WorldWideScience

Sample records for surface pressure correlations

  1. Surface pressure fluctuations on aircraft flaps and their correlation with far-field noise

    Science.gov (United States)

    Guo, Y. P.; Joshi, M. C.; Bent, P. H.; Yamamoto, K. J.

    2000-07-01

    This paper discusses unsteady surface pressures on aircraft flaps and their correlation with far-field noise. Analyses are made of data from a 4.7% DC-10 aircraft model test, conducted in the 40 × 80 feet wind tunnel at NASA Ames Research Center. Results for various slat/wing/flap configurations and various flow conditions are discussed in detail to reveal major trends in surface pressure fluctuations. Spectral analysis, including cross-correlation/coherence, both among unsteady surface pressures and between far-field noise and near-field fluctuations, is used to reveal the most coherent motions in the near field and identify potential sources of noise related to flap flows. Dependencies of surface pressure fluctuations on mean flow Mach numbers, flap settings and slat angles are discussed. Dominant flow features in flap side edge regions, such as the formation of double-vortex structures, are shown to manifest themselves in the unsteady surface pressures as a series of spectral humps. The spectral humps are shown to correlate well with the radiated noise, indicating the existence of major noise sources in flap side edge regions. Strouhal number scaling is used to collapse the data with satisfactory results. The effects of flap side edge fences on surface pressures are also discussed. It is shown that the application of fences effectively increases the thickness of the flaps so that the double-vortex structures have more time to evolve. As a result, the characteristic timescale of the unsteady sources increases, which in turn leads to a decrease in the dominant frequency of the source process. Based on this, an explanation is proposed for the noise reduction mechanism of flap side edge fences.

  2. Correlation of surface pressure and hue of planarizable push–pull chromophores at the air/water interface

    Directory of Open Access Journals (Sweden)

    Frederik Neuhaus

    2017-06-01

    Full Text Available It is currently not possible to directly measure the lateral pressure of a biomembrane. Mechanoresponsive fluorescent probes are an elegant solution to this problem but it requires first the establishment of a direct correlation between the membrane surface pressure and the induced color change of the probe. Here, we analyze planarizable dithienothiophene push–pull probes in a monolayer at the air/water interface using fluorescence microscopy, grazing-incidence angle X-ray diffraction, and infrared reflection–absorption spectroscopy. An increase of the lateral membrane pressure leads to a well-packed layer of the ‘flipper’ mechanophores and a clear change in hue above 18 mN/m. The fluorescent probes had no influence on the measured isotherm of the natural phospholipid DPPC suggesting that the flippers probe the lateral membrane pressure without physically changing it. This makes the flipper probes a truly useful addition to the membrane probe toolbox.

  3. A molecular dynamics investigation of the surface tension of water nanodroplets and a new technique for local pressure determination through density correlation

    Science.gov (United States)

    Leong, Kai-Yang; Wang, Feng

    2018-04-01

    The surface tension of nanoscale droplets of water was studied with molecular dynamics simulations using the BLYPSP-4F water potential. The internal pressure of the droplet was measured using an empirical correlation between the pressure and density, established through a series of bulk simulations performed at pressures from 1 to 1000 bars. Such a procedure allows for reliable determination of internal pressure without the need to calculate the local virial. The surface tension, estimated with the Young-Laplace relation, shows good agreement with the Tolman equation with a Tolman length of -0.48 Å. The interface of a liquid water droplet is shown to be around 1.1-1.3 nm thick depending on radii. The fairly thick interface region puts a lower limit on the size of droplets that still have a bulk-like interior.

  4. Investigation of the flow field around a propeller-rudder configuration: on-surface pressure measurements and velocity-pressure-phase-locked correlations

    OpenAIRE

    Felli, Mario; Falchi, Massimo; Pereira, Francisco

    2011-01-01

    The present paper deals with the problem of the propeller induced perturbation on the rudder . The study aims at providing insights on the key mechanisms governing the complex interaction between the propeller wake structures and the rudder. In this regard, a wide experimental activity that concerned PIV and LDV velocity measurements and wall-pressure-measurements on the two faces of the rudder was performed in a cavitation tunnel. The major flow features that distinguish the flow field aroun...

  5. Dineutron correlations in nuclear surface

    CERN Document Server

    Kanada-En’yo, Y; Suhara, T; Schuck, P

    2010-01-01

    Two-neutron correlation in quasi two-dimensional (2D) neutron matter is studied by means of the BCS theory to understand formation of nn pairs in nuclear surface of neutron-rich nuclei. The spin-zero nn pair correlation in low density neutron systems confined in an infinite slab is investigated in a simplified model that neutron motion of one direction is frozen. It is found that, when the slab is thin enough, the nn pairing gap enhances and the size shrinking of nn Cooper pair occurs at finite low-density region in the quasi-2D system.

  6. Stress Redistribution Explains Anti-correlated Subglacial Pressure Variations

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Lefeuvre

    2018-01-01

    Full Text Available We used a finite element model to interpret anti-correlated pressure variations at the base of a glacier to demonstrate the importance of stress redistribution in the basal ice. We first investigated two pairs of load cells installed 20 m apart at the base of the 210 m thick Engabreen glacier in Northern Norway. The load cell data for July 2003 showed that pressurisation of a subglacial channel located over one load cell pair led to anti-correlation in pressure between the two pairs. To investigate the cause of this anti-correlation, we used a full Stokes 3D model of a 210 m thick and 25–200 m wide glacier with a pressurised subglacial channel represented as a pressure boundary condition. The model reproduced the anti-correlated pressure response at the glacier bed and variations in pressure of the same order of magnitude as the load cell observations. The anti-correlation pattern was shown to depend on the bed/surface slope. On a flat bed with laterally constrained cross-section, the resulting bridging effect diverted some of the normal forces acting on the bed to the sides. The anti-correlated pressure variations were then reproduced at a distance >10–20 m from the channel. In contrast, when the bed was inclined, the channel support of the overlying ice was vertical only, causing a reduction of the normal stress on the bed. With a bed slope of 5 degrees, the anti-correlation occurred within 10 m of the channel. The model thus showed that the effect of stress redistribution can lead to an opposite response in pressure at the same distance from the channel and that anti-correlation in pressure is reproduced without invoking cavity expansion caused by sliding.

  7. Theoretical and experimental study of heat transfers and pressure drops along surfaces fitted with herring-bone fins: correlation between geometric and aero thermal parameters; Etudes theorique et experimentale du transfert de chaleur et des pertes de charge de surfaces munies d'ailettes disposees en chevron - correlation entre parametres geometriques et aerothermiques

    Energy Technology Data Exchange (ETDEWEB)

    Pelce, J.; Malherbe, J.; Pierre, B. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Principal results are given of experimental research which has been carried out on the flow of a fluid along a surface fitted with herringbone fins. Aero-thermal tests have been effected on a large number of these surfaces whose geometrical parameters have been made to vary systematically. In particular, work on a large scale model has made it possible to analyse the mechanisms of heat transfer and of pressure drops. On this basis a theoretical study has led to the establishment of a correlation between the geometric configuration and the aero-thermal performances of these surfaces. Experimental results are in good agreement with the theoretical relationships. An expression has thus been derived applicable to this type of herring-boned surface in a wide zone. (authors) [French] L'ecoulement d'un fluide au voisinage d'une surface munie d'ailettes disposees en chevron a fait l'objet de recherches experimentales dont on a rappele les principaux resultats. Des essais aerothermiques ont ete effectues sur un grand nombre de ces surfaces dont a fait varier les parametres geometriques de facon systematique. En particulier, des etudes sur une maquette a grande echelle ont permis d'analyser les mecanismes de transfert de chaleur et de perte de charge. Sur ces bases, une etude theorique a conduit a des correlations entre la geometrie et les performances aerothermiques de ces surfaces. Les resultats experimentaux sont en bon accord avec les relations theoriques. On possede ainsi une formulation pour ce type de surface ailettee valable dans un domaine etendu. (auteurs)

  8. Pressure relieving support surfaces (PRESSURE) trial: cost effectiveness analysis.

    Science.gov (United States)

    Iglesias, Cynthia; Nixon, Jane; Cranny, Gillian; Nelson, E Andrea; Hawkins, Kim; Phillips, Angela; Torgerson, David; Mason, Su; Cullum, Nicky

    2006-06-17

    To assess the cost effectiveness of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers in patients admitted to hospital. Cost effectiveness analysis carried out alongside the pressure relieving support surfaces (PRESSURE) trial; a multicentre UK based pragmatic randomised controlled trial. 11 hospitals in six UK NHS trusts. Intention to treat population comprising 1971 participants. Kaplan Meier estimates of restricted mean time to development of pressure ulcers and total costs for treatment in hospital. Alternating pressure mattresses were associated with lower overall costs (283.6 pounds sterling per patient on average, 95% confidence interval--377.59 pounds sterling to 976.79 pounds sterling) mainly due to reduced length of stay in hospital, and greater benefits (a delay in time to ulceration of 10.64 days on average,--24.40 to 3.09). The differences in health benefits and total costs for hospital stay between alternating pressure mattresses and alternating pressure overlays were not statistically significant; however, a cost effectiveness acceptability curve indicated that on average alternating pressure mattresses compared with alternating pressure overlays were associated with an 80% probability of being cost saving. Alternating pressure mattresses for the prevention of pressure ulcers are more likely to be cost effective and are more acceptable to patients than alternating pressure overlays.

  9. Three-Dimensional Digital Image Correlation of a Composite Overwrapped Pressure Vessel During Hydrostatic Pressure Tests

    Science.gov (United States)

    Revilock, Duane M., Jr.; Thesken, John C.; Schmidt, Timothy E.

    2007-01-01

    Ambient temperature hydrostatic pressurization tests were conducted on a composite overwrapped pressure vessel (COPV) to understand the fiber stresses in COPV components. Two three-dimensional digital image correlation systems with high speed cameras were used in the evaluation to provide full field displacement and strain data for each pressurization test. A few of the key findings will be discussed including how the principal strains provided better insight into system behavior than traditional gauges, a high localized strain that was measured where gages were not present and the challenges of measuring curved surfaces with the use of a 1.25 in. thick layered polycarbonate panel that protected the cameras.

  10. Support surfaces for pressure ulcer prevention.

    Science.gov (United States)

    McInnes, Elizabeth; Jammali-Blasi, Asmara; Bell-Syer, Sally E M; Dumville, Jo C; Middleton, Victoria; Cullum, Nicky

    2015-09-03

    Pressure ulcers (i.e. bedsores, pressure sores, pressure injuries, decubitus ulcers) are areas of localised damage to the skin and underlying tissue. They are common in the elderly and immobile, and costly in financial and human terms. Pressure-relieving support surfaces (i.e. beds, mattresses, seat cushions etc) are used to help prevent ulcer development. This systematic review seeks to establish:(1) the extent to which pressure-relieving support surfaces reduce the incidence of pressure ulcers compared with standard support surfaces, and,(2) their comparative effectiveness in ulcer prevention. In April 2015, for this fourth update we searched The Cochrane Wounds Group Specialised Register (searched 15 April 2015) which includes the results of regular searches of MEDLINE, EMBASE and CINAHL and The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 3). Randomised controlled trials (RCTs) and quasi-randomised trials, published or unpublished, that assessed the effects of any support surface for prevention of pressure ulcers, in any patient group or setting which measured pressure ulcer incidence. Trials reporting only proxy outcomes (e.g. interface pressure) were excluded. Two review authors independently selected trials. Data were extracted by one review author and checked by another. Where appropriate, estimates from similar trials were pooled for meta-analysis. For this fourth update six new trials were included, bringing the total of included trials to 59.Foam alternatives to standard hospital foam mattresses reduce the incidence of pressure ulcers in people at risk (RR 0.40 95% CI 0.21 to 0.74). The relative merits of alternating- and constant low-pressure devices are unclear. One high-quality trial suggested that alternating-pressure mattresses may be more cost effective than alternating-pressure overlays in a UK context.Pressure-relieving overlays on the operating table reduce postoperative pressure ulcer incidence

  11. Support surface interface pressure, microenvironment, and the prevalence of pressure ulcers: an analysis of the literature.

    Science.gov (United States)

    Reger, Steven I; Ranganathan, Vinoth K; Sahgal, Vinod

    2007-10-01

    External pressure is the most frequently considered stress factor in the formation of ulcers. A review and analysis of existing literature addressing the relationship between pressure ulcer prevalence and interface pressures at various anatomic sites was conducted. Results suggest a nearly non-existent or slightly negative correlation between interface pressure and ulcer prevalence in general and spinal cord injured populations, respectively. Despite limitations of the analysis methods used, the observed lack of a direct relationship confirms the results of other studies and suggests that ulcer formation also may involve factors secondary to pressure and mechanical factors (eg, temperature, moisture, duration of the applied load, atrophy, and posture). Based on currently available information, clinicians should include these considerations when selecting a support surface. Studies directly relating primary stress factors and tissue viability with prevalence and incidence of pressure ulcers are needed to better understand the benefits of pressure-relieving support surfaces and to improve the effectiveness of prevention and treatment.

  12. Pressure relieving support surfaces: a randomised evaluation.

    Science.gov (United States)

    Nixon, J; Nelson, E A; Cranny, G; Iglesias, C P; Hawkins, K; Cullum, N A; Phillips, A; Spilsbury, K; Torgerson, D J; Mason, S

    2006-07-01

    To determine differences between alternating pressure overlays and alternating pressure replacement mattresses with respect to the development of new pressure ulcers, healing of existing pressure ulcers, patient acceptability and cost-effectiveness of the different pressure-relieving surfaces. Also to investigate the specific additional impact of pressure ulcers on patients' well-being. A multicentre, randomised, controlled, open, fixed sample, parallel-group trial with equal randomisation was undertaken. The trial used remote, concealed allocation and intention-to-treat (ITT) analysis. The main trial design was supplemented with a qualitative study involving a purposive sample of 20-30 patients who developed pressure ulcers, to assess the impact of the pressure ulcers on their well-being. In addition, a focus group interview was carried out with clinical research nurses, who participated in the PRESSURE (Pressure RElieving Support SUrfaces: a Randomised Evaluation) Trial, to explore the experiences of their role and observations of pressure area care. The study took place in 11 hospital-based research centres within six NHS trusts in England. Acute and elective patients aged 55 years or older and admitted to vascular, orthopaedic, medical or care of the elderly wards in the previous 24 hours were investigated. Patients were randomised to either an alternating pressure overlay or an alternating pressure mattress replacement, with mattress specifications clearly defined to enable the inclusion of centres using products from different manufacturers, and to exclude hybrid mattress systems (which either combine foam or constant low pressure with alternating pressure in one mattress, or can be used as either an overlay or a replacement mattress). Development of a new pressure ulcer (grade pressures ulcers, patient acceptability and cost-effectiveness. In total, 6155 patients were assessed for eligibility to the trial and 1972 were randomised: 990 to the alternating

  13. Correlation of Admission Blood Pressures with 30-Day Outcome in ...

    African Journals Online (AJOL)

    Background: There is a lot of controversy on the prognostic value of admission blood pressures in acute ischaemic stroke, but in Nigeria, there is no information on this. Objective: The objective of this study was to correlate the effect of blood pressures measured on admission with 30-day mortality and neurological handicap ...

  14. Sensitivity of the hand to surface pressure.

    Science.gov (United States)

    Fransson-Hall, C; Kilbom, A

    1993-06-01

    A new method of measuring pain-pressure threshold (PPT) of the hand has been developed. Externally applied surface pressure (EASP) was exerted at a certain rate of increase and the level where the feeling of pressure turned into pain was recorded. Also, the effects of sustained EASP were elucidated. Sixteen healthy right-handed subjects (eight female, eight male) participated. The distribution of the hand's sensitivity to EASP is presented. The most sensitive areas were the thenar area, the skinfold between thumb and index finger and the area around os pisiforme. When the hand was repeatedly exposed to EASP, the PPT decreased with increasing number of pressure incidents. For sustained EASP, the time of exposure was found to be important also for the quality of the sensation. Our results show that sustained EASP does not hurt at once, but becomes painful after a short time. On average, the female PPT corresponded to two-thirds of the male PPT. Females experienced pain faster than males when exposed to sustained EASP, and chose lower levels when estimating acceptable sustained EASP.

  15. Correlation Between Abdominal Muscle Thickness and Maximal Expiratory Pressure.

    Science.gov (United States)

    Ishida, Hiroshi; Suehiro, Tadanobu; Kurozumi, Chiharu; Ono, Koji; Watanabe, Susumu

    2015-11-01

    The activity of abdominal muscles mainly produces high expiratory pressure. These include the rectus abdominis, external oblique, internal oblique, and transverse abdominis muscles. The purpose of this study was to determine whether maximal expiratory pressure is associated with each abdominal muscle thickness at rest. Thirty-nine healthy male volunteers (mean age ± SD, 20.7 ± 2.7 years) participated in the study. The thickness of the right rectus abdominis, external oblique, internal oblique, and transverse abdominis muscles was measured by B-mode sonography in the supine position. The maximal expiratory pressure was obtained with a spirometer in the sitting position. The correlations between each abdominal muscle thickness and maximal expiratory pressure were determined by the Pearson correlation coefficient. The correlation coefficient between the rectus abdominis muscle and maximal expiratory pressure was 0.571 (Pmuscles and maximal expiratory pressure were 0.297 (P = .066), 0.267 (P = .100), and 0.022 (P = .894), respectively. Our results indicate that the rectus abdominis muscle thickness might be more highly correlated with expiratory pressure production than the external oblique, internal oblique, and transverse abdominis muscle thickness. © 2015 by the American Institute of Ultrasound in Medicine.

  16. Strong pressure-energy correlations in van der Waals liquids

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Bailey, Nicholas; Schrøder, Thomas

    2008-01-01

    in the crystal and glass phases reflect an effective inverse power-law repulsive potential dominating fluctuations, even at zero and slightly negative pressure. In experimental data for supercritical argon, the correlations are found to be approximately 96%. Consequences for viscous liquid dynamics are discussed.......Strong correlations between equilibrium fluctuations of the configurational parts of pressure and energy are found in computer simulations of the Lennard-Jones liquid and other simple liquids, but not for hydrogen-bonding liquids such as methanol and water. The correlations that are present also...

  17. Linear Correlation of Endotracheal Tube Cuff Pressure and Volume

    Directory of Open Access Journals (Sweden)

    Hoffman, Robert J

    2009-08-01

    Full Text Available Objectives: Endotracheal tube cuff (ETTc inflation by standard methods may result in excessive ETTc pressure. Previous studies have indicated that methods of cuff inflation most frequently used to inflate ETTcs include palpation of the tension in the pilot balloon or injection of a predetermined volume of air to inflate the pilot balloon. If a logarithmic relationship exists between ETTc volume and ETTc pressure, small volumes of additional air will result in dramatic pressure increases after a volume threshold is reached. Our goal was to determine whether the relationship between ETTc volume and ETTc pressure is linear or non-linear.Methods: In this Institutional Animal Care and Use Committee-approved study, we recorded ETTc volume and pressure in four anesthetized and mechanically-ventilated canines ranging between 30-40 pounds (mean 34.7lb, SD 3.8lb that were endotracheally intubated with a 7.0 mm ETT. The varying cuff pressures associated with a distribution of 28 progressively increasing volumes of air in the ETTc were recorded. Spearman correlation was performed to determine if a linear or non-linear relationship existed between these variables.Results: The Spearman rho coefficient of correlation between ETTc volume and ETTc pressure was 0.969, or approximately 97%, suggesting near-perfect linear relationship between ETTc volume and ETTc pressure over the range of volumes and pressures tested.Conclusions: Over the range of volumes and pressures tested a linear relationship between volume and pressure results in no precipitous increase in slope of the pressure:volume curve as volume increases.[WestJEM. 2009;10:137-139.

  18. An Improved CO2-Crude Oil Minimum Miscibility Pressure Correlation

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2015-01-01

    Full Text Available Minimum miscibility pressure (MMP, which plays an important role in miscible flooding, is a key parameter in determining whether crude oil and gas are completely miscible. On the basis of 210 groups of CO2-crude oil system minimum miscibility pressure data, an improved CO2-crude oil system minimum miscibility pressure correlation was built by modified conjugate gradient method and global optimizing method. The new correlation is a uniform empirical correlation to calculate the MMP for both thin oil and heavy oil and is expressed as a function of reservoir temperature, C7+ molecular weight of crude oil, and mole fractions of volatile components (CH4 and N2 and intermediate components (CO2, H2S, and C2~C6 of crude oil. Compared to the eleven most popular and relatively high-accuracy CO2-oil system MMP correlations in the previous literature by other nine groups of CO2-oil MMP experimental data, which have not been used to develop the new correlation, it is found that the new empirical correlation provides the best reproduction of the nine groups of CO2-oil MMP experimental data with a percentage average absolute relative error (%AARE of 8% and a percentage maximum absolute relative error (%MARE of 21%, respectively.

  19. Pressure ulcer prevention and pressure-relieving surfaces.

    Science.gov (United States)

    Benbow, Maureen

    Although rarely subject to media attention, political interest or research funding, pressure ulcers, and their almost inevitable increase in incidence, detrimentally affect the quality of life of thousands of patients, both in the hospital and community setting. In addition, the costs to the NHS of pressure-ulcer-related care in hospitals is estimated to be pounds sterling 1.8-pounds sterling 2.5 billion annually. Many pressure ulcers that develop could have been prevented, and there are several up-to-date, easily-accessible sources of evidence to guide decision-making regarding appropriate interventions in pressure care. Consideration and assessment of the patient holistically, followed by appropriate intervention and evaluation, is the key to any prevention strategy.

  20. Beds: practical pressure management for surfaces/mattresses.

    Science.gov (United States)

    Norton, Linda; Coutts, Patricia; Sibbald, R Gary

    2011-07-01

    The prevention and management of pressure ulcers, including support surface selection, are a primary focus of healthcare providers. This article discusses the forces contributing to pressure ulcer formation and explores choosing therapeutic support surface features based on the patient's clinical needs and on using the evidence-informed support surface algorithm and decision trees.

  1. Support surfaces for pressure ulcer prevention

    OpenAIRE

    Cullum, N; McInnes, E; Bell-Syer, SE; Legood, R

    2004-01-01

    : Pressure ulcers (also known as bedsores, pressure sores, decubitus ulcers) are areas of localised damage to the skin and underlying tissue due to pressure, shear or friction. They are common in the elderly and immobile and costly in financial and human terms. Pressure-relieving beds, mattresses and seat cushions are widely used as aids to prevention in both institutional and non-institutional settings. : This systematic review seeks to answer the following questions: to what extent do press...

  2. Support surfaces for pressure ulcer prevention

    OpenAIRE

    McInnes, E; Bell-Syer, SE; Dumville, JC; Legood, R; Cullum, NA

    2008-01-01

    Background Pressure ulcers (also known as bedsores, pressure sores, decubitus ulcers) are areas of localised damage to the skin and underlying tissue due to pressure, shear or friction. They are common in the elderly and immobile and costly in financial and human terms. Pressure-relieving beds, mattresses and seat cushions are widely used as aids to prevention in both institutional and non-institutional settings. Objectives This systematic review seeks to answer the following questions: (1) t...

  3. Pressure-Velocity Correlations in the Cove of a Leading Edge Slat

    Science.gov (United States)

    Wilkins, Stephen; Richard, Patrick; Hall, Joseph

    2015-11-01

    One of the major sources of aircraft airframe noise is related to the deployment of high-lift devices, such as leading-edge slats, particularly when the aircraft is preparing to land. As the engines are throttled back, the noise produced by the airframe itself is of great concern, as the aircraft is low enough for the noise to impact civilian populations. In order to reduce the aeroacoustic noise sources associated with these high lift devices for the next generation of aircraft an experimental investigation of the correlation between multi-point surface-mounted fluctuating pressures measured via flush-mounted microphones and the simultaneously measured two-component velocity field measured via Particle Image Velocimetry (PIV) is studied. The development of the resulting shear-layer within the slat cove is studied for Re =80,000, based on the wing chord. For low Mach number flows in air, the major acoustic source is a dipole acoustic source tied to fluctuating surface pressures on solid boundaries, such as the underside of the slat itself. Regions of high correlations between the pressure and velocity field near the surface will likely indicate a strong acoustic dipole source. In order to study the underlying physical mechanisms and understand their role in the development of aeroacoustic noise, Proper Orthogonal Decomposition (POD) by the method of snapshots is employed on the velocity field. The correlation between low-order reconstructions and the surface-pressure measurements are also studied.

  4. Interface pressure mapping pilot study to select surfaces that effectively redistribute pediatric occipital pressure.

    Science.gov (United States)

    Higer, Samantha; James, Thomas

    2016-02-01

    The aim of this pilot study was to better inform clinical decisions to prevent pediatric occipital pressure ulcers with quantitative data to choose an appropriate reactive support surface. A commercially available capacitive pressure mapping system (XSENSOR, X3 Medical Seat System, Calgary, Canada) was used to evaluate a standard pediatric mattress and four commercially available pressure-redistributing support surfaces. The pressure mapping system was validated for use in the pediatric population through studies on sensitivity, accuracy, creep, and repeatability. Then, a pilot pressure mapping study on healthy children under 6 years old (n = 22) was performed to determine interface pressure and pressure distribution between the occipital region of the skull and each surface: standard mattress, gel, foam, air and fluidized. The sensor was adequate to measure pressure generated by pediatric occipital loading, with 0.5-9% error in accuracy in the 25-95 mmHg range. The air surface had the lowest mean interface pressure (p pressure index (PPI), defined as the peak pressure averaged over four sensels, (p pressure for mattress, foam, fluidized, gel, and air materials were 24.8 ± 4.42, 24.1 ± 1.89, 19.4 ± 3.25, 17.9 ± 3.10, and 14.2 ± 1.41 mmHg, respectively. The air surface also had the most homogenous pressure distribution, with the highest mean to PPI ratio (p surfaces (p surface was the most effective pressure-redistributing material for pediatric occipital pressure as it had the lowest interface pressure and a homogeneous pressure distribution. This implies effective envelopment of the bony prominence of the occiput and increasing contact area to decrease peak pressure points. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  5. Evaluating road surface conditions using dynamic tire pressure sensor

    Science.gov (United States)

    Zhao, Yubo; Wu, H. Felix; McDaniel, J. Gregory; Wang, Ming L.

    2014-03-01

    In order to best prioritize road maintenance, the level of deterioration must be known for all roads in a city's network. Pavement Condition Index (PCI) and International Roughness Index (IRI) are two standard methods for obtaining this information. However, IRI is substantially easier to measure. Significant time and money could be saved if a method were developed to estimate PCI from IRI. This research introduces a new method to estimate IRI and correlate IRI with PCI. A vehicle-mounted dynamic tire pressure sensor (DTPS) system is used. The DTPS measures the signals generated from the tire/road interaction while driving. The tire/road interaction excites surface waves that travel through the road. DTPS, which is mounted on the tire's valve stem, measures tire/road interaction by analyzing the pressure change inside the tire due to the road vibration, road geometry and tire wall vibration. The road conditions are sensible to sensors in a similar way to human beings in a car. When driving on a smooth road, tire pressure stays almost constant and there are minimal changes in the DTPS data. When driving on a rough road, DTPS data changes drastically. IRI is estimated from the reconstructed road profile using DTPS data. In order to correlate IRI with PCI, field tests were conducted on roads with known PCI values in the city of Brockton, MA. Results show a high correlation between the estimated IRI values and the known PCI values, which suggests that DTPS-based IRI can provide accurate predictions of PCI.

  6. Noise Evaluation Technique Based on Surface Pressure

    DEFF Research Database (Denmark)

    Fischer, Andreas

    2012-01-01

    In this chapter the relevant theory for the understanding of TE noise modeling is collected. It contains the acoustic formulations of [31] and [57]. Both give a relation for the far field sound pressure in dependence of the frequency wave number spectral density of the pressure on the airfoil...

  7. Does footprint depth correlate with foot motion and pressure?

    Science.gov (United States)

    Bates, K. T.; Savage, R.; Pataky, T. C.; Morse, S. A.; Webster, E.; Falkingham, P. L.; Ren, L.; Qian, Z.; Collins, D.; Bennett, M. R.; McClymont, J.; Crompton, R. H.

    2013-01-01

    Footprints are the most direct source of evidence about locomotor biomechanics in extinct vertebrates. One of the principal suppositions underpinning biomechanical inferences is that footprint geometry correlates with dynamic foot pressure, which, in turn, is linked with overall limb motion of the trackmaker. In this study, we perform the first quantitative test of this long-standing assumption, using topological statistical analysis of plantar pressures and experimental and computer-simulated footprints. In computer-simulated footprints, the relative distribution of depth differed from the distribution of both peak and pressure impulse in all simulations. Analysis of footprint samples with common loading inputs and similar depths reveals that only shallow footprints lack significant topological differences between depth and pressure distributions. Topological comparison of plantar pressures and experimental beach footprints demonstrates that geometry is highly dependent on overall print depth; deeper footprints are characterized by greater relative forefoot, and particularly toe, depth than shallow footprints. The highlighted difference between ‘shallow’ and ‘deep’ footprints clearly emphasizes the need to understand variation in foot mechanics across different degrees of substrate compliance. Overall, our results indicate that extreme caution is required when applying the ‘depth equals pressure’ paradigm to hominin footprints, and by extension, those of other extant and extinct tetrapods. PMID:23516064

  8. The extended surface forces apparatus. IV. Precision static pressure control

    OpenAIRE

    Schurtenberger E; Heuberger M

    2011-01-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under am...

  9. Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    where the time history pressure data are recorded by the surface pressure microphones. After the flow-field is stabilized, the generated noise from the airfoil Trailing Edge (TE) is predicted using the acoustic analogy solver, where the results from LES are the input. It is found that there is a strong......In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...... relation between TE noise and the aerodynamic pressure. The results of power spectrum density show that the fluctuation of aerodynamic pressure is responsible for noise generation....

  10. Computation of surface roughness using optical correlation

    Indian Academy of Sciences (India)

    The laser speckle photography is used to calculate the average surface roughness from the autocorrelation function of the aluminum diffuse objects. The computed results of surface roughness obtained from the profile shapes of the autocorrelation function of the diffuser show good agreement with the results obtained by ...

  11. Measuring Global Surface Pressures on a Circulation Control Concept Using Pressure Sensitive Paint

    Science.gov (United States)

    Watkins, Anthony N.; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.

    2012-01-01

    This report will present the results obtained from the Pressure Sensitive Paint (PSP) technique on a circulation control concept model. This test was conducted at the National Transonic Facility (NTF) at the NASA Langley Research Center. PSP was collected on the upper wing surface while the facility was operating in cryogenic mode at 227 K (-50 oF). The test envelope for the PSP portion included Mach numbers from 0.7 to 0.8 with angle of attack varying between 0 and 8 degrees and a total pressure of approximately 168 kPa (24.4 psi), resulting in a chord Reynolds number of approximately 15 million. While the PSP results did exhibit high levels of noise in certain conditions (where the oxygen content of the flow was very small), some conditions provided good correlation between the PSP and pressure taps, showing the ability of the PSP technique. This work also served as a risk reduction opportunity for future testing in cryogenic conditions at the NTF.

  12. Correlating intraocular pressure, blood pressure, and heart rate changes after jogging.

    Science.gov (United States)

    Karabatakis, V E; Natsis, K I; Chatzibalis, T E; Lake, S L; Bisbas, I T; Kallinderis, K A; Stangos, N T

    2004-01-01

    To examine the effects of jogging on intraocular pressure (IOP), blood pressure (BP), and heart rate (HR). Twenty-nine healthy individuals-25 athletes and 4 untrained-were studied. IOP, systolic and diastolic BP, and HR were measured before and just after 20 minutes of jogging (submaximal--70%--aerobic exercise). IOP decreased after jogging. Only three individuals had unchanged IOP in one eye and one individual in both eyes. The IOP decrease (1 to 8 mmHg) was statistically significant (pjogging (systolic: 0 to 60 mmHg, statistically significant changes, pjogging. Changes in BP and HR values have no linear quantitative correlation with IOP decrease.

  13. Plastic collapse pressure of cylindrical vessels containing longitudinal surface cracks

    Energy Technology Data Exchange (ETDEWEB)

    Zarrabi, K. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.; Zhang, H. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.; Nhim, K. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.

    1997-05-01

    Based on nonlinear finite element analysis, the plastic collapse pressures of cylindrical vessels with longitudinal surface cracks are computed. A general formula of plastic collapse pressure of such structures are given and compared with the literature solutions. The results of the present study could be applied for the integrity assessments, failure analyses, remanent life assessment, and licence extensions of the vessels. (orig.)

  14. Computation of surface roughness using optical correlation

    Indian Academy of Sciences (India)

    [13] E Marx and T V Vorburger, Appl. Opt. 29, 3613 (1990). [14] R Silvennoinen, K E Peiponen, T Asakura, Y Zhang, C Gu, K Ikonen and E J Morley,. Opt. Lasers Eng. 17, 103 (1992). [15] M Sato Kurita, M Sato and K Nakano, Int. J. Jpn. Soc. Mech. Eng. 35, 335 (1992). [16] P Beckmann, Scattering of light by rough surfaces, ...

  15. Radiological Correlates of Raised Intracranial Pressure in Children: A Review

    Directory of Open Access Journals (Sweden)

    Saeed Kayhanian

    2018-02-01

    Full Text Available Radiological assessment of the head is a routine part of the management of traumatic brain injury. This assessment can help to determine the requirement for invasive intracranial pressure (ICP monitoring. The radiological correlates of elevated ICP have been widely studied in adults but far fewer specific pediatric studies have been conducted. There is, however, growing evidence that there are important differences in the radiological presentations of elevated ICP between children and adults; a reflection of the anatomical and physiological differences, as well as a difference in the pathophysiology of brain injury in children. Here in, we review the radiological parameters that correspond with increased ICP in children that have been described in the literature. We then describe the future directions of this work and our recommendations in order to develop non-invasive and radiological markers of raised ICP in children.

  16. Surface texturing of superconductors by controlled oxygen pressure

    Science.gov (United States)

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  17. The extended surface forces apparatus. IV. Precision static pressure control.

    Science.gov (United States)

    Schurtenberger, E; Heuberger, M

    2011-10-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under ambient conditions. The surface separation is thus pre-adjusted to approximately ~3 μm before sliding the apparatus into the autoclave. Inside the autoclave, the surface separation can be further controlled with a magnetic drive at sub-Ångstrom precision over a 14 μm range. The autoclave pressure can then be set and maintained between 20 mbar and 170 bars with few mbar precision. The autoclave is connected to a specially designed pressurization system to precondition the fluids. The temperature can be controlled between -20 and 60 °C with few mK precision. We demonstrate the operation of the instrument in the case of gaseous or liquid carbon dioxide. Thanks to a consequent decoupling of the eSFA mechanical loop from the autoclave structure, the obtained measurement stability and reproducibility, at elevated pressures, is comparable to the one established for the conventional eSFA, operated under ambient conditions.

