductor processing, has been applied to biomaterials since the 1960s. Using energetic ion bombardment, a general term which includes conventional ion implantation plasma immersion ion implantation (PIII and ion beam assisted thin film deposition, functionalization of surfaces is possible. By varying and adjusting the process parameters, several surface properties can be attuned simultaneously. Extensive research details improvements in the biocompatibility, mainly by reducing corrosion rates and increasing wear resistance after surface modification. Recently, enhanced bioactivity strongly correlated with the surface topography and less with the surface chemistry has been reported, with an increased roughness on the nanometer scale induced by self-organisation processes during ion bombardment leading to faster cellular adhesion processes.

  8. Increased anthropogenic pressure on land resources has led to the ...

    African Journals Online (AJOL)

    Iorkua

    Mulching is the covering of a soil surface with either organic material such as cut grass, straw, leaves, stem, plant and domestic trash, with residues, dung, and sawdust, or inorganic materials like ash, sand, stones and opaque and transparent plastic (Thurston 1992, Lombin,. 1999, Brady, 2000 and Brady and Weil, 2002).

  9. Development of Maximum Bubble Pressure Method for Surface Tension Measurement of High Viscosity Molten Silicate

    Science.gov (United States)

    Takeda, Osamu; Iwamoto, Hirone; Sakashita, Ryota; Iseki, Chiaki; Zhu, Hongmin

    2017-07-01

    A surface tension measurement method based on the maximum bubble pressure (MBP) method was developed in order to precisely determine the surface tension of molten silicates in this study. Specifically, the influence of viscosity on surface tension measurements was quantified, and the criteria for accurate measurement were investigated. It was found that the MBP apparently increased with an increase in viscosity. This was because extra pressure was required for the flowing liquid inside the capillary due to viscous resistance. It was also expected that the extra pressure would decrease by decreasing the fluid velocity. For silicone oil with a viscosity of 1000 \\hbox {mPa}{\\cdot }\\hbox {s}, the error on the MBP could be decreased to +1.7 % by increasing the bubble detachment time to 300 \\hbox {s}. However, the error was still over 1 % even when the bubble detachment time was increased to 600 \\hbox {s}. Therefore, a true value of the MBP was determined by using a curve-fitting technique with a simple relaxation function, and that was succeeded for silicone oil at 1000 \\hbox {mPa}{\\cdot } \\hbox {s} of viscosity. Furthermore, for silicone oil with a viscosity as high as 10 000 \\hbox {mPa}{\\cdot }\\hbox {s}, the apparent MBP approached a true value by interrupting the gas introduction during the pressure rising period and by re-introducing the gas at a slow flow rate. Based on the fundamental investigation at room temperature, the surface tension of the \\hbox {SiO}2-40 \\hbox {mol}%\\hbox {Na}2\\hbox {O} and \\hbox {SiO}2-50 \\hbox {mol}%\\hbox {Na}2\\hbox {O} melts was determined at a high temperature. The obtained value was slightly lower than the literature values, which might be due to the influence of viscosity on surface tension measurements being removed in this study.

  10. Measuring Global Surface Pressures on a Circulation Control Concept Using Pressure Sensitive Paint

    Science.gov (United States)

    Watkins, Anthony N.; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.

    2012-01-01

    This report will present the results obtained from the Pressure Sensitive Paint (PSP) technique on a circulation control concept model. This test was conducted at the National Transonic Facility (NTF) at the NASA Langley Research Center. PSP was collected on the upper wing surface while the facility was operating in cryogenic mode at 227 K (-50 oF). The test envelope for the PSP portion included Mach numbers from 0.7 to 0.8 with angle of attack varying between 0 and 8 degrees and a total pressure of approximately 168 kPa (24.4 psi), resulting in a chord Reynolds number of approximately 15 million. While the PSP results did exhibit high levels of noise in certain conditions (where the oxygen content of the flow was very small), some conditions provided good correlation between the PSP and pressure taps, showing the ability of the PSP technique. This work also served as a risk reduction opportunity for future testing in cryogenic conditions at the NTF.

  11. Surface wave propagation characteristics in atmospheric pressure plasma column

    International Nuclear Information System (INIS)

    Pencheva, M; Benova, E; Zhelyazkov, I

    2007-01-01

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance

  12. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  13. Exercise increases pressure pain tolerance but not pressure and heat pain thresholds in healthy young men

    DEFF Research Database (Denmark)

    Vaegter, H B; Hoeger Bement, M; Madsen, A B

    2017-01-01

    : On three different days, 20 healthy young men performed two submaximal isometric knee extensions (30% maximal voluntary contraction in 3 min) and a control condition (quiet rest). Before and immediately after exercise and rest, the sensitivity to heat pain and pressure pain was assessed in randomized...... and counterbalanced order. Cuff pressure pain threshold (cPPT) and pain tolerance (cPTT) were assessed on the ipsilateral lower leg by computer-controlled cuff algometry. Heat pain threshold (HPT) was recorded on the ipsilateral foot by a computer-controlled thermal stimulator. RESULTS: Cuff pressure pain tolerance...

  14. Evaluating road surface conditions using dynamic tire pressure sensor

    Science.gov (United States)

    Zhao, Yubo; Wu, H. Felix; McDaniel, J. Gregory; Wang, Ming L.

    2014-03-01

    In order to best prioritize road maintenance, the level of deterioration must be known for all roads in a city's network. Pavement Condition Index (PCI) and International Roughness Index (IRI) are two standard methods for obtaining this information. However, IRI is substantially easier to measure. Significant time and money could be saved if a method were developed to estimate PCI from IRI. This research introduces a new method to estimate IRI and correlate IRI with PCI. A vehicle-mounted dynamic tire pressure sensor (DTPS) system is used. The DTPS measures the signals generated from the tire/road interaction while driving. The tire/road interaction excites surface waves that travel through the road. DTPS, which is mounted on the tire's valve stem, measures tire/road interaction by analyzing the pressure change inside the tire due to the road vibration, road geometry and tire wall vibration. The road conditions are sensible to sensors in a similar way to human beings in a car. When driving on a smooth road, tire pressure stays almost constant and there are minimal changes in the DTPS data. When driving on a rough road, DTPS data changes drastically. IRI is estimated from the reconstructed road profile using DTPS data. In order to correlate IRI with PCI, field tests were conducted on roads with known PCI values in the city of Brockton, MA. Results show a high correlation between the estimated IRI values and the known PCI values, which suggests that DTPS-based IRI can provide accurate predictions of PCI.

  15. Randomised, controlled trial of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers: PRESSURE (pressure relieving support surfaces) trial

    OpenAIRE

    2006-01-01

    Objective To compare whether differences exist between alternating pressure overlays and alternating pressure mattresses in the development of new pressure ulcers, healing of existing pressure ulcers, and patient acceptability. Design Pragmatic, open, multicentre, randomised controlled trial. Setting 11 hospitals in six NHS trusts. Participants 1972 people admitted to hospital as acute or elective patients. Interventions Participants were randomised to an alternating pressure mattress (n = 98...

  16. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  17. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Sugiyama, Y.; Hosseini, S.H.R.; Akiyama, H.; Lukeš, Petr; Akiyama, M.

    2016-01-01

    Roč. 49, č. 41 (2016), č. článku 415202. ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : water surface * spectroscopy * high-speed photography * pulsed plasma discharge * Atmospheric-pressure plasmas * electric discharges * liquids * water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/41/415202

  18. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Zhang Ruiyun; Pan Xianlin; Jiang Muwen; Peng Shujing; Qiu Yiping

    2012-01-01

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  19. Randomised, controlled trial of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers: PRESSURE (pressure relieving support surfaces) trial.

    Science.gov (United States)

    Nixon, Jane; Cranny, Gillian; Iglesias, Cynthia; Nelson, E Andrea; Hawkins, Kim; Phillips, Angela; Torgerson, David; Mason, Su; Cullum, Nicky

    2006-06-17

    To compare whether differences exist between alternating pressure overlays and alternating pressure mattresses in the development of new pressure ulcers, healing of existing pressure ulcers, and patient acceptability. Pragmatic, open, multicentre, randomised controlled trial. 11 hospitals in six NHS trusts. 1972 people admitted to hospital as acute or elective patients. Participants were randomised to an alternating pressure mattress (n = 982) or an alternating pressure overlay (n = 990). The proportion of participants developing a new pressure ulcer of grade 2 or worse; time to development of new pressure ulcers; proportions of participants developing a new ulcer within 30 days; healing of existing pressure ulcers; and patient acceptability. Intention to treat analysis found no difference in the proportions of participants developing a new pressure ulcer of grade 2 or worse (10.7% overlay patients, 10.3% mattress patients; difference 0.4%, 95% confidence interval--2.3% to 3.1%, P = 0.75). More overlay patients requested change owing to dissatisfaction (23.3%) than mattress patients (18.9%, P = 0.02). No difference was found between alternating pressure mattresses and alternating pressure overlays in the proportion of people who develop a pressure ulcer. ISRCTN 78646179.

  20. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Kan, C.W.; Kwong, C.H.; Ng, S.P.

    2015-01-01

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment

  1. Increased intra-abdominal pressure affects respiratory variations in arterial pressure in normovolaemic and hypovolaemic mechanically ventilated healthy pigs.

    Science.gov (United States)

    Duperret, Serge; Lhuillier, Franck; Piriou, Vincent; Vivier, Emmanuel; Metton, Olivier; Branche, Patricia; Annat, Guy; Bendjelid, Karim; Viale, Jean Paul

    2007-01-01

    To evaluate the effect of increased intra-abdominal pressure (IAP) on the systolic and pulse pressure variations induced by positive pressure ventilation in a porcine model. Experimental study in a research laboratory. Seven mechanically ventilated and instrumented pigs prone to normovolaemia and hypovolaemia by blood withdrawal. Abdominal banding gradually increased IAP in 5-mmHg steps up to 30 mmHg. Variations in systolic pressure, pulse pressure, inferior vena cava flow, and pleural and transmural (LVEDPtm) left-ventricular end-diastolic pressure were recorded at each step. Systolic pressure variations were 6.1+/-3.1%, 8.5+/-3.6% and 16.0+/-5.0% at 0, 10, and 30 mmHg IAP in normovolaemic animals (mean+/-SD; p<0.01 for IAP effect). They were 12.7+/-4.6%, 13.4+/-6.7%, and 23.4+/-6.3% in hypovolaemic animals (p<0.01 vs normovolaemic group) for the same IAP. Fluctuations of the inferior vena cava flow disappeared as the IAP increased. Breath cycle did not induce any variations of LVEDPtm for 0 and 30 mmHg IAP. In this model, the systolic pressure and pulse pressure variations, and inferior vena cava flow fluctuations were dependent on IAP values which caused changes in pleural pressure swing, and this dependency was more marked during hypovolaemia. The present study suggests that dynamic indices are not exclusively related to volaemia in the presence of increased IAP. However, their fluid responsiveness predictive value could not be ascertained as no fluid challenge was performed.

  2. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    Science.gov (United States)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  3. Investigation of zones with increased ground surface gamma radiation

    International Nuclear Information System (INIS)

    Butkus, D.V.; Morkunas, G.S.; Styro, B.I.

    1989-01-01

    Measurements of the increased gamma radiation zones of soils were conducted in the South-Western part of the Litvinian. The shores of lakes in the north-eastern part of the Suduva high land were investigated. the maximum values of the gamma radiation dose rates were distributed along the lake shores at a distance of 1 m from the water surface, while farther than 1.5 m from it the dose rate was close to the natural value. The increased gamma radiation intensity zones on the ground surface were found only at the northern (Lake Reketija) or the western shore (other lakes under investigation). The highest values of the gamma radiation dose 200-600 μR/h (0.5-1.5 nGy/s) were observed in the comparatively small areas (up to several square metres). The gamma radiation intensity of soil surface increased strongly moving towards the point where the maximum intensity was obsered. 10 figs

  4. Drought Increases Consumer Pressure on Oyster Reefs in Florida, USA.

    Directory of Open Access Journals (Sweden)

    Hanna G Garland

    Full Text Available Coastal economies and ecosystems have historically depended on oyster reefs, but this habitat has declined globally by 85% because of anthropogenic activities. In a Florida estuary, we investigated the cause of newly reported losses of oysters. We found that the oyster reefs have deteriorated from north to south and that this deterioration was positively correlated with the abundance of carnivorous conchs and water salinity. In experiments across these gradients, oysters survived regardless of salinity if conchs were excluded. After determining that conchs were the proximal cause of oyster loss, we tested whether elevated water salinity was linked to conch abundance either by increasing conch growth and survivorship or by decreasing the abundance of a predator of conchs. In field experiments across a salinity gradient, we failed to detect spatial variation in predation on conchs or in conch growth and survivorship. A laboratory experiment, however, demonstrated the role of salinity by showing that conch larvae failed to survive at low salinities. Because this estuary's salinity increased in 2006 in response to reduced inputs of freshwater, we concluded that the ultimate cause of oyster decline was an increase in salinity. According to records from 2002 to 2012, oyster harvests have remained steady in the northernmost estuaries of this ecoregion (characterized by high reef biomass, low salinity, and low conch abundance but have declined in the southernmost estuaries (characterized by lower reef biomass, increases in salinity, and increases in conch abundance. Oyster conservation in this ecoregion, which is probably one of the few that still support viable oyster populations, may be undermined by drought-induced increases in salinity causing an increased abundance of carnivorous conchs.

  5. Drought Increases Consumer Pressure on Oyster Reefs in Florida, USA.

    Science.gov (United States)

    Garland, Hanna G; Kimbro, David L

    2015-01-01

    Coastal economies and ecosystems have historically depended on oyster reefs, but this habitat has declined globally by 85% because of anthropogenic activities. In a Florida estuary, we investigated the cause of newly reported losses of oysters. We found that the oyster reefs have deteriorated from north to south and that this deterioration was positively correlated with the abundance of carnivorous conchs and water salinity. In experiments across these gradients, oysters survived regardless of salinity if conchs were excluded. After determining that conchs were the proximal cause of oyster loss, we tested whether elevated water salinity was linked to conch abundance either by increasing conch growth and survivorship or by decreasing the abundance of a predator of conchs. In field experiments across a salinity gradient, we failed to detect spatial variation in predation on conchs or in conch growth and survivorship. A laboratory experiment, however, demonstrated the role of salinity by showing that conch larvae failed to survive at low salinities. Because this estuary's salinity increased in 2006 in response to reduced inputs of freshwater, we concluded that the ultimate cause of oyster decline was an increase in salinity. According to records from 2002 to 2012, oyster harvests have remained steady in the northernmost estuaries of this ecoregion (characterized by high reef biomass, low salinity, and low conch abundance) but have declined in the southernmost estuaries (characterized by lower reef biomass, increases in salinity, and increases in conch abundance). Oyster conservation in this ecoregion, which is probably one of the few that still support viable oyster populations, may be undermined by drought-induced increases in salinity causing an increased abundance of carnivorous conchs.

  6. Aluminum metal surface cleaning and activation by atmospheric-pressure remote plasma

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, J., E-mail: jmespadero@uco.es; Bravo, J.A.; Calzada, M.D.

    2017-06-15

    Highlights: • Atmospheric-pressure postdischarges have been applied on aluminium surfaces. • The outer hydrocarbon layer is reduced by the action of the postdischarge. • The treatment promotes the appearance of hydrophilic OH radicals in the surface. • Effectivity for distances up to 5 cm allows for treating irregular surfaces. • Ageing in air due to the disappearance of OH radicals has been reported. - Abstract: The use of the remote plasma (postdischarge) of argon and argon-nitrogen microwave plasmas for cleaning and activating the surface of metallic commercial aluminum samples has been studied. The influence of the nitrogen content and the distance between the treated samples and the end of the discharge on the hydrophilicity and the surface energy has been analyzed by means of the sessile drop technique and the Owens-Wendt method. A significant increase in the hydrophilicity has been noted in the treated samples, together with an increase in the surface energy from values around 37 mJ/m{sup 2} to 77 mJ/m{sup 2}. Such increase weakly depends on the nitrogen content of the discharge, and the effectivity of the treatment extends to distances up to 5 cm from the end of the discharge, much longer than those reported in other plasma-based treatments. The analysis of the treated samples using X-ray photoelectron spectroscopy reveals that such increase in the surface energy takes place due to a reduction of the carbon content and an increase in the amount of OH radicals in the surface. These radicals tend to disappear within 24–48 h after the treatment when the samples are stored in contact with ambient air, resulting in the ageing of the treated surface and a partial retrieval of the hydrophobicity of the surface.

  7. Stability of Atmospheric-Pressure Plasma Induced Changes on Polycarbonate Surfaces

    Science.gov (United States)

    Sharma, Rajesh; Holcomb, Edward; Trigwell, Steve

    2006-01-01

    Polycarbonate films are subjected to plasma treatment in a number of applications such as improving adhesion between polycarbonate and silicon alloy in protective and optical coatings. The changes in surface chemistry due to plasma treatment have tendency to revert back. Thus stability of the plasma induced changes on polymer surfaces over desired time period is very important. The objective of this study was to examine the effect of ageing on atmospheric pressure helium-plasma treated polycarbonate (PC) sample as a function of treatment time. The ageing effects were studied over a period of 10 days. The samples were plasma treated for 0.5, 2, 5 and 10 minutes. Contact angle measurements were made to study surface energy changes. Modification of surface chemical structure was examined using, X-ray Photoelectron Spectroscopy (XPS). Contact angle measurements on untreated and plasma treated surfaces were made immediately, 24, 48, 72 and 96 hrs after treatment. Contact angle decreased from 93 deg for untreated sample to 30 deg for sample plasma treated for 10 minutes. After 10 days the contact angles for the 10 minute plasma treated sample increased to 67 deg, but it never reverted back to that of untreated surface. Similarly the O/C ratio increased from 0.136 for untreated sample to 0.321 for 10 minute plasma treated sample indication increase in surface energy.

  8. Surface treatment of polyethylene terephthalate film using atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19 degree, respectively. (authors)

  9. Pressure exerted by a vesicle on a surface

    International Nuclear Information System (INIS)

    Owczarek, A L; Prellberg, T

    2014-01-01

    Several recent works have considered the pressure exerted on a wall by a model polymer. We extend this consideration to vesicles attached to a wall, and hence include osmotic pressure. We do this by considering a two-dimensional directed model, namely that of area-weighted Dyck paths. Not surprisingly, the pressure exerted by the vesicle on the wall depends on the osmotic pressure inside, especially its sign. Here, we discuss the scaling of this pressure in the different regimes, paying particular attention to the crossover between positive and negative osmotic pressure. In our directed model, there exists an underlying Airy function scaling form, from which we extract the dependence of the bulk pressure on small osmotic pressures. (paper)

  10. Indirect measurement of near-surface velocity and pressure fields based on measurement of moving free surface profiles

    International Nuclear Information System (INIS)

    Sibamoto, Yasuteru; Nakamura, Hideo

    2005-01-01

    A non-intrusive technique for measurement of the velocity and pressure fields adjacent to a moving fluid surface is developed. The technique is based on the measurement of fluid surface profile. The velocity and pressure fields are derived with use of the boundary element method (BEM) by seeking for an incompressible flow field that satisfies the kinematic boundary condition imposed by the time-dependent fluid surface profile. The proposed technique is tested by deriving the velocity and pressure fields inversely from the fluid surface profiles obtained by a forward BEM calculation of fluid surface response to externally-imposed pressure. The inverse calculation results show good agreement with the imposed pressure distribution in the forward calculation. (author)

  11. Laboratory measurement of the interface pressures applied by active therapy support surfaces: a consensus document.

    Science.gov (United States)

    2010-02-01

    A key element in pressure ulcer prevention and management is the selection of appropriate pressure redistributing (PR) patient support surfaces for use while seated and in bed. However little explicit guidance exists allowing standardised quantitative comparison of different PR surfaces based upon their ability to redistribute pressure from anatomical landmarks such as the heels and sacrum. In 2008 a working group was established in Europe through the US National Pressure Ulcer Advisory Panel (NPUAP) support surface standardisation initiative (S3I) and under the aegis of the European Pressure Ulcer Advisory Panel with the specific remit of developing test methods for the evaluation of active therapy support surfaces (alternating pressure air mattresses). This report describes a consensus development process to agree test methods appropriate to compare active therapy surfaces based upon their ability to redistribute pressure from the sacrum and the heels. Copyright 2009 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  12. Temperature increases on the external root surface during ...

    African Journals Online (AJOL)

    Aims: The aim of this study is to evaluate increases in temperature on the external root surface during endodontic treatment with different rotary systems. Materials and Methods: Fifty human mandibular incisors with a single root canal were selected. All root canals were instrumented using a size 20 Hedstrom file, and the ...

  13. Investigation of working pressure on the surface roughness controlling technology of glow discharge polymer films based on the diagnosed plasma

    Science.gov (United States)

    Zhang, Ling; Chen, Guo; He, Zhibing; Ai, Xing; Huang, Jinglin; Liu, Lei; Tang, Yongjian; He, Xiaoshan

    2017-07-01

    The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on plasma characteristics diagnosis. The composition and ion energy distributions of a multi-carbon (C4H8/H2) plasma mixture at different working pressures were diagnosed by an energy-resolved mass spectrometer (MS) during the GDP film deposition process. The Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (SEM) and white-light interferometer (WLI) results were obtained to investigate the structure, morphology and roughness characterization of the deposited films, respectively. It was found that the degree of ionization of the C4H8/H2 plasma reduces with an increase in the working pressure. At a low working pressure, the C-H fragments exhibited small-mass and high ion energy in plasma. In this case, the film had a low CH3/CH2 ratio, and displayed a smooth surface without any holes, cracks or asperities. While the working pressure increased to 15 Pa, the largest number of large-mass fragments led to the deposition rate reaching a maximum of 2.11 μm h-1, and to hole defects on the film surface. However, continuing to increase the working pressure, the film surface became smooth again, and the interface between clusters became inconspicuous without etching pits.

  14. Atmospheric pressure surface sampling/ionization techniques for direct coupling of planar separations with mass spectrometry.

    Science.gov (United States)

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-06-18

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Leg raise increases pressure in lower and upper esophageal sphincter among patients with gastroesophageal reflux disease.

    Science.gov (United States)

    Bitnar, P; Stovicek, J; Andel, R; Arlt, J; Arltova, M; Smejkal, M; Kolar, P; Kobesova, A

    2016-07-01

    The purpose of this study was to determine the relation between posturally increased intra-abdominal pressure and lower/upper esophageal sphincter pressure changes in patients with gastroesophageal reflux disease. We used high resolution manometry to measure pressure changes in lower and upper esophageal sphincter during bilateral leg rise. We also examined whether the rate of lower and upper esophageal sphincter pressure would increase during leg raise differentially in individuals with versus without normal resting pressure. Fifty eight patients with gastroesophageal reflux disease participated in the study. High resolution manometry was performed in relaxed supine position, then lower and upper esophageal sphincter pressure was measured. Finally, the subjects were instructed to keep their legs lifted while performing 90-degree flexion at the hips and knees and the pressure was measured again. Paired t-test and independent samples t-test were used. There was a significant increase in both lower (P leg raise compared to the initial resting position. Individuals with initially higher pressure in lower esophageal sphincter (>10 mmHg) exhibited a greater pressure increase during leg raise than those with initially lower pressure (pressure ≤10 mmHg; P = 0.002). Similarly individuals with higher resting upper esophageal sphincter pressure (>44 mmHg) showed a greater pressure increase during leg raise than those with lower resting pressure (≤44 mmHg; P leg activities on intraesophageal pressure in patients with gastroesophageal reflux disease, indicating by means of high resolution manometry that diaphragmatic postural and sphincter function are likely interrelated in this population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Surface diagnostics of evaporating droplets of nanosphere suspension: Fano interference and surface pressure.

    Science.gov (United States)

    Kolwas, Maciej; Kolwas, Krystyna; Derkachov, Gennadiy; Jakubczyk, Daniel

    2015-03-14

    The evaporation of a single, levitating microdroplet of glycols containing SiO2 nanospheres, both of similar refraction indices, was studied by observing changes in the interference pattern and intensities of polarized and depolarized scattered laser light. The evolution of the effective radius of the droplet has been found on the basis of Mie scattering theory supplemented by the "electrical weighting" measurement of droplet mass evolution. During formation of a layer of nanospheres on the droplet surface, the asymmetric Fano profile was observed which was found to be due to the destructive and constructive interference of overlapping processes: (i) the scattering on single nanospheres emerging on the droplet surface and (ii) the scattering on ensembles of closely spaced (comparing to the light wavelength) nanospheres of an evolving surface film. Therefore we report the first observation of the Fano interference in the time domain rather than in the spectral domain. The optical surface diagnostics was complemented with the thermodynamics-like analysis in terms of the effective droplet surface pressure isotherm and with numerical simulations illustrating evaporation driven changes in the distribution of nanospheres. The reported study can serve as the basis for a wide range of novel diagnostic methods for studying configuration changes in complex systems of nano- and microparticles evolving at the sub-wavelength scale.

  17. Modelling of pressure increase protection system for the vacuum vessel of W7-X device

    Energy Technology Data Exchange (ETDEWEB)

    Kaliatka, Tadas, E-mail: tadas.kaliatka@lei.lt; Uspuras, Eugenijus; Kaliatka, Algirdas

    2016-11-01

    Highlights: • Two in-vessel LOCAs (partial and guillotine break of 40 mm diameter pipe of cooling system) for Wendelstein 7-X fusion device were analyzed. • The analysis of the processes in the cooling system, vacuum vessel and pressure increase protection system were performed using thermal-hydraulic RELAP5 Mod3.3 code. • The suitability of pressure increase protection system was assessed. - Abstract: In fusion devices, plasma is contained in a vacuum vessel. The vacuum vessel cannot withstand a pressure above atmospheric. Any damage of in-vessel components could lead to water ingress and may lead to pressure increase and possible damage of vacuum vessel. In order to avoid such undesirable consequences, the pressure increase protection system is designed. In this article, the processes occurring in the vacuum vessel and pressure increase protection system of W7-X device during LOCA (small and guillotine pipe break) event are analyzed. The model of W7-X cooling system, vacuum vessel and pressure increase protection system was developed using RELAP5 code. Numerical analysis of partial and guillotine break of 40 mm diameter pipe of cooling system was performed. Calculation results showed that burst disc of the pressure increase protection system does not open when the cross section area of partial break in the cooling system is smaller than 1 mm{sup 2}. During the guillotine break of cooling system, the burst disc opens, but pressure increase protection system is capable to prevent overpressure of the vacuum vessel.

  18. The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling

    Science.gov (United States)

    Mischna, M.; Piqueux, S.

    2017-12-01

    On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may

  19. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.

    Science.gov (United States)

    Sum, K S; Pan, J

    2007-07-01

    Distributions of sound pressure and intensity on the surface of a flat impedance strip flush-mounted on a rigid baffle are studied for a grazing incident plane wave. The distributions are obtained by superimposing the unperturbed wave (the specularly reflected wave as if the strip is rigid plus the incident wave) with the radiated wave from the surface vibration of the strip excited by the unperturbed pressure. The radiated pressure interferes with the unperturbed pressure and distorts the propagating plane wave. When the plane wave propagates in the baffle-strip-baffle direction, it encounters discontinuities in acoustical impedance at the baffle-strip and strip-baffle interfaces. The radiated pressure is highest around the baffle-strip interface, but decreases toward the strip-baffle interface where the plane wave distortion reduces accordingly. As the unperturbed and radiated waves have different magnitudes and superimpose out of phase, the surface pressure and intensity increase across the strip in the plane wave propagation direction. Therefore, the surface absorption of the strip is nonzero and nonuniform. This paper provides an understanding of the surface pressure and intensity behaviors of a finite impedance strip for a grazing incident plane wave, and of how the distributed intensity determines the sound absorption coefficient of the strip.

  20. Precipitation response of monsoon low-pressure systems to an idealized uniform temperature increase

    Science.gov (United States)

    Sørland, Silje Lund; Sorteberg, Asgeir; Liu, Changhai; Rasmussen, Roy

    2016-06-01

    The monsoon low-pressure systems (LPSs) are one of the most rain-bearing synoptic-scale systems developing during the Indian monsoon. We have performed high-resolution, convection-permitting experiments of 10 LPS cases with the Weather Research and Forecasting regional model, to investigate the effect of an idealized uniform temperature increase on the LPS intensification and precipitation. Perturbed runs follow a surrogate climate change approach, in which a uniform temperature perturbation is specified, but the large-scale flow and relative humidity are unchanged. The differences between control and perturbed simulations are therefore mainly due to the imposed warming and moisture changes and their feedbacks to the synoptic-scale flow. Results show that the LPS precipitation increases by 13%/K, twice the imposed moisture increase, which is on the same order as the Clausius-Clapeyron relation. This large precipitation increase is attributed to the feedbacks in vertical velocity and atmospheric stability, which together account for the high sensitivity. In the perturbed simulations the LPSs have higher propagation speeds and are more intense. The storms intensification to the uniform temperature perturbation can be interpreted in terms of the conditional instability of second kind mechanism where the condensational heating increases along with low-level convergence and vertical velocity in response to temperature and moisture increases. As a result, the surface low deepens.

  1. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  2. Preventing pressure ulcers--Are pressure-redistributing support surfaces effective? A Cochrane systematic review and meta-analysis.

    Science.gov (United States)

    McInnes, Elizabeth; Jammali-Blasi, Asmara; Bell-Syer, Sally; Dumville, Jo; Cullum, Nicky

    2012-03-01

    To undertake a systematic review of the effectiveness of pressure redistributing support surfaces in the prevention of pressure ulcers. Systematic review and meta-analysis. Cochrane Wound Group Specialised Register, The Cochrane Central Register of Controlled Trials, Ovid MEDLINE, Ovid EMBASE and EBSCO CINAHL. The reference sections of included trials were searched for further trials. Randomised controlled trials and quasi-randomised trials, published or unpublished, which assessed the effects of support surfaces in preventing pressure ulcers (of any grade), in any patient group, in any setting compared to any other support surface, were sought. Two reviewers extracted and summarised details of eligible trials using a standardised form and assessed the methodological quality of each trial using the Cochrane risk of bias tool. Fifty-three eligible trials were identified with a total of 16,285 study participants. Overall the risk of bias in the included trials was high. Pooled analysis showed that: (i) foam alternatives to the standard hospital foam mattress reduce the incidence of pressure ulcers in people at risk (RR 0.40, 95% CI 0.21-0.74) and Australian standard medical sheepskins prevent pressure ulcers compared to standard care (RR 0.48, 95% CI 0.31-0.74). Pressure-redistributing overlays on the operating table compared to standard care reduce postoperative pressure ulcer incidence (RR 0.53, 95% CI 0.33-0.85). While there is good evidence that higher specification foam mattresses, sheepskins, and that some overlays in the operative setting are effective in preventing pressure ulcers, there is insufficient evidence to draw conclusions on the value of seat cushions, limb protectors and various constant low pressure devices. The relative merits of higher-tech constant low pressure and alternating pressure for prevention are unclear. More robust trials are required to address these research gaps. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Energy Technology Data Exchange (ETDEWEB)

    Abuzairi, Tomy [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424 (Indonesia); Okada, Mitsuru [Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Nagatsu, Masaaki, E-mail: nagatsu.masaaki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2016-12-30

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10{sup 17} m{sup −3}. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  4. Sleep deprivation increases blood pressure in healthy normotensive elderly and attenuates the blood pressure response to orthostatic challenge.

    Science.gov (United States)

    Robillard, Rébecca; Lanfranchi, Paola A; Prince, François; Filipini, Daniel; Carrier, Julie

    2011-03-01

    To determine how aging affects the impact of sleep deprivation on blood pressure at rest and under orthostatic challenge. Subjects underwent a night of sleep and 24.5 h of sleep deprivation in a crossover counterbalanced design. Sleep laboratory. Sixteen healthy normotensive men and women: 8 young adults (mean 24 years [SD 3.1], range 20-28 years) and 8 elderly adults (mean 64.1 years [SD 3.4], range 60-69 years). Sleep deprivation. Brachial cuff arterial blood pressure and heart rate were measured in semi-recumbent and upright positions. These measurements were compared across homeostatic sleep pressure conditions and age groups. Sleep deprivation induced a significant increase in systolic and diastolic blood pressure in elderly but not young adults. Moreover, sleep deprivation attenuated the systolic blood pressure orthostatic response in both age groups. Our results suggest that sleep deprivation alters the regulatory mechanisms of blood pressure and might increase the risk of hypertension in healthy normotensive elderly.

  5. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Zheng Peichao; Liu Keming; Wang Jinmei; Dai Yu; Yu Bin; Zhou Xianju; Hao Honggang; Luo Yuan

    2012-01-01

    Highlights: ► Equipment called water cathode atmospheric pressure glow discharge was used to improve the hydrophilicity of polyimide films. ► The data shows good homogeneity and the variation trends of contact angles are different for polar and non-polar testing liquids. ► The thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. ► Surface hydrophilicity after plasma treatment is improved partly due to the increase in the roughness. ► The hydrophilicity of polyimide films is still better than untreated ones after long-term storage. - Abstract: The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the

  6. Development of an Organosilicon-Based Superhydrophobic/Icephobic Surface Using an Atmospheric Pressure Plasma Jet =

    Science.gov (United States)

    Asadollahi, Siavash

    During the past few decades, plasma-based surface treatment methods have gained a lot of interest in various applications such as thin film deposition, surface etching, surface activation and/or cleaning, etc. Generally, in plasma-based surface treatment methods, high-energy plasma-generated species are utilized to modify the surface structure or the chemical composition of a substrate. Unique physical and chemical characteristics of the plasma along with the high controllability of the process makes plasma treatment approaches very attractive in several industries. Plasma-based treatment methods are currently being used or investigated for a number of practical applications, such as adhesion promotion in auto industry, wound management and cancer treatment in biomedical industry, and coating development in aerospace industry. In this study, a two-step procedure is proposed for the development of superhydrophobic/icephobic coatings based on atmospheric-pressure plasma treatment of aluminum substrates using air and nitrogen plasma. The effects of plasma parameters on various surface properties are studied in order to identify the optimum conditions for maximum coating efficiency against icing and wetting. In the first step, the interactions between air or nitrogen plasma and the aluminum surface are studied. It is shown that by reducing jet-to-substrate distance, air plasma treatment, unlike nitrogen plasma treatment, is capable of creating micro-porous micro-roughened structures on the surface, some of which bear a significant resemblance to the features observed in laser ablation of metals with short and ultra-short laser pulses. The formation of such structures in plasma treatment is attributed to a transportation of energy from the jet to the surface over a very short period of time, in the range of picoseconds to microseconds. This energy transfer is shown to occur through a streamer discharge from the rotating arc source in the jet body to a close proximity of

  7. Perception of surface pressure applied to the hand.

    Science.gov (United States)

    Johansson, L; Kjellberg, A; Kilbom, A; Hägg, G M

    1999-10-01

    The study aimed to determine the relationship between the physical magnitude and the subjective perception of applied pressure, and to determine discomfort and pain thresholds. Free modulus magnitude estimation of the subjective pressure level was made on three points: on the finger, the palm and the thenar area. The pressure was judged to be higher at the thenar point than at the finger and palm points. The slopes of the linear functions (log magnitude estimates as a function of log pressure) were 0.66, 0.78 and 0.76 for the finger, palm and thenar points respectively. The discomfort threshold was 38% of the pain pressure threshold at the finger point, 40% at the palm and 22% at the thenar point. The results are probably of importance in the performance of hand-intensive work, in particular in the design of hand tools.

  8. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  9. The increase in T sub c for MgB sub 2 superconductor under high pressure

    CERN Document Server

    Liu, Z X; You, J Y; Li, S C; Zhu, J L; Yu, R C; Li, F Y; Su, S K

    2002-01-01

    We report in situ high-pressure studies up to 1.0 GPa on MgB sub 2 superconductor which had been synthesized at high pressure. The as-prepared sample is of high quality as regards having a sharp superconducting transition (T sub c) at 39 K. The in situ high-pressure measurements were carried out using a Be-Cu piston-cylinder-type instrument with a mixed oil as the pressure-transmitting medium, which provides a quasi-hydrostatic pressure environment at low temperature. The superconducting transitions were measured using the electrical conductance method. It is found that T sub c increases with pressure in the initial pressure range, leading to a parabolic-like T sub c -P evolution.

  10. Acoustic propagation operators for pressure waves on an arbitrarily curved surface in a homogeneous medium

    Science.gov (United States)

    Sun, Yimin; Verschuur, Eric; van Borselen, Roald

    2018-03-01

    The Rayleigh integral solution of the acoustic Helmholtz equation in a homogeneous medium can only be applied when the integral surface is a planar surface, while in reality almost all surfaces where pressure waves are measured exhibit some curvature. In this paper we derive a theoretically rigorous way of building propagation operators for pressure waves on an arbitrarily curved surface. Our theory is still based upon the Rayleigh integral, but it resorts to matrix inversion to overcome the limitations faced by the Rayleigh integral. Three examples are used to demonstrate the correctness of our theory - propagation of pressure waves acquired on an arbitrarily curved surface to a planar surface, on an arbitrarily curved surface to another arbitrarily curved surface, and on a spherical cap to a planar surface, and results agree well with the analytical solutions. The generalization of our method for particle velocities and the calculation cost of our method are also discussed.

  11. Prevention and management of pressure ulcers: support surfaces.

    Science.gov (United States)

    Moore, Zena; Stephen Haynes, Jackie; Callaghan, Rosie

    Pressure ulcers are a common and debilitating problem in health care, impacting negatively on health-related quality of life and compounding challenges in achieving patient safety targets. Pressure ulcer prevention is a multidisciplinary team effort, involving a myriad of interventions, such as nutrition, skin care and repositioning. This article discusses the factors influencing pressure ulcer development, and then elaborates on the principles of prevention. This is followed by a focused discussion on the use of redistribution devices and the importance of the cover of such equipment in contributing to achieving good standards in prevention.

  12. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Derek Robert [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    High Pressure Scanning Tunneling Microscopy (HP-STM) and Ambient Pressure X-ray Photoelectron Spectroscopy were used to study the structural properties and catalytic behavior of noble metal surfaces at high pressure. HP-STM was used to study the structural rearrangement of the top most atomic surface layer of the metal surfaces in response to changes in gas pressure and reactive conditions. AP-XPS was applied to single crystal and nanoparticle systems to monitor changes in the chemical composition of the surface layer in response to changing gas conditions. STM studies on the Pt(100) crystal face showed the lifting of the Pt(100)-hex surface reconstruction in the presence of CO, H2, and Benzene. The gas adsorption and subsequent charge transfer relieves the surface strain caused by the low coordination number of the (100) surface atoms allowing the formation of a (1 x 1) surface structure commensurate with the bulk terminated crystal structure. The surface phase change causes a transformation of the surface layer from hexagonal packing geometry to a four-fold symmetric surface which is rich in atomic defects. Lifting the hex reconstruction at room temperature resulted in a surface structure decorated with 2-3 nm Pt adatom islands with a high density of step edge sites. Annealing the surface at a modest temperature (150 C) in the presence of a high pressure of CO or H2 increased the surface diffusion of the Pt atoms causing the adatom islands to aggregate reducing the surface concentration of low coordination defect sites. Ethylene hydrogenation was studied on the Pt(100) surface using HP-STM. At low pressure, the lifting of the hex reconstruction was observed in the STM images. Increasing the ethylene pressure to 1 Torr, was found to regenerate the hexagonally symmetric reconstructed phase. At room temperature ethylene undergoes a structural rearrangement to form ethylidyne. Ethylidyne preferentially binds at the three-fold hollow sites, which

  13. Cytocompatibility evaluation and surface characterization of TiNi deformed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Awang Shri, Dayangku Noorfazidah, E-mail: AWANGSHRI.Dayangku@nims.go.jp [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Tsuchiya, Koichi [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Yamamoto, Akiko [Biomaterials Unit, International Center for Material Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-01

    Effect of high-pressure torsion (HPT) deformation on biocompatibility and surface chemistry of TiNi was systematically investigated. Ti–50 mol% Ni was subjected to HPT straining for different numbers of turns, N = 0.25, 0.5, 1, 5 and 10 at a rotation speed of 1 rpm. X-ray photoelectron spectroscopy observations after 7 days of cell culture revealed the changes in the surface oxide composition, enrichment of Ti and detection of nitrogen derived from organic molecules in the culture medium. Plating efficiency of L929 cells was slightly increased by HPT deformation though no significant difference was observed. Albumin adsorption was higher in HPT-deformed samples, while vitronectin adsorption was peaked at N = 1. HPT deformation was also found to effectively suppress the Ni ion release from the TiNi samples into the cell culture medium even after the low degree of deformation at N = 0.25. - Highlights: • Nanostructured Ti–50 mol%Ni alloy was produced using high-pressure torsion. • HPT deformation improved L929 growth on TiNi samples. • Changes in surface chemistry were observed in HPT deformed samples. • Protein adsorption behavior was influenced by the surface chemistry. • Ni ion release was suppressed in HPT deformed samples.

  14. Pressure loss reduction in hydrogen pipelines by surface restructuring

    Energy Technology Data Exchange (ETDEWEB)

    Peet, Y.; Sagaut, P. [Insitut Jean Le Rond d' Alembert, UMR CNRS 7190, Universite Pierre et Marie Curie - Paris 6, 4 place Jussieu - case 162, F-75252 Paris Cedex 5 (France); Charron, Y. [IFP- Institut Francais du Petrole, Rueil Malmaison Cedex, 92852 (France)

    2009-11-15

    This paper concerns the reduction of pressure losses during pipeline hydrogen transportation, as the cost of hydrogen compression is a significant obstacle for efficient hydrogen pumping on a large-scale basis. The use of organized micro-structures on pipeline walls is proposed to obtain lower values of pressure losses with respect to smooth walls. Three-dimensional micro-structures of a sinusoidal shape are investigated as potentially more efficient counterparts to conventional two-dimensional structures (riblets) developed in aerospace industry. Aerodynamic performance of three-dimensional structures is investigated computationally in terms of both skin friction and pressure drag, two constituents of the total drag. Three-dimensional structures are shown to provide larger total drag reduction than two-dimensional structures for some range of geometrical parameters (14.5% versus 11%). Parametric dependence of both pressure and skin friction drag on structure geometry is analyzed, and an optimum configuration maximizing the total drag reduction is proposed. (author)

  15. Role of west Asian surface pressure in summer monsoon onset over central India

    Science.gov (United States)

    Chakraborty, Arindam; Agrawal, Shubhi

    2017-07-01

    Using rain-gauge measurements and reanalysis data sets for 1948-2015, we propose a mechanism that controls the interannual variation of summer monsoon onset over central India. In May, about a month before the onset, the low level jet over the Arabian Sea is about 40% stronger and about 2.5 degrees northward during years of early onset as compared to years of late onset. A stronger and northward shifted low level jet carries about 50% more moisture in early onset years, which increases low level moist static energy over central India in the pre-monsoon season. The increase in low level moist static energy decreases the stability of the atmosphere and makes it conducive for convection. The strength and position of the low level jet are determined by surface pressure gradient between western Asia and the west-equatorial Indian Ocean. Thus, an anomalous surface pressure low over western Asia in the pre-monsoon season increases this gradient and strengthens the jet. Moreover, a stronger low level jet increases the meridional shear of zonal wind and supports the formation of an onset vortex in a stronger baroclinic atmosphere. These developments are favourable for an early onset of the monsoon over the central Indian region. Our study postulates a new physical mechanism for the interannual variation of onset over central India, the core of the Indian monsoon region and relevant to Indian agriculture, and could be tested for real-time prediction.

  16. Increased Intracranial Pressure in the Setting ofEnterovirusand Other Viral Meningitides.

    Science.gov (United States)

    Beal, Jules C

    2017-01-01

    Increased intracranial pressure due to viral meningitis has not been widely discussed in the literature, although associations with Varicella and rarely Enterovirus have been described. Patients with increased intracranial pressure and cerebrospinal fluid analysis suggestive of a viral process are sometimes classified as having atypical idiopathic intracranial hypertension (IIH). However, a diagnosis of IIH requires normal cerebrospinal fluid, and therefore in these cases an infection with secondary intracranial hypertension may be a more likely diagnosis. Here seven patients are presented with elevated intracranial pressure and cerebrospinal fluid suggestive of viral or aseptic meningitis. Of these, 1 had Enterovirus and the remainder were diagnosed with nonspecific viral meningitis. These data suggest that viral meningitis may be associated with elevated intracranial pressure more often than is commonly recognized. Enterovirus has previously been associated with increased intracranial pressure only in rare case reports.