  18. The extended surface forces apparatus. IV. Precision static pressure control

    Science.gov (United States)

    Schurtenberger, E.; Heuberger, M.

    2011-10-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under ambient conditions. The surface separation is thus pre-adjusted to approximately ˜3 μm before sliding the apparatus into the autoclave. Inside the autoclave, the surface separation can be further controlled with a magnetic drive at sub-Ångstrom precision over a 14 μm range. The autoclave pressure can then be set and maintained between 20 mbar and 170 bars with few mbar precision. The autoclave is connected to a specially designed pressurization system to precondition the fluids. The temperature can be controlled between -20 and 60 °C with few mK precision. We demonstrate the operation of the instrument in the case of gaseous or liquid carbon dioxide. Thanks to a consequent decoupling of the eSFA mechanical loop from the autoclave structure, the obtained measurement stability and reproducibility, at elevated pressures, is comparable to the one established for the conventional eSFA, operated under ambient conditions.

  19. Estimation of methane emission flux at landfill surface using laser methane detector: Influence of gauge pressure.

    Science.gov (United States)

    Park, Jin-Kyu; Kang, Jong-Yun; Lee, Nam-Hoon

    2016-08-01

    The aim of this study was to investigate the possibility of measuring methane emission fluxes, using surface methane concentration and gauge pressure, by analyzing the influence of gauge pressure on the methane emission flux and the surface methane concentration, as well as the correlation between the methane emission flux and surface methane concentrations. The surface methane concentration was measured using a laser methane detector. Our results show a positive linear relationship between the surface methane concentration and the methane emission flux. Furthermore, the methane emission flux showed a positive linear relationship with the gauge pressure; this implies that when the surface methane concentration and the surface gauge pressure are measured simultaneously, the methane emission flux can be calculated using Darcy's law. A decrease in the vertical permeability was observed when the gauge pressure was increased, because reducing the vertical permeability may lead to a reduced landfill gas emission to the atmosphere, and landfill gas would be accumulated inside the landfill. Finally, this method is simple and can allow for a greater number of measurements during a relatively shorter period. Thus, it provides a better representation of the significant space and time variations in methane emission fluxes. © The Author(s) 2016.

  20. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  1. Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations

    Science.gov (United States)

    Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.

    2014-01-01

    Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.

  2. Pressure inside the neuroendoscope: correlation with epidural intracranial pressure during neuroendoscopic procedures.

    Science.gov (United States)

    Salvador, Lydia; Valero, Ricard; Carazo, Jesús; Caral, Luis; Rios, José; Carrero, Enrique; Tercero, Javier; de Riva, Nicolas; Hurtado, Paola; Ferrer, Enrique; Fábregas, Neus

    2010-07-01

    During neuroendoscopic procedures, pressure inside the neuroendoscope (PIN) monitored through the irrigation channel correlates with the occurrence of postoperative complications. Our aim was to analyze the reliability of PIN measurement as a surrogate for intracranial pressure (ICP) by comparing PIN with simultaneously epidural ICP measurement as the standard. Seventeen consecutive patients undergoing neuroendoscopy were studied prospectively. Type and length of procedure and PIN and epidural ICP values during neuroendoscopy were recorded. Lin's concordance coefficient and Bland-Altman analysis of agreement were used to assess correspondence between the 2 systems. A consistent relation between PIN and epidural ICP waveforms was observed during neuroendoscopic navigation. A strong Pearson correlation between PIN and epidural ICP data were found in 15 patients. Epidural ICP values were systematically higher than PIN values in 15 patients. Lin concordance coefficients showed moderate global agreement between the 2 methods, at 0.58 (95% confidence interval, 0.577-0.592). In 6 cases (35.2%) concordance was good according to this analysis, in 7 cases (41.2%) agreement was moderate/fair, and in 4 cases (23.5%) agreement was poor. The Bland-Altman analysis of patient data showed good agreement between the PIN and epidural ICP measurements for most patients, although discrepancies were greater at higher ICP values for 11 patients. Bland-Altman analysis of the complete dataset, after the normalization of individual's measurements, showed good overall agreement. PIN measurement seems useful for evaluating ICP changes related to neuroendoscopic procedures and seems to be more consistent than epidural ICP at high pressures.

  3. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  4. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    In this work, an auto-correlation analysis of a time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. Hourly time series data available for 240 hours in the month of May, 1999 were subjected to an auto-correlation analysis. The analysis indicates an exponential fall ...

  5. High Temperature, high pressure equation of state density correlations and viscosity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  6. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...

  7. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    The nature of the inherent temporal variability of surface winds is analyzed by comparison of winds obtained through different measurement methods. In this work, an auto-correlation analysis of a time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. Hourly time ...

  8. RMS slope of exponentially correlated surface roughness for radar applications

    DEFF Research Database (Denmark)

    Dierking, Wolfgang

    2000-01-01

    In radar signature analysis, the root mean square (RMS) surface slope is utilized to assess the relative contribution of multiple scattering effects. For an exponentially correlated surface, an effective RMS slope can be determined by truncating the high frequency tail of the roughness spectrum...

  9. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment......Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... are separated using a polyethylene film. The gliding arc was extended by a high speed air flow into ambient air, directed the polyester surface at an angle of approximately 30o. The ultrasonic waves were introduced vertically to the surface. After the plasma treatment using each plasma source without ultrasonic...

  10. Are pressure redistribution surfaces or heel protection devices effective for preventing heel pressure ulcers?

    Science.gov (United States)

    Junkin, Joan; Gray, Mikel

    2009-01-01

    Heel pressure ulcers are recognized as second in prevalence only to pressure ulcer (PU) on the heel among hospitalized patients, and recent studies suggest their incidence may be higher than even sacral ulcers. We systematically reviewed the literature to identify and evaluate whether pressure redistribution surfaces or heel protection devices are effective for the prevention of heel ulcers. We searched CINAHL and MEDLINE databases, using the keywords "pressure ulcer" and "heel," which we also searched the Cochrane Library, using the key terms "pressure ulcer," "heel," and "support surface." We hand searched the ancestry of pertinent research reports and review articles in order to identify additional studies. Inclusion criteria were (1) any study that compared one or more pressure redistribution surfaces or heel protection devices designed specifically to prevent heel PU and (2) any study comparing 2 or more pressure redistribution surfaces designed to prevent PU that specifically reported differences in the incidence of heel PU. Exclusion criteria were (1) studies that did not measure heel PU incidence as an outcome, (2) studies without an English language abstract, and (3) studies that reported overall PU incidence but did not analyze heel PU incidence separately. Clinical evidence concerning the efficacy of pressure redistribution surfaces or heel protection devices is sparse. Existing evidence suggests that pressure redistribution surfaces vary in their ability to prevent heel pressure ulcers, but there is insufficient evidence to determine which surfaces are optimal for this purpose. A single study suggests that a wedge-shaped viscoelastic foam cushion is superior to standard foam pillows for preventing heel PU, but further research is needed before a definitive conclusion concerning this issue can be reached. There is insufficient evidence to determine whether heel protection devices are more effective than a standard hospital foam pillow for the prevention

  11. Surface and Interface Physics of Correlated Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Millis, Andrew [Columbia Univ., New York, NY (United States)

    2004-09-01

    The {\\it Surface and Interface Physics of Correlated Electron Materials} research program provided conceptual understanding of and theoretical methodologies for understanding the properties of surfaces and interfaces involving materials exhibiting strong electronic correlations. The issues addressed in this research program are important for basic science, because the behavior of correlated electron superlattices is a crucial challenge to and crucial test of our understanding of the grand-challenge problem of correlated electron physics and are important for our nation's energy future because correlated interfaces offer opportunities for the control of phenomena needed for energy and device applications. Results include new physics insights, development of new methods, and new predictions for materials properties.

  12. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved....... The ultrasonic irradiation during the plasma treatment consistently enhanced the treatment efficiency. The principal effect of ultrasonic irradiation can be attributed to enhancing surface oxidation during plasma treatment. In addition, ultrasonic irradiation can suppress arcing, and the uniformity...

  13. Longitudinal correlates of change in blood pressure in adolescent girls

    NARCIS (Netherlands)

    Daniels, [No Value; McMahon, RP; Obarzanek, E; Waclawiw, MA; Similo, SL; Biro, FM; Schreiber, GB; Kimm, SYS; Morrison, JA; Barton, BA

    The objective of this study was to assess the longitudinal changes in blood pressure in black and white adolescent girls and evaluate potential determinants of changes in blood pressure, including sexual maturation and body size. A total of 1213 black and 1166 white girls, ages 9 or 10 years at

  14. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations

    DEFF Research Database (Denmark)

    Holm, René; Borkenfelt, Simon; Allesø, Morten

    2016-01-01

    for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.......g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed......, however for six out of seven compounds similar results were obtained by applying a standard pressure (866MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle...

  15. Correlation Between Doppler Echocardiography and Right Heart Catheterization Derived Pulmonary Artery Pressures: Impact of Right Atrial Pressures

    International Nuclear Information System (INIS)

    Ahmed, I.; Nuri, M. M. H.; Zakariyya, A. N.; Ahmad, S. M.; Ahmed, M.

    2016-01-01

    Objective: To evaluate the correlation between Doppler echocardiography (DE) and right heart catheterization (RHC) derived pulmonary artery pressures and to assess the impact of right atrial (RA) pressures on this correlation. Study Design: Cross-sectional analytical study. Place and Duration of Study: Cardiology Department, Tahir Heart Institute, Chenab Nagar, from June 2013 to December 2014. Methodology: All patients undergoing RHC were included. Relevant data were collected from hospital database. Continuous variables were expressed as the mean and SD or as the median and interquartile range where the distributions were skewed. Pearson correlation coefficient and Bland-Altman method were used to correlate DE derived right ventricular systolic pressure (RVSP) and RHC derived systolic pulmonary artery pressures (sPAP). Adjusted RVSP was calculated by replacing default value of RA pressure (10 mmHg) with RHC derived mean RA pressure. Receiver operating characteristic curve (ROC) was used to identify the best cut-off value of RVSP in predicting pulmonary hypertension. Results: Fifty-one patients completed the study protocol. Mean age of study population was 45.22 ± 15.25 years with male to female ratio of 1.47:1. Median error was 13 mmHg (7 to 20). Pearson correlation coefficient (r) between RVSP and sPAP was 0.72. Bland-Altman method of correlation showed bias of +4.43 mmHg with 95% limits of agreement ranging from -34.61 to +43.47. Using ROC curve, the best cut-off value of RVSP was greater than 52 mmHg with accuracy of 75% (sensitivity: 81%, specificity: 69%) in predicting pulmonary hypertension. Adjusted RVSP showed only little improvement in correlation (r = 0.75), adjusted error (13.65 ± 13.05) and diagnostic accuracy (79%). Conclusion: Doppler echocardiography can frequently overestimate pulmonary artery pressures. Though correctly estimated RA pressure may improve this correlation, yet its contribution is only minimal. (author)

  16. Drop impact on a solid surface at reduced air pressure

    Science.gov (United States)

    Langley, Kenneth; Li, E. Q.; Tian, Y. S.; Hicks, P. D.; Thoroddsen, S. T.

    2017-11-01

    When a drop approaches a solid surface at atmospheric pressure, the lubrication pressure within the air forms a dimple in the bottom of the drop resulting in the entrainment of an air disc upon impact. Reducing the ambient air pressure below atmospheric has been shown to suppress splashing and the compression of the intervening air could be significant on the air disc formation; however, to date there have been no experimental studies showing how the entrainment of the air disc is affected by reducing the ambient pressure. Using ultra-high-speed interferometry, at up to 5 Mfps, we investigate droplet impacts onto dry solid surfaces in reduced ambient air pressures with particular interest in what happens as rarified gas effects become important, i.e. when the thickness of the air layer is of the same magnitude as the mean free path of the air molecules. Experimental data will be presented showing novel phenomena and comparisons will be drawn with theoretical models from the literature.

  17. Correlation Spectroscopy of Surfaces, Thin Films, and Nanostructures

    CERN Document Server

    Berakdar, Jamal

    2004-01-01

    Here, leading scientists present an overview of the most modern experimental and theoretical methods for studying electronic correlations on surfaces, in thin films and in nanostructures. In particular, they describe in detail coincidence techniques for studying many-particle correlations while. critically examining the informational content of such processes from a theoretical point viewpoint. Furthermore, the book considers the current state of incorporating many-body effects into theoretical approaches. Covered topics:. -Auger-electron photoelectron coincidence experiments and theories. -Co

  18. Vacuum surface flashover and high pressure gas streamers

    International Nuclear Information System (INIS)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.; Stolz, D.; Wright, S.N.

    1997-07-01

    Pre-breakdown current traces obtained during high pressure gas breakdown and vacuum surface flashover show similar signatures. The initial pre-breakdown current spike, a flat constant current phase, and the breakdown phase with voltage collapse and current surge differ mostly in magnitude. Given these similarities, a model, consisting of the initial current spike corresponding to a fast precursor streamer (ionization wave led by a photoionizing front), the flat current stage as the heating or glow phase, and the terminal avalanche and gap closure, is applied to vacuum surface flashover. A simple analytical approximation based on the resistivity changes induced in the vacuum and dielectric surface is presented. The approximation yields an excellent fit to pre-breakdown time delay vs applied field for previously published experimental data. A detailed kinetics model that includes surface and gas contributions is being developed based in the initial approximation

  19. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, He....../O2 and Ar plasma treatments, mainly attributed to an increase in the density of the C-O single bond at the carbon fibre surfaces. The O/C ratio increased to 0.182 after 1-s He plasma treatment, and remained approximately constant after longer treatment. After exposure in an ambient air at room...

  20. Spatial correlations of interdecadal variation in global surface temperatures

    Science.gov (United States)

    Mann, Michael E.; Park, Jeffrey

    1993-01-01

    We have analyzed spatial correlation patterns of interdecadal global surface temperature variability from an empirical perspective. Using multitaper coherence estimates from 140-yr records, we find that correlations between hemispheres are significant at about 95 percent confidence for nonrandomness for most of the frequency band in the 0.06-0.24 cyc/yr range. Coherence estimates of pairs of 100-yr grid-point temperature data series near 5-yr period reveal teleconnection patterns consistent with known patterns of ENSO variability. Significant correlated variability is observed near 15 year period, with the dominant teleconnection pattern largely confined to the Northern Hemisphere. Peak-to-peak Delta-T is at about 0.5 deg, with simultaneous warming and cooling of discrete patches on the earth's surface. A global average of this pattern would largely cancel.

  1. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  2. Pressure-Redistributing Support Surface Use and Pressure Ulcer Incidence in Elderly Hip Fracture Patients

    Science.gov (United States)

    Rich, Shayna E.; Shardell, Michelle; Hawkes, William G.; Margolis, David J.; Amr, Sania; Miller, Ram; Baumgarten, Mona

    2013-01-01

    OBJECTIVES To evaluate the association between pressure-redistributing support surface (PRSS) use and incident pressure ulcers in older adults with hip fracture. DESIGN Secondary analysis of data from prospective cohort with assessments performed as soon as possible after hospital admission and on alternating days for 21 days. SETTING Nine hospitals in the Baltimore Hip Studies network and 105 postacute facilities to which participants were discharged. PARTICIPANTS Six hundred fifty-eight people aged 65 and older who underwent surgery for hip fracture. MEASUREMENTS Full-body examination for pressure ulcers; bedbound status; and PRSS use, recorded as none, powered (alternating pressure mattresses, low-air-loss mattresses, and alternating pressure overlays), or nonpowered (high-density foam, static air, or gel-filled mattresses or pressure-redistributing overlays except for alternating pressure overlays). RESULTS Incident pressure ulcers (IPUs), Stage 2 or higher, were observed at 4.2% (195/4,638) of visits after no PRSS use, 4.5% (28/623) of visits after powered PRSS use, and 3.6% (54/1,496) of visits after nonpowered PRSS use. The rate of IPU per person-day of follow-up did not differ significantly between participants using powered PRSSs and those not using PRSSs. The rate also did not differ significantly between participants using nonpowered PRSSs and those not using PRSSs, except in the subset of bedbound participants (incidence rate ratio = 0.3, 95% confidence interval = 0.1–0.7). CONCLUSION PRSS use was not associated with a lower IPU rate. Clinical guidelines may need revision for the limited effect of PRSS use, and it may be appropriate to target PRSS use to bedbound patients at risk of pressure ulcers. PMID:21649630

  3. Empirical Correlations for the Solubility of Pressurant Gases in Cryogenic Propellants

    Science.gov (United States)

    Zimmerli, Gregory A.; Asipauskas, Marius; VanDresar, Neil T.

    2010-01-01

    We have analyzed data published by others reporting the solubility of helium in liquid hydrogen, oxygen, and methane, and of nitrogen in liquid oxygen, to develop empirical correlations for the mole fraction of these pressurant gases in the liquid phase as a function of temperature and pressure. The data, compiled and provided by NIST, are from a variety of sources and covers a large range of liquid temperatures and pressures. The correlations were developed to yield accurate estimates of the mole fraction of the pressurant gas in the cryogenic liquid at temperature and pressures of interest to the propulsion community, yet the correlations developed are applicable over a much wider range. The mole fraction solubility of helium in all these liquids is less than 0.3% at the temperatures and pressures used in propulsion systems. When nitrogen is used as a pressurant for liquid oxygen, substantial contamination can result, though the diffusion into the liquid is slow.

  4. Vapor Pressure Data Analysis and Correlation Methodology for Data Spanning the Melting Point

    Science.gov (United States)

    2013-10-01

    specimen is adequately degassed, the liquid menisci in the U-tube are brought to the same level and the pressure read on the manometer . The measurement...VAPOR PRESSURE DATA ANALYSIS AND CORRELATION METHODOLOGY FOR DATA SPANNING THE MELTING POINT ECBC-CR-135 David E...REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2013 - June 2013 4. TITLE AND SUBTITLE Vapor Pressure Data Analysis and Correlation Methodology

  5. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Science.gov (United States)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  6. Correlation between pipe bend geometry and allowable pressure in ...

    African Journals Online (AJOL)

    Determination of allowable pressure, which is one of the important criteria to evaluate the acceptability of pipe bends with shape irregularities, is complex as the analytical solution of the problem involves solution of complex differential equations. Artificial Neural Network (ANN) is used in this paper to determine the ...

  7. Observational assessment and correlates to blood pressure of future ...

    African Journals Online (AJOL)

    2012-01-06

    [4] The WHO estimates that 600 million people with high blood pressure (BP) are at risk of heart attack, stroke, and cardiac failure.[5] Across. WHO regions, research indicates that about 62% of strokes and 49% of heart attacks ...

  8. Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas fault.

    Science.gov (United States)

    Thomas, Amanda M; Nadeau, Robert M; Bürgmann, Roland

    2009-12-24

    Since its initial discovery nearly a decade ago, non-volcanic tremor has provided information about a region of the Earth that was previously thought incapable of generating seismic radiation. A thorough explanation of the geologic process responsible for tremor generation has, however, yet to be determined. Owing to their location at the plate interface, temporal correlation with geodetically measured slow-slip events and dominant shear wave energy, tremor observations in southwest Japan have been interpreted as a superposition of many low-frequency earthquakes that represent slip on a fault surface. Fluids may also be fundamental to the failure process in subduction zone environments, as teleseismic and tidal modulation of tremor in Cascadia and Japan and high Poisson ratios in both source regions are indicative of pressurized pore fluids. Here we identify a robust correlation between extremely small, tidally induced shear stress parallel to the San Andreas fault and non-volcanic tremor activity near Parkfield, California. We suggest that this tremor represents shear failure on a critically stressed fault in the presence of near-lithostatic pore pressure. There are a number of similarities between tremor in subduction zone environments, such as Cascadia and Japan, and tremor on the deep San Andreas transform, suggesting that the results presented here may also be applicable in other tectonic settings.

  9. Noise robustness of interferometric surface topography evaluation methods. Correlogram correlation

    Science.gov (United States)

    Kiselev, Ilia; Kiselev, Egor I.; Drexel, Michael; Hauptmannl, Michael

    2017-12-01

    Different surface height estimation methods are differently affected by interferometric noise. From a theoretical analysis we obtain height variance estimators for the methods. The estimations allow us to rigorously compare the noise robustness of popular evaluation algorithms. The envelope methods have the highest variances and hence the lowest noise resistances. The noise robustness improves from the envelope to the phase methods, but a technique involving the correlation of correlograms is superior even to the latter. We dwell on some details of this correlogram correlation method and the range of its application.

  10. Correlation Between Endotracheal Tube Cuff Pressure and Tracheal Wall Pressure Using Air and Saline Filled Cuffs

    Science.gov (United States)

    2017-01-31

    sell any patented invention that may relate to them. Qualified requestors may obtain copies of this report from the Defense Technical Information...been the assumption that the pressure measured at the pilot balloon is equal to the pressure exerted on the TW. We evaluated ETTs at sea level and...Pressure Profile Systems, Los Angeles, CA) and the ETT pilot balloon via a data logger (Sparx Engineering, Manvel, TX). Figure 1

  11. Propeller Cavitation in Non-Uniform Flow and Correlation with the Near Pressure Field

    Directory of Open Access Journals (Sweden)

    Francisco Alves Pereira

    2016-11-01

    Full Text Available An experimental study is carried out in a cavitation tunnel on a propeller operating downstream of a non-uniform wake. The goal of this work is to establish quantitative correlations between the near pressure field and the cavitation pattern that takes place on the propeller blades. The pressure field is measured at the walls of the test section and in the near wake of the propeller and is combined with quantitative high-speed image recording of the cavitation pattern. Through harmonic analysis of the pressure data and image processing techniques that allow retrieving the cavitation extension and volume, we discuss the potential sources that generate the pressure fluctuations. Time correlations are unambiguously established between pressure peak fluctuations and cavitation collapse events, based on the Rayleigh collapse time. Finally, we design a model to predict the cavitation-induced pressure fluctuations from the derivation of the cavitation volume acceleration. A remarkable agreement is observed with the actual pressure field.

  12. Correlation and spectral measurements of fluctuating pressures and velocities in annular turbulent flow. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.J.; Jones, B.G.; Roy, R.P.

    1980-02-01

    An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.

  13. [Measurements of surface ocean carbon dioxide partial pressure during WOCE

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This paper discusses the research progress of the second year of research under Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' and proposes to continue measurements of underway pCO[sub 2]. During most of the first year of this grant, our efforts to measure pCO[sub 2] on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO[sub 2] in air and surface seawater indicate air-sea equilibrium.

  14. High-pressure catalytic reactions over single-crystal metal surfaces

    Science.gov (United States)

    Rodriguez, JoséA.; Wayne Goodman, D.

    1991-11-01

    Studies dealing with high-pressure catalytic reactions over single-crystal surfaces are reviewed. The coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis allows detailed study of structure sensitivity, the effects of promoters and inhibitors on catalytic activity, and, in certain cases, identification of reaction intermediates by post-reaction surface analysis. Examples are provided which demonstrate the relevance of single-crystal studies for modeling the behaviour of high-surface-area supported catalysts. Studies of CO methanation and CO oxidation over single-crystal surfaces provide convincing evidence that these reactions are structure insensitive. For structure-sensitive reactions (ammonia synthesis, alkane hydrogenolysis, alkane isomerization, water-gas shift reaction, etc.) model single-crystal studies allow correlations to be established between surface structure and catalytic activity. The effects of both electronegative (S and P) and electropositive (alkali metals) impurities upon the catalytic activity of metal single crystals for ammonia synthesis, CO methanation, alkane hydrogenolysis, ethylene epoxidation and water-gas shift are discussed. The roles of "ensemble" and "ligand" effects in bimetallic catalysts are examined in light of data obtained using surfaces prepared by vapor-depositing one metal onto a crystal face of a dissimilar metal.

  15. Development of New Correlation and Assessment of Correlations for Two-Phase Pressure Drop in Rectangular Microchannels

    International Nuclear Information System (INIS)

    Choi, Chi Woong; Yu, Dong In; Kim, Moo Hwan

    2010-01-01

    There are two kinds of models in two-phase pressured drop; homogeneous flow model and separated flow model. Many previous researchers have developed correlations for two-phase pressure drop in a microchannel. Most correlations were modified Lockhart and Martinelli's correlation, which was based on the separated flow model. In this study, experiments for adiabatic liquid water and nitrogen gas flow in rectangular microchannels were conducted to investigate two-phase pressure drop in the rectangular microchannels. Two-phase frictional pressure drop in the rectangular microchannels is highly related with flow regime. Homogeneous model with six two-phase viscosity models: Owen(21)'s, MacAdams(22)'s, Cicchitti et al.(23)'s, Dukler et al.(24)'s, Beattie and Whalley(25)'s, Lin et al.(26)'s models and six separated flow models: Lockhart and Martinelli(27)'s, Chisholm(31)'s, Zhang et al.(15)'s, Lee and Lee(5)'s, Moriyama and Inue(4)'s, Qu and Mudawar(8)'s models were assessed with our experimental data. The best two-phase viscosity model is Beattie and Whalley's model. The best separated flow model is Qu and Mudawar's correlation. Flow regime dependency in both homogeneous and separated flow models was observed. Therefore, new flow pattern based correlations for both homogeneous and separated flow models were individually proposed

  16. The dependence of lipid monolayer lipolysis on surface pressure.

    OpenAIRE

    Hall, D G

    1992-01-01

    Brönsted-Bjerrum theory [Brönsted (1922) Z. Phys. Chem. 102, 169-207; (1925) Z. Phys. Chem. 115, 337-364; Bjerrum (1924) Z. Phys. Chem. 108, 82-100] as applied to reactions at interfaces is used to interpret published data on the lipolysis of dinonanoyl phosphatidylcholine monolayers by pancreatic phospholipase A2. Reasonable quantitative agreement between theoretical and experimental results occurs when the reported effects of surface pressure on the amount of adsorbed enzyme are used togeth...

  17. Osmotic pressure of the cutaneous surface fluid of Rana esculenta

    DEFF Research Database (Denmark)

    Hviid Larsen, Erik; Ramløv, Hans

    2012-01-01

    The osmotic pressure of the cutaneous surface fluid (CSF) in vivo was measured for investigating whether evaporative water loss (EWL) derives from water diffusing through the skin or fluid secreted by exocrine subepidermal mucous glands. EWL was stimulated by subjecting R. esculenta to 30–34 °C....../Kg, n = 16. Osmolality of lymph was, 239 ± 4 mosmol/Kg, n = 8. Thus the flow of water across the epidermis would be in the direction from CSF to the interstitial fluid driven by the above osmotic gradients and/or coupled to the inward active Na+ flux via the slightly hyperosmotic paracellular...

  18. The Effect of 200 MPa Pressure on Specific Surface Area of Clay

    Directory of Open Access Journals (Sweden)

    Koszela-Marek Ewa

    2015-02-01

    Full Text Available The paper presents the results of laboratory studies of the 200 MPa pressure effect on specific surface area of clay. The original high-pressure investigation stand was used for the pressure tests. Determination of the specific surface area was performed by the methylene blue adsorption method. The results of the specific surface area test were compared for non-pressurized clays and for clays pressured in a high-pressure chamber. It was found that the specific surface area of pressurized soil clearly increased. This shows that some microstructural changes take place in the soil skeleton of clays.

  19. Pressurized Rover for Moon and Mars Surface Missions

    Science.gov (United States)

    Imhof, Barbara; Ransom, Stephen; Mohanty, Susmita; Özdemir, Kürsad; Häuplik-Meusburger, Sandra; Frischauf, Norbert; Hoheneder, Waltraut; Waclavicek, René

    The work described in this paper was done under ESA and Thales Alenia Space contract in the frame of the Analysis of Surface Architecture for European Space Exploration -Element Design. Future manned space missions to the Moon or to Mars will require a vehicle for transporting astronauts in a controlled and protected environment and in relative comfort during surface traverses of these planetary bodies. The vehicle that will be needed is a pressurized rover which serves the astronauts as a habitat, a refuge and a research laboratory/workshop. A number of basic issues influencing the design of such a rover, e.g. habitability, human-machine interfaces, safety, dust mitigation, interplanetary contamination and radiation protection, have been analysed in detail. The results of these analyses were subsequently used in an investigation of various designs for a rover suitable for surface exploration, from which a single concept was developed that satisfied scientific requirements as well as environmental requirements encoun-tered during surface exploration of the Moon and Mars. This concept was named in memory of the late Sir Arthur C. Clark RAMA (Rover for Advanced Mission Applications, Rover for Advanced Moon Applications, Rover for Advanced Mars Applications) The concept design of the pressurized rover meets the scientific and operational requirements defined during the course of the Surface Architecture Study. It is designed for surface missions with a crew of two or three lasting up to approximately 40 days, its source of energy, a liquid hydrogen/liquid oxygen fuel cell, allowing it to be driven and operated during the day as well as the night. Guidance, navigation and obstacle avoidance systems are foreseen as standard equipment to allow it to travel safely over rough terrain at all times of the day. The rover allows extra-vehicular activity and a remote manipulator is provided to recover surface samples, to deploy surface instruments and equipment and, in general

  20. Correlation of spine deformity, lung function, and seat pressure in spina bifida.

    Science.gov (United States)

    Patel, Jayesh; Walker, Janet L; Talwalkar, Vishwas R; Iwinski, Henry J; Milbrandt, Todd A

    2011-05-01

    Spinal deformity, a common problem in children with myelodysplasia, is associated with alterations in pulmonary function and sitting balance. Sitting imbalance causes areas of high pressure in patients already at high risk for developing pressure ulcers due to insensate skin. We asked: Does spinal deformity affect pulmonary function tests in children with myelodysplasia? Does the magnitude of spinal curvatures and pelvic obliquity affect seating pressures? Does spinal deformity and seated pressures correlate with a history of pressure ulcers? We retrospectively reviewed 32 patients with myelodysplasia and scoliosis (mean age, 14 years). The mean thoracic scoliosis was 64° with a mean pelvic obliquity of 15°. The mean forced vital capacity was 59% of predicted. The mean of the average and peak seated pressures were 24 and 137 mm Hg, respectively. We examined spinal radiographs, pulmonary function tests, and seated pressure maps and evaluated correlations of spinal deformity measures, pulmonary function, and seated pressures. The thoracic scoliosis inversely correlated with lung volume and weakly related with only the forced midexpiratory volume parameter (R(2) = 31%). The curve magnitude was associated with % seated area with pressures of 38 to 70 mm Hg while lesser degrees of pelvic obliquity were associated with % seating area with pressures of less than 38 mm Hg (R(2) = 25% and 24%, respectively). A history of pressure ulcers did not correlate with any spinal deformity or seated pressure measures. All patients displayed a reduced forced vital capacity, but this reduction was not related to increasing scoliosis. The smaller scoliosis curves and lesser degrees of pelvic obliquity were associated with larger areas of low seated pressures.

  1. Complexity of intracranial pressure correlates with outcome after traumatic brain injury

    Science.gov (United States)

    Lu, Cheng-Wei; Czosnyka, Marek; Shieh, Jiann-Shing; Smielewska, Anna; Pickard, John D.

    2012-01-01

    This study applied multiscale entropy analysis to investigate the correlation between the complexity of intracranial pressure waveform and outcome after traumatic brain injury. Intracranial pressure and arterial blood pressure waveforms were low-pass filtered to remove the respiratory and pulse components and then processed using a multiscale entropy algorithm to produce a complexity index. We identified significant differences across groups classified by the Glasgow Outcome Scale in intracranial pressure, pressure-reactivity index and complexity index of intracranial pressure (P intracranial pressure achieved the strongest statistical significance (F = 28.7; P intracranial pressure assessed by multiscale entropy was significantly associated with outcome in patients with brain injury. PMID:22734128

  2. Healing of ulcers on the feet correlated with distal blood pressure measurements in occlusive arterial disease

    DEFF Research Database (Denmark)

    Holstein, P; Lassen, N A

    1980-01-01

    The frequency of healing in subchronic ulcers in 66 feet in 62 patients with arterial occlusive disease was correlated with the systolic digital blood pressure (SDBP) and the systolic ankle blood pressure (SABP), both measured with a strain gauge, and with the skin perfusion pressure on the heel...... of healing correlated significantly with the three distal blood pressure parameters investigated, the closest correlation being with the SDBP measured at the final examination, i.e. just after healing of the ulcer or just before an inevitable major amputation. Of the 22 cases with SDBP below 20 mmHg only two...... and peripheral neuropathy were frequent in the diabetic group. The data show that the systolic digital blood pressure is a particularly valuable prognostic parameter....

  3. Personality correlates of adherence with continuous positive airway pressure (CPAP).

    Science.gov (United States)

    Moran, Alicia M; Everhart, Daniel Erik; Davis, Claude Ervin; Wuensch, Karl L; Lee, Daniel O; Demaree, Heath A

    2011-12-01

    Adherence with continuous positive airway pressure (CPAP) for obstructive sleep apnea (OSA) has been problematic. Understanding the factors associated with nonadherence may assist with psychosocial interventions. The objective of this study was to examine the relationship between adherence and three measures of personality and coping strategies. Ratings on the behavioral inhibition system/behavioral activation system (BIS/BAS) scales, the ways of coping inventory, and a broad personality measure (mini-IPIP) were analyzed with a binary logistic regression among 63 subjects, adult men (31) and women (32), diagnosed with OSA. Data from the CPAP device was obtained following initial 30 days at minimum, with adherence defined as >4 h/night on 70% of nights. Elevated BIS was the strongest predictor of nonadherence (r = -.452, p < .01), followed by neuroticism. The regression correctly classified 73% of participants as adherent or nonadherent. Nonadherence is associated with elevated BIS scores and neuroticism, which indicates that personality factors play a role in determining adherence to CPAP. Although more research is needed to draw firm conclusions, the differences noted in BIS may also point toward differences in neurophysiological function. The BIS scale may be a useful tool for predicting nonadherence and assist with the development of intervention strategies that will increase adherence.

  4. High-frequency pressure variations in the vicinity of a surface CO2 flux chamber

    Science.gov (United States)

    Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice

    2003-01-01

    We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...

  5. Characterizing developing adverse pressure gradient flows subject to surface roughness

    Science.gov (United States)

    Brzek, Brian; Chao, Donald; Turan, Özden; Castillo, Luciano

    2010-04-01

    An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T ∞, U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41-60, surfaces with Reynolds number based on momentum thickness, 3,000 carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91-108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33-79, 1998a) scaling of the mean velocity deficit, U ∞δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.

  6. Correlation of the intraocular pressure with increased intracranial pressure in rabbits

    Directory of Open Access Journals (Sweden)

    Eskandari H

    2000-08-01

    Full Text Available Although measurement of intracranial pressure by noninvasive methods has been suggested, but mainly invasive methods are used for this purpose-Increase in episcleral venous pressure can be expected to result in a linear increase in intraocular pressure. Congested oculat veins with capillary leakage and hemorrhage are seen when the ICP is increased, thus theoretically measurement of intraocular pressure can be a procedure for estimation of the ICP. This study was performed to find whether there is andy relationship between intraocular pressure and ICP, so we used 12 albino rabbits in two divided groups. Our study was not designed to elucidate the mechanism of change but merely to record any changes observed. All measures except an increase in ICP were applied on the test group as well as on the control group. After general anesthesia with the combination of ketamin, rampune, and pentobarbital a burr hole was made in the lambda region of the skull and a cannula was placed in the subdural space. The ICP in the test group increased up to 15 mmHg and was constant throughout the experiment. Intraocular pressure was measured by Schiotz tonometers afte general anesthesia, after cannulation of the skull, and immediately after increasing the ICP which was repated in 15 minutes interval for 4 hours. There was no statistical difference between the two groups (P:0.997 . results show that neither cannulation nor general anesthesia for 4 hours produce alteration in IOP in the control group nor increasing of the ICP to level of 15 mmHg produces any alteration in IOP on the test group.

  7. Pressure RElieving Support SUrfaces: a Randomised Evaluation 2 (PRESSURE 2): study protocol for a randomised controlled trial

    OpenAIRE

    Brown, Sarah; Smith, Isabelle L.; Brown, Julia M.; Hulme, Claire; McGinnis, Elizabeth; Stubbs, Nikki; Nelson, E. Andrea; Muir, Delia; Rutherford, Claudia; Walker, Kay; Henderson, Valerie; Wilson, Lyn; Gilberts, Rachael; Collier, Howard; Fernandez, Catherine

    2016-01-01

    Background Pressure ulcers represent a major burden to patients, carers and the healthcare system, affecting approximately 1 in 17 hospital and 1 in 20 community patients. They impact greatly on an individual?s functional status and health-related quality of life. The mainstay of pressure ulcer prevention practice is the provision of pressure redistribution support surfaces and patient repositioning. The aim of the PRESSURE 2 study is to compare the two main mattress types utilised within the...

  8. Correlation of Insulin Resistance with Anthropometric Measures and Blood Pressure in Adolescents

    Science.gov (United States)

    de Morais, Polyana Resende Silva; Sousa, Ana Luiza Lima; Jardim, Thiago de Souza Veiga; Nascente, Flávia Miquetichuc Nogueira; Mendonça, Karla Lorena; Povoa, Thaís Inácio Rolim; Carneiro, Carolina de Souza; Ferreira, Vanessa Roriz; de Souza, Weimar Kunz Sebba Barroso; Jardim, Paulo César Brandão Veiga

    2016-01-01

    Background Blood pressure is directly related to body mass index, and individuals with increased waist circumference have higher risk of developing hypertension, insulin resistance, and other metabolic changes, since adolescence. Objective to evaluate the correlation of blood pressure with insulin resistance, waist circumference and body mass index in adolescents. Methods Cross-section study on a representative sample of adolescent students. One group of adolescents with altered blood pressure detected by casual blood pressure and/or home blood pressure monitoring (blood pressure > 90th percentile) and one group of normotensive adolescents were studied. Body mass index, waist circumference were measured, and fasting glucose and plasma insulin levels were determined, using the HOMA-IR index to identify insulin resistance. Results A total of 162 adolescents (35 with normal blood pressure and 127 with altered blood pressure) were studied; 61% (n = 99) of them were boys and the mean age was 14.9 ± 1.62 years. Thirty-eight (23.5%) adolescents had altered HOMA-IR. The group with altered blood pressure had higher values of waist circumference, body mass index and HOMA-IR (pHOMA-IR than boys (pHOMA-IR in the group with altered blood pressure (ρ = 0.394; p HOMA-IR in both groups (ρ = 0.345; p HOMA-IR was as predictor of altered blood pressure (odds ratio - OR = 2.0; p = 0.001). Conclusion There was a significant association of insulin resistance with blood pressure and the impact of insulin resistance on blood pressure since childhood. The correlation and association between markers of cardiovascular diseases was more pronounced in adolescents with altered blood pressure, suggesting that primary prevention strategies for cardiovascular risk factors should be early implemented in childhood and adolescence. PMID:27007222

  9. The correlation between pulsatile intracranial pressure and indices of intracranial pressure-volume reserve capacity: results from ventricular infusion testing.

    Science.gov (United States)

    Eide, Per Kristian

    2016-12-01

    OBJECTIVE The objective of this study was to examine how pulsatile and static intracranial pressure (ICP) scores correlate with indices of intracranial pressure-volume reserve capacity, i.e., intracranial elastance (ICE) and intracranial compliance (ICC), as determined during ventricular infusion testing. METHODS All patients undergoing ventricular infusion testing and overnight ICP monitoring during the 6-year period from 2007 to 2012 were included in the study. Clinical data were retrieved from a quality registry, and the ventricular infusion pressure data and ICP scores were retrieved from a pressure database. The ICE and ICC (= 1/ICE) were computed during the infusion phase of the infusion test. RESULTS During the period from 2007 to 2012, 82 patients with possible treatment-dependent hydrocephalus underwent ventricular infusion testing within the department of neurosurgery. The infusion tests revealed a highly significant positive correlation between ICE and the pulsatile ICP scores mean wave amplitude (MWA) and rise-time coefficient (RTC), and the static ICP score mean ICP. The ICE was negatively associated with linear measures of ventricular size. The overnight ICP recordings revealed significantly increased MWA (> 4 mm Hg) and RTC (> 20 mm Hg/sec) values in patients with impaired ICC ( 4 mm Hg, RTC > 20 mm Hg/sec), but not increased mean ICP (pressure-volume reserve capacity, i.e., ICE and ICC.

  10. Fermi surface properties of AB3 (A = Y, La; B = Pb, In, Tl) intermetallic compounds under pressure

    DEFF Research Database (Denmark)

    Ram, Swetarekha; Kanchana, V; Svane, Axel

    2013-01-01

    The electronic structures, densities of states, Fermi surfaces and elastic properties of AB3 (A = La, Y; B = Pb, In, Tl) compounds are studied under pressure using the full-potential linear augmented plane wave (FP-LAPW) method within the local density approximation for the exchange–correlation f...

  11. Surface wave propagation characteristics in atmospheric pressure plasma column

    International Nuclear Information System (INIS)

    Pencheva, M; Benova, E; Zhelyazkov, I

    2007-01-01

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance

  12. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  13. The correlation between serum leptin and blood pressure after exposure to noise at work

    Directory of Open Access Journals (Sweden)

    Muayad S Rahma

    2013-01-01

    Full Text Available Several epidemiologic studies have reported that exposure to noise is associated with cardiovascular disease. The increased body weight is often associated with metabolic as well as increased blood pressure. The aim of this study is to investigate the correlation between the elevation of blood pressure and serum leptin hormones due to the effects of noise in the work place. A total of 80 volunteer males where included in this study with an age range between of 20 and 45 years, they were divided in two groups equally, the 1 st group were exposed to noise in the workplace while the 2 nd group were not. The individual noise exposure was determined by using a sound level meter. The range of noise was 80-100 dBA. Body Mass Index was also taken for each individual by a standard measure, blood pressure was measured by OMRON sphygmomanometer and serum leptin was measured through venous blood sample analysis enzyme linked immunosorbent assay. Spearman rank order correlation was used to examine the correlations between Blood pressure value (Systolic, Diastolic and Leptin. All the relationships between parameters showed a positive correlation. Systolic and diastolic blood pressure values had a significant correlation to leptin hormone level in comparison to the control. There was a significant relation between leptin and blood pressure. leptin effects on the sympathetic nervous system may provide a partial explanation. Therefore, Leptin might have diverse cardiovascular actions.

  14. The correlation between serum leptin and blood pressure after exposure to noise at work.

    Science.gov (United States)

    Rahma, Muayad S; Mustafa, Bassma Ezzat; Razali, Ailin; Shamsuddin, Niza; Althunibat, Osama Y

    2013-01-01

    Several epidemiologic studies have reported that exposure to noise is associated with cardiovascular disease. The increased body weight is often associated with metabolic as well as increased blood pressure. The aim of this study is to investigate the correlation between the elevation of blood pressure and serum leptin hormones due to the effects of noise in the work place. A total of 80 volunteer males where included in this study with an age range between of 20 and 45 years, they were divided in two groups equally, the 1 st group were exposed to noise in the workplace while the 2 nd group were not. The individual noise exposure was determined by using a sound level meter. The range of noise was 80-100 dBA. Body Mass Index was also taken for each individual by a standard measure, blood pressure was measured by OMRON sphygmomanometer and serum leptin was measured through venous blood sample analysis enzyme linked immunosorbent assay. Spearman rank order correlation was used to examine the correlations between Blood pressure value (Systolic, Diastolic) and Leptin. All the relationships between parameters showed a positive correlation. Systolic and diastolic blood pressure values had a significant correlation to leptin hormone level in comparison to the control. There was a significant relation between leptin and blood pressure. leptin effects on the sympathetic nervous system may provide a partial explanation. Therefore, Leptin might have diverse cardiovascular actions.

  15. Healing of ulcers on the feet correlated with distal blood pressure measurements in occlusive arterial disease

    DEFF Research Database (Denmark)

    Holstein, P; Lassen, N A

    1980-01-01

    The frequency of healing in subchronic ulcers in 66 feet in 62 patients with arterial occlusive disease was correlated with the systolic digital blood pressure (SDBP) and the systolic ankle blood pressure (SABP), both measured with a strain gauge, and with the skin perfusion pressure on the heel...... (SPPH) as measured with a photocell. Thirty-two patients (35 feet with ulcerations) had diabetes mellitus. The treatment was conservative. In 42 feet the ulcers healed after an average period of 5.8 months; in 24 feet major amputation became necessary after an average of 4.3 months. The frequency...... of healing correlated significantly with the three distal blood pressure parameters investigated, the closest correlation being with the SDBP measured at the final examination, i.e. just after healing of the ulcer or just before an inevitable major amputation. Of the 22 cases with SDBP below 20 mmHg only two...

  16. Randomised, controlled trial of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers: PRESSURE (pressure relieving support surfaces) trial

    OpenAIRE

    2006-01-01

    Objective To compare whether differences exist between alternating pressure overlays and alternating pressure mattresses in the development of new pressure ulcers, healing of existing pressure ulcers, and patient acceptability. Design Pragmatic, open, multicentre, randomised controlled trial. Setting 11 hospitals in six NHS trusts. Participants 1972 people admitted to hospital as acute or elective patients. Interventions Participants were randomised to an alternating pressure mattress (n = 98...

  17. Surface modification with a remote atmospheric pressure plasma: dc glow discharge and surface streamer regime

    International Nuclear Information System (INIS)

    Temmerman, Eef; Akishev, Yuri; Trushkin, Nikolay; Leys, Christophe; Verschuren, Jo

    2005-01-01

    A remote atmospheric pressure discharge working with ambient air is used for the near room temperature treatment of polymer foils and textiles of varying thickness. The envisaged plasma effect is an increase in the surface energy of the treated material, leading, e.g., to a better wettability or adhesion. Changes in wettability are examined by measuring the contact angle or the liquid absorptive capacity. Two regimes of the remote atmospheric pressure discharge are investigated: the glow regime and the streamer regime. These regimes differ mainly in power density and in the details of the electrode design. The results show that this kind of discharge makes up a convenient non-thermal plasma source to be integrated into a treatment installation working at atmospheric pressure

  18. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  19. Correlation between liver morphology and portal pressure in alcoholic liver disease

    DEFF Research Database (Denmark)

    Krogsgaard, K; Gluud, C; Henriksen, Jens Henrik Sahl

    1984-01-01

    volume. The present findings are in accordance with the hypothesis that elevated hepatic vascular resistance and portal pressure in alcoholic liver disease are in part determined by the severity of the hepatic architectural destruction and subsequent distorsion and compression of the efferent vein system......In 14 alcoholic patients, the degree of hepatic architectural destruction was graded (preserved architecture; nodules alternating with preserved architecture; totally destroyed architecture) and related to portal pressure. A positive correlation was found between the degree of architectural...... destruction and both wedged hepatic vein pressure (r = 0.72, p less than 0.01) and wedged-to-free hepatic vein pressure (r = 0.67, p less than 0.02). Degree of fatty change, fibrosis, inflammation, necrosis and occurrence of Mallory bodies showed no correlation with portal pressure. After morphometrical...

  20. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Sugiyama, Y.; Hosseini, S.H.R.; Akiyama, H.; Lukeš, Petr; Akiyama, M.

    2016-01-01

    Roč. 49, č. 41 (2016), č. článku 415202. ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : water surface * spectroscopy * high-speed photography * pulsed plasma discharge * Atmospheric-pressure plasmas * electric discharges * liquids * water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/41/415202

  1. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil

    2011-10-03

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher\\'s and Chun & Seban\\'s falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  2. Temperature effects on surface pressure-induced changes in rat skin perfusion: implications in pressure ulcer development.

    Science.gov (United States)

    Patel, S; Knapp, C F; Donofrio, J C; Salcido, R

    1999-07-01

    The effect of varying local skin temperature on surface pressure-induced changes in skin perfusion and deformation was determined in hairless fuzzy rats (13.5+/-3 mo, 474+/-25 g). Skin surface pressure was applied by a computer-controlled plunger with corresponding skin deformation measured by a linear variable differential transformer while a laser Doppler flowmeter measured skin perfusion. In Protocol I, skin surface perfusion was measured without heating (control, T=28 degrees C), with heating (T=36 degrees C), for control (probe just touching skin, 3.7 mmHg), and at two different skin surface pressures, 18 mmHg and 73 mmHg. Heating caused perfusion to increase at control and 18 mmHg pressure, but not at 73 mmHg. In Protocol II, skin perfusion was measured with and without heating as in Protocol I, but this time skin surface pressure was increased from 3.7 to 62 mmHg in increments of 3.7 mmHg. For unheated skin, perfusion increased as skin surface pressure increased from 3.7 to 18 mmHg. Further increases in surface pressure caused a decrease in perfusion until zero perfusion was reached for pressures over 55 mmHg. Heating increased skin perfusion for surface pressures from 3.7 to 18 mmHg, but not for pressures greater than 18 mmHg. After the release of surface pressure, the reactive hyperemia peak of perfusion increased with heating. In Protocol III, where skin deformation (creep and relaxation) was measured during the application of 3.7 and 18 mmHg, heating caused the tissue to be stiffer, allowing less deformation. It was found that for surface pressures below 18 mmHg, increasing skin temperature significantly increased skin perfusion and tissue stiffness. The clinical significance of these findings may have relevance in evaluating temperature and pressure effects on skin blood flow and deformation as well as the efficacy of using temperature as a therapeutic modality in the treatment of pressure ulcers.

  3. Randomised, controlled trial of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers: PRESSURE (pressure relieving support surfaces) trial.

    Science.gov (United States)

    Nixon, Jane; Cranny, Gillian; Iglesias, Cynthia; Nelson, E Andrea; Hawkins, Kim; Phillips, Angela; Torgerson, David; Mason, Su; Cullum, Nicky

    2006-06-17

    To compare whether differences exist between alternating pressure overlays and alternating pressure mattresses in the development of new pressure ulcers, healing of existing pressure ulcers, and patient acceptability. Pragmatic, open, multicentre, randomised controlled trial. 11 hospitals in six NHS trusts. 1972 people admitted to hospital as acute or elective patients. Participants were randomised to an alternating pressure mattress (n = 982) or an alternating pressure overlay (n = 990). The proportion of participants developing a new pressure ulcer of grade 2 or worse; time to development of new pressure ulcers; proportions of participants developing a new ulcer within 30 days; healing of existing pressure ulcers; and patient acceptability. Intention to treat analysis found no difference in the proportions of participants developing a new pressure ulcer of grade 2 or worse (10.7% overlay patients, 10.3% mattress patients; difference 0.4%, 95% confidence interval--2.3% to 3.1%, P = 0.75). More overlay patients requested change owing to dissatisfaction (23.3%) than mattress patients (18.9%, P = 0.02). No difference was found between alternating pressure mattresses and alternating pressure overlays in the proportion of people who develop a pressure ulcer. ISRCTN 78646179.

  4. Serum contents of endocannabinoids are correlated with blood pressure in depressed women.

    Science.gov (United States)

    Ho, W S Vanessa; Hill, Matthew N; Miller, Gregory E; Gorzalka, Boris B; Hillard, Cecilia J

    2012-02-28

    Depression is known to be a risk factor for cardiovascular diseases but the underlying mechanisms remain unclear. Since recent preclinical evidence suggests that endogenous agonists of cannabinoid receptors (endocannabinoids) are involved in both cardiovascular function and depression, we asked whether endocannabinoids correlated with either in humans. Resting blood pressure and serum content of endocannabinoids in ambulatory, medication-free, female volunteers with depression (n = 28) and their age- and ethnicity-matched controls (n = 27) were measured. In females with depression, both diastolic and mean arterial blood pressures were positively correlated with serum contents of the endocannabinoids, N-arachidonylethanolamine (anandamide) and 2-arachidonoylglycerol. There was no correlation between blood pressure and endocannabinoids in control subjects. Furthermore, depressed women had significantly higher systolic blood pressure than control subjects. A larger body mass index was also found in depressed women, however, it was not significantly correlated with serum endocannabinoid contents. This preliminary study raises the possibility that endocannabinoids play a role in blood pressure regulation in depressives with higher blood pressure, and suggests an interrelationship among endocannabinoids, depression and cardiovascular risk factors in women.

  5. Serum contents of endocannabinoids are correlated with blood pressure in depressed women

    Directory of Open Access Journals (Sweden)

    Ho WS Vanessa

    2012-02-01

    Full Text Available Abstract Background Depression is known to be a risk factor for cardiovascular diseases but the underlying mechanisms remain unclear. Since recent preclinical evidence suggests that endogenous agonists of cannabinoid receptors (endocannabinoids are involved in both cardiovascular function and depression, we asked whether endocannabinoids correlated with either in humans. Results Resting blood pressure and serum content of endocannabinoids in ambulatory, medication-free, female volunteers with depression (n = 28 and their age- and ethnicity-matched controls (n = 27 were measured. In females with depression, both diastolic and mean arterial blood pressures were positively correlated with serum contents of the endocannabinoids, N-arachidonylethanolamine (anandamide and 2-arachidonoylglycerol. There was no correlation between blood pressure and endocannabinoids in control subjects. Furthermore, depressed women had significantly higher systolic blood pressure than control subjects. A larger body mass index was also found in depressed women, however, it was not significantly correlated with serum endocannabinoid contents. Conclusions This preliminary study raises the possibility that endocannabinoids play a role in blood pressure regulation in depressives with higher blood pressure, and suggests an interrelationship among endocannabinoids, depression and cardiovascular risk factors in women.

  6. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    Science.gov (United States)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  7. Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens.

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; White, Thomas W; Delamere, Nicholas A; Mathias, Richard T

    2015-11-03

    In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Twenty-One Year Trends and Correlates of Pressure to Change Drinking

    Science.gov (United States)

    Polcin, Douglas L.; Korcha, Rachael; Greenfield, Thomas K.; Bond, Jason; Kerr, William

    2011-01-01

    Background The vast majority of individuals with alcohol problems in the U.S. and elsewhere do not seek help. One policy response has been to encourage institutions such as criminal justice and social welfare systems to mandate treatment for individuals with alcohol problems (Speiglman, 1997). However, informal pressures to drink less from family and friends are far more common than institutional pressures mandating treatment (Room et al., 1996). The prevalence and correlates of these informal pressures have been minimally studied. Methods This analysis used data from five Alcohol Research Group National Alcohol Surveys (NAS) collected at approximately five-year intervals over a 21 year period (1984 to 2005, pooled N=16,241) to describe patterns of pressure that drinkers received during the past year from family, friends, physicians, police and the workplace. Results The overall trend of pressure combining all six sources across all five NAS surveys indicated a decline. Frequent heavy drinking and alcohol related harms also declined and both were strong predictors of receiving pressure. Trends among different sources varied. In multivariate regression models pressure from friends showed an increase. Pressure from spouse and family showed a relatively flat trajectory, with the exception of a spike in pressure from family in 1990. Conclusions The trajectory of decreasing of pressure over time is most likely the result of decreases in heavy drinking and alcohol related harm. Pressure was generally targeted toward higher risk drinkers, such as heavy drinkers and those reporting alcohol related harm. However, demographic findings suggest that the social context of drinking might also be a determinant of receiving pressure. Additional studies should identify when pressure is associated with decreased drinking and increased help-seeking. PMID:21913944

  9. Pressure exerted by a vesicle on a surface

    International Nuclear Information System (INIS)

    Owczarek, A L; Prellberg, T

    2014-01-01

    Several recent works have considered the pressure exerted on a wall by a model polymer. We extend this consideration to vesicles attached to a wall, and hence include osmotic pressure. We do this by considering a two-dimensional directed model, namely that of area-weighted Dyck paths. Not surprisingly, the pressure exerted by the vesicle on the wall depends on the osmotic pressure inside, especially its sign. Here, we discuss the scaling of this pressure in the different regimes, paying particular attention to the crossover between positive and negative osmotic pressure. In our directed model, there exists an underlying Airy function scaling form, from which we extract the dependence of the bulk pressure on small osmotic pressures. (paper)

  10. Indirect measurement of near-surface velocity and pressure fields based on measurement of moving free surface profiles

    International Nuclear Information System (INIS)

    Sibamoto, Yasuteru; Nakamura, Hideo

    2005-01-01

    A non-intrusive technique for measurement of the velocity and pressure fields adjacent to a moving fluid surface is developed. The technique is based on the measurement of fluid surface profile. The velocity and pressure fields are derived with use of the boundary element method (BEM) by seeking for an incompressible flow field that satisfies the kinematic boundary condition imposed by the time-dependent fluid surface profile. The proposed technique is tested by deriving the velocity and pressure fields inversely from the fluid surface profiles obtained by a forward BEM calculation of fluid surface response to externally-imposed pressure. The inverse calculation results show good agreement with the imposed pressure distribution in the forward calculation. (author)

  11. Laboratory measurement of the interface pressures applied by active therapy support surfaces: a consensus document.

    Science.gov (United States)

    2010-02-01

    A key element in pressure ulcer prevention and management is the selection of appropriate pressure redistributing (PR) patient support surfaces for use while seated and in bed. However little explicit guidance exists allowing standardised quantitative comparison of different PR surfaces based upon their ability to redistribute pressure from anatomical landmarks such as the heels and sacrum. In 2008 a working group was established in Europe through the US National Pressure Ulcer Advisory Panel (NPUAP) support surface standardisation initiative (S3I) and under the aegis of the European Pressure Ulcer Advisory Panel with the specific remit of developing test methods for the evaluation of active therapy support surfaces (alternating pressure air mattresses). This report describes a consensus development process to agree test methods appropriate to compare active therapy surfaces based upon their ability to redistribute pressure from the sacrum and the heels. Copyright 2009 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  12. Genetic correlations between intraocular pressure, blood pressure and primary open-angle glaucoma: a multi-cohort analysis.

    Science.gov (United States)

    Aschard, Hugues; Kang, Jae H; Iglesias, Adriana I; Hysi, Pirro; Cooke Bailey, Jessica N; Khawaja, Anthony P; Allingham, R Rand; Ashley-Koch, Allison; Lee, Richard K; Moroi, Sayoko E; Brilliant, Murray H; Wollstein, Gadi; Schuman, Joel S; Fingert, John H; Budenz, Donald L; Realini, Tony; Gaasterland, Terry; Scott, William K; Singh, Kuldev; Sit, Arthur J; Igo, Robert P; Song, Yeunjoo E; Hark, Lisa; Ritch, Robert; Rhee, Douglas J; Gulati, Vikas; Haven, Shane; Vollrath, Douglas; Zack, Donald J; Medeiros, Felipe; Weinreb, Robert N; Cheng, Ching-Yu; Chasman, Daniel I; Christen, William G; Pericak-Vance, Margaret A; Liu, Yutao; Kraft, Peter; Richards, Julia E; Rosner, Bernard A; Hauser, Michael A; Klaver, Caroline C W; vanDuijn, Cornelia M; Haines, Jonathan; Wiggs, Janey L; Pasquale, Louis R

    2017-11-01

    Primary open-angle glaucoma (POAG) is the most common chronic optic neuropathy worldwide. Epidemiological studies show a robust positive relation between intraocular pressure (IOP) and POAG and modest positive association between IOP and blood pressure (BP), while the relation between BP and POAG is controversial. The International Glaucoma Genetics Consortium (n=27 558), the International Consortium on Blood Pressure (n=69 395), and the National Eye Institute Glaucoma Human Genetics Collaboration Heritable Overall Operational Database (n=37 333), represent genome-wide data sets for IOP, BP traits and POAG, respectively. We formed genome-wide significant variant panels for IOP and diastolic BP and found a strong relation with POAG (odds ratio and 95% confidence interval: 1.18 (1.14-1.21), P=1.8 × 10 -27 ) for the former trait but no association for the latter (P=0.93). Next, we used linkage disequilibrium (LD) score regression, to provide genome-wide estimates of correlation between traits without the need for additional phenotyping. We also compared our genome-wide estimate of heritability between IOP and BP to an estimate based solely on direct measures of these traits in the Erasmus Rucphen Family (ERF; n=2519) study using Sequential Oligogenic Linkage Analysis Routines (SOLAR). LD score regression revealed high genetic correlation between IOP and POAG (48.5%, P=2.1 × 10 -5 ); however, genetic correlation between IOP and diastolic BP (P=0.86) and between diastolic BP and POAG (P=0.42) were negligible. Using SOLAR in the ERF study, we confirmed the minimal heritability between IOP and diastolic BP (P=0.63). Overall, IOP shares genetic basis with POAG, whereas BP has limited shared genetic correlation with IOP or POAG.

  13. Surface diagnostics of evaporating droplets of nanosphere suspension: Fano interference and surface pressure.

    Science.gov (United States)

    Kolwas, Maciej; Kolwas, Krystyna; Derkachov, Gennadiy; Jakubczyk, Daniel

    2015-03-14

    The evaporation of a single, levitating microdroplet of glycols containing SiO2 nanospheres, both of similar refraction indices, was studied by observing changes in the interference pattern and intensities of polarized and depolarized scattered laser light. The evolution of the effective radius of the droplet has been found on the basis of Mie scattering theory supplemented by the "electrical weighting" measurement of droplet mass evolution. During formation of a layer of nanospheres on the droplet surface, the asymmetric Fano profile was observed which was found to be due to the destructive and constructive interference of overlapping processes: (i) the scattering on single nanospheres emerging on the droplet surface and (ii) the scattering on ensembles of closely spaced (comparing to the light wavelength) nanospheres of an evolving surface film. Therefore we report the first observation of the Fano interference in the time domain rather than in the spectral domain. The optical surface diagnostics was complemented with the thermodynamics-like analysis in terms of the effective droplet surface pressure isotherm and with numerical simulations illustrating evaporation driven changes in the distribution of nanospheres. The reported study can serve as the basis for a wide range of novel diagnostic methods for studying configuration changes in complex systems of nano- and microparticles evolving at the sub-wavelength scale.

  14. Fermi Surface, Pressure-Induced Antiferromagnetic Order, and Superconductivity in FeSe

    Science.gov (United States)

    Ishizuka, Jun; Yamada, Takemi; Yanagi, Yuki; Ōno, Yoshiaki

    2018-01-01

    The pressure dependence of the structural (Ts), antiferromagnetic (Tm), and superconducting (Tc) transition temperatures in FeSe is investigated on the basis of the 16-band d-p model. At ambient pressure, a shallow hole pocket disappears due to the correlation effect, as observed in the angular-resolved photoemission spectroscopy (ARPES) and quantum oscillation (QO) experiments, resulting in the suppression of the antiferromagnetic order, in contrast to the other iron pnictides. The orbital-polarization interaction between the Fe d orbital and Se p orbital is found to drive the ferro-orbital order responsible for the structural transition without accompanying the antiferromagnetic order. The pressure dependence of the Fermi surfaces is derived from the first-principles calculation and is found to well account for the opposite pressure dependences of Ts and Tm, around which the enhanced orbital and magnetic fluctuations cause the double-dome structure of the eigenvalue λ in the Eliashberg equation, as consistent with that of Tc in FeSe.

  15. An assessment of pressure drop and void fraction correlations with data from two-phase natural circulation loops

    Science.gov (United States)

    Vijayan, P. K.; Patil, A. P.; Pilkhwal, D. S.; Saha, D.; Venkat Raj, V.

    Void fraction and pressure drop correlations play an important role in predicting the performance of natural circulation loops. Hence an assessment of the commonly used and often cited correlations for pressure drop and void fraction has been carried out with data from natural circulation loops. This assessment considered 33 void fraction correlations and 14 pressure drop correlations. The void fraction correlations were initially tested against the various limiting conditions. Only 14 correlations were found to satisfy at least two limiting conditions (i.e., at x =0 α=0 and at x=1 α=1) and were assessed against the data. This assessment showed that the Chexal etal. (1996) correlation is better than all the others considered. The assessment of pressure drop correlations were carried out with the Chexal etal. (1996) correlation for void fraction and Saha-Zuber model for the onset of subcooled boiling. This assessment showed that most correlations give predictions close to each other.

  16. Intracranial pressure (ICP) and optic nerve subarachnoid space pressure (ONSP) correlation in the optic nerve chamber: the Beijing Intracranial and Intraocular Pressure (iCOP) study.

    Science.gov (United States)

    Hou, Ruowu; Zhang, Zheng; Yang, Diya; Wang, Huaizhou; Chen, Weiwei; Li, Zhen; Sang, Jinghong; Liu, Sumeng; Cao, Yiwen; Xie, Xiaobin; Ren, Ruojin; Zhang, Yazhuo; Sabel, Bernhard A; Wang, Ningli

    2016-03-15

    Because a lowered intracranial pressure (ICP) is a possible mechanism of optic neuropathy, we wished to study the CSF dynamics in the optic nerve chamber by recording possible changes in the optic nerve subarachnoid space pressure (ONSP) and the impact on it when acutely lowering ICP. In eight normal dogs pressure probes were implanted in the left brain ventricle, lumbar cistern, optic nerve subarachnoid space and in the anterior eye chamber. Following CSF shunting from the brain ventricle we monitored changes of ICP, lumbar cistern pressure (LCP), ONSP and intraocular pressure (IOP). At baseline, the pressures were different with ICP>LCP>ONSP but correlated with each other (PICP (PICP gradually decreased in a linear fashion together with the ONSP ("ICP-depended zone"). But when the ICP fell below a critical breakpoint, ICP and ONSP became uncoupled and ONSP remained constant despite further ICP decline ("ICP-independent zone"). Because the parallel decline of ICP and ONSP breaks down when ICP decreases below a critical breakpoint, we interpret this as a sign of CSF communication arrest between the intracranial and optic nerve SAS. This may be caused by obstructions of either CSF inflow through the optic canal or outflow into the intra-orbital cavity. This CSF exchange arrest may be a contributing factor to optic nerve damage and the optic nerve chamber syndrome which may influence the loss of vision or its restoration. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Correlation between the critical heat flux and the fractal surface roughness of zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; McRae, G.A.; Coleman, C.E.; Nitheanandan, T.; Sanderson, D.B.

    1999-10-01

    In CANDU fuel channels, Zircaloy calandria tubes isolate the hot pressure tubes from the cool heavy water moderator. The heavy-water moderator provides a backup heat sink during some postulated loss-of-coolant accidents. The decay heat from the fuel is transferred to the moderator to ensure fuel channel integrity during emergencies. Moderator temperature requirements are specified to ensure that the transfer of decay heat does not exceed the critical heat flux (CHF) on the outside surface of the calandria tube. An enhanced CHF provides increases in safety margin. Pool boiling experiments indicate the CHF is enhanced with glass-peening of the outside surface of the calandria tubes. The objective of this study was to evaluate the surface characteristics of glass-peened tubes and relate these characteristics to CHF. The micro-topologies of the tube surfaces were analysed using stereo-pair micrographs obtained from scanning electron microscopy (SEM) and photogrammetry techniques. A linear relationship correlated the CHF as a function of the 'fractal' surface roughness of the tubes. (author)

  18. Correlation between surface reconstruction and polytypism in InAs nanowire selective area epitaxy

    Science.gov (United States)

    Liu, Ziyang; Merckling, Clement; Rooyackers, Rita; Richard, Olivier; Bender, Hugo; Mols, Yves; Vila, María; Rubio-Zuazo, Juan; Castro, Germán R.; Collaert, Nadine; Thean, Aaron; Vandervorst, Wilfried; Heyns, Marc

    2017-12-01

    The mechanism of widely observed intermixing of wurtzite and zinc-blende crystal structures in InAs nanowire (NW) grown by selective area epitaxy (SAE) is studied. We demonstrate that the crystal structure in InAs NW grown by SAE can be controlled using basic growth parameters, and wurtzitelike InAs NWs are achieved. We link the polytypic InAs NWs SAE to the reconstruction of the growth front (111)B surface. Surface reconstruction study of InAs (111) substrate and the following homoepitaxy experiment suggest that (111) planar defect nucleation is related to the (1 × 1) reconstruction of InAs (111)B surface. In order to reveal it more clearly, a model is presented to correlate growth temperature and arsenic partial pressure with InAs NW crystal structure. This model considers the transition between (1 × 1) and (2 × 2) surface reconstructions in the frame of adatom atoms adsorption/desorption, and the polytypism is thus linked to reconstruction quantitatively. The experimental data fit well with the model, which highly suggests that surface reconstruction plays an important role in the polytypism phenomenon in InAs NWs SAE.

  19. Shear-induced pressure anisotropization and correlation with fluid vorticity in a low collisionality plasma

    Science.gov (United States)

    Del Sarto, Daniele; Pegoraro, Francesco

    2018-03-01

    The momentum anisotropy contained in a sheared flow may be transferred to a pressure anisotropy, both gyrotropic and non-gyrotropic, via the action of the fluid strain on the pressure tensor components. In particular, it is the traceless symmetric part of the strain tensor (i.e. the so-called shear tensor) that drives the mechanism, the fluid vorticity just inducing rotations of the pressure tensor components. This possible mechanism of anisotropy generation from an initially isotropic pressure is purely dynamical and can be described in a fluid framework where the full pressure tensor evolution is retained. Here, we interpret the correlation between vorticity and anisotropy, often observed in numerical simulations of solar wind turbulence, as due to the correlation between shear rate tensor and fluid vorticity. We then discuss some implications of this analysis for the onset of the Kelvin-Helmholtz instability in collisionless plasmas where a full pressure tensor evolution is allowed, and for the modelling of secondary reconnection in turbulence.

  20. Liquid-metal pin-fin pressure drop by correlation in cross flow

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.; Assoufid, L.