  17. Role of ischemic modified albumin in the early diagnosis of increased intracranial pressure and brain death.

    Science.gov (United States)

    Kara, I; Pampal, H K; Yildirim, F; Dilekoz, E; Emmez, G; U, F P; Kocabiyik, M; Demirel, C B

    Increased intracranial pressure following trauma and subsequent possible development of brain death are important factors for morbidity and mortality due to ischemic changes. We aimed to establish the role of ischemic modified albumin (IMA) in the early diagnosis of the process, starting with increased intracranial pressure and ending with brain death. Eighteen Wistar-Albino rats were divided into three groups; control (CG, n = 6), increased intracranial pressure (ICPG, n = 6), and brain death (BDG, n = 6). Intracranial pressure elevation and brain death were constituted with the inflation of a balloon of a Fogarty catheter in the epidural space. In all three groups, blood samples were drawn before the procedure, and at minutes 150 and 240 for IMA and malondialdehyde (MDA) analysis. Serum IMA levels at 150 and 240 minutes were higher in ICPG than in CG (p intracranial pressure elevation and ending at brain death (Tab. 3, Fig. 5, Ref. 31).

  18. Increased Intracranial Pressure in the Setting of Enterovirus and Other Viral Meningitides

    Directory of Open Access Journals (Sweden)

    Jules C. Beal

    2017-01-01

    Full Text Available Increased intracranial pressure due to viral meningitis has not been widely discussed in the literature, although associations with Varicella and rarely Enterovirus have been described. Patients with increased intracranial pressure and cerebrospinal fluid analysis suggestive of a viral process are sometimes classified as having atypical idiopathic intracranial hypertension (IIH. However, a diagnosis of IIH requires normal cerebrospinal fluid, and therefore in these cases an infection with secondary intracranial hypertension may be a more likely diagnosis. Here seven patients are presented with elevated intracranial pressure and cerebrospinal fluid suggestive of viral or aseptic meningitis. Of these, 1 had Enterovirus and the remainder were diagnosed with nonspecific viral meningitis. These data suggest that viral meningitis may be associated with elevated intracranial pressure more often than is commonly recognized. Enterovirus has previously been associated with increased intracranial pressure only in rare case reports.

  19. Support surfaces for pressure ulcer prevention: A network meta-analysis.

    Science.gov (United States)

    Shi, Chunhu; Dumville, Jo C; Cullum, Nicky

    2018-01-01

    Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or

  20. Surface-initiated phase transition in solid hydrogen under the high-pressure compression

    Science.gov (United States)

    Lei, Haile; Lin, Wei; Wang, Kai; Li, Xibo

    2018-03-01

    The large-scale molecular dynamics simulations have been performed to understand the microscopic mechanism governing the phase transition of solid hydrogen under the high-pressure compression. These results demonstrate that the face-centered-cubic-to-hexagonal close-packed phase transition is initiated first at the surfaces at a much lower pressure than in the volume and then extends gradually from the surface to volume in the solid hydrogen. The infrared spectra from the surface are revealed to exhibit a different pressure-dependent feature from those of the volume during the high-pressure compression. It is thus deduced that the weakening intramolecular H-H bonds are always accompanied by hardening surface phonons through strengthening the intermolecular H2-H2 coupling at the surfaces with respect to the counterparts in the volume at high pressures. This is just opposite to the conventional atomic crystals, in which the surface phonons are softening. The high-pressure compression has further been predicted to force the atoms or molecules to spray out of surface to degrade the pressure. These results provide a glimpse of structural properties of solid hydrogen at the early stage during the high-pressure compression.

  1. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    Science.gov (United States)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  2. Plasma of Argon Increases Cell Attachment and Bacterial Decontamination on Different Implant Surfaces.

    Science.gov (United States)

    Canullo, Luigi; Genova, Tullio; Wang, Hom-Lay; Carossa, Stefano; Mussano, Federico

    This in vitro study tested the effects of argon atmospheric pressure dielectric barrier discharge (APDBD) on different implant surfaces with regard to physical changes, bacterial decontamination, and osteoblast adhesion. Seven hundred twenty disks with three different surface topographies-machined (MAC), titanium plasma-sprayed (TPS), and zirconia-blasted and acid-etched (ZRT)-were tested in this experiment. Bacterial adhesion tests were performed repeatedly on a simplified biofilm of Streptococcus mitis. Bacteria were incubated in the presence of the samples, which were subsequently either left untreated as controls or treated with APDBD for 30, 60, and 120 seconds. Samples were then metalized, prior to the recurring acquisition of images using a scanning electronic microscope (SEM). Protein adsorption, surface wettability, and early biologic response were determined for both treated (120 seconds) and untreated implant surfaces. For depicting the eukaryotic cell behavior, preosteoblastic murine cells were used. Cells were conveniently stained, and nuclei were counted. Cell viability was assessed by a chemiluminescent assay at 1, 2, and 3 days. On all treated samples, values of the contact angle measurements were lower than 10 degrees. The untreated samples showed values of contact angle of 80, 100, and 110 degrees, respectively, for MAC, TPS, and ZRT. The protein adsorption on TPS and ZRT was significantly increased after the plasma of argon treatment. However, no significant effect was noted on the MAC disks. The number and the cell spreading area of adherent osteoblasts significantly increased in all treated surfaces. Nonetheless, argon treatment did not influence the osteoblast proliferation and viability at different time points. Bacteria adhesion was significantly reduced, even after 60 seconds of argon treatment. Preliminary data showed that argon atmospheric pressure dielectric barrier discharge disinfected the implant surface, with potential to promote

  3. Unsteady Surface Pressure Measurements on a Pitching Airfoil

    Science.gov (United States)

    1985-03-12

    through 8 Dynamics 7512B amplifiers. The pitching motions of the airfoil were generated by 6°jN\\! 920O/_ a PDP 11/03 computer controlling a Control...acquisition system. The pressure data were used to calculate pressure 2 coefficients which were in turn integrated to compute lift coefficients. Both...Airfoils," AIAA J., Vol. 13, No. 1, 17. Gormont, R.E., "A Mathenatical Model pp 71-79, Jan 1975. of Unsteady Aerodynamics and Radial 4. McAlister, K.W

  4. Pressure-redistribution surfaces for prevention of surgery-related pressure ulcers: a meta-analysis .

    Science.gov (United States)

    Huang, Hai-Yan; Chen, Hong-Lin; Xu, Xu-Juan

    2013-04-01

    Pressure-redistribution surfaces are generally recommended to prevent pressure ulcers (PUs) in high-risk patients, but their use in surgery-related PU prevention remains controversial. A meta-analysis was conducted to assess the relative preventive impact of pressure-redistribution surfaces versus standard hospital mattresses (usually a hospital-issue, foam-based mattress) on the incidence of surgery-related PUs. Systematic literature searches were performed using the terms pressure ulcer, operation, surgery, mattress, foam, polymer, pad, overlay, surface, and interface. Country, race, language, and publication year of articles was not restricted; randomized or quasi-randomized controlled trials were eligible for analysis. Odds ratio (OR) with 95% confidence intervals (CIs) for surgery-related PU incidence in patients using support surfaces versus standard mattress were calculated by random-effects model. Of the 316 studies identified, 10 involving a total of 1,895 patients were eligible for inclusion in the meta-analysis. Seven studies were randomized, controlled and three were quasi-randomized controlled trials. Patients who were provided a support surface had a significantly decreased incidence of surgery-related PUs (OR 0.31 [95% CI 0.17-0.59]) compared to patients using a standard mattress. Subgroup analysis showed pressure-redistribution surfaces used intra-operatively did not decrease the incidence of surgery-related PUs (OR 0.59, [95% CI 0.34-1.01]), but PU incidence decreased with postoperative (OR 0.07 [95% CI 0.01-0.49]) as well as with intra-operative and postoperative use (OR 0.20 [95% CI 0.06-0.73]). Funnel plot diagrams suggest a minimal risk of bias. Sensitivity analysis did not materially change the result of the main metaanalysis. Postoperative use of pressure-redistribution surfaces can effectively decrease the incidence of surgery-related PUs, but evidence to substantiate intra-operative use is insufficient. Patients at high risk for surgery

  5. Surface Pressure Measurements of Atmospheric Tides Using Smartphones

    Science.gov (United States)

    Price, Colin; Maor, Ron

    2017-04-01

    Similar to the oceans, the atmosphere also has tides that are measured in variations of atmospheric pressure. However, unlike the gravitational tides in the oceans, the atmospheric tides are caused primarily in the troposphere and stratosphere when the atmosphere is periodically heated by the sun, due to tropospheric absorption by water vapor and stratospheric absorption by ozone. Due to the forcing being always on the day side of the globe, the tides migrate around the globe following the sun (migrating tides) with a dominant periodicity of 12 hours (and less so at 24 hours). In recent years smartphones have been equipped with sensitive, cheap and reliable pressure sensors that can easily detect these atmospheric tides. By 2020 it is expected that there will be more than 6 billion smartphones globally, each measuring continuously atmospheric pressure at 1Hz temporal resolution. In this presentation we will present some control experiments we have performed with smartphones to monitor atmospheric tides, while also using random pressure data from more than 50,000 daily users via the WeatherSignal application. We conclude that smartphones are a useful tool for studying atmospheric tides on local and global scales.

  6. Modelling surface pressure fluctuation on medium-rise buildings

    NARCIS (Netherlands)

    Snæbjörnsson, J.T.; Geurts, C.P.W.

    2006-01-01

    This paper describes the results of two experiments into the fluctuating characteristics of windinduced pressures on buildings in a built-up environment. The experiments have been carried out independently in Iceland and The Netherlands and can be considered to represent two separate cases of

  7. Increased postdialysis systolic blood pressure is associated with extracellular overhydration in hemodialysis outpatients.

    Science.gov (United States)

    Nongnuch, Arkom; Campbell, Neil; Stern, Edward; El-Kateb, Sally; Fuentes, Laura; Davenport, Andrew

    2015-02-01

    Recently, intradialytic hypertension was reported to be associated with increased mortality for hemodialysis patients. To determine whether volume status plays a role in dialysis-associated hypertension, we prospectively audited 531 patients that had volume assessments measured by multiple-frequency bioelectrical impedance during their midweek dialysis session. Mean pre- and postdialysis weights were 73.2 vs 71.7 kg, and systolic blood pressures (SBPs) 140.5 vs. 130.3 mm Hg, respectively. Patients were divided into groups based on a fall in SBP of 20 mm Hg or more (32%), an increased SBP of 10 mm Hg or more (18%), and a stable group (50%). There were no differences in patient demographics, dialysis prescriptions, predialysis weight, total body (TBW), and extracellular (ECW) and intracellular water (ICW). However, the change in weight was significantly less in the increased blood pressure group (1.01 kg vs. stable 1.65, and 1.7 hypotensive). The ratio of ECW to TBW was significantly higher in the increased blood pressure group, particularly post dialysis (39.1 vs. stable 38.7% and fall in blood pressure group 38.7%). ECW overhydration was significantly greater in the increased blood pressure group post dialysis (0.7 (0.17 to 1.1) vs. stable 0.39 (-0.2 to 0.95) and fall in blood pressure group 0.38 (-0.19 to 0.86) liter). We found that patients who had increased blood pressure post dialysis had greater hydration status, particularly ECW. Thus, patients who increase their blood pressure post dialysis should have review of target weight, consideration of lowering the post-dialysis weight, and may benefit from increasing dialysis session time or frequency.

  8. Comparison of predicted and observed pore pressure increases on Rio Blanco

    International Nuclear Information System (INIS)

    Banister, J.R.; Ellett, D.M.; Pyke, R.; Winters, L.

    1976-01-01

    The RIO BLANCO event presented the opportunity to monitor, under controlled conditions in the field, the increase in pore pressures resulting from ground motion similar to an earthquake. In situ measurements of pore pressure changes were made by Sandia Laboratories and Dames and Moore. This report contains the results of laboratory tests believed to be indicative in assessing the magnitude of pore pressure increases and probability of soil liquefaction. These include triaxial load tests, gradation of grain size, and relative density. No liquefaction was observed in the field, and the increase of in situ pore pressures were much less than expected from laboratory measurements. Allied subjects presented in this report are pore pressure propagation and dissipation profiles, the previously unpublished pore pressure measurements made by Dames and Moore, and the boring logs for the various sites where measurements were taken. It is concluded that methods used to predict pore pressure increases and liquefaction potential are overly conservative, at least for these alluvial and colluvial soils found in Colorado

  9. Lifestyle modification increases serum testosterone level and decrease central blood pressure in overweight and obese men.

    Science.gov (United States)

    Kumagai, Hiroshi; Zempo-Miyaki, Asako; Yoshikawa, Toru; Tsujimoto, Takehiko; Tanaka, Kiyoji; Maeda, Seiji

    2015-01-01

    Obesity has reached global epidemic proportions and is associated with multiple comorbidities, including cardiovascular disease. A novel predictor of cardiovascular disease is elevated central systolic blood pressure. In fact, lifestyle modifications have been shown to decrease the central systolic blood pressure in overweight and obese men. The mechanism underlying these changes has yet to be fully elucidated. Interestingly, testosterone has been found to have cardioprotective effects. Moreover, serum testosterone levels are lower in obese men than in normal weight men. However, it is still unclear whether testosterone participates in the decrease of central blood pressure in overweight and obese men following lifestyle modifications. So, the purpose of the present study was to investigate the effect of testosterone on central systolic blood pressure in overweight and obese men before and after the 12-week lifestyle modification program. Forty-four overweight and obese men completed a 12-week lifestyle modification program (aerobic exercise training and dietary modifications). For all participants, central systolic blood pressure and serum testosterone levels were measured before and after the program. After the program, central systolic blood pressure was significantly decreased while serum total testosterone levels were significantly increased in overweight and obese men. Moreover, we also found a significant negative relationship between the change in serum testosterone levels and that in central systolic blood pressure. The present study suggests that increased serum testosterone levels likely contribute to a decrease in central blood pressure in overweight and obese men.

  10. Microstructural and hardness gradients in Cu processed by high pressure surface rolling

    DEFF Research Database (Denmark)

    He, Q. Y.; Zhu, X.-M.; Mei, Q. S.

    2017-01-01

    The surface of an annealed Cu plate was processed by a high pressure surface rolling (HPSR) process. It is found that the deformed surface layer in the Cu plate after HPSR can be as thick as 2 mm and is characterized by a gradient microstructure, with grain sizes varying from the nanoscale...

  11. Increasing shaft depth with rock hoisting to the surface. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1982-06-01

    Schemes of shaft construction with increasing shaft depth depend on: shaft depth, shaft diameter, types of hoisting systems, schemes of shaft reinforcement. Investigations carried out in underground coal mines in the USSR show that waste rock haulage to the surface by an independent hoisting system is most economical. Installation of this system depends on the existing hoisting scheme. When one of the operating cages or skips can be removed without a negative influence on mine operation the system of rock waste hoisting is used. The hoisting bucket used for rock removal from the shaft bottom moves in the shaft section from which one of the cages or skips has been removed. Examples of using this scheme in Donbass, Kuzbass and other coal basins are given. Economic aspects of waste material hoisting to the surface are analyzed. The system is economical when the remaining hoisting system can accept additional loads after removal of a cage or skip from the shaft. Investigations show that use of a bucket with a capacity from 2.5 to 3.0 m/sup 3/ for waste rock removal from the shaft being modernized and deepened is most economical.

  12. Hydrophilic film polymerized on the inner surface of PMMA tube by an atmospheric pressure plasma jet

    Science.gov (United States)

    Yin, Mengmeng; Huang, Jun; Yu, Jinsong; Chen, Guangliang; Qu, Shanqing

    2017-07-01

    Polymethyl methacrylate (PMMA) tube is widely used in biomedical and mechanical engineering fields. However, it is hampered for some special applications as the inner surface of PMMA tube exhibts a hydrophobic characteristic. The aim of this work is to explore the hydrophilic modification of the inner surface of the PMMA tubes using an atmospheric pressure plasma jet (APPJ) system that incorporates the acylic acid monomer (AA). Polar groups were grafted onto the inner surface of PMMA tube via the reactive radicals (•OH, •H, •O) generated in the Ar/O2/AA plasma, which were observed by the optical emission spectroscopy (OES). The deposition of the PAA thin layer on the PMMA surface was verified through the ATR-FTIR spectra, which clearly showed the strengthened stretching vibration of the carbonyl group (C=O) at 1700 cm-1. The XPS data show that the carbon ratios of C-OH/R and COOH/R groups increased from 9.50% and 0.07% to 13.49% and 17.07% respectively when a discharge power of 50 W was used in the APPJ system. As a result, the static water contat angle (WCA) of the modified inner surface of PMMA tube decreased from 100° to 48°. Furthermore, the biocompatibility of the APP modified PMMA tubes was illustrated by the study of the adhesion of the cultured MC3T3-E1 osteocyte cells, which exhibted a significantly enhanced adhesion density.

  13. Io meteorology - How atmospheric pressure is controlled locally by volcanos and surface frosts

    Science.gov (United States)

    Ingersoll, Andrew P.

    1989-01-01

    The present modification of the Ingersoll et al. (1985) hydrodynamic model of the SO2 gas sublimation-driven flow from the day to the night side of Io includes the effects of nonuniform surface properties noted in observational studies. Calculations are conducted for atmospheric pressures, horizontal winds, sublimation rates, and condensation rates for such surface conditions as patchy and continuous frost cover, volcanic venting, surface temperature discontinuities, subsurface cold trapping, and the propagation of insolation into the frost. While pressure is found to follow local vapor pressure away from the plumes, it becomes higher inside them.

  14. Silencing of Atp2b1 increases blood pressure through vasoconstriction.

    Science.gov (United States)

    Shin, Young-Bin; Lim, Ji Eun; Ji, Su-Min; Lee, Hyeon-Ju; Park, So-Yon; Hong, Kyung-Won; Lim, Mihwa; McCarthy, Mark I; Lee, Young-Ho; Oh, Bermseok

    2013-08-01

    Recent genome-wide association studies (GWASs) have identified 30 genetic loci that regulate blood pressure, increasing our understanding of the cause of hypertension. However, it has been difficult to define the causative genes at these loci due to a lack of functional analyses. In this study, we aimed to validate the candidate gene ATP2B1 in 12q21, variants near which have the strongest association with blood pressure in Asians and Europeans. ATP2B1 functions as a calcium pump to fine-tune calcium concentrations - necessary for repolarization following muscular contractions. We silenced Atp2b1 using an siRNA complex, injected into mouse tail veins. In treated mice, blood pressure rose and the mesenteric arteries increased in wall : lumen ratio. Moreover, the arteries showed enhanced myogenic responses to pressure, and contractile responses to phenylephrine increased compared with the control, suggesting that blood pressure is regulated by ATP2B1 through the contraction and dilation of the vessel, likely by controlling calcium concentrations in the resting state. These results support that ATP2B1 is the causative gene in the blood pressure-associated 12q21 locus and demonstrate that ATP2B1 expression in the vessel influences blood pressure.

  15. Increased extracellular pressure stimulates tumor proliferation by a mechanosensitive calcium channel and PKC-β.

    Science.gov (United States)

    Basson, Marc D; Zeng, Bixi; Downey, Christina; Sirivelu, Madhu P; Tepe, Jetze J

    2015-02-01

    Large tumors exhibit high interstitial pressure heightened by growth against the constraining stroma. Such pressures could stimulate tumor proliferation via a mechanosensitive ion channel. We studied the effects of 0-80 mmHg increased extracellular pressure for 24 h on proliferation of SW620, Caco-2, and CT-26 colon; MCF-7 breast; and MLL and PC3 prostate cancer cells, and delineated its mechanism in SW620 cells with specific inhibitors and siRNA. Finally, we compared NF-kB, phospho-IkB and cyclin D1 immunoreactivity in the high pressure centers and low pressure peripheries of human tumors. Pressure-stimulated proliferation in all cells. Pressure-driven SW620 proliferation required calcium influx via the T-type Ca(2+) channel Cav3.3, which stimulated PKC-β to invoke the IKK-IkB-NF-kB pathway to increase proliferation and S-phase fraction. The mitotic index and immunoreactivity of NF-kB, phospho-IkB, and cyclin D1 in the center of 28 large human colon, lung, and head and neck tumors exceeded that in tumor peripheries. Extracellular pressure increases [Ca(2+)]i via Cav3.3, driving a PKC-β- IKK- IkB-NF-kB pathway that stimulates cancer cell proliferation. Rapid proliferation in large stiff tumors may increase intratumoral pressure, activating this pathway to stimulate further proliferation in a feedback cycle that potentiates tumor growth. Targeting this pathway may inhibit proliferation in large unresectable tumors. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Vascular stiffness and increased pulse pressure in the aging cardiovascular system.

    Science.gov (United States)

    Steppan, Jochen; Barodka, Viachaslau; Berkowitz, Dan E; Nyhan, Daniel

    2011-01-01

    Aging leads to a multitude of changes in the cardiovascular system, including systolic hypertension, increased central vascular stiffness, and increased pulse pressure. In this paper we will review the effects of age-associated increased vascular stiffness on systolic blood pressure, pulse pressure, augmentation index, and cardiac workload. Additionally we will describe pulse wave velocity as a method to measure vascular stiffness and review the impact of increased vascular stiffness as an index of vascular health and as a predictor of adverse cardiovascular outcomes. Furthermore, we will discuss the underlying mechanisms and how these may be modified in order to change the outcomes. A thorough understanding of these concepts is of paramount importance and has therapeutic implications for the increasingly elderly population.

  17. Influence of increased static pressure in MHD-channel of hypervelocity wind tunnel on its characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Alfyorov, V.I.; Rudakova, A.P.; Rukavets, V.P.; Shcherbakov, G.I. [Central Aerohydrodynamic Institute (TsAGI), Zhukovsky (Russian Federation)

    1995-12-31

    One of the main weaknesses of available MHD gas acceleration wind tunnels which restricts their application for simulating vehicle re-entry flights and reproducing scramjet combustion chamber conditions is a relatively low static pressure in the channel (P{approximately}0.1 to 0.2 Atm). The possibility of increasing this pressure and the influence of the increased pressure on the MHD-accelerator characteristics are the subject of the present paper. It is shown that the main challenge is the necessity of increasing the total Lorentz force proportionally to the channel gas density at electrode current density not resulting in heat and electrical breakdown and the development of the side walls and interelectrode insulators designed for higher heat fluxes, q {approximately} 5 to 10 kw/cm{sup 2}. Some possible wall design versions are suggested. The influence of increased pressure is investigated using the Faraday - type MED channel at static pressures in the MHD channel from 0.2 to 1.0 Atm and total accelerating current I = 300 to 1,100 Amps when B=2.5T. Forty five electrodes are used in the MHD channel at maximum current density of 50 A/cm{sup 2}. The channel flow is calculated by applying the model of a gas in thermodynamic equilibrium. The influence of the increased pressure on electrodynamic (accelerator electrode voltages and currents, Hall voltage and current) and gasdynamic (distributions of static pressure, temperature, velocity, Mach numbers, etc., along the channel length) characteristics is evaluated. Some recommendations on the development of MHD channels for hypersonic wind tunnels designed for high pressure are suggested.

  18. Self-organized pattern on the surface of a metal anode in low-pressure DC discharge

    Science.gov (United States)

    Yaqi, YANG; Weiguo, LI

    2018-03-01

    Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a low-pressure test platform for 100-200 mm rod-plane gaps with a needle tip, conical tip and hemispherical tip within 1-10 kPa. The factors influencing the pattern profile are the pressure value, gap length and shape of the electrode, and a variety of pattern structures are observed by changing these factors. With increasing pressure, first the pattern diameter increases and then decreases. With the needle tip, layer structure, single-ring structure and double-ring structure are displayed successively with increasing pressure. With the conical tip, the ring-like structure gradually forms separate spots with increasing pressure. With the hemispherical tip, there are anode spots inside the ring structure. With the increase of gap length, the diameter of the self-organized pattern increases and the profile of the pattern changes. The development process of the pattern contains three key stages: pattern enlargement, pattern stabilization and pattern shrink.

  19. Genetic predisposition to higher blood pressure increases risk of incident hypertension and cardiovascular diseases in Chinese.

    Science.gov (United States)

    Lu, Xiangfeng; Huang, Jianfeng; Wang, Laiyuan; Chen, Shufeng; Yang, Xueli; Li, Jianxin; Cao, Jie; Chen, Jichun; Li, Ying; Zhao, Liancheng; Li, Hongfan; Liu, Fangcao; Huang, Chen; Shen, Chong; Shen, Jinjin; Yu, Ling; Xu, Lihua; Mu, Jianjun; Wu, Xianping; Ji, Xu; Guo, Dongshuang; Zhou, Zhengyuan; Yang, Zili; Wang, Renping; Yang, Jun; Yan, Weili; Gu, Dongfeng

    2015-10-01

    Although multiple genetic markers associated with blood pressure have been identified by genome-wide association studies, their aggregate effect on risk of incident hypertension and cardiovascular disease is uncertain, particularly among East Asian who may have different genetic and environmental exposures from Europeans. We aimed to examine the association between genetic predisposition to higher blood pressure and risk of incident hypertension and cardiovascular disease in 26 262 individuals in 2 Chinese population-based prospective cohorts. A genetic risk score was calculated based on 22 established variants for blood pressure in East Asian. We found the genetic risk score was significantly and independently associated with linear increases in blood pressure and risk of incident hypertension and cardiovascular disease (P range from 4.57×10(-3) to 3.10×10(-6)). In analyses adjusted for traditional risk factors including blood pressure, individuals carrying most blood pressure-related risk alleles (top quintile of genetic score distribution) had 40% (95% confidence interval, 18-66) and 26% (6-45) increased risk for incident hypertension and cardiovascular disease, respectively, when compared with individuals in the bottom quintile. The genetic risk score also significantly improved discrimination for incident hypertension and cardiovascular disease and led to modest improvements in risk reclassification for cardiovascular disease (all the Pgenetic predisposition to higher blood pressure is an independent risk factor for blood pressure increase and incident hypertension and cardiovascular disease and provides modest incremental information to cardiovascular disease risk prediction. The potential clinical use of this panel of blood pressure-associated polymorphisms remains to be determined. © 2015 American Heart Association, Inc.

  20. Hypercapnic acidosis attenuates pressure-dependent increase in whole-lung filtration coefficient (Kf).

    Science.gov (United States)

    Bommakanti, Nikhil; Isbatan, Ayman; Bavishi, Avni; Dharmavaram, Gourisree; Chignalia, Andreia Z; Dull, Randal O

    2017-01-01

    Hypercapnic acidosis (HCA) has beneficial effects in experimental models of lung injury by attenuating inflammation and decreasing pulmonary edema. However, HCA increases pulmonary vascular pressure that will increase fluid filtration and worsen edema development. To reconcile these disparate effects, we tested the hypothesis that HCA inhibits endothelial mechanotransduction and protects against pressure-dependent increases in the whole lung filtration coefficient (K f ). Isolated perfused rat lung preparation was used to measure whole lung filtration coefficient (K f ) at two levels of left atrial pressure (P LA  = 7.5 versus 15 cm H 2 O) and at low tidal volume (LV t ) versus standard tidal volume (STV t ) ventilation. The ratio of K f2 /K f1 was used as the index of whole lung permeability. Double occlusion pressure, pulmonary artery pressure, pulmonary capillary pressures, and zonal characteristics (ZC) were measured to assess effects of HCA on hemodynamics and their relationship to K f2 /K f1 . An increase in P LA2 from 7.5 to 15 cm H 2 O resulted in a 4.9-fold increase in K f2 /K f1 during LV t and a 4.8-fold increase during STV t . During LV t , HCA reduced K f2 /K f1 by 2.7-fold and reduced STV t K f2 /K f1 by 5.2-fold. Analysis of pulmonary hemodynamics revealed no significant differences in filtration forces in response to HCA. HCA interferes with lung vascular mechanotransduction and prevents pressure-dependent increases in whole lung filtration coefficient. These results contribute to a further understanding of the lung protective effects of HCA.

  1. Kidney Mass Reduction Leads to l-Arginine Metabolism-Dependent Blood Pressure Increase in Mice.

    Science.gov (United States)

    Pillai, Samyuktha Muralidharan; Seebeck, Petra; Fingerhut, Ralph; Huang, Ji; Ming, Xiu-Fen; Yang, Zhihong; Verrey, François

    2018-02-25

    Uninephrectomy (UNX) is performed for various reasons, including kidney cancer or donation. Kidneys being the main site of l-arginine production in the body, we tested whether UNX mediated kidney mass reduction impacts l-arginine metabolism and thereby nitric oxide production and blood pressure regulation in mice. In a first series of experiments, we observed a significant increase in arterial blood pressure 8 days post-UNX in female and not in male mice. Further experimental series were performed in female mice, and the blood pressure increase was confirmed by telemetry. l-citrulline, that is used in the kidney to produce l-arginine, was elevated post-UNX as was also asymmetric dimethylarginine, an inhibitor of nitric oxide synthase that competes with l-arginine and is a marker for renal failure. Interestingly, the UNX-induced blood pressure increase was prevented by supplementation of the diet with 5% of the l-arginine precursor, l-citrulline. Because l-arginine is metabolized in the kidney and other peripheral tissues by arginase-2, we tested whether the lack of this metabolic pathway also compensates for decreased l-arginine production in the kidney and/or for local nitric oxide synthase inhibition and consecutive blood pressure increase. Indeed, upon uninephrectomy, arginase-2 knockout mice (Arg-2 -/- ) neither displayed an increase in asymmetric dimethylarginine and l-citrulline plasma levels nor a significant increase in blood pressure. UNX leads to a small increase in blood pressure that is prevented by l-citrulline supplementation or arginase deficiency, 2 measures that appear to compensate for the impact of kidney mass reduction on l-arginine metabolism. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  2. Sound pressure around dipole source above porous surface.

    Science.gov (United States)

    Prezelj, Jurij; Steblaj, Peter; Cudina, Mirko

    2014-06-01

    A technique for in situ measurements of acoustic properties of a fibrous porous material is proposed in this paper. Proposed technique exploits a directivity pattern of a dipole source in its very near field. Theoretical analysis for the proposed technique is based on the Rayleigh integral with a complex reflection included. Results are compared with results of FEM analysis and show that flow resistivity of a porous material placed in the very near field of the dipole source has significant influence on the sound pressure at its ring. Results provide an excellent starting point for the design of the sensor for sound absorption.

  3. Integrated equipment for increasing and maintaining coolant pressure in primary circuit of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sykora, D.

    1986-01-01

    An open heat pump circuit is claimed connected to the primary circuit. The pump circuit consists of a steam pressurizer with a built-in steam distributor, a compressor, an expander, a reducing valve, an auxiliary pump, and of water and steam pipes. The operation is described and a block diagram is shown of integrated equipment for increasing and maintaining pressure in the nuclear power plant primary circuit. The appropriate entropy diagram is also shown. The advantage of the open pump circuit consists in reducing the electric power input and electric power consumption for the steam pressurizers, removing entropy loss in heat transfer with high temperature gradient, in the possibility of inserting, between the expander and the auxiliary pump, a primary circuit coolant treatment station, in simplified design and manufacture of the high-pressure steam pressurizer vessel, reducing the weight of the steam pressurizer by changing its shape from cylindrical to spherical, increasing the rate of pressure growth in the primary circuit. (E.S.)

  4. Pressure RElieving Support SUrfaces: a Randomised Evaluation 2 (PRESSURE 2): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Brown, Sarah; Smith, Isabelle L; Brown, Julia M; Hulme, Claire; McGinnis, Elizabeth; Stubbs, Nikki; Nelson, E Andrea; Muir, Delia; Rutherford, Claudia; Walker, Kay; Henderson, Valerie; Wilson, Lyn; Gilberts, Rachael; Collier, Howard; Fernandez, Catherine; Hartley, Suzanne; Bhogal, Moninder; Coleman, Susanne; Nixon, Jane E

    2016-12-20

    Pressure ulcers represent a major burden to patients, carers and the healthcare system, affecting approximately 1 in 17 hospital and 1 in 20 community patients. They impact greatly on an individual's functional status and health-related quality of life. The mainstay of pressure ulcer prevention practice is the provision of pressure redistribution support surfaces and patient repositioning. The aim of the PRESSURE 2 study is to compare the two main mattress types utilised within the NHS: high-specification foam and alternating pressure mattresses, in the prevention of pressure ulcers. PRESSURE 2 is a multicentre, open-label, randomised, double triangular, group sequential, parallel group trial. A maximum of 2954 'high-risk' patients with evidence of acute illness will be randomised on a 1:1 basis to receive either a high-specification foam mattress or alternating-pressure mattress in conjunction with an electric profiling bed frame. The primary objective of the trial is to compare mattresses in terms of the time to developing a new Category 2 or above pressure ulcer by 30 days post end of treatment phase. Secondary endpoints include time to developing new Category 1 and 3 or above pressure ulcers, time to healing of pre-existing Category 2 pressure ulcers, health-related quality of life, cost-effectiveness, incidence of mattress change and safety. Validation objectives are to determine the responsiveness of the Pressure Ulcer Quality of Life-Prevention instrument and the feasibility of having a blinded endpoint assessment using photography. The trial will have a maximum of three planned analyses with unequally spaced reviews at event-driven coherent cut-points. The futility boundaries are constructed as non-binding to allow a decision for stopping early to be overruled by the Data Monitoring and Ethics Committee. The double triangular, group sequential design of the PRESSURE 2 trial will provide an efficient design through the possibility of early stopping for

  5. Novel Approach for Ensuring Increased Validity in Home Blood Pressure Monitoring

    DEFF Research Database (Denmark)

    Wagner, Stefan Rahr; Toftegaard, Thomas Skjødeberg; Bertelsen, Olav Wedege

    This paper proposes a novel technique to increase the validity of home blood pressure monitoring by using various sensor technologies as part of an intelligent environment platform in the home of the user. A range of recommendations exists on how to obtain a valid blood pressure but with the devi......This paper proposes a novel technique to increase the validity of home blood pressure monitoring by using various sensor technologies as part of an intelligent environment platform in the home of the user. A range of recommendations exists on how to obtain a valid blood pressure...... but with the devices currently available it cannot be verified whether a user is actually following the recommendations or not. An initial prototype is presented implementing part of the proposed solution including a limited pilot study as a status on the work in progress. Results indicate that the solution...

  6. Increased left atrial pressure in non-heart failure patients with subclinical hypothyroidism and atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Akinori Sairaku

    2016-05-01

    Full Text Available Background The impact of subclinical hypothyroidism on the cardiovascular risk is still debated. We aimed to measure the relationship between subclinical hypothyroidism and the left atrial (LA pressure. Methods The LA pressures and thyroid function were measured in consecutive patients undergoing atrial fibrillation (AF ablation, who did not have any known heart failure, structural heart disease, or overt thyroid disease. Results Subclinical hypothyroidism (4.5≤ thyroid-stimulating hormone 18 mmHg (odds ratio 3.94, 95% CI 1.28 11.2; P = 0.02. Conclusions Subclinical hypothyroidism may increase the LA pressure in AF patients.

  7. High Sensitivity Semiconductor Sensor Skins for Multi-Axis Surface Pressure Characterization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase II SBIR program would fabricate high sensitivity semiconductor nanomembrane 'sensor skins' capable of multi-axis surface pressure characterization on...

  8. High Sensitivity Semiconductor Sensor Skins for Multi-Axis Surface Pressure Characterization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR program would fabricate high sensitivity semiconductor nanomembrane 'sensor skins' capable of multi-axis surface pressure characterization on...

  9. Fluorination of poly(dimethylsiloxane) surfaces by low pressure CF4 plasma : physicochemical and antifouling properties

    NARCIS (Netherlands)

    Cordeiro, A.L.; Nitschke, M.; Janke, A.; Helbig, R.; D'Souza, F.; Donnelly, G.T.; Willemsen, P.R.; Werner, C.

    2009-01-01

    Fluorinated surface groups were introduced into poly(dimethylsiloxane) (PDMS) coatings by plasma treatment using a low pressure radio frequency discharge operated with tetrafluoromethane. Substrates were placed in a remote position downstream the discharge. Discharge power and treatment time were

  10. Endohedral nitrogen storage in carbon fullerene structures: Physisorption to chemisorption transition with increasing gas pressure

    Science.gov (United States)

    Barajas-Barraza, R. E.; Guirado-López, R. A.

    2009-06-01

    We present extensive pseudopotential density functional theory (DFT) calculations in order to analyze the structural properties and chemical reactivity of nitrogen molecules confined in spheroidal (C82) and tubelike (C110) carbon fullerene structures. For a small number of encapsulated nitrogens, the N2 species exist in a nonbonded state within the cavities and form well defined molecular conformations such as linear chains, zigzag arrays, as well as both spheroidal and tubular configurations. However, with increasing the number of stored molecules, the interaction among the confined nitrogens as well as between the N2 species and the fullerene wall is not always mainly repulsive. Actually, at high densities of the encapsulated gas, we found both adsorption of N2 to the inner carbon surface together with the formation of (N2)m molecular clusters. Total energy DFT calculations reveal that the shape of the interaction potential of a test molecule moving within the carbon cavities strongly varies with the number and proximity of the coadsorbed N2 from being purely repulsive to having short-range attractive contributions close to the inner wall. In particular, the latter are always found when a group of closely spaced nitrogens is located near the carbon cage (a fact that will naturally occur at high densities of the encapsulated gas), inducing the formation of covalent bonds between the N2 and the fullerene network. Interestingly, in some cases, the previous nitrogen adsorption to the inner surface is reversible by reducing the gas pressure. The calculated average density of states of our considered carbon compounds reveals the appearance of well defined features that clearly reflect the occurring structural changes and modifications in the adsorption properties in the systems. Our results clearly underline the crucial role played by confinement effects on the reactivity of our endohedral compounds, define this kind of materials as nonideal nanocontainers for high

  11. Endohedral nitrogen storage in carbon fullerene structures: physisorption to chemisorption transition with increasing gas pressure.

    Science.gov (United States)

    Barajas-Barraza, R E; Guirado-López, R A

    2009-06-21

    We present extensive pseudopotential density functional theory (DFT) calculations in order to analyze the structural properties and chemical reactivity of nitrogen molecules confined in spheroidal (C(82)) and tubelike (C(110)) carbon fullerene structures. For a small number of encapsulated nitrogens, the N(2) species exist in a nonbonded state within the cavities and form well defined molecular conformations such as linear chains, zigzag arrays, as well as both spheroidal and tubular configurations. However, with increasing the number of stored molecules, the interaction among the confined nitrogens as well as between the N(2) species and the fullerene wall is not always mainly repulsive. Actually, at high densities of the encapsulated gas, we found both adsorption of N(2) to the inner carbon surface together with the formation of (N(2))(m) molecular clusters. Total energy DFT calculations reveal that the shape of the interaction potential of a test molecule moving within the carbon cavities strongly varies with the number and proximity of the coadsorbed N(2) from being purely repulsive to having short-range attractive contributions close to the inner wall. In particular, the latter are always found when a group of closely spaced nitrogens is located near the carbon cage (a fact that will naturally occur at high densities of the encapsulated gas), inducing the formation of covalent bonds between the N(2) and the fullerene network. Interestingly, in some cases, the previous nitrogen adsorption to the inner surface is reversible by reducing the gas pressure. The calculated average density of states of our considered carbon compounds reveals the appearance of well defined features that clearly reflect the occurring structural changes and modifications in the adsorption properties in the systems. Our results clearly underline the crucial role played by confinement effects on the reactivity of our endohedral compounds, define this kind of materials as nonideal

  12. Cat scratch disease presenting as increased intracranial pressure and aseptic meningitis

    Directory of Open Access Journals (Sweden)

    Ahmad Ameilia

    2015-06-01

    Full Text Available Ocular cat scratch disease (CSD is a condition attributed to infection by Bartonella sp. This condition commonly presents as neuroretinitis. Increased intracranial pressure and aseptic meningitis are rare presentation of CSD. We highlight a case of a 17-year-old female who presented with aseptic meningitis with neuroretinitis and raised intracranial pressure. The patient showed dramatic improvement with antibiotics and her neurological deficits recovered completely within 6 weeks of treatment.

  13. Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-23

    Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.

  14. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    A new aerodynamic modelling approach is proposed for the longitudinal static characteristics of a simple delta wing. It captures the static variation of normal force and pitching moment characteristics throughout the angle of attack range. The pressure model is based on parametrizing the surface pressure distribution on a ...

  15. Autologous Transfusion of Stored Red Blood Cells Increases Pulmonary Artery Pressure

    Science.gov (United States)

    Pinciroli, Riccardo; Stowell, Christopher P.; Wang, Lin; Yu, Binglan; Fernandez, Bernadette O.; Feelisch, Martin; Mietto, Cristina; Hod, Eldad A.; Chipman, Daniel; Scherrer-Crosbie, Marielle; Bloch, Kenneth D.; Zapol, Warren M.

    2014-01-01

    Rationale: Transfusion of erythrocytes stored for prolonged periods is associated with increased mortality. Erythrocytes undergo hemolysis during storage and after transfusion. Plasma hemoglobin scavenges endogenous nitric oxide leading to systemic and pulmonary vasoconstriction. Objectives: We hypothesized that transfusion of autologous blood stored for 40 days would increase the pulmonary artery pressure in volunteers with endothelial dysfunction (impaired endothelial production of nitric oxide). We also tested whether breathing nitric oxide before and during transfusion could prevent the increase of pulmonary artery pressure. Methods: Fourteen obese adults with endothelial dysfunction were enrolled in a randomized crossover study of transfusing autologous, leukoreduced blood stored for either 3 or 40 days. Volunteers were transfused with 3-day blood, 40-day blood, and 40-day blood while breathing 80 ppm nitric oxide. Measurements and Main Results: The age of volunteers was 41 ± 4 years (mean ± SEM), and their body mass index was 33.4 ± 1.3 kg/m2. Plasma hemoglobin concentrations increased after transfusion with 40-day and 40-day plus nitric oxide blood but not after transfusing 3-day blood. Mean pulmonary artery pressure, estimated by transthoracic echocardiography, increased after transfusing 40-day blood (18 ± 2 to 23 ± 2 mm Hg; P transfusing 3-day blood (17 ± 2 to 18 ± 2 mm Hg; P = 0.5). Breathing nitric oxide decreased pulmonary artery pressure in volunteers transfused with 40-day blood (17 ± 2 to 12 ± 1 mm Hg; P Transfusion of autologous leukoreduced blood stored for 40 days was associated with increased plasma hemoglobin levels and increased pulmonary artery pressure. Breathing nitric oxide prevents the increase of pulmonary artery pressure produced by transfusing stored blood. Clinical trial registered with www.clinicaltrials.gov (NCT 01529502). PMID:25162920

  16. Critical heat flux on micro-structured zircaloy surfaces for flow boiling of water at low pressures

    International Nuclear Information System (INIS)

    Haas, C.; Miassoedov, A.; Schulenberg, T.; Wetzel, T.

    2012-01-01

    The influence of surface structure on critical heat flux for flow boiling of water was investigated for Zircaloy tubes in a vertical annular test section. The objectives were to find suitable surface modification processes for Zircaloy tubes and to test their critical heat flux performance in comparison to the smooth tube. Surface structures with micro-channels, porous layer, oxidized layer, and elevations in micro- and nano-scale were produced on a section of a Zircaloy cladding tube. These modified tubes were tested in an internally heated vertical annulus with a heated length of 326 mm and an inner and outer diameter of 9.5 and 18 mm. The experiments were performed with mass fluxes of 250 and 400 kg/(m 2 s), outlet pressures between 120 and 300 kPa, and constant inlet subcooling enthalpy of 167 kJ/kg. Only a small influence of modified surface structures on critical heat flux was observed for the pressure of 120 kPa in the present test section geometry. However, with increasing pressure the critical heat flux could increase up to 29% using the surface structured tubes with micro-channels, porous and oxidized layers. Capillary effects and increased nucleation site density are assumed to improve the critical heat flux performance. (authors)

  17. Changes in Land Surface Water Dynamics since the 1990s and Relation to Population Pressure

    Science.gov (United States)

    Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W. B.; Matthews, E.

    2012-01-01

    We developed a remote sensing approach based on multi-satellite observations, which provides an unprecedented estimate of monthly distribution and area of land-surface open water over the whole globe. Results for 1993 to 2007 exhibit a large seasonal and inter-annual variability of the inundation extent with an overall decline in global average maximum inundated area of 6% during the fifteen-year period, primarily in tropical and subtropical South America and South Asia. The largest declines of open water are found where large increases in population have occurred over the last two decades, suggesting a global scale effect of human activities on continental surface freshwater: denser population can impact local hydrology by reducing freshwater extent, by draining marshes and wetlands, and by increasing water withdrawals. Citation: Prigent, C., F. Papa, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure, in section 4, insisting on the potential applications of the wetland dataset.

  18. Support surfaces in the prevention of pressure ulcers in surgical patients: An integrative review.

    Science.gov (United States)

    de Oliveira, Karoline Faria; Nascimento, Kleiton Gonçalves; Nicolussi, Adriana Cristina; Chavaglia, Suzel Regina Ribeiro; de Araújo, Cleudmar Amaral; Barbosa, Maria Helena

    2017-08-01

    To assess the scientific evidence about the types of support surfaces used in intraoperative surgical practice in the prevention of pressure ulcers due to surgical positioning. This is an integrative literature review. The electronic databases Cochrane, PubMed, Web of Science, Scopus, Lilacs, and CINAHL were used. The descriptors surgical patients, support surfaces, perioperative care, patient positioning, and pressure ulcer were used in the search strategy. Articles that addressed the use of support surfaces intraoperatively, published between 1990 and 2016, were selected. The PRISMA guidelines were used to structure the review. Of 18 evaluated studies, most were in English, followed by Portuguese and Spanish; most were performed by nurses. The most commonly cited support surfaces were viscoelastic polymer, micropulse mattresses, gel based mattresses, and foam devices. There are gaps in knowledge regarding the most efficient support surfaces and the specifications of the products used to prevent pressure ulcers due to surgical positioning. © 2017 John Wiley & Sons Australia, Ltd.

  19. Monitoring and controlling intramedullary pressure increase in long bone instrumentation: a study on sheep.

    Science.gov (United States)

    Smith, Paul N; Leditschke, Anne; McMahon, Damian; Sample, Roxanne R; Perriman, Diana; Prins, Anne; Brüssel, Thomas; Li, Rachel W

    2008-10-01

    Intramedullary reamed nailing causes elevation in intramedullary pressure and extravazation of intramedullary contents into the venous blood system. This study investigated the effect of an intramedullary suction system, recently developed in our laboratory, on the pressure and fat extravazation in isolated bovine bone and a sheep model. During reaming, the pressure with and without suction was recorded at each step of the procedure. Hemodynamic parameters of mean arterial blood pressure, pulmonary artery pressure, pulmonary arterial CO(2) (PaCO(2)), heart rate, and oxygen saturation were monitored. Blood and lung tissue samples were collected for the examination of medullary fat intravazation. The increases of intramedullary pressure were dramatically reduced in the suction group (p sheep lung tissue in the nonsuction group. Total lipids in lung specimens was lower in the suction group (7.6 mg/g tissue) than in the nonsuction group (13.6 mg/g, p = 0.04). The suction system appears to control the surge in intramedullary pressure and therefore prevent fat embolism. (c) 2008 Orthopaedic Research Society.

  20. Irrigation with isoproterenol diminishes increases in pelvic pressure without side-effects during ureterorenoscopy

    DEFF Research Database (Denmark)

    Jung, H U; Jakobsen, J S; Mortensen, J

    2007-01-01

    Objective. Recently, we showed that endoluminally administered isoproterenol (ISO) inhibits muscle function of the pyeloureter in swine. This may be of value in managing increases in pelvic pressure during upper urinary tract endoscopy. The purpose of this study was to examine the effect...... groups: p=0.425 and p=0.166, respectively. Conclusions. ISO (0.1 microg/ml) added to irrigation fluid significantly reduces the increase in pelvic pressure during ureterorenoscopy in pigs, without concomitant side-effects....... of endoluminally administered ISO on increases in pelvic pressure and cardiovascular function during flexible ureterorenoscopy. Material and methods. The study was performed in anaesthetized female pigs. In terms of endoscopic procedures, the pigs were randomized as follows: Group 1, irrigation with 0.1 microg...

  1. Increased inspiratory pressure for reduction of atelectasis in children anesthetized for CT scan

    International Nuclear Information System (INIS)

    Sargent, Michael A.; Jamieson, Douglas H.; McEachern, Anita M.; Blackstock, Derek

    2002-01-01

    Background: Atelectasis is more frequent and more severe in children anesthetized for CT scan than it is in children sedated for CT scan.Objective: To determine the effect of increased inspiratory pressure on atelectasis during chest CT in anesthetized children. Materials and methods: Atelectasis on chest CT was assessed by two observers in three groups of patients. Group A comprised 13 children (26 lungs) anesthetized at inspiratory pressures up to and including 25 cm H 2 O. Group B included 11 children anesthetized at inspiratory pressures ≥30 cm H 2 O. Group C included 8 children under deep sedation. Results: Atelectasis was significantly more severe in group A than in groups B and C. There was no significant difference between groups B and C. Conclusion: An inspiratory pressure of 30 cm H 2 O is recommended for children anesthetized for CT scan of the chest. (orig.)

  2. Evidence suggests rigid aortic grafts increase systolic blood pressure: results of a preliminary study.

    Science.gov (United States)

    O'Brien, T; Morris, L; McGloughlin, T

    2008-01-01

    Abdominal aortic aneurysm (AAA) is a serious complication of the aorta and is treated using vascular bypass grafts. Two main classes of graft are available to treat AAA; grafts implanted by open surgery and stent-grafts implanted using minimally invasive endovascular techniques. Both classes of graft consist of an aortic section which bifurcates into two iliac sections. It has been hypothesized that implantation of aortic grafts and stent-grafts serve to significantly increase abdominal aortic pressures. In this study, an open-loop computer-controlled pumping system was built to produce physiologically realistic pressure and flow-rates. Models of a compliant abdominal aortic aneurysm, a compliant walled graft and a tapered graft were manufactured using an injection moulding technique and fused deposition modelling was used to create a rigid walled graft. A specific transient flow-rate waveform was then applied at the inlet of each model and the resulting pressure waveforms 30 mm upstream from the bifurcation was recorded. Peak pressure measurements were recorded over the course of the pulse for each model. The compliant aneurysm model was found to have a systolic pressure of 107 mmHg while the complaint graft model was 153 mmHg. The rigid graft model had a peak systolic pressure of 199 mmHg. In the tapered graft, the peak pressure dropped to 142 mmHg. The data suggests that implanting a graft model in place of an aneurysm model in an in vitro flow circuit can increase the pressures recorded upstream from the iliac bifurcation and that tapered grafts may alleviate this problem.

  3. Support surfaces for pressure ulcer prevention: A network meta-analysis.

    Directory of Open Access Journals (Sweden)

    Chunhu Shi

    Full Text Available Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult.To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness.We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence.We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR 0.42, 95% confidence intervals (CI 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively. The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence.This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was

  4. Pressure effects on interfacial surface contacts and performance of organic solar cells

    NARCIS (Netherlands)

    Agyei-Tuffour, B.; Doumon, Nutifafa Y.; Rwenyagila, E. R.; Asare, J.; Oyewole, O. K.; Shen, Z.; Petoukhoff, C. E.; Zebaze Kana, M. G.; Ocarroll, D. M.; Soboyejo, W. O.

    2017-01-01

    This paper explores the effects of pressure on the interfacial surface contacts and the performance of organic solar cells. A combination of experimental techniques and analytical/computational models is used to study the evolving surface contacts profiles that occur when compliant, semi-rigid and

  5. High resolution transbulbar sonography in children with suspicion of increased intracranial pressure.

    Science.gov (United States)

    Steinborn, Marc; Friedmann, Melanie; Makowski, Christine; Hahn, Helmut; Hapfelmeier, Alexander; Juenger, Hendrik

    2016-04-01

    To evaluate the accuracy of high resolution transbulbar sonography for the estimation of intracranial pressure (ICP) in children. In children and adolescents with acute neurologic symptoms of various origin, transbulbar sonography was performed. Besides measurement of the optic nerve sheath diameter (ONSD), the ultrastructure of the subarachnoid space of the optic nerve sheath was evaluated. The results of transbulbar sonography were correlated with clinical data based on cross-sectional imaging, ICP measurement, and ophthalmologic examination. Eighty-one patients (age 3-17.8 years, mean 11.7 years) were included. In 25 children, cross-sectional imaging and ICP measurement revealed increased intracranial pressure. The mean ONSD was 6.85 ± 0.81 mm. Twenty patients (20/25, 80 %) had a microcystic appearance of the subarachnoid space of the optic nerve. In 56 children without evidence of increased intracranial pressure, the mean ONSD was 5.77 ± 0.48 mm. Forty-nine patients (49/56, 87.5 %) had a normal homogenous appearance of the subarachnoid space. The ONSD in children with increased intracranial pressure was significantly higher than in patients without (p intracranial pressure in children. Besides measurement of the optic nerve sheath diameter, evaluation of the ultrastructure of the subarachnoid space of the optic nerve is a helpful parameter.

  6. Deployment of a Pressure Sensitive Paint System for Measuring Global Surface Pressures on Rotorcraft Blades in Simulated Forward Flight

    Science.gov (United States)

    Watkins, A. Neal; Leighty, Bradley; Lipford, William E.; Wong, Oliver D.; Goodman, Kyle Z.; Crafton, Jim; Forlines, Alan; Goss, Larry P.; Gregory, James W.; Juliano, Thomas J.

    2012-01-01

    This paper will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel at the NASA Langley Research Center. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. Preliminary results show that the PSP agrees both qualitatively and quantitatively with both the expected results as well as with the pressure taps. Several areas of improvement have been indentified and are currently being developed.

  7. Correlation of surface pressure and hue of planarizable push–pull chromophores at the air/water interface

    Directory of Open Access Journals (Sweden)

    Frederik Neuhaus

    2017-06-01

    Full Text Available It is currently not possible to directly measure the lateral pressure of a biomembrane. Mechanoresponsive fluorescent probes are an elegant solution to this problem but it requires first the establishment of a direct correlation between the membrane surface pressure and the induced color change of the probe. Here, we analyze planarizable dithienothiophene push–pull probes in a monolayer at the air/water interface using fluorescence microscopy, grazing-incidence angle X-ray diffraction, and infrared reflection–absorption spectroscopy. An increase of the lateral membrane pressure leads to a well-packed layer of the ‘flipper’ mechanophores and a clear change in hue above 18 mN/m. The fluorescent probes had no influence on the measured isotherm of the natural phospholipid DPPC suggesting that the flippers probe the lateral membrane pressure without physically changing it. This makes the flipper probes a truly useful addition to the membrane probe toolbox.

  8. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility

    Science.gov (United States)

    Kramer, Ryan M.; Shende, Varad R.; Motl, Nicole; Pace, C. Nick; Scholtz, J. Martin

    2012-01-01

    Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. PMID:22768947

  9. High temperature and high pressure oxidation behavior of Zr-2.5Nb pressure tube material – Effect of β phase composition and surface machining

    Energy Technology Data Exchange (ETDEWEB)

    Nouduru, S.K., E-mail: nouduru@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kumar, M. Kiran; Kain, Vivekanand [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Khanna, A.S. [Dept. of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Saibaba, N. [Nuclear Fuel Complex, ECILPost, Hyderabad 500062 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-03-15

    Pressure tube material, Zr-2.5Nb, of pressurized heavy water reactors was given selective heat-treatments. The objective was to generate microstructures with different compositions of the second phase β namely, Νb depleted β{sub Zr} phase and Nb rich β{sub Nb} phase. The material with β{sub Zr} was then subjected to surface machining. The presence of phases after different heat-treatments was confirmed by X-ray diffraction and the resultant microstructures were characterized by transmission electron microscopy and electron back scattered diffraction. The Nb content in the β phase after heat-treatments and residual stresses before and after surface machining were measured using X-ray diffraction. Oxidation was carried out in steam at 400 °C and 10 MPa up to 30 days and the oxides were characterized by Raman spectroscopy. It is shown that the presence of Nb rich β{sub Nb} in the microstructure and faster diffusion of Nb into β phase brought about by surface machining resulted in an enhanced oxidation resistance. - Highlights: • Effect of heat treatments in formation of Nb rich/depleted phases established. • Microstructure with β{sub Nb} and Nb depleted α shown to have high oxidation resistance. • Surface machining resulted in grain refinement, strain and tensile residual stress. • Surface machining improved oxidation resistance and its extent increased with time. • Machined specimen showed higher fraction of tetragonal zirconia.

  10. High temperature and high pressure oxidation behavior of Zr-2.5Nb pressure tube material – Effect of β phase composition and surface machining

    International Nuclear Information System (INIS)

    Nouduru, S.K.; Kumar, M. Kiran; Kain, Vivekanand; Khanna, A.S.; Saibaba, N.; Dey, G.K.

    2016-01-01

    Pressure tube material, Zr-2.5Nb, of pressurized heavy water reactors was given selective heat-treatments. The objective was to generate microstructures with different compositions of the second phase β namely, Νb depleted β Zr phase and Nb rich β Nb phase. The material with β Zr was then subjected to surface machining. The presence of phases after different heat-treatments was confirmed by X-ray diffraction and the resultant microstructures were characterized by transmission electron microscopy and electron back scattered diffraction. The Nb content in the β phase after heat-treatments and residual stresses before and after surface machining were measured using X-ray diffraction. Oxidation was carried out in steam at 400 °C and 10 MPa up to 30 days and the oxides were characterized by Raman spectroscopy. It is shown that the presence of Nb rich β Nb in the microstructure and faster diffusion of Nb into β phase brought about by surface machining resulted in an enhanced oxidation resistance. - Highlights: • Effect of heat treatments in formation of Nb rich/depleted phases established. • Microstructure with β Nb and Nb depleted α shown to have high oxidation resistance. • Surface machining resulted in grain refinement, strain and tensile residual stress. • Surface machining improved oxidation resistance and its extent increased with time. • Machined specimen showed higher fraction of tetragonal zirconia.

  11. Retrocalcaneal bursitis but not Achilles tendinopathy is characterized by increased pressure in the retrocalcaneal bursa.

    Science.gov (United States)

    Lohrer, Heinz; Nauck, Tanja

    2014-03-01

    We questioned whether different forms of Achilles tendon overuse injuries can be differentiated by retrocalcaneal bursa pressure measurement. Retrocalcaneal bursa pressure was determined by using invasive pressure measurement in patients suffering from retrocalcaneal bursitis (n=13) or Achilles tendinopathy (n=15), respectively. Standardized measurements were taken with the subject lying prone. Initially, the foot and ankle was in a spontaneous, unsupported position. Then passive dorsiflexion was induced by an increasing pressure which was applied in five defined steps against the plantar forefoot. Mean pressures found in unloaded position were 30.5 (SD 28.9) mmHg in retrocalcaneal bursitis and -9.9 (SD 17.2) mmHg in Achilles tendinopathy (pbursitis and 32.5 (SD 48.9) mmHg for Achilles tendinopathy (p=0,051). Higher retrocalcaneal bursa pressure values were found in patients suffering from chronic retrocalcaneal bursitis. This result supports the hypothesis that retrocalcaneal bursa hypertension leads to an impingement lesion of the corresponding anterior Achilles tendon. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures

    DEFF Research Database (Denmark)

    Zambrano, H.A.; Walther, Jens Honore; Jaffe, R.L.

    2014-01-01

    of air in water at different pressures. Using the calibrated force field, we conduct MD simulations to study the interface between a hydrophilic silica substrate and water surrounded by air at different pressures. We find that the static water contact angle is independent of the air pressure imposed......Wepresent a force field forMolecular Dynamics (MD) simulations ofwater and air in contactwith an amorphous silica surface. We calibrate the interactions of each species present in the systemusing dedicated criteria such as the contact angle of a water droplet on a silica surface, and the solubility...... on the system. Our simulations reveal the presence of a nanometer thick layer of gas at the water–silica interface. We believe that this gas layer could promote nucleation and stabilization of surface nanobubbles at amorphous silica surfaces. © 2014 Elsevier B.V. All rights reserved....

  13. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  14. Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure

    Science.gov (United States)

    Ridenti, Marco Antonio; de Amorim, Jayr; Dal Pino, Arnaldo; Guerra, Vasco; Petrov, George

    2018-01-01

    In this work we compute the main features of a surface-wave-driven plasma in argon at atmospheric pressure in view of a better understanding of the contraction phenomenon. We include the detailed chemical kinetics dynamics of Ar and solve the mass conservation equations of the relevant neutral excited and charged species. The gas temperature radial profile is calculated by means of the thermal diffusion equation. The electric field radial profile is calculated directly from the numerical solution of the Maxwell equations assuming the surface wave to be propagating in the TM00 mode. The problem is considered to be radially symmetrical, the axial variations are neglected, and the equations are solved in a self-consistent fashion. We probe the model results considering three scenarios: (i) the electron energy distribution function (EEDF) is calculated by means of the Boltzmann equation; (ii) the EEDF is considered to be Maxwellian; (iii) the dissociative recombination is excluded from the chemical kinetics dynamics, but the nonequilibrium EEDF is preserved. From this analysis, the dissociative recombination is shown to be the leading mechanism in the constriction of surface-wave plasmas. The results are compared with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar2+. An explanation is proposed for the trends seen by Thomson scattering diagnostics that shows a substantial increase of electron temperature towards the plasma borders where the electron density is small.

  15. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    Science.gov (United States)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  16. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study

    NARCIS (Netherlands)

    Dubin, Arnaldo; Pozo, Mario O.; Casabella, Christian A.; Palizas, Fernando; Murias, Gaston; Moseinco, Miriam C.; Kanoore Edul, Vanina S.; Estenssoro, Elisa; Ince, Can

    2009-01-01

    Introduction Our goal was to assess the effects of titration of a norepinephrine infusion to increasing levels of mean arterial pressure (MAP) on sublingual microcirculation. Methods Twenty septic shock patients were prospectively studied in two teaching intensive care units. The patients were

  17. Dynamic Increase Factors for High Performance Concrete in Compression using Split Hopkinson Pressure Bar

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Ngo, Tuan; Mendis, Priyan

    2007-01-01

    This paper provides dynamic increase factors (DIF) in compression for two different High Performance Concretes (HPC), 100 MPa and 160 MPa, respectively. In the experimental investigation 2 different Split Hopkinson Pressure Bars are used in order to test over a wide range of strain rates, 100 sec1...

  18. Increasing preservation efficiency and product quality through control of temperature distributions in high pressure applications

    NARCIS (Netherlands)

    Heij, de W.; Schepdael, van L.; Berg, van den R.; Bartels, P.

    2002-01-01

    The effectiveness of HP sterilisation is a function of both temperature and pressure. As during pressurisation the product temperature increases, heat transfer to the colder HPP vessel wall occurs and the product fraction near the vessel wall will be colder than the product in the middle of the

  19. Intraocular Pressure Increases After Intraarticular Knee Injection With Triamcinolone but Not Hyaluronic Acid.

    Science.gov (United States)

    Taliaferro, Kevin; Crawford, Alexander; Jabara, Justin; Lynch, Jonathan; Jung, Edward; Zvirbulis, Raimonds; Banka, Trevor

    2018-03-09

    Intraarticular steroid injections are a common first-line therapy for severe osteoarthritis, which affects an estimated 27 million people in the United States. Although topical, oral, intranasal, and inhalational steroids are known to increase intraocular pressure in some patients, the effect of intraarticular steroid injections on intraocular pressure has not been investigated, to the best of our knowledge. If elevated intraocular pressure is sustained for long periods of time or is of sufficient magnitude acutely, permanent loss of the visual field can occur. How does intraocular pressure change 1 week after an intraarticular knee injection either with triamcinolone acetonide or hyaluronic acid? A nonrandomized, nonblinded prospective cohort study was conducted at an outpatient, ambulatory orthopaedic clinic. This study compared intraocular pressure elevation before and 1 week after intraarticular knee injection of triamcinolone acetonide versus hyaluronic acid for management of primary osteoarthritis of the knee. Patients self-selected to be injected in their knee with either triamcinolone acetonide or hyaluronic acid before being informed of the study. The primary endpoint was intraocular pressure elevation of ≥ 7 mm Hg 1 week after injection. This cutoff is determined as the minimum significant pressure change in the ophthalmology literature recognized as an intermediate responder to steroids. Intraocular pressure was measured using a handheld Tono-Pen® applanation device. This device is frequently used in intraocular pressure measurement in clinical and research settings; 10 sequential measurements are obtained and averaged with a confidence interval. Only measurements with a 95% confidence interval were used. Over a 6-month period, a total of 96 patients were approached to enroll in the study. Sixty-two patients out of 96 approached (65%) agreed. Thirty-one (50%) were injected with triamcinolone and 31 (50%) were injected with hyaluronic acid. Patients

  20. Surface-nitriding treatment of steels using microwave-induced nitrogen plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Sato, Shigeo; Arai, Yuuki; Yamashita, Noboru; Kojyo, Atsushi; Kodama, Kenji; Ohtsu, Naofumi; Okamoto, Yukio; Wagatsuma, Kazuaki

    2012-01-01

    A rapid surface-nitriding system using microwave-induced nitrogen plasma at atmospheric pressure was developed for modifying iron and steel surfaces. Since the conventional plasma nitriding technique requires a low-pressure atmosphere in the treatment chamber, the population of excited nitrogen molecules in the plasma is limited. Accordingly, several hours are required for nitriding treatment. By contrast, the developed nitriding system can use atmospheric-pressure plasma through application of the Okamoto cavity for excitation of nitrogen plasma. The high population of excited nitrogen molecules induced by the atmospheric-pressure plasma allowed the formation of a nitriding layer that was several micrometers thick within 1 min and produced an expanded austenite iron phase with a high nitrogen concentration close to the solubility limit on the iron substrate. In addition, the nitriding treatment on high-chromium steel was performed by introducing a reducing gas such as NH 3 and H 2 into the treatment chamber. While the nitriding reaction did not proceed in a simple N 2 atmosphere due to surface oxidation, the surface reduction induced by the NH 3 or H 2 gas promoted the nitriding reaction at the surface. These nitriding phenomena characteristics of the atmospheric-pressure plasma are discussed in this paper based on the effects of the specimen temperature and plasma atmosphere on the thickness, the chemical states, and the nitride compounds of the nitrided layer as investigated by X-ray diffraction, glow-discharge optical emission spectroscopy, and X-ray photoelectron spectroscopy.

  1. The impact of meteo-factors on increase of arterial blood pressure

    Directory of Open Access Journals (Sweden)

    V.A. Belyayeva

    2016-12-01

    Full Text Available The aim of the work is to study the impact of the meteorologic factors on the increase of the arterial blood pressure in the population of Vladikavkaz city considering gender specificity. The archive data of the Vladikavkaz ambulance during the first half-year of 2012 were the material of the study, ranged according to the number of calls of the patients with the complaints on the aggravation of symptoms due to the arterial pressure increase. According to the archive data, the corresponding base of average daily indices of meteo-factors (the air temperature, atmospheric pressure, relative humidity, wind rate, cloudiness was formed, the indices of weather pathogenicity were considered. The posthoc analysis of the obtained data was carried out with the use of the statistical analysis packet Statistica 6.0. It is indicated, that the number of the ambulance calls to the patients with the arterial hypertension increases during “acute” meteo-conditions. The number of calls in women is higher than the number of calls in men. The inverse correlation between average daily air temperature and patients asking for help in the connection with aggravation symptoms against a background of the arterial pressure increase (AP was revealed. The peak increase of the ambulance calls frequency is observed while low temperature (< –100 ° C. A correlational link between AP increase frequency and the pathogenicity temperature index was established. AP increase frequency correlates with common pathogenicity index in women, and it may point out the high reactivity of cardio-vascular system in response to the impact of complex negative meteo-factors. The impact of the unfavorable weather conditions is the risk factor to the health as it may lead to the development of the cardiovascular catastrophe against a background of AP increase.

  2. Investigation of the effect of pressure increasing in condensing heat-exchanger

    Science.gov (United States)

    Murmanskii, I. B.; Aronson, K. E.; Brodov, Yu M.; Galperin, L. G.; Ryabchikov, A. Yu.; Brezgin, D. V.

    2017-11-01

    The effect of pressure increase was observed in steam condensation in the intermediate coolers of multistage steam ejector. Steam pressure increase for ejector cooler amounts up to 1.5 kPa in the first ejector stage, 5 kPa in the second and 7 kPa in the third one. Pressure ratios are equal to 2.0, 1.3 and 1.1 respectively. As a rule steam velocities at the cooler inlets do not exceed 40…100 m/s and are subsonic in all regimes. The report presents a computational model that describes the effect of pressure increase in the cooler. The steam entering the heat exchanger tears the drops from the condensate film flowing down vertical tubes. At the inlet of heat exchanger the steam flow capturing condensate droplets forms a steam-water mixture in which the sound velocity is significantly reduced. If the flow rate of steam-water mixture in heat exchanger is greater than the sound velocity, there occurs a pressure shock in the wet steam. On the basis of the equations of mass, momentum and energy conservation the authors derived the expressions for calculation of steam flow dryness degree before and after the shock. The model assumes that droplet velocity is close to the velocity of the steam phase (slipping is absent); drops do not come into thermal interaction with the steam phase; liquid phase specific volume compared to the volume of steam is neglected; pressure shock is calculated taking into account the gas-dynamic flow resistance of the tube bundle. It is also assumed that the temperature of steam after the shock is equal to the saturation temperature. The calculations have shown that the rise of steam pressure and temperature in the shock results in dryness degree increase. For calculated flow parameters the velocity value before the shock is greater than the sound velocity. Thus, on the basis of generally accepted physics knowledge the computational model has been formulated for the effect of steam pressure rise in the condensing heat exchanger.

  3. Will the Increasing of Anthropogenic Pressures Reduce the Biopotential Value of Sponges?

    Directory of Open Access Journals (Sweden)

    Hedi Indra Januar

    2015-01-01

    Full Text Available Production of bioactive compounds from marine benthic organisms is suggested to relate ecologically with environment. However, anthropogenic pressures cause a considerable damage to coral reefs environment. This research aimed to define the pattern sponges biopotential values at the increasing of anthropogenic pressures to coral reef environment. Three representative sponges were selected (Theonella sp., Hyrtios sp., and Niphates sp. and study had been conducted in Hoga Island, Indonesia, to define the relationship between seawater variables (DO, pH, phosphate, and ammonia ions, sponges spatial competition, and their bioactivity level (Brine Shrimp Lethality Test. The study showed anthropogenic pressures affect the reef environment, as abiotic cover was increased and eutrophication was detected at the site closer to the run-off domesticated area. Statistical multivariate analyses revealed sponges spatial competition was significantly different (P<0.05 between groups of high, moderate, and low bioactivity level. Abiotic cover was detected as the major factor (36.19% contributed to the differences and also the most discriminant factor distinguishing sponges spatial competition in the groups of bioactivity level (93.91%. These results showed the increasing anthropogenic pressures may result in a higher abiotic area and may directly be a consequence to the lower production of bioactive compounds in sponges.

  4. Will the Increasing of Anthropogenic Pressures Reduce the Biopotential Value of Sponges?

    Science.gov (United States)

    Januar, Hedi Indra; Pratitis, Asri; Bramandito, Aditya

    2015-01-01

    Production of bioactive compounds from marine benthic organisms is suggested to relate ecologically with environment. However, anthropogenic pressures cause a considerable damage to coral reefs environment. This research aimed to define the pattern sponges biopotential values at the increasing of anthropogenic pressures to coral reef environment. Three representative sponges were selected (Theonella sp., Hyrtios sp., and Niphates sp.) and study had been conducted in Hoga Island, Indonesia, to define the relationship between seawater variables (DO, pH, phosphate, and ammonia ions), sponges spatial competition, and their bioactivity level (Brine Shrimp Lethality Test). The study showed anthropogenic pressures affect the reef environment, as abiotic cover was increased and eutrophication was detected at the site closer to the run-off domesticated area. Statistical multivariate analyses revealed sponges spatial competition was significantly different (P sponges spatial competition in the groups of bioactivity level (93.91%). These results showed the increasing anthropogenic pressures may result in a higher abiotic area and may directly be a consequence to the lower production of bioactive compounds in sponges. PMID:26457226

  5. Urinary calcium and magnesium excretion relates to increase in blood pressure during pregnancy.

    Science.gov (United States)

    Nielsen, Thorkild F; Rylander, Ragnar

    2011-03-01

    Pregnancy-induced hypertension and preeclampsia are serious clinical manifestations during late pregnancy and the cause for increased maternal and foetal morbidity and mortality. The pathogenesis is unknown but experience from treatment schemes suggests that minerals may be of importance. Mineral homeostasis is influenced by acid-base conditions. The aim of the study was to elucidate the relation between acid-base balance, urinary mineral excretion and blood pressure during pregnancy. A prospective observational study of a general population. The study was performed at the Midwife Health Center in Borås, Sweden, where practically all pregnant subjects in the catchment area are registered. First time pregnant subjects (n = 123) were voluntarily recruited without exclusion criteria. A 24 h urine sample was collected at pregnancy week 12 and analyzed for creatinine, calcium, magnesium, and urea as a proxy for acid conditions. Blood pressure was recorded every 2-3 weeks until delivery. There was a relation between the excretion of urea and calcium and magnesium at week 12. A blood pressure increase was found after pregnancy week 30 but only among subjects who had a high excretion of calcium and magnesium at week 12. If an increase in blood pressure during the later part of pregnancy a risk indicator for preeclampsia, the results suggest that an excessive secretion of calcium leading to a functional deficit might be a risk indicator for gestational hypertension and preeclampsia. Intervention experiments are required to assess this hypothesis.

  6. IMPACT OF COMPRESSED AIR PRESSURE ON GEOMETRIC STRUCTURE OF AISI 1045 STEEL SURFACE AFTER TURNING WITH THE USE OF MQCL METHOD

    Directory of Open Access Journals (Sweden)

    Radoslaw Wojciech Maruda

    2016-06-01

    Full Text Available MQL (Minimum Quantity Lubrication and MQCL (Minimum Quantity Cooling Lubrication methods become alternative solutions for dry machining and deluge cooling conditions. Due to a growing interest in MQCL method, this article discusses the impact of compressed air pressure, which is one of the basic parameters of generating emulsion mist used in MQCL method, on the geometric structure of the surface after turning AISI 1045 carbon steel. This paper presents the results of measurements of machined surface roughness parameters Ra, Rz, RSm as well as roughness profiles and Abbot-Firestone curves. It was found that the increase in the compressed air pressure from 1 to 7 MPa causes an increase in the roughness of the machined surface (the lowest values were obtained at a pressure of 1 MPa. An increase of emulsion mass flow rate also causes an increase in the value of selected parameters of roughness of the machined surface.

  7. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    Science.gov (United States)

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-03-29

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We

  8. Paradoxical presentation of orthostatic headache associated with increased intracranial pressure in patients with cerebral venous thrombosis

    Directory of Open Access Journals (Sweden)

    Jung B Kim

    2013-01-01

    Full Text Available Headache is the most common symptom of cerebral venous thrombosis (CVT; however, the detailed underlying mechanisms and characteristics of headache in CVT have not been well described. Here, we report two cases of CVT whose primary and lasting presentation was orthostatic headache, suggestive of decreased intracranial pressure. Contrary to our expectations, the headaches were associated with elevated cerebrospinal fluid (CSF pressure. Magnetic resonance imaging and magnetic resonance venography showed characteristic voiding defects consistent with CVT. We suggest that orthostatic headache can be developed in a condition of decreased intracranial CSF volume in both intracranial hypotensive and intracranial hypertensive states. In these cases, orthostatic headache in CVT might be caused by decreased intracranial CSF volume that leads to the inferior displacement of the brain and traction on pain-sensitive intracranial vessels, despite increased CSF pressure on measurement. CVT should be considered in the differential diagnosis when a patient complains of orthostatic headache.

  9. Increasing human pressure on freshwater resources threatens sustainability at the global scale

    Science.gov (United States)

    Montanari, A.; Ceola, S.; Laio, F.

    2017-12-01

    Freshwater resources overexploitation and climate change are major threats to global sustainability and development in the XXI century, but nevertheless a global assessment of water threats evolution in time is still lacking. Here we demonstrate that nightlights are a good proxy for human pressure and investigate how it evolved from 1992 to 2013 in 2'148 major river basins. Globally, we find that human pressure positively evolved in the study period (1.8% increase per year as a global average), threatening future sustainability worldwide. The most critical conditions for sustainability are found within the equatorial area, showing markedly positive human pressure yearly trends (3.5% ± 2.2%). The results highlight that water threats are spreading worldwide and call for an urgent strategy to mitigate water overexploitation and related hazards to ecosystems and human security.

  10. Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure

    International Nuclear Information System (INIS)

    Wang Wei-long; Li Jun; Song Hui-min; Jin Di; Jia Min; Wu Yun

    2017-01-01

    Thermal and induced flow velocity characteristics of radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins. After several seconds (typically 100 s), the temperature reaches equilibrium among the actuator’s surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of kHz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s. (paper)

  11. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties

    International Nuclear Information System (INIS)

    Pandiyaraj, Krishnasamy Navaneetha; Yoganand, Paramasivam; Selvarajan, Vengatasamy; Deshmukh, Rajendrasing R.; Balasubramanian, Suresh; Maruthamuthu, Sundaram

    2013-01-01

    The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE film surfaces, which was confirmed by T-peel and lap-shear tests.

  12. Does elevating image receptor increase breast receptor footprint and improve pressure balance?

    International Nuclear Information System (INIS)

    Smith, H.; Szczepura, K.; Mercer, C.; Maxwell, A.; Hogg, P.

    2015-01-01

    There is no consensus in the literature regarding the image receptor (IR) position for the cradio-caudal projection in mammography. Some literature indicates the IR should be positioned to the infra mammary fold (IMF); other literature suggests the IR be raised 2 cm relative to the IMF. Using 16 female volunteers (32 breasts) and a pressure sensitive mat we investigated breast footprint and pressure balance with IR at IMF and IR 2 cm above the IMF. Breast area on IR and paddle and interface pressure between IR/breast and paddle/breast were recorded. A uniformity index (UI) gave a measure of pressure balance between IR/breast and paddle/breast. IR breast footprint increases significantly by 13.81 cm 2 (p < 0.02) when IR is raised by 2 cm. UI reduces from 0.4 to 0.00 (p = 0.04) when positioned at IMF +2 cm demonstrating an improved pressure balance. Practitioners should consider raising the IR by 2 cm relative to the IMF in clinical practice. Further work is suggested to investigate the effects of practitioner variability and breast asymmetry. - Highlights: • Experimental study. • 16 female volunteers/32 breasts. • Compares two methods of conducting the cranio-caudal project. • Provides sufficient evidence to indicate which method is likely to be superior. • Has value to clinical mammography.

  13. Selective Heart Rate Reduction With Ivabradine Increases Central Blood Pressure in Stable Coronary Artery Disease.

    Science.gov (United States)

    Rimoldi, Stefano F; Messerli, Franz H; Cerny, David; Gloekler, Steffen; Traupe, Tobias; Laurent, Stéphane; Seiler, Christian

    2016-06-01

    Heart rate (HR) lowering by β-blockade was shown to be beneficial after myocardial infarction. In contrast, HR lowering with ivabradine was found to confer no benefits in 2 prospective randomized trials in patients with coronary artery disease. We hypothesized that this inefficacy could be in part related to ivabradine's effect on central (aortic) pressure. Our study included 46 patients with chronic stable coronary artery disease who were randomly allocated to placebo (n=23) or ivabradine (n=23) in a single-blinded fashion for 6 months. Concomitant baseline medication was continued unchanged throughout the study except for β-blockers, which were stopped during the study period. Central blood pressure and stroke volume were measured directly by left heart catheterization at baseline and after 6 months. For the determination of resting HR at baseline and at follow-up, 24-hour ECG monitoring was performed. Patients on ivabradine showed an increase of 11 mm Hg in central systolic pressure from 129±22 mm Hg to 140±26 mm Hg (P=0.02) and in stroke volume by 86±21.8 to 107.2±30.0 mL (P=0.002). In the placebo group, central systolic pressure and stroke volume remained unchanged. Estimates of myocardial oxygen consumption (HR×systolic pressure and time-tension index) remained unchanged with ivabradine.The decrease in HR from baseline to follow-up correlated with the concomitant increase in central systolic pressure (r=-0.41, P=0.009) and in stroke volume (r=-0.61, Pcoronary artery disease patients. CLINICAL TRIALSURL: http://www.clinicaltrials.gov. Unique identifier NCT01039389. © 2016 American Heart Association, Inc.

  14. Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution

    Science.gov (United States)

    Wisniewiski, David

    2015-03-01

    Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.

  15. Quantitative parameterization of soil surface structure with increasing rainfall volumes

    OpenAIRE

    Edison Aparecido Mome Filho

    2016-01-01

    The study of soil structure allows inferences on soil behavior. Quantitative parameters are oftentimes required to describe soil structure and the multifractal ones are still underused in soil science. Some studies have shown relations between the multifractal spectrum and both soil surface roughness decay by rainfall and porous system heterogeneity, however, a particular multifractal response to a specific soil behavior is not established yet. Therefore, the objectives of this research were:...

  16. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  17. Effects of Surface Roughness, Oxidation, and Temperature on the Emissivity of Reactor Pressure Vessel Alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J. L. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin; Jo, H. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin; Tirawat, R. [National Renewable Energy Laboratory, Concentrating Solar Power Group, Golden, Colorado; Blomstrand, K. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin; Sridharan, K. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin

    2017-08-31

    Thermal radiation will be an important mode of heat transfer in future high-temperature reactors and in off-normal high-temperature scenarios in present reactors. In this work, spectral directional emissivities of two reactor pressure vessel (RPV) candidate materials were measured at room temperature after exposure to high-temperature air. In the case of SA508 steel, significant increases in emissivity were observed due to oxidation. In the case of Grade 91 steel, only very small increases were observed under the tested conditions. Effects of roughness were also investigated. To study the effects of roughening, unexposed samples of SA508 and Grade 91 steel were roughened via one of either grinding or shot-peening before being measured. Significant increases were observed only in samples having roughness exceeding the roughness expected of RPV surfaces. While the emissivity increases for SA508 from oxidation were indeed significant, the measured emissivity coefficients were below that of values commonly used in heat transfer models. Based on the observed experimental data, recommendations for emissivity inputs for heat transfer simulations are provided.

  18. Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.

    2015-01-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.

  19. Proprioceptive neuromuscular facilitation does not increase blood pressure of healthy elderly women.

    Science.gov (United States)

    Pereira, Marcelo Pinto

    2012-07-01

    Proprioceptive neuromuscular facilitation (PNF) is an attractive method to increase strength and proprioception of elderly individuals. However, a major clinical concern about the prescription of PNF is the belief that it can cause a cardiovascular overload, because it involves close-to-maximal loads and isometric contractions. Yet the acute effect of a PNF training session on cardiovascular response in elderly individuals is still unknown. Hence, the objective of this study was to evaluate the effect of PNF on diastolic and systolic blood pressure of healthy elderly people. Fifteen older women (mean age 72.40±6.82 years) performed three sets (five repetitions each) of three different PNF techniques (rhythmic initiation, dynamic reversion, and isotonic combination), executing a single movement pattern. Diastolic and systolic blood pressure (DBP and SBP) were evaluated by means of a manual sphygmomanometer immediately before and during the last two repetitions (last set) of each technique. A two-way ANOVA test (time and technique) was performed to investigate the PNF effect on blood pressure. No time (preexercise to postexercise) (p=0.33 for DBP; p=0.06 for SBP) or PNF technique (p=0.75; p=0.81) effect were observed. In conclusion, we can state that the execution of these PNF techniques is safe for the cardiovascular system of healthy elderly women, because no blood pressure increases were found.

  20. Effects of radiation pressure on the equipotential surfaces in x-ray binaries

    International Nuclear Information System (INIS)

    Kondo, Y.; McCluskey, G.E. Jr.; Gulden, S.L.

    1976-01-01

    Equipotential surfaces incorporating the effect of radiation pressure were computed for the x-ray binaries Cen X-3, Cyg X-1 = HDE 226868, Vela XR-1 = 3U 0900-40 = HD 77581, and 3U 1700-37 = HD 153919. The topology of the equipotential surfaces is significantly affected by radiation pressure. In particular, the so-called critical Roche (Jacobian) lobes, the traditional figure 8's, do not exist. The effects of these results on modeling x-ray binaries are discussed

  1. Increased Level of Morning Surge in Blood Pressure in Normotensives: ACross-Sectional Study from Pakistan.

    Science.gov (United States)

    Almas, Aysha; Sultan, Fatehali Tipoo; Kazmi, Khawar

    2016-10-01

    To determine the mean morning surge (MS) in blood pressure, the frequency of increased morning surge in normotensive subjects, and to compare those with morning surge with those without MS. Across-sectional, comparative study. The Department of Medicine, The Aga Khan University Hospital, Karachi, from April 2011 to March 2012. Adult normotensive healthy volunteers aged 35 to 65 years were inducted. Their ambulatory blood pressure (ABP) was measured over a 24-hour period, using digital ambulatory blood pressure monitors. Morning surge was calculated as the average of four readings after waking minus the lowest three nocturnal readings. Increased morning surge was defined as > 11 mm Hg in systolic (SBP) or > 12 mm Hg in diastolic (DBP). Dipping was defined as > 10% dipping in blood pressure. Eighty-two healthy volunteers were recruited. Their mean age was 36.9 ±1.2 years; 74.4 (61%) were men, and 58.5 (48%) woke up for morning prayers. Mean overall SBPwas 113 ±1.6 mm Hg, overall DBPwas 73.9 ±0.7 mm Hg, and overall heart rate was 75 (10) beats/minute. Mean morning surge was 17.6 ±1.0 mm Hg in SBPand 16.0 ±0.8 mm Hg in DBP. The frequency of increased morning surge was 66 (80.5%) in SBP, and 57 (69%) in DBP. On comparison of participants with normal morning surge and increased morning surge in SBP, there was a significant difference in nondipping status (13.4% in normal vs. 18.3% in increased morning surge, p= 0.001). Mean morning surge in SBPand DBPare relatively higher in this subset population in a tertiary care center in Pakistan. These values are higher than those reported in the literature.

  2. Increase in vagal activity during hypotensive lower-body negative pressure in humans

    DEFF Research Database (Denmark)

    Sander-Jensen, K; Mehlsen, J; Stadeager, C

    1988-01-01

    Progressive central hypovolemia is characterized by a normotensive, tachycardic stage followed by a reversible, hypotensive stage with slowing of the heart rate (HR). We investigated circulatory changes and arterial hormone concentrations in response to lower-body negative pressure (LBNP) in six...... volunteers before and after atropine administration. LBNP of 55 mmHg initially resulted in an increase in HR from 55 +/- 4 to 90 +/- 5 beats/min and decreases in mean arterial pressure (MAP) from 94 +/- 4 to 81 +/- 5 mmHg, in central venous pressure from 7 +/- 1 to -3 +/- 1 mmHg, and in cardiac output from 6.......1 +/- 0.5 to 3.7 +/- 0.11/min. Concomitantly, epinephrine and norepinephrine levels increased. After 8.2 +/- 2.3 min of LBNP, the MAP had decreased to 41 +/- 7 mmHg and HR had decreased to 57 +/- 3 beats/min. Vasopressin increased from 1.2 +/- 0.3 to 137 +/- 45 pg/ml and renin activity increased from 1...

  3. Dynamic modeling method of the bolted joint with uneven distribution of joint surface pressure

    Science.gov (United States)

    Li, Shichao; Gao, Hongli; Liu, Qi; Liu, Bokai

    2018-03-01

    The dynamic characteristics of the bolted joints have a significant influence on the dynamic characteristics of the machine tool. Therefore, establishing a reasonable bolted joint dynamics model is helpful to improve the accuracy of machine tool dynamics model. Because the pressure distribution on the joint surface is uneven under the concentrated force of bolts, a dynamic modeling method based on the uneven pressure distribution of the joint surface is presented in this paper to improve the dynamic modeling accuracy of the machine tool. The analytic formulas between the normal, tangential stiffness per unit area and the surface pressure on the joint surface can be deduced based on the Hertz contact theory, and the pressure distribution on the joint surface can be obtained by the finite element software. Futhermore, the normal and tangential stiffness distribution on the joint surface can be obtained by the analytic formula and the pressure distribution on the joint surface, and assigning it into the finite element model of the joint. Qualitatively compared the theoretical mode shapes and the experimental mode shapes, as well as quantitatively compared the theoretical modal frequencies and the experimental modal frequencies. The comparison results show that the relative error between the first four-order theoretical modal frequencies and the first four-order experimental modal frequencies is 0.2% to 4.2%. Besides, the first four-order theoretical mode shapes and the first four-order experimental mode shapes are similar and one-to-one correspondence. Therefore, the validity of the theoretical model is verified. The dynamic modeling method proposed in this paper can provide a theoretical basis for the accurate dynamic modeling of the bolted joint in machine tools.