    1994-01-01

    The pin-fin configuration is widely used as a heat transfer enhancement method in high-heat-flux applications. Recently, the pin-fin design with liquid-metal coolant was also applied to synchrotron-radiation beamline devices. This paper investigates the pressure drop in a pin-post design beamline mirror with liquid gallium as the coolant. Because the pin-post configuration is a relatively new concept, information in literature about pin-post mirrors or crystals is rare, and information about the pressure drop in pin-post mirrors with liquid metal as the coolant is even more sparse. Due to this the authors considered the cross flow in cylinder-array geometry, which is very similar to that of the pin-post, to examine the pressure drop correlation with liquid metals over pin fins. The cross flow of fluid with various fluid characteristics or properties through a tube bank was studied so that the results can be scaled to the pin-fin geometry with liquid metal as the coolant. Study lead to two major variables to influence the pressure drop: fluid properties, viscosity and density, and the relative length of the posts. Correlation of the pressure drop between long and short posts and the prediction of the pressure drop of liquid metal in the pin-post mirror and comparison with an existing experiment are addressed

  1. Measurement and correlation of vapour pressures of pyridine and thiophene with [EMIM][SCN] ionic liquid

    International Nuclear Information System (INIS)

    Khelassi-Sefaoui, Asma; Mutelet, Fabrice; Mokbel, Ilham; Jose, Jacques; Negadi, Latifa

    2014-01-01

    Highlights: • VLE of (pyridine + [EMIM][SCN]), or (thiophene + [EMIM][SCN]) binary mixtures were measured. • The investigated temperatures are 273 K to 363 K. • The PC-SAFT equation of state has been used to correlate the vapour pressures of the binary systems. - Abstract: In this work (vapour + liquid) equilibrium (VLE) measurements were performed on binary systems of the ionic liquid 1-ethyl-3-methylimidazolium thiocynate [EMIM][SCN] with thiophene or pyridine at pressures close to the atmospheric pressure using a static device at temperatures between 273 K and 363 K. Experimental data were correlated by the PC-SAFT EoS. The binary interaction parameters k ij were optimised on experimental VLE data. The results obtained for the two binary mixtures studied in this paper indicate that the PC-SAFT EoS can be used to represent systems containing ionic liquids

  2. Preventing pressure ulcers--Are pressure-redistributing support surfaces effective? A Cochrane systematic review and meta-analysis.

    Science.gov (United States)

    McInnes, Elizabeth; Jammali-Blasi, Asmara; Bell-Syer, Sally; Dumville, Jo; Cullum, Nicky

    2012-03-01

    To undertake a systematic review of the effectiveness of pressure redistributing support surfaces in the prevention of pressure ulcers. Systematic review and meta-analysis. Cochrane Wound Group Specialised Register, The Cochrane Central Register of Controlled Trials, Ovid MEDLINE, Ovid EMBASE and EBSCO CINAHL. The reference sections of included trials were searched for further trials. Randomised controlled trials and quasi-randomised trials, published or unpublished, which assessed the effects of support surfaces in preventing pressure ulcers (of any grade), in any patient group, in any setting compared to any other support surface, were sought. Two reviewers extracted and summarised details of eligible trials using a standardised form and assessed the methodological quality of each trial using the Cochrane risk of bias tool. Fifty-three eligible trials were identified with a total of 16,285 study participants. Overall the risk of bias in the included trials was high. Pooled analysis showed that: (i) foam alternatives to the standard hospital foam mattress reduce the incidence of pressure ulcers in people at risk (RR 0.40, 95% CI 0.21-0.74) and Australian standard medical sheepskins prevent pressure ulcers compared to standard care (RR 0.48, 95% CI 0.31-0.74). Pressure-redistributing overlays on the operating table compared to standard care reduce postoperative pressure ulcer incidence (RR 0.53, 95% CI 0.33-0.85). While there is good evidence that higher specification foam mattresses, sheepskins, and that some overlays in the operative setting are effective in preventing pressure ulcers, there is insufficient evidence to draw conclusions on the value of seat cushions, limb protectors and various constant low pressure devices. The relative merits of higher-tech constant low pressure and alternating pressure for prevention are unclear. More robust trials are required to address these research gaps. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Energy Technology Data Exchange (ETDEWEB)

    Abuzairi, Tomy [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424 (Indonesia); Okada, Mitsuru [Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Nagatsu, Masaaki, E-mail: nagatsu.masaaki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2016-12-30

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10{sup 17} m{sup −3}. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  4. Cerebral desaturation events in the beach chair position: correlation of noninvasive blood pressure and estimated temporal mean arterial pressure.

    Science.gov (United States)

    Triplet, Jacob J; Lonetta, Christopher M; Levy, Jonathan C; Everding, Nathan G; Moor, Molly A

    2015-01-01

    Cerebral oximetry (rSO2) has emerged as an important tool for monitoring of cerebral perfusion during surgery. High rates of cerebral desaturation events (CDEs) have been reported during surgery in the beach chair position. However, correlations have not been made with blood pressure measured at the cerebral level. The purpose of this study was to examine the correlations between brachial noninvasive blood pressure (NIBP) and estimated temporal mean arterial pressure (eTMAP) during CDEs in the beach chair position. Fifty-seven patients underwent elective shoulder surgery in the beach chair position. Values for eTMAP, NIBP, and rSO2 were recorded supine (0°) after induction and when a CDE occurred in the 70° beach chair position. Twenty-six patients experienced 45 CDEs, defined as a 20% drop in rSO2 from baseline. Median reduction in NIBP, eTMAP, and rSO2 from baseline to the CDE were 48.2%, 75.5%, and 33.3%, respectively. At baseline, there was a significant weak negative correlation between rSO2 and NIBP (rs = -0.300; P = .045) and no significant association between rSO2 and eTMAP (rs = -0.202; P = .183). During CDEs, there were no significant correlations between rSO2 and NIBP (rs = -0.240; P = .112) or between rSO2 and eTMAP (rs = -0.190; P = .212). No significant correlation between the decrease in rSO2 and NIBP (rs = 0.064; P = .675) or between rSO2 and eTMAP (rs = 0.121; P = .430) from baseline to CDE was found. NIBP and eTMAP are unreliable methods for identifying a CDE in the beach chair position. Cerebral oximetry provides additional information to the values obtained from NIBP and eTMAP, and all should be considered independently and collectively. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  5. Habitual Coffee Consumption Does Not Correlate with Blood Pressure, Inflammation and Endothelial Dysfunction but Partially Correlates with Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Erizal Sugiono

    2013-04-01

    Full Text Available BACKGROUND: Coffee is the most widely consumed beverage in the world and has been known to have effects on cardiovascular system. Many researchers have examined the effects of coffee consumption on blood pressure (BP and risk of cardiovascular disease (CVD, but their results were inconsistent and still remain a subject of controversy. Oxidative stress, inflammation, and endothelial dysfunction have been known as risk factors of hypertension and CVD. Those factors are also known to be affected by coffee consumption. The aim of this study was to examine the relationship between the effects of habitual coffee consumption on BP and to examine the role of oxidative stress (F2 isoprostane, inflammation (high sensitive C-reactive protein (hsCRP and endothelial dysfunction (asymmetric dimethylarginine (ADMA. METHODS: This was a cross-sectional study in which 47 healthy, non-smoking men aged 30-60 years with varying coffee-drinking habits were enrolled. BP and blood/urine analysis of biomarkers were measured in the morning before activity. Coffee consumption was assessed using a questionnaire. The differences among variables were analyzed using ANOVA and the correlations between variables were analyzed using Kendall’s Tau correlation analysis. RESULTS: Habitual coffee consumption did not correlate with systolic/diastolic BP (r=-0.02; p=0.856 and r=0.15; p=0.230, respectively. Concentrations of ADMA and hsCRP were also not correlated with coffee consumption (r=0.03; p=0.764 and r=0.04; p=0.701, respectively. Coffee consumption only showed significant correlation with F2 isoprostane (r=0.34; p=0.004. CONCLUSIONS: BP was not affected by coffee consumption although coffee consumption has a significant correlation with F2 isoprostane. These findings suggest that correlation between coffee consumption and BP might be explained by other factors that were not included in this study. KEYWORDS: coffee, caffeine, cardiovascular disease, blood pressure, oxidative

  6. FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

    Directory of Open Access Journals (Sweden)

    GYUN-HO GIM

    2014-10-01

    Full Text Available In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI. The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency of pump, and fluid-structure interaction.

  7. Perception of surface pressure applied to the hand.

    Science.gov (United States)

    Johansson, L; Kjellberg, A; Kilbom, A; Hägg, G M

    1999-10-01

    The study aimed to determine the relationship between the physical magnitude and the subjective perception of applied pressure, and to determine discomfort and pain thresholds. Free modulus magnitude estimation of the subjective pressure level was made on three points: on the finger, the palm and the thenar area. The pressure was judged to be higher at the thenar point than at the finger and palm points. The slopes of the linear functions (log magnitude estimates as a function of log pressure) were 0.66, 0.78 and 0.76 for the finger, palm and thenar points respectively. The discomfort threshold was 38% of the pain pressure threshold at the finger point, 40% at the palm and 22% at the thenar point. The results are probably of importance in the performance of hand-intensive work, in particular in the design of hand tools.

  8. Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows

    Science.gov (United States)

    Manikantan, Harishankar; Squires, Todd M.

    2017-02-01

    The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.

  9. Acoustic propagation operators for pressure waves on an arbitrarily curved surface in a homogeneous medium

    Science.gov (United States)

    Sun, Yimin; Verschuur, Eric; van Borselen, Roald

    2018-03-01

    The Rayleigh integral solution of the acoustic Helmholtz equation in a homogeneous medium can only be applied when the integral surface is a planar surface, while in reality almost all surfaces where pressure waves are measured exhibit some curvature. In this paper we derive a theoretically rigorous way of building propagation operators for pressure waves on an arbitrarily curved surface. Our theory is still based upon the Rayleigh integral, but it resorts to matrix inversion to overcome the limitations faced by the Rayleigh integral. Three examples are used to demonstrate the correctness of our theory - propagation of pressure waves acquired on an arbitrarily curved surface to a planar surface, on an arbitrarily curved surface to another arbitrarily curved surface, and on a spherical cap to a planar surface, and results agree well with the analytical solutions. The generalization of our method for particle velocities and the calculation cost of our method are also discussed.

  10. Prevention and management of pressure ulcers: support surfaces.

    Science.gov (United States)

    Moore, Zena; Stephen Haynes, Jackie; Callaghan, Rosie

    Pressure ulcers are a common and debilitating problem in health care, impacting negatively on health-related quality of life and compounding challenges in achieving patient safety targets. Pressure ulcer prevention is a multidisciplinary team effort, involving a myriad of interventions, such as nutrition, skin care and repositioning. This article discusses the factors influencing pressure ulcer development, and then elaborates on the principles of prevention. This is followed by a focused discussion on the use of redistribution devices and the importance of the cover of such equipment in contributing to achieving good standards in prevention.

  11. Pressure loss reduction in hydrogen pipelines by surface restructuring

    Energy Technology Data Exchange (ETDEWEB)

    Peet, Y.; Sagaut, P. [Insitut Jean Le Rond d' Alembert, UMR CNRS 7190, Universite Pierre et Marie Curie - Paris 6, 4 place Jussieu - case 162, F-75252 Paris Cedex 5 (France); Charron, Y. [IFP- Institut Francais du Petrole, Rueil Malmaison Cedex, 92852 (France)

    2009-11-15

    This paper concerns the reduction of pressure losses during pipeline hydrogen transportation, as the cost of hydrogen compression is a significant obstacle for efficient hydrogen pumping on a large-scale basis. The use of organized micro-structures on pipeline walls is proposed to obtain lower values of pressure losses with respect to smooth walls. Three-dimensional micro-structures of a sinusoidal shape are investigated as potentially more efficient counterparts to conventional two-dimensional structures (riblets) developed in aerospace industry. Aerodynamic performance of three-dimensional structures is investigated computationally in terms of both skin friction and pressure drag, two constituents of the total drag. Three-dimensional structures are shown to provide larger total drag reduction than two-dimensional structures for some range of geometrical parameters (14.5% versus 11%). Parametric dependence of both pressure and skin friction drag on structure geometry is analyzed, and an optimum configuration maximizing the total drag reduction is proposed. (author)

  12. Correlation between liver morphology and portal pressure in alcoholic liver disease

    DEFF Research Database (Denmark)

    Krogsgaard, K; Gluud, C; Henriksen, Jens Henrik Sahl

    1984-01-01

    evaluation of liver biopsies, no significant correlation was found between mean hepatocyte volume or relative sinusoidal vascular volume and portal pressure. To test whether an increase in hepatocyte volume compresses the vascular structures and causes portal hypertension, the ratio of relative sinusoidal...... volume. The present findings are in accordance with the hypothesis that elevated hepatic vascular resistance and portal pressure in alcoholic liver disease are in part determined by the severity of the hepatic architectural destruction and subsequent distorsion and compression of the efferent vein system...

  13. Mixed convective low flow pressure drop in vertical rod assemblies - I. Predictive model and design correlation

    International Nuclear Information System (INIS)

    Suh, K.Y.; Todreas, N.E.; Robsenow, W.M.

    1987-01-01

    An experimental study has been conducted to confirm and validate the predictive models and correlations for low flow frictional pressure loss in vertical rod bundle geometries under natural circulation conditions. An experimental procedure has been developed to measure low magnitude differential pressures under mixed convection conditions in 19 heated rod bare and wire-wrapped assemblies. The proposed model has been found to successfully predict the effects of wire wrapping, power skew, transition from laminar regime, developing and interacting global and local flow redistributions, and rod number on the mixed convection friction loss characteristics of rod bundles

  14. Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific

    Science.gov (United States)

    Anderson, Bruce T.

    2003-12-01

    The correspondence of sea-surface temperature (SST) anomalies to changes in antecedent large-scale sea level pressure anomalies is investigated using reanalysis data. By statistically examining linearly coupled precursor sea level pressure fields and subsequent SST fields for different lag periods, it is possible to isolate a precursor mode of sea level pressure (SLP) variability in the central subtropical North Pacific that precedes variations in the January-March El Niño/Southern Oscillation (ENSO) by approximately 12-15 months. A sea level pressure index, which captures the important characteristics of this precursor mode of variability, is developed and evaluated. It is shown that both analyzed and observed versions of the index are significantly correlated with the January-March ENSO one year later. The SLP index is then used to examine the evolution of the surface circulation and temperature structures leading up to mature ENSO events. Initially, the January-March subtropical North Pacific SLP anomalies are associated with changes in the intensity of the subtropical trade wind regime over the North Pacific, as well as with SST anomalies over the eastern equatorial Pacific and subtropical central Pacific. In agreement with the correlation statistics associated with the SLP and lagged NINO3.4 indices, both the sea level pressure field and the SST field subsequently develop ENSO-like structures over the course of the following year. Significant discussion of these results and pertinent areas of future research are provided within the broader context of the ENSO system.

  15. Support surfaces for pressure ulcer prevention: A network meta-analysis.

    Science.gov (United States)

    Shi, Chunhu; Dumville, Jo C; Cullum, Nicky

    2018-01-01

    Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or

  16. High pressure induced changes in beef muscle proteome: correlation with quality parameters.

    Science.gov (United States)

    Marcos, Begonya; Mullen, Anne Maria

    2014-05-01

    The relationship between pressure induced changes on individual proteins and selected quality parameters in bovine longissimus thoracis et lumborum (LTL) muscle was studied. Pressures ranging from 200 to 600 MPa at 20°C were used. High pressure processing (HPP) at pressures above 200 MPa induced strong modifications of protein solubility, meat colour and water holding capacity (WHC). The protein profiles of non-treated and pressure treated meat were observed using two dimensional electrophoresis. Proteins showing significant differences in abundance among treatments were identified by mass spectrometry. Pressure levels above 200 MPa strongly modified bovine LTL proteome with main effects being insolubilisation of sarcoplasmic proteins and solubilisation of myofibrillar proteins. Sarcoplasmic proteins were more susceptible to HPP effects than myofibrillar. Individual protein changes were significantly correlated with protein solubility, L, b and WHC, providing further insights into the mechanistic processes underlying HPP influence on quality and providing the basis for the future development of protein markers to assess the quality of processed meats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Surface-initiated phase transition in solid hydrogen under the high-pressure compression

    Science.gov (United States)

    Lei, Haile; Lin, Wei; Wang, Kai; Li, Xibo

    2018-03-01

    The large-scale molecular dynamics simulations have been performed to understand the microscopic mechanism governing the phase transition of solid hydrogen under the high-pressure compression. These results demonstrate that the face-centered-cubic-to-hexagonal close-packed phase transition is initiated first at the surfaces at a much lower pressure than in the volume and then extends gradually from the surface to volume in the solid hydrogen. The infrared spectra from the surface are revealed to exhibit a different pressure-dependent feature from those of the volume during the high-pressure compression. It is thus deduced that the weakening intramolecular H-H bonds are always accompanied by hardening surface phonons through strengthening the intermolecular H2-H2 coupling at the surfaces with respect to the counterparts in the volume at high pressures. This is just opposite to the conventional atomic crystals, in which the surface phonons are softening. The high-pressure compression has further been predicted to force the atoms or molecules to spray out of surface to degrade the pressure. These results provide a glimpse of structural properties of solid hydrogen at the early stage during the high-pressure compression.

  18. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    Science.gov (United States)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  19. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  20. The mechanical properties of the systemic and pulmonary arteries of Python regius correlate with blood pressures.

    Science.gov (United States)

    van Soldt, Benjamin J; Danielsen, Carl Christian; Wang, Tobias

    2015-12-01

    Pythons are unique amongst snakes in having different pressures in the aortas and pulmonary arteries because of intraventricular pressure separation. In this study, we investigate whether this correlates with different blood vessel strength in the ball python Python regius. We excised segments from the left, right, and dorsal aortas, and from the two pulmonary arteries. These were subjected to tensile testing. We show that the aortic vessel wall is significantly stronger than the pulmonary artery wall in P. regius. Gross morphological characteristics (vessel wall thickness and correlated absolute amount of collagen content) are likely the most influential factors. Collagen fiber thickness and orientation are likely to have an effect, though the effect of collagen fiber type and cross-links between fibers will need further study. © 2015 Wiley Periodicals, Inc.

  1. Lateral expansion and impact toughness correlation of VVER-1000 reactor pressure vessel materials

    Directory of Open Access Journals (Sweden)

    O. V. Trygubenko

    2014-12-01

    Full Text Available Impact toughness and lateral expansion of the irradiated surveillance specimens for VVER-1000 reactor pres-sure vessel have been defined using Charpy impact test. The analysis of experimental data has revealed a linear correlation of these characteristics. It was shown that a slope of the regression line is practically unchanged due to irradiation. Using the upper shelf energy test data it was also demonstrated the lateral expansion and impact toughness decrease simultaneously under the neutron irradiation.

  2. Unsteady Surface Pressure Measurements on a Pitching Airfoil

    Science.gov (United States)

    1985-03-12

    through 8 Dynamics 7512B amplifiers. The pitching motions of the airfoil were generated by 6°jN\\! 920O/_ a PDP 11/03 computer controlling a Control...acquisition system. The pressure data were used to calculate pressure 2 coefficients which were in turn integrated to compute lift coefficients. Both...Airfoils," AIAA J., Vol. 13, No. 1, 17. Gormont, R.E., "A Mathenatical Model pp 71-79, Jan 1975. of Unsteady Aerodynamics and Radial 4. McAlister, K.W

  3. Comparison of boiling heat transfer coefficient and pressure drop correlations for evaporators

    International Nuclear Information System (INIS)

    Eskin, N.; Arslan, G.

    2009-01-01

    Evaporator design is an important aspect for the HVAC industry. As the demand for more efficient and compact heat exchangers increase, researches on estimation of two-phase flow heat transfer and pressure drop gain importance. Due to complexity of the hydrodynamic and heat transfer of the two-phase flow, there are many experimental studies available for refrigerants int he literature. In this study, a model for boiling heat transfer in a horizontal tube has been developed and the simulation results are compared with experimental ones published in the literature. In these comparisons, heat transfer coefficient is calculated by using Kattan-Thome-Favrat (1998), Shah (1982), Kandilikar (1990), Chaddock and Brunemann (1967) correlations under different operational conditions such as saturation pressure, mass flux, the type of refrigerant and two phase flow pattern. Besides that flow pattern has also been considered in the simulation by using Thome and El Hajal (2002) model. For pressure drop Lockhart-Martinelli (1949), Mueller-Steinhagen-Hack (1986) and Groennerund (1979) correlations are used in simulations. Local vapor quality change at each experimental condition through the model is determined. Roughness is an important parameter for frictional pressure drop. Friction coefficient is determined by using Churchill (1977) model. (author)

  4. Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach

    Science.gov (United States)

    Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.

    1990-01-01

    The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.

  5. Modelling the pressure-strain correlation of turbulence - An invariant dynamical systems approach

    Science.gov (United States)

    Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.

    1991-01-01

    The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.

  6. Serum leptin levels correlation with high blood pressure in adult females

    International Nuclear Information System (INIS)

    Haque, Z.; Shahid, K.U.; Mazahir, I.; Lakho, G.R.; Nafees, M.

    2006-01-01

    To measure serum leptin levels and compare them in lean and obese subjects and to identify correlation between serum leptin levels, heart rate and hypertension in lean and obese subjects among adult females. Seventy female subjects with different body mass indices were selected from OPD of Jinnah Medical and Dental College Hospital (OPD), Karachi. Heart rate was counted manually; blood pressure was measured by mercury sphygmomanometer while serum leptin was measured using enzyme-linked immunoassay. The outcomes hypertension and heart rate were correlated to risk factor leptin. Mean heart rate, systolic and diastolic blood pressure and serum leptin levels of obese people were 90+-1, 142+-2, 89+-1 and 24.13+-1.7 respectively, which were significantly higher as compared to lean subjects (p<0.05). All the parameters correlated positively and significantly with increasing BMI. There was a relationship of tachycardia and hypertension with high serum leptin levels in obesity. Serum leptin levels increase with the level of obesity. Hyper-leptinemia is associated with tachycardia and increases in both systolic and diastolic blood pressure in obesity via complex mechanisms. (author)

  7. A critical heat flux correlation for advanced pressurized light water reactor application

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Hame, W.

    1982-05-01

    Many CHF-correlations have been developed for water cooled rod clusters representing typical PWR or BWR fuel element geometries with relative wide rod lattices. However the fuel elements of an Advanced Pressurized Water Reactor (APWR) have a tight fuel rod lattice, in view of increasing the fuel utilization. It was therefore decided to produce a new CHF-correlation valid for rod bundles with tight lattices. The already available WSC-2 correlation was chosen as a basis. The geometry dependent parameters of this correlation were determined again with the method of the root mean square fitting from the experimental data of the CHF-tests performed in the frame of the Light Water Breeder Reactor programme at the Bettis Laboratory. These tests include triangular array rod bundles with very tight lattices. Furthermore the effect of spiral spacer ribs was investigated on the basis of experimental data from the Columbia University. Application of the new CHF-correlation to conditions typical for an APWR shows that the predicted critical heat fluxes are much smaller than those calculated with the usual PWR-CHF-correlations, but they are higher than those predicted by the B+W-VPI+SU correlation. (orig.) [de

  8. Pressure-redistribution surfaces for prevention of surgery-related pressure ulcers: a meta-analysis .

    Science.gov (United States)

    Huang, Hai-Yan; Chen, Hong-Lin; Xu, Xu-Juan

    2013-04-01

    Pressure-redistribution surfaces are generally recommended to prevent pressure ulcers (PUs) in high-risk patients, but their use in surgery-related PU prevention remains controversial. A meta-analysis was conducted to assess the relative preventive impact of pressure-redistribution surfaces versus standard hospital mattresses (usually a hospital-issue, foam-based mattress) on the incidence of surgery-related PUs. Systematic literature searches were performed using the terms pressure ulcer, operation, surgery, mattress, foam, polymer, pad, overlay, surface, and interface. Country, race, language, and publication year of articles was not restricted; randomized or quasi-randomized controlled trials were eligible for analysis. Odds ratio (OR) with 95% confidence intervals (CIs) for surgery-related PU incidence in patients using support surfaces versus standard mattress were calculated by random-effects model. Of the 316 studies identified, 10 involving a total of 1,895 patients were eligible for inclusion in the meta-analysis. Seven studies were randomized, controlled and three were quasi-randomized controlled trials. Patients who were provided a support surface had a significantly decreased incidence of surgery-related PUs (OR 0.31 [95% CI 0.17-0.59]) compared to patients using a standard mattress. Subgroup analysis showed pressure-redistribution surfaces used intra-operatively did not decrease the incidence of surgery-related PUs (OR 0.59, [95% CI 0.34-1.01]), but PU incidence decreased with postoperative (OR 0.07 [95% CI 0.01-0.49]) as well as with intra-operative and postoperative use (OR 0.20 [95% CI 0.06-0.73]). Funnel plot diagrams suggest a minimal risk of bias. Sensitivity analysis did not materially change the result of the main metaanalysis. Postoperative use of pressure-redistribution surfaces can effectively decrease the incidence of surgery-related PUs, but evidence to substantiate intra-operative use is insufficient. Patients at high risk for surgery

  9. Brain hypoxanthine concentration correlates to lactate/pyruvate ratio but not intracranial pressure in patients with acute liver failure

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Hauerberg, John; Jørgensen, Linda

    2010-01-01

    of hypoxanthine, inosine, and lactate/pyruvate (LP) ratio are increased and correlated in patients with acute liver failure. Furthermore, we expect the purines and L/P ratio to correlate with intracranial pressure (ICP) (positively), and cerebral perfusion pressure (CPP) (negatively)....

  10. Surface Pressure Measurements of Atmospheric Tides Using Smartphones

    Science.gov (United States)

    Price, Colin; Maor, Ron

    2017-04-01

    Similar to the oceans, the atmosphere also has tides that are measured in variations of atmospheric pressure. However, unlike the gravitational tides in the oceans, the atmospheric tides are caused primarily in the troposphere and stratosphere when the atmosphere is periodically heated by the sun, due to tropospheric absorption by water vapor and stratospheric absorption by ozone. Due to the forcing being always on the day side of the globe, the tides migrate around the globe following the sun (migrating tides) with a dominant periodicity of 12 hours (and less so at 24 hours). In recent years smartphones have been equipped with sensitive, cheap and reliable pressure sensors that can easily detect these atmospheric tides. By 2020 it is expected that there will be more than 6 billion smartphones globally, each measuring continuously atmospheric pressure at 1Hz temporal resolution. In this presentation we will present some control experiments we have performed with smartphones to monitor atmospheric tides, while also using random pressure data from more than 50,000 daily users via the WeatherSignal application. We conclude that smartphones are a useful tool for studying atmospheric tides on local and global scales.

  11. Modelling surface pressure fluctuation on medium-rise buildings

    NARCIS (Netherlands)

    Snæbjörnsson, J.T.; Geurts, C.P.W.

    2006-01-01

    This paper describes the results of two experiments into the fluctuating characteristics of windinduced pressures on buildings in a built-up environment. The experiments have been carried out independently in Iceland and The Netherlands and can be considered to represent two separate cases of

  12. Electrostatic Properties of PE and PTFE Subjected to Atmospheric Pressure Plasma Treatment; Correlation of Experimental Results with Atomistic Modeling

    Science.gov (United States)

    Trigwell, Steve; Boucher, Derrick; Calle, Carlos

    2006-01-01

    The use of an atmospheric pressure glow discharge (APGD) plasma was used at KSC to increase the hydrophilicity of spaceport materials to enhance their surface charge dissipation and prevent possible ESD in spaceport operations. Significant decreases in charge decay times were observed after tribocharging the materials using the standard KSC tribocharging test. The polarity and amount of charge transferred was dependent upon the effective work function differences between the respective materials. In this study, polyethylene (PE) and polytetrafluoroethylene (PTFE) were exposed to a He+O2 APGD. The pre and post treatment surface chemistry was analyzed by X-ray photoelectron spectroscopy and contact angle measurements. Semi-empirical and ab initio calculations were performed to correlate the experimental results with some plausible molecular and electronic structure features of the oxidation process. For the PE, significant surface oxidation was observed, as indicated by XPS showing C-O, C=O, and O-C=O bonding, and a decrease in the surface contact angle from 98.9 deg to 61.2 deg. For the PTFE, no C-O bonding appeared and the surface contact angle increased indicating the APGD only succeeded in cleaning the PTFE surface without affecting the surface structure. The calculations using the PM3 and DFT methods were performed on single and multiple oligomers to simulate a wide variety of oxidation scenarios. Calculated work function results suggest that regardless of oxidation mechanism, e.g. -OH, =0 or a combination thereof, the experimentally observed levels of surface oxidation are unlikely to lead to a significant change in the electronic structure of PE and that its increased hydrophilic properties are the primary reason for the observed changes in its electrostatic behavior. The calculations for PTFE argue strongly against significant oxidation of that material, as confirmed by the XPS results.

  13. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    Science.gov (United States)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  14. Correlation of central venous pressure with venous blood gas analysis parameters; a diagnostic study

    Directory of Open Access Journals (Sweden)

    Sima Rahim-Taleghani

    2017-03-01

    Full Text Available Objective: This study was conducted to assess the correlation between central venous pressure (CVP and venous blood gas (VBG analysis parameters, to facilitate management of severe sepsis and septic shock in emergency department. Material and methods: This diagnostic study was conducted from January 2014 until June 2015 in three major educational medical centers, Tehran, Iran. For patients selected with diagnosis of septic shock, peripheral blood sample was taken for testing the VBG parameters and the anion gap (AG was calculated. All the mentioned parameters were measured again after infusion of 500 cc of normal saline 0.9% in about 1 h. Results: Totally, 93 patients with septic shock were enrolled, 63 male and 30 female. The mean age was 72.53 ± 13.03 and the mean Shock Index (SI before fluid therapy was 0.79 ± 0.30. AG and pH showed significant negative correlations with CVP, While HCO3 showed a significant positive correlation with CVP. These relations can be affected by the treatment modalities used in shock management such as fluid therapy, mechanical ventilation and vasopressor treatment. Conclusion: It is likely that there is a significant statistical correlation between VBG parameters and AG with CVP, but further research is needed before implementation of the results of this study. Keywords: Shock, Septic, Central venous pressure, Blood gas analysis, Emergency department, Emergency medicine

  15. Microstructural and hardness gradients in Cu processed by high pressure surface rolling

    DEFF Research Database (Denmark)

    He, Q. Y.; Zhu, X.-M.; Mei, Q. S.

    2017-01-01

    The surface of an annealed Cu plate was processed by a high pressure surface rolling (HPSR) process. It is found that the deformed surface layer in the Cu plate after HPSR can be as thick as 2 mm and is characterized by a gradient microstructure, with grain sizes varying from the nanoscale...

  16. Correlation between MRI findings, blood pressure and mental ability in patients with multiple lacunar infarcts

    International Nuclear Information System (INIS)

    Fukuda, Hitoshi; Kobayashi, Shotai; Okada, Kazunori; Tsunematsu, Tokugoro

    1991-01-01

    We studied the association between mental ability as rated by Hasegawa's scale, the severity of hypertension, the severity of brain atrophy, and the severity of lesions in the cerebral white matter on magnetic resonance imaging in 34 patients with multiple cerebral infarcts but without obvious cortical lesions. Data were analyzed using multiple regression analysis. The patients having both marked brain atrophy and severe white matter lesions showed an impairment of mental ability. Brain atrophy was correlated with aging and the severity of white matter lesions. There was a significant positive correlation between the diastolic blood pressure and the severity of white matter lesions. These findings suggest that the white matter lesions in patients with multiple cerebral infarcts are correlated with brain atrophy and mental deterioration, and that uncontrolled hypertension is an important risk factor in exacerbating the lesions in the cerebral white matter. (author)

  17. Io meteorology - How atmospheric pressure is controlled locally by volcanos and surface frosts

    Science.gov (United States)

    Ingersoll, Andrew P.

    1989-01-01

    The present modification of the Ingersoll et al. (1985) hydrodynamic model of the SO2 gas sublimation-driven flow from the day to the night side of Io includes the effects of nonuniform surface properties noted in observational studies. Calculations are conducted for atmospheric pressures, horizontal winds, sublimation rates, and condensation rates for such surface conditions as patchy and continuous frost cover, volcanic venting, surface temperature discontinuities, subsurface cold trapping, and the propagation of insolation into the frost. While pressure is found to follow local vapor pressure away from the plumes, it becomes higher inside them.

  18. Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation

    Directory of Open Access Journals (Sweden)

    Alberto Barrientos

    2013-09-01

    Full Text Available The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  19. Surface roughness measurement on a wing aircraft by speckle correlation.

    Science.gov (United States)

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  20. Correlation between middle-ear pressure-regulation functions and outcome of type-I tympanoplasty.

    Science.gov (United States)

    Takahashi, Haruo; Sato, Hiroaki; Nakamura, Hajime; Naito, Yasushi; Umeki, Hiroshi

    2007-06-01

    To examine the correlation between the middle-ear pressure-regulation functions including active eustachian tube (ET) functions and transmucosal gas exchange function, and outcome of tympanoplasty. Seventy five patients (78 ears) with non-cholesteatomatous chronic otitis media with eardrum perforation but without ossicular damage or middle-ear anomaly participated in this study. Before surgery, patency of the ET was examined by applying positive pressure to the middle ear through the eardrum perforation, and then the ET pressure-regulation functions were examined using the inflation-deflation test. Also their transmucosal gas exchange function was evaluated by examining the presence or absence of aeration in the mastoid on the CT before surgery or through the microscope during the surgery. All of them underwent type-I tympanoplasty, and their postoperative conditions including the hearing were followed for more than 6 months. The outcome of the surgery was judged as poor outcome when they had any of the following conditions; more than 20 dB of mean air-bone gap, spontaneous perforation within 6 months, or persistent wet condition including recurrent otorrhea. First, the outcome of all the four ears of which ETs were considered mechanically obstructed was poor. Next, among the remaining 74 ears, none of the three individual parameters, including positive and negative middle-ear pressure-equalizing functions and mastoid aeration, showed significantly positive correlation with the outcome of the surgery, but significantly higher incidence of poor outcome was seen only when all the three parameters were poor. These results indicated that impairment of all the middle-ear pressure-regulation functions was likely to cause poor outcome of tympanoplasty, and also allowed us reconfirm that ears with mechanically obstructed ETs were contraindicated for tympanoplasty. Therefore, assessment of mastoid condition is important as well as the ET function before tympanoplasty.

  1. Correlations in suspensions confined between viscoelastic surfaces: Noncontact microrheology.

    Science.gov (United States)

    Bar-Haim, Chen; Diamant, Haim

    2017-08-01

    We study theoretically the velocity cross-correlations of a viscous fluid confined in a slit between two viscoelastic media. We analyze the effect of these correlations on the motions of particles suspended in the fluid. The compliance of the confining boundaries gives rise to a long-ranged pair correlation, decaying only as 1/r with the interparticle distance r. We show how this long-ranged effect may be used to extract the viscoelastic properties of the confining media without embedding tracer particles in them. We discuss the remarkable robustness of such a potential technique with respect to details of the confinement, and its expected statistical advantages over standard two-point microrheology.