  4. Increased Intracranial Pressure in a Boy with Gorham-Stout Disease

    Directory of Open Access Journals (Sweden)

    Manisha K. Patel

    2016-04-01

    Full Text Available Gorham-Stout disease (GSD, also known as vanishing bone disease, is a rare disorder, which most commonly presents in children and young adults and is characterized by an excessive proliferation of lymphangiomatous tissue within the bones. This lymphangiomatous proliferation often affects the cranium and, due to the proximate location to the dura surrounding cerebrospinal fluid (CSF spaces, can result in CSF leaks manifesting as intracranial hypotension with clinical symptoms to include orthostatic headache, nausea, and vertigo. We present the case of a boy with GSD and a known history of migraine headaches who presented with persistent headaches due to increased intracranial pressure. Although migraine had initially been suspected, he was eventually diagnosed with intracranial hypertension after developing ophthalmoplegia and papilledema. We describe the first known instance of successful medical treatment of increased intracranial pressure in a patient with GSD.

  5. Parameters of the center of pressure displacement on the saddle during hippotherapy on different surfaces

    Directory of Open Access Journals (Sweden)

    Fabiana M. Flores

    2015-06-01

    Full Text Available Background: Hippotherapy uses horseback riding movements for therapeutic purposes. In addition to the horse's movement, the choice of equipment and types of floor are also useful in the intervention. The quantification of dynamic parameters that define the interaction of the surface of contact between horse and rider provides insight into how the type of floor surface variations act upon the subject's postural control. Objective: To test whether different types of surfaces promote changes in the amplitude (ACOP and velocity (VCOP of the center of pressure (COP displacement during the rider's contact with the saddle on the horse's back. Method: Twenty two healthy adult male subjects with experience in riding were evaluated. The penetration resistances of asphalt, sand and grass surfaces were measured. The COP data were collected on the three surfaces using a pressure measurement mat. Results: ACOP values were higher in sand, followed by grass and asphalt, with significant differences between sand and asphalt (anteroposterior, p=0.042; mediolateral, p=0.019. The ACOP and VCOP values were higher in the anteroposterior than in the mediolateral direction on all surfaces (ACOP, p=0.001; VCOP, p=0.006. The VCOP did not differ between the surfaces. Conclusion: Postural control, measured by the COP displacement, undergoes variations in its amplitude as a result of the type of floor surface. Therefore, these results reinforce the importance of the choice of floor surface when defining the strategy to be used during hippotherapy intervention.

  6. Parameters of the center of pressure displacement on the saddle during hippotherapy on different surfaces.

    Science.gov (United States)

    Flores, Fabiana M; Dagnese, Frederico; Mota, Carlos B; Copetti, Fernando

    2015-01-01

    Hippotherapy uses horseback riding movements for therapeutic purposes. In addition to the horse's movement, the choice of equipment and types of floor are also useful in the intervention. The quantification of dynamic parameters that define the interaction of the surface of contact between horse and rider provides insight into how the type of floor surface variations act upon the subject's postural control. To test whether different types of surfaces promote changes in the amplitude (ACOP) and velocity (VCOP) of the center of pressure (COP) displacement during the rider's contact with the saddle on the horse's back. Twenty two healthy adult male subjects with experience in riding were evaluated. The penetration resistances of asphalt, sand and grass surfaces were measured. The COP data were collected on the three surfaces using a pressure measurement mat. ACOP values were higher in sand, followed by grass and asphalt, with significant differences between sand and asphalt (anteroposterior, p=0.042; mediolateral, p=0.019). The ACOP and VCOP values were higher in the anteroposterior than in the mediolateral direction on all surfaces (ACOP, p=0.001; VCOP, p=0.006). The VCOP did not differ between the surfaces. Postural control, measured by the COP displacement, undergoes variations in its amplitude as a result of the type of floor surface. Therefore, these results reinforce the importance of the choice of floor surface when defining the strategy to be used during hippotherapy intervention.

  7. Measures of subclinical cardiac dysfunction and increased filling pressures associate with pulmonary arterial pressure in the general population : Results from the population-based Rotterdam Study

    NARCIS (Netherlands)

    Billar, R.J. (Ryan J.); M.J.G. Leening (Maarten); D. Merkus (Daphne); G.G. Brusselle (Guy); A. Hofman (Albert); B.H.Ch. Stricker (Bruno); H.A. Ghofrani; O.H. Franco (Oscar); H. Gall (Henning); J.F. Felix (Janine)

    2017-01-01

    textabstractPulmonary hypertension is associated with increased mortality and morbidity in the elderly population. Heart failure is a common cause of pulmonary hypertension. Yet, the relation between left heart parameters reflective of subclinical cardiac dysfunction and increased filling pressures,

  8. Irreversible particle motion in surfactant-laden interfaces due to pressure-dependent surface viscosity

    Science.gov (United States)

    Manikantan, Harishankar; Squires, Todd M.

    2017-09-01

    The surface shear viscosity of an insoluble surfactant monolayer often depends strongly on its surface pressure. Here, we show that a particle moving within a bounded monolayer breaks the kinematic reversibility of low-Reynolds-number flows. The Lorentz reciprocal theorem allows such irreversibilities to be computed without solving the full nonlinear equations, giving the leading-order contribution of surface pressure-dependent surface viscosity. In particular, we show that a disc translating or rotating near an interfacial boundary experiences a force in the direction perpendicular to that boundary. In unbounded monolayers, coupled modes of motion can also lead to non-intuitive trajectories, which we illustrate using an interfacial analogue of the Magnus effect. This perturbative approach can be extended to more complex geometries, and to two-dimensional suspensions more generally.

  9. Surface energy-tunable iso decyl acrylate based molds for low pressure-nanoimprint lithography

    Science.gov (United States)

    Tak, Hyowon; Tahk, Dongha; Jeong, Chanho; Lee, Sori; Kim, Tae-il

    2017-10-01

    We presented surface energy-tunable nanoscale molds for unconventional lithography. The mold is highly robust, transparent, has a minimized haze, does not contain additives, and is a non-fluorinated isodecyl acrylate and trimethylolpropane triacrylate based polymer. By changing the mixing ratio of the polymer components, the cross-linking density, mechanical modulus, and surface energy (crucial factors in low pressure ((1-2) × 105 N m-2) low pressure-nanoimprint lithography (LP-NIL)), can be controlled. To verify these properties of the molds, we also characterized the surface energy by measuring the contact angles and calculating the work of adhesion among the wafer, polymer film, and mold for successful demolding in nanoscale structures. Moreover, the molds showed high optical clarity and precisely tunable mechanical and surface properties, capable of replicating sub-100 nm patterns by thermal LP-NIL and UV-NIL.

  10. Thermochemical micro imprinting of single-crystal diamond surface using a nickel mold under high-pressure conditions

    International Nuclear Information System (INIS)

    Imoto, Yuji; Yan, Jiwang

    2017-01-01

    Graphical abstract: A Ni mold and thermochemically imprinted microstructures on diamond. - Highlights: • A thermochemical method for micro machining/patterning of diamond is proposed. • Various kinds of microstructures were imprinted on diamond using a Ni mold. • A graphite layer is formed during imprinting which can be removed by acid. • The processing depth depends strongly on pressure and temperature. - Abstract: Single-crystal diamond is an important material for cutting tools, micro electro mechanical systems, optical devices, and semiconductor substrates. However, the techniques for producing microstructures on diamond surface with high efficiency and accuracy have not been established. This paper proposes a thermochemical imprinting method for transferring microstructures from a nickel (Ni) mold onto single-crystal diamond surface. The Ni mold was micro-structured by a nanoindenter and then pressed against the diamond surface under high temperature and pressure in argon atmosphere. Results show that microstructures on the Ni mold were successfully transferred onto the diamond surface, and their depth increased with both pressure and temperature. Laser micro-Raman spectroscopy, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses indicate that a graphite layer was formed over the contact area between diamond and Ni during pressing, and after washing by a mixed acid, the graphite layer could be completely removed. This study demonstrated the feasibility of a cost-efficient fabrication method for large-area microstructures on single-crystal diamond.

  11. Fluorination of poly(dimethylsiloxane surfaces by low pressure CF4 plasma – physicochemical and antifouling properties

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available Fluorinated surface groups were introduced into poly(dimethylsiloxane (PDMS coatings by plasma treatment using a low pressure radio frequency discharge operated with tetrafluoromethane. Substrates were placed in a remote position downstream the discharge. Discharge power and treatment time were tuned to alter the chemical composition of the plasma treated PDMS surface. The physicochemical properties and stability of the fluorine containing PDMS were characterized by X-ray photoelectron spectroscopy (XPS, atomic force microscopy (AFM and contact angle measurements. Smooth PDMS coatings with a fluorine content up to 47% were attainable. The CF4 plasma treatment generated a harder, non-brittle layer at the top-most surface of the PDMS. No changes of surface morphology were observed upon one week incubation in aqueous media. Surprisingly, the PDMS surface was more hydrophilic after the introduction of fluorine. This may be explained by an increased exposure of oxygen containing moieties towards the surface upon re-orientation of fluorinated groups towards the bulk, and/or be a consequence of oxidation effects associated with the plasma treatment. Experiments with strains of marine bacteria with different surface energies, Cobetia marina and Marinobacter hydrocarbonoclasticus, showed a significant decrease of bacteria attachment upon fluorination of the PDMS surface. Altogether, the CF4 plasma treatments successfully introduced fluorinated groups into the PDMS, being a robust and versatile surface modification technology that may find application where a minimization of bacterial adhesion is required.

  12. Increasing the compression pressure in an engine by using a long intake pipe

    Science.gov (United States)

    Mathews, Robertson; Gardiner, Arthur W

    1924-01-01

    During some tests of a one-cylinder engine, using gas oil (diesel engine oil, specific gravity 0.86 at 60 F) with solid injection and compression ignition, it was found to be necessary to increase either the jacket water temperature or the compression pressure in order to start the engine. It was found that a sufficient increase in compression pressure could be obtained simply by attaching a long pipe to the inlet flange of the cylinder. However, since no data were available giving the values of the increase in compression pressure that might be expected from such a step-up, an investigation was made covering some engine speeds between 500 r.p.m. and 1800 r.p.m. The data obtained are included here in the form of curves. Although this data is not strictly applicable to another engine, it should give indications of what might be expected with such a set-up on an engine operating at similar speeds. The engine used was a single cylinder Liberty, 5-inch bore and 7-inch stroke, having standard cylinder, cams, valves, and valve timing and operating on a four-stroke cycle.

  13. Driving environment in Iran increases blood pressure even in healthy taxi drivers

    Directory of Open Access Journals (Sweden)

    Soodabeh Navadeh Khodadadi

    2008-12-01

    Full Text Available

    • BACKGROUND: Nowadays, driving is an unseparated part of our new modern lifestyle; and we are exposed to this environment all the days for several hours whether as drivers or as riders. Many reports indicated that Iran is on the top rank of automobile-related morbidity and mortality among developed and even many developing countries that can be due to dangerous driving habits in Iran. We designed this study to find out if environment of driving have clinically important effects on blood pressure (BP and how strong is the effect. We also examined if there were any predictors for the BP rises in driving time.
    • METHODS: In a cross-sectional study, 31 healthy male taxi drivers were included through a multistage proportional sampling method in winter and spring 2007. They were referred to the clinic of hypertension in Shafa Hospital, Kerman. A trained nurse measured the BPs. She also did set up the Ambulatory Blood Pressure Monitor (ABPM on the drivers’ left arms for BP recording every 30 minutes during the day. Based on the diurnal recorded BPs, the subjects were allocated into normotensive and hypertensive (systolic BP > 135 or diastolic BP > 85mmHg groups. The difference among the clinic BPs and the driving BPs was examined by t-test in Stata version 8, followed by a multivariate analysis for exploring the main predictors for BP rises in driving time.
    • RESULTS: Both mean systolic and mean diastolic BPs were significantly increased from 116.85 (SE 2.28 and 74.44 (SE 2.22 mmHg in clinic to 138.64 (SE 2.77 and 95.70 (SE 2.55 mmHg during driving, respectively (P = 0.0001. Pulse pressure remained constant (P = 0.87. The difference between clinic's and driving time measurements was higher in hypertensive group. Those with higher systolic blood pressures in clinic had more frequent and higher BP rises in driving time (P = 0.02.
    • CONCLUSIONS: Driving

    • Photosynthesis and growth response of almond to increased atmospheric ozone partial pressures

      Energy Technology Data Exchange (ETDEWEB)

      Retzlaff, W.A.; Williams, L.E. (Univ. of California, Davis (United States) Kearney Agricultural Center, Parlier, CA (United States)); DeJong, T.M. (Univ. of California, Davis (United States))

      Uniform nursery stock of five almond cultivars [Prunus dulcis (Mill) D.A. Webb syn. P. amygdalus Batsch, cv. Butte, Carmel, Mission, Nonpareil, and Sonora] propagated on peach (P. domstica L. Batsch.) rootstock were exposed to three different atmospheric ozone (O[sub 3]) partial pressures. The trees were planted in open-top fumigation chambers on 19 Apr. 1989 at the University of California Kearny Agricultural Center located in the San Joaquin Valley of California. Exposures of the trees to three atmospheric O[sub 3] partial pressures lasted from 1 June to 2 Nov. 1989. The mean 12-h [0800-2000 h Pacific Daylight Time (PDT)] O[sub 3] partial pressures measured in the open-top chambers during the experimental period were 0.038, 0.060, and 0.112 [mu]Pa Pa[sup [minus]1] O[sub 3] in the charcoal filtered, ambient, and ambient + O[sub 3] treatments, respectively. Leaf net CO[sub 2] assimilation, trunk cross-sectional area growth, and root, trunk, foliage, and total dry weight of Nonpareil were reduced by increased atmospheric O[sub 3] partial pressures. Mission was unaffected by O[sub 3] and Butte, Carmel, and Sonora were intermediate in their responses. Foliage of Nonpareil also abscised prematurely in the ambient and ambient + O[sub 3] treatments. The results indicate that there are almond cultivars that are sensitive to O[sub 3] exposure.

    • Photosynthesis and growth response of almond to increased atmospheric ozone partial pressures

      International Nuclear Information System (INIS)

      Retzlaff, W.A.; Williams, L.E.; DeJong, T.M.

      1992-01-01

      Uniform nursery stock of five almond cultivars [Prunus dulcis (Mill) D.A. Webb syn. P. amygdalus Batsch, cv. Butte, Carmel, Mission, Nonpareil, and Sonora] propagated on peach (P. domstica L. Batsch.) rootstock were exposed to three different atmospheric ozone (O 3 ) partial pressures. The trees were planted in open-top fumigation chambers on 19 Apr. 1989 at the University of California Kearny Agricultural Center located in the San Joaquin Valley of California. Exposures of the trees to three atmospheric O 3 partial pressures lasted from 1 June to 2 Nov. 1989. The mean 12-h [0800-2000 h Pacific Daylight Time (PDT)] O 3 partial pressures measured in the open-top chambers during the experimental period were 0.038, 0.060, and 0.112 μPa Pa -1 O 3 in the charcoal filtered, ambient, and ambient + O 3 treatments, respectively. Leaf net CO 2 assimilation, trunk cross-sectional area growth, and root, trunk, foliage, and total dry weight of Nonpareil were reduced by increased atmospheric O 3 partial pressures. Mission was unaffected by O 3 and Butte, Carmel, and Sonora were intermediate in their responses. Foliage of Nonpareil also abscised prematurely in the ambient and ambient + O 3 treatments. The results indicate that there are almond cultivars that are sensitive to O 3 exposure

    • Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria.

      Science.gov (United States)

      Morgan, S M; Ross, R P; Beresford, T; Hill, C

      2000-03-01

      The use of hydrostatic pressure and lacticin 3147 treatments were evaluated in milk and whey with a view to combining both treatments for improving the quality of minimally processed dairy foods. The system was evaluated using two foodborne pathogens: Staphylococcus aureus ATCC6538 and Listeria innocua DPC1770. Trials against Staph. aureus ATCC6538 were performed using concentrated lacticin 3147 prepared from culture supernatant. The results demonstrated a more than additive effect when both treatments were used in combination. For example, the combination of 250 MPa (2.2 log reduction) and lacticin 3147 (1 log reduction) resulted in more than 6 logs of kill. Similar results were obtained when a foodgrade powdered form of lacticin 3147 (developed from a spray dried fermentatation of reconstituted demineralized whey powder) was evaluated for the inactivation of L. innocua DPC1770. Furthermore, it was observed that treatment of lacticin 3147 preparations with pressures greater than 400 MPa yielded an increase in bacteriocin activity (equivalent to a doubling of activity). These results indicate that a combination of high pressure and lacticin 3147 may be suitable for improving the quality of minimally processed foods at lower hydrostatic pressure levels.

    • Durability of simulated waste glass: effects of pressure and formation of surface layers

      International Nuclear Information System (INIS)

      Wicks, G.G.; Mosley, W.C.; Whitkop, P.G.; Saturday, K.A.

      1981-01-01

      The leaching behavior of simulated Savannah River Plant (SRP) waste glass was studied at elevated pressures and anticipated storage temperatures. An integrated approach, which combined leachate solution analyses with both bulk and surface studies, was used to study the corrosion process. Compositions of leachates were evaluated by colorimetry and atomic absorption. Used in the bulk and surface analyses were optical microscopy, scanning electron microscopy, x-ray energy spectroscopy, wide-angle x-ray, diffraction, electron microprobe analysis, infrared reflectance spectroscopy, electron spectroscopy for chemical analysis, and Auger electron spectroscopy. Results from this study show that there is no significant adverse effect of pressure, up to 1500 psi and 90 0 C, on the chemical durability of simulated SPR waste glass leached for one month in deionized water. In addition, the leached glass surface layer was characterized by an adsorbed film rich in minor constituents from the glass. This film remained on the glass surface even after leaching in relatively alkaline solutions at elevated pressures at 90 0 C for one month. The sample surface area to volume of leachant ratios (SA/V) was 10:1 cm -1 and 1:10 cm -1 . The corrosion mechanisms and surface and subsurface layers produced will be discussed along with the potential importance of these results to repository storage

    • On the Pressure Distribution in a Porous Media under a Spherical Loading Surface

      Science.gov (United States)

      Wang, Qiuyun; Zhu, Zenghao; Nathan, Rungun; Wu, Qianhong

      2017-11-01

      The phenomenon of pressure generation and relaxation inside a porous media is widely observed in biological systems. Herein, we report a biomimetic study to examine the pressure distribution inside a soft porous layer when a spherical loaded surface suddenly impacts on it. A novel experimental setup was developed that includes a fully instrumented spherical piston and a soft fibrous porous layer underneath. Extensive experimental study was performed with different porous materials, different loadings and different sized loading surfaces. The pore pressure generation and the motion of the loading surface were recorded. A novel theoretical model was developed to characterize the pressure field during the process. Excellent agreement was observed between the experimental results and the theoretically predictions. It shows that the pressure generation is governed by the Brinkman parameter, α = h/Kp0.5, where h is the porous layer thickness, and Kp is the undeformed permeability. The study improves our understanding of the dynamic response of soft porous media under rapid compression. It has board impact on the study of transient load bearing in biological systems and industry applications. This work was supported by the National Science Foundation (NSF CBET) under Award #1511096.

    • Surface wind, pressure and temperature fields near tornadic and non-tornadic narrow cold-frontal rainbands

      Science.gov (United States)

      Clark, Matthew; Parker, Douglas

      2014-05-01

      Narrow cold frontal rainbands (NCFRs) occur frequently in the UK and other parts of northwest Europe. At the surface, the passage of an NCFR is often marked by a sharp wind veer, abrupt pressure increase and a rapid temperature decrease. Tornadoes and other instances of localised wind damage sometimes occur in association with meso-gamma-scale vortices (sometimes called misocyclones) that form along the zone of abrupt horizontal wind veer (and associated vertical vorticity) at the leading edge of the NCFR. Using one-minute-resolution data from a mesoscale network of automatic weather stations, surface pressure, wind and temperature fields in the vicinity of 12 NCFRs (five of which were tornadic) have been investigated. High-resolution surface analyses were obtained by mapping temporal variations in the observed parameters to equivalent spatial variations, using a system velocity determined by analysis of the radar-observed movement of NCFR precipitation segments. Substantial differences were found in the structure of surface wind and pressure fields close to tornadic and non-tornadic NCFRs. Tornadic NCFRs exhibited a large wind veer (near 90°) and strong pre- and post-frontal winds. These attributes were associated with large vertical vorticity and horizontal convergence across the front. Tornadoes typically occurred where vertical vorticity and horizontal convergence were increasing. Here, we present surface analyses from selected cases, and draw comparisons between the tornadic and non-tornadic NCFRs. Some Doppler radar observations will be presented, illustrating the development of misocyclones along parts of the NCFR that exhibit strong, and increasing, vertical vorticity stretching. The influence of the stability of the pre-frontal air on the likelihood of tornadoes will also be discussed.

    • Perfusion of veins at arterial pressure increases the expression of KLF5 and cell cycle genes in smooth muscle cells

      Energy Technology Data Exchange (ETDEWEB)

      Amirak, Emre [Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ (United Kingdom); Zakkar, Mustafa; Evans, Paul C. [Cardiovascular Sciences, Bywaters Center for Vascular Inflammation, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London W12 ONN (United Kingdom); Kemp, Paul R., E-mail: p.kemp@imperial.ac.uk [Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ (United Kingdom)

      2010-01-01

      Vascular smooth muscle cell (VSMC) proliferation remains a major cause of veno-arterial graft failure. We hypothesised that exposure of venous SMCs to arterial pressure would increase KLF5 expression and that of cell cycle genes. Porcine jugular veins were perfused at arterial or venous pressure in the absence of growth factors. The KLF5, c-myc, cyclin-D and cyclin-E expression were elevated within 24 h of perfusion at arterial pressure but not at venous pressure. Arterial pressure also reduced the decline in SM-myosin heavy chain expression. These data suggest a role for KLF5 in initiating venous SMCs proliferation in response to arterial pressure.

  1. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    characteristics. Flight mechanics analysis is primarily concerned with the aerodynamic data composed ... static data are the limiting case of unsteady flow pattern as time tends to infinity (or at least a few times the .... as the qualitative changes in the surface pressure model are independently confirmed by Roos. & Kegelman ...

  2. Technology of wear resistance increase of surface elements of friction couples using solid lubricants

    Science.gov (United States)

    Morgunov, A. P.; Masyagin, V. B.; Derkach, V. V.; Matveev, N. A.

    2017-06-01

    Based on the results of experimental investigations in wear resistance increase using lamellar solid lubricants the technology of wear resistance increase of surface elements of friction couples by applying solid lubricants is developed with the following surface plastic deformation providing enough bond strength of solid lubricant with an element surface and increasing operational life.

  3. Antibacterial mouthwash blunts oral nitrate reduction and increases blood pressure in treated hypertensive men and women.

    Science.gov (United States)

    Bondonno, Catherine P; Liu, Alex H; Croft, Kevin D; Considine, Michael J; Puddey, Ian B; Woodman, Richard J; Hodgson, Jonathan M

    2015-05-01

    Endothelial nitric oxide (NO) is fundamental to cardiovascular health. Dietary nitrate and nitrate from endothelial derived NO metabolism provides a significant contribution to the circulating NO pool through the nitrate-nitrite-NO pathway. A critical step in this pathway is the reduction of nitrate to nitrite by the oral microbiota. We aimed to assess the effects of antibacterial mouthwash use on markers of nitrate-nitrite-NO metabolism and blood pressure in treated hypertensive men and women. Fifteen treated hypertensive men and women (mean age 65 years) were recruited to a randomized controlled cross-over trial. The effects of 3-day use of antibacterial mouthwash on oral nitrate to nitrite reduction, salivary and plasma nitrate and nitrite, plasma cyclic guanosine monophosphate (cGMP) and systolic and diastolic blood pressure were compared to control (water). Relative to control, 3-day antibacterial mouthwash use resulted in decreased oral nitrate to nitrite reduction (P = 0.02), decreased salivary nitrite (P = 0.01) and increased salivary nitrate (P nitrite concentration (P = 0.09). Use of antibacterial mouthwash over 3 days also resulted in higher systolic blood pressure (2.3mm Hg; 95% CI: 0.5, 4.0; P = 0.01), but not diastolic blood pressure (P = 0.4) or plasma cGMP (P = 0.7), relative to control. Interruption of the nitrate-nitrite-NO pathway through the use of antibacterial mouthwash was paralleled by a small elevation of systolic blood pressure in treated hypertensive men and women. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Lower pressurization to increase BWR electric power under thermal hydraulic criteria

    International Nuclear Information System (INIS)

    Kataoka, Kazuyoshi; Chuman, Kazuto; Mizumachi, Wataru; Yoshioka, Ritsuo; Mori, Michitsugu; Horie, Akira; Machida, Yuzo

    1995-01-01

    Electric power output versus core size is one of the factors that determine the electricity generation costs of BWRs. The power output is roughly calculated from the thermal power of the BWR core and the thermal efficiency of the BWR turbine system. The thermal power is restricted by the reactor's thermal hydraulic criteria such as the maximum linear heat generation rate, the minimum critical power ratio, the pressure drop in the core and the feedwater temperature at the BWR inlet. The combination of a system pressure of approximately 5.5 MPa and a feedwater temperature of approximately 439 K offers the maximum electric power output for a BWR with 9 x 9 fuel bundles. The amount of electric power generated is about 9% more than that generated by a conventional BWR under the thermal hydraulic criteria. The electric power output increases as the system pressure and the feedwater temperature are decreased from the current design of 7.3 MPa and 488 K, respectively, because the increased critical power of the fuel bundles compensates for the lower thermal efficiency. (author)

  5. Dummy/pacifier use in preterm infants increases blood pressure and improves heart rate control.

    Science.gov (United States)

    Horne, Rosemary S C; Fyfe, Karinna L; Odoi, Alexsandria; Athukoralage, Anjalee; Yiallourou, Stephanie R; Wong, Flora Y

    2016-02-01

    Preterm infants are at increased risk of sudden infant death syndrome (SIDS). Use of a dummy/pacifier is thought to be protective against SIDS; accordingly, we assessed the effects of dummy/pacifier use on blood pressure, cerebral oxygenation, and heart rate control over the first 6 mo of life after term corrected age (CA) when SIDS risk is greatest. Thirty-five preterm infants were studied longitudinally at 2-4 wk, 2-3 mo, and 5-6 mo CA. Cardiac control was assessed from spectral indices of heart rate variability (HRV) in the low frequency (LF) and the high frequency (HF) range, and the ratio of HF/LF indicating sympathovagal balance was calculated. Overall, at 2-3 mo, mean arterial pressure was significantly higher in the supine position in dummy/pacifier users in both quiet sleep (70 ± 2 vs. 60 ± 2 mm Hg; P pacifier users had higher LF HRV and LF/HF ratio and lower HF HRV. Dummy/pacifier use increased blood pressure during sleep, at the age of greatest SIDS risk. Overall, LF HRV was elevated and HF HRV reduced in dummy/pacifier users, suggesting that dummy use alters cardiac control in preterm infants.

  6. Improvement in fuel utilization in pressurized heavy water reactors due to increased heavy water purity

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1991-01-01

    This paper reports that in a pressurized heavy water reactor (PHWR), the reactivity of the reactor and, consequently, the discharge burnup of the fuel depend on the isotopic purity of the heavy water used in the reactor. The optimal purity of heavy water used in PHWRs, in turn, depends on the cost of fabricated uranium fuel and on the incremental cost incurred in improving the heavy water purity. The physics and economics aspects of the desirability of increasing the heavy water purity in PHWRs in India were first examined in 1978. With the cost data available at that time, it was found that improving the heavy water purity from 99.80% to 99.95% was economically attractive. The same problem is reinvestigated with current cost data. Even now, there is sufficient incentive to improve the isotopic purity of heavy water used in PHWRs. Admittedly, the economic advantage that can be derived depends on the cost of the fabricated fuel. Nevertheless, irrespective of the economics, there is also a fairly substantial saving in natural uranium. That the increase in the heavy water purity is to be maintained only in the low-pressure moderator system, and not in the high-pressure coolant system, makes the option of achieving higher fuel burnup with higher heavy water purity feasible

  7. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.

    Science.gov (United States)

    Wong, Tak-Sing; Kang, Sung Hoon; Tang, Sindy K Y; Smythe, Elizabeth J; Hatton, Benjamin D; Grinthal, Alison; Aizenberg, Joanna

    2011-09-21

    Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging. Inspirations from natural nonwetting structures, particularly the leaves of the lotus, have led to the development of liquid-repellent microtextured surfaces that rely on the formation of a stable air-liquid interface. Despite over a decade of intense research, these surfaces are, however, still plagued with problems that restrict their practical applications: limited oleophobicity with high contact angle hysteresis, failure under pressure and upon physical damage, inability to self-heal and high production cost. To address these challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency. Our approach-inspired by Nepenthes pitcher plants-is conceptually different from the lotus effect, because we use nano/microstructured substrates to lock in place the infused lubricating fluid. We define the requirements for which the lubricant forms a stable, defect-free and inert 'slippery' interface. This surface outperforms its natural counterparts and state-of-the-art synthetic liquid-repellent surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low contact angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice adhesion, and function at high pressures (up to about 680 atm). We show that these properties are insensitive to the precise geometry of the underlying substrate, making our approach applicable to various inexpensive, low-surface-energy structured materials (such as porous Teflon membrane). We envision that these slippery surfaces will be useful in fluid handling and

  8. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  9. Insertion of laryngeal mask airway does not increase the intraocular pressure in children with glaucoma.

    Science.gov (United States)

    Bhardwaj, Neerja; Yaddanapudi, Sandhya; Singh, Swati; Pandav, Surinder S

    2011-10-01

    It is hypothesized that in children with glaucoma, the insertion of laryngeal mask airway (LMA) will cause lesser rise in intraocular pressure (IOP) than tracheal tube (TT). To compare the IOP response to LMA and TT insertion in children with glaucoma. A prospective, randomized, single-blind study was conducted in 30 glaucomatous ASA-1 children, aged 1-10 years scheduled to undergo trabeculectomy. Anesthesia was induced with halothane and maintained for 5 min with 1 MAC of halothane after administering atracurium 0.5 mg·kg(-1) following which LMA or TT was introduced. IOP was measured in both the eyes before and after insertion of airway device for 5 min. The IOP increased significantly from 27.3 ± 5.2 to 31.2 ± 5.4 mmHg (P insertion of LMA. The IOP was significantly higher in group TT compared to group LMA at 2 min (P = 0.004) and 5 min (P = 0.01) after the device insertion. The heart rate (HR) increased significantly after tracheal intubation and returned to baseline 4 min after intubation. The HR increase was significantly more in TT group compared to LMA group at all times of observation. Both systolic blood pressure (SBP; P = 0.01) and diastolic blood pressure (DBP; P = 0.02) showed an increase at 1 min in children in group TT. Insertion of LMA in glaucomatous children is not associated with an increased IOP response or cardiovascular changes. © 2011 Blackwell Publishing Ltd.

  10. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  11. Adult Neuroblastoma Complicated by Increased Intracranial Pressure: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Patrick L. Stevens

    2014-01-01

    Full Text Available Neuroblastoma is the third most commonly occurring malignancy of the pediatric population, although it is extremely rare in the adult population. In adults, neuroblastoma is often metastatic and portends an extremely poor overall survival. Our case report documents metastatic neuroblastoma occurring in a healthy 29-year-old woman whose course was complicated by an unusual presentation of elevated intracranial pressures. The patient was treated with systemic chemotherapy, I131 metaiodobenzylguanidine (MIBG radiotherapy, and autologous stem cell transplant (SCT. Unfortunately the patient’s response to therapy was limited and she subsequently died. We aim to review neuroblastoma in the context of increased intracranial pressure and the limited data of neuroblastoma occurring in the adult population, along with proposed treatment options.

  12. Choroid plexus aquaporin 1 and intracranial pressure are increased in obese rats

    DEFF Research Database (Denmark)

    Uldall, M; Bhatt, D K; Kruuse, C

    2017-01-01

    furthermore investigated expression profiles of aquaporin 1 (AQP1) and Na/K ATPase. METHODS: ICP was measured in obese and lean Zucker rats over a period of 28 days. Arterial pCO2and serum retinol were measured in serum samples. The CPs were isolated, and target messenger RNA (mRNA) and protein were analyzed......BACKGROUND/OBJECTIVES: Idiopathic intracranial hypertension (IIH) is a condition of increased intracranial pressure (ICP) without identifiable cause. The majority of IIH patients are obese, which suggests a connection between ICP and obesity. The aim of the study was to compare ICP in lean...... and obese rats. We also aimed to clarify if any ICP difference could be attributed to changes in some well-known ICP modulators; retinol and arterial partial pressure of CO2(pCO2). Another potential explanation could be differences in water transport across the choroid plexus (CP) epithelia, and thus we...

  13. Comparative study on two different seal surface structure for reactor pressure vessel sealing behavior

    International Nuclear Information System (INIS)

    Chen Jun; Xiong Guangming; Deng Xiaoyun

    2014-01-01

    The seal surface structure is very important to reactor pressure vessel (RPV) sealing behavior. In this paper, two 3-D RPV sealing analysis finite models have been established with different seal surface structures, in order to study the influence of two structures. The separation of RPV upper and lower flanges, bolt loads and etc. are obtained, which are used to evaluate the sealing behavior of the RPV. Meanwhile, the comparative analysis of safety margin of two seal surface structural had been done, which provides the theoretical basis for RPV seal structure design optimization. (authors)

  14. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-06

    Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work will be discussed.

  15. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Science.gov (United States)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-04-01

    Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  16. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    Science.gov (United States)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  17. High-pressure catalytic reactions over single-crystal metal surfaces

    Science.gov (United States)

    Rodriguez, JoséA.; Wayne Goodman, D.

    1991-11-01

    Studies dealing with high-pressure catalytic reactions over single-crystal surfaces are reviewed. The coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis allows detailed study of structure sensitivity, the effects of promoters and inhibitors on catalytic activity, and, in certain cases, identification of reaction intermediates by post-reaction surface analysis. Examples are provided which demonstrate the relevance of single-crystal studies for modeling the behaviour of high-surface-area supported catalysts. Studies of CO methanation and CO oxidation over single-crystal surfaces provide convincing evidence that these reactions are structure insensitive. For structure-sensitive reactions (ammonia synthesis, alkane hydrogenolysis, alkane isomerization, water-gas shift reaction, etc.) model single-crystal studies allow correlations to be established between surface structure and catalytic activity. The effects of both electronegative (S and P) and electropositive (alkali metals) impurities upon the catalytic activity of metal single crystals for ammonia synthesis, CO methanation, alkane hydrogenolysis, ethylene epoxidation and water-gas shift are discussed. The roles of "ensemble" and "ligand" effects in bimetallic catalysts are examined in light of data obtained using surfaces prepared by vapor-depositing one metal onto a crystal face of a dissimilar metal.

  18. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    Formation of meta-stable surface-alloys can be used as a way to tune the binding strength of reaction intermediates and could therefore be used as improved catalyst materials for heterogeneous catalysis. Understanding the role of adsorbates on such alloy surfaces can provide new insights for engi...... and bulk Pt contributions. The study provides direct evidence on how it is possible to monitor the surface structure under near operation conditions. © 2014 Elsevier B.V. All rights reserved.......Formation of meta-stable surface-alloys can be used as a way to tune the binding strength of reaction intermediates and could therefore be used as improved catalyst materials for heterogeneous catalysis. Understanding the role of adsorbates on such alloy surfaces can provide new insights...... for engineering of more active or selective catalyst materials. Dynamical surface changes on alloy surfaces due to the adsorption of reactants in high gas pressures are challenging to investigate using standard characterization tools. Here we apply synchrotron illuminated near ambient pressure X-ray photoelectron...

  19. Simultaneous and long-lasting hydrophilization of inner and outer wall surfaces of polytetrafluoroethylene tubes by transferring atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Chen, Faze; Song, Jinlong; Huang, Shuai; Xu, Wenji; Sun, Jing; Liu, Xin; Xu, Sihao; Xia, Guangqing; Yang, Dezheng

    2016-01-01

    Plasma hydrophilization is a general method to increase the surface free energy of materials. However, only a few works about plasma modification focus on the hydrophilization of tube inner and outer walls. In this paper, we realize simultaneous and long-lasting plasma hydrophilization on the inner and outer walls of polytetrafluoroethylene (PTFE) tubes by atmospheric pressure plasmas (APPs). Specifically, an Ar atmospheric pressure plasma jet (APPJ) is used to modify the PTFE tube’s outer wall and meanwhile to induce transferred He APP inside the PTFE tube to modify its inner wall surface. The optical emission spectrum (OES) shows that the plasmas contain many chemically active species, which are known as enablers for various applications. Water contact angle (WCA) measurements, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) are used to characterize the plasma hydrophilization. Results demonstrate that the wettability of the tube walls are well improved due to the replacement of the surface fluorine by oxygen and the change of surface roughness. The obtained hydrophilicity decreases slowly during more than 180 d aging, indicating a long-lasting hydrophilization. The results presented here clearly demonstrate the great potential of transferring APPs for surface modification of the tube’s inner and outer walls simultaneously. (paper)

  20. Exploration of surface hydrophilic properties on AISI 304 stainless steel and silicon wafer against aging after atmospheric pressure plasma treatment

    Science.gov (United States)

    Chuang, Shang-I.; Duh, Jenq-Gong

    2014-11-01

    The aim of this work is to seek the enhanced surface hydrophilic properties on AISI 304 stainless steel and silicon wafer after atmospheric pressure plasma treatment using a specifically designed atmospheric pressure plasma jet. The aging tendency of surface hydrophilic property under air is highlighted. It is concluded that both of the silicon wafer and stainless steel treated with plasma generated from supply gas of argon 15 slm mixed with oxygen 40 sccm shows a better tendency on remaining high water contact angle as compared to that with pure argon and nitrogen addition. Additional peaks of O I (777, 844 nm), O II (408 nm) are detected by optical emission spectroscope indicating the presence of the oxygen radicals and ionic species, which interact with surfaces and thus contribute to low water contact angle (WCA) surfaces. Moreover, the result acquired from X-ray photoelectron spectroscopy (XPS) indicates that the increase in the oxygen-related bonding exhibits a better contribution on remaining high surface energy over a period of time.

  1. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  2. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  3. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  4. Efficient modification of the surface properties of interconnected porous hydroxyapatite by low-pressure low-frequency plasma treatment to promote its biological performance

    Science.gov (United States)

    Lee, Dae-Sung; Moriguchi, Yu; Myoui, Akira; Yoshikawa, Hideki; Hamaguchi, Satoshi

    2012-09-01

    Dielectric barrier discharge plasma treatment at low pressure is found to significantly improve the biological performance of artificial bones made of interconnected porous calcium hydroxyapatite (IP-CHA). One of the essential parameters associated with their biological performance is hydrophilicity of their exterior surfaces as well as surfaces of inner pores. It is found that plasma treatment at low pressures is highly effective in making the inner pore surfaces more hydrophilic. Preliminary in vivo experiments of plasma-treated IP-CHA artificial bones in rats have shown fast formation of blood vessels in their inner pores, implying the increase in osteoconductivity due to the plasma treatment.

  5. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    International Nuclear Information System (INIS)

    Özen, Soner; Pat, Suat; Korkmaz, Şadan; Şenay, Volkan

    2016-01-01

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the range of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.

  6. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    Energy Technology Data Exchange (ETDEWEB)

    Özen, Soner, E-mail: osoner@ogu.edu.tr; Pat, Suat; Korkmaz, Şadan [Eskişehir Osmangazi University, Physics Department, 26480 (Turkey); Şenay, Volkan [Eskişehir Osmangazi University, Physics Department, 26480 (Turkey); Bayburt University, Primary Science Education Department, 69000 (Turkey)

    2016-03-25

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the range of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.

  7. Dynamics of carbon sources supporting burial in seagrass sediments under increasing anthropogenic pressure

    KAUST Repository

    Mazarrasa, Inés

    2017-03-15

    Seagrass meadows are strong coastal carbon sinks of autochthonous and allochthonous carbon. The aim of this study was to assess the effect of coastal anthropogenic pressure on the variability of carbon sources in seagrass carbon sinks during the last 150 yr. We did so by examining the composition of the sediment organic carbon (Corg) stocks by measuring the δ13Corg signature and C : N ratio in 210Pb dated sediments of 11 Posidonia oceanica seagrass meadows around the Balearic Islands (Spain, Western Mediterranean) under different levels of human pressure. On average, the top meter sediment carbon deposits were mainly (59% ± 12%) composed by P. oceanica derived carbon whereas seston contribution was generally lower (41% ± 8%). The contribution of P. oceanica to the total sediment carbon stock was the highest (∼ 80%) in the most pristine sites whereas the sestonic contribution was the highest (∼ 40–80%) in the meadows located in areas under moderate to very high human pressure. Furthermore, an increase in the contribution of sestonic carbon and a decrease in that of seagrass derived carbon toward present was observed in most of the meadows examined, coincident with the onset of the tourism industry development and coastal urbanization in the region. Our results demonstrate a general increase of total carbon accumulation rate in P. oceanica sediments during the last century, mainly driven by the increase in sestonic Corg carbon burial, which may have important implications in the long-term carbon sink capacity of the seagrass meadows in the region examined.

  8. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunming, E-mail: zcm1229@126.com [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Sunvim Grp Co Ltd, Gaomi 261500 (China); Zhao, Meihua; Wang, Libing; Qu, Lijun [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Men, Yajing [Sunvim Grp Co Ltd, Gaomi 261500 (China)

    2017-04-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  9. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    International Nuclear Information System (INIS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-01-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  10. Serum proatrial natriuretic peptide does not increase with higher systolic blood pressure in obese men

    DEFF Research Database (Denmark)

    Asferg, Camilla L; Andersen, Ulrik B; Linneberg, Allan

    2017-01-01

    . Linear regression analysis was used to calculate age-adjusted standardised regression coefficients (β). RESULTS: LVM and BP increased across systolic ABP quartiles (mean LVM±SD: 1599.1±387.2 mm ms in first vs 2188.5±551.3 mm ms in fourth quartile, p... vs 149.0±7.7 mm Hg in fourth quartile, ppp=0.004) and with diastolic ABP (ß=-0.45, p...OBJECTIVE: Obese persons have low circulating natriuretic peptide (NP) concentrations. It has been proposed that this 'natriuretic handicap' could play a role in obesity-related hypertension. The normal physiological response of the NP system to an increase in blood pressure (BP) is an increase...

  11. Knee arthritis pain is reduced and range of motion is increased following moderate pressure massage therapy.

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Gonzalez, Gladys; Funk, C G

    2015-11-01

    The literature on massage therapy effects on knee pain suggests that pain was reduced based on self-report, but little is known about range of motion (ROM) effects. Medical School staff and faculty who had knee arthritis pain were randomly assigned to a moderate pressure massage therapy or a waitlist control group (24 per group). Self-reports included the WOMAC (pain, stiffness and function) and the Pittsburgh Sleep Quality Index. ROM and ROM-related pain were assessed before and after the last sessions. The massage group showed an immediate post-massage increase in ROM and a decrease in ROM-associated pain. On the last versus the first day of the study, the massage group showed greater increases in ROM and decreases in ROM-related pain as well as less self-reported pain and sleep disturbances than the waitlist control group. These data highlight the effectiveness of moderate pressure massage therapy for increasing ROM and lessening ROM-related pain and long-term pain and sleep disturbances. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Do pressures to publish increase scientists' bias? An empirical support from US States Data.

    Directory of Open Access Journals (Sweden)

    Daniele Fanelli

    Full Text Available The growing competition and "publish or perish" culture in academia might conflict with the objectivity and integrity of research, because it forces scientists to produce "publishable" results at all costs. Papers are less likely to be published and to be cited if they report "negative" results (results that fail to support the tested hypothesis. Therefore, if publication pressures increase scientific bias, the frequency of "positive" results in the literature should be higher in the more competitive and "productive" academic environments. This study verified this hypothesis by measuring the frequency of positive results in a large random sample of papers with a corresponding author based in the US. Across all disciplines, papers were more likely to support a tested hypothesis if their corresponding authors were working in states that, according to NSF data, produced more academic papers per capita. The size of this effect increased when controlling for state's per capita R&D expenditure and for study characteristics that previous research showed to correlate with the frequency of positive results, including discipline and methodology. Although the confounding effect of institutions' prestige could not be excluded (researchers in the more productive universities could be the most clever and successful in their experiments, these results support the hypothesis that competitive academic environments increase not only scientists' productivity but also their bias. The same phenomenon might be observed in other countries where academic competition and pressures to publish are high.

  13. Surface modification of polytetrafluoroethylene film using the atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Luo, Y

    2003-01-01

    The atmospheric pressure glow discharge (APGD) is more promising in industrial applications compared with glow discharges in a gas other than air or in low-pressure air, which needs an expensive vacuum system. In this paper, the APGD and dielectric barrier discharge (DBD) are generated in atmospheric air using a power-frequency voltage source, and the transition from DBD to APGD is achieved by varying the electrode arrangement. The differences between their discharge characteristics are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena. The effects of APGD and DBD on polytetrafluoroethylene (PTFE) surface modification are studied. The surface properties are characterized by contact angle measurement, x-ray photoelectron spectroscopy and scanning electron microscopy. It is found that the APGD and DBD treatments modify the PTFE surface in both morphology and composition. APGD is more effective in PTFE surface modification than DBD as it can modify the surface more uniformly, implant more oxygen atoms into the surface and make the contact angle decline to a lower level. The experimental results are discussed

  14. Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE; FINAL

    International Nuclear Information System (INIS)

    Weiss, R.F.

    1998-01-01

    All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0(sub 2)) and nitrous oxide (N(sub 2)O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in th e global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO(sub 2) and N(sub 2)O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N(sub 2)O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO(sub 2), roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N(sub 2)O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone

  15. Synchronous Surface Pressure and Velocity Measurements of standard model in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Zhijun Sun

    2018-01-01

    Full Text Available Experiments in the Hypersonic Wind tunnel of NUAA(NHW present synchronous measurements of bow shockwave and surface pressure of a standard blunt rotary model (AGARD HB-2, which was carried out in order to measure the Mach-5-flow above a blunt body by PIV (Particle Image Velocimetry as well as unsteady pressure around the rotary body. Titanium dioxide (Al2O3 Nano particles were seeded into the flow by a tailor-made container. With meticulous care designed optical path, the laser was guided into the vacuum experimental section. The transient pressure was obtained around model by using fast-responding pressure-sensitive paint (PSPsprayed on the model. All the experimental facilities were controlled by Series Pulse Generator to ensure that the data was time related. The PIV measurements of velocities in front of the detached bow shock agreed very well with the calculated value, with less than 3% difference compared to Pitot-pressure recordings. The velocity gradient contour described in accord with the detached bow shock that showed on schlieren. The PSP results presented good agreement with the reference data from previous studies. Our work involving studies of synchronous shock-wave and pressure measurements proved to be encouraging.

  16. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to

  17. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  18. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  19. Effect of skin surface lipid on the skin permeation of lidocaine from pressure sensitive adhesives.

    Science.gov (United States)

    Cheng, Y H; Hosoya, O; Sugibayashi, K; Morimoto, Y

    1994-12-01

    Pressure sensitive adhesives (PSA) tapes containing different concentrations of lidocaine were prepared by a general casting method using styrene-isoprene-styrene block copolymer, and the in vitro skin permeation of lidocaine from each tape was evaluated using diffusion cell and excised hairless rat skin. The skin permeation was proportionally increased by up to 40% lidocaine in the PSA tape and did not change after this concentration. Although the bending point of the steady-state flux via skin concentration curve was found at 40%, saturated concentration or solubility of lidocaine in the tape was estimated to be about 20% by differential scanning calorimetry (DSC) measurement. In addition, the steady-state flux of lidocaine through skin from water or silicone fluid suspension (92 or 120 micrograms/cm2.h, respectively) was very similar to those of 40, 50 and 60% tapes (105, 101 and 112 micrograms/cm2.h, respectively). Decrease in the concentration in tapes during the permeation experiment explained only part of these phenomena. To analyze them further, the drug free PSA tape with or without (control) skin surface lipid was affixed to 50% lidocaine PSA tape for 48 h, and the amount of lidocaine crystal in the layered tapes was measured by DSC. The amount was found to be lower in the lipid-containing tape than in the lipid-free tape, suggesting that skin surface lipid can dissolve lidocaine crystal or solid in PSA tape to decrease its thermodynamic activity. Thus it is important to follow the concentration and thermodynamic activity of lidocaine in PSA tape, skin and the interface between the two layers to exactly assess its skin permeation flux.

  20. Use of Pressure-Redistributing Support Surfaces among Elderly Hip Fracture Patients across the Continuum of Care: Adherence to Pressure Ulcer Prevention Guidelines

    Science.gov (United States)

    Baumgarten, Mona; Margolis, David; Orwig, Denise; Hawkes, William; Rich, Shayna; Langenberg, Patricia; Shardell, Michelle; Palmer, Mary H.; McArdle, Patrick; Sterling, Robert; Jones, Patricia S.; Magaziner, Jay

    2010-01-01

    Purpose: To estimate the frequency of use of pressure-redistributing support surfaces (PRSS) among hip fracture patients and to determine whether higher pressure ulcer risk is associated with greater PRSS use. Design and Methods: Patients (n = 658) aged [greater than or equal] 65 years who had surgery for hip fracture were examined by research…

  1. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production.

    Science.gov (United States)

    Pahlow, M; van Oel, P R; Mekonnen, M M; Hoekstra, A Y

    2015-12-01

    As aquaculture becomes more important for feeding the growing world population, so too do the required natural resources needed to produce aquaculture feed. While there is potential to replace fish meal and fish oil with terrestrial feed ingredients, it is important to understand both the positive and negative implications of such a development. The use of feed with a large proportion of terrestrial feed may reduce the pressure on fisheries to provide feed for fish, but at the same time it may significantly increase the pressure on freshwater resources, due to water consumption and pollution in crop production for aquafeed. Here the green, blue and gray water footprint of cultured fish and crustaceans related to the production of commercial feed for the year 2008 has been determined for the major farmed species, representing 88% of total fed production. The green, blue and gray production-weighted average feed water footprints of fish and crustaceans fed commercial aquafeed are estimated at 1629 m3/t, 179 m3/t and 166 m3/t, respectively. The estimated global total water footprint of commercial aquafeed was 31-35 km3 in 2008. The top five contributors to the total water footprint of commercial feed are Nile tilapia, Grass carp, Whiteleg shrimp, Common carp and Atlantic salmon, which together have a water footprint of 18.2 km3. An analysis of alternative diets revealed that the replacement of fish meal and fish oil with terrestrial feed ingredients may further increase pressure on freshwater resources. At the same time economic consumptive water productivity may be reduced, especially for carnivorous species. The results of the present study show that, for the aquaculture sector to grow sustainably, freshwater consumption and pollution due to aquafeed need to be taken into account. Copyright © 2015. Published by Elsevier B.V.

  2. Intrahospital Transfer of Patients with Traumatic Brain Injury: Increase in Intracranial Pressure.

    Science.gov (United States)

    Trofimov, Alex; Kalentiev, George; Yuriev, Michail; Pavlov, Vladislav; Grigoryeva, Vera

    2016-01-01

    To assess the dynamic of intracranial pressure (ICP), cerebral perfusion pressure (CPP), and dynamic pressure reactivity index (PRx) during intrahospital transport. There were 33 comatose patients with severe traumatic brain injury (TBI). The mean age was 36.3 ± 4.8 years (range 19-45 years), and there were 17 men and 16 women. The median Glasgow Coma Scale score at admission was 6.2 ± 0.7. Computed tomography (CT) included native CT, perfusion CT, and CT angiography. The mean CPPs before and after the CT scans were 95.9 ± 10.7 and 81.5 ± 12.5 mmHg respectively. The mean ICP before transport was 19.98 ± 5.3 mmHg (minimum 11.7; maximum 51.7). It was statistically significantly lower (p < 0.001) than during the transfer (26.1 ± 13.5 mmHg). During the period described all patients had increased ICP, especially during vertical movement in an elevator. During horizontal movement on the floor ICP remained higher (p < 0.05). The mean dynamic PRx before and after intrahospital transport was 0.23 ± 0.14 and 0.52 ± 0.04, respectively (p < 0.001). Average duration of the transfer and CT study was 15.3 ± 3.4 min. Intrahospital transport of patients with TBI may lead to a significant increase in ICP, dynamic PRx, and decreased CPP. The results suppose that the decision to perform brain CT in comatose patients with TBI should be carefully considered by clinicians.

  3. Middle cerebral arterial flow changes on transcranial color and spectral Doppler sonography in patients with increased intracranial pressure.

    Science.gov (United States)

    Wang, Yu; Duan, Yun-You; Zhou, Hai-Yan; Yuan, Li-Jun; Zhang, Li; Wang, Wei; Li, Li-Hong; Li, Liang

    2014-12-01

    Intracranial pressure usually increases after severe brain injury. However, a method for noninvasive evaluation of intracranial pressure is still lacking. The purpose of this study was to explore the potential role of transcranial color Doppler sonography in assessing intracranial pressure by observing the middle cerebral artery blood flow parameters in patients with increased intracranial pressure of varying etiology. The hemodynamic changes in the middle cerebral artery in patients with varying degrees of increased intracranial pressure were investigated by transcranial color Doppler sonography in 93 patients who had emergency surgery for brain injury. Middle cerebral artery Doppler flow spectra changed regularly as intracranial pressure increased. The pulsatility index (PI) and resistive index (RI) had a significantly positive correlation with intracranial pressure (r = 0.90 and 0.89, respectively; Pintracranial pressure (r = -0.52; Pintracranial pressure, with sensitivity of 0.885 and specificity of 0.970. In addition to the PI and RI, middle cerebral artery diastolic flow velocity measurement by transcranial color Doppler sonography may also be a useful variable for evaluating intracranial pressure in patients with acute brain injury. © 2013 by the American Institute of Ultrasound in Medicine.

  4. Can the water content of highly compacted bentonite be increased by applying a high water pressure?

    International Nuclear Information System (INIS)

    Pusch, R.; Kasbohm, J.

    2001-10-01

    A great many laboratory investigations have shown that the water uptake in highly compacted MX-80 clay takes place by diffusion at low external pressure. It means that wetting of the clay buffer in the deposition holes of a KBS-3 repository is very slow if the water pressure is low and that complete water saturation can take several tens of years if the initial degree of water saturation of the buffer clay and the ability of the rock to give off water are low. It has therefore been asked whether injection of water can raise the degree of water saturation and if a high water pressure in the nearfield can have the same effect. The present report describes attempts to moisten highly compacted blocks of MX-80 clay with a dry density of 1510 kg/m 3 by injecting water under a pressure of 650 kPa through a perforated injection pipe for 3 and 20 minutes, respectively. The interpretation was made by determining the water content of a number of samples located at different distances from the pipe. An attempt to interpret the pattern of distribution of injected uranium acetate solution showed that the channels into which the solution went became closed in a few minutes and that dispersion in the homogenized clay gave low U-concentrations. The result was that the water content increased from about 9 to about 11-12 % within a distance of about 1 centimeter from the injection pipe and to slightly more than 9 % at a distance of about 4-5 cm almost independently of the injection time. Complete water saturation corresponds to a water content of about 30 % and the wetting effect was hence small from a practical point of view. By use of microstructural models it can be shown that injected water enters only the widest channels that remain after the compaction and that these channels are quickly closed by expansion of the hydrating surrounding clay. Part of the particles that are thereby released become transported by the flowing water and cause clogging of the channels, which is

  5. Pressure loss characteristics of LSTF steam generator heat-transfer tubes. Pressure loss increase due to tube internal instruments

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro

    1994-11-01

    The steam generator of the Large-Scale Test Facility (LSTF) includes 141 heat-transfer U-tubes with different lengths. Six U-tubes among them are furnished with 15 or 17 probe-type instruments (conduction probe with a thermocouple; CPT) protuberant into the primary side of the U-tubes. Other 135 U-tubes are not instrumented. This results in different hydraulic conditions between the instrumented and non-instrumented U-tubes with the same length. A series of pressure loss characteristics tests was conducted at a test apparatus simulating both types of U-tube. The following pressure loss coefficient (K CPT ) was reduced as a function of Reynolds number (Re) from these tests under single-phase water flow conditions. K CPT =0.16 5600≤Re≤52820, K CPT =60.66xRe -0.688 2420≤Re≤5600, K CPT =2.664x10 6 Re -2.06 1371≤Re≤2420. The maximum uncertainty is 22%. By using these results, the total pressure loss coefficients of full length U-tubes were estimated. It is clarified that the total pressure loss of the shortest instrumented U-tube is equivalent to that of the middle-length non-instrumented U-tube and also that a middle-length instrumented U-tube is equivalent to the longest non-instrumented U-tube. Concludingly. it is important to take account of the CPT pressure loss mentioned above in estimation of fluid behavior at the non-instrumented U-tubes either by using the LSTF experiment data from the CPT-installed U-tubes or by using any analytical codes. (author)

  6. Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure

    Science.gov (United States)

    Ordaz, Irian; Li, Wu

    2013-01-01

    The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.

  7. Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Menard, Etienne; Rogers, John A.; Kim, Seok; Carlson, Andrew

    2016-08-09

    In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.

  8. Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification

    International Nuclear Information System (INIS)

    Chen Guangliang; Chen Shihua; Zhou Mingyan; Feng Wenran; Gu Weichao; Yang Size

    2006-01-01

    A novel atmospheric pressure plasma fluidized bed (APPFB) with one liquid electrode was designed, and its preliminary discharge characteristics were studied. The glow discharge in the APPFB was generated by applying a low power with helium (He) gas, and the plasma gas temperature was no higher than 320 K when the applied power was lower than 11 W. The plasma optical emission spectrum (OES) of the gas mixture consisting of He and hexamethyldisiloxane (HMDSO) was recorded by a UV-visible monochromator. The calcium carbonate powders were modified by APPFB using HMDSO in the He plasma. The powder surface energy was decreased greatly by coating an organosilicon polymer onto the powder surface. This surface modification process changed the wettability of the powder from super-hydrophilicity to super-hydrophobicity, and the contact angle of water on the modified powders surface was greater than 160 0

  9. The impact of increasing body mass on peak and mean plantar pressure in asymptomatic adult subjects during walking

    Directory of Open Access Journals (Sweden)

    Sara Jones

    2010-11-01

    Full Text Available Introduction: The implication of high peak plantar pressure on foot pathology in individuals both with and without diabetes has been recognized. The aim of this study was to investigate and clarify the relationship between increasing body mass and peak and mean plantar pressure in an asymptomatic adult population during walking. Methods: Thirty adults without any relevant medical history, structural foot deformities or foot posture assessed as highly pronated or supinated, and within a normal body mass index range were included in the study. An experimental, same subjects, repeated measures design was used. Peak and mean plantar pressure were evaluated with the F-Scan in-shoe plantar pressure measurement system under four different loading conditions (0, 5, 10, and 15 kg simulated with a weighted vest. Pressure data were gathered from three stances utilizing the mid-gait protocol. Results: There were statistically significant increases in peak pressure between the 10 and 15 kg load conditions compared to the control (0 kg within the heel and second to fifth metatarsal regions. The first metatarsal and hallux regions only displayed statistically significant increases in peak pressure between 15 kg and the control (0 kg. The midfoot and lesser digits regions did not display any statistically significant differences in peak pressure between any load conditions compared to the control (0 kg. The second to fifth metatarsal region displayed statistically significant increases in mean pressure in the 5, 10 and 15 kg groups compared to the control (0 kg. A statistically significant increase in peak pressure between the 15 kg and control (0 kg group was evident in all other regions. Conclusion: The relationship between increasing body mass and peak and mean plantar pressure was dependent upon the plantar region. This study provides more detail outlining the response of peak and mean pressure to different loading conditions than previously reported in the

  10. Increased Plasma Colloid Osmotic Pressure Facilitates the Uptake of Therapeutic Macromolecules in a Xenograft Tumor Model

    Directory of Open Access Journals (Sweden)

    Matthias Hofmann

    2009-08-01

    Full Text Available Elevated tumor interstitial fluid pressure (TIFP is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin: (20% HSA, used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml and cetuximab (2.0 mg/ml was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20%HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  11. Simulation of Effective Slip and Drag in Pressure-Driven Flow on Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2016-01-01

    Full Text Available The flow on superhydrophobic surfaces was investigated using finite element modeling (FEM. Surfaces with different textures like grooves, square pillars, and cylinders immersed in liquid forming Cassie state were modeled. Nonslip boundary condition was assumed at solid-liquid interface while slip boundary condition was supposed at gas-liquid interface. It was found that the flow rate can be affected by the shape of the texture, the fraction of the gas-liquid area, the height of the channel, and the driving pressure gradient. By extracting the effective boundary slip from the flow rate based on a model, it was found that the shape of the textures and the fraction of the gas-liquid area affect the effective slip significantly while the height of the channel and the driving pressure gradient have no obvious effect on effective slip.

  12. Quantitative spatial analysis of the mouse brain lipidome by pressurized liquid extraction surface analysis

    DEFF Research Database (Denmark)

    Almeida, Reinaldo; Berzina, Zane; Christensen, Eva Arnspang

    2015-01-01

    Here we describe a novel surface sampling technique termed pressurized liquid extraction surface analysis (PLESA), which in combination with a dedicated high-resolution shotgun lipidomics routine enables both quantification and in-depth structural characterization of molecular lipid species...... extracted directly from tissue sections. PLESA uses a sealed and pressurized sampling probe that enables the use of chloroform-containing extraction solvents for efficient in situ lipid microextraction with a spatial resolution of 400 μm. Quantification of lipid species is achieved by the inclusion...... of internal lipid standards in the extraction solvent. The analysis of lipid microextracts by nanoelectrospray ionization provides long-lasting ion spray which in conjunction with a hybrid ion trap-orbitrap mass spectrometer enables identification and quantification of molecular lipid species using a method...

  13. DPPC Monolayers Exhibit an Additional Phase Transition at High Surface Pressure

    DEFF Research Database (Denmark)

    Shen, Chen; de la Serna, Jorge B.; Struth, Bernd

    2015-01-01

    Pulmonary surfactant forms a monolayer at the air/aqueous interface within the lung. During the breath process, the surface pressure (Π) periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. Pulmonary surfactant consists of ~90......% of lipid with 10% integrated proteins. Among its lipid compounds, di-palmitoyl-phosphatidylcholine (DPPC) dominates (~45wt%). DPPC is the only known lipid that can be compressed to very high surface pressure (~70mN/m) before its monolayer collapses. Most probably, this feature contributes to the mechanical...... stability of the alveoli monolayer. Still, to the best of our knowledge, some details of the compression isotherm presented here and the related structures of the DPPC monolayer were not studied so far. The liquid-expanded/liquid-condensed phase transition of the DPPC monolayer at ~10mN/m is well known...

  14. Expressions to Rayleigh circumferential phase velocity and dispersion relation for a cylindrical surface under mechanical pressure

    Science.gov (United States)

    Sebold, Jean Eduardo; de Lacerda, Luiz Alkimin

    2018-04-01

    This paper describes a substantiated mathematical theory for Rayleigh waves propagated on some types of metal cylinders. More specifically, it presents not only a new way to express the dispersion relation of Rayleigh waves propagated on the cylindrical surface, but also how it can be used to construct a mathematical equation showing that the applied static mechanical pressure affects the shear modulus of the metal cylinder. All steps, required to conclude the process, consider the equation of motion as a function of radial and circumferential coordinates only, while the axial component can be overlooked without causing any problems. Some numerical experiments are done to illustrate the changes in the Rayleigh circumferential phase velocity in a metal cylindrical section due to static mechanical pressure around its external surface.

  15. Spreading and atomization of droplets on a vibrating surface in a standing pressure field

    Science.gov (United States)

    Deepu, P.; Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan

    2012-10-01

    We report the first observation and analytical model of deformation and spreading of droplets on a vibrating surface under the influence of an ultrasonic standing pressure field. The standing wave allows the droplet to spread, and the spreading rate varies inversely with viscosity. In low viscosity droplets, the synergistic effect of radial acoustic force and the transducer surface acceleration also leads to capillary waves. These unstable capillary modes grow to cause ultimate disintegration into daughter droplets. We find that using nanosuspensions, spreading and disintegration can be prevented by suppressing the development of capillary modes and subsequent break-up.

  16. Tactile surface classification for limbed robots using a pressure sensitive robot skin

    International Nuclear Information System (INIS)

    Shill, Jacob J; Collins Jr, Emmanuel G; Coyle, Eric; Clark, Jonathan

    2015-01-01

    This paper describes an approach to terrain identification based on pressure images generated through direct surface contact using a robot skin constructed around a high-resolution pressure sensing array. Terrain signatures for classification are formulated from the magnitude frequency responses of the pressure images. The initial experimental results for statically obtained images show that the approach yields classification accuracies >98%. The methodology is extended to accommodate the dynamic pressure images anticipated when a robot is walking or running. Experiments with a one-legged hopping robot yield similar identification accuracies ≈99%. In addition, the accuracies are independent with respect to changing robot dynamics (i.e., when using different leg gaits). The paper further shows that the high-resolution capabilities of the sensor enables similarly textured surfaces to be distinguished. A correcting filter is developed to accommodate for failures or faults that inevitably occur within the sensing array with continued use. Experimental results show using the correcting filter can extend the effective operational lifespan of a high-resolution sensing array over 6x in the presence of sensor damage. The results presented suggest this methodology can be extended to autonomous field robots, providing a robot with crucial information about the environment that can be used to aid stable and efficient mobility over rough and varying terrains. (paper)

  17. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    Science.gov (United States)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  18. A prospective, in vivo evaluation of two pressure-redistribution surfaces in healthy volunteers using pressure mapping as a quality control instrument .

    Science.gov (United States)

    Miller, Stephannie; Parker, Michael; Blasiole, Nicole; Beinlich, Nancy; Fulton, Judith

    2013-02-01

    Deep tissue injury (DTI) can rapidly evolve into a higher stage pressure ulcer. Use of pressure-redistribution surfaces is a widely accepted practice for the prevention of pressure ulcers in acute care patients, particularly in departments where care processes limit mobility. A 15-year-old patient developed a sacral DTI 24 hours after completion of a lengthy (12- hour) electrophysiology (EP) study and catheter ablation. A root cause analysis (RCA) conducted to investigate the origin of the hospital-acquired suspected DTI prompted a small investigation to evaluate the pressure-distribution properties of the EP lab surface and an OR table pad. Five healthy adult employee volunteers were evaluated in the supine position by placing a sensing mat between the volunteer and the test surface. Interface pressures (on a scale of 0 mm Hg to 100 mm Hg) were captured after a "settling in" time of 4 minutes, and the number of sensors registering very high pressures (above 90 mm Hg) across the surface were recorded. On the OR table pad, zero to six sensors registered >90 mm Hg compared to two to 20 sensors on the EP lab surface. These data, combined with the acquired DTI, initiated a change in EP lab surfaces. Although interface pressure measurements only provide information about one potential support surface characteristic, it can be helpful during an RCA. Studies to compare the effect of support surfaces in all hospital units on patient outcomes are needed.

  19. Metformin increases pressure pain threshold in lean women with polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Kiałka M

    2016-08-01

    Full Text Available Marta Kiałka,1 Tomasz Milewicz,1 Krystyna Sztefko,2 Iwona Rogatko,2 Renata Majewska3 1Department of Gynecological Endocrinology, Jagiellonian University, Medical College, Kraków, Poland; 2Department of Clinical Biochemistry, Jagiellonian University, Medical College, Kraków, Poland; 3Department of Epidemiology, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kraków, Poland Background: Despite the strong preclinical rationale, there are only very few data considering the utility of metformin as a potential pain therapeutic in humans. The aim of this study was to determine the association between metformin therapy and pressure pain threshold (PPT in lean women with polycystic ovary syndrome (PCOS. We hypothesized that metformin therapy in lean PCOS women increases PPT. Materials and methods: Twenty-seven lean PCOS women with free androgen index phenotype >5 and 18 lean healthy controls were enrolled in the study. Fifteen of the PCOS women were randomly assigned to be treated with metformin 1,500 mg daily for 6 months. PPT and plasma β-endorphin levels were measured in all women at the beginning of the study and after 6 months of observation. Results: We observed an increase in PPT values measured on deltoid and trapezius muscle in the PCOS with metformin group after 6 months of metformin administration (4.81±0.88 kg/cm², P<0.001 on deltoid muscle, and 5.71±1.16 kg/cm² on trapezius muscle. We did not observe any significant changes in PPT values in the PCOS without treatment group and in controls. We did not observe any significant changes in serum β-endorphin levels in any studied groups during the 6-month observation. Conclusion: We conclude that metformin therapy increases PPT in lean PCOS women, without affecting plasma β-endorphin concentration. Our results may suggest the potential role of metformin in pain therapy. We propose that larger, randomized studies on metformin impact on pain

  20. Effects of surface orientation on nucleate boiling heat transfer in a pool of water under atmospheric pressure

    International Nuclear Information System (INIS)

    Jung, Satbyoul; Kim, Hyungdae

    2016-01-01

    Highlights: • Effects of surface inclination on pool boiling were experimentally examined. • Heat transfer and major bubble parameters were simultaneously measured. • A modified wall boiling model considering bubble merging was developed. • The presented model reasonably predicted pool boiling heat transfer on inclined surfaces. - Abstract: The basic wall boiling model widely used in computation fluid dynamics codes gives no regard to influences of surface orientation upon boiling mechanism. This study aims at examining the effects of surface orientation on wall heat flux and bubble parameters in pool nucleate boiling and incorporating those into the wall boiling model. Boiling experiments on a flat plate heater submerged in a pool of saturated water were conducted under atmospheric pressure. Relevant bubble parameters as well as boiling heat transfer characteristics were simultaneously measured using a unique optical setup integrating shadowgraph, total reflection and infrared thermometry techniques. It was observed that as an upward-facing heater surface with a constant wall superheat of 7.5 °C inclines from horizontal towards vertical, the heat flux significantly increased; nucleation site density increased intensively at the upper part of the heater surface where thermal boundary layer might become thickened; isolated boiling bubbles tend to slide up due to buoyancy and coalesce with each other, thus forming one single large bubble. Such observations on the wall heat flux and bubble parameters according to surface orientation could not be predicted by the present basic wall boiling model only centered with isolated bubbles. A modified wall boiling model incorporating the effects of merging of isolated bubbles on an inclined surface was proposed. The model reasonably predicted the experimental data on various orientation angles.

  1. Effects of surface orientation on nucleate boiling heat transfer in a pool of water under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae, E-mail: hdkims@khu.ac.kr

    2016-08-15

    Highlights: • Effects of surface inclination on pool boiling were experimentally examined. • Heat transfer and major bubble parameters were simultaneously measured. • A modified wall boiling model considering bubble merging was developed. • The presented model reasonably predicted pool boiling heat transfer on inclined surfaces. - Abstract: The basic wall boiling model widely used in computation fluid dynamics codes gives no regard to influences of surface orientation upon boiling mechanism. This study aims at examining the effects of surface orientation on wall heat flux and bubble parameters in pool nucleate boiling and incorporating those into the wall boiling model. Boiling experiments on a flat plate heater submerged in a pool of saturated water were conducted under atmospheric pressure. Relevant bubble parameters as well as boiling heat transfer characteristics were simultaneously measured using a unique optical setup integrating shadowgraph, total reflection and infrared thermometry techniques. It was observed that as an upward-facing heater surface with a constant wall superheat of 7.5 °C inclines from horizontal towards vertical, the heat flux significantly increased; nucleation site density increased intensively at the upper part of the heater surface where thermal boundary layer might become thickened; isolated boiling bubbles tend to slide up due to buoyancy and coalesce with each other, thus forming one single large bubble. Such observations on the wall heat flux and bubble parameters according to surface orientation could not be predicted by the present basic wall boiling model only centered with isolated bubbles. A modified wall boiling model incorporating the effects of merging of isolated bubbles on an inclined surface was proposed. The model reasonably predicted the experimental data on various orientation angles.

  2. Brine migration resulting from pressure increases in a layered subsurface system

    Science.gov (United States)

    Delfs, Jens-Olaf; Nordbeck, Johannes; Bauer, Sebastian

    2016-04-01

    Brine originating from the deep subsurface impairs parts of the freshwater resources in the North German Basin. Some of the deep porous formations (esp. Trias and Jurassic) exhibit considerable storage capacities for waste fluids (CO2, brine from oil production or cavern leaching), raising concerns among water providers that this type of deep subsurface utilization might impair drinking water supplies. On the one hand, overpressures induced by fluid injections and the geothermal gradient support brine migration from deep into shallow formations. On the other hand, the rising brine is denser than the surrounding less-saline formation waters and, therefore, tends to settle down. Aim of this work is to investigate the conditions under which pressurized formation brine from deep formations can reach shallow freshwater resources. Especially, the role of intermediate porous formations between the storage formation and the groundwater is studied. For this, complex thermohaline simulations using a coupled numerical process model are necessary and performed in this study, in which fluid density depends on fluid pressure, temperature and salt content and the governing partial differential equations are coupled. The model setup is 2D and contains a hypothetic series of aquifers and barriers, each with a thickness of 200 m. Formation pressure is increased at depths of about 2000 m in proximity to a salt wall and a permeable fault. The domain size reaches up to tens of kilometers horizontally to the salt wall. The fault connects the injection formation and the freshwater aquifer such that conditions can be considered as extremely favorable for induced brine migration (worst case scenarios). Brine, heat, and salt fluxes are quantified with reference to hydraulic permeabilities, storage capacities (in terms of domain size), initial salt and heat distribution, and operation pressures. The simulations reveal the development of a stagnation point in the fault region in each

  3. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    International Nuclear Information System (INIS)

    Chen, Weimin; Zhou, Xiaoyan; Zhang, Xiaotao; Bian, Jie; Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi; Wan, Jinglin

    2017-01-01

    Highlights: • Plasma working under low pressure is easy to realize industrialization. • Enhancing process finished within 75 s. • Plasma treatment leads to the increase in equilibrium contact angle by 330%. • Tinfoil film with simple chemical structure was used to reveal the mechanism. - Abstract: The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Si−O−C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  4. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weimin [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China); Zhou, Xiaoyan, E-mail: zhouxiaoyan@njfu.edu.cn [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Zhang, Xiaotao [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Bian, Jie [Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China); Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Wan, Jinglin [Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China)

    2017-06-15

    Highlights: • Plasma working under low pressure is easy to realize industrialization. • Enhancing process finished within 75 s. • Plasma treatment leads to the increase in equilibrium contact angle by 330%. • Tinfoil film with simple chemical structure was used to reveal the mechanism. - Abstract: The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Si−O−C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  5. Intensive blood pressure lowering increases cerebral blood flow in older subjects with hypertension.

    Science.gov (United States)

    Tryambake, Dinesh; He, Jiabao; Firbank, Michael J; O'Brien, John T; Blamire, Andrew M; Ford, Gary A

    2013-06-01

    Hypertension is associated with reduced cerebral blood flow (CBF). Intensive (blood pressure (BP) lowering in older people might give greater reduction in cardiovascular risk, but there are concerns that this might produce hypoperfusion which may precipitate falls and possibly stroke. We determined the effect of intensive compared with usual BP lowering on CBF in hypertensive older subjects. Individuals aged >70 years with a history of systolic hypertension on 1 or no BP lowering drugs were recruited from primary care (n=37; age, 75±4 years; systolic BP, >150 mm Hg) and randomized to receive intensive (target BP, hypertension increases CBF, compared with BP lowering to usual target. These findings suggest hypertension in older people shifts the autoregulatory CBF curve rightward and downward and is reversible with BP lowering.

  6. The blood pressure-induced diameter response of retinal arterioles decreases with increasing diabetic maculopathy

    DEFF Research Database (Denmark)

    Frederiksen, Christian Alcaraz; Jeppesen, Peter; Knudsen, Søren Tang

    2006-01-01

    isometric exercise in normal persons (diameter response: -0.70+/-0.48%) and in patients with no retinopathy (-1.15+/-0.44%), but dilated in patients with mild retinopathy (0.41+/-0.49%) and diabetic maculopathy (0.54+/-0.44%), p=0.01. Retinal thickness was normal in Group A (260+/-5.0 microm), Group B (257......BACKGROUND: The aim of the study was to compare the diameter response of retinal arterioles and retinal thickness in patients with different stages of diabetic maculopathy during an increase in the arterial blood pressure. METHODS: Four groups each consisting of 19 individuals were studied. Group...... A consisted of normal individuals and groups B-D consisted of type 2 diabetic patients matched for diabetes duration, age, and gender, and characterized by: Group B no retinopathy, Group C mild retinopathy, Group D maculopathy not requiring laser treatment. The diameter changes of a large retinal arteriole...

  7. Melatonin attenuates prenatal dexamethasone-induced blood pressure increase in a rat model.

    Science.gov (United States)

    Tain, You-Lin; Chen, Chih-Cheng; Sheen, Jiunn-Ming; Yu, Hong-Ren; Tiao, Mao-Meng; Kuo, Ho-Chang; Huang, Li-Tung

    2014-04-01

    Although antenatal corticosteroid is recommended to accelerate fetal lung maturation, prenatal dexamethasone exposure results in hypertension in the adult offspring. Since melatonin is a potent antioxidant and has been known to regulate blood pressure, we examined the beneficial effects of melatonin therapy in preventing prenatal dexamethasone-induced programmed hypertension. Male offspring of Sprague-Dawley rats were assigned to four groups (n = 12/group): control, dexamethasone (DEX), control + melatonin, and DEX + melatonin. Pregnant rats received intraperitoneal dexamethasone (0.1 mg/kg) from gestational day 16 to 22. In the melatonin-treatment groups, rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Blood pressure was measured by an indirect tail-cuff method. Gene expression and protein levels were analyzed by real-time quantitative polymerase chain reaction and Western blotting, respectively. At 16 weeks of age, the DEX group developed hypertension, which was partly reversed by maternal melatonin therapy. Reduced nephron numbers due to prenatal dexamethasone exposure were prevented by melatonin therapy. Renal superoxide and NO levels were similar in all groups. Prenatal dexamethasone exposure led to increased mRNA expression of renin and prorenin receptor and up-regulated histone deacetylase (HDAC)-1 expression in the kidneys of 4-month-old offspring. Maternal melatonin therapy augmented renal Mas protein levels in DEX + melatonin group, and increased renal mRNA expression of HDAC-1, HDAC-2, and HDAC-8 in control and DEX offspring. Melatonin attenuated prenatal DEX-induced hypertension by restoring nephron numbers, altering RAS components, and modulating HDACs. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  8. Continuous positive airway pressure treatment increases bronchial reactivity in obstructive sleep apnea patients.

    Science.gov (United States)

    Korczynski, Piotr; Gorska, Katarzyna; Przybylowski, Tadeusz; Bielicki, Piotr; Zielinski, Jan; Chazan, Ryszarda

    2009-01-01

    The effects of continuous positive airway pressure (CPAP) treatment on the function of the lower airways are poorly understood. One of the methods used to determine the influence of positive pressure breathing on lower airways is the bronchial hyperreactivity test. Some authors report that CPAP increases bronchial hyperreactivity, while others report decreases. To assess the influence of CPAP treatment on bronchial reactivity and the effects of bronchial hyperreactivity on compliance to CPAP treatment. The study group consisted of 101 obstructive sleep apnea syndrome patients (88 men and 13 women) with a mean age of 51 ± 11 years, mean apnea-hypopnea index of 53 ± 20 and mean body mass index of 32.6 ± 5.4. Patients were randomly assigned to a treatment group that received 3 weeks of CPAP therapy (group 1) or to a nontreatment control group (group 2). Pulmonary function tests and the methacholine bronchial provocation test were performed at baseline and 3 weeks later. There were no statistically significant differences between treated and control groups in anthropometry and polysomnography variables. At baseline, bronchial hyperreactivity was found in 6 patients from group 1 and 5 patients from group 2. A significant increase in bronchial reactivity was observed after CPAP treatment. Log PC20M decreased from 1.38 ± 0.30 at baseline to 1.26 ± 0.50 (p bronchial hyperreactivity during CPAP treatment were characterized by significantly lower FEV1, FVC and MEF50 values. CPAP produces statistically significant bronchial hyperreactivity. However, there were no clinical symptoms and it is not necessary to withdraw previous therapies. Copyright © 2009 S. Karger AG, Basel.

  9. Intracranial Pressure Increases During Rewarming Period After Mild Therapeutic Hypothermia in Postcardiac Arrest Patients.

    Science.gov (United States)

    Naito, Hiromichi; Isotani, Eiji; Callaway, Clifton W; Hagioka, Shingo; Morimoto, Naoki

    2016-12-01

    Elevation of intracranial pressure (ICP) may worsen brain injury and neurological outcome. Studies on the use of therapeutic hypothermia (TH) for traumatic brain injury suggests that rapid rewarming from TH is associated with elevated ICP and poorer outcomes. However, few studies describe the time course of ICP changes during TH/rewarming after cardiac arrest (CA). In this study, we observed the changes in ICP during mild TH and rewarming after CA. Secondarily, we examined whether ICP is related to outcome. We studied comatose patients resuscitated from CA, who were treated with TH and who had ICP monitored. Target core temperature was 34°C for 24 h and target rewarming rate was 0.25°C/h. ICP and cerebral perfusion pressure (CPP) were monitored during the period. Outcome was rated as cerebral performance category. In nine patients, ICP increased during TH and rewarming (6.0 [4.0-9.0] mmHg to 16.0 [12.0-26.0] mmHg, p = 0.008). CPP did not change during the period (83.3 [80.1-91.0] mmHg to 74.3 [52.0-87.3] mmHg). Higher ICP was associated with worse outcomes (p = 0.009). All the cases with ICP >25 mmHg or CPP <40 mmHg died. Major ICP increment was observed during the rewarming period, although, some increase of ICP occurred even during the mild TH. ICP increment was higher in patients with worse outcomes.

  10. Excessive blood pressure increase with exercise and risk of all-cause mortality and cardiac events.

    Science.gov (United States)

    Bouzas-Mosquera, María C; Bouzas-Mosquera, Alberto; Peteiro, Jesús

    2016-10-01

    The association of an excessive blood pressure increase with exercise (EBPIE) on cardiovascular outcomes remains controversial. We sought to assess its impact on the risk of all-cause mortality and major cardiac events in patients with known or suspected coronary artery disease (CAD) referred for stress testing. Exercise echocardiography was performed in 10 047 patients with known or suspected CAD. An EBPIE was defined as an increase in systolic blood pressure with exercise ≥ 80 mmHg. The endpoints were all-cause mortality and major cardiac events (MACE), including cardiac death or nonfatal myocardial infarction (MI). Overall, 573 patients exhibited an EBPIE during the tests. Over a mean follow-up of 4·8 years, there were 1950 deaths (including 725 cardiac deaths), 1477 MI and 1900 MACE. The cumulative 10-year rates of all-cause mortality, cardiac death, nonfatal MI and MACE were 32·9%, 13·1%, 26·9% and 33% in patients who did not develop an EBPIE vs. 18·9%, 4·7%, 17·5% and 20·7% in those experiencing an EBPIE, respectively (P mortality (hazard ratio [HR] 0·73, 95% confidence interval [CI] 0·59-0·91, P = 0·004), cardiac death (HR 0·67, 95% CI 0·46-0·98, P = 0·04), MI (HR 0·67, 95% CI 0·52-0·86, P = 0·002) and MACE (HR 0·69, 95% CI 0·56-0·86, P = 0·001). An EBPIE was associated with a significantly lower risk of mortality and MACE in patients with known or suspected CAD referred for stress testing. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  11. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  12. Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry

    International Nuclear Information System (INIS)

    Ragni, D; Ashok, A; Van Oudheusden, B W; Scarano, F

    2009-01-01

    The present investigation assesses a procedure to extract the aerodynamic loads and pressure distribution on an airfoil in the transonic flow regime from particle image velocimetry (PIV) measurements. The wind tunnel model is a two-dimensional NACA-0012 airfoil, and the PIV velocity data are used to evaluate pressure fields, whereas lift and drag coefficients are inferred from the evaluation of momentum contour and wake integrals. The PIV-based results are compared to those derived from conventional loads determination procedures involving surface pressure transducers and a wake rake. The method applied in this investigation is an extension to the compressible flow regime of that considered by van Oudheusden et al (2006 Non-intrusive load characterization of an airfoil using PIV Exp. Fluids 40 988–92) at low speed conditions. The application of a high-speed imaging system allows the acquisition in relatively short time of a sufficient ensemble size to compute converged velocity statistics, further translated in turbulent fluctuations included in the pressure and loads calculation, notwithstanding their verified negligible influence in the computation. Measurements are performed at varying spatial resolution to optimize the loads determination in the wake region and around the airfoil, further allowing us to assess the influence of spatial resolution in the proposed procedure. Specific interest is given to the comparisons between the PIV-based method and the conventional procedures for determining the pressure coefficient on the surface, the drag and lift coefficients at different angles of attack. Results are presented for the experiments at a free-stream Mach number M = 0.6, with the angle of attack ranging from 0° to 8°

  13. Absolute local sea surface in the Vanuatu Archipelago from GPS, satellite altimetry and pressure gauge data

    Science.gov (United States)

    Cheng, K. K.; Ballu, V.; Bouin, M.; Calmant, S.; Shum, C.

    2004-12-01

    Water height measurements provided by seafloor tide gauges are a combination of sea level variation and local ground motion. Both signals are of scientific interest, but they must be separated in order to be useful. A reliable estimation of the vertical ground motion is important in very seismically areas such as the Pacific Ocean rim. One promising method to separate the two contributions is to use satellite altimetry which gives absolute water height that is independent of the local ground motion. However, the altimeter data must be calibrated using ground truth measurements. Once different components of the signal are separated, bottom pressure gauges can be used to detect vertical movements of the seafloor. The Vanuatu Archipelago is part of the Pacific "ring of fire", where plates are quickly converging. In this area, movements are very rapid and the seismic activity is intense, which gives a good opportunity to study deformation and seismic cycle. To get an integrate picture of vertical deformation over one plate and between the two plates, one needs to be able to monitor vertical movements on both underwater and emerged areas. We conducted an experiment in this area to compare measurements from bottom pressure gauges located beneath altimetry satellite tracks with sea surface altitude measurements from GPS. Two bottom pressure gauge are immerged since Nov. 1999 in this region. In order to perform absolute calibration for multiple satellite altimeters that overfly the region, we conducted 2 campaigns of GPS measurements of instantaneous sea surface height onboard the R/V Alis and using a GPS buoy. We present results of GPS computations for the March 2003 and March 2004 campaigns. These sea level GPS measurements are compared with multiple altimeter-measured sea surface heights, and sampling differences and high frequency variations were removed using continuous pressure gauge data. The observed discrepancies are likely to be explained by local geoid

  14. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas

    2013-01-01

    the mass exchange between compartments. A benchmark test, which is based on a classic experimental data set on infiltration excess (Horton) overland flow, identified a feedback mechanism between surface runoff and soil air pressures. Our study suggests that air compression in soils amplifies surface runoff......This work introduces the soil air system into integrated hydrology by simulating the flow processes and interactions of surface runoff, soil moisture and air in the shallow subsurface. The numerical model is formulated as a coupled system of partial differential equations for hydrostatic (diffusive...... wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...

  15. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  16. Neuro-ophthalmic presentations and treatment of Cryptococcal meningitis-related increased intracranial pressure.