  2. [Analysis of statutory health insurance data concerning utilization of support surfaces for pressure ulcers].

    Science.gov (United States)

    Hoffmann, Falk; Scharnetzky, Elke; Deitermann, Bernhilde; Glaeske, Gerd

    2006-10-01

    Support surfaces are commonly used to prevent and treat pressure ulcers. Up to now little is known about their application in Germany. We conducted a cross-sectional study using claims data of the Gmuender ErsatzKasse (GEK) for the year 2004 to analyse the utilization of support surfaces for pressure ulcers in primary care. Based on age- and sex-specific treatment prevalences for individuals with at least one prescription, prevalence ratios (PR) were calculated. A total of 1999 subjects with a mean age of 63.4 years (SD: 20.7) received support surfaces for pressure ulcers. With respect to the numbers of prescriptions (n = 2421) alternating pressure mattresses (31.6%), air-filled rings (13.5%) and various seat cushions (13.0%) were used frequently, whereas foam mattresses only came to 4.7%. The treatment prevalence increases continuously with age with no sex-specific differences. Using the 50-59 year olds as a reference, men aged 90+ (PR: 43.94; 95% CI: 31.46-61.37) as well as women aged 90+ (PR: 40.61; 95% CI: 30.77-53.60) received approximately 40-times more often support surfaces for pressure ulcers. Support surfaces for pressure ulcers are commonly used in the elderly. Our study suggests that their application does not correspond to the best available evidence. Prevention and treatment of pressure ulcers as well as the selection of support surfaces should be seen as an interdisciplinary task.

  3. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    along 75 degrees E from March to April (A-MR500)) is also examined. SST in the eastern equatorial Indian Ocean (EEIO, 0-5 degrees N; 80-85 degrees E) during October and November months of the previous year is strongly and positively correlated (r=0...

  4. Active Control of Jet Noise Using High Resolution TRPIV Part 2: Velocity-Pressure-Acoustic Correlations

    Science.gov (United States)

    Low, Kerwin; Kostka, Stanislav; Berger, Zachary; Berry, Matthew; Gogineni, Sivaram; Glauser, Mark

    2011-11-01

    We investigate the pressure, velocity and acoustic field of a transonic jet. Test conditions comprise a 2 inch nozzle, analyzing two flow speeds, Mach 0.6 and 0.85, with open loop control explored for the Mach 0.6 case. We make simultaneous measurements of the near-field pressure and far-field acoustics at 40 kHz, alongside 10 kHz time resolved PIV measurements in the r-z plane. Cross correlations are performed exploring how both the near-field Fourier filtered pressure and low dimensional POD modes relate to the far-field acoustics. Of interest are those signatures witch exhibit the strongest correlation with far-field, and subsequently how these structures can be controlled. The goal is to investigate how flow-induced perturbations, via synthetic jet actuators, of the developing shear layer might bring insight into how one may alter the flow such that the far-field acoustic signature is mitigated. The TR-PIV measurements will prove to be a powerful tool in being able to track the propagation of physical structures for both the controlled and uncontrolled jet.

  5. Correlation between blood pressure and vitamin D, parathyroid hormone, calcium, and phosphorus in sedentary postmenopausal women

    Directory of Open Access Journals (Sweden)

    Bakhtyar Tartibian

    2016-11-01

    Full Text Available Background: Hypertension is one of the major risk factors for cardiovascular disease. The studies show that factors such as vitamin D, parathyroid hormone, calcium and phosphorus are involved in the regulation of blood pressure. The purpose of this study was to investigate the relationship between blood pressure with vitamin D, parathyroid hormone, calcium, and phosphorus in sedentary postmenopausal women. Methods: This investigation is in the form of a descriptive correlational study that was performed in September 2015. The statistical population was all healthy and sedentary postmenopausal women 50-70 years old in Urmia city, Iran. Fifty-four sedentary postmenopausal women were selected as subjects and voluntarily and bona fide participated in this study. General and anthropometric characteristics of height, weight, and body mass index (BMI in subjects were measured by wall-meter with an accuracy of one millimeter, digital scale with precision of 100 g (Beurer, Germany, and dual emission X-ray absorptiometry (DXA (Hologic, USA machines, respectively. Diastolic and systolic blood pressure was measured by indicator machine. Serum levels of vitamin D, parathyroid hormone, calcium, and phosphorus were measured by ELISA and Auto-analyzer (BT 1500, Biotecnica, Italy machines, respectively. Results: The mean general, anthropometric, and physiological/laboratory variables of subjects were: age 54 yr, height 156 cm; weight 72 kg; BMI 29 kg/m2; systolic and diastolic blood pressure 76.20 and 110.70, respectively; vitamin D 25.22 ng/ml, parathyroid hormone 33.29 ng/ml, calcium 9.44 ng/ml, and phosphorus 3.26 ng/ml. Moreover, results showed that there was no significant relationship between systolic and diastolic blood pressure and vitamin D (P>0.581 and P>0.619, respectively. There was no significant relationship between systolic and diastolic blood pressure and parathyroid hormone (P>0.623 and P>0.341, respectively. There was no significant

  6. CORRELATION OF OCULAR PERFUSION PRESSURE AND INTRAOCULAR PRESSURE CHANGES DURING HAEMODIALYSIS IN END STAGE RENAL DISEASE- AN OBSERVATIONAL STUDY

    Directory of Open Access Journals (Sweden)

    T. R. Anuradha

    2017-12-01

    Full Text Available BACKGROUND Chronic kidney disease patients on haemodialysis have a transient raise in intraocular pressure and decrease in ocular perfusion pressure. This is used in early detection of glaucomatous optic nerve damage and subsequent irreversible visual loss. MATERIALS AND METHODS 100 chronic kidney disease patients under haemodialysis in the nephrology department, Stanley medical college for more than one month were included in the study. We recorded complete history, and all participants were subjected to Intraocular pressure and blood pressure measurement at 3 different timings during haemodialysis session. Mean Arterial Pressure (MAP, Ocular Perfusion Pressure (OPP, Systolic Ocular Perfusion Pressure (SOPP, Diastolic Ocular Perfusion Pressure (DOPP and Mean Ocular Perfusion Pressure (MOPP were calculated. RESULTS Mean IOP from the initiation to the end of haemodialysis was found to be increased. Mean arterial pressure, ocular perfusion pressure, systolic ocular perfusion pressure, diastolic ocular perfusion pressure, mean ocular perfusion pressure was found to be decreased from the initiation to the end of haemodialysis. At the end of study period, 10% were found to develop early glaucomatous field defects and early optic nerve head changes in both eyes at follow-up. CONCLUSION Our study reveals the importance of screening and monitoring of intraocular pressure and characteristic early optic nerve head changes and early visual field changes of glaucoma in end-stage renal disease patients who are on haemodialysis.

  7. Fluctuations of noiselike signals reflected from a rough surface at the output of a correlation receiver

    Science.gov (United States)

    Gulin, E. P.

    2005-11-01

    The frequency and time averaging of the fluctuations that occur in the cross-correlation function of a radiated noiselike acoustic signal with the signal received after its reflection from a rough water surface is considered. The variance and temporal correlation function are calculated for the output effect of a correlation receiver for different ratios between the averaging time and the time correlation interval of fluctuations, the band width of the radiated signal, and the frequency correlation interval of the transfer function fluctuations.

  8. Sound pressure around dipole source above porous surface.

    Science.gov (United States)

    Prezelj, Jurij; Steblaj, Peter; Cudina, Mirko

    2014-06-01

    A technique for in situ measurements of acoustic properties of a fibrous porous material is proposed in this paper. Proposed technique exploits a directivity pattern of a dipole source in its very near field. Theoretical analysis for the proposed technique is based on the Rayleigh integral with a complex reflection included. Results are compared with results of FEM analysis and show that flow resistivity of a porous material placed in the very near field of the dipole source has significant influence on the sound pressure at its ring. Results provide an excellent starting point for the design of the sensor for sound absorption.

  9. Pressure RElieving Support SUrfaces: a Randomised Evaluation 2 (PRESSURE 2): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Brown, Sarah; Smith, Isabelle L; Brown, Julia M; Hulme, Claire; McGinnis, Elizabeth; Stubbs, Nikki; Nelson, E Andrea; Muir, Delia; Rutherford, Claudia; Walker, Kay; Henderson, Valerie; Wilson, Lyn; Gilberts, Rachael; Collier, Howard; Fernandez, Catherine; Hartley, Suzanne; Bhogal, Moninder; Coleman, Susanne; Nixon, Jane E

    2016-12-20

    Pressure ulcers represent a major burden to patients, carers and the healthcare system, affecting approximately 1 in 17 hospital and 1 in 20 community patients. They impact greatly on an individual's functional status and health-related quality of life. The mainstay of pressure ulcer prevention practice is the provision of pressure redistribution support surfaces and patient repositioning. The aim of the PRESSURE 2 study is to compare the two main mattress types utilised within the NHS: high-specification foam and alternating pressure mattresses, in the prevention of pressure ulcers. PRESSURE 2 is a multicentre, open-label, randomised, double triangular, group sequential, parallel group trial. A maximum of 2954 'high-risk' patients with evidence of acute illness will be randomised on a 1:1 basis to receive either a high-specification foam mattress or alternating-pressure mattress in conjunction with an electric profiling bed frame. The primary objective of the trial is to compare mattresses in terms of the time to developing a new Category 2 or above pressure ulcer by 30 days post end of treatment phase. Secondary endpoints include time to developing new Category 1 and 3 or above pressure ulcers, time to healing of pre-existing Category 2 pressure ulcers, health-related quality of life, cost-effectiveness, incidence of mattress change and safety. Validation objectives are to determine the responsiveness of the Pressure Ulcer Quality of Life-Prevention instrument and the feasibility of having a blinded endpoint assessment using photography. The trial will have a maximum of three planned analyses with unequally spaced reviews at event-driven coherent cut-points. The futility boundaries are constructed as non-binding to allow a decision for stopping early to be overruled by the Data Monitoring and Ethics Committee. The double triangular, group sequential design of the PRESSURE 2 trial will provide an efficient design through the possibility of early stopping for

  10. High blood pressure in children and its correlation with three definitions of obesity in childhood.

    Science.gov (United States)

    Moraes, Leonardo Iezzi de; Nicola, Thaís Coutinho; Jesus, Julyanna Silva Araújo de; Alves, Eduardo Roberty Badiani; Giovaninni, Nayara Paula Bernurdes; Marcato, Daniele Gasparini; Sampaio, Jéssica Dutra; Fuly, Jeanne Teixeira Bessa; Costalonga, Everlayny Fiorot

    2014-02-01

    Several authors have correlated the increase of cardiovascular risk with the nutritional status, however there are different criteria for the classification of overweight and obesity in children. To evaluate the performance of three nutritional classification criteria in children, as definers of the presence of obesity and predictors of high blood pressure in schoolchildren. Eight hundred and seventeen children ranging 6 to 13 years old, enrolled in public schools in the municipality of Vila Velha (ES) were submitted to anthropometric evaluation and blood pressure measurement. The classification of the nutritional status was established by two international criteria (CDC/NCHS 2000 and IOTF 2000) and one Brazilian criterion (Conde e Monteiro 2006). The prevalence of overweight was higher when the criterion of Conde e Monteiro (27%) was used, and inferior by the IOTF (15%) criteria. High blood pressure was observed in 7.3% of children. It was identified a strong association between the presence of overweight and the occurrence of high blood pressure, regardless of the test used (p<0.001). The test showing the highest sensitivity in predicting elevated BP was the Conde e Monteiro (44%), while the highest specificity (94%) and greater overall accuracy (63%), was the CDC criterion. The prevalence of overweight in Brazilian children is higher when using the classification criterion of Conde e Monteiro, and lower when the criterion used is IOTF. The Brazilian classification criterion proved to be the most sensitive predictor of high BP risk in this sample.

  11. High Sensitivity Semiconductor Sensor Skins for Multi-Axis Surface Pressure Characterization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase II SBIR program would fabricate high sensitivity semiconductor nanomembrane 'sensor skins' capable of multi-axis surface pressure characterization on...

  12. High Sensitivity Semiconductor Sensor Skins for Multi-Axis Surface Pressure Characterization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR program would fabricate high sensitivity semiconductor nanomembrane 'sensor skins' capable of multi-axis surface pressure characterization on...

  13. Fluorination of poly(dimethylsiloxane) surfaces by low pressure CF4 plasma : physicochemical and antifouling properties

    NARCIS (Netherlands)

    Cordeiro, A.L.; Nitschke, M.; Janke, A.; Helbig, R.; D'Souza, F.; Donnelly, G.T.; Willemsen, P.R.; Werner, C.

    2009-01-01

    Fluorinated surface groups were introduced into poly(dimethylsiloxane) (PDMS) coatings by plasma treatment using a low pressure radio frequency discharge operated with tetrafluoromethane. Substrates were placed in a remote position downstream the discharge. Discharge power and treatment time were

  14. Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes

    International Nuclear Information System (INIS)

    Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun

    2006-01-01

    A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)

  15. Hydrophilic surface modification of coronary stent using an atmospheric pressure plasma jet for endothelialization.

    Science.gov (United States)

    Shim, Jae Won; Bae, In-Ho; Park, Dae Sung; Lee, So-Youn; Jang, Eun-Jae; Lim, Kyung-Seob; Park, Jun-Kyu; Kim, Ju Han; Jeong, Myung Ho

    2018-03-01

    The first two authors contributed equally to this study. Bioactivity and cell adhesion properties are major factors for fabricating medical devices such as coronary stents. The aim of this study was to evaluate the advantages of atmospheric-pressure plasma jet in enhancing the biocompatibility and endothelial cell-favorites. The experimental objects were divided into before and after atmospheric-pressure plasma jet treatment with the ratio of nitrogen:argon = 3:1, which is similar to air. The treated surfaces were basically characterized by means of a contact angle analyzer for the activation property on their surfaces. The effect of atmospheric-pressure plasma jet on cellular response was examined by endothelial cell adhesion and XTT analysis. It was difficult to detect any changeable morphology after atmospheric-pressure plasma jet treatment on the surface. The roughness was increased after atmospheric-pressure plasma jet treatment compared to nonatmospheric-pressure plasma jet treatment (86.781 and 7.964 nm, respectively). The X-ray photoelectron spectroscopy results showed that the surface concentration of the C-O groups increased slightly from 6% to 8% after plasma activation. The contact angle dramatically decreased in the atmospheric-pressure plasma jet treated group (22.6 ± 15.26°) compared to the nonatmospheric-pressure plasma jet treated group (72.4 ± 15.26°) ( n = 10, p atmospheric-pressure plasma jet on endothelial cell migration and proliferation was 85.2% ± 12.01% and 34.2% ± 2.68%, respectively, at 7 days, compared to the nonatmospheric-pressure plasma jet treated group (58.2% ± 11.44% in migration, n = 10, p atmospheric-pressure plasma jet method. Moreover, the atmospheric-pressure plasma jet might affect re-endothelialization after stenting.

  16. Correlation of boundary layer quantities for hypersonic laminar flows with zero pressure gradient for several gases

    Science.gov (United States)

    Cook, W. J.

    1975-01-01

    The laminar boundary layer has been theoretically studied for six gases for flows over cold walls with zero pressure gradient at Mach numbers between 5.5 and 12.5 to correlate boundary layer quantities for the various gases. The flow conditions considered correspond to those that can be generated in test facilities such as the shock tunnel and the expansion tube. Computed results obtained using real gas properties indicate that the Eckert number based on edge conditions serves to correlate the results in terms of the wall shear stress and enthalpy gradient, the Stanton number, and the momentum thickness for the various gases within plus or minus 10 per cent for Te = Tw and Te approximately 3Tw. Computed Reynolds analogy factors exhibit very good agreement with those predicted by the Colburn analogy. Velocity and displacement thicknesses correlate well with Eckert number for Te = Tw, but fail to correlate for Te approximately 3Tw. Differences in results are traced to property variations. Results show that the Eckert number is a significant correlating variable for the flows considered.

  17. Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure

    Science.gov (United States)

    Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.

    2017-07-01

    Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.

  18. Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-23

    Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.

  19. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    A new aerodynamic modelling approach is proposed for the longitudinal static characteristics of a simple delta wing. It captures the static variation of normal force and pitching moment characteristics throughout the angle of attack range. The pressure model is based on parametrizing the surface pressure distribution on a ...

  20. Correlation between compliance in patients with anti-hypertensive therapy and blood pressure control.

    Science.gov (United States)

    Zhang, Huimin; Sun, Juan; Zhang, Haiyang; Zhu, Yuhua; Xujie Mao, Xujie Mao; Ai, Fang; Tang, Siyuan; Li, Rong

    2017-07-01

    This paper aims to understand the blood pressure control status for hypertension patients, and discuss the relationship between social support, medication compliance and blood pressure for hypertensive patients. The survey objective was the hypertensive patients in chronic disease management system in Xinxiang city. The survey was conducted as the questionnaire survey filled by objectives. Social support rating scale and medication therapy compliance questionnaire was utilized to evaluate the patients' social support and medication therapy compliance. 1095 patients in medication were investigated, the blood pressure of 66.6% investigated objectives was controlled at target levels (social support score for hypertensive patients in medication was (40.01±6.54) points, the subjective support score, objective support score and support utilization degree score were respectively (24.43±4.61) points, (8.59±2.59) points and (7.00±2.06) points; Rank correlation coefficient of Spearman illustrated that the support utilization rating evaluation was apparently correlated to medication therapy compliance (rs=0.88, Ppressure control were male (OR 0.61, 95% CI 0.47~0.79) and high hypertensive grade (OR 0.31, 95%CI 0.19~0.44); The protective factors for blood pressure control was good medication therapy compliance (OR 1.54, 95%CI 1.22~1.89), (average Psocial support system, increase patients' social support utilization degree, emphasized the intervention on low average monthly household incomes, male higher rate, higher hypertensive degree, and further improve the medication therapy compliance and hypertensive control rate of hypertensive patients.

  1. Numerical Calculation of the Correlation Moments of the Sound Field Scattered by a Rough Surface

    Science.gov (United States)

    Baranov, V. F.; Gulin, É. P.

    2000-05-01

    Numerically calculated two-dimensional correlation moments of the surface-scattered sound field are presented in the form of correlation surfaces and analyzed. The models of three-dimensional anisotropic and two-dimensional quasi-harmonic surface waves are considered. Data are presented on the angular dependence of the space-time correlation domains of the scattered sound field for receivers spaced across the propagation path in both horizontal and vertical directions, as well as on the shapes of the time-frequency and space-frequency correlation domains.

  2. Correlation of pulse wave velocity with left ventricular mass in patients with hypertension once blood pressure has been normalized

    Directory of Open Access Journals (Sweden)

    Siu H. Chan

    2012-02-01

    Full Text Available Vascular stiffness has been proposed as a simple method to assess arterial loading conditions of the heart which induce left ventricular hypertrophy (LVH. There is some controversy as to whether the relationship of vascular stiffness to LVH is independent of blood pressure, and which measurement of arterial stiffness, augmentation index (AI or pulse wave velocity (PWV is best. Carotid pulse wave contor and pulse wave velocity of patients (n=20 with hypertension whose blood pressure (BP was under control (<140/90 mmHg with antihypertensive drug treatment medications, and without valvular heart disease, were measured. Left ventricular mass, calculated from 2D echocardiogram, was adjusted for body size using two different methods: body surface area and height. There was a significant (P<0.05 linear correlation between LV mass index and pulse wave velocity. This was not explained by BP level or lower LV mass in women, as there was no significant difference in PWV according to gender (1140.1+67.8 vs 1110.6+57.7 cm/s. In contrast to PWV, there was no significant correlation between LV mass and AI. In summary, these data suggest that aortic vascular stiffness is an indicator of LV mass even when blood pressure is controlled to less than 140/90 mmHg in hypertensive patients. The data further suggest that PWV is a better proxy or surrogate marker for LV mass than AI and the measurement of PWV may be useful as a rapid and less expensive assessment of the presence of LVH in this patient population.

  3. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  4. Correlation of heat transfer for the zero pressure gradient hypersonic laminar boundary layer for several gases

    Science.gov (United States)

    Cook, W. J.

    1973-01-01

    A theoretical study of heat transfer for zero pressure gradient hypersonic laminar boundary layers for various gases with particular application to the flows produced in an expansion tube facility was conducted. A correlation based on results obtained from solutions to the governing equations for five gases was formulated. Particular attention was directed toward the laminar boundary layer shock tube splitter plates in carbon dioxide flows generated by high speed shock waves. Computer analysis of the splitter plate boundary layer flow provided information that is useful in interpreting experimental data obtained in shock tube gas radiation studies.

  5. Support surfaces in the prevention of pressure ulcers in surgical patients: An integrative review.

    Science.gov (United States)

    de Oliveira, Karoline Faria; Nascimento, Kleiton Gonçalves; Nicolussi, Adriana Cristina; Chavaglia, Suzel Regina Ribeiro; de Araújo, Cleudmar Amaral; Barbosa, Maria Helena

    2017-08-01

    To assess the scientific evidence about the types of support surfaces used in intraoperative surgical practice in the prevention of pressure ulcers due to surgical positioning. This is an integrative literature review. The electronic databases Cochrane, PubMed, Web of Science, Scopus, Lilacs, and CINAHL were used. The descriptors surgical patients, support surfaces, perioperative care, patient positioning, and pressure ulcer were used in the search strategy. Articles that addressed the use of support surfaces intraoperatively, published between 1990 and 2016, were selected. The PRISMA guidelines were used to structure the review. Of 18 evaluated studies, most were in English, followed by Portuguese and Spanish; most were performed by nurses. The most commonly cited support surfaces were viscoelastic polymer, micropulse mattresses, gel based mattresses, and foam devices. There are gaps in knowledge regarding the most efficient support surfaces and the specifications of the products used to prevent pressure ulcers due to surgical positioning. © 2017 John Wiley & Sons Australia, Ltd.

  6. A review and development of correlations for base pressure and base heating in supersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J.P. [Texas Univ., Austin, TX (United States). Dept. of Mechanical Engineering; Oberkampf, W.L. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    A comprehensive review of experimental base pressure and base heating data related to supersonic and hypersonic flight vehicles has been completed. Particular attention was paid to free-flight data as well as wind tunnel data for models without rear sting support. Using theoretically based correlation parameters, a series of internally consistent, empirical prediction equations has been developed for planar and axisymmetric geometries (wedges, cones, and cylinders). These equations encompass the speed range from low supersonic to hypersonic flow and laminar and turbulent forebody boundary layers. A wide range of cone and wedge angles and cone bluntness ratios was included in the data base used to develop the correlations. The present investigation also included preliminary studies of the effect of angle of attack and specific-heat ratio of the gas.

  7. Parkinsonian Symptomatology May Correlate with CT Findings before and after Shunting in Idiopathic Normal Pressure Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Mitsuaki Ishii

    2010-01-01

    Full Text Available We aimed to investigate the characteristics of Parkinsonian features assessed by the unified Parkinson's disease rating scale (UPDRS and determine their correlations with the computed tomography (CT findings in patients with idiopathic normal pressure hydrocephalus (iNPH. The total score and the scores for arising from chair, gait, postural stability, and body hypokinesia in the motor examination section of UPDRS were significantly improved after shunt operations. Stepwise multiple regression analysis revealed that postural stability was the determinant of the gait domain score of the iNPH grading scale. The canonical correlation analysis between the CT findings and the shunt-responsive Parkinsonian features indicated that Evans index rather than midbrain diameters had a large influence on the postural stability. Thus, the pathophysiology of postural instability as a cardinal feature of gait disturbance may be associated with impaired frontal projections close to the frontal horns of the lateral ventricles in the iNPH patients.

  8. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    Science.gov (United States)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  9. Formation Mechanism of Surface Crack in Low Pressure Casting of A360 Alloy

    Science.gov (United States)

    Liu, Shan-Guang; Cao, Fu-Yang; Ying, Tao; Zhao, Xin-Yi; Liu, Jing-Shun; Shen, Hong-Xian; Guo, Shu; Sun, Jian-Fei

    2017-12-01

    A surface crack defect is normally found in low pressure castings of Al alloy with a sudden contraction structure. To further understand the formation mechanism of the defect, the mold filling process is simulated by a two-phase flow model. The experimental results indicate that the main reason for the defect deformation is the mismatching between the height of liquid surface in the mold and pressure in the crucible. In the case of filling, a sudden contraction structure with an area ratio smaller than 0.5 is obtained, and the velocity of the liquid front increases dramatically with the influence of inertia. Meanwhile, the pressurizing speed in the crucible remains unchanged, resulting in the pressure not being able to support the height of the liquid level. Then the liquid metal flows back to the crucible and forms a relatively thin layer solidification shell on the mold wall. With the increasing pressure in the crucible, the liquid level rises again, engulfing the shell and leading to a surface crack. As the filling velocity is characterized by the damping oscillations, surface cracks will form at different heights. The results shed light on designing a suitable pressurizing speed for the low pressure casting process.

  10. Support surfaces for pressure ulcer prevention: A network meta-analysis.

    Directory of Open Access Journals (Sweden)

    Chunhu Shi

    Full Text Available Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult.To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness.We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence.We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR 0.42, 95% confidence intervals (CI 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively. The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence.This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was

  11. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.

    Science.gov (United States)

    Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff

    2012-04-03

    A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.

  12. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the

  13. Pressure effects on interfacial surface contacts and performance of organic solar cells

    NARCIS (Netherlands)

    Agyei-Tuffour, B.; Doumon, Nutifafa Y.; Rwenyagila, E. R.; Asare, J.; Oyewole, O. K.; Shen, Z.; Petoukhoff, C. E.; Zebaze Kana, M. G.; Ocarroll, D. M.; Soboyejo, W. O.

    2017-01-01

    This paper explores the effects of pressure on the interfacial surface contacts and the performance of organic solar cells. A combination of experimental techniques and analytical/computational models is used to study the evolving surface contacts profiles that occur when compliant, semi-rigid and

  14. Deployment of a Pressure Sensitive Paint System for Measuring Global Surface Pressures on Rotorcraft Blades in Simulated Forward Flight

    Science.gov (United States)

    Watkins, A. Neal; Leighty, Bradley; Lipford, William E.; Wong, Oliver D.; Goodman, Kyle Z.; Crafton, Jim; Forlines, Alan; Goss, Larry P.; Gregory, James W.; Juliano, Thomas J.

    2012-01-01

    This paper will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel at the NASA Langley Research Center. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. Preliminary results show that the PSP agrees both qualitatively and quantitatively with both the expected results as well as with the pressure taps. Several areas of improvement have been indentified and are currently being developed.

  15. Correlation between the plasma characteristics and the surface chemistry of plasma-treated polymers through partial least-squares analysis.

    Science.gov (United States)

    Mavadat, Maryam; Ghasemzadeh-Barvarz, Massoud; Turgeon, Stéphane; Duchesne, Carl; Laroche, Gaétan

    2013-12-23

    We investigated the effect of various plasma parameters (relative density of atomic N and H, plasma temperature, and vibrational temperature) and process conditions (pressure and H2/(N2 + H2) ratio) on the chemical composition of modified poly(tetrafluoroethylene) (PTFE). The plasma parameters were measured by means of near-infrared (NIR) and UV-visible emission spectroscopy with and without actinometry. The process conditions of the N2-H2 microwave discharges were set at various pressures ranging from 100 to 2000 mTorr and H2/(N2+H2) gas mixture ratios between 0 and 0.4. The surface chemical composition of the modified polymers was determined by X-ray photoelectron spectroscopy (XPS). A mathematical model was constructed using the partial least-squares regression algorithm to correlate the plasma information (process condition and plasma parameters as determined by emission spectroscopy) with the modified surface characteristics. To construct the model, a set of data input variables containing process conditions and plasma parameters were generated, as well as a response matrix containing the surface composition of the polymer. This model was used to predict the composition of PTFE surfaces subjected to N2-H2 plasma treatment. Contrary to what is generally accepted in the literature, the present data demonstrate that hydrogen is not directly involved in the defluorination of the surface but rather produces atomic nitrogen and/or NH radicals that are shown to be at the origin of fluorine atom removal from the polymer surface. The results show that process conditions alone do not suffice in predicting the surface chemical composition and that the plasma characteristics, which cannot be easily correlated with these conditions, should be considered. Process optimization and control would benefit from plasma diagnostics, particularly infrared emission spectroscopy.

  16. Fast diffuse correlation spectroscopy (DCS) for non-invasive measurement of intracranial pressure (ICP) (Conference Presentation)

    Science.gov (United States)

    Farzam, Parisa; Sutin, Jason; Wu, Kuan-Cheng; Zimmermann, Bernhard B.; Tamborini, Davide; Dubb, Jay; Boas, David A.; Franceschini, Maria Angela

    2017-02-01

    Intracranial pressure (ICP) monitoring has a key role in the management of neurosurgical and neurological injuries. Currently, the standard clinical monitoring of ICP requires an invasive transducer into the parenchymal tissue or the brain ventricle, with possibility of complications such as hemorrhage and infection. A non-invasive method for measuring ICP, would be highly preferable, as it would allow clinicians to promptly monitor ICP during transport and allow for monitoring in a larger number of patients. We have introduced diffuse correlation spectroscopy (DCS) as a non-invasive ICP monitor by fast measurement of pulsatile cerebral blood flow (CBF). The method is similar to Transcranial Doppler ultrasound (TCD), which derives ICP from the amplitude of the pulsatile cerebral blood flow velocity, with respect to the amplitude of the pulsatile arterial blood pressure. We believe DCS measurement is superior indicator of ICP than TCD estimation because DCS directly measures blood flow, not blood flow velocity, and the small cortical vessels measured by DCS are more susceptible to transmural pressure changes than the large vessels. For fast DCS measurements to recover pulsatile CBF we have developed a custom high-power long-coherent laser and a strategy for delivering it to the tissue within ANSI standards. We have also developed a custom FPGA-based correlator board, which facilitates DCS data acquisitions at 50-100 Hz. We have tested the feasibility of measuring pulsatile CBF and deriving ICP in two challenging scenarios: humans and rats. SNR is low in human adults due to large optode distances. It is similarly low in rats because the fast heart rate in this setting requires a high repetition rate.

  17. Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures

    KAUST Repository

    Bradley, Derek

    2013-01-01

    The implosion technique has been used to extend measurements of turbulent burning velocities over greater ranges of fuels and pressures. Measurements have been made up to 3.5 MPa and at strain rate Markstein numbers as low as 23. The implosion technique, with spark ignition at two opposite wall positions within a fan-stirred spherical bomb is capable of measuring turbulent burning velocities, at higher pressures than is possible with central ignition. Pressure records and schlieren high speed photography define the rate of burning and the smoothed area of the flame front. The first aim of the study was to extend the previous measurements with ethanol and propane-air, with further measurements over wider ranges of fuels and equivalence ratios with mixtures of hydrogen, methane, 10% hydrogen-90% methane, toluene, and i-octane, with air. The second aim was to study further the low turbulence regime in which turbulent burning co-exists with laminar flame instabilities. Correlations are presented of turbulent burning velocity normalised by the effective rms turbulent velocity acting on the flame front, ut=u0k , with the Karlovitz stretch factor, K, for different strain rate Markstein numbers, a decrease in which increases ut=u0k . Experimental correlations are presented for the present measurements, combined with previous ones. Different burning regimes are also identified, extending from that of mixed turbulence/laminar instability at low values of K to that at high values of K, in which ut=u0k is gradually reduced due to increasing localised flame extinctions. © 2012 The Combustion Institute.

  18. Noninvasive Assessment of Intracranial Pressure Status in Idiopathic Intracranial Hypertension Using Displacement Encoding with Stimulated Echoes (DENSE) MRI: A Prospective Patient Study with Contemporaneous CSF Pressure Correlation.

    Science.gov (United States)

    Saindane, A M; Qiu, D; Oshinski, J N; Newman, N J; Biousse, V; Bruce, B B; Holbrook, J F; Dale, B M; Zhong, X

    2018-02-01

    Intracranial pressure is estimated invasively by using lumbar puncture with CSF opening pressure measurement. This study evaluated displacement encoding with stimulated echoes (DENSE), an MR imaging technique highly sensitive to brain motion, as a noninvasive means of assessing intracranial pressure status. Nine patients with suspected elevated intracranial pressure and 9 healthy control subjects were included in this prospective study. Controls underwent DENSE MR imaging through the midsagittal brain. Patients underwent DENSE MR imaging followed immediately by lumbar puncture with opening pressure measurement, CSF removal, closing pressure measurement, and immediate repeat DENSE MR imaging. Phase-reconstructed images were processed producing displacement maps, and pontine displacement was calculated. Patient data were analyzed to determine the effects of measured pressure on pontine displacement. Patient and control data were analyzed to assess the effects of clinical status (pre-lumbar puncture, post-lumbar puncture, or control) on pontine displacement. Patients demonstrated imaging findings suggesting chronically elevated intracranial pressure, whereas healthy control volunteers demonstrated no imaging abnormalities. All patients had elevated opening pressure (median, 36.0 cm water), decreased by the removal of CSF to a median closing pressure of 17.0 cm water. Patients pre-lumbar puncture had significantly smaller pontine displacement than they did post-lumbar puncture after CSF pressure reduction ( P = .001) and compared with controls ( P = .01). Post-lumbar puncture patients had statistically similar pontine displacements to controls. Measured CSF pressure in patients pre- and post-lumbar puncture correlated significantly with pontine displacement ( r = 0.49; P = .04). This study establishes a relationship between pontine displacement from DENSE MR imaging and measured pressure obtained contemporaneously by lumbar puncture, providing a method to noninvasively

  19. Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures

    DEFF Research Database (Denmark)

    Zambrano, H.A.; Walther, Jens Honore; Jaffe, R.L.

    2014-01-01

    of air in water at different pressures. Using the calibrated force field, we conduct MD simulations to study the interface between a hydrophilic silica substrate and water surrounded by air at different pressures. We find that the static water contact angle is independent of the air pressure imposed......Wepresent a force field forMolecular Dynamics (MD) simulations ofwater and air in contactwith an amorphous silica surface. We calibrate the interactions of each species present in the systemusing dedicated criteria such as the contact angle of a water droplet on a silica surface, and the solubility...... on the system. Our simulations reveal the presence of a nanometer thick layer of gas at the water–silica interface. We believe that this gas layer could promote nucleation and stabilization of surface nanobubbles at amorphous silica surfaces. © 2014 Elsevier B.V. All rights reserved....

  20. An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets

    OpenAIRE

    Bogey , Christophe; Bailly , Christophe

    2007-01-01

    International audience; Noise generation is investigated in subsonic isothermal round jets at Mach numbers M =0.6 and M =0.9, with Reynolds numbers ReD =1700 and ReD 105, using causality methods on data provided by large-eddy simulations. The correlations between broadband sound pressure signals and broadband turbulence signals along the jet axis and the shear layer are calculated. The normalized correlations are found to be significant between the pressure emitted in the downstream direction...