    Science.gov (United States)

    Espino Barros Palau, Angelina; Morgan, Michael L; Foroozan, Rod; Lee, Andrew G

    2014-10-01

    To illustrate three different ophthalmic presentations of cryptococcal meningitis (CM). CM is the most common manifestation of extra-pulmonary cryptococcosis. Intracranial hypertension occurs in up to 75% of patients with CM and is associated with increased mortality. CM can present to the ophthalmologist as vision loss, papilledema, abducens palsy, and/or other cranial neuropathies. We report three cases, two C. neoformans and one C. gattii, highlighting the various CM presentations. The first was a woman immunosuppressed following kidney transplantation in whom idiopathic intracranial hypertension (IIH) was initially suspected. The second was a man immunocompromised by previously undiagnosed HIV/AIDS who presented with signs and symptoms of increased intracranial pressure. The third case is an immunocompetent man with bilateral disc edema and an incomplete macular star diagnosed with presumed neuroretinitis. Further evaluation revealed positive CSF cryptococcal antigen with culture positive for C. gattii. Ophthalmologists should be aware that cryptococcosis can mimic more benign etiologies including IIH and neuroretinitis. Additionally, C. gattii, an emerging organism, can infect immunocompetent patients. In contrast to the typical treatment of increased ICP, serial lumbar punctures are recommended while acetazolamide and surgical CSF shunting may be harmful. Copyright © 2014 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  17. Cascading pulse tubes on a large diaphragm pressure wave generator to increase liquefaction potential

    Science.gov (United States)

    Caughley, A.; Meier, J.; Nation, M.; Reynolds, H.; Boyle, C.; Tanchon, J.

    2017-12-01

    Fabrum Solutions, in collaboration with Absolut System and Callaghan Innovation, produce a range of large pulse tube cryocoolers based on metal diaphragm pressure wave generator technology (DPWG). The largest cryocooler consists of three in-line pulse tubes working in parallel on a 1000 cm3 swept volume DPWG. It has demonstrated 1280 W of refrigeration at 77 K, from 24 kW of input power and was subsequently incorporated into a liquefaction plant to produce liquid nitrogen for an industrial customer. The pulse tubes on the large cryocooler each produced 426 W of refrigeration at 77 K. However, pulse tubes can produce more refrigeration with higher efficiency at higher temperatures. This paper presents the results from experiments to increase overall liquefaction throughput by operating one or more pulse tubes at a higher temperature to pre-cool the incoming gas. The experiments showed that the effective cooling increased to 1500 W resulting in an increase in liquefaction rate from 13 to 16 l/hour.

  18. Increased Intracranial Pressure during Hemodialysis in a Patient with Anoxic Brain Injury.

    Science.gov (United States)

    Lund, Anton; Damholt, Mette B; Strange, Ditte G; Kelsen, Jesper; Møller-Sørensen, Hasse; Møller, Kirsten

    2017-01-01

    Dialysis disequilibrium syndrome (DDS) is a serious neurological complication of hemodialysis, and patients with acute brain injury are at increased risk. We report a case of DDS leading to intracranial hypertension in a patient with anoxic brain injury and discuss the subsequent dialysis strategy. A 13-year-old girl was admitted after prolonged resuscitation from cardiac arrest. Computed tomography (CT) revealed an inferior vena cava aneurysm and multiple pulmonary emboli as the likely cause. An intracranial pressure (ICP) monitor was inserted, and, on day 3, continuous renal replacement therapy (CRRT) was initiated due to acute kidney injury, during which the patient developed severe intracranial hypertension. CT of the brain showed diffuse cerebral edema. CRRT was discontinued, sedation was increased, and hypertonic saline was administered, upon which ICP normalized. Due to persistent hyperkalemia and overhydration, ultrafiltration and intermittent hemodialysis were performed separately on day 4 with a small dialyzer, low blood and dialysate flow, and high dialysate sodium content. During subsequent treatments, isolated ultrafiltration was well tolerated, whereas hemodialysis was associated with increased ICP necessitating frequent pauses or early cessation of dialysis. In patients at risk of DDS, hemodialysis should be performed with utmost care and continuous monitoring of ICP should be considered.

  19. Increased Intracranial Pressure during Hemodialysis in a Patient with Anoxic Brain Injury

    Directory of Open Access Journals (Sweden)

    Anton Lund

    2017-01-01

    Full Text Available Dialysis disequilibrium syndrome (DDS is a serious neurological complication of hemodialysis, and patients with acute brain injury are at increased risk. We report a case of DDS leading to intracranial hypertension in a patient with anoxic brain injury and discuss the subsequent dialysis strategy. A 13-year-old girl was admitted after prolonged resuscitation from cardiac arrest. Computed tomography (CT revealed an inferior vena cava aneurysm and multiple pulmonary emboli as the likely cause. An intracranial pressure (ICP monitor was inserted, and, on day 3, continuous renal replacement therapy (CRRT was initiated due to acute kidney injury, during which the patient developed severe intracranial hypertension. CT of the brain showed diffuse cerebral edema. CRRT was discontinued, sedation was increased, and hypertonic saline was administered, upon which ICP normalized. Due to persistent hyperkalemia and overhydration, ultrafiltration and intermittent hemodialysis were performed separately on day 4 with a small dialyzer, low blood and dialysate flow, and high dialysate sodium content. During subsequent treatments, isolated ultrafiltration was well tolerated, whereas hemodialysis was associated with increased ICP necessitating frequent pauses or early cessation of dialysis. In patients at risk of DDS, hemodialysis should be performed with utmost care and continuous monitoring of ICP should be considered.

  20. Field-emitting Townsend regime of surface dielectric barrier discharges generated in CO2 emerging at high pressure

    Science.gov (United States)

    Pai, David; Stauss, Sven; Terashima, Kazuo

    2015-09-01

    Surface dielectric barrier discharges (DBDs) in CO2 from atmospheric pressure up to supercritical conditions (Tc = 304.13 K, pc = 7.4 MPa) generated using 10-kHz ac excitation are studied experimentally. Two discharge regimes are obtained: the standard and field-emitting Townsend regimes. The former resembles typical surface DBDs that have streamer-like characteristics, but the latter has not been reported previously. Here we present an analysis of the electrical and optical diagnostics of the field-emitting Townsend discharge regime using current-voltage and charge-voltage measurements, imaging, optical emission spectroscopy, and spontaneous Raman spectroscopy. Using an electrical model, it is possible to calculate the discharge-induced capacitances of the plasma and the dielectric, as well as the space-averaged values of the surface potential and the potential drop across the discharge. The model also accounts for the space-averaged Laplacian field by including the capacitance due to the fringe electric field from the electrode edge. The electrical characteristics are similar to those of atmospheric-pressure Townsend DBDs, i.e. self-sustained DBDs with minimal space-charge effects. The purely continuum emission spectrum is due to electron-neutral bremsstrahlung, with a corresponding average electron temperature of 2600 K. Raman spectra of CO2 near the critical point demonstrate that the discharge increases the average gas temperature by less than 1 K. This work was supported financially in part by MEXT and JSPS.

  1. Effect of nanoscale surface texture on the contact-pressure-dependent conduction characteristics of a carbon-nanotube thin-film tactile pressure sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chaehyun; Lee, Kunhak; Choi, Eunsuk; Kim, Ahsung; Kim, Jinoh; Lee, Seungbeck [Hanyang University, Seoul (Korea, Republic of)

    2011-01-15

    We report on a novel tactile pressure sensor structure that transfers the vertical pressure applied to the sample's surface to lateral strain in the carbon-nanotube thin film embedded in an elastomer by using a 'wavy' structured substrate contact surface. When pressure was applied to the poly(dimethylsiloxane) (PDMS) surface, it was transferred to a carbon-nanotube thin film (CNTF) underneath, where it stretched to conform to the wavy substrate surface. This resulted in an elongation, or lateral strain, in the CNTF layer, their reducing its conductance. The measurements showed that with an applied vertical pressure of 30 kPa, a 15% reduction in conductance was achieved with only a 500-nm deflection in the CNTF, and repeatedly applied pressures for 3,600 cycles (12 hours) resulted in only a 2% reduction in sensitivity, demonstrating the their film's high sensitivity and reliability. The mechanical stability and high sensitivity of the CNTF/PDMS hybrid with wavy substrate structures may make possible applications to future tactile pressure sensors.

  2. Study of discharges produced by surface waves under medium and high pressure: application to chemical analysis

    International Nuclear Information System (INIS)

    Laye epouse Granier, Agnes

    1986-01-01

    This report deals with the study of microwave discharges produced in argon gas by surface waves in the 20-760 Torr pressure range. Application to chemical analysis by emission optical spectroscopy is also investigated. First of all we study the propagation of a surface wave in a bounded plasma in which the effective collision frequency for momentum transfer ν is higher than the excitation one. The axial electron density profile is determined from two diagnostic techniques, i.e., phase variations of the wave field and Stark broadening of H β line. Then we deduce the discharge characteristics ν, θ (maintaining power of an electron-ion pair) and E eff (effective electric field for discharge sustaining) from the electron density profile. Then an energy balance of the discharge is developed. It explains the change of operating conditions in the 20-50 Torr range. At low pressure the discharge is governed by ambipolar diffusion whereas at high pressure, the electrons are mainly lost by volume recombination of Ar 2 + . Finally, we report on chemical analysis experiment of gases (optimum sensibility in found near 100 Torr) and of metallic solutions sprayed by a graphite oven. Performances of such a design and ICP plasma torches are compared. (author) [fr

  3. Capillary pressure in a porous medium with distinct pore surface and pore volume fractal dimensions.

    Science.gov (United States)

    Deinert, M R; Dathe, A; Parlange, J-Y; Cady, K B

    2008-02-01

    The relationship between capillary pressure and saturation in a porous medium often exhibits a power-law dependence. The physical basis for this relation has been substantiated by assuming that capillary pressure is directly related to the pore radius. When the pore space of a medium exhibits fractal structure this approach results in a power-law relation with an exponent of 3-D(v), where D(v) is the pore volume fractal dimension. However, larger values of the exponent than are realistically allowed by this result have long been known to occur. Using a thermodynamic formulation for equilibrium capillary pressure we show that the standard result is a special case of the more general exponent (3-D(v))(3-D(s)) where D(s) is the surface fractal dimension of the pores. The analysis reduces to the standard result when D(s)=2, indicating a Euclidean relationship between a pore's surface area and the volume it encloses, and allows for a larger value for the exponent than the standard result when D(s)>2 .

  4. Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability.

    Science.gov (United States)

    Lee, Kilsoo; Lee, Jaehong; Kim, Gwangmook; Kim, Youngjae; Kang, Subin; Cho, Sungjun; Kim, SeulGee; Kim, Jae-Kang; Lee, Wooyoung; Kim, Dae-Eun; Kang, Shinill; Kim, DaeEun; Lee, Taeyoon; Shim, Wooyoung

    2017-11-01

    Fabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes. This study utilizes a writing activity with a pencil and paper, which enables the construction of a fundamental capacitor that can be used as a flexible capacitive pressure sensor with high pressure sensitivity and short response time and that it can be inexpensively fabricated over large areas. Furthermore, the paper-based pressure sensors are integrated into a fully functional 3D touch-pad device, which is a step toward the realization of omnipresent electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fermi Surface, Pressure-Induced Antiferromagnetic Order, and Superconductivity in FeSe

    Science.gov (United States)

    Ishizuka, Jun; Yamada, Takemi; Yanagi, Yuki; Ōno, Yoshiaki

    2018-01-01

    The pressure dependence of the structural (Ts), antiferromagnetic (Tm), and superconducting (Tc) transition temperatures in FeSe is investigated on the basis of the 16-band d-p model. At ambient pressure, a shallow hole pocket disappears due to the correlation effect, as observed in the angular-resolved photoemission spectroscopy (ARPES) and quantum oscillation (QO) experiments, resulting in the suppression of the antiferromagnetic order, in contrast to the other iron pnictides. The orbital-polarization interaction between the Fe d orbital and Se p orbital is found to drive the ferro-orbital order responsible for the structural transition without accompanying the antiferromagnetic order. The pressure dependence of the Fermi surfaces is derived from the first-principles calculation and is found to well account for the opposite pressure dependences of Ts and Tm, around which the enhanced orbital and magnetic fluctuations cause the double-dome structure of the eigenvalue λ in the Eliashberg equation, as consistent with that of Tc in FeSe.

  6. Neurobehavioral Deficits and Increased Blood Pressure in School-Age Children Prenatally Exposed to Pesticides

    Science.gov (United States)

    Harari, Raul; Julvez, Jordi; Murata, Katsuyuki; Barr, Dana; Bellinger, David C.; Debes, Frodi; Grandjean, Philippe

    2010-01-01

    Background The long-term neurotoxicity risks caused by prenatal exposures to pesticides are unclear, but a previous pilot study of Ecuadorian school children suggested that blood pressure and visuospatial processing may be vulnerable. Objectives In northern Ecuador, where floriculture is intensive and relies on female employment, we carried out an intensive cross-sectional study to assess children’s neurobehavioral functions at 6–8 years of age. Methods We examined all 87 children attending two grades in the local public school with an expanded battery of neurobehavioral tests. Information on pesticide exposure during the index pregnancy was obtained from maternal interview. The children’s current pesticide exposure was assessed from the urinary excretion of organophosphate metabolites and erythrocyte acetylcholine esterase activity. Results Of 84 eligible participants, 35 were exposed to pesticides during pregnancy via maternal occupational exposure, and 23 had indirect exposure from paternal work. Twenty-two children had detectable current exposure irrespective of their prenatal exposure status. Only children with prenatal exposure from maternal greenhouse work showed consistent deficits after covariate adjustment, which included stunting and socioeconomic variables. Exposure-related deficits were the strongest for motor speed (Finger Tapping Task), motor coordination (Santa Ana Form Board), visuospatial performance (Stanford-Binet Copying Test), and visual memory (Stanford-Binet Copying Recall Test). These associations corresponded to a developmental delay of 1.5–2 years. Prenatal pesticide exposure was also significantly associated with an average increase of 3.6 mmHg in systolic blood pressure and a slight decrease in body mass index of 1.1 kg/m2. Inclusion of the pilot data strengthened these results. Conclusions These findings support the notion that prenatal exposure to pesticides—at levels not producing adverse health outcomes in the mother

  7. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of

  8. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    Science.gov (United States)

    Chen, Weimin; Zhou, Xiaoyan; Zhang, Xiaotao; Bian, Jie; Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi; Wan, Jinglin

    2017-06-01

    The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Sisbnd Osbnd C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  9. Prostaglandin E2 and aggressive factors increase the gland luminal pressure in the rat gastric mucosa in vivo.

    Science.gov (United States)

    Synnerstad, I; Holm, L

    1998-06-01

    The gastroprotective properties of prostaglandins in low concentrations are still unclear. In this study, we investigated the effects of prostaglandin E2 (PGE2), indomethacin, and intraluminally applied HCl or ethanol on intraglandular pressure, mucus thickness, acid secretion, and gastric mucosal blood flow. Glandular pressure and mucous gel thickness were measured with microelectrodes during intravital microscopy in thiobutabarbital sodium-anesthetized rats. Gastric blood flow was measured with laser Doppler flowmetry. In pentagastrin-treated rats, glandular pressure increased significantly in response to topical (1 micrograms/mL) or intra-arterial (12 micrograms.kg-1.h-1) PGE2 from approximately 17 to 69 and 18 to 57 mm Hg, respectively, whereas blood flow, mucus thickness, and acid secretion were unaltered. Indomethacin (3 mg/kg intravenously) significantly decreased glandular pressure from approximately 20 to 11 mm Hg. Intraluminal application of 10 and 100 mmol/L HCl or 20% and 40% ethanol significantly increased glandular pressure but had no effect after indomethacin pretreatment. Endogenous PGE2 is important for maintaining a high glandular pressure, and exogenous PGE2 potently increases glandular pressure at concentrations not altering blood flow, mucus thickness, or acid secretion. This suggests that high intraglandular pressures might be involved in gastroprotection.

  10. [Areas of contact in human humero-ulnar joints as a function of pressure, their connection through subchondral mineralization and joint surface morphology of the incisura trochlearis].

    Science.gov (United States)

    Eckstein, F; Löhe, F; Steinlechner, M; Müller-Gerbl, M; Putz, R

    1993-12-01

    Evaluation of the stress distribution in joints can be obtained directly from contact areas and pressure forces, and also indirectly from the functional adaptation of the connective tissues. Therefore 8 human humero-ulnar joints, fixed in formalin, were examined for size and position of contact areas (polyether casting/Vidas image analyser) and their dependence upon the joint forces (Zwick material testing machine). The distribution of subchondral mineralisation was assessed, using CT osteoabsorptiometry. Depending on the joint force, the contact areas increase from about 10% of the total surface (20 N) to approximately 60% (1280 N). With weak forces they are localised ventrally and dorsally in the joint, with more powerful forces they run together centrally. With a divided articular surface they join at about 160-640 N, with a continuous surface, at about 40-80 N. Divided joint surfaces show a bicentric mineralisation pattern of the subchondral bone with ventral and dorsal maxima. Continuous surfaces, on the other hand, usually show central maxima. Both the mineralisation pattern and the position of the contact areas suggest a physiological incongruity of the humero-ulnar joint surfaces, which vanishes with increasing pressure due to viscoelastic deformation of articular cartilage and subchondral bone. More marked incongruity is postulated for the divided surfaces than for the others. The consequent peripheral transmission of pressure seems to involve a functional principle, which, present in several human joints, leads to both optimal distribution of the stress and better nutrition of the articular cartilage.

  11. Surface Modification of Polypropylene Microporous Membrane by Atmospheric-Pressure Plasma Immobilization of N,N-dimethylamino Ethyl Methacrylate

    International Nuclear Information System (INIS)

    Zhong Shaofeng

    2010-01-01

    Surface modification of polypropylene microporous membrane (PPMM) was performed by atmospheric pressure dielectric barrier discharge plasma immobilization of N,N-dimethylamino ethyl methacrylate (DMAEMA). Structural and morphological changes on the membrane surface were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscope (XPS) and field emission scanning electron microscopy (FE-SEM). Water contact angles of the membrane surfaces were also measured by the sessile drop method. Results reveal that both the plasma-treating conditions and the adsorbed DMAEMA amount have remarkable effects on the immobilization degree of DMAEMA. Peroxide determination by 1,1-diphenyl-2-picrvlhydrazyl (DPPH) method verifies the exsistence of radicals induced by plasma, which activize the immobilization reaction. Pure water contact angle on the membrane surface decreased with the increase of DMAEMA immobilization degree, which indicates an enhanced hydrophilicity for the modified membranes. The effects of immobilization degrees on pure water fluxes were also measured. It is shown that pure water fluxes first increased with immobilization degree and then decreased. Finally, permeation of bovine serum albumin (BSA) and lysozyme solution were measured to evaluate the antifouling property of the DMAEMA-modified membranes, from which it is shown that both hydrophilicity and electrostatic repulsion are beneficial for membrane antifouling.

  12. Surface reconstruction of GaAs(001) nitrided under the controlled As partial pressure [rapid communication

    Science.gov (United States)

    Imayoshi, Takahiro; Oigawa, Haruhiro; Shigekawa, Hidemi; Tokumoto, Hiroshi

    2003-08-01

    Under the controlled As partial pressure, the nitridation process of GaAs(0 0 1)-(2 × 4) surface was studied using a scanning tunneling microscope (STM) combined with an electron cyclotron resonance plasma-assisted molecular beam epitaxy system. With either prolonging the nitridation time or decreasing the As partial pressure, the previously reported (3 × 3) structure with two dimers per surface cell ((3 × 3)-2D) was found to progressively convert into a new (3 × 3) structure characterized by one dimer per surface cell ((3 × 3)-1D). Reversely the exposure to arsenic transformed the structure from (3 × 3)-1D to (3 × 3)-2D, suggesting that the topmost layer is composed of As 2-dimers. Based on these STM images together with the X-ray photoelectron spectroscopy data, we propose the new As 2-dimer coverage models to explain both (3 × 3)-1D and -2D structures involving the exchange reaction of arsenic with nitrogen in the subsurface region of GaAs.

  13. Continuous positive airway pressure breathing increases the spread of sensory blockade after low-thoracic epidural injection of lidocaine.

    NARCIS (Netherlands)

    Visser, W.A.; Gielen, M.J.M.; Giele, J.L.P.

    2006-01-01

    Factors affecting the distribution of sensory blockade after epidural injection of local anesthetics remain incompletely clarified. To evaluate if increasing intrathoracic pressure affects the spread of thoracic epidural anesthesia, we randomized 20 patients who received an epidural catheter at the

  14. Influence of an increased intracranial pressure on cerebral and systemic haemodynamics during endoscopic neurosurgery : an animal model

    NARCIS (Netherlands)

    Kalmar, A. F.; De Ley, G.; Van Den Broecke, C.; Van Aken, J.; Struys, M. M. R. F.; Praet, M. M.; Mortier, E. P.

    During endoscopic neurosurgery, direct mechanical stimulation of the brain by the endoscope and increased intracranial pressure (ICP) caused by the continuous rinsing can induce potentially lethal haemodynamic reflexes, brain ischaemia, and excessive fluid resorption. In a newly presented rat model

  15. FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

    Directory of Open Access Journals (Sweden)

    GYUN-HO GIM

    2014-10-01

    Full Text Available In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI. The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency of pump, and fluid-structure interaction.

  16. Surface-Energetic Heterogeneity of Nanoporous Solids for CO2 and CO Adsorption: The Key to an Adsorption Capacity and Selectivity at Low Pressures.

    Science.gov (United States)

    Kim, Moon Hyeon; Cho, Il Hum; Choi, Sang Ok; Lee, In Soo

    2016-05-01

    This study has been focused on surface energetic heterogeneity of zeolite (H-mordenite, "HM"), activated carbon ("RB2") and metal-organic framework family ("Z1200") materials and their isotherm features in adsorption of CO2 and CO at 25 degrees C and low pressures ≤ 850 Torr. The nanoporous solids showed not only distinctive shape of adsorption isotherms for CO2 with relatively high polarizability and quadrupole moment but also different capacities in the CO2 adsorption. These differences between the adsorbents could be well correlated with their surface nonuniformity. The most heterogeneous surfaces were found with the HM that gave the highest CO2 uptake at all pressures allowed, while the Z1200 consisted of completely homogeneous surfaces and even CO2 adsorption linearly increased with pressure. An intermediate character was indicated on the surface of RB2 and thus this sorbent possessed isotherm features between the HM and Z1200 in CO2 adsorption. Such different surface energetics was fairly consistent with changes in CO2/CO selectivity on the nanoporous adsorbents up to equilibrated pressures near 850 Torr.

  17. Static Air Support Surfaces to Prevent Pressure Injuries: A Multicenter Cohort Study in Belgian Nursing Homes.

    Science.gov (United States)

    Serraes, Brecht; Beeckman, Dimitri

    2016-01-01

    The aim of this study was to investigate the incidence and risk factors for developing pressure injuries (PIs) in patients placed on a static air support surfaces: mattress overlay, heel wedge, and seat cushion. Multicenter cohort study. The sample comprised 176 residents; their mean age was 87 (SD = 6.76) years; their mean Braden Scale score was 14 (SD = 2.54). The study was performed on a convenience sample of 6 nursing homes in Belgium. Data were collected on 23 care units. The primary outcome measure, cumulative PI incidence (category [stage] II-IV) over a 30-day observation period, was calculated. Pressure injury occurrence was defined according to the 2014 European and US National Pressure Injury Advisory panels, Pan Pacific Pressure Injury Alliance classification system. The PI incidence for category (stage) II-IV was 5.1%. Six residents (3.4%) developed a category II PI, and 3 (1.7%) developed a category III PI; no category IV ulcers occurred. No significant risk factors for category II-IV PIs were identified using multivariate logistic regression. Time of sitting in a chair was found to be a risk factor for development of nonblanchable erythema (category I PI) (odds ratio = 21.608; 95% confidence interval [CI], 20.510-22.812; P = .013). The median time to develop a category II-IV PI was 16 days (interquartile range = 2-26). The interrater reliability between the observations of the researcher and nurses on-site was almost perfect (0.86; 95% CI, 0.81-0.91). We found a low incidence of PIs when using a static air overlay mattress for patients at risk in a nursing home population. Static air support surfaces, alongside patient-tailored patient repositioning protocols, should be considered to prevent PIs in this patient population.

  18. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    Science.gov (United States)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  19. Investigation of surface treatment of conductive wire in cylindrical atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Ye Rubin; Kagohashi, Tsutomu; Zheng Wei

    2009-01-01

    Polyethylene insulated electric wire was treated in He and Ar dielectric barrier discharge atmospheric pressure plasmas generated in a quartz tube wound with tubular electrodes. The wire was put penetrating through the high voltage and the grounded electrodes, improving the discharge and facilitating uniform surface treatment. In this work, the influences of conductivity of the wire on the effects of surface treatment and discharge behavior were investigated. Surface properties of the wire samples were analyzed by means of surface energy measurement and X-ray photoelectron spectroscopy. In order to reveal the mechanism for treating the conductive wire, I-V discharge waveforms were measured and time-resolved plasma images were taken. It was demonstrated that the conductive wire was involved in the discharge process, reducing the breakdown voltage significantly and enhancing the discharge. It shows that the discharge mode was strongly dependent on the conductivity of a wire. Intensive surface discharges developed along the conductive wire were found to be mainly responsible for noticeable improvement in the treatment effect.

  20. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  1. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  2. [Measurements of surface ocean carbon dioxide partial pressure during WOCE]. Summary of research progress

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This paper discusses the research progress of the second year of research under ``Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE`` and proposes to continue measurements of underway pCO{sub 2}. During most of the first year of this grant, our efforts to measure pCO{sub 2} on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO{sub 2} in air and surface seawater indicate air-sea equilibrium.

  3. Serum proatrial natriuretic peptide does not increase with higher systolic blood pressure in obese men.

    Science.gov (United States)

    Asferg, Camilla L; Andersen, Ulrik B; Linneberg, Allan; Hedley, Paula L; Christiansen, Michael; Goetze, Jens P; Jeppesen, Jørgen L

    2017-01-15

    Obese persons have low circulating natriuretic peptide (NP) concentrations. It has been proposed that this 'natriuretic handicap' could play a role in obesity-related hypertension. The normal physiological response of the NP system to an increase in blood pressure (BP) is an increase in NP secretion with concomitant higher circulating NP concentrations. In this study, we investigated whether higher BP would also be related to higher circulating NP concentrations in obese men; furthermore, we verified that BP had affected the hearts of our study participants, by determining left ventricular mass (LVM). We examined 103 obese healthy medication-free men. We measured 24-hour ambulatory BP (ABP). LVM was calculated using the Cornell voltage-duration product method. Fasting serum concentrations of midregional proatrial NP (MR-proANP), a surrogate for active ANP, were measured. Linear regression analysis was used to calculate age-adjusted standardised regression coefficients (β). LVM and BP increased across systolic ABP quartiles (mean LVM±SD: 1599.1±387.2 mm ms in first vs 2188.5±551.3 mm ms in fourth quartile, pvs 149.0±7.7 mm Hg in fourth quartile, ppp=0.004) and with diastolic ABP (ß=-0.45, p<0.001). Contrary to known physiological BP responses, MR-proANP was negatively associated with ABP in our study. This suggests that a low amount of circulating NPs could play a role in the early stage of obesity-related hypertension. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Study on the reforming of alcohols in a surface wave discharge (SWD) at atmospheric pressure

    International Nuclear Information System (INIS)

    Jimenez, M; Yubero, C; Calzada, M D

    2008-01-01

    Surface wave plasma at atmospheric pressure has been used to produce the decomposition of the alcohol molecules introduced into it, in order to obtain hydrogen. Four alcohols, methanol, ethanol, propanol and butanol, have been used for this purpose. Optical emission spectroscopy was the tool used to analyse the radiation emitted by the plasma. Hydrogen atoms and other species such as C 2 and CH in alcohols have been detected but no CO molecular bands. Also, a mass spectrometer has been used in order to detect molecular hydrogen production in methanol decomposition

  5. Cardiovascular responses to lead are biphasic, while methylmercury, but not inorganic mercury, monotonically increases blood pressure in rats.

    Science.gov (United States)

    Wildemann, Tanja M; Mirhosseini, Naghmeh; Siciliano, Steven D; Weber, Lynn P

    2015-02-03

    Cardiovascular diseases, such as heart attack and stroke, are the major cause of death worldwide. It is well known that a high number of environmental and physiological risk factors contribute to the development of cardiovascular diseases. Although risk factors are additive, increased blood pressure (hypertension) is the greatest risk factor. Over the last two decades, a growing number of epidemiological studies associate environmental exposure to lead or mercury species with hypertension. However, cardiovascular effects beyond blood pressure are rarely studied and thresholds for effect are not yet clear. To explore effects of lead or mercury species on the cardiovascular system, normal male Wistar rats were exposed to a range of doses of lead, inorganic mercury or methylmercury through the drinking water for four weeks. High-resolution ultrasound was used to measure heart and vascular function (carotid artery blood flow) at baseline and at the end of the exposure, while blood pressure was measured directly in the femoral artery at the end of the 4-week exposure. After 4 weeks, blood pressure responses to lead were biphasic. Low lead levels decreased blood pressure, dilated the carotid artery and increased cardiac output. At higher lead doses, rats had increased blood pressure. In contrast, methylmercury-exposed rats had increased blood pressure at all doses despite dilated carotid arteries. Inorganic mercury did not show any significant cardiovascular effects. Based on the current study, the benchmark dose level 10% (BMDL10s) for systolic blood pressure for lead, inorganic mercury and methylmercury are 1.1, 1.3 and 1.0 μg/kg-bw/d, respectively. However, similar total mercury blood levels attributed to inorganic mercury or methylmercury produced strikingly different results with inorganic mercury having no observable effect on the cardiovascular system but methylmercury increasing systolic and pulse pressures. Therefore, adverse cardiovascular effects cannot be

  6. Use of Pressure-Redistributing Support Surfaces Among Elderly Hip Fracture Patients Across the Continuum of Care: Adherence to Pressure Ulcer Prevention Guidelines

    OpenAIRE

    Baumgarten, Mona; Margolis, David; Orwig, Denise; Hawkes, William; Rich, Shayna; Langenberg, Patricia; Shardell, Michelle; Palmer, Mary H.; McArdle, Patrick; Sterling, Robert; Jones, Patricia S.; Magaziner, Jay

    2009-01-01

    Purpose: To estimate the frequency of use of pressure-redistributing support surfaces (PRSS) among hip fracture patients and to determine whether higher pressure ulcer risk is associated with greater PRSS use. Design and Methods: Patients (n = 658) aged ≥65 years who had surgery for hip fracture were examined by research nurses at baseline and on alternating days for 21 days. Information on PRSS use and pressure ulcer risk factors was recorded at each assessment visit. Other information was o...

  7. N-cadherin and integrin blockade inhibit arteriolar myogenic reactivity but not pressure-induced increases in intracellular Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa Y. Jackson

    2010-12-01

    Full Text Available The vascular myogenic response is characterized by arterial constriction in response to an increase in intraluminal pressure and dilatation to a decrease in pressure. This mechanism is important for the regulation of blood flow, capillary pressure and arterial pressure. The identity of the mechanosensory mechanism(s for this response is incompletely understood but has been shown to include the integrins as cell-extracellular matrix receptors. The possibility that a cell-cell adhesion receptor is involved has not been studied. Thus, we tested the hypothesis that N-cadherin, a cell-cell adhesion molecule in vascular smooth muscle cells (VSMCs, was important for myogenic responsiveness. The purpose of this study was to investigate:
    1. whether cadherin inhibition blocks myogenic responses to increases in intraluminal pressure and 2. the effect of the cadherin or integrin blockade on pressure-induced changes in [Ca2+]i. Cadherin blockade was tested in isolated rat cremaster arterioles on myogenic responses to acute pressure steps from 60 – 100 mmHg and changes in VSMC Ca2+ were measured using fura-2. In the presence of a synthetic cadherin inhibitory peptide or a function blocking antibody, myogenic responses were inhibited. In contrast, during N-cadherin blockade, pressure-induced changes in [Ca2+]i were not altered. Similarly, vessels treated with function-blocking β1- or β3-integrin antibodies maintained pressure-induced [Ca2+]i responses despite inhibition of myogenic constriction. Collectively, these data suggest that both cadherins and integrins play a fundamental role in mediating myogenic constriction but argue against their direct involvement in mediating pressure-induced [Ca2+]i increases.

  8. Effect of Channel Orientation and Rib Pitch-to-Height Ratio on Pressure Drop in a Rotating Square Channel with Ribs on Two Opposite Surfaces

    Directory of Open Access Journals (Sweden)

    Prabhu S. V.

    2005-01-01

    Full Text Available The effect of channel orientation and rib pitch-to-height ratio on the pressure drop distribution in a rib-roughened channel is an important issue in turbine blade cooling. The present investigation is a study of the overall pressure drop distribution in a square cross-sectioned channel, with rib turbulators, rotating about an axis normal to the free stream. The ribs are configured in a symmetric arrangement on two opposite surfaces with a rib angle of 90 ∘ to the mainstream flow. The study has been conducted for three Reynolds numbers, namely, 13 000, 17 000, and 22 000 with the rotation number varying from 0– 0.38 . Experiments have been carried out for various rib pitch-to-height ratios ( P/e with a constant rib height-to-hydraulic diameter ratio ( e/D of 0.1 . The test section in which the ribs are placed on the leading and trailing surfaces is considered as the base case ( orientation angle= 0 ∘ , Coriolis force vector normal to the ribbed surfaces. The channel is turned about its axis in steps of 15 ∘ to vary the orientation angle from 0 ∘ to 90 ∘ . The overall pressure drop does not change considerably under conditions of rotation for the base case. However, for the other cases tested, it is observed that the overall pressure drop increases with an increase in the rotation number for a given orientation angle and also increases with an increase in the orientation angle for a given rotation number. This change is attributed to the variation in the separation zone downstream of the ribs due to the presence of the Coriolis force—local pressure drop data is presented which supports this idea. At an orientation angle of 90 ∘ (ribs on the top and bottom surfaces, Coriolis force vector normal to the smooth surfaces, the overall pressure drop is observed to be maximum during rotation. The overall pressure drop for a case with a rib pitch-to-height ratio of 5 on both surfaces is found to be the highest

  9. Creep fracture mechanics parameters for internal axial surface cracks in pressurized cylinders and creep crack growth analysis

    International Nuclear Information System (INIS)

    Wen Jianfeng; Tu Shantung; Gong Jianming; Sun Wei

    2011-01-01

    In the present study, a low alloy Cr-Mo steel cylinder subjected to internal pressure at high temperature with a semi-elliptical crack located at the inner surface is considered. The creep crack driving force parameter C*-integrals calculated by finite element (FE) method, are compared with results from previous studies, which indicates that empirical equations may be inaccurate under some conditions. A total of 96 cases for wide practical ranges of geometry and material parameters are performed to obtain systematic FE results of C*-integral, which are tabulated and formulated in this paper. It is observed that the maximum C*-integral may occur neither at the deepest point nor at the surface point when the aspect ratio is large enough and the value of C*-integral is significantly sensitive to the crack depth ratio. Furthermore, based on the proposed equations for estimating C*-integrals and a step-by-step analysis procedure, crack profile development, crack depth, crack length and remaining life prediction are obtained for surface cracks with various initial aspect ratios. It is found that when the crack depth ratio is increased, there is no obvious convergence of crack aspect ratio observed. The magnitude of half crack length increment is always minor compared with the crack depth increment. In addition, the remaining life is much more dependent on the surface crack depth than on the surface crack length. - Highlights: → Existing empirical equations of C*-integral for surface cracks may be inaccurate. → Systematic FE results of C*-integral from 96 cases are tabulated and formulated. → Maximum C*-integral may not occur at deepest/surface point if a/c is large enough. → The value of C*-integral is significantly sensitive to the crack depth ratio. → Crack profile development, crack size and remaining life prediction are obtained.

  10. Does greater adiposity increase blood pressure and hypertension risk?: Mendelian randomization using the FTO/MC4R genotype

    DEFF Research Database (Denmark)

    Timpson, Nicholas J; Harbord, Roger; Davey Smith, George

    2009-01-01

    Elevated blood pressure increases the risk of experiencing cardiovascular events like myocardial infarction and stroke. Current observational data suggest that body mass index may have a causal role in the etiology of hypertension, but this may be influenced by confounding and reverse causation....... Through the use of instrumental variable methods, we aim to estimate the strength of the unconfounded and unbiased association between body mass index/adiposity and blood pressure. We explore these issues in the Copenhagen General Population Study. We used instrumental variable methods to obtain estimates...... between body mass index and blood pressure. In analyses including those taking antihypertensive drugs, but for whom appropriate adjustment had been made, systolic blood pressure was seen to increase by 3.85 mm Hg (95% CI: 1.88 to 5.83 mm Hg) for each 10% increase in body mass index (P=0...

  11. The effect of increased intracranial pressure on vestibular evoked myogenic potentials in superior canal dehiscence syndrome.

    Science.gov (United States)

    Janky, Kristen L; Zuniga, M Geraldine; Schubert, Michael C; Carey, John P

    2015-04-01

    To determine if vestibular evoked myogenic potential (VEMP) responses change during inversion in patients with superior canal dehiscence syndrome (SCDS) compared to controls. Sixteen subjects with SCDS (mean: 43, range 30-57 years) and 15 age-matched, healthy subjects (mean: 41, range 22-57 years) completed cervical VEMP (cVEMP) in response to air conduction click stimuli and ocular VEMP (oVEMP) in response to air conduction 500 Hz tone burst stimuli and midline tap stimulation. All VEMP testing was completed in semi-recumbent and inverted conditions. SCDS ears demonstrated significantly larger oVEMP peak-to-peak amplitudes in comparison to normal ears in semi-recumbency. While corrected cVEMP peak-to-peak amplitudes were larger in SCDS ears; this did not reach significance in our sample. Overall, there was not a differential change in o- or cVEMP amplitude with inversion between SCDS and normal subjects. Postural-induced changes in o- and cVEMP responses were measured in the steady state regardless of whether the labyrinth was intact or dehiscent. VEMP responses are blunted during inversion. Although steady-state measurements of VEMPs during inversion do not increase diagnostic accuracy for SCDS, the findings suggest that inversion may provide more general insights into the equilibration of pressures between intracranial and intralabyrinthine fluids. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. 10-20-30 training increases performance and lowers blood pressure and VEGF in runners

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Gunnarsson, Thomas Gunnar Petursson; Hellsten, Ylva

    2015-01-01

    The present study examined the effect of training by the 10-20-30 concept on performance, blood pressure (BP), and skeletal muscle angiogenesis as well as the feasibility of completing high-intensity interval training in local running communities. One hundred sixty recreational runners were divided...... into either a control group (CON; n = 28), or a 10-20-30 training group (10-20-30; n = 132) replacing two of three weekly training sessions with 10-20-30 training for 8 weeks and performance of a 5-km run (5-K) and BP was measured. VO2max was measured and resting muscle biopsies were taken in a subgroup......-20-30 increased VO2max but did not influence muscle fiber area, distribution or capillarization, whereas the expression of the pro-angiogenic vascular endothelial growth factor (VEGF) was lowered by 22%. No changes were observed in CON. These results suggest that 10-20-30 training is an effective and easily...

  13. Dealcoholized red wine decreases systolic and diastolic blood pressure and increases plasma nitric oxide: short communication.

    Science.gov (United States)

    Chiva-Blanch, Gemma; Urpi-Sarda, Mireia; Ros, Emilio; Arranz, Sara; Valderas-Martínez, Palmira; Casas, Rosa; Sacanella, Emilio; Llorach, Rafael; Lamuela-Raventos, Rosa M; Andres-Lacueva, Cristina; Estruch, Ramon

    2012-09-28

    Experimental studies have shown a potential blood pressure (BP) lowering effect of red wine polyphenols, whereas the effects of ethanol and polyphenols on BP in humans are not yet clear. The aim of the present work was to evaluate the effects of red wine fractions (alcoholic and nonalcoholic) on BP and plasma nitric oxide (NO) in subjects at high cardiovascular risk. Sixty-seven men at high cardiovascular risk were studied. After a 2-week run-in period, subjects were randomized into 3 treatment periods in a crossover clinical trial, with a common background diet plus red wine (30g alcohol/day), the equivalent amount of dealcoholized red wine, or gin (30g alcohol/day), lasting 4 weeks each intervention. At baseline and after each intervention, anthropometrical parameters, BP and plasma NO were measured. Systolic and diastolic BP decreased significantly after the dealcoholized red wine intervention and these changes correlated with increases in plasma NO. Dealcoholized red wine decreases systolic and diastolic BP. Our results point out through an NO-mediated mechanism. The daily consumption of dealcoholized red wine could be useful for the prevention of low to moderate hypertension. Trial registered at controlled-trials.com: ISRCTN88720134.

  14. Increase of pulmonary arterial pressure in subjects with venous gas emboli after uncomplicated recreational SCUBA diving.

    Science.gov (United States)

    Marabotti, Claudio; Scalzini, Alessandro; Chiesa, Ferruccio

    2013-04-01

    The presence of circulating gas bubbles has been repeatedly reported after uncomplicated SCUBA dives. The clinical and pathophysiological relevance of this phenomenon is still under debate but some experimental data suggest that silent bubbles may have a damaging potential on pulmonary endothelial cells. The aim of the present study was to evaluate the possible hemodynamic effect on pulmonary circulation of post-dive circulating gas bubbles. To this aim, 16 experienced divers were studied by Doppler-echocardiography in basal conditions and 2.0 ± 0.15 h after an uncomplicated, unrestricted recreational SCUBA dive. At the post-dive examination, circulating bubbles were present in 10/16 subjects (62.5%). Divers with circulating bubbles showed a significant post-dive increase of pulmonary systolic arterial pressure (evaluated by the maximal velocity of the physiological tricuspid regurgitation; P dive decrease of transmitral E/A ratio (index of left ventricular diastolic function: subjects with bubbles P dive diastolic function changes, observed in both groups, may be explained by a preload reduction due to immersion natriuresis. The results of the present study add some evidence that post-dive circulating bubbles, although symptomless, have an easily detectable pathogenetic potential, inducing unfavorable hemodynamic changes in the lesser circulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Development of a pressure based room acoustic model using impedance descriptions of surfaces

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2013-01-01

    and acoustic radiosity will account for the diffuse reflections. This paper presents the motivation for the new model in the form of results in literature, which show the importance of retaining the angle dependence and phase information in reflections along with simple examples of angle dependent reflection......If a simulation tool is to be used for the optimization of absorbent ceilings, it is important that the simulation tool includes a good description of the surface. This study therefore aims at developing a model which can describe surfaces by their impedance values and not just by their statistical...... absorption coefficient, thus retaining the phase and the angle dependence. The approach of the proposed model will be to calculate the pressure impulse response using a combination of the image source method and acoustic radiosity. The image source method will account for the specular reflections...

  16. Interfacial effects of surface-active agents under zinc pressure leach conditions

    Science.gov (United States)

    Owusu, George; Dreisinger, David B.; Peters, Ernest

    1995-02-01

    Liquid sulfur-zinc sulfate solution interfacial tensions and liquid sulfur-zinc sulfate solution-zinc sulfide (marmatite) contact angles were measured in the absence and presence of surface-active agents. Interfacial tensions measured varied between 54 ± 1 mN/m in the surfactant-free system and 20 ± 1 mN/m in the presence of a surfactant. The liquid sulfur-zinc sulfide mineral-zinc sulfate solution contact angle varies between 80 ± 5 deg, in the absence of any surfactant, and 148 ± 5 deg, depending on the surfactant used. The surface-active agents were used as dispersants for sulfur in bench-scale zinc pressure-leaching experiments. The observed extent of zinc extraction depends on the surfactant and varies from 40 to 96 pct.

  17. Effects of the positive end-expiratory pressure increase on sublingual microcirculation in patients with acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Nathaly Fonseca Nunes

    Full Text Available Abstract Objective: The aim of this study was to evaluate the impact of increased positive end-expiratory pressure on the sublingual microcirculation. Methods: Adult patients who were sedated, under mechanical ventilation, and had a diagnosis of circulatory shock and acute respiratory distress syndrome were included. The positive end-expiratory pressure level was settled to obtain a plateau pressure of 30 cm H2O and then maintained at this level for 20 minutes. Microcirculatory (obtained by videomicroscopy and hemodynamic variables were collected at baseline and compared with those at the end of 20 min. Results: Twelve patients were enrolled. Overall, the microcirculation parameters did not significantly change after increasing the positive end-expiratory pressure. However, there was considerable interindividual variability. There was a negative, moderate correlation between the changes in the De Backer score (r = -0.58, p = 0.048, total vessel density (r = -0.60, p = 0.039 and baseline values. The changes in total vessel density (r = 0.54, p = 0.07 and perfused vessel density (r = 0.52, p = 0.08 trended toward correlating with the changes in the mean arterial pressure. Conclusion: Overall, the microcirculation parameters did not significantly change after increasing the positive end-expiratory pressure. However, at individual level, such response was heterogeneous. The changes in the microcirculation parameters could be correlated with the baseline values and changes in the mean arterial pressure.