  1. Correlation between center of pressure and functional balance in non-faller elderly practitioners of Tai Chi Chuan

    OpenAIRE

    Gatica-Rojas, Valeska; Cartes-Vel?squez, Ricardo; Salgado-M?ndez, Rodrigo; Castro-Ram?rez, Rodolfo

    2016-01-01

    [Purpose] This study aimed to determine the correlation between center of pressure and functional balance in non-faller elderly practitioners of Tai Chi. [Subjects and Methods] For the study, nine non-faller elderly practitioners of Tai Chi who were able to maintain a standing posture and walk independently were recruited. Timed one-leg standing and timed up-and-go tests were used as functional balance tests and force platform to measure the center of pressure. The Pearson correlation coeffic...

  2. Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering; Electrons correles sous haute pression: une approche par diffusion inelastique des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Rueff, J.P

    2007-06-15

    Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)

  3. Correlation of abdominal obesity indices with blood pressure in young adults: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Jena

    2018-01-01

    Full Text Available Background: The youth of this era are the sufferings of overweight and obesity because of sedentary lifestyle, eating habits, altered pattern of behaviour and mental stress. Abdominal obesity is a predominant risk factor of cardiovascular disease. With this background, this study was proposed to correlate abdominal obesity with blood pressure (BP in young adults. Materials and Methods: A total of 205 young male adults of 20–25 years were selected from various local educational institutions. Estimation for waist circumference (WC, hip circumference (HC and BP recording was done. Waist–hip ratio (WHR was calculated from WC and HC. Recording of BP was performed between 8 and 9 am after 5–10 min rest. On the basis of WC, participants were classified into two groups, i.e., WC ≤90 cm and WC >90 cm. On the basis of WHR, participants were classified into two groups, i.e., WHR <0.90 and WHR ≥0.90. Results: In the present study, we found that the participants those WC and WHR above the cut-off value shown significantly more BP (both systolic and diastolic than normal. Likely, the pulse pressure was higher in participants WC and WHR above cut-off value but not significant. We found a positive correlation between WC and WHR with BP. Conclusion: This study suggested that WC and WHR have a positive correlation with BP and hence concluded that adults with abdominal obesity are at higher risk to develop CVD in their future life.

  4. Liquid Hydrogen Propellant Tank Sub-Surface Pressurization with Gaseous Helium

    Science.gov (United States)

    Stephens, J. R.; Cartagena, W.

    2015-01-01

    A series of tests were conducted to evaluate the performance of a propellant tank pressurization system with the pressurant diffuser intentionally submerged beneath the surface of the liquid. Propellant tanks and pressurization systems are typically designed with the diffuser positioned to apply pressurant gas directly into the tank ullage space when the liquid propellant is settled. Space vehicles, and potentially propellant depots, may need to conduct tank pressurization operations in micro-gravity environments where the exact location of the liquid relative to the diffuser is not well understood. If the diffuser is positioned to supply pressurant gas directly to the tank ullage space when the propellant is settled, then it may become partially or completely submerged when the liquid becomes unsettled in a microgravity environment. In such case, the pressurization system performance will be adversely affected requiring additional pressurant mass and longer pressurization times. This series of tests compares and evaluates pressurization system performance using the conventional method of supplying pressurant gas directly to the propellant tank ullage, and then supplying pressurant gas beneath the liquid surface. The pressurization tests were conducted on the Engineering Development Unit (EDU) located at Test Stand 300 at NASA Marshall Space Flight Center (MSFC). EDU is a ground based Cryogenic Fluid Management (CFM) test article supported by Glenn Research Center (GRC) and MSFC. A 150 ft3 propellant tank was filled with liquid hydrogen (LH2). The pressurization system used regulated ambient helium (GHe) as a pressurant, a variable position valve to maintain flow rate, and two identical independent pressurant diffusers. The ullage diffuser was located in the forward end of the tank and was completely exposed to the tank ullage. The submerged diffuser was located in the aft end of the tank and was completely submerged when the tank liquid level was 10% or greater

  5. Surface-nitriding treatment of steels using microwave-induced nitrogen plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Sato, Shigeo; Arai, Yuuki; Yamashita, Noboru; Kojyo, Atsushi; Kodama, Kenji; Ohtsu, Naofumi; Okamoto, Yukio; Wagatsuma, Kazuaki

    2012-01-01

    A rapid surface-nitriding system using microwave-induced nitrogen plasma at atmospheric pressure was developed for modifying iron and steel surfaces. Since the conventional plasma nitriding technique requires a low-pressure atmosphere in the treatment chamber, the population of excited nitrogen molecules in the plasma is limited. Accordingly, several hours are required for nitriding treatment. By contrast, the developed nitriding system can use atmospheric-pressure plasma through application of the Okamoto cavity for excitation of nitrogen plasma. The high population of excited nitrogen molecules induced by the atmospheric-pressure plasma allowed the formation of a nitriding layer that was several micrometers thick within 1 min and produced an expanded austenite iron phase with a high nitrogen concentration close to the solubility limit on the iron substrate. In addition, the nitriding treatment on high-chromium steel was performed by introducing a reducing gas such as NH 3 and H 2 into the treatment chamber. While the nitriding reaction did not proceed in a simple N 2 atmosphere due to surface oxidation, the surface reduction induced by the NH 3 or H 2 gas promoted the nitriding reaction at the surface. These nitriding phenomena characteristics of the atmospheric-pressure plasma are discussed in this paper based on the effects of the specimen temperature and plasma atmosphere on the thickness, the chemical states, and the nitride compounds of the nitrided layer as investigated by X-ray diffraction, glow-discharge optical emission spectroscopy, and X-ray photoelectron spectroscopy.

  6. Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder

    Science.gov (United States)

    You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.

    2018-01-01

    To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.

  7. Correlation between transcutaneous oxygen partial pressure and nerve conduction determination in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Xiao-ying DONG

    2013-01-01

    Full Text Available Objectives  To investigate the correlation between transcutaneous oxygen partial pressure (TcPO2 and nerve conduction determination (NC in type 2 diabetic patients. Methods  From January to July in 2012, 381 age-matched type 2 diabetic patients were enrolled in the Xi'nan Hospital of Third Military Medical University. These patients were divided into 4 groups depending on the results of NCS and symptoms of diabetic peripheral neuropathy (DPN, among which there were 129 with abnormal NCS but no DPN symptoms as group 1, 50 with DPN symptoms and normal NCS as group 2, 122 with both abnormal NCS and DPN symptoms as group 3 and 80 without abnormal NCS nor any DPN symptoms as group 4. Groups 1 and 3 served as DPN group, while groups 2 and 4 were respectively named as possible DPN group and non-DPN group. The differences of 33 indexes of TcPO2 in erect and recumbent positions, correlation between TcPO2 values and differences in erect and recumbent positions between groups, and the correlation between TcPO2 values and various NCS parameters were analyzed. Results  The values of TcPO2 in erect position and recumbent position in DPN and possible DPN group were lower, while the difference between them was higher than that (erect-recumbent position difference in non-DPN group (P<0.05. The value of erect position TcPO2 was correlated with all the 26 parameters of NCS including the velocity of median nerve conduction, distal latency, amplitude of compound muscle action potential (P<0.05; the value of recumbent position TcPO2 was also correlated with almost all parameters except the shortest latency of F wave; the erect-recumbent position difference was correlated with 11 out of the above 26 parameters (P<0.05. Conclusion  There is a good correlation between TcPO2 and NCS, which suggests that TcPO2 can serve as a potential and effective method for detecting DPN at early stage.

  8. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show......We show, theoretically, that the measured effective dispersive and polar surface energies of a heterogeneous Surface are correlated; the correlation, however, differs whether a Cassic or an Israelachvili and Gee model is assumed. Fluorocarbon self-assembled monolayers with varying coverage were...

  9. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    Science.gov (United States)

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-03-29

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We

  10. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    Directory of Open Access Journals (Sweden)

    M. M.

    2000-12-01

    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  11. Correlation between the trajectory of systolic blood pressure and new renal damage in a nonhypertensive population.

    Science.gov (United States)

    Wang, Zhi-Jun; Jia, Dao; Tian, Jun; Liu, Jie; Li, Li-Jie; Huang, Yu-Ling; Cao, Xin-Ying; Ning, Chun-Hong; Zhao, Quan-Hui; Yu, Jun-Xing; Zhang, Rui-Ying; Zhang, Ya-Jing; Gao, Jing-Sheng; Wu, Shou-Ling

    2017-10-01

    This study aims to investigate the correlation between the trajectory of systolic blood pressure (SBP) and new renal damage in a nonhypertensive population. This prospective cohort study included a total of 14 382 nonhypertensive individuals, employees of Kailuan Group of Companies, who took part in five healthy examinations in 2006-2007, 2008-2009, 2010-2011, 2012-2013, and 2014-2015, and had complete data. These individuals were divided into four groups according to the different trajectories of SBP: low-low, low-stable, middle-high, and high-high groups. The correlation between the trajectory of SBP and new renal damage in a nonhypertensive population was analyzed using a multivariate Cox's proportional hazard regression model. (a) A total of 14 382 individuals had complete data and the average age of these individuals was 44.6±10.8 years. Among these, 10 888 (75.7%) individuals were men and 3494 (24.3%) individuals were women. (b) These individuals were divided into four groups according to different trajectories of blood pressure: low-low group, accounting for 13.15% (blood pressure was group, accounting for 53.91% (blood pressure was between 115 and 116 mmHg); middle-high group, accounting for 28.77% (blood pressure was between 125 and 131 mmHg); and high-high group, accounting for 4.6% (blood pressure was between 126 and 151 mmHg). (c) With the increase in the trajectory of SBP, the detection rate of renal damage increased gradually. From the low-low group to the high-high group, the detection rates of estimated glomerular filtration rate (eGFR) less than 60 ml/min/1.73 m were 2.3, 2.4, 3.6, and 4.3%, respectively; the positive rates of urinary protein were 1.7, 2.9, 3.8, and 5.5%, respectively; and the detection rates of eGFR less than 60 ml/min/1.73 m or positive urinary protein were 4, 5.2, 7.3, and 9.3%, respectively (Pgroup, the risk of eGFR less than 60 ml/min/1.73 m increased by nearly 1.5 times in the high-high group and in

  12. Relationship between specific surface area and spatial correlation functions for anisotropic porous media

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    1987-01-01

    A result of Debye, Anderson, and Brumberger (P. Debye, H. R. Anderson, Jr., and H. Brumberger, J. Appl. Phys. 28, 679 (1957)) for isotropic porous media states that the derivative of the two-point spatial correlation at the origin is equal to minus one-quarter of the specific surface area. This result is generalized for nonisotropic media by noting that the angular average of the anisotropic two-point spatial correlation function has the same relationship to the specific surface area.

  13. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  14. Correlation of intraocular pressure with blood pressure and body mass index in offsprings of diabetic patients: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Shailaja Patil, Anita Herur, Shashikala GV, Surekharani Chinagudi, Manjula R, Roopa Ankad, Sukanya Badami, Brid SV

    2014-07-01

    Full Text Available Background: Raised intraocular pressure (IOP has been associated with risk factors like hypertension, diabetes mellitus (DM, obesity, body mass index (BMI and sex, increasing the risk of glaucoma causing visual impairment and blindness. Since familial inheritance is known with glaucoma and DM, the aim was to study the IOP and its correlation with BMI and blood pressure (BP in offsprings of DM and also to predict the future/early onset of glaucoma in them. Methods: This was an observational study done in medical undergraduate students. 25 students were included in the study group (offsprings of diabetic parents-cases and 23 students in the control group (offsprings without diabetic history in parents. Height, weight, blood pressure and intraocular pressure were recorded in both the groups and these were compared. Statistical analysis was done by student’s t test and Pearson’s correlation. Results: Cases exhibited a lower IOP, BMI, mean arterial pressure (MAP and diastolic blood pressure (DBP, but not SBP, as compared to controls. These differences, however, were not statistically significant except DBP. There was a negative correlation found between IOP and BMI and also between IOP and MAP in cases, whereas in controls, there was a positive correlation found between BMI and IOP and no correlation between IOP and MAP. Conclusion: Offsprings of diabetic patients may be less prone for primary open angle glaucoma. Limitations: The limitations of the present study include a smaller sample size, study of the results in relation to paternal or maternal diabetic status and also of grandparents, so that the inheritance of diabetes and also of IOP can be studied.

  15. Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.

    2015-01-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.

  16. Effect of an end plate on surface pressure distributions of two swept wings

    Directory of Open Access Journals (Sweden)

    Mohammad Reza SOLTANI

    2017-10-01

    Full Text Available A series of wind tunnel tests was conducted to examine how an end plate affects the pressure distributions of two wings with leading edge (LE sweep angles of 23° and 40°. All the experiments were carried out at a midchord Reynolds number of 8×105, covering an angle of attack (AOA range from −2° to 14°. Static pressure distribution measurements were acquired over the upper surfaces of the wings along three chordwise rows and one spanwise direction at the wing quarter-chord line. The results of the tests confirm that at a particular AOA, increasing the sweep angle causes a noticeable decrease in the upper-surface suction pressure. Furthermore, as the sweep angle increases, the development of a laminar separation bubble near the LEs of the wings takes place at higher AOAs. On the other hand, spanwise pressure measurements show that increasing the wing sweep angle results in forming a stronger vortex on the quarter-chord line which has lower sensitivity to AOA variation and remains substantially attached to the wing surface for higher AOAs than that can be achieved in the case of a lower sweep angle. In addition, data obtained indicate that installing an end plate further reinforces the spanwise flow over the wing surface, thus affecting the pressure distribution.

  17. Does Pressure Accentuate General Relativistic Gravitational Collapse and Formation of Trapped Surfaces?

    Science.gov (United States)

    Mitra, Abhas

    2013-04-01

    It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.

  18. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  19. Effects of radiation pressure on the equipotential surfaces in x-ray binaries

    International Nuclear Information System (INIS)

    Kondo, Y.; McCluskey, G.E. Jr.; Gulden, S.L.

    1976-01-01

    Equipotential surfaces incorporating the effect of radiation pressure were computed for the x-ray binaries Cen X-3, Cyg X-1 = HDE 226868, Vela XR-1 = 3U 0900-40 = HD 77581, and 3U 1700-37 = HD 153919. The topology of the equipotential surfaces is significantly affected by radiation pressure. In particular, the so-called critical Roche (Jacobian) lobes, the traditional figure 8's, do not exist. The effects of these results on modeling x-ray binaries are discussed

  20. Cross-family correlates of blood pressure in the Western Collaborative Group Study.

    Science.gov (United States)

    Carmelli, D; Swan, G E; Rosenman, R H

    1986-08-01

    The present study examined the association between one spouse's characteristics and his/her partner's blood pressure (BP) and the combined effect of parental characteristics on the BP levels of offspring in a subgroup of families recruited from the Western Collaborative Group Study (WCGS). Among the individual personality characteristics examined were pace of activity, reflectiveness, dominance, and emotional stability as assessed by the Thurstone Temperament Schedule (TTS). The confounding effects of age, weight, and father's disease status were controlled for by multiple-regression techniques. The results indicate a differential pattern of cross-spouse and cross-family associations for parents and offspring in these families. Higher scores on the TTS activity scale were associated with increased levels of BP in males and decreased levels of BP in females. The observed associations were of the same magnitude as those of more traditional correlates such as age and weight. The findings from the cross-family association analyses are contrasted with the separate patterns of familial correlation of BP and personality characteristics.

  1. Dynamic modeling method of the bolted joint with uneven distribution of joint surface pressure

    Science.gov (United States)

    Li, Shichao; Gao, Hongli; Liu, Qi; Liu, Bokai

    2018-03-01

    The dynamic characteristics of the bolted joints have a significant influence on the dynamic characteristics of the machine tool. Therefore, establishing a reasonable bolted joint dynamics model is helpful to improve the accuracy of machine tool dynamics model. Because the pressure distribution on the joint surface is uneven under the concentrated force of bolts, a dynamic modeling method based on the uneven pressure distribution of the joint surface is presented in this paper to improve the dynamic modeling accuracy of the machine tool. The analytic formulas between the normal, tangential stiffness per unit area and the surface pressure on the joint surface can be deduced based on the Hertz contact theory, and the pressure distribution on the joint surface can be obtained by the finite element software. Futhermore, the normal and tangential stiffness distribution on the joint surface can be obtained by the analytic formula and the pressure distribution on the joint surface, and assigning it into the finite element model of the joint. Qualitatively compared the theoretical mode shapes and the experimental mode shapes, as well as quantitatively compared the theoretical modal frequencies and the experimental modal frequencies. The comparison results show that the relative error between the first four-order theoretical modal frequencies and the first four-order experimental modal frequencies is 0.2% to 4.2%. Besides, the first four-order theoretical mode shapes and the first four-order experimental mode shapes are similar and one-to-one correspondence. Therefore, the validity of the theoretical model is verified. The dynamic modeling method proposed in this paper can provide a theoretical basis for the accurate dynamic modeling of the bolted joint in machine tools.

  2. Prediction and correlation of surface tension of naphtha reformate and crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, E.I.; Al-Sahhaf, T.A.; Fahim, M.A. [Kuwait University (Kuwait). Chemical Engineering Dept.

    1995-04-01

    Six methods were tested for the prediction of the surface tension of naphtha reformate and crude oil fractions. The corresponding-state method gave the lowest deviation from experimental values for single cuts. The surface tension-density correlation method gave the lowest deviation for a blend of several cuts. 12 refs., 14 tabs.

  3. Electron density in reasonably real metallic surfaces, including interchange and correlation effects

    International Nuclear Information System (INIS)

    Moraga, L.A.; Martinez, G.

    1981-01-01

    By means of a new method, the electron density in a jellium surface is calculated taking in account interchange and correlation effects; reproducing, in this way, the Lang and Kohn results. The new method is self-consistent but not iterative and hence is possible extend it to the solution of the same problem in more reasonably real metallic surfaces. (L.C.) [pt

  4. The correlation between body mass index and intraocular pressure in children

    Directory of Open Access Journals (Sweden)

    Luciano Lira de Albuquerque

    2013-02-01

    Full Text Available PURPOSE: There is evidence from some studies that support an association between obesity in adults and higher intraocular pressure (IOP. However, this association has not been completely studied in children. Our aim is to evaluate the association between child body mass index (BMI and IOP. METHODS: Ninety-six children attending the Instituto de Medicina Integral Prof. Fernando Figueira (IMIP in Brazil were studied. Thirty-three were overweight/obese with a mean BMI of 29.7 ± 5.2 and 63 with a mean BMI of 20.8 ± 3.3. IOP was measured using the Goldmann applanation tonometer and was corrected for corneal thickness. The coefficient of correlation between BMI and IOP was calculated. RESULTS: There was no significant difference in the IOP of children with or without overweight/obesity. The mean IOP was 13.5 and 13.0 mmHg for the right eye and 13.1 and 12.9 mmHg for left eye, respectively (p=0.38 and p=0.71. The results remained the same after correction by pachymetry; 13.0 and 13.1 mmHg for the right eye and 12.4 and 12.9 mmHg for the left eye, respectively (p=0.88 and p=0.41. The coefficient of correlation between BMI and IOP was 0.070 (p=0.496. CONCLUSION: These results do not show a correlation between body mass index and IOP in children. Further studies are warranted to clarify the association between BMI and IOP in children.

  5. Parameters of the center of pressure displacement on the saddle during hippotherapy on different surfaces

    Directory of Open Access Journals (Sweden)

    Fabiana M. Flores

    2015-06-01

    Full Text Available Background: Hippotherapy uses horseback riding movements for therapeutic purposes. In addition to the horse's movement, the choice of equipment and types of floor are also useful in the intervention. The quantification of dynamic parameters that define the interaction of the surface of contact between horse and rider provides insight into how the type of floor surface variations act upon the subject's postural control. Objective: To test whether different types of surfaces promote changes in the amplitude (ACOP and velocity (VCOP of the center of pressure (COP displacement during the rider's contact with the saddle on the horse's back. Method: Twenty two healthy adult male subjects with experience in riding were evaluated. The penetration resistances of asphalt, sand and grass surfaces were measured. The COP data were collected on the three surfaces using a pressure measurement mat. Results: ACOP values were higher in sand, followed by grass and asphalt, with significant differences between sand and asphalt (anteroposterior, p=0.042; mediolateral, p=0.019. The ACOP and VCOP values were higher in the anteroposterior than in the mediolateral direction on all surfaces (ACOP, p=0.001; VCOP, p=0.006. The VCOP did not differ between the surfaces. Conclusion: Postural control, measured by the COP displacement, undergoes variations in its amplitude as a result of the type of floor surface. Therefore, these results reinforce the importance of the choice of floor surface when defining the strategy to be used during hippotherapy intervention.

  6. Parameters of the center of pressure displacement on the saddle during hippotherapy on different surfaces.

    Science.gov (United States)

    Flores, Fabiana M; Dagnese, Frederico; Mota, Carlos B; Copetti, Fernando

    2015-01-01

    Hippotherapy uses horseback riding movements for therapeutic purposes. In addition to the horse's movement, the choice of equipment and types of floor are also useful in the intervention. The quantification of dynamic parameters that define the interaction of the surface of contact between horse and rider provides insight into how the type of floor surface variations act upon the subject's postural control. To test whether different types of surfaces promote changes in the amplitude (ACOP) and velocity (VCOP) of the center of pressure (COP) displacement during the rider's contact with the saddle on the horse's back. Twenty two healthy adult male subjects with experience in riding were evaluated. The penetration resistances of asphalt, sand and grass surfaces were measured. The COP data were collected on the three surfaces using a pressure measurement mat. ACOP values were higher in sand, followed by grass and asphalt, with significant differences between sand and asphalt (anteroposterior, p=0.042; mediolateral, p=0.019). The ACOP and VCOP values were higher in the anteroposterior than in the mediolateral direction on all surfaces (ACOP, p=0.001; VCOP, p=0.006). The VCOP did not differ between the surfaces. Postural control, measured by the COP displacement, undergoes variations in its amplitude as a result of the type of floor surface. Therefore, these results reinforce the importance of the choice of floor surface when defining the strategy to be used during hippotherapy intervention.

  7. Calculated Fermi surface properties of LaSn3 and YSn3 under pressure

    International Nuclear Information System (INIS)

    Kanchana, V.

    2012-01-01

    The electronic structure, Fermi surface and elastic properties of the iso-structural and iso-electronic LaSn 3 and YSn 3 intermetallic compounds are studied under pressure within the frame work of density functional theory including spin-orbit coupling. The LaSn 3 Fermi surface consists of two sheets, of which the second is very complex. Under pressure a third sheet appears around compression V/V 0 =0.94, while a small topology changes in the second sheet is seen at compression V/V 0 =0.90. This may be in accordance with the anomalous behavior in the superconducting transition temperature observed in LaSn 3 , which has been suggested to reflect a Fermi surface topological transition, along with a non-monotonic pressure dependence of the density of states at the Fermi level. The similar behavior is not observed in YSn 3 for which the Fermi surface includes three sheets already at ambient conditions, and the topology remains unchanged under pressure. The reason for the difference in behavior between LaSn 3 and YSn 3 is the role of spin-orbit coupling and the hybridization of La-4f state with the Sn-p state in the vicinity of the Fermi level, which is well explained using the band structure calculation. The elastic constants and related mechanical properties are calculated at ambient as well as at elevated pressures. The elastic constants increase with pressure for both compounds and satisfy the conditions for mechanical stability under pressure. (author)

  8. Irreversible particle motion in surfactant-laden interfaces due to pressure-dependent surface viscosity

    Science.gov (United States)

    Manikantan, Harishankar; Squires, Todd M.

    2017-09-01

    The surface shear viscosity of an insoluble surfactant monolayer often depends strongly on its surface pressure. Here, we show that a particle moving within a bounded monolayer breaks the kinematic reversibility of low-Reynolds-number flows. The Lorentz reciprocal theorem allows such irreversibilities to be computed without solving the full nonlinear equations, giving the leading-order contribution of surface pressure-dependent surface viscosity. In particular, we show that a disc translating or rotating near an interfacial boundary experiences a force in the direction perpendicular to that boundary. In unbounded monolayers, coupled modes of motion can also lead to non-intuitive trajectories, which we illustrate using an interfacial analogue of the Magnus effect. This perturbative approach can be extended to more complex geometries, and to two-dimensional suspensions more generally.

  9. Surface energy-tunable iso decyl acrylate based molds for low pressure-nanoimprint lithography

    Science.gov (United States)

    Tak, Hyowon; Tahk, Dongha; Jeong, Chanho; Lee, Sori; Kim, Tae-il

    2017-10-01

    We presented surface energy-tunable nanoscale molds for unconventional lithography. The mold is highly robust, transparent, has a minimized haze, does not contain additives, and is a non-fluorinated isodecyl acrylate and trimethylolpropane triacrylate based polymer. By changing the mixing ratio of the polymer components, the cross-linking density, mechanical modulus, and surface energy (crucial factors in low pressure ((1-2) × 105 N m-2) low pressure-nanoimprint lithography (LP-NIL)), can be controlled. To verify these properties of the molds, we also characterized the surface energy by measuring the contact angles and calculating the work of adhesion among the wafer, polymer film, and mold for successful demolding in nanoscale structures. Moreover, the molds showed high optical clarity and precisely tunable mechanical and surface properties, capable of replicating sub-100 nm patterns by thermal LP-NIL and UV-NIL.

  10. A new corresponding state-based correlation for the surface tension of organic fatty acids

    Science.gov (United States)

    Zhang, Cuihua; Tian, Jianxiang; Zheng, Mengmeng; Yi, Huili; Zhang, Laibin; Liu, Shuzhen

    2018-01-01

    In this paper, we proposed a new corresponding state-based correlation for organic fatty (aliphatic, carboxylic and polyfunctional) acids. By using the recently published surface tension data of the 99 acids [A. Mulero and I. Cachadiña, J. Phys. Chem. Ref. Data 45 (2016) 033105] and comparing with the recently published other corresponding state correlations, we found that this correlation reproduces the lowest absolute average deviation (AAD) values for 82 acids out of the 99 acids. It can reproduce the surface tension data with AAD less than 10% for 89 out of the 99 acids.

  11. Intima-media thickness evaluation by B-mode ultrasound: Correlation with blood pressure levels and cardiac structures

    Directory of Open Access Journals (Sweden)

    F.L. Plavnik

    2000-01-01

    Full Text Available The aim of this study was to analyze the thickness of the intima-media complex (IMC using a noninvasive method. The carotid and femoral common arteries were evaluated by noninvasive B-mode ultrasound in 63 normotensive and in 52 hypertensive subjects and the thickness of the IMC was tested for correlation with blood pressure, cardiac structures and several clinical and biological parameters. The IMC was thicker in hypertensive than in normotensive subjects (0.67 ± 0.13 and 0.62 ± 0.16 vs 0.54 ± 0.09 and 0.52 ± 0.11 mm, respectively, P<0.0001. In normotensive patients, the simple linear regression showed significant correlations between IMC and age, body mass index and 24-h systolic blood pressure for both the carotid and femoral arteries. In hypertensives the carotid IMC was correlated with age and 24-h systolic blood pressure while femoral IMC was correlated only with 24-h diastolic blood pressure. Forward stepwise regression showed that age, body mass index and 24-h systolic blood pressure influenced the carotid IMC relationship (r2 = 0.39 in normotensives. On the other hand, the femoral IMC relationship was influenced by 24-h systolic blood pressure and age (r2 = 0.40. In hypertensives, age and 24-h systolic blood pressure were the most important determinants of carotid IMC (r2 = 0.37, while femoral IMC was influenced only by 24-h diastolic blood pressure (r2 = 0.10. There was an association between carotid IMC and echocardiographic findings in normotensives, while in hypertensives only the left posterior wall and interventricular septum were associated with femoral IMC. We conclude that age and blood pressure influence the intima-media thickness, while echocardiographic changes are associated with the IMC.

  12. Directly measuring spinal cord blood flow and spinal cord perfusion pressure via the collateral network: correlations with changes in systemic blood pressure.

    Science.gov (United States)

    Kise, Yuya; Kuniyoshi, Yukio; Inafuku, Hitoshi; Nagano, Takaaki; Hirayasu, Tsuneo; Yamashiro, Satoshi

    2015-01-01

    During thoracoabdominal surgery in which segmental arteries are sacrificed over a large area, blood supply routes from collateral networks have received attention as a means of avoiding spinal cord injury. The aim of this study was to investigate spinal cord blood supply through a collateral network by directly measuring spinal cord blood flow and spinal cord perfusion pressure experimentally. In beagle dogs (n = 8), the thoracoabdominal aorta and segmental arteries L1-L7 were exposed, and a temporary bypass was created for distal perfusion. Next, a laser blood flow meter was placed on the spinal dura mater in the L5 region to measure the spinal cord blood flow. The following were measured simultaneously when the direct blood supply from segmental arteries L2-L7 to the spinal cord was stopped: mean systemic blood pressure, spinal cord perfusion pressure (blood pressure within the aortic clamp site), and spinal cord blood flow supplied via the collateral network. These variables were then investigated for evidence of correlations. Positive correlations were observed between mean systemic blood pressure and spinal cord blood flow during interruption of segmental artery flow both with (r = 0.844, P flow with and without distal perfusion (r = 0.803, P network from outside the interrupted segmental arteries, and high systemic blood pressure (∼1.33-fold higher) was needed to obtain the preclamping spinal cord blood flow, whereas 1.68-fold higher systemic blood pressure was needed when distal perfusion was halted. Spinal cord blood flow is positively correlated with mean systemic blood pressure and spinal cord perfusion pressure under spinal cord ischemia caused by clamping a wide range of segmental arteries. In open and endovascular thoracic and thoracoabdominal surgery, elevating mean systemic blood pressure is a simple and effective means of increasing spinal cord blood flow, and measuring spinal cord perfusion pressure seems to be useful for monitoring

  13. Measurement of high pressure densities and atmospheric pressure viscosities of alkyl phosphate anion ionic liquids and correlation with the ε∗-modified Sanchez-Lacombe equation of state

    International Nuclear Information System (INIS)

    Hiraga, Yuya; Goto, Musashi; Sato, Yoshiyuki; Smith, Richard L.

    2017-01-01

    Highlights: • Experimental densities for phosphate anion ionic liquids at pressures up to 200 MPa. • Atmospheric densities and viscosities of phosphate anion ionic liquids. • Data correlation with ε ∗ -modified Sanchez-Lacombe equation of state. • Close-packed volume value important for reliable correlation with lattice equations. • Low close-packed volume of ε ∗ -mod SL EoS allows reliable correlation of PVT data. - Abstract: High pressure densities up to 200 MPa from 313 to 393 K and atmospheric pressure viscosities from 293 to 373 K for two alkyl phosphate anion ionic liquids, 1-ethyl-3-methylimidazolium dimethylphosphate ([emim][DMP]) and 1-butyl-3-methylimidazolium dimethylphosphate ([bmim][DMP]), are reported. Several forms of the Tait equation were applied and all forms could correlate the data to within 0.03% average relative deviation (ARD). The derivative properties calculated had specific trends for the ionic liquids. The ε ∗ -modified Sanchez-Lacombe equation of state could correlate the data to within an ARD of 0.07%, and the deviations were lower than those of the original Sanchez-Lacombe equation of state (0.19%). The improvement by ε ∗ -modified Sanchez-Lacombe equation of state can be attributed its assumed close-packed density structure at low temperature.

  14. The effect of surface pressure modification on the speed of vortex rings

    Energy Technology Data Exchange (ETDEWEB)

    Partridge, Matthew; Davis, Frank; Higson, Seamus P J [Centre of Biomedical Imaging, Cranfield University, Cranfield MK43 0AL (United Kingdom); James, Stephen W; Tatam, Ralph P, E-mail: f.davis@cranfield.ac.uk [Engineering Photonics, School of Engineering, Cranfield University, Cranfield MK43 0AL (United Kingdom)

    2014-10-01

    A series of experiments investigating the relationship between surface pressure, monolayer elasticity and the speed of vortex rings is presented. A drop of water, when touched to the surface of a larger body of water, will coalesce and form a vortex ring that moves perpendicularly to the surface of the water. The speed of the vortex ring movement away from the surface of the water has been seen to be sensitive to the presence of monolayer materials. Here we explore the influence of four monolayer forming materials, stearic acid, tricosanoic acid, 4-tert butyl calix[4]arene and calix[4]resorcarene (C11), on the properties of vortex rings. For each material, the speed of the vortex rings through the water was measured at a range of surface pressures. The speed was found to increase in a linear fashion until surface pressures greater than 30 mN m{sup −1}, where the ring’s speed decreased towards the value measured in the absence of a monolayer. Analysis of the results suggests a future route toward a better understanding of the mechanisms involved.

  15. Durability of simulated waste glass: effects of pressure and formation of surface layers

    International Nuclear Information System (INIS)

    Wicks, G.G.; Mosley, W.C.; Whitkop, P.G.; Saturday, K.A.

    1981-01-01

    The leaching behavior of simulated Savannah River Plant (SRP) waste glass was studied at elevated pressures and anticipated storage temperatures. An integrated approach, which combined leachate solution analyses with both bulk and surface studies, was used to study the corrosion process. Compositions of leachates were evaluated by colorimetry and atomic absorption. Used in the bulk and surface analyses were optical microscopy, scanning electron microscopy, x-ray energy spectroscopy, wide-angle x-ray, diffraction, electron microprobe analysis, infrared reflectance spectroscopy, electron spectroscopy for chemical analysis, and Auger electron spectroscopy. Results from this study show that there is no significant adverse effect of pressure, up to 1500 psi and 90 0 C, on the chemical durability of simulated SPR waste glass leached for one month in deionized water. In addition, the leached glass surface layer was characterized by an adsorbed film rich in minor constituents from the glass. This film remained on the glass surface even after leaching in relatively alkaline solutions at elevated pressures at 90 0 C for one month. The sample surface area to volume of leachant ratios (SA/V) was 10:1 cm -1 and 1:10 cm -1 . The corrosion mechanisms and surface and subsurface layers produced will be discussed along with the potential importance of these results to repository storage

  16. On the Pressure Distribution in a Porous Media under a Spherical Loading Surface

    Science.gov (United States)

    Wang, Qiuyun; Zhu, Zenghao; Nathan, Rungun; Wu, Qianhong

    2017-11-01

    The phenomenon of pressure generation and relaxation inside a porous media is widely observed in biological systems. Herein, we report a biomimetic study to examine the pressure distribution inside a soft porous layer when a spherical loaded surface suddenly impacts on it. A novel experimental setup was developed that includes a fully instrumented spherical piston and a soft fibrous porous layer underneath. Extensive experimental study was performed with different porous materials, different loadings and different sized loading surfaces. The pore pressure generation and the motion of the loading surface were recorded. A novel theoretical model was developed to characterize the pressure field during the process. Excellent agreement was observed between the experimental results and the theoretically predictions. It shows that the pressure generation is governed by the Brinkman parameter, α = h/Kp0.5, where h is the porous layer thickness, and Kp is the undeformed permeability. The study improves our understanding of the dynamic response of soft porous media under rapid compression. It has board impact on the study of transient load bearing in biological systems and industry applications. This work was supported by the National Science Foundation (NSF CBET) under Award #1511096.

  17. Correlation between Central Corneal Thickness and Intraocular Pressure Measured by Goldmann Applanation Tonometry or Pascal Dynamic Contour Tonometry.

    Science.gov (United States)

    Katsimpris, J M; Theoulakis, P E; Vasilopoulos, K; Skourtis, G; Papadopoulos, G E; Petropoulos, I K

    2015-04-01

    The aim of this study was to investigate the relationship between central corneal thickness and intraocular pressure measured by Goldmann applanation tonometry and Pascal dynamic contour tonometry. The study included 45 persons (90 eyes), divided into 4 groups: a) 10 normal volunteers (20 eyes); b) 16 patients (32 eyes) with primary open-angle glaucoma; c) 8 patients (16 eyes) with normal-tension glaucoma; and d) 11 patients (22 eyes) with ocular hypertension. Intraocular pressure was measured by Goldmann applanation tonometry and Pascal dynamic contour tonometry, and central corneal thickness was measured by ultrasound pachymetry. The relationship between intraocular pressure and central corneal thickness was evaluated. Intraocular pressure was correlated positively but not strongly enough with central corneal thickness when it was measured by Goldmann applanation tonometry. On the contrary, there was no correlation between intraocular pressure and central corneal thickness when intraocular pressure was measured by Pascal dynamic contour tonometry. Central corneal thickness is an important variable in the evaluation of intraocular pressure by Goldmann applanation tonometry. This factor does not interfere with the intraocular pressure measurements taken by Pascal dynamic contour tonometry. Georg Thieme Verlag KG Stuttgart · New York.

  18. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    characteristics. Flight mechanics analysis is primarily concerned with the aerodynamic data composed ... static data are the limiting case of unsteady flow pattern as time tends to infinity (or at least a few times the .... as the qualitative changes in the surface pressure model are independently confirmed by Roos. & Kegelman ...

  19. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air...... are obtained from the literature. The silica surface is modeled by a large 32 ⨯ 32 ⨯ 2 nm amorphous SiO2 structure consisting of 180000 atoms. The water consists of 18000 water molecules surrounded by N2 and O2 air molecules corresponding to air pressures of 0 bar (vacuum), 50 bar, 100 bar and 200 bar. We...... the effect of air and find a consistent increase in the water contact angle reaching 53º at 200 bar air pressure. These results are important for the creation and stability of nanobubbles at hydrophilic interfaces....

  20. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.

    Science.gov (United States)

    Wong, Tak-Sing; Kang, Sung Hoon; Tang, Sindy K Y; Smythe, Elizabeth J; Hatton, Benjamin D; Grinthal, Alison; Aizenberg, Joanna

    2011-09-21

    Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging. Inspirations from natural nonwetting structures, particularly the leaves of the lotus, have led to the development of liquid-repellent microtextured surfaces that rely on the formation of a stable air-liquid interface. Despite over a decade of intense research, these surfaces are, however, still plagued with problems that restrict their practical applications: limited oleophobicity with high contact angle hysteresis, failure under pressure and upon physical damage, inability to self-heal and high production cost. To address these challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency. Our approach-inspired by Nepenthes pitcher plants-is conceptually different from the lotus effect, because we use nano/microstructured substrates to lock in place the infused lubricating fluid. We define the requirements for which the lubricant forms a stable, defect-free and inert 'slippery' interface. This surface outperforms its natural counterparts and state-of-the-art synthetic liquid-repellent surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low contact angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice adhesion, and function at high pressures (up to about 680 atm). We show that these properties are insensitive to the precise geometry of the underlying substrate, making our approach applicable to various inexpensive, low-surface-energy structured materials (such as porous Teflon membrane). We envision that these slippery surfaces will be useful in fluid handling and

  1. Pressurization Risk Assessment of CO2 Reservoirs Utilizing Design of Experiments and Response Surface Methods

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Park, E.; Han, K.

    2015-12-01

    Monitoring of pressure buildup can provide explicit information on reservoir integrity and is an appealing tool, however pressure variation is dependent on a variety of factors causing high uncertainty in pressure predictions. This work evaluated pressurization of a reservoir system in the presence of leakage pathways as well as exploring the effects of compartmentalization of the reservoir utilizing design of experiments (Definitive Screening, Box Behnken, Central Composite, and Latin Hypercube designs) and response surface methods. Two models were developed, 1) an idealized injection scenario in order to evaluate the performance of multiple designs, and 2) a complex injection scenario implementing the best performing design to investigate pressurization of the reservoir system. A holistic evaluation of scenario 1, determined that the Central Composite design would be used for the complex injection scenario. The complex scenario evaluated 5 risk factors: reservoir, seal, leakage pathway and fault permeabilities, and horizontal position of the pathway. A total of 60 response surface models (RSM) were developed for the complex scenario with an average R2 of 0.95 and a NRMSE of 0.067. Sensitivity to the input factors was dynamic through space and time; at the earliest time (0.05 years) the reservoir permeability was dominant, and for later times (>0.5 years) the fault permeability became dominant for all locations. The RSM's were then used to conduct a Monte Carlo Analysis to further analyze pressurization risks, identifying the P10, P50, P90 values. This identified the in zone (lower) P90 values as 2.16, 1.77, and 1.53 MPa and above zone values of 1.35, 1.23, 1.09 MPa for monitoring locations 1, 2, and 3, respectively. In summary, the design of experiments and response surface methods allowed for an efficient sensitivity and uncertainty analysis to be conducted permitting a complete evaluation of the pressurization across the entire parameter space.

  2. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  3. Comparative study on two different seal surface structure for reactor pressure vessel sealing behavior

    International Nuclear Information System (INIS)

    Chen Jun; Xiong Guangming; Deng Xiaoyun

    2014-01-01

    The seal surface structure is very important to reactor pressure vessel (RPV) sealing behavior. In this paper, two 3-D RPV sealing analysis finite models have been established with different seal surface structures, in order to study the influence of two structures. The separation of RPV upper and lower flanges, bolt loads and etc. are obtained, which are used to evaluate the sealing behavior of the RPV. Meanwhile, the comparative analysis of safety margin of two seal surface structural had been done, which provides the theoretical basis for RPV seal structure design optimization. (authors)

  4. Surface modification of nanofibrillated cellulose films by atmospheric pressure dielectric barrier discharge

    DEFF Research Database (Denmark)

    Siró, Istvan; Kusano, Yukihiro; Norrman, Kion

    2013-01-01

    of atmospheric pressure plasma treatment, the water contact angle of NFC films increased and the values were comparable with those of PLA films. On the other hand, surface chemical characterization revealed inhomogeneity of the plasma treatment and limited improvement in adhesion between NFC and PLA films......A dielectric barrier discharge in a gas mixture of tetrafluoromethane (CF4) and O2 was used for tailoring the surface properties of nanofibrillated cellulose (NFC) films. The surface chemical composition of plasma-modified NFC was characterized by means of X-ray photoelectron spectroscopy and time....... Further research in this direction is required in order to enhance the uniformity of the plasma treatment results....

  5. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-06

    Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work will be discussed.

  6. Empirical correlation between mechanical and physical parameters of irradiated pressure vessel steels

    International Nuclear Information System (INIS)

    Tipping, P.; Solt, G.; Waeber, W.

    1991-02-01

    Neutron irradiation embrittlement of nuclear reactor pressure vessel (PV) steels is one of the best known ageing factors of nuclear power plants. If the safety limits set by the regulators for the PV steel are not satisfied any more, and other measures are too expensive for the economics of the plant, this embrittlement could lead to the closure of the plant. Despite this, the fundamental mechanisms of neutron embrittlement are not yet fully understood, and usually only empirical mathematical models exist to asses neutron fluence effects on embrittlement, as given by the Charpy test for example. In this report, results of a systematic study of a French forging (1.2 MD 07 B), irradiated to several fluences will be reported. Mechanical property measurements (Charpy tensile and Vickers microhardness), and physical property measurements (small angle neutron scattering - SANS), have been done on specimens having the same irradiation or irradiation-annealing-reirradiation treatment histories. Empirical correlations have been established between the temperature shift and the decrease in the upper shelf energy as measured on Charpy specimens and tensile stresses and hardness increases on the one hand, and the size of the copper-rich precipitates formed by the irradiation on the other hand. The effect of copper (as an impurity element) in enhancing the degradation of mechanical properties has been demonstrated; the SANS measurements have shown that the size and amount of precipitates are important. The correlations represent the first step in an effort to develop a description of neutron irradiation induced embrittlement which is based on physical models. (author) 6 figs., 27 refs

  7. Study on hot melt pressure sensitive coil material for removing surface nuclear pollution dust

    Science.gov (United States)

    Wang, Jing; Li, Jiao; Wang, Jianhui; Zheng, Li; Li, Jian; Lv, Linmei

    2018-02-01

    A new method for removing surface nuclear pollution by using hot melt pressure sensitive membrane was presented. The hot melt pressure sensitive membrane was designed and prepared by screening hot melt pressure sensitive adhesive and substrate. The simulated decontamination test of the hot melt pressure sensitive membrane was performed by using 100 mesh and 20 mesh standard sieve dust for simulation of nuclear explosion fall ash and radioactive contaminated particles, respectively. It was found that the single decontamination rate of simulated fall ash and contaminated particles were both above 80% under pressure conditions of 25kPa or more at 140°C. And the maximum single decontamination rate was 92.5%. The influence of heating temperature and pressure on the decontamination rate of the membrane was investigated at the same time. The results showed that higher heating temperature could increase the decontamination rate by increasing the viscosity of the adhesive. When the adhesive amount of the adhesive layer reached saturation, a higher pressure could increase the single decontamination rate also.

  8. Development of CHF correlation “MG-NV” for low pressure and low velocity conditions applied to PWR safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yumura, T.; Yodo, T.; Makino, Y.; Suemura, T. [Mitsubishi Heavy Industries, LTD., Kobe, Hyogo (Japan)

    2011-07-01

    The Critical Heat Flux (CHF) is one of the important parameters in the safety analysis of Pressurized Water Reactor (PWR). If the CHF is reached, an abrupt drop occurs in the heat transfer between the fuel rod cladding and the reactor coolant, which may induce a large temperature excursion of fuel cladding and a subsequent fuel failure. Therefore, accurate prediction of CHF is required in order to assure a sufficient safety margin in the PWR core. Mitsubishi Heavy Industries, ltd (MHI) is developing a new series of CHF correlations which covers various fuel designs and wide range of fluid conditions with sufficient reliability. In this paper, a new CHF correlation, MG-NV (Mitsubishi Generalized correlation for Non-Vane grid spacers) is presented. This correlation is one of the basic components of the new correlation series and was developed to cover low pressure and low velocity conditions where the rod bundle CHF data are limited. The CHF correlation was developed based on open CHF database and provides conservative but more reliable rod bundle CHF predictions compared with the conventional CHF correlations used in safety analyses at low pressure condition, such as Main Steam Line Break event. (author)

  9. Correlation analysis of alveolar bone loss in buccal/palatal and proximal surfaces in rats

    Directory of Open Access Journals (Sweden)

    Carolina Barrera de Azambuja

    2012-12-01

    Full Text Available The aim was to correlate alveolar bone loss in the buccal/palatal and the mesial/distal surfaces of upper molars in rats. Thirty-three, 60-day-old, male Wistar rats were divided in two groups, one treated with alcohol and the other not treated with alcohol. All rats received silk ligatures on the right upper second molars for 4 weeks. The rats were then euthanized and their maxillae were split and defleshed with sodium hypochlorite (9%. The cemento-enamel junction (CEJ was stained with 1% methylene blue and the alveolar bone loss in the buccal/palatal surfaces was measured linearly in 5 points on standardized digital photographs. Measurement of the proximal sites was performed by sectioning the hemimaxillae, restaining the CEJ and measuring the alveolar bone loss linearly in 3 points. A calibrated and blinded examiner performed all the measurements. Intraclass Correlation Coefficient revealed values of 0.96 and 0.89 for buccal/lingual and proximal surfaces, respectively. The Pearson Correlation Coefficient (r between measurements in buccal/palatal and proximal surfaces was 0.35 and 0.05 for the group treated with alcohol, with and without ligatures, respectively. The best correlations between buccal/palatal and proximal surfaces were observed in animals not treated with alcohol, in sites both with and without ligatures (r = 0.59 and 0.65, respectively. A positive correlation was found between alveolar bone loss in buccal/palatal and proximal surfaces. The correlation is stronger in animals that were not treated with alcohol, in sites without ligatures. Areas with and without ligature-induced periodontal destruction allow detection of alveolar bone loss in buccal/palatal and proximal surfaces.

  10. Brain hypoxanthine concentration correlates to lactate/pyruvate ratio but not intracranial pressure in patients with acute liver failure

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Hauerberg, John; Jørgensen, Linda

    2010-01-01

    The pathogenesis of cerebral edema in acute liver failure is suggested, in in vitro and animal studies, to involve a compromised oxidative metabolism with a decrease in cerebral ATP levels and an increase in purine concentrations. In this study we hypothesize that the cerebral concentrations...... of hypoxanthine, inosine, and lactate/pyruvate (LP) ratio are increased and correlated in patients with acute liver failure. Furthermore, we expect the purines and L/P ratio to correlate with intracranial pressure (ICP) (positively), and cerebral perfusion pressure (CPP) (negatively)....

  11. Correlation characteristics of signals reflected by the wavy surface of ocean in mirror direction

    Science.gov (United States)

    Zhitkovskiy, Y. Y.; Nosov, A. V.; Savelyev, V. V.

    1985-06-01

    An experimental study was carried out to determine the correlation characteristics of pseudonoise signals reflected from a wave-covered surface in the mirror direction. The major measured quantity was the reciprocal correlation coefficient between the transmitted signal and the reflected signal. The transmitter was lowered from a ship on a 150 m cable. The receiver and preamplifier were lowered to the same depth from a buoy which was allowed to drift from the ship to a distance of 100-500 m, the changing distance changing the angle of the beam reflected from the surface of the ocean back down to the hydrophone. The radiator transmitted a pulsed signal with a pseudonoise carrier. The results were interpreted within the framework of ordinary correlation theory by processing several recordings, calculating the sign and ordinary correlation coefficients to determine the variation in sign correlation coefficient as a function of the ordinary correlation coefficient. Graphs of the average variation are presented. It was found that the medium did not distort the signal as it propagated through the water mass (within the limits of experimental accuracy). The correlation coefficient between the transmitted and reflected signals is thus determined entirely by the characteristics of reradiation of the sound by the wavecovered surface.

  12. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    Formation of meta-stable surface-alloys can be used as a way to tune the binding strength of reaction intermediates and could therefore be used as improved catalyst materials for heterogeneous catalysis. Understanding the role of adsorbates on such alloy surfaces can provide new insights for engi...... and bulk Pt contributions. The study provides direct evidence on how it is possible to monitor the surface structure under near operation conditions. © 2014 Elsevier B.V. All rights reserved.......Formation of meta-stable surface-alloys can be used as a way to tune the binding strength of reaction intermediates and could therefore be used as improved catalyst materials for heterogeneous catalysis. Understanding the role of adsorbates on such alloy surfaces can provide new insights...... for engineering of more active or selective catalyst materials. Dynamical surface changes on alloy surfaces due to the adsorption of reactants in high gas pressures are challenging to investigate using standard characterization tools. Here we apply synchrotron illuminated near ambient pressure X-ray photoelectron...

  13. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Kan, C.W.; Kwong, C.H.; Ng, S.P.

    2015-01-01

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment

  14. Correlation between spirometry values and pulmonary artery pressure in young healthy subjects.

    Science.gov (United States)

    Grossman, Alon; Benderly, Michal; Prokupetz, Alex; Gordon, Barak; Kalter-Leibovici, Ofra

    2014-03-01

    Pulmonary hypertension is frequently associated with parenchymal lung disease. We evaluated the association between spirometry values and pulmonary artery systolic pressure (PASP) in young subjects without lung disease : We studied applicants to the Israeli Air Force, who undergo routine evaluation that includes resting spirometry and echocardiography. Applicants with overt lung disease were excluded. All echocardiographic studies performed in the years 1994 through 2010 (n = 6,598) were screened, and files that included PASP and spirometry values were analyzed for the association between PASP and FVC, FEV1, FEV1/FVC, peak expiratory flow, and forced expiratory flow during the middle half of the FVC maneuver. Of the 647 air force applicants who underwent echocardiography in which PASP was measurable and had spirometry data, 607 (94%) were male, and their average age was 18.16 ± 0.73 years. Mean PASP was 26.4 ± 5.2 mm Hg (range 10-41 mm Hg). None of the spirometry values significantly correlated with PASP. PASP in young healthy subjects is not significantly associated with spirometry values. Lung mechanics probably do not contribute significantly to PASP in this population.

  15. Correlation and transport properties for mixtures at constant pressure and temperature

    Science.gov (United States)

    White, Alexander J.; Collins, Lee A.; Kress, Joel D.; Ticknor, Christopher; Clérouin, Jean; Arnault, Philippe; Desbiens, Nicolas

    2017-06-01

    Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. We present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2 g/cm 3 , namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity for various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. The concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.

  16. Development of bio/blood compatible polypropylene through low pressure nitrogen plasma surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Gomathi, N., E-mail: gomathi@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Department of Space, Trivandrum, 695547 (India); Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, 721302 (India); Rajasekar, R. [Materials Science Center, Indian Institute of Technology, Kharagpur, 721302 (India); Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, 561-756 (Korea, Republic of); Babu, R. Rajesh [Rubber Technology Center, Indian Institute of Technology, Kharagpur, 721302 (India); Advanced Tyre Research, Apollo Tyres, Baroda, 391750 (India); Mishra, Debasish [Department of Biotechnolgy, Indian Institute of Technology, Kharagpur, 721302 (India); Neogi, S. [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, 721302 (India)

    2012-10-01

    Surface modification of polypropylene by nitrogen containing plasma was performed in this work in order to improve the wettability which resulted in enhanced biocompatibility and blood compatibility. Various nitrogen containing functional groups as well as oxygen containing functional groups were found to be incorporated to the polymer surface during plasma treatment and post plasma reaction respectively. Wettability of the polymers was evaluated by static contact angle measurement to show the improvement in hydrophilicity of plasma treated polypropylene. Cross linking and surface modification were reported to be dominating in the case of nitrogen plasma treatment compared to degradation. The effect of various process variables namely power, pressure, flow rate and treatment time on surface energy and weight loss was studied at various levels according to the central composite design of response surface methodology (RSM). Except pressure the other variables resulted in increased weight loss due to etching whereas with increasing pressure weight loss was found to increase and then decrease. The effect of process variables on surface morphology of polymers was evaluated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Well spread fibroblast cells on nitrogen plasma treated polypropylene due to the presence of CO, NH{sup 2+} and NH{sup +} was observed. Reduced platelet adhesion and increased partial thromboplastin time evidenced the increased blood compatibility. - Highlights: Black-Right-Pointing-Pointer Improved biocompatibility and blood compatibility of polypropylene. Black-Right-Pointing-Pointer Nitrogen plasma surface modification. Black-Right-Pointing-Pointer Maintaining a balance between polar group incorporation and weight loss due to etching. Black-Right-Pointing-Pointer Optimization of process conditions by response surface methodology.

  17. Development of bio/blood compatible polypropylene through low pressure nitrogen plasma surface modification

    International Nuclear Information System (INIS)

    Gomathi, N.; Rajasekar, R.; Babu, R. Rajesh; Mishra, Debasish; Neogi, S.

    2012-01-01

    Surface modification of polypropylene by nitrogen containing plasma was performed in this work in order to improve the wettability which resulted in enhanced biocompatibility and blood compatibility. Various nitrogen containing functional groups as well as oxygen containing functional groups were found to be incorporated to the polymer surface during plasma treatment and post plasma reaction respectively. Wettability of the polymers was evaluated by static contact angle measurement to show the improvement in hydrophilicity of plasma treated polypropylene. Cross linking and surface modification were reported to be dominating in the case of nitrogen plasma treatment compared to degradation. The effect of various process variables namely power, pressure, flow rate and treatment time on surface energy and weight loss was studied at various levels according to the central composite design of response surface methodology (RSM). Except pressure the other variables resulted in increased weight loss due to etching whereas with increasing pressure weight loss was found to increase and then decrease. The effect of process variables on surface morphology of polymers was evaluated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Well spread fibroblast cells on nitrogen plasma treated polypropylene due to the presence of CO, NH 2+ and NH + was observed. Reduced platelet adhesion and increased partial thromboplastin time evidenced the increased blood compatibility. - Highlights: ► Improved biocompatibility and blood compatibility of polypropylene. ► Nitrogen plasma surface modification. ► Maintaining a balance between polar group incorporation and weight loss due to etching. ► Optimization of process conditions by response surface methodology.

  18. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  19. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    International Nuclear Information System (INIS)

    Özen, Soner; Pat, Suat; Korkmaz, Şadan; Şenay, Volkan

    2016-01-01

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the range of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.

  20. Investigation of the surface free energy of the ITO thin films deposited under different working pressure

    Energy Technology Data Exchange (ETDEWEB)

    Özen, Soner, E-mail: osoner@ogu.edu.tr; Pat, Suat; Korkmaz, Şadan [Eskişehir Osmangazi University, Physics Department, 26480 (Turkey); Şenay, Volkan [Eskişehir Osmangazi University, Physics Department, 26480 (Turkey); Bayburt University, Primary Science Education Department, 69000 (Turkey)

    2016-03-25

    This study discusses the influence of working pressure on the surface energy of the ITO thin films produced by radio frequency magnetron sputtering method. Optical tensiometer (Attension Theta Lite) is used for evaluating wetting behavior of the water droplet on the film surface and Equation of State method was selected to determine surface free energy for this study. Equation of state method does not divide the surface tension into different components such as polar, dispersive, acid-base. It is calculated the surfaces’ free energy measuring the contact angle with a single liquid. The surface free energy value was in the range of 15-31 mN/m. Also, the transmittances were determined in the wavelength range between 200 and 1000 nm using the UNICO 4802 UV-Vis double beam spectrophotometer. Transmittances of the produced ITO thin films are greater than %70 in the visible range.

  1. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1998-01-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well

  2. The dependence of the nuclear charge form factor on short range correlations and surface fluctuation effects

    International Nuclear Information System (INIS)

    Massen, S. E.; Garistov, V. P.; Grypeos, M. E.

    1996-01-01

    The effects of nuclear surface fluctuations on harmonic oscillator elastic charge form factor of light nuclei are investigated, simultaneously approximating the short-range correlations through a Jastrow correlation factor. Inclusion of the surface fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of 16 O and 40 Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that surface-fluctuation correlations produce a drastic change in the asymptotic behaviour of the point-proton form-factor, which now falls off quite slowly (i.e. as const.q -4 ) at large values of the momentum transfer q

  3. Surface-Energetic Heterogeneity of Nanoporous Solids for CO2 and CO Adsorption: The Key to an Adsorption Capacity and Selectivity at Low Pressures.

    Science.gov (United States)

    Kim, Moon Hyeon; Cho, Il Hum; Choi, Sang Ok; Lee, In Soo

    2016-05-01

    This study has been focused on surface energetic heterogeneity of zeolite (H-mordenite, "HM"), activated carbon ("RB2") and metal-organic framework family ("Z1200") materials and their isotherm features in adsorption of CO2 and CO at 25 degrees C and low pressures ≤ 850 Torr. The nanoporous solids showed not only distinctive shape of adsorption isotherms for CO2 with relatively high polarizability and quadrupole moment but also different capacities in the CO2 adsorption. These differences between the adsorbents could be well correlated with their surface nonuniformity. The most heterogeneous surfaces were found with the HM that gave the highest CO2 uptake at all pressures allowed, while the Z1200 consisted of completely homogeneous surfaces and even CO2 adsorption linearly increased with pressure. An intermediate character was indicated on the surface of RB2 and thus this sorbent possessed isotherm features between the HM and Z1200 in CO2 adsorption. Such different surface energetics was fairly consistent with changes in CO2/CO selectivity on the nanoporous adsorbents up to equilibrated pressures near 850 Torr.

  4. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    International Nuclear Information System (INIS)

    Štěpánová, Vlasta; Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana; Černák, Mirko

    2015-01-01

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  5. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  6. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  7. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  8. Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles

    Science.gov (United States)

    Maidaniuc, Andreea; Miculescu, Florin; Voicu, Stefan Ioan; Andronescu, Corina; Miculescu, Marian; Matei, Ecaterina; Mocanu, Aura Catalina; Pencea, Ion; Csaki, Ioana; Machedon-Pisu, Teodor; Ciocan, Lucian Toma

    2018-04-01

    Hydroxyapatite powders characteristics need to be determined both for quality control purposes and for a proper control of microstructural features of bone reconstruction products. This study combines bulk morphological and compositional analysis methods (XRF, SEM-EDS, FT-IR) with surface-related methods (XPS, contact angle measurements) in order to correlate the characteristics of hydroxyapatite powders derived from bovine bone for its use in medical applications. An experimental approach for correlating the surface and volume composition was designed based on the analysis depth of each spectral method involved in the study. Next, the influences of powder particle size and forming method on the contact angle between water drops and ceramic surface were evaluated for identifying suitable strategies of tuning hydroxyapatite's wettability. The results revealed a preferential arrangement of chemical elements at the surface of hydroxyapatite particles which could induce a favourable material behaviour in terms of sinterability and biological performance.

  9. Correlation of Noninvasive Blood Pressure and Invasive Intra-arterial Blood Pressure in Patients Treated with Vasoactive Medications in a Neurocritical Care Unit.

    Science.gov (United States)

    Saherwala, Ali A; Stutzman, Sonja E; Osman, Mohamed; Kalia, Junaid; Figueroa, Stephen A; Olson, DaiWai M; Aiyagari, Venkatesh

    2018-03-22

    The correlation between noninvasive (oscillometric) blood pressure (NBP) and intra-arterial blood pressure (IAP) in critically ill patients receiving vasoactive medications in a Neurocritical Care Unit has not been systematically studied. The purpose of this study is to examine the relationship between simultaneously measured NBP and IAP recordings in these patients. Prospective observational study of patients (N = 70) admitted to a neurocritical care unit receiving continuous vasopressor or antihypertensive infusions. Paired NBP/IAP observations along with covariate and demographic data were abstracted via chart audit. Analysis was performed using SAS v9.4. A total of 2177 paired NBP/IAP observations from 70 subjects (49% male, 63% white, mean age 59 years) receiving vasopressors (n = 21) or antihypertensive agents (n = 49) were collected. Paired t test analysis showed significant differences between NBP versus IAP readings: ([systolic blood pressure (SBP): mean = 136 vs. 140 mmHg; p blood pressure (DBP): mean = 70 vs. 68 mmHg, p blood pressure (MAP): mean = 86 vs. 90 mmHg, p blood pressures. Pearson correlation coefficients show strong positive correlations for paired MAP (r = 0.82), SBP (r = 0.84), and DBP (r = 0.73) recordings. An absolute NBP-IAP SBP difference of > 20 mmHg was seen in ~ 20% of observations of nicardipine, ~ 25% of observations of norepinephrine, and ~ 35% of observations of phenylephrine. For MAP, the corresponding numbers were ~ 10, 15, and 25% for nicardipine, norepinephrine, and phenylephrine, respectively. Despite overall strong positive correlations between paired NBP and IAP readings of MAP and SBP, clinically relevant differences in blood pressure are frequent. When treating with vasoactive infusions targeted to a specific BP goal, it is important to keep in mind that NBP and IAP values are not interchangeable.

  10. Surface modification of polytetrafluoroethylene film using the atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Luo, Y

    2003-01-01

    The atmospheric pressure glow discharge (APGD) is more promising in industrial applications compared with glow discharges in a gas other than air or in low-pressure air, which needs an expensive vacuum system. In this paper, the APGD and dielectric barrier discharge (DBD) are generated in atmospheric air using a power-frequency voltage source, and the transition from DBD to APGD is achieved by varying the electrode arrangement. The differences between their discharge characteristics are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena. The effects of APGD and DBD on polytetrafluoroethylene (PTFE) surface modification are studied. The surface properties are characterized by contact angle measurement, x-ray photoelectron spectroscopy and scanning electron microscopy. It is found that the APGD and DBD treatments modify the PTFE surface in both morphology and composition. APGD is more effective in PTFE surface modification than DBD as it can modify the surface more uniformly, implant more oxygen atoms into the surface and make the contact angle decline to a lower level. The experimental results are discussed

  11. Surface treatment of polyethylene terephthalate film using atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19 degree, respectively. (authors)

  12. The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling

    Science.gov (United States)

    Mischna, M.; Piqueux, S.

    2017-12-01

    On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may

  13. Synchronous Surface Pressure and Velocity Measurements of standard model in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Zhijun Sun

    2018-01-01

    Full Text Available Experiments in the Hypersonic Wind tunnel of NUAA(NHW present synchronous measurements of bow shockwave and surface pressure of a standard blunt rotary model (AGARD HB-2, which was carried out in order to measure the Mach-5-flow above a blunt body by PIV (Particle Image Velocimetry as well as unsteady pressure around the rotary body. Titanium dioxide (Al2O3 Nano particles were seeded into the flow by a tailor-made container. With meticulous care designed optical path, the laser was guided into the vacuum experimental section. The transient pressure was obtained around model by using fast-responding pressure-sensitive paint (PSPsprayed on the model. All the experimental facilities were controlled by Series Pulse Generator to ensure that the data was time related. The PIV measurements of velocities in front of the detached bow shock agreed very well with the calculated value, with less than 3% difference compared to Pitot-pressure recordings. The velocity gradient contour described in accord with the detached bow shock that showed on schlieren. The PSP results presented good agreement with the reference data from previous studies. Our work involving studies of synchronous shock-wave and pressure measurements proved to be encouraging.

  14. Development of Maximum Bubble Pressure Method for Surface Tension Measurement of High Viscosity Molten Silicate

    Science.gov (United States)

    Takeda, Osamu; Iwamoto, Hirone; Sakashita, Ryota; Iseki, Chiaki; Zhu, Hongmin

    2017-07-01

    A surface tension measurement method based on the maximum bubble pressure (MBP) method was developed in order to precisely determine the surface tension of molten silicates in this study. Specifically, the influence of viscosity on surface tension measurements was quantified, and the criteria for accurate measurement were investigated. It was found that the MBP apparently increased with an increase in viscosity. This was because extra pressure was required for the flowing liquid inside the capillary due to viscous resistance. It was also expected that the extra pressure would decrease by decreasing the fluid velocity. For silicone oil with a viscosity of 1000 \\hbox {mPa}{\\cdot }\\hbox {s}, the error on the MBP could be decreased to +1.7 % by increasing the bubble detachment time to 300 \\hbox {s}. However, the error was still over 1 % even when the bubble detachment time was increased to 600 \\hbox {s}. Therefore, a true value of the MBP was determined by using a curve-fitting technique with a simple relaxation function, and that was succeeded for silicone oil at 1000 \\hbox {mPa}{\\cdot } \\hbox {s} of viscosity. Furthermore, for silicone oil with a viscosity as high as 10 000 \\hbox {mPa}{\\cdot }\\hbox {s}, the apparent MBP approached a true value by interrupting the gas introduction during the pressure rising period and by re-introducing the gas at a slow flow rate. Based on the fundamental investigation at room temperature, the surface tension of the \\hbox {SiO}2-40 \\hbox {mol}%\\hbox {Na}2\\hbox {O} and \\hbox {SiO}2-50 \\hbox {mol}%\\hbox {Na}2\\hbox {O} melts was determined at a high temperature. The obtained value was slightly lower than the literature values, which might be due to the influence of viscosity on surface tension measurements being removed in this study.

  15. Correlation and dating of Quaternary alluvial-fan surfaces using scarp diffusion

    Science.gov (United States)

    Hsu, Leslie; Pelletier, Jon D.

    2004-06-01

    Great interest has recently been focused on dating and interpreting alluvial-fan surfaces. As a complement to the radiometric methods often used for surface-exposure dating, this paper illustrates a rapid method for correlating and dating fan surfaces using the cross-sectional shape of gullies incised into fan surfaces. The method applies a linear hillslope-diffusion model to invert for the diffusivity age, κt (m 2), using an elevation profile or gradient (slope) profile. Gullies near the distal end of fan surfaces are assumed to form quickly following fan entrenchment. Scarps adjacent to these gullies provide a measure of age. The method is illustrated on fan surfaces with ages of approximately 10 ka to 1.2 Ma in the arid southwestern United States. Two areas of focus are Death Valley, California, and the Ajo Mountains piedmont, Arizona. Gully-profile morphology is measured in two ways: by photometrically derived gradient (slope) profiles and by ground-surveyed elevation profiles. The κt values determined using ground-surveyed profiles are more consistent than those determined using photo-derived κt values. However, the mean κt values of both methods are comparable. The photometric method provides an efficient way to quantitatively and objectively correlate and relatively-date alluvial-fan surfaces. The κt values for each surface are determined to approximately 30-50% accuracy.

  16. Use of Pressure-Redistributing Support Surfaces among Elderly Hip Fracture Patients across the Continuum of Care: Adherence to Pressure Ulcer Prevention Guidelines

    Science.gov (United States)

    Baumgarten, Mona; Margolis, David; Orwig, Denise; Hawkes, William; Rich, Shayna; Langenberg, Patricia; Shardell, Michelle; Palmer, Mary H.; McArdle, Patrick; Sterling, Robert; Jones, Patricia S.; Magaziner, Jay

    2010-01-01

    Purpose: To estimate the frequency of use of pressure-redistributing support surfaces (PRSS) among hip fracture patients and to determine whether higher pressure ulcer risk is associated with greater PRSS use. Design and Methods: Patients (n = 658) aged [greater than or equal] 65 years who had surgery for hip fracture were examined by research…

  17. Surface stabilized GMR nanorods of silver coated CrO2 synthesized via a polymer complex at ambient pressure

    International Nuclear Information System (INIS)

    Biswas, S.; Singh, G.P.; Ram, S.; Fecht, H.-J.