  18. The effect of ambient pressure on ejecta sheets from free-surface ablation

    KAUST Repository

    Marston, J. O.

    2016-04-16

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

  19. The effect of continuous positive airway pressure treatment for obstructive sleep apnea syndrome on the ocular surface.

    Science.gov (United States)

    Hayirci, Emre; Yagci, Ayse; Palamar, Melis; Basoglu, O K; Veral, Ali

    2012-06-01

    To evaluate the effect of continuous positive airway pressure (CPAP) treatment for obstructive sleep apnea syndrome on the ocular surface. This is a prospective, sectional cohort study of 80 eyes of 40 patients diagnosed with obstructive sleep apnea syndrome. Routine ophthalmologic examination and ocular surface evaluation, including biomicroscopy, Schirmer 1 testing, tear break-up time measurement, ocular surface staining, and conjunctival impression cytology, were performed in both of each patient's eyes before and 4 months after starting CPAP therapy. After CPAP therapy, increases in squamous metaplasia (Nelson classification: t = 0.34, P = 0.014) and Schirmer 1 score (t = 3.20, P = 0.008), and decreases in tear break-up time (t = -1.38, P = 0.008) in the right eyes were statistically significant, as compared with the pretreatment values. Although these parameters changed in a similar fashion in the left eyes, differences between the pre-CPAP and post-CPAP values were not significant. The findings indicate that CPAP therapy increased ocular irritation, tear evaporation, and squamous metaplasia in the conjunctiva of the patients' right and left eyes. Although the parameters measured were similar in both eyes before CPAP therapy, these parameters changed significantly after CPAP therapy only in the right eyes. The observed differences between the right and left eyes require further investigation to determine the possible effects of sleeping position, CPAP mask displacement, and the other factors involved.

  20. Positive Selection Pressure Drives Variation on the Surface-Exposed Variable Proteins of the Pathogenic Neisseria.

    Science.gov (United States)

    Wachter, Jenny; Hill, Stuart

    2016-01-01

    Pathogenic species of Neisseria utilize variable outer membrane proteins to facilitate infection and proliferation within the human host. However, the mechanisms behind the evolution of these variable alleles remain largely unknown due to analysis of previously limited datasets. In this study, we have expanded upon the previous analyses to substantially increase the number of analyzed sequences by including multiple diverse strains, from various geographic locations, to determine whether positive selective pressure is exerted on the evolution of these variable genes. Although Neisseria are naturally competent, this analysis indicates that only intrastrain horizontal gene transfer among the pathogenic Neisseria principally account for these genes exhibiting linkage equilibrium which drives the polymorphisms evidenced within these alleles. As the majority of polymorphisms occur across species, the divergence of these variable genes is dependent upon the species and is independent of geographical location, disease severity, or serogroup. Tests of neutrality were able to detect strong selection pressures acting upon both the opa and pil gene families, and were able to locate the majority of these sites within the exposed variable regions of the encoded proteins. Evidence of positive selection acting upon the hypervariable domains of Opa contradicts previous beliefs and provides evidence for selection of receptor binding. As the pathogenic Neisseria reside exclusively within the human host, the strong selection pressures acting upon both the opa and pil gene families provide support for host immune system pressure driving sequence polymorphisms within these variable genes.

  1. High-Stakes Testing and Student Achievement: Does Accountability Pressure Increase Student Learning?

    Directory of Open Access Journals (Sweden)

    Sharon L. Nichols

    2006-01-01

    Full Text Available This study examined the relationship between high-stakes testing pressure and student achievement across 25 states. Standardized portfolios were created for each study state. Each portfolio contained a range of documents that told the “story” of accountability implementation and impact in that state. Using the “law of comparative judgments,” over 300 graduate-level education students reviewed one pair of portfolios and made independent evaluations as to which of the two states’ portfolios reflected a greater degree of accountability pressure. Participants’ judgments yielded a matrix that was converted into a single rating system that arranged all 25 states on a continuum of accountability “pressure” from high to low. Using this accountability pressure rating we conducted a series of regression and correlation analyses. We found no relationship between earlier pressure and later cohort achievement for math at the fourth- and eighth-grade levels on the National Assessment of Educational Progress tests. Further, no relationship was found between testing pressure and reading achievement on the National Assessment of Education Progress tests at any grade level or for any ethnic student subgroup. Data do suggest, however, that a case could be made for a causal relationship between high-stakes testing pressure and subsequent achievement on the national assessment tests—but only for fourth grade, non-cohort achievement and for some ethnic subgroups. Implications and directions for future studies are discussed.

  2. Energy Consumption Analysis of Particle Crushing on Structural Contact Surface under High Pressure Shear

    Science.gov (United States)

    Tan, Junkun; Guo, Jiaqi

    2017-12-01

    The experimental study on the energy relationship between the coarse sand with different water content and the concrete interface with different hardness and roughness is carried out, through the high stress direct shear apparatus. Experimental results show that the growth rate of shear energy dissipation of sand - structure contact surface is slowing down with the increase of roughness, even negative; The shear energy dissipation of concrete with different hardness decreases first and then increases with the increase of water content, The crushing energy consumption is the lowest when water content is 16%; The shear energy dissipation at different moisture content increases with the increase of the contact strength of concrete structure.

  3. Comparison between effects of intravenous lidocaine and sublingual nifedipine on preventing blood pressure increase in laryngoscopy

    Directory of Open Access Journals (Sweden)

    Gholamreza Mohseni

    2010-06-01

    Full Text Available Gholamreza Mohseni1, Azam Kolyaei2, Morteza Farshchian3, Mansour Rezaei4, Negin Ghadami51Anesthesiologist, assistant professor, 2Anesthetist, 3Orthopedist, assistant professor, 4Biostatistician, assistant professor, 5General practitioner, Kermanshah University of Medical Sciences, Kermanshah, IranIntroduction: Arrhythmia during surgery most frequently occurs during laryngoscopy and intratracheal intubation. Many surgical procedures require intratracheal intubation, which results in hemodynamic changes. These changes in ill patients and patients with limited coronary flow reserve are associated with serious events.Materials and methods: A randomized clinical trial was performed on 124 healthy patients who were elective surgery candidates at Taleghani hospital in Kermanshah. Patients were allocated randomly to each equal group of 62 patients with 95% significance and 90% power of test-retest for sample size. The patients had no history of disease or use of special medications. Drugs commonly used for laryngoscopy and intubation to prevent hemodynamic complications, intravenous lidocaine and sublingual nifedipine, were compared with independent and paired t-tests.Results: This comparison suggested that while the mean age, weight, and sex distribution in our two groups were the same, mean changes in systolic and diastolic blood pressure and heart rate increases in the lidocaine group were 12.6%, 7.5%, and 16.5%, and in the nifedipine group, 17.7%, 11.0%, and 23.5% (P value = 0.0052, 0.189, and 0.0001, respectively. Conclusion: According to the results of our study, intravenous lidocaine is more effective than sublingual nifedipine for preventing hemodynamic changes while performing laryngoscopy or intratracheal intubation.Keywords: hemodynamic changes, laryngoscopy

  4. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Kittur, Jayant K.; Herwadkar, T. V.; Parappagoudar, M. B.

    2010-01-01

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  5. Recent increase in surface fCO2 in the western subtropical North Pacific

    Science.gov (United States)

    Kim, Dongseon; Choi, Yujeong; Kim, Tae-Wook; Park, Geun-Ha

    2017-09-01

    We observed unusually high levels (> 440 μatm) of carbon dioxide fugacity (fCO2) in surface seawater in the western subtropical North Pacific, the area where Subtropical Mode Water is formed, during summer 2015. The NOAA Kuroshio Extension Observatory moored buoy located in this region also measured high CO2 values, up to 500 μatm during this period. These high sea surface fCO2 (fCO2SW) values are explained by much higher normalized total dissolved inorganic carbon and slightly higher normalized total alkalinity concentrations in this region compared to the equatorial Pacific. Moreover, these values are much higher than the climatological CO2 values, even considering increasing atmospheric CO2, indicating a recent large increase in sea surface CO2 concentrations. A large seasonal change in sea surface temperature contributed to higher surface fCO2SW in the summer of 2015.

  6. Prevention of pressure ulcers in the intensive care unit: a randomized trial of 2 viscoelastic foam support surfaces.

    Science.gov (United States)

    Ozyurek, Pakize; Yavuz, Meryem

    2015-01-01

    The aim of this study is to compare whether differences exist between 2 viscoelastic foam support surfaces in the development of new pressure ulcers. There is evidence to support the use of viscoelastic foam over standard hospital foam to reduce pressure. A comparative effectiveness study was done to compare 2 viscoelastic foam support surfaces. A randomized controlled trial was carried out. The study was performed in 2 intensive care units between October 1, 2008, and January 4, 2010. Patients (n = 105) admitted to intensive care unit were randomly assigned to viscoelastic foam 1 (n = 53) or viscoelastic foam 2 support surface (n = 52). In total, 42.8% of all patients developed a new pressure ulcer of stage 1 or worse. By stages, pressure ulcer incidence was 28.6%, 13.3%, and 1.0% for stages 1, 2, and 3, respectively. There was no significant difference in pressure ulcer incidence between the viscoelastic foam 1 and 2 groups (X2 = 0.07, df = 1, P > .05). No difference was found between 2 different viscoelastic foam surfaces in the prevention of pressure ulcers in patients treated in intensive care. Pressure ulcer incidence in critically ill patients remains high. Nurses must compare current products for effectiveness and develop innovative systems, processes, or devices to deliver best practices.

  7. Perioperative medications for preventing temporarily increased intraocular pressure after laser trabeculoplasty.

    Science.gov (United States)

    Zhang, Linda; Weizer, Jennifer S; Musch, David C

    2017-02-23

    Glaucoma is the international leading cause of irreversible blindness. Intraocular pressure (IOP) is the only currently known modifiable risk factor; it can be reduced by medications, incisional surgery, or laser trabeculoplasty (LTP). LTP reduces IOP by 25% to 30% from baseline, but early acute IOP elevation after LTP is a common adverse effect. Most of these IOP elevations are transient, but temporarily elevated IOP may cause further optic nerve damage, worsening of glaucoma requiring additional therapy, and permanent vision loss. Antihypertensive prophylaxis with medications such as acetazolamide, apraclonidine, brimonidine, dipivefrin, pilocarpine, and timolol have been recommended to blunt and treat the postoperative IOP spike and associated pain and discomfort. Conversely, other researchers have observed that early postoperative IOP rise happens regardless of whether people receive perioperative glaucoma medications. It is unclear whether perioperative administration of antiglaucoma medications may be helpful in preventing or reducing the occurrence of postoperative IOP elevation. To assess the effectiveness of medications administered perioperatively to prevent temporarily increased intraocular pressure (IOP) after laser trabeculoplasty (LTP) in people with open-angle glaucoma (OAG). We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 11), MEDLINE Ovid (1946 to 18 November 2016), Embase.com (1947 to 18 November 2016), PubMed (1948 to 18 November 2016), LILACS (Latin American and Caribbean Health Sciences Literature Database) (1982 to 18 November 2016), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com); last searched 17 September 2013, ClinicalTrials.gov (www.clinicaltrials.gov); searched 18 November 2016 and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en); searched 18 November 2016. We did not use any date or language restrictions. We included

  8. Absolute Height of Sea Surface by Trajectory of GPS Antennae Over Submerged Pressure Gauges

    Science.gov (United States)

    Bouin, M.; Calmant, S.; Cheng, K.; Ballu, V.; Shum, C. K.; Testut, L.

    2003-12-01

    Water height data provided by seafloor tide gauges is a combination of sea-level variations and ground motion. Both of these signals are of scientific interest, but they must be separated in order to be useful. Estimating ground motion is specially important in very tectonically active areas such as the Pacific Ocean rim. One promising method to separate the two contributions is to use satellite altimetry data which gives absolute water height, but these data must be calibrated using ground truth measurements. Once different components of the signal are separated, bottom pressure gauges can be used to detect vertical movements of the seafloor such as co-seismic or slow inter-seismic motions. The Vanuatu archipelago is part of the Pacific ring of fire, where plates are rapidly converging. In the area, movements are very rapid and the seismic activity is intense, which gives a good opportunity to study deformation and seismic cycle. To get an integrate picture of vertical deformation over one plate and between the two plates, one needs to be able to monitor vertical movements on both underwater and emerged areas. We conducted an experiment in the Vanuatu archipelago, South-West Pacific, to compare measurements from bottom pressure gauges located beneath altimetry satellite tracks with sea surface altitude measurements from GPS. Two bottom pressure gauges are immerged since Nov. 1999 on Sabine bank (15.90° S, 166.14° E) and Wusi Bank (15.34° S, 166.55° E), West of Santo island, Vanuatu. In order to perform absolute calibrations of JASON and ENVISAT altimeters that overfly the Wusi and Sabine banks, respectively, we performed GPS measurements of instantaneous sea surface altitude. The GPS antennae were fixed on top of the 30m long R/V Alis. An inertial unit also recorded the high frequency vessel motions. The height of the antennae over the sea surface was measured using a laser distancemeter in calibration sessions during particularly calm sea states. We present

  9. Effect of electrode configuration on the uniformity of atmospheric pressure surface dielectric barrier air micro-discharge

    Science.gov (United States)

    Xia, Yang; Bi, Zhenhua; Qi, Zhihua; Ji, Longfei; Zhao, Yao; Chang, Xuewei; Wang, Wenchun; Liu, Dongping

    2018-02-01

    The electrode configuration of atmospheric pressure air discharge is one of the key elements that have significant effects on the discharge properties. In this study, double-sided printed circuit boards with square-shaped lattice structure are used to generate surface dielectric barrier air micro-discharge (SDBAMD) at atmospheric pressure. The effects of the lattice width on the discharge properties are reported. The uniformity of the SDBAMD is evaluated by adopting the digital image processing method. Our measurements show that the power and ignition voltage of the SDBAMD significantly depended on the configuration of the grounded electrode. The digital image processing results show that the uniformity of the SDBAMD is severely affected by the lattice width, and the most uniform discharge is achieved at the lattice width of 2.0 mm. The numerical model based on COMSOL demonstrated that increasing the lattice width can lead to an increase in the electric field in the vicinity of the grounded electrode and a decrease in the lattice center. Furthermore, our analysis suggests that the different electrode configurations can change the interaction between the space charges during the discharge, which ultimately affects the uniformity of the SDBAMD.

  10. Soybean oil increases SERCA2a expression and left ventricular contractility in rats without change in arterial blood pressure

    Directory of Open Access Journals (Sweden)

    Vassallo Dalton

    2010-05-01

    Full Text Available Abstract Background Our aim was to evaluate the effects of soybean oil treatment for 15 days on arterial and ventricular pressure, myocardial mechanics and proteins involved in calcium handling. Methods Wistar rats were divided in two groups receiving 100 μL of soybean oil (SB or saline (CT i.m. for 15 days. Ventricular performance was analyzed in male 12-weeks old Wistar rats by measuring left ventricle diastolic and systolic pressure in isolated perfused hearts according to the Langendorff technique. Protein expression was measured by Western blot analysis. Results Systolic and diastolic arterial pressures did not differ between CT and SB rats. However, heart rate was reduced in the SB group. In the perfused hearts, left ventricular isovolumetric systolic pressure was higher in the SB hearts. The inotropic response to extracellular Ca2+ and isoproterenol was higher in the soybean-treated animals than in the control group. Myosin ATPase and Na+-K+ATPase activities, the expression of sarcoplasmic reticulum calcium pump (SERCA2a and sodium calcium exchanger (NCX were increased in the SB group. Although the phosfolamban (PLB expression did not change, its phosphorylation at Ser16 was reduced while the SERCA2a/PLB ratio was increased. Conclusions In summary, soybean treatment for 15 days in rats increases the left ventricular performance without affecting arterial blood pressure. These changes might be associated with an increase in the myosin ATPase activity and SERCA2a expression.

  11. Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Bo [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Shen, E-mail: syu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Li, Gui-Lin [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Liu, Yi; Yu, Guang-Bin [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Hong [Department of Environmental Sciences, Tiantong National Station of Forest Ecosystem, Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200062 (China); Wu, Sheng-Chun [State Key Laboratory in Marine Pollution, Biology and Chemistry Department, City University of Hong Kong, Hong Kong (China); Wong, Ming-Hung [Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong (China)

    2012-08-15

    Lake surface sediment is mainly derived from topsoil in its catchment. We hypothesized that distribution of anthropogenic metals would be homogenous in lake surface sediment and the lake's catchment topsoil. Anthropogenic metal distributions (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) in fourteen waterscape parks were investigated in surface sediments and catchment topsoils and possible source homogeneity was tested using stable Pb isotopic ratio analysis. The parks were located along an urbanization gradient consisting of suburban (SU), developing urban (DIU), developed urban (DDU), and central urban core (CUC) areas in Shanghai, China. Results indicated that surface lake sediments and catchment topsoils in the CUC parks were highly contaminated by the investigated anthropogenic metals. Total metal contents in surface sediment and topsoil gradually increased along the urbanization gradient from the SU to CUC areas. Generally, the surface sediments had greater total metal contents than their catchment topsoils. These results suggest that urbanization drives the anthropogenic metal enrichment in both surface sediment and its catchment topsoil in the waterscape parks. Soil fine particles (< 63 {mu}m) and surface sediments had similar enrichment ratios of metals, suggesting that surface runoff might act as a carrier for metals transporting from catchment to lake. Stable Pb isotope ratio analysis revealed that the major anthropogenic Pb source in surface sediment was coal combustion as in the catchment topsoil. Urbanization also correlated with chemical fractionation of metals in both surface sediment and catchment topsoil. From the SU to the CUC parks, amounts of labile metal fractions increased while the residual fraction of those metals remained rather constant. In short, urbanization in Shanghai drives anthropogenic metal distribution in environmental matrices and the sources were homogenous. -- Highlights: Black-Right-Pointing-Pointer Obvious

  12. Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks

    International Nuclear Information System (INIS)

    Li, Hong-Bo; Yu, Shen; Li, Gui-Lin; Liu, Yi; Yu, Guang-Bin; Deng, Hong; Wu, Sheng-Chun; Wong, Ming-Hung

    2012-01-01

    Lake surface sediment is mainly derived from topsoil in its catchment. We hypothesized that distribution of anthropogenic metals would be homogenous in lake surface sediment and the lake's catchment topsoil. Anthropogenic metal distributions (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) in fourteen waterscape parks were investigated in surface sediments and catchment topsoils and possible source homogeneity was tested using stable Pb isotopic ratio analysis. The parks were located along an urbanization gradient consisting of suburban (SU), developing urban (DIU), developed urban (DDU), and central urban core (CUC) areas in Shanghai, China. Results indicated that surface lake sediments and catchment topsoils in the CUC parks were highly contaminated by the investigated anthropogenic metals. Total metal contents in surface sediment and topsoil gradually increased along the urbanization gradient from the SU to CUC areas. Generally, the surface sediments had greater total metal contents than their catchment topsoils. These results suggest that urbanization drives the anthropogenic metal enrichment in both surface sediment and its catchment topsoil in the waterscape parks. Soil fine particles (< 63 μm) and surface sediments had similar enrichment ratios of metals, suggesting that surface runoff might act as a carrier for metals transporting from catchment to lake. Stable Pb isotope ratio analysis revealed that the major anthropogenic Pb source in surface sediment was coal combustion as in the catchment topsoil. Urbanization also correlated with chemical fractionation of metals in both surface sediment and catchment topsoil. From the SU to the CUC parks, amounts of labile metal fractions increased while the residual fraction of those metals remained rather constant. In short, urbanization in Shanghai drives anthropogenic metal distribution in environmental matrices and the sources were homogenous. -- Highlights: ► Obvious urbanization effect on metal

  13. Aging increases oxidative stress and renal expression of oxidant and antioxidant enzymes that are associated with an increased trend in systolic blood pressure.

    Science.gov (United States)

    Gomes, Pedro; Simão, Sónia; Silva, Elisabete; Pinto, Vanda; Amaral, João S; Afonso, Joana; Serrão, Maria Paula; Pinho, Maria João; Soares-da-Silva, Patrício

    2009-01-01

    The aim of this study was to investigate whether the effects of aging on oxidative stress markers and expression of major oxidant and antioxidant enzymes associate with impairment of renal function and increases in blood pressure. To explore this, we determined age-associated changes in lipid peroxidation (urinary malondialdehyde), plasma and urinary hydrogen peroxide (H(2)O(2)) levels, as well as renal H(2)O(2) production, and the expression of oxidant and antioxidant enzymes in young (13 weeks) and old (52 weeks) male Wistar Kyoto (WKY) rats. Urinary lipid peroxidation levels and H(2)O(2) production by the renal cortex and medulla of old rats were higher than their young counterparts. This was accompanied by overexpression of NADPH oxidase components Nox4 and p22(phox) in the renal cortex of old rats. Similarly, expression of superoxide dismutase (SOD) isoforms 2 and 3 and catalase were increased in the renal cortex from old rats. Renal function parameters (creatinine clearance and fractional excretion of sodium), diastolic blood pressure and heart rate were not affected by aging, although slight increases in systolic blood pressure were observed during this 52-week period. It is concluded that overexpression of renal Nox4 and p22(phox) and the increases in renal H(2)O(2) levels in aged WKY does not associate with renal functional impairment or marked increases in blood pressure. It is hypothesized that lack of oxidative stress-associated effects in aged WKY rats may result from increases in antioxidant defenses that counteract the damaging effects of H(2)O(2).

  14. Aging increases Oxidative Stress and Renal Expression of Oxidant and Antioxidant Enzymes that Are Associated with an Increased Trend in Systolic Blood Pressure

    Directory of Open Access Journals (Sweden)

    Pedro Gomes

    2009-01-01

    Full Text Available The aim of this study was to investigate whether the effects of aging on oxidative stress markers and expression of major oxidant and antioxidant enzymes associate with impairment of renal function and increases in blood pressure. To explore this, we determined age-associated changes in lipid peroxidation (urinary malondialdehyde, plasma and urinary hydrogen peroxide (H2O2 levels, as well as renal H2O2 production, and the expression of oxidant and antioxidant enzymes in young (13 weeks and old (52 weeks male Wistar Kyoto (WKY rats. Urinary lipid peroxidation levels and H2O2 production by the renal cortex and medulla of old rats were higher than their young counterparts. This was accompanied by overexpression of NADPH oxidase components Nox4 and p22phox in the renal cortex of old rats. Similarly, expression of superoxide dismutase (SOD isoforms 2 and 3 and catalase were increased in the renal cortex from old rats. Renal function parameters (creatinine clearance and fractional excretion of sodium, diastolic blood pressure and heart rate were not affected by aging, although slight increases in systolic blood pressure were observed during this 52-week period. It is concluded that overexpression of renal Nox4 and p22phox and the increases in renal H2O2 levels in aged WKY does not associate with renal functional impairment or marked increases in blood pressure. It is hypothesized that lack of oxidative stress-associated effects in aged WKY rats may result from increases in antioxidant defenses that counteract the damaging effects of H2O2.

  15. Low pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    DEFF Research Database (Denmark)

    Fumagalli, F; Kylian, O; Amato, Letizia

    2012-01-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can...... be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several...... operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water...

  16. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    International Nuclear Information System (INIS)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D; Kylian, O

    2009-01-01

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O 2 mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  17. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via E. Fermi 2749, 21027 Ispra (Vatican City State, Holy See) (Italy); Kylian, O [Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, Prague 8, 180 00 (Czech Republic)], E-mail: francois.rossi@jrc.ec.europa.eu

    2009-11-15

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O{sub 2} mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  18. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure

    Science.gov (United States)

    Henderson, Ashley G.; Ehre, Camille; Button, Brian; Abdullah, Lubna H.; Cai, Li-Heng; Leigh, Margaret W.; DeMaria, Genevieve C.; Matsui, Hiro; Donaldson, Scott H.; Davis, C. William; Sheehan, John K.; Boucher, Richard C.; Kesimer, Mehmet

    2014-01-01

    The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer–dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease. PMID:24892808

  19. Depression Is Associated With Decreased Blood Pressure, but Antidepressant Use Increases the Risk for Hypertension

    NARCIS (Netherlands)

    Licht, Carmilla M. M.; de Geus, Eco J. C.; Seldenrijk, Adrie; van Hout, Hein P. J.; Zitman, Frans G.; van Dyck, Richard; Penninx, Brenda W. J. H.

    The present study compared blood pressure levels between subjects with clinical anxiety and depressive disorders with healthy controls. Cross-sectional data were obtained in a large cohort study, the Netherlands Study of Depression and Anxiety (N=2981). Participants were classified as controls

  20. Increased blood pressure and aortic stiffness among abusers of anabolic androgenic steroids

    DEFF Research Database (Denmark)

    Rasmussen, Jon J; Schou, Morten; Madsen, Per L

    2018-01-01

    BACKGROUND: Abuse of anabolic androgenic steroids (AAS) is prevalent among recreational athletes and adverse effects on blood pressure (BP) and arterial stiffness could be substantial. Testosterone decreases natriuretic peptides which are key components in BP-regulation and may impair BP...

  1. Sterilization by high hydrostatic pressure : increasing efficiency and product quality by improved temperature control

    NARCIS (Netherlands)

    Heij, de W.B.C.; Schepdael, van L.J.M.M.; Moezelaar, R.; Berg, van den R.W.

    2003-01-01

    A product being pressurized will heat up due to compressive heating. Due to heat transfer, products close to the vessel wall will cool down, a process which may result in a non-homogeneous product temperature profile in radial direction. If the proper technological features are implemented these

  2. ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure

    NARCIS (Netherlands)

    H. Springelkamp (Henriët); A.I. Iglesias González (Adriana); G. Cuellar-Partida (Gabriel); N. Amin (Najaf); K.P. Burdon (Kathryn); E.M. van Leeuwen (Elisa); P. Gharahkhani (Puya); A. Mishra (Aniket); S.J. van der Lee (Sven); A.W. Hewit (Alex); F. Rivadeneira Ramirez (Fernando); A.C. Viswanathan (Ananth); R.C.W. Wolfs (Roger); N.G. Martin (Nicholas); W.D. Ramdas (Wishal); L.M.E. van Koolwijk (Leonieke); C.E. Pennell (Craig E.); J.R. Vingerling (Hans); J.E. Mountain (Jenny E.); A.G. Uitterlinden (André); A. Hofman (Albert); P. Mitchell (Paul); H.G. Lemij (Hans); J.J. Wang (Jie Jin); C.C.W. Klaver (Caroline); D.A. Mackey (David); J.E. Craig (Jamie E.); C.M. van Duijn (Cornelia); S. MacGregor (Stuart)

    2015-01-01

    textabstractPrimary open-angle glaucoma (POAG) is a blinding disease. Two important risk factors for this disease are a positive family history and elevated intraocular pressure (IOP), which is also highly heritable. Genes found to date associated with IOP and POAG are ABCA1, CAV1/CAV2, GAS7 and

  3. Anomalous increase of T.sub.c./sub. in UGa.sub.2./sub. under pressure

    Czech Academy of Sciences Publication Activity Database

    Kolomiets, A.; Havela, L.; Prchal, J.; Andreev, Alexander V.

    2013-01-01

    Roč. 62, č. 10 (2013), s. 1572-1574 ISSN 0374-4884 R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional support: RVO:68378271 Keywords : uranium * ferromagnetism * high pressure * hybridization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.425, year: 2013

  4. Experimental and numerical investigations of stable crack growth of axial surface flaws in a pressure vessel

    International Nuclear Information System (INIS)

    Brocks, W.; Krafka, H.; Mueller, W.; Wobst, K.

    1988-01-01

    In connection with the problem of the transferability of parameters obtained experimentally with the help of fracture-mechanical test specimens and used for the initiation and the stable propagation of cracks in cases of pulsating stress and of the elasto-plastic behaviour of construction components, a pressure vessel with an inside diameter of 1500 mm, a cylindrical length of 3000 mm and a wall thickness of 40 mm was hydraulically loaded with the help of internal pressure in the first stage, to attain an average crack growth of 1 mm at Δ a ≅, the loading taking place at about 21deg C. This stress-free annealed vessel exhibited an axial semielliptical vibration-induced surface crack about 181 mm long and 20 mm deep, as a test defect, in a welded circular blank made of the steel 20MnMoNi 55. The fractographic analysis of the first stable crack revealed that its growth rate of Δa was highest in the area of transition from the weak to the strong bend of the crack front (55deg m /σ v (average principal stress: σ m , Mises' reference stress: σ v v). A comparison of the experimental with the numerical results from the first stable crack shows that the local stable crack growth Δa cannot be calculated solely with reference to J, because Δa appears to depend essentially on the quotient σ m /σ v . (orig./MM) [de

  5. Diagnostics of surface wave driven low pressure plasmas based on indium monoiodide-argon system

    International Nuclear Information System (INIS)

    Ögün, C M; Kaiser, C; Kling, R; Heering, W

    2015-01-01

    Indium monoiodide is proposed as a suitable alternative to hazardous mercury, i.e. the emitting component inside the compact fluorescent lamps (CFL), with comparable luminous efficacy. Indium monoiodide-argon low pressure lamps are electrodelessly driven with surface waves, which are launched and coupled into the lamp by the ‘surfatron’, a microwave coupler optimized for an efficient operation at a frequency of 2.45 GHz. A non intrusive diagnostic method based on spatially resolved optical emission spectroscopy is employed to characterize the plasma parameters. The line emission coefficients of the plasma are derived by means of Abel’s inversion from the measured spectral radiance data. The characteristic plasma parameters, e.g. electron temperature and density are determined by comparing the experimentally obtained line emission coefficients with simulated ones from a collisional-radiative model. Additionally, a method to determine the absolute plasma efficiency via irradiance measurements without any goniometric setup is presented. In this way, the relationship between the plasma efficiency and the plasma parameters can be investigated systematically for different operating configurations, e.g. electrical input power, buffer gas pressure and cold spot temperature. The performance of indium monoiodide-argon plasma is compared with that of conventional CFLs. (paper)

  6. Captopril avoids hypertension, the increase in plasma angiotensin II but increases angiotensin 1-7 and angiotensin II-induced perfusion pressure in isolated kidney in SHR.

    Science.gov (United States)

    Castro-Moreno, P; Pardo, J P; Hernández-Muñoz, R; López-Guerrero, J J; Del Valle-Mondragón, L; Pastelín-Hernández, G; Ibarra-Barajas, M; Villalobos-Molina, R

    2012-10-01

    We investigated captopril effects, an ACE inhibitor, on hypertension development, on Ang II and Ang-(1-7) plasma concentrations, on Ang II-induced contraction in isolated kidneys, and on kidney AT1R from spontaneously hypertensive (SHR) rats. Five weeks-old SHR and Wistar Kyoto (WKY) rats were treated with captopril at 30 mg/kg/day, in drinking water for 2 or 14 weeks. Systolic blood pressure (SBP) was measured, and isolated kidneys were tested for perfusion pressure and AT1R expression; while Ang II and Ang-(1-7) concentrations were determined in plasma. Captopril did not modify SBP in WKY rats and avoided its increase as SHR aged. Plasma Ang-II concentration was ∼4-5 folds higher in SHR rats, and captopril reduced it (Pcaptopril increased Ang-(1-7) by ∼2 fold in all rat groups. Captopril increased Ang II-induced pressor response in kidneys of WKY and SHR rats, phenomenon not observed in kidneys stimulated with phenylephrine, a α₁-adrenoceptor agonist. Captopril did not modify AT1R in kidney cortex and medulla among rat strains and ages. Data indicate that captopril increased Ang II-induced kidney perfusion pressure but not AT₁R density in kidney of WKY and SHR rats, due to blockade of angiotensin II synthesis; however, ACE inhibitors may have other actions like activating signaling processes that could contribute to their diverse effects. © 2012 Blackwell Publishing Ltd.

  7. Effects of low-pressure nitrogen plasma treatment on the surface properties and electrochemical performance of the polyethylene separator used lithium-ion batteries

    Science.gov (United States)

    Li, Chun; Li, Hsiao-Ling; Li, Chi-Heng; Liu, Yu-Shuan; Sung, Yu-Ching; Huang, Chun

    2018-01-01

    In this paper, we describe the surface transition of the polyethylene (PE) separator used in lithium-ion batteries treated by low-pressure nitrogen plasma discharge. The nitrogen-plasma-treated PE separator was characterized by contact angle measurement, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical performance of the lithium ion batteries fabricated with the nitrogen-plasma-treated separator was also evaluated. Results showed that polar functionalization groups were induced on the PE surface by the nitrogen plasma discharge, causing the surface to become hydrophilic. The increases in surface wettability and surface free energy result in electrolyte retention improvement. Moreover, the nitrogen plasma-treated PE separator leads to superior performance in lithium-ion battery assembly.

  8. Receding and advancing (CO2 + brine + quartz) contact angles as a function of pressure, temperature, surface roughness, salt type and salinity

    International Nuclear Information System (INIS)

    Al-Yaseri, Ahmed Z.; Lebedev, Maxim; Barifcani, Ahmed; Iglauer, Stefan

    2016-01-01

    Highlights: • (Water + CO 2 ) contact angle on quartz increases substantially with pressure and salinity. • (Water + CO 2 ) contact angle on quartz increases slightly with temperature. • Surface roughness has only a minor influence on (water + CO 2 + quartz) contact angles. - Abstract: The wetting characteristics of CO 2 in rock are of vital importance in carbon geo-storage as they determine fluid dynamics and storage capacities. However, the current literature data has a high uncertainty, which translates into uncertain predictions in terms of containment security and economic project feasibility. We thus measured contact angles for the CO 2 /water/quartz system at relevant reservoir conditions, and analysed the effects of pressure (0.1 to 20) MPa, temperature (296 to 343) K, surface roughness (56 to 1300) nm, salt type (NaCl, CaCl 2 , and MgCl 2 ) and brine salinities (0 to 35) wt%. Water contact angles decreased with surface roughness, but increased with pressure, temperature, and brine salinity. Overall the contact angles were significantly increased at storage conditions (∼50°) when compared to ambient conditions (always 0°). Consequently quartz is weakly water-wet (not completely water-wet) at storage conditions, and structural and residual trapping capacities are reduced accordingly.

  9. Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia

    Science.gov (United States)

    Rydsaa, Johanne H.; Stordal, Frode; Bryn, Anders; Tallaksen, Lena M.

    2017-09-01

    Increased shrub and tree cover in high latitudes is a widely observed response to climate change that can lead to positive feedbacks to the regional climate. In this study we evaluate the sensitivity of the near-surface atmosphere to a potential increase in shrub and tree cover in the northern Fennoscandia region. We have applied the Weather Research and Forecasting (WRF) model with the Noah-UA land surface module in evaluating biophysical effects of increased shrub cover on the near-surface atmosphere at a fine resolution (5.4 km × 5.4 km). Perturbation experiments are performed in which we prescribe a gradual increase in taller vegetation in the alpine shrub and tree cover according to empirically established bioclimatic zones within the study region. We focus on the spring and summer atmospheric response. To evaluate the sensitivity of the atmospheric response to inter-annual variability in climate, simulations were conducted for two contrasting years, one warm and one cold. We find that shrub and tree cover increase leads to a general increase in near-surface temperatures, with the highest influence seen during the snowmelt season and a more moderate effect during summer. We find that the warming effect is stronger in taller vegetation types, with more complex canopies leading to decreases in the surface albedo. Counteracting effects include increased evapotranspiration, which can lead to increased cloud cover, precipitation, and snow cover. We find that the strength of the atmospheric feedback is sensitive to snow cover variations and to a lesser extent to summer temperatures. Our results show that the positive feedback to high-latitude warming induced by increased shrub and tree cover is a robust feature across inter-annual differences in meteorological conditions and will likely play an important role in land-atmosphere feedback processes in the future.

  10. High-pressure coolant effect on the surface integrity of machining titanium alloy Ti-6Al-4V: a review

    Science.gov (United States)

    Liu, Wentao; Liu, Zhanqiang

    2018-03-01

    Machinability improvement of titanium alloy Ti-6Al-4V is a challenging work in academic and industrial applications owing to its low thermal conductivity, low elasticity modulus and high chemical affinity at high temperatures. Surface integrity of titanium alloys Ti-6Al-4V is prominent in estimating the quality of machined components. The surface topography (surface defects and surface roughness) and the residual stress induced by machining Ti-6Al-4V occupy pivotal roles for the sustainability of Ti-6Al-4V components. High-pressure coolant (HPC) is a potential choice in meeting the requirements for the manufacture and application of Ti-6Al-4V. This paper reviews the progress towards the improvements of Ti-6Al4V surface integrity under HPC. Various researches of surface integrity characteristics have been reported. In particularly, surface roughness, surface defects, residual stress as well as work hardening are investigated in order to evaluate the machined surface qualities. Several coolant parameters (including coolant type, coolant pressure and the injection position) deserve investigating to provide the guidance for a satisfied machined surface. The review also provides a clear roadmap for applications of HPC in machining Ti-6Al4V. Experimental studies and analysis are reviewed to better understand the surface integrity under HPC machining process. A distinct discussion has been presented regarding the limitations and highlights of the prospective for machining Ti-6Al4V under HPC.

  11. Adult Neuroblastoma Complicated by Increased Intracranial Pressure: A Case Report and Review of the Literature

    OpenAIRE

    Stevens, Patrick L.; Johnson, Douglas B.; Thompson, Mary Ann; Keedy, Vicki L.; Frangoul, Haydar A.; Snyder, Kristen M.

    2014-01-01

    Neuroblastoma is the third most commonly occurring malignancy of the pediatric population, although it is extremely rare in the adult population. In adults, neuroblastoma is often metastatic and portends an extremely poor overall survival. Our case report documents metastatic neuroblastoma occurring in a healthy 29-year-old woman whose course was complicated by an unusual presentation of elevated intracranial pressures. The patient was treated with systemic chemotherapy, I131 metaiodobenzylgu...

  12. Cardiovascular risks related to increased diastolic, systolic and pulse pressure. An epidemiologist's point of view.

    Science.gov (United States)

    Franklin, S S

    1999-06-01

    Since the introduction of the sphygmomanometer at the beginning to the 20th century, the significance of diastolic (DBP), Systolic (DBP) and pulse pressure (PP) as hypertensive cardiovascular risk factors has been controversial. These historical controversies are reviewed. Initially, DBP was thought to be the best measure of risk, but more recently both SBP and DBP, which ever is higher, are used in classifying hypertensive cardiovascular risk. There are problems with the present guidelines, in that SBP and DBP represent only two inflection points on the propagated pulse wave that is measured by cuff readings at the peripheral brachial artery. The heart is exposed to the central aortic pressure not to the brachial artery pressure. Moreover, both peripheral vascular resistance and large artery stiffness contribute to hypertensive cardiovascular risk. In middle-aged and elderly, elevated SBP is a better surrogate measurement of resistance than DBP, but SBP underestimates large artery stiffness. PP, the difference between peak SBP and end DBP, is the single best blood pressure surrogate for large artery stiffness. Epidemiological studies over the past decade point to SBP and DBP as the best cardiovascular risk markers for young subjects, whereas PP takes over as the more powerful risk marker for middle-aged and elderly subjects. These findings support the concept that cardiovascular events are more related to the pulsatile stress of large artery stiffness during systole than the steady-state stress of small vessel resistance during diastole. Therefore, at similar elevations of SBP, subjects with isolated systolic hypertension are at greater risk for cardiovascular events than those with combined systolic/diastolic hypertension.

  13. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    Science.gov (United States)

    Li, Zhanguo; Li, Ying; Cao, Peng; Zhao, Hongjie

    2013-07-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.

  14. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    International Nuclear Information System (INIS)

    Li Zhanguo; Li Ying; Cao Peng; Zhao Hongjie

    2013-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet

  15. Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch

    International Nuclear Information System (INIS)

    Yonson, S; Coulombe, S; Leveille, V; Leask, R L

    2006-01-01

    A miniature atmospheric pressure glow discharge plasma torch was used to detach cells from a polystyrene Petri dish. The detached cells were successfully transplanted to a second dish and a proliferation assay showed the transplanted cells continued to grow. Propidium iodide diffused into the cells, suggesting that the cell membrane had been permeabilized, yet the cells remained viable 24 h after treatment. In separate experiments, hydrophobic, bacteriological grade polystyrene Petri dishes were functionalized. The plasma treatment reduced the contact angle from 93 0 to 35 0 , and promoted cell adhesion. Two different torch nozzles, 500 μm and 150 μm in internal diameter, were used in the surface functionalization experiments. The width of the tracks functionalized by the torch, as visualized by cell adhesion, was approximately twice the inside diameter of the nozzle. These results indicate that the miniature plasma torch could be used in biological micropatterning, as it does not use chemicals like the present photolithographic techniques. Due to its small size and manouvrability, the torch also has the ability to pattern complex 3D surfaces

  16. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    Science.gov (United States)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  17. Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma.

    Science.gov (United States)

    Dorraki, Naghme; Mahdavi, Vahideh; Ghomi, Hamid; Ghasempour, Alireza

    2016-12-06

    The food industry is in a constant search for new technologies to improve the commercial sterilization process of agricultural commodities. Plasma treatment may offer a novel and efficient method for pesticide removal from agricultural product surfaces. To study the proposed technique of plasma food treatment, the degradation behavior of diazinon insecticide by air-dielectric barrier discharge (DBD) plasma was investigated. The authors studied the effect of different plasma powers and treatment times on pesticide concentration in liquid form and coated on the surface of cucumbers, where the diazinon residue was analyzed with mass spectroscopy gas chromatography. Our results suggest that atmospheric pressure air-DBD plasma is potentially effective for the degradation of diazinon insecticide, and mainly depends on related operating parameters, including plasma treatment time, discharge power, and pesticide concentrations. Based on the interaction between reactive oxygen species and electrons in the plasma with the diazinon molecule, two degradation pathway of diazinon during plasma treatment are proposed. It was also found that produced organophosphate pesticides are harmless and less hazardous compounds than diazinon.

  18. Computational model of the interaction of a helium atmospheric-pressure jet with a dielectric surface

    Science.gov (United States)

    Hasan, M. I.; Bradley, J. W.

    2015-11-01

    Using a time-dependent two-dimensional axisymmetric fluid model the interaction of a plasma jet with a dielectric surface has been studied. The model is solved for two consecutive periods of a positive unipolar pulsed waveform. The study concentrates on determining the fluxes of the main oxygen ion species, \\text{O}2+ , \\text{O}2- and the total accumulated charge on the surface. Approaching the dielectric surface, the streamer head is seen to divert its direction of propagation, spreading out radially approximately 0.2 mm above the dielectric surface. For \\text{O}2+ generated near the streamer head, this leads to a maximum in their flux to the surface which moves radially outwards with the streamer propagation, driven by the applied electric field in pulse on-time. In the off-time, the flux of \\text{O}2+ drops by at least two orders of magnitude. As a result, the total number of \\text{O}2+ ions arriving at the surface over one entire pulse period (fluence) has an annular shape limited by the effective contact area of the streamer on the surface. In contrast \\text{O}2- ions generated in the pulse on-time do not reach the surface due to the direction of the applied electric field. In the off-time, \\text{O}2- ions generated at the edges of the deformed streamer are pushed by the accumulated surface charge outwards. As a result, the \\text{O}2- fluence has an annular structure with its maximum being outside the area of the dielectric surface covered by the plasma channel. Solving for the second pulse period shows small changes in the predicted fluences, with largest difference seen with \\text{O}2- . We see that increasing the flow rate (by a factor of three) shifts the position of the maximum fluence of \\text{O}2+ outwards, and decreasing the \\text{O}2- fluence in the second pulse period.

  19. Comparison of air-fluidized therapy with other support surfaces used to treat pressure ulcers in nursing home residents.

    Science.gov (United States)

    Ochs, Rachel F; Horn, Susan D; van Rijswijk, Lia; Pietsch, Catherine; Smout, Randall J

    2005-02-01

    To provide empirical evidence comparing pressure ulcer healing rates between different support surfaces, data were analyzed from eligible residents with pressure ulcers (N = 664) enrolled in the National Pressure Ulcer Long-Term Care Study, a retrospective pressure ulcer prevention and treatment study. Support surfaces were categorized as: Group 1 (static overlays and replacement mattresses), Group 2 (low-air-loss beds, alternating pressure, and powered/non-powered overlays/mattresses), and Group 3 (air-fluidized beds). Calculation of healing rates, using the largest ulcer from each resident, found mean healing rates greatest for air-fluidized therapy (Group 3) (mean = 5.2 cm(2)/week) versus Group 1 (mean =1.5 cm(2)/week) and Group 2 (mean = 1.8 cm(2)/week) surfaces (P = 0.007). Healing rates also were assessed using 7- to 10-day "episodes"; each ulcer generated separate episode(s) that included all ulcers when residents had multiple ulcers. Mean healing rates were significantly greater for Stage III/IV ulcers on Group 3 surfaces (mean = 3.1 cm(2)/week) versus Group 1 (mean = 0.6 cm(2)/week) and Group 2 (mean = 0.7 cm(2)/week) surfaces (Group 2 versus Group 3: P = 0.0211). This finding persisted for ulcers with comparable initial baseline areas (20 cm(2) to 75 cm(2)) on Group 2 and Group 3 surfaces; healing improved on Group 3 surfaces (+2.3 cm(2)/week) versus Group 2 surfaces (-2.1 cm(2)/week, P = 0.0399). Residents on Group 3 (6 out of 82; 7.3%) and Group 1 (47 out of 461; 10.2%) surfaces had fewer hospitalizations and emergency room visits than those on Group 2 surfaces (23 out of 121; 19.0%, P = 0.01) despite significantly greater illness in residents on Group 2 and 3 versus Group 1 surfaces (P is less than 0.0001). Despite limitations inherent in retrospective studies, ulcers on Group 3 surfaces versus Groups 1 and Group 2 surfaces had statistically significant faster healing rates (particularly for Stage III/IV ulcers) with significantly fewer

  20. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Seyed Mahdi [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of); Karimi-Sabet, Javad, E-mail: j_karimi@alum.sharif.edu [NFCRS, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Shariaty-Niassar, Mojtaba, E-mail: mshariat@ut.ac.ir [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-31

    Highlights: • Manipulation of the Cu surface morphology in a wide range by electropolishing treatment. • Comparison of the nucleation density of graphene at low pressure and atmospheric pressure CVD processes. • Controlling the evolution of the Cu surface morphology inside a novel confined space. • Growth of large-size graphene domains. - Abstract: In this work, we study the influence of the surface morphology of the catalytic copper substrate on the nucleation density and the growth rate of graphene domains at low and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) processes. In order to obtain a wide range of initial surface morphology, precisely controlled electropolishing methods were developed to manipulate the roughntreess value of the as-received Cu substrate (RMS = 30 nm) to ultra-rough (RMS = 130 nm) and ultra-smooth (RMS = 2 nm) surfaces. The nucleation and growth of graphene domains show obviously different trends at LPCVD and APCVD conditions. In contrast to APCVD condition, the nucleation density of graphene domains is almost equal in substrates with different initial roughness values at LPCVD condition. We show that this is due to the evolution of the surface morphology of the Cu substrate during the graphene growth steps. By stopping the surface sublimation of copper substrate in a confined space saturated with Cu atoms, the evolution of the Cu surface was impeded. This results in the reduction of the nucleation density of graphene domains up to 24 times in the pre-smoothed Cu substrates at LPCVD condition.

  1. Comparison of ketorolac and low-dose ketamine in preventing tourniquet-induced increase in arterial pressure

    Directory of Open Access Journals (Sweden)

    Raza Zaidi

    2015-01-01

    Full Text Available Background and Aims: Application of tourniquet during orthopaedic procedures causes pain and increase in blood pressure despite adequate anaesthesia and analgesia. In this study, we compared ketorolac with ketamine in patients undergoing elective lower limb surgery with tourniquet in order to discover if ketorolac was equally effective or better than ketamine in preventing tourniquet-induced hypertension. Methods: Approval was granted by the Institutional Ethics Review Committee and informed consent was obtained from all participants. A randomised double-blinded controlled trial with 38 patients each in the ketamine and ketorolac groups undergoing elective knee surgery for anterior cruciate ligament repair or reconstruction was conducted. Induction and maintenance of anaesthesia were standardised in all patients, and the minimum alveolar concentration of isoflurane was maintained at 1.2 throughout the study period. One group received ketamine in a dose of 0.25 mg/kg and the other group received 30 mg ketorolac 10 min before tourniquet inflation. Blood pressure was recorded before induction of anaesthesia (baseline and at 0, 10, 20, 30, 40, 50, and 60 min after tourniquet inflation. Results: The demographic and anaesthetic characteristics were similar in the two groups. At 0 and 10 min, tourniquet-induced rise in blood pressure was not observed in both groups. From 20 min onward, both systolic and diastolic blood pressures were significantly higher in ketorolac group compared to ketamine group. Conclusion: We conclude that ketamine is superior to ketorolac in preventing tourniquet-induced increases in blood pressure.

  2. Comparison of ketorolac and low-dose ketamine in preventing tourniquet-induced increase in arterial pressure

    Science.gov (United States)

    Zaidi, Raza; Ahmed, Aliya

    2015-01-01

    Background and Aims: Application of tourniquet during orthopaedic procedures causes pain and increase in blood pressure despite adequate anaesthesia and analgesia. In this study, we compared ketorolac with ketamine in patients undergoing elective lower limb surgery with tourniquet in order to discover if ketorolac was equally effective or better than ketamine in preventing tourniquet-induced hypertension. Methods: Approval was granted by the Institutional Ethics Review Committee and informed consent was obtained from all participants. A randomised double-blinded controlled trial with 38 patients each in the ketamine and ketorolac groups undergoing elective knee surgery for anterior cruciate ligament repair or reconstruction was conducted. Induction and maintenance of anaesthesia were standardised in all patients, and the minimum alveolar concentration of isoflurane was maintained at 1.2 throughout the study period. One group received ketamine in a dose of 0.25 mg/kg and the other group received 30 mg ketorolac 10 min before tourniquet inflation. Blood pressure was recorded before induction of anaesthesia (baseline) and at 0, 10, 20, 30, 40, 50, and 60 min after tourniquet inflation. Results: The demographic and anaesthetic characteristics were similar in the two groups. At 0 and 10 min, tourniquet-induced rise in blood pressure was not observed in both groups. From 20 min onward, both systolic and diastolic blood pressures were significantly higher in ketorolac group compared to ketamine group. Conclusion: We conclude that ketamine is superior to ketorolac in preventing tourniquet-induced increases in blood pressure. PMID:26257416

  3. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Guru Prasad, A S; Sharath, U; Asokan, S; Nagarjun, V; Hegde, G M

    2013-01-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other. (paper)

  4. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure in mice

    Directory of Open Access Journals (Sweden)

    María González-Núñez

    2015-11-01

    Full Text Available The activin receptor-like kinase 1 (ALK-1 is a type I cell-surface receptor for the transforming growth factor-β (TGF-β family of proteins. Hypertension is related to TGF-β1, because increased TGF-β1 expression is correlated with an elevation in arterial pressure (AP and TGF-β expression is upregulated by the renin-angiotensin-aldosterone system. The purpose of this study was to assess the role of ALK-1 in regulation of AP using Alk1 haploinsufficient mice (Alk1+/−. We observed that systolic and diastolic AP were significantly higher in Alk1+/− than in Alk1+/+ mice, and all functional and structural cardiac parameters (echocardiography and electrocardiography were similar in both groups. Alk1+/− mice showed alterations in the circadian rhythm of AP, with higher AP than Alk1+/+ mice during most of the light period. Higher AP in Alk1+/− mice is not a result of a reduction in the NO-dependent vasodilator response or of overactivation of the peripheral renin-angiotensin system. However, intracerebroventricular administration of losartan had a hypotensive effect in Alk1+/− and not in Alk1+/+ mice. Alk1+/− mice showed a greater hypotensive response to the β-adrenergic antagonist atenolol and higher concentrations of epinephrine and norepinephrine in plasma than Alk1+/+ mice. The number of brain cholinergic neurons in the anterior basal forebrain was reduced in Alk1+/− mice. Thus, we concluded that the ALK-1 receptor is involved in the control of AP, and the high AP of Alk1+/− mice is explained mainly by the sympathetic overactivation shown by these animals, which is probably related to the decreased number of cholinergic neurons.

  5. Aspirin is associated with an increased risk of subdural hematoma in normal-pressure hydrocephalus patients following shunt implantation

    DEFF Research Database (Denmark)

    Birkeland, Peter; Lauritsen, Jens; Poulsen, Frantz Rom

    2015-01-01

    OBJECT: In this paper the authors investigate whether shunt-treated patients with normal-pressure hydrocephalus receiving aspirin therapy are at increased risk of developing subdural hematoma (SDH). METHODS: Records from 80 consecutive patients who had undergone implantation of a cerebrospinal...

  6. Development and testing of bio-inspired microelectromechanical pressure sensor arrays for increased situational awareness for marine vehicles

    International Nuclear Information System (INIS)

    Dusek, J; Triantafyllou, M S; Kottapalli, A G P; Asadnia, M; Miao, J; Woo, M E; Lang, J H

    2013-01-01

    The lateral line found on most species of fish is a sensory organ without analog in humans. Using sensory feedback from the lateral line, fish are able to track prey, school, avoid obstacles, and detect vortical flow structures. Composed of both a superficial component, and a component contained within canals beneath the fish’s skin, the lateral line acts in a similar fashion to an array of differential pressure sensors. In an effort to enhance the situational and environmental awareness of marine vehicles, lateral-line-inspired pressure sensor arrays were developed to mimic the enhanced sensory capabilities observed in fish. Three flexible and waterproof pressure sensor arrays were fabricated for use as a surface-mounted ‘smart skin’ on marine vehicles. Two of the sensor arrays were based around the use of commercially available piezoresistive sensor dies, with innovative packaging schemes to allow for flexibility and underwater operation. The sensor arrays employed liquid crystal polymer and flexible printed circuit board substrates with metallic circuits and silicone encapsulation. The third sensor array employed a novel nanocomposite material set that allowed for the fabrication of a completely flexible sensor array. All three sensors were surface mounted on the curved hull of an autonomous kayak vehicle, and tested in both pool and reservoir environments. Results demonstrated that all three sensors were operational while deployed on the autonomous vehicle, and provided an accurate means for monitoring the vehicle dynamics. (paper)

  7. The influence of surface roughness and high pressure torsion on the growth of anodic titania nanotubes on pure titanium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Nan; Gao, Nong, E-mail: N.Gao@soton.ac.uk; Starink, Marco J.

    2016-11-30

    Highlights: • HPT has substantially improved the UTS and Hv of pure Ti. • TNT layers was fabricated on UFG Ti made by HPT. • Influence of sample preparation on TNT layers was systematically studied. • Oxide dissolution was accelerated when TNTs formed on the HPT sample. - Abstract: Anodic titanium dioxide nanotube (TNT) arrays have wide applications in photocatalytic, catalysis, electronics, solar cells and biomedical implants. When TNT coatings are combined with severe plastic deformation (SPD), metal processing techniques which efficiently improve the strength of metals, a new generation of biomedical implant is made possible with both improved bulk and surface properties. This work investigated the effect of processing by high pressure torsion (HPT) and different mechanical preparations on the substrate and subsequently on the morphology of TNT layers. HPT processing was applied to refine the grain size of commercially pure titanium samples and substantially improved their strength and hardness. Subsequent anodization at 30 V in 0.25 wt.% NH{sub 4}F for 2 h to form TNT layers on sample surfaces prepared with different mechanical preparation methods was carried out. It appeared that the local roughness of the titanium surface on a microscopic level affected the TNT morphology more than the macroscopic surface roughness. For HPT-processed sample, the substrate has to be pre-treated by a mechanical preparation finer than 4000 grit for HPT to have a significant influence on TNTs. During the formation of TNT layers the oxide dissolution rate was increased for the ultrafine-grained microstructure formed due to HPT processing.

  8. Movement of retinal vessels toward the optic nerve head after increasing intraocular pressure in monkey eyes with experimental glaucoma.

    Science.gov (United States)

    Kuroda, Atsumi; Enomoto, Nobuko; Ishida, Kyoko; Shimazawa, Masamitsu; Noguchi, Tetsuro; Horai, Naoto; Onoe, Hirotaka; Hara, Hideaki; Tomita, Goji

    2017-09-01

    A shift or displacement of the retinal blood vessels (RBVs) with neuroretinal rim thinning indicates the progression of glaucomatous optic neuropathy. In chronic open angle glaucoma, individuals with RBV positional shifts exhibit more rapid visual field loss than those without RBV shifts. The retinal vessels reportedly move onto the optic nerve head (ONH) in response to glaucoma damage, suggesting that RBVs are pulled toward the ONH in response to increased cupping. Whether this phenomenon only applies to RVBs located in the vicinity or inside the ONH or, more generally, to RBVs also located far from the ONH, however, is unclear. The aim of this study was to evaluate the movement of RBVs located relatively far from the ONH edge after increasing intraocular pressure (IOP) in an experimental monkey model of glaucoma. Fundus photographs were obtained in 17 monkeys. High IOP was induced in the monkeys by laser photocoagulation burns applied uniformly with 360° irradiation around the trabecular meshwork of the left eye. The right eye was left intact and used as a non-treated control. Considering the circadian rhythm of IOP, it was measured in both eyes of each animal at around the same time-points. Then, fundus photographs were obtained. Using Image J image analysis software, an examiner (N.E.) measured the fundus photographs at two time-points, i.e. before laser treatment (time 1) and the last fundus photography after IOP elevation (time 2). The following parameters were measured (in pixels): 1) vertical diameter of the ONH (DD), 2) distance from the ONH edge to the first bifurcation point of the superior branch of the central retinal vein (UV), 3) distance from the ONH edge to the first bifurcation point of the inferior branch of the central retinal vein (LV), 4) ONH area, and 5) surface area of the cup of the ONH. We calculated the ratios of UV to DD (UV/DD), LV to DD (LV/DD), and the cup area to disc area ratio (C/D). The mean UV/DD at time 1 (0.656 ± 0.233) was

  9. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    Science.gov (United States)

    de Vries, N.; Palomares, J. M.; Iordanova, E. I.; van Veldhuizen, E. M.; van der Mullen, J. J. A. M.

    2008-10-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, ne, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, Te, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the ne values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) × 1019 m-3, whereas the ne value (2 ± 0.5) × 1019 m-3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (~1020 m-3). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the Te values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  10. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vries, N de; Iordanova, E I; Van Veldhuizen, E M; Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Palomares, J M [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain)], E-mail: j.j.a.m.v.d.Mullen@tue.nl

    2008-10-21

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, n{sub e}, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, T{sub e}, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the n{sub e} values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 {+-} 0.5) x 10{sup 19} m{sup -3}, whereas the n{sub e} value (2 {+-} 0.5) x 10{sup 19} m{sup -3} obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high ({approx}10{sup 20} m{sup -3}). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the T{sub e} values obtained with TS are equal to 13 400 {+-} 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  11. Increased pressure within the abdominal compartment: intra-abdominal hypertension and the abdominal compartment syndrome.

    Science.gov (United States)

    Roberts, Derek J; Ball, Chad G; Kirkpatrick, Andrew W

    2016-04-01

    This article reviews recent developments related to intra-abdominal hypertension (IAH)/abdominal compartment syndrome (ACS) and clinical practice guidelines published in 2013. IAH/ACS often develops because of the acute intestinal distress syndrome. Although the incidence of postinjury ACS is decreasing, IAH remains common and associated with significant morbidity and mortality among critically ill/injured patients. Many risk factors for IAH include those findings suggested to be indications for use of damage control surgery in trauma patients. Medical management strategies for IAH/ACS include sedation/analgesia, neuromuscular blocking and prokinetic agents, enteral decompression tubes, interventions that decrease fluid balance, and percutaneous catheter drainage. IAH/ACS may be prevented in patients undergoing laparotomy by leaving the abdomen open where appropriate. If ACS cannot be prevented with medical or surgical management strategies or treated with percutaneous catheter drainage, guidelines recommend urgent decompressive laparotomy. Use of negative pressure peritoneal therapy for temporary closure of the open abdomen may improve the systemic inflammatory response and patient-important outcomes. In the last 15 years, investigators have better clarified the pathogenesis, epidemiology, diagnosis, and appropriate prevention of IAH/ACS. Subsequent study should be aimed at understanding which treatments effectively lower intra-abdominal pressure and whether these treatments ultimately affect patient-important outcomes.

  12. Self-regulation and social pressure reduce prejudiced responding and increase the motivation to be non-prejudiced.

    Science.gov (United States)

    Buzinski, Steven G; Kitchens, Michael B

    2017-01-01

    Self-regulation constrains the expression of prejudice, but when self-regulation falters, the immediate environment can act as an external source of prejudice regulation. This hypothesis derives from work demonstrating that external controls and internal self-regulation can prompt goal pursuit in the absence of self-imposed controls. Across four studies, we found support for this complementary model of prejudice regulation. In Study 1, self-regulatory fatigue resulted in less motivation to be non-prejudiced, compared to a non-fatigued control. In Study 2, strong (vs. weak) perceived social pressure was related to greater motivation to be non-prejudiced. In Study 3, dispositional self-regulation predicted non-prejudice motivation when perceived social pressure was weak or moderate, but not when it was strong. Finally, in Study 4 self-regulatory fatigue increased prejudice when social pressure was weak but not when it was strong.

  13. Contribution of pH, diprotonated phosphate and potassium for the reflex increase in blood pressure during handgrip

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Madsen, P; Nielsen, H B

    1998-01-01

    The relative importance of pH, diprotonated phosphate (H2PO4-) and potassium (K+) for the reflex increase in mean arterial pressure (MAP) during exercise was evaluated in seven subjects during rhythmic handgrip at 15 and 30% maximal voluntary contraction (MVC), followed by post-exercise muscle...... to the exercise levels. Analysis of each variable as a predictor of blood pressure indicated that only the intracellular pH and diprotonated phosphate were linked to the reflex elevation of blood pressure during handgrip....... and the venous [H2PO4-] from 0.14 +/- 0.01 to 0.16 +/- 0.01 mmol L-1 (P low intracellular and venous pH. However, venous [K+] and [H2PO4-] returned to the level at rest. During 30% MVC handgrip, MAP rose to 130 +/- 3 mm...

  14. Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure

    Directory of Open Access Journals (Sweden)

    Elena Beltrán-Heredia

    2017-05-01

    Full Text Available Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force. We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive

  15. A method for increasing the surface area of perovskite-type oxides

    Indian Academy of Sciences (India)

    combustion of methane at different temperatures (450–600oC) has been thoroughly investigated. The hydrothermal treatments result in the activation of the perovskite oxides by increasing their surface area very markedly. Keywords. ABO3-type perovskite oxides; LaCoO3; LaMnO3; hydrothermal treatment; catalytic ...

  16. A method for increasing the surface area of perovskite-type oxides

    Indian Academy of Sciences (India)

    700oC (v), 800oC ( ) and without water treatment (U). The increase in the surface area of the perovskite-type oxides and the observed decrease in the crystal size by the steam treatment at 350–800oC are expected because of the recrystallization during the high temperature hydrothermal treatment depending upon the.

  17. Residual compressive surface stress increases the bending strength of dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Zhang, Fei; Vanmeensel, Kim; De Munck, Jan; Minakuchi, Shunsuke; Naert, Ignace; Vleugels, Jozef; Van Meerbeek, Bart

    2017-04-01

    To assess the influence of surface treatment and thermal annealing on the four-point bending strength of two ground dental zirconia grades. Fully-sintered zirconia specimens (4.0×3.0×45.0mm 3 ) of Y-TZP zirconia (LAVA Plus, 3M ESPE) and Y-TZP/Al 2 O 3 zirconia (ZirTough, Kuraray Noritake) were subjected to four surface treatments: (1) 'GROUND': all surfaces were ground with a diamond-coated grinding wheel on a grinding machine; (2) 'GROUND+HEAT': (1) followed by annealing at 1100°C for 30min; (3) 'GROUND+Al 2 O 3 SANDBLASTED': (1) followed by sandblasting using Al 2 O 3 ; (4) 'GROUND+CoJet SANDBLASTED': (1) followed by tribochemical silica (CoJet) sandblasting. Micro-Raman spectroscopy was used to assess the zirconia-phase composition and potentially induced residual stress. The four-point bending strength was measured using a universal material-testing machine. Weibull analysis revealed a substantially higher Weibull modulus and slightly higher characteristic strength for ZirTough (Kuraray Noritake) than for LAVA Plus (3M ESPE). For both zirconia grades, the 'GROUND' zirconia had the lowest Weibull modulus in combination with a high characteristic strength. Sandblasting hardly changed the bending strength but substantially increased the Weibull modulus of the ground zirconia, whereas a thermal treatment increased the Weibull modulus of both zirconia grades but resulted in a significantly lower bending strength. Micro-Raman analysis revealed a higher residual compressive surface stress that correlated with an increased bending strength. Residual compressive surface stress increased the bending strength of dental zirconia. Thermal annealing substantially reduced the bending strength but increased the consistency (reliability) of 'GROUND' zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Influence of an Increasing Surface Melt Over Decadal Timescales on Land Terminating Outlet Glaciers

    Science.gov (United States)

    Gagliardini, O.; Werder, M. A.; Durand, G.

    2015-12-01

    During the last decades, Greenland surface melt has shown an increase both in intensity and spatial extent. Part of this water probably reaches the bedrock and enhances the glacier speed, advecting larger volume of ice into the ablation area. In the context of a warming climate, this mechanism will contribute to the future rate of retreat and thinning of the land-terminating glaciers of Greenland. Complex couplings, implying both positive and negative feedbacks, prevail between surface mass balance, ice flow, basal hydrology and the evolution of the glacier geometry. Larger amount of melt water might increase or decrease the mean ice flow of a glacier, depending on the capacity of the basal hydrology network to evacuate this surplus of water, which in turn will influence the surface crevassing and the ability of water to reach the bedrock at higher elevations. Here, using a coupled basal hydrology and prognostic ice flow model, the evolution of a Greenland-type glacier subject to an increasing surface melt is studied over few decades. The basal hydrology model, based on the GlaDS model, includes an inefficient cavity-type water sheet and a network of efficient discrete channels. Both systems are connected and evolve in time in response to the water inputs. The prognostic equations for ice flow and the hydrology model are implemented in the open source, finite element, ice sheet / ice flow model Elmer/Ice. Assuming a surface melt increase over the next decades, the evolution of crevassed areas and the ability of water to reach the bedrock is inferred. Our results indicate that the currently observed crevasse distribution is likely to extend upstream, leading to an increase in ice flow which, in turn, accelerates the retreat and thinning of land-terminating glaciers.

  19. Iron Deficiency in COPD Associates with Increased Pulmonary Artery Pressure Estimated by Echocardiography

    DEFF Research Database (Denmark)

    Plesner, Louis L; Schoos, Mikkel M; Dalsgaard, Morten

    2017-01-01

    OBJECTIVES: Iron deficiency (ID) might augment chronic pulmonary hypertension in chronic obstructive pulmonary disease (COPD). This observational study investigates the association between ID and systolic pulmonary artery pressure estimated by echocardiography in non-anaemic COPD outpatients...... Vmax indicative of pulmonary hypertension was considered present for values ≥ 2.9 m/s. RESULTS: In a total of 75 included patients, 31 (41%) had ID. These patients had a significantly higher TR Vmax (3.02 vs. 2.77 m/s, p=0.01) and lower diffusion capacity of carbon monoxide (40% vs. 50% of predicted, p......0.05). Ferritin inversely correlated with TR Vmax in ID patients (-0.37 (p=0.04)). The prevalence of TR Vmax ≥ 2.9 m/s was twice as high in patients with ID (58% vs. 29%) and odds ratio of pulmonary hypertension in ID...

  20. Highway-railway at-grade crossing structures : trackbed and surface pressure measurements and assessments.

    Science.gov (United States)

    2009-05-01

    Techniques are described for installing instrumentation within highway/railway crossings - to measure vertical pressures under moving highway and railway loadings - using earth pressure cells. Also, techniques are described for installing instrumenta...

  1. Time-related surface modification of denture base acrylic resin treated by atmospheric pressure cold plasma.

    Science.gov (United States)

    Qian, Kun; Pan, Hong; Li, Yinglong; Wang, Guomin; Zhang, Jue; Pan, Jie

    2016-01-01

    The changes of denture base acrylic resin surface properties under cold plasma and the relationships with time were investigated. Cold plasma treated the specimens for 30 s, 60 s, 90 s, and 120 s, respectively. Water contact angles were measured immediately after the treatment, 48 h, 15 days and 30 days later. Surface roughness was measured with 3-D laser scanning microscope. Candida albicans adherence was evaluated by CFU counting. Chemical composition was monitored by X-ray photoelectron spectroscopy analysis. Water contact angle reduced after treated for 30 s. No changes were observed with time prolonged, except the durability. There were no differences in roughness among all groups. However, treatment groups showed significantly lower C. albicans adherence. XPS demonstrated a decrease in C/O, and this reduction was affected by treatment time. Cold plasma was an effective means of increasing hydrophilicity of acrylic resin and reducing C. albicans adherence without affecting physical properties.

  2. Increased mean arterial pressure and aldosterone-to-renin ratio in Persian cats with polycystic kidney disease.

    Science.gov (United States)

    Pedersen, Karen M; Pedersen, Henrik D; Häggström, Jens; Koch, Jørgen; Ersbøll, Annette K

    2003-01-01

    Polycystic kidney disease (PKD) in Persian cats has been increasingly reported and compared to human autosomal dominant polycystic kidney disease (ADPKD) in the last decade. In cats, however, few studies have dealt with the occurrence and hormonal determinants of hypertension, one of the most common extrarenal manifestations of ADPKD in humans. The purpose of this study was to compare Persian cats >4 years old with PKD to unaffected control cats with regard to blood pressure (BP), plasma renin activity (PRA), serum aldosterone concentration, plasma atrial natriuretic peptide (ANP) concentration, and aldosterone-to-renin ratio (ARR). Three gender- and age-matched groups were studied, each consisting of 7 cats: (1) a control group without cysts, (2) a group with mild PKD, and (3) a group with severe PKD (multiple cysts and renal enlargement). Mild renal insufficiency was found in only 1 of 14 cats with PKD. Cats with PKD had a higher mean arterial pressure (P = .04) and more often had a high ARR (P = .047) than did control cats. Tendencies toward higher diastolic and systolic arterial pressures (DAPs and SAPs, respectively) and lower PRAs were observed in cats with PKD compared to controls (.05 cats had echocardiographic evidence of cardiac hypertrophy. In conclusion, cats with PKD had a minor increase in mean arterial pressure compared to control cats, and half of the cats had a high ARR.

  3. Activation of prostaglandin E2 EP1 receptor increases arteriolar tone and blood pressure in mice with type 2 diabetes

    Science.gov (United States)

    Rutkai, Ibolya; Feher, Attila; Erdei, Nora; Henrion, Daniel; Papp, Zoltan; Edes, Istvan; Koller, Akos; Kaley, Gabor; Bagi, Zsolt

    2009-01-01

    Aims Type 2 diabetes mellitus is frequently associated with hypertension, but the underlying mechanisms are not completely understood. We tested the hypothesis that activation of type 1 prostaglandin E2 (PGE2) receptor (EP1) increases skeletal muscle arteriolar tone and blood pressure in mice with type 2 diabetes. Methods and results In 12-week-old, male db/db mice (with homozygote mutation in leptin receptor), systolic blood pressure was significantly elevated, compared with control heterozygotes. Isolated, pressurized gracilis muscle arterioles (∼90 µm) of db/db mice exhibited an enhanced pressure- and angiotensin II (0.1–10 nM)-induced tone, which was reduced by the selective EP1 receptor antagonist, AH6809 (10 µM), to the level observed in arterioles of control mice. Exogenous application of PGE2 (10 pM–100 nM) or the selective agonist of the EP1 receptor, 17-phenyl-trinor-PGE2 (10 pM–100 nM), elicited arteriolar constrictions that were significantly enhanced in db/db mice (max: 31 ± 4 and 29 ± 5%), compared with controls (max: 20 ± 2 and 14 ± 3%, respectively). In the aorta of db/db mice, an increased protein expression of EP1, but not EP4, receptor was also detected by western immunoblotting. Moreover, we found that oral administration of the EP1 receptor antagonist, AH6809 (10 mg/kg/day, for 4 days), significantly reduced the systolic blood pressure in db/db, but not in control mice. Conclusion Activation of EP1 receptors increases arteriolar tone, which could contribute to the development of hypertension in the db/db mice. PMID:19299433

  4. Tensile strength decreases and perfusion pressure of 3-holed polyamide epidural catheters increases in long-term epidural infusion.

    Science.gov (United States)

    Kim, Pascal; Meyer, Urs; Schüpfer, Guido; Rukwied, Roman; Konrad, Christoph; Gerber, Helmut

    2011-01-01

    Epidural analgesia is an established method for pain management. The failure rate is 8% to 12% due to technical difficulties (catheter dislocation and/or disconnection; partial or total catheter occlusion) and management. The mechanical properties of the catheters, like tensile strength and flow rate, may also be affected by the analgesic solution and/or the tissue environment. We investigated the tensile strength and perfusion pressure of new (n=20), perioperatively (n=30), and postoperatively (n=73) used epidural catheters (20-gauge, polyamide, closed tip, 3 side holes; Perifix [B. Braun]). To prevent dislocation, epidural catheters were taped (n=5) or fixed by suture (n=68) to the skin. After removal, mechanical properties were assessed by a tensile-testing machine (INSTRON 4500), and perfusion pressure was measured at flow rates of 10, 20, and 40 mL/h. All catheters demonstrated a 2-step force transmission. Initially, a minimal increase of length could be observed at 15 N followed by an elongation of several cm at additional forces (7 N). Breakage occurred in the control group at 23.5±1.5 N compared with 22.4±1.6 N in perioperative and 22.4±1.7 N in postoperative catheters (Ptensile strength, whereas perfusion pressure at clinically used flow rates (10 mL/h) increased significantly from 19±1.3 to 44±72 mm Hg during long-term (≥7 days) epidural analgesia (Ptensile strength or perfusion pressure. Epidural catheter use significantly increases the perfusion pressure and decreases the tensile strength. Copyright © 2011 by American Society of Regional Anesthesia and Pain Medicine

  5. Fermi surface studies of the pressure induced organic superconductor (ET){sub 3}Cl{sub 2}.2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Lubczynski, W. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Caulfield, J. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Singleton, J. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Hayes, W. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Kurmoo, M. [Royal Institution, London (United Kingdom); Day, P. [Royal Institution, London (United Kingdom)

    1995-03-15

    The effects of temperature, pressure and magnetic field on the electrical transport of single crystal of (ET){sub 3}Cl{sub 2}.2H{sub 2}O are reported. Increasing pressure gradually reduces the ordering temperature of a charge density wave ground state from {approx}160 K at 1 bar to 6 K at 10.2 kbar. A superconducting state with T{sub c}>4 K is stabilised between 10.2 kbar and 13.5 kbar. Above 12.5 kbar, the observation of Shubnikov-de Haas oscillations allows the pressure dependences of the area of a closed Fermi surface pocket and the associated carrier effective mass to be deduced. (orig.)

  6. A nurse-led randomised trial of pressure-relieving support surfaces.

    Science.gov (United States)

    Nelson, E Andrea; Nixon, Jane; Mason, Su; Barrow, Helen; Phillips, Angela; Cullum, Nicky

    2003-05-01

    A nurse-led trial is currently collecting data comparing interventions for the prevention and treatment of pressure ulcers. The aim is to provide reliable guidance on the relative merits of alternating-pressure mattresses and overlays for people at moderate to high risk of pressure ulceration. This paper outlines the main objectives, methodology and progress of the study.

  7. Development of a commercial Transducer for Measuring Pressure and Friction on the Model Die Surface

    DEFF Research Database (Denmark)

    Andersen, Claus Bo; Ravn, Bjarne Gottlieb; Wanheim, Tarras

    2001-01-01

    deflection in the tool causes incorrect shape of the final component. The dinemsions of the die-cavity have to be corrected taking into account die deflection due to the high internal pressure. The modelling material technique is suitable for measuring internal pressure, but so far only a transducer...... to measure normal pressure has been available....

  8. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    Directory of Open Access Journals (Sweden)

    M. M.

    2000-12-01

    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  9. Optimizing pressurized liquid extraction of microbial lipids using the response surface method.

    Science.gov (United States)

    Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L

    2011-01-21

    Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Surface modification of epoxy resin using He/CF4 atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum

    Science.gov (United States)

    Chen, Sile; Wang, Shuai; Wang, Yibo; Guo, Baohong; Li, Guoqiang; Chang, Zhengshi; Zhang, Guan-Jun

    2017-08-01

    For enhancing the surface electric withstanding strength of insulating materials, epoxy resin (EP) samples are treated by atmospheric pressure plasma jet (APPJ) with different time interval from 0 to 300s. Helium (He) and tetrafluoromethane (CF4) mixtures are used as working gases with the concentration of CF4 ranging 0%-5%, and when CF4 is ∼3%, the APPJ exhibits an optimal steady state. The flashover withstanding characteristics of modified EP in vacuum are greatly improved under appropriate APPJ treatment conditions. The surface properties of EP samples are evaluated by surface roughness, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. It is considered that both physical and chemical effects lead to the enhancement of flashover strength. The physical effect is reflected in the increase of surface roughness, while the chemical effect is reflected in the graft of fluorine groups.

  11. Chronic high-sodium diet increases aortic wall endothelin-1 expression in a blood pressure-independent fashion in rats.

    Science.gov (United States)

    Tsai, Yu-Hwai; Ohkita, Mamoru; Gariepy, Cheryl E

    2006-06-01

    Vascular endothelin (ET)-1 is upregulated in several forms of salt-induced hypertension. It is unclear to what extent these effects are primary or secondary to endothelial damage. We hypothesized that a high-sodium diet (HNa) increases vascular ET-1 production independent of arterial blood pressure changes. We investigated the effect of chronic HNa with and without ET(A) blockade on circulating and aortic ET-1 protein levels as well as aortic expression of ET-1 and ET(A) messenger RNA (mRNA) in inbred Wistar-Kyoto (WKY) and congenic ET(B)-deficient rats. Comparing WKY rats fed a low-sodium diet (LNa) with those fed HNa for 3 weeks, aortic wall ET-1 protein is significantly increased in response to HNa (331 +/- 43 pg/g tissue for LNa vs. 557 +/- 34 pg/gm tissue for HNa). HNa also increased aortic wall ET-1 mRNA levels by 40%, as determined by quantitative reverse transcriptase polymerase chain reaction. We then compared rats chronically treated with the ET(A)-selective antagonist, ABT-627, while receiving either LNa or HNa. There were no differences in arterial blood pressure (mean arterial pressure 89 +/- 1 mm Hg for WKY on LNa; 90 +/- 3 for WKY on HNa; 91 +/- 2 for ET(B)-deficient/ABT-627-treated on HNa) or heart rate. However, aortic wall ET-1 protein levels were 4-fold higher in the HNa group. Further, HNa increased aortic wall ET-1 mRNA (approximately 1.5- to 3-fold) and ET(A) mRNA (approximately 2- to 7-fold), independent of activation of ET(B). Therefore, the expression of ET-1 mRNA by the aortic wall is increased in response to chronic high dietary sodium in WKY rats in the absence of changes in arterial blood pressure.

  12. Modafinil Increases Awake EEG Activation and Improves Performance in Obstructive Sleep Apnea during Continuous Positive Airway Pressure Withdrawal

    Science.gov (United States)

    Wang, David; Bai, Xiao Xue; Williams, Shaun C.; Hua, Shu Cheng; Kim, Jong-Won; Marshall, Nathaniel S.; D'Rozario, Angela; Grunstein, Ronald R.

    2015-01-01

    Objectives: We examined the changes in waking electroencephalography (EEG) biomarkers with modafinil during continuous positive airway pressure (CPAP) withdrawal in patients with obstructive sleep apnea (OSA) to investigate neurophysiological evidence for potential neurocognitive improvements. Design: Randomized double-blind placebo-controlled crossover study. CPAP was used for the first night and then withdrawn for 2 subsequent nights. Each morning after the 2 CPAP withdrawal nights, patients received either 200 mg modafinil or placebo. After a 5-w washout, the procedure repeated with the crossover drug. Setting: University teaching hospital. Participants: Stable CPAP users (n = 23 men with OSA) Measurement and Results: Karolinska Drowsiness Test (KDT) (awake EEG measurement with eyes open and closed), Psychomotor Vigilance Task (PVT), and driving simulator Performance were assessed bihourly during the 3 testing days following CPAP treatment and CPAP withdrawal nights. Compared to placebo, modafinil significantly increased awake EEG activation (faster EEG frequency) with increased alpha/delta (A/D) ratio (P Modafinil administration during continuous positive airway pressure (CPAP) withdrawal increased awake EEG activation, which correlated to improved performance. This study provides supporting neurophysiological evidence that modafinil is a potential short-term treatment option during acute CPAP withdrawal. Citation: Wang D, Bai XX, Williams SC, Hua SC, Kim JW, Marshall NS, D'Rozario A, Grunstein RR. Modafinil increases awake EEG activation and improves performance in obstructive sleep apnea during continuous positive airway pressure withdrawal. SLEEP 2015;38(8):1297–1303. PMID:26158894

  13. Understanding the Hydromechanical Behavior of a Fault Zone From Transient Surface Tilt and Fluid Pressure Observations at Hourly Time Scales

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédérick; Lavenant, Nicolas; Davy, Philippe

    2017-12-01

    Flow through reservoirs such as fractured media is powered by head gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of surface deformation and subsurface pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Among all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically induced deformations over a broad range of time scales with a remarkable precision. Here we investigate the information content of transient surface tilt generated by the pressurization a kilometer scale subvertical fault zone. Our approach involves the combination of field data and results of a fully coupled poromechanical model. The signature of pressure changes in the fault zone due to pumping cycles is clearly recognizable in field tilt data and we aim to explain the peculiar features that appear in (1) tilt time series alone from a set of four instruments and 2) the ratio of tilt over pressure. We evidence that the shape of tilt measurements on both sides of a fault zone is sensitive to its diffusivity and its elastic modulus. The ratio of tilt over pressure predominantly encompasses information about the system's dynamic behavior and extent of the fault zone and allows separating contributions of flow in the different compartments. Hence, tiltmeters are well suited to characterize hydromechanical processes associated with fault zone hydrogeology at short time scales, where spaceborne surveying methods fail to recognize any deformation signal.

  14. Potato Consumption Does Not Increase Blood Pressure or Incident Hypertension in 2 Cohorts of Spanish Adults.

    Science.gov (United States)

    Hu, Emily A; Martínez-González, Miguel A; Salas-Salvadó, Jordi; Corella, Dolores; Ros, Emilio; Fitó, Montse; Garcia-Rodriguez, Antonio; Estruch, Ramon; Arós, Fernando; Fiol, Miquel; Lapetra, José; Serra-Majem, Lluís; Pintó, Xavier; Ruiz-Canela, Miguel; Razquin, Cristina; Bulló, Mònica; Sorlí, José V; Schröder, Helmut; Rebholz, Casey M; Toledo, Estefania

    2017-12-01

    Background: Potatoes have a high glycemic load but also antioxidants, vitamins, and minerals. It is unclear what mechanisms are involved in relation to their effect on blood pressure (BP) and hypertension. Objectives: This study aimed to assess the association between potato consumption, BP changes, and the risk of hypertension in 2 Spanish populations. Methods: Separate analyses were performed in PREDIMED (PREvención con DIeta MEDiterránea), a multicenter nutrition intervention trial of adults aged 55-80 y, and the SUN (Seguimiento Universidad de Navarra) project, a prospective cohort made up of university graduates and educated adults with ages (means ± SDs) of 42.7 ± 13.3 y for men and 35.1 ± 10.7 y for women. In PREDIMED, generalized estimating equations adjusted for lifestyle and dietary characteristics were used to assess changes in BP across quintiles of total potato consumption during a 4-y follow-up. Controlled BP values (systolic BP <140 mm Hg and diastolic BP <90 mm Hg) during follow-up were also assessed. For SUN, multivariate-adjusted HRs for incident hypertension during a mean 6.7-y follow-up were calculated. Results: In PREDIMED, the total potato intake was 81.9 ± 40.6 g/d. No overall differences in systolic or diastolic BP changes were detected based on consumption of potatoes. For total potatoes, the mean difference in change between quintile 5 (highest intake) and quintile 1 (lowest intake) in systolic BP after multivariate adjustment was -0.90 mm Hg (95% CI: -2.56, 0.76 mm Hg; P -trend = 0.1) and for diastolic BP was -0.02 mm Hg (95% CI: -0.93, 0.89 mm Hg; P -trend = 0.8). In SUN, the total potato consumption was 52.7 ± 33.6 g/d, and no significant association between potato consumption and hypertension incidence was observed in the fully adjusted HR for total potato consumption (quintile 5 compared with quintile 1: 0.98; 95% CI: 0.80, 1.19; P -trend = 0.8). Conclusions: Potato consumption is not associated with changes over 4 y in blood

  15. Positive Peer-Pressured Productivity (P-QUAD): Novel Use of Increased Transparency and a Weighted Lottery to Increase a Division's Academic Output.

    Science.gov (United States)

    Pitt, Michael B; Furnival, Ronald A; Zhang, Lei; Weber-Main, Anne M; Raymond, Nancy C; Jacob, Abraham K

    2017-03-01

    Evaluate a dual incentive model combining positive peer pressure through increased transparency of peers' academic work with a weighted lottery where entries are earned based on degree of productivity. We developed a dual-incentive peer mentoring model, Positive Peer-Pressured Productivity (P-QUAD), for faculty in the Pediatric Hospital Medicine Division at the University of Minnesota Masonic Children's Hospital. This model provided relative value-based incentives, with points assigned to different scholarly activities (eg. 1 point for abstract submission, 2 points for poster presentation, 3 points for oral presentation, etc.). These points translated into to lottery tickets for a semi-annual drawing for monetary prizes. Productivity was compared among faculty for P-QUAD year to the preintervention year. Fifteen (83%) of 18 eligible faculty members participated. Overall annual productivity per faculty member as measured by total P-QUAD score increased from a median of 3 (interquartile range [IQR] 0-14) in the preintervention year to 4 (IQR 0-27) in the P-QUAD year (P = .051). Submissions and acceptances increased in all categories except posters which were unchanged. Annual abstract submissions per faculty member significantly increased from a median of 1 (IQR 0-2) to 2 (IQR 0-2; P = .047). Seventy-three percent (8 of 11) of post-survey respondents indicated that the financial incentive motivated them to submit academic work; 100% indicated that increased awareness of their peers' work was a motivator. The combination of increased awareness of peers' academic productivity and a weighted lottery financial incentive appears to be a useful model for stimulating academic productivity in early-career faculty. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  16. Composites in small and simple devices to increase mixing on detector surfaces

    International Nuclear Information System (INIS)

    Hernandez, L F; Lima, R R; Leite, A R; Silva, M L P; Fachini, E R

    2013-01-01

    This work aims at three different applications for the betterment of plasma generated-composite thin films: pre-mixing, spray formation in miniaturized structures and an increase in the performance of detector surfaces. Miniaturized structures were projected, simulated with FEMLAB ® 3.2 software and then constructed. Clustered films made from tetraethoxysilane (TEOS) and nonafluoro(iso)butyl ether (HFE ® ) precursors were deposited on silicon, acrylic and quartz substrates for different kinds of film characterization/or in the projected structures. Physical and chemical characterization guided the selection of best films previous to/after UVC exposure. The active surfaces (plasma-deposited films) in structures were modified by UVC exposure and then tested. The applications include pre-mixing of liquids and/or spray formation, best results being obtained with surface covered by derivative-HFE films, which acted as passivation layers. Preliminary results show good humidity sensing for TEOS-derivative films.

  17. Bacteria increase arid-land soil surface temperature through the production of sunscreens.

    Science.gov (United States)

    Couradeau, Estelle; Karaoz, Ulas; Lim, Hsiao Chien; Nunes da Rocha, Ulisses; Northen, Trent; Brodie, Eoin; Garcia-Pichel, Ferran

    2016-01-20

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming has apparent and immediate consequences for the soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales.

  18. Increasing light coupling in a photovoltaic film by tuning nanoparticle shape with substrate surface energy