    2013-01-01

    Stable anisotropic nanorods of surface modified CrO 2 (∼18 nm diameter) with a correlated diamagnetic layer (2–3 nm thickness) of silver efficiently tailors useful magnetic and magnetoresistance (MR) properties. Essentially, it involves a core-shell structure that is developed by displacing part of Cr 4+ ions by Ag atoms on the CrO 2 surface (topotactic surface layer) via an etching reaction of a CrO 2 -polymer complex with Ag + ions in hot water followed by heating the dried sample at 300–400 °C in air. The stable Ag-layer so obtained in the form of a shell protects CrO 2 such that it no longer converts to Cr 2 O 3 in ambient pressure during the processing. X-ray diffractogram of the Rutile type tetragonal CrO 2 structure (lattice parameters a=0.4429 nm and c=0.2950 nm) includes weak peaks of a minority phase of an fcc-Ag (a=0.4086 nm). The silver surface layer, which manifests itself in a doublet of the 3d 5/2 and 3d 3/2 X-ray photoelectron bands of binding energies 368.46 eV and 374.48 eV, respectively, suppresses almost all Cr bands to appear in a measurable intensity. The sample exhibits a distinctly enhanced MR-value, e.g., (−) 7.6% at 77 K, than reported values in compacted CrO 2 powders or composites. Such a large MR-value in the Coulomb blockade regime ( 2 nanorods. - Highlights: • Synthesis and structural studies of a novel GMR material of Ag coated CrO 2 . • Tailoring useful GMR property in CrO 2 nanorods of controlled shape and anisotropy. • Enhanced GMR is explained in correlation to the surface structure of CrO 2 nanorods

  18. Positive correlation between Tono-Pen intraocular pressure and central corneal thickness.

    Science.gov (United States)

    Dohadwala, A A; Munger, R; Damji, K F

    1998-10-01

    To examine the relationship between intraocular pressure (IOP) readings taken by the Tono-Pen tonometer (Mentor O&O, Norwell, MA) and central corneal thickness (CCT). Prospective cross-sectional population study. There were 651 eyes of 332 healthy subjects. A questionnaire was given to each subject requesting information on gender, age, race, and other factors that can influence IOP. The IOP then was measured using the Tono-Pen followed by measurements of CCT using an ultrasonic pachymeter. The IOP was found to increase by 2.9 mmHg/100 microns CCT in males and 1.2 mmHg/100 microns in females. For males, CCT was found to be statistically significant in predicting IOP (P < 0.001 in the right and left eyes) and diabetes was of borderline significance (P = 0.012 in the right eye, P = 0.089 in the left eye). For females, CCT was of borderline significance (P = 0.064 in the right eye, P = 0.019 in the left eye). In females, a family history of glaucoma (P = 0.021 in the right eye, P = 0.022 in the left eye) and hypertension (P = 0.010 in the right eye, P = < 0.001 in the left eye) were also significant in the prediction of IOP. Race was found to be a significant predictor of CCT (P < 0.001 in both right and left eyes) for both males and females. Clinicians should be aware that, as with the Goldmann applanation tonometer, the Tono-Pen has a systematic error in IOP readings caused by its dependence on CCT. Tono-Pen IOP readings are positively correlated to CCT in males and, to a lesser extent, in females as well. The CCT measurements should be considered to ensure proper interpretation of IOP measurements in the diagnosis and management of disorders in which the CCT or IOP readings are outside normal limits.

  19. Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure

    Science.gov (United States)

    Ordaz, Irian; Li, Wu

    2013-01-01

    The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.

  20. Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Menard, Etienne; Rogers, John A.; Kim, Seok; Carlson, Andrew

    2016-08-09

    In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.

  1. Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification

    International Nuclear Information System (INIS)

    Chen Guangliang; Chen Shihua; Zhou Mingyan; Feng Wenran; Gu Weichao; Yang Size

    2006-01-01

    A novel atmospheric pressure plasma fluidized bed (APPFB) with one liquid electrode was designed, and its preliminary discharge characteristics were studied. The glow discharge in the APPFB was generated by applying a low power with helium (He) gas, and the plasma gas temperature was no higher than 320 K when the applied power was lower than 11 W. The plasma optical emission spectrum (OES) of the gas mixture consisting of He and hexamethyldisiloxane (HMDSO) was recorded by a UV-visible monochromator. The calcium carbonate powders were modified by APPFB using HMDSO in the He plasma. The powder surface energy was decreased greatly by coating an organosilicon polymer onto the powder surface. This surface modification process changed the wettability of the powder from super-hydrophilicity to super-hydrophobicity, and the contact angle of water on the modified powders surface was greater than 160 0

  2. Simulation of Effective Slip and Drag in Pressure-Driven Flow on Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2016-01-01

    Full Text Available The flow on superhydrophobic surfaces was investigated using finite element modeling (FEM. Surfaces with different textures like grooves, square pillars, and cylinders immersed in liquid forming Cassie state were modeled. Nonslip boundary condition was assumed at solid-liquid interface while slip boundary condition was supposed at gas-liquid interface. It was found that the flow rate can be affected by the shape of the texture, the fraction of the gas-liquid area, the height of the channel, and the driving pressure gradient. By extracting the effective boundary slip from the flow rate based on a model, it was found that the shape of the textures and the fraction of the gas-liquid area affect the effective slip significantly while the height of the channel and the driving pressure gradient have no obvious effect on effective slip.

  3. Quantitative spatial analysis of the mouse brain lipidome by pressurized liquid extraction surface analysis

    DEFF Research Database (Denmark)

    Almeida, Reinaldo; Berzina, Zane; Christensen, Eva Arnspang

    2015-01-01

    Here we describe a novel surface sampling technique termed pressurized liquid extraction surface analysis (PLESA), which in combination with a dedicated high-resolution shotgun lipidomics routine enables both quantification and in-depth structural characterization of molecular lipid species...... extracted directly from tissue sections. PLESA uses a sealed and pressurized sampling probe that enables the use of chloroform-containing extraction solvents for efficient in situ lipid microextraction with a spatial resolution of 400 μm. Quantification of lipid species is achieved by the inclusion...... of internal lipid standards in the extraction solvent. The analysis of lipid microextracts by nanoelectrospray ionization provides long-lasting ion spray which in conjunction with a hybrid ion trap-orbitrap mass spectrometer enables identification and quantification of molecular lipid species using a method...

  4. DPPC Monolayers Exhibit an Additional Phase Transition at High Surface Pressure

    DEFF Research Database (Denmark)

    Shen, Chen; de la Serna, Jorge B.; Struth, Bernd

    2015-01-01

    Pulmonary surfactant forms a monolayer at the air/aqueous interface within the lung. During the breath process, the surface pressure (Π) periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. Pulmonary surfactant consists of ~90......% of lipid with 10% integrated proteins. Among its lipid compounds, di-palmitoyl-phosphatidylcholine (DPPC) dominates (~45wt%). DPPC is the only known lipid that can be compressed to very high surface pressure (~70mN/m) before its monolayer collapses. Most probably, this feature contributes to the mechanical...... stability of the alveoli monolayer. Still, to the best of our knowledge, some details of the compression isotherm presented here and the related structures of the DPPC monolayer were not studied so far. The liquid-expanded/liquid-condensed phase transition of the DPPC monolayer at ~10mN/m is well known...

  5. Atmospheric pressure surface sampling/ionization techniques for direct coupling of planar separations with mass spectrometry.

    Science.gov (United States)

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-06-18

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Expressions to Rayleigh circumferential phase velocity and dispersion relation for a cylindrical surface under mechanical pressure

    Science.gov (United States)

    Sebold, Jean Eduardo; de Lacerda, Luiz Alkimin

    2018-04-01

    This paper describes a substantiated mathematical theory for Rayleigh waves propagated on some types of metal cylinders. More specifically, it presents not only a new way to express the dispersion relation of Rayleigh waves propagated on the cylindrical surface, but also how it can be used to construct a mathematical equation showing that the applied static mechanical pressure affects the shear modulus of the metal cylinder. All steps, required to conclude the process, consider the equation of motion as a function of radial and circumferential coordinates only, while the axial component can be overlooked without causing any problems. Some numerical experiments are done to illustrate the changes in the Rayleigh circumferential phase velocity in a metal cylindrical section due to static mechanical pressure around its external surface.

  7. Spreading and atomization of droplets on a vibrating surface in a standing pressure field

    Science.gov (United States)

    Deepu, P.; Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan

    2012-10-01

    We report the first observation and analytical model of deformation and spreading of droplets on a vibrating surface under the influence of an ultrasonic standing pressure field. The standing wave allows the droplet to spread, and the spreading rate varies inversely with viscosity. In low viscosity droplets, the synergistic effect of radial acoustic force and the transducer surface acceleration also leads to capillary waves. These unstable capillary modes grow to cause ultimate disintegration into daughter droplets. We find that using nanosuspensions, spreading and disintegration can be prevented by suppressing the development of capillary modes and subsequent break-up.

  8. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Zhang Ruiyun; Pan Xianlin; Jiang Muwen; Peng Shujing; Qiu Yiping

    2012-01-01

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  9. Tactile surface classification for limbed robots using a pressure sensitive robot skin

    International Nuclear Information System (INIS)

    Shill, Jacob J; Collins Jr, Emmanuel G; Coyle, Eric; Clark, Jonathan

    2015-01-01

    This paper describes an approach to terrain identification based on pressure images generated through direct surface contact using a robot skin constructed around a high-resolution pressure sensing array. Terrain signatures for classification are formulated from the magnitude frequency responses of the pressure images. The initial experimental results for statically obtained images show that the approach yields classification accuracies >98%. The methodology is extended to accommodate the dynamic pressure images anticipated when a robot is walking or running. Experiments with a one-legged hopping robot yield similar identification accuracies ≈99%. In addition, the accuracies are independent with respect to changing robot dynamics (i.e., when using different leg gaits). The paper further shows that the high-resolution capabilities of the sensor enables similarly textured surfaces to be distinguished. A correcting filter is developed to accommodate for failures or faults that inevitably occur within the sensing array with continued use. Experimental results show using the correcting filter can extend the effective operational lifespan of a high-resolution sensing array over 6x in the presence of sensor damage. The results presented suggest this methodology can be extended to autonomous field robots, providing a robot with crucial information about the environment that can be used to aid stable and efficient mobility over rough and varying terrains. (paper)

  10. Correlation of water vapor adsorption behavior of wood with surface thermodynamic properties

    Science.gov (United States)

    Mandla A. Tshabalala; Agnes R. Denes; R. Sam. Williams

    1999-01-01

    To improve the overall performance of wood-plastic composites, appropriate technologies are needed to control moisture sorption and to improve the interaction of wood fiber with selected hydrophobic matrices. The objective of this study was to determine the surface thermodynamic characteristics of a wood fiber and to correlate those characteristics with the fiberas...

  11. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    Science.gov (United States)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  12. A prospective, in vivo evaluation of two pressure-redistribution surfaces in healthy volunteers using pressure mapping as a quality control instrument .

    Science.gov (United States)

    Miller, Stephannie; Parker, Michael; Blasiole, Nicole; Beinlich, Nancy; Fulton, Judith

    2013-02-01

    Deep tissue injury (DTI) can rapidly evolve into a higher stage pressure ulcer. Use of pressure-redistribution surfaces is a widely accepted practice for the prevention of pressure ulcers in acute care patients, particularly in departments where care processes limit mobility. A 15-year-old patient developed a sacral DTI 24 hours after completion of a lengthy (12- hour) electrophysiology (EP) study and catheter ablation. A root cause analysis (RCA) conducted to investigate the origin of the hospital-acquired suspected DTI prompted a small investigation to evaluate the pressure-distribution properties of the EP lab surface and an OR table pad. Five healthy adult employee volunteers were evaluated in the supine position by placing a sensing mat between the volunteer and the test surface. Interface pressures (on a scale of 0 mm Hg to 100 mm Hg) were captured after a "settling in" time of 4 minutes, and the number of sensors registering very high pressures (above 90 mm Hg) across the surface were recorded. On the OR table pad, zero to six sensors registered >90 mm Hg compared to two to 20 sensors on the EP lab surface. These data, combined with the acquired DTI, initiated a change in EP lab surfaces. Although interface pressure measurements only provide information about one potential support surface characteristic, it can be helpful during an RCA. Studies to compare the effect of support surfaces in all hospital units on patient outcomes are needed.

  13. Planar time-resolved PIV for velocity and pressure retrieval in atmospheric boundary layer over surface waves.

    Science.gov (United States)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Bopp, Maximilian; Caulliez, Guillemette

    2017-04-01

    Air-sea coupling in general is important for weather, climate, fluxes. Wind wave source is crucially important for surface waves' modeling. But the wind-wave growth rate is strongly uncertain. Using direct measurements of pressure by wave-following Elliott probe [1] showed, weak and indefinite dependence of wind-wave growth rate on the wave steepness, while Grare et.al. [2] discuss the limitations of direct measurements of pressure associated with the inability to measure the pressure close to the surface by contact methods. Recently non-invasive methods for determining the pressure on the basis of technology of time-resolved PIV are actively developed [3]. Retrieving air flow velocities by 2D PIV techniques was started from Reul et al [4]. The first attempt for retrieving wind pressure field of waves in the laboratory tank from the time-resolved PIV measurements was done in [5]. The experiments were performed at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m). For 18 regimes with wind speed up to 14 m/s including presence of puddle waves, a combination of time resolved PIV technique and optical measurements of water surface form was applied to detailed investigation of the characteristics of the wind flow over the water surface. Ammonium chloride smoke was used for flow visualization illuminated by two 6 Wt blue diode lasers combined into a vertical laser plane. Particle movement was captured with high-speed camera using Scheimpflug technique (up to 20 kHz frame rate with 4-frame bursts, spatial resolution about 190 μm, field of view 314x12 mm). Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave form. The resulting time resolved instantaneous velocity fields on regular grid allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. The average wind velocity patterns were

  14. Aerodynamic noise characterization of a full-scale wind turbine through high-frequency surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2015-01-01

    wind turbine with a 80 m diameter rotor as well as measurements of an airfoil section tested in a wind tunnel. The turbine was extensively equipped in order to monitor the local inflow onto the rotating blades. Further a section of the 38 m long blade was instrumented with 50 microphones flush...... in a wind tunnel on a copy of the blade section of the full scale blade. Computational Fluid Dynamics calculations were conducted to investigate the influence of the inflow conditions on the airfoil and blade sections aerodynamics and aeroacoustics. Comparisons between measurement data and model results......The aim of this work is to investigate and characterize the high-frequency surface pressure fluctuations on a full-scale wind turbine blade and in particular the influence of the atmospheric turbulence. As these fluctuations are highly correlated to the sources of both turbulent inflow noise...

  15. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  16. Stability of Atmospheric-Pressure Plasma Induced Changes on Polycarbonate Surfaces

    Science.gov (United States)

    Sharma, Rajesh; Holcomb, Edward; Trigwell, Steve

    2006-01-01

    Polycarbonate films are subjected to plasma treatment in a number of applications such as improving adhesion between polycarbonate and silicon alloy in protective and optical coatings. The changes in surface chemistry due to plasma treatment have tendency to revert back. Thus stability of the plasma induced changes on polymer surfaces over desired time period is very important. The objective of this study was to examine the effect of ageing on atmospheric pressure helium-plasma treated polycarbonate (PC) sample as a function of treatment time. The ageing effects were studied over a period of 10 days. The samples were plasma treated for 0.5, 2, 5 and 10 minutes. Contact angle measurements were made to study surface energy changes. Modification of surface chemical structure was examined using, X-ray Photoelectron Spectroscopy (XPS). Contact angle measurements on untreated and plasma treated surfaces were made immediately, 24, 48, 72 and 96 hrs after treatment. Contact angle decreased from 93 deg for untreated sample to 30 deg for sample plasma treated for 10 minutes. After 10 days the contact angles for the 10 minute plasma treated sample increased to 67 deg, but it never reverted back to that of untreated surface. Similarly the O/C ratio increased from 0.136 for untreated sample to 0.321 for 10 minute plasma treated sample indication increase in surface energy.

  17. Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hao; Ding, Guoliang; Jiang, Weiting; Hu, Haitao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, 381 Huaihaizhong Road, Shanghai 200020 (China)

    2009-11-15

    The objective of this paper is to investigate the effect of nanoparticle on the frictional pressure drop characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, and to present a correlation for predicting the frictional pressure drop of refrigerant-based nanofluid. R113 refrigerant and CuO nanoparticle were used for preparing refrigerant-based nanofluid. Experimental conditions include mass fluxes from 100 to 200 kg m{sup -2} s{sup -1}, heat fluxes from 3.08 to 6.16 kW m{sup -2}, inlet vapor qualities from 0.2 to 0.7, and mass fractions of nanoparticles from 0 to 0.5 wt%. The experimental results show that the frictional pressured drop of refrigerant-based nanofluid increases with the increase of the mass fraction of nanoparticles, and the maximum enhancement of frictional pressure drop is 20.8% under above conditions. A frictional pressure drop correlation for refrigerant-based nanofluid is proposed, and the predictions agree with 92% of the experimental data within the deviation of {+-}15%. (author)

  18. Aluminum metal surface cleaning and activation by atmospheric-pressure remote plasma

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, J., E-mail: jmespadero@uco.es; Bravo, J.A.; Calzada, M.D.

    2017-06-15

    Highlights: • Atmospheric-pressure postdischarges have been applied on aluminium surfaces. • The outer hydrocarbon layer is reduced by the action of the postdischarge. • The treatment promotes the appearance of hydrophilic OH radicals in the surface. • Effectivity for distances up to 5 cm allows for treating irregular surfaces. • Ageing in air due to the disappearance of OH radicals has been reported. - Abstract: The use of the remote plasma (postdischarge) of argon and argon-nitrogen microwave plasmas for cleaning and activating the surface of metallic commercial aluminum samples has been studied. The influence of the nitrogen content and the distance between the treated samples and the end of the discharge on the hydrophilicity and the surface energy has been analyzed by means of the sessile drop technique and the Owens-Wendt method. A significant increase in the hydrophilicity has been noted in the treated samples, together with an increase in the surface energy from values around 37 mJ/m{sup 2} to 77 mJ/m{sup 2}. Such increase weakly depends on the nitrogen content of the discharge, and the effectivity of the treatment extends to distances up to 5 cm from the end of the discharge, much longer than those reported in other plasma-based treatments. The analysis of the treated samples using X-ray photoelectron spectroscopy reveals that such increase in the surface energy takes place due to a reduction of the carbon content and an increase in the amount of OH radicals in the surface. These radicals tend to disappear within 24–48 h after the treatment when the samples are stored in contact with ambient air, resulting in the ageing of the treated surface and a partial retrieval of the hydrophobicity of the surface.

  19. [Correlative analysis of the diversity patterns of regional surface water, NDVI and thermal environment].

    Science.gov (United States)

    Duan, Jin-Long; Zhang, Xue-Lei

    2012-10-01

    Taking Zhengzhou City, the capital of Henan Province in Central China, as the study area, and by using the theories and methodologies of diversity, a discreteness evaluation on the regional surface water, normalized difference vegetation index (NDVI), and land surface temperature (LST) distribution was conducted in a 2 km x 2 km grid scale. Both the NDVI and the LST were divided into 4 levels, their spatial distribution diversity indices were calculated, and their connections were explored. The results showed that it was of operability and practical significance to use the theories and methodologies of diversity in the discreteness evaluation of the spatial distribution of regional thermal environment. There was a higher overlap of location between the distributions of surface water and the lowest temperature region, and the high vegetation coverage was often accompanied by low land surface temperature. In 1988-2009, the discreteness of the surface water distribution in the City had an obvious decreasing trend. The discreteness of the surface water distribution had a close correlation with the discreteness of the temperature region distribution, while the discreteness of the NDVI classification distribution had a more complicated correlation with the discreteness of the temperature region distribution. Therefore, more environmental factors were needed to be included for a better evaluation.

  20. Cytocompatibility evaluation and surface characterization of TiNi deformed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Awang Shri, Dayangku Noorfazidah, E-mail: AWANGSHRI.Dayangku@nims.go.jp [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Tsuchiya, Koichi [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Yamamoto, Akiko [Biomaterials Unit, International Center for Material Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-01

    Effect of high-pressure torsion (HPT) deformation on biocompatibility and surface chemistry of TiNi was systematically investigated. Ti–50 mol% Ni was subjected to HPT straining for different numbers of turns, N = 0.25, 0.5, 1, 5 and 10 at a rotation speed of 1 rpm. X-ray photoelectron spectroscopy observations after 7 days of cell culture revealed the changes in the surface oxide composition, enrichment of Ti and detection of nitrogen derived from organic molecules in the culture medium. Plating efficiency of L929 cells was slightly increased by HPT deformation though no significant difference was observed. Albumin adsorption was higher in HPT-deformed samples, while vitronectin adsorption was peaked at N = 1. HPT deformation was also found to effectively suppress the Ni ion release from the TiNi samples into the cell culture medium even after the low degree of deformation at N = 0.25. - Highlights: • Nanostructured Ti–50 mol%Ni alloy was produced using high-pressure torsion. • HPT deformation improved L929 growth on TiNi samples. • Changes in surface chemistry were observed in HPT deformed samples. • Protein adsorption behavior was influenced by the surface chemistry. • Ni ion release was suppressed in HPT deformed samples.

  1. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  2. Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry

    International Nuclear Information System (INIS)

    Ragni, D; Ashok, A; Van Oudheusden, B W; Scarano, F

    2009-01-01

    The present investigation assesses a procedure to extract the aerodynamic loads and pressure distribution on an airfoil in the transonic flow regime from particle image velocimetry (PIV) measurements. The wind tunnel model is a two-dimensional NACA-0012 airfoil, and the PIV velocity data are used to evaluate pressure fields, whereas lift and drag coefficients are inferred from the evaluation of momentum contour and wake integrals. The PIV-based results are compared to those derived from conventional loads determination procedures involving surface pressure transducers and a wake rake. The method applied in this investigation is an extension to the compressible flow regime of that considered by van Oudheusden et al (2006 Non-intrusive load characterization of an airfoil using PIV Exp. Fluids 40 988–92) at low speed conditions. The application of a high-speed imaging system allows the acquisition in relatively short time of a sufficient ensemble size to compute converged velocity statistics, further translated in turbulent fluctuations included in the pressure and loads calculation, notwithstanding their verified negligible influence in the computation. Measurements are performed at varying spatial resolution to optimize the loads determination in the wake region and around the airfoil, further allowing us to assess the influence of spatial resolution in the proposed procedure. Specific interest is given to the comparisons between the PIV-based method and the conventional procedures for determining the pressure coefficient on the surface, the drag and lift coefficients at different angles of attack. Results are presented for the experiments at a free-stream Mach number M = 0.6, with the angle of attack ranging from 0° to 8°

  3. Absolute local sea surface in the Vanuatu Archipelago from GPS, satellite altimetry and pressure gauge data

    Science.gov (United States)

    Cheng, K. K.; Ballu, V.; Bouin, M.; Calmant, S.; Shum, C.

    2004-12-01

    Water height measurements provided by seafloor tide gauges are a combination of sea level variation and local ground motion. Both signals are of scientific interest, but they must be separated in order to be useful. A reliable estimation of the vertical ground motion is important in very seismically areas such as the Pacific Ocean rim. One promising method to separate the two contributions is to use satellite altimetry which gives absolute water height that is independent of the local ground motion. However, the altimeter data must be calibrated using ground truth measurements. Once different components of the signal are separated, bottom pressure gauges can be used to detect vertical movements of the seafloor. The Vanuatu Archipelago is part of the Pacific "ring of fire", where plates are quickly converging. In this area, movements are very rapid and the seismic activity is intense, which gives a good opportunity to study deformation and seismic cycle. To get an integrate picture of vertical deformation over one plate and between the two plates, one needs to be able to monitor vertical movements on both underwater and emerged areas. We conducted an experiment in this area to compare measurements from bottom pressure gauges located beneath altimetry satellite tracks with sea surface altitude measurements from GPS. Two bottom pressure gauge are immerged since Nov. 1999 in this region. In order to perform absolute calibration for multiple satellite altimeters that overfly the region, we conducted 2 campaigns of GPS measurements of instantaneous sea surface height onboard the R/V Alis and using a GPS buoy. We present results of GPS computations for the March 2003 and March 2004 campaigns. These sea level GPS measurements are compared with multiple altimeter-measured sea surface heights, and sampling differences and high frequency variations were removed using continuous pressure gauge data. The observed discrepancies are likely to be explained by local geoid

  4. Development of an Organosilicon-Based Superhydrophobic/Icephobic Surface Using an Atmospheric Pressure Plasma Jet =

    Science.gov (United States)

    Asadollahi, Siavash

    During the past few decades, plasma-based surface treatment methods have gained a lot of interest in various applications such as thin film deposition, surface etching, surface activation and/or cleaning, etc. Generally, in plasma-based surface treatment methods, high-energy plasma-generated species are utilized to modify the surface structure or the chemical composition of a substrate. Unique physical and chemical characteristics of the plasma along with the high controllability of the process makes plasma treatment approaches very attractive in several industries. Plasma-based treatment methods are currently being used or investigated for a number of practical applications, such as adhesion promotion in auto industry, wound management and cancer treatment in biomedical industry, and coating development in aerospace industry. In this study, a two-step procedure is proposed for the development of superhydrophobic/icephobic coatings based on atmospheric-pressure plasma treatment of aluminum substrates using air and nitrogen plasma. The effects of plasma parameters on various surface properties are studied in order to identify the optimum conditions for maximum coating efficiency against icing and wetting. In the first step, the interactions between air or nitrogen plasma and the aluminum surface are studied. It is shown that by reducing jet-to-substrate distance, air plasma treatment, unlike nitrogen plasma treatment, is capable of creating micro-porous micro-roughened structures on the surface, some of which bear a significant resemblance to the features observed in laser ablation of metals with short and ultra-short laser pulses. The formation of such structures in plasma treatment is attributed to a transportation of energy from the jet to the surface over a very short period of time, in the range of picoseconds to microseconds. This energy transfer is shown to occur through a streamer discharge from the rotating arc source in the jet body to a close proximity of

  5. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator

    KAUST Repository

    Shahzad, Muhammad Wakil

    2013-01-01

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This article presents the heat transfer behavior for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93-3.60 kPa (corresponding solution saturation temperatures of 279-300 K) as well as seawater salinity of 15,000 to 90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the article is motivated by the importance of evaporative film boiling in the desalination processes such as the multi-effect distillation (MED) or multi-stage flashing (MSF): It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 298 K (3.1 kPa). Such micro bubbles are generated near to the tube wall surfaces and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapor, i.e., dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this article and it shows good agreement to the measured data with an experimental uncertainty of 8% and regression RMSE of 3.5%. © 2012 Elsevier Ltd. All rights reserved.

  6. Distribution of blood pressure & correlates of hypertension in school children aged 5-14 years from North East India.

    Science.gov (United States)

    Borah, Prasanta Kr; Devi, Utpala; Biswas, Dipankar; Kalita, Hem Ch; Sharma, Meenakshi; Mahanta, Jagadish

    2015-09-01

    Elevated blood pressure (BP) in the young predicts serious cardiovascular events in the adults. High prevalence of adult hypertension reported from Assam, North East (NE) India may be linked with elevated blood pressure in the childhood. The present study was an attempt to describe the distribution of BP and correlates of hypertension in children aged 5-14 yr. A total of 10,003 school children from 99 schools of Dibrugarh district, Assam, NE India, were surveyed by stratified random cluster method. Blood pressure, demographic and anthropometric information were recorded. Blood pressure was categorized in to normal, prehypertension, stage I and stage II hypertension. Girls had significantly higher (104.2 ± 12.0 vs. 103.2 ± 11.6 mm Hg, p0 <0.001) mean systolic blood pressure (SBP) than boys. Both SBP and diastolic blood pressure (DBP) revealed significant correlation with age, height, weight and BMI in overall and in gender specific analysis. Hypertension was found in 7.6 per cent school children (Boys: 7.3%, Girls: 7.8%). In multivariable analysis older age (OR 3.3, 95% CI: 2.82-3.91), children from tea garden community (OR 1.3, 95% CI: 1.08-1.55) and other community (OR 1.4, 95% CI: 1.18-1.73) and overweight (OR 1.5, 95% CI: 1.1-2.1) were independently associated with hypertension. Mean blood pressure in the young school children of 5-14 yr was high. A programme comprising screening, early detection and health promotion through school health programmes may help prevent future complications of hypertension.

  7. Correlations Between Sea-Surface Salinity Tendencies and Freshwater Fluxes in the Pacific Ocean

    Science.gov (United States)

    Li, Zhen; Adamec, David

    2007-01-01

    Temporal changes in sea-surface salinity (SSS) from 21 years of a high resolution model integration of the Pacific Ocean are correlated with the freshwater flux that was used to force the integration. The correlations are calculated on a 1 x10 grid, and on a monthly scale to assess the possibility of deducing evaporation minus precipitation (E-P) fields from the salinity measurements to be taken by the upcoming Aquarius/SAC-D mission. Correlations between the monthly mean E-P fields and monthly mean SSS temporal tendencies are mainly zonally-oriented, and are highest where the local precipitation is relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude storm tracks and are relatively small in the tropics. The response of the model's surface salinity to surface forcing is very complex, and retrievals of freshwater fluxes from SSS measurements alone will require consideration of other processes, including horizontal advection and vertical mixing, rather than a simple balance between the two.

  8. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas

    2013-01-01

    the mass exchange between compartments. A benchmark test, which is based on a classic experimental data set on infiltration excess (Horton) overland flow, identified a feedback mechanism between surface runoff and soil air pressures. Our study suggests that air compression in soils amplifies surface runoff......This work introduces the soil air system into integrated hydrology by simulating the flow processes and interactions of surface runoff, soil moisture and air in the shallow subsurface. The numerical model is formulated as a coupled system of partial differential equations for hydrostatic (diffusive...... wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...

  9. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  10. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Zheng Peichao; Liu Keming; Wang Jinmei; Dai Yu; Yu Bin; Zhou Xianju; Hao Honggang; Luo Yuan

    2012-01-01

    Highlights: ► Equipment called water cathode atmospheric pressure glow discharge was used to improve the hydrophilicity of polyimide films. ► The data shows good homogeneity and the variation trends of contact angles are different for polar and non-polar testing liquids. ► The thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. ► Surface hydrophilicity after plasma treatment is improved partly due to the increase in the roughness. ► The hydrophilicity of polyimide films is still better than untreated ones after long-term storage. - Abstract: The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the

  11. Correlating humidity-dependent ionically conductive surface area with transport phenomena in proton-exchange membranes.

    Science.gov (United States)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T; Clark, Kyle; Weber, Adam Z; Kostecki, Robert

    2011-10-13

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using direct-current voltammetry and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion membrane was examined.

  12. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  13. Effect of nanoscale surface texture on the contact-pressure-dependent conduction characteristics of a carbon-nanotube thin-film tactile pressure sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chaehyun; Lee, Kunhak; Choi, Eunsuk; Kim, Ahsung; Kim, Jinoh; Lee, Seungbeck [Hanyang University, Seoul (Korea, Republic of)

    2011-01-15

    We report on a novel tactile pressure sensor structure that transfers the vertical pressure applied to the sample's surface to lateral strain in the carbon-nanotube thin film embedded in an elastomer by using a 'wavy' structured substrate contact surface. When pressure was applied to the poly(dimethylsiloxane) (PDMS) surface, it was transferred to a carbon-nanotube thin film (CNTF) underneath, where it stretched to conform to the wavy substrate surface. This resulted in an elongation, or lateral strain, in the CNTF layer, their reducing its conductance. The measurements showed that with an applied vertical pressure of 30 kPa, a 15% reduction in conductance was achieved with only a 500-nm deflection in the CNTF, and repeatedly applied pressures for 3,600 cycles (12 hours) resulted in only a 2% reduction in sensitivity, demonstrating the their film's high sensitivity and reliability. The mechanical stability and high sensitivity of the CNTF/PDMS hybrid with wavy substrate structures may make possible applications to future tactile pressure sensors.

  14. Study of discharges produced by surface waves under medium and high pressure: application to chemical analysis

    International Nuclear Information System (INIS)

    Laye epouse Granier, Agnes

    1986-01-01

    This report deals with the study of microwave discharges produced in argon gas by surface waves in the 20-760 Torr pressure range. Application to chemical analysis by emission optical spectroscopy is also investigated. First of all we study the propagation of a surface wave in a bounded plasma in which the effective collision frequency for momentum transfer ν is higher than the excitation one. The axial electron density profile is determined from two diagnostic techniques, i.e., phase variations of the wave field and Stark broadening of H β line. Then we deduce the discharge characteristics ν, θ (maintaining power of an electron-ion pair) and E eff (effective electric field for discharge sustaining) from the electron density profile. Then an energy balance of the discharge is developed. It explains the change of operating conditions in the 20-50 Torr range. At low pressure the discharge is governed by ambipolar diffusion whereas at high pressure, the electrons are mainly lost by volume recombination of Ar 2 + . Finally, we report on chemical analysis experiment of gases (optimum sensibility in found near 100 Torr) and of metallic solutions sprayed by a graphite oven. Performances of such a design and ICP plasma torches are compared. (author) [fr

  15. Capillary pressure in a porous medium with distinct pore surface and pore volume fractal dimensions.

    Science.gov (United States)

    Deinert, M R; Dathe, A; Parlange, J-Y; Cady, K B

    2008-02-01

    The relationship between capillary pressure and saturation in a porous medium often exhibits a power-law dependence. The physical basis for this relation has been substantiated by assuming that capillary pressure is directly related to the pore radius. When the pore space of a medium exhibits fractal structure this approach results in a power-law relation with an exponent of 3-D(v), where D(v) is the pore volume fractal dimension. However, larger values of the exponent than are realistically allowed by this result have long been known to occur. Using a thermodynamic formulation for equilibrium capillary pressure we show that the standard result is a special case of the more general exponent (3-D(v))(3-D(s)) where D(s) is the surface fractal dimension of the pores. The analysis reduces to the standard result when D(s)=2, indicating a Euclidean relationship between a pore's surface area and the volume it encloses, and allows for a larger value for the exponent than the standard result when D(s)>2 .

  16. Correlation of end tidal carbon dioxide, amplitude spectrum area, and coronary perfusion pressure in a porcine model of cardiac arrest.

    Science.gov (United States)

    Segal, Nicolas; Metzger, Anja K; Moore, Johanna C; India, Laura; Lick, Michael C; Berger, Paul S; Tang, Wanchun; Benditt, David G; Lurie, Keith G

    2017-09-01

    Amplitude Spectrum Area (AMSA) values during ventricular fibrillation (VF) correlate with myocardial energy stores and predict defibrillation success. By contrast, end tidal CO 2 (ETCO2) values provide a noninvasive assessment of coronary perfusion pressure and myocardial perfusion during cardiopulmonary resuscitation (CPR). Given the importance of the timing of defibrillation shock delivery on clinical outcome, we tested the hypothesis that AMSA and ETCO2 correlate with each other and can be used interchangably to correlate with myocardial perfusion in an animal laboratory preclinical, randomized, prospective investigation. After 6 min of untreated VF, 12 female pigs (32 ± 1 Kg), isoflurane anesthetized pigs received sequentially 3 min periods of standard (S) CPR, S-CPR+ an impedance threshold device (ITD), and then active compression decompression (ACD) + ITD CPR Hemodynamic, AMSA, and ETCO2 measurements were made with each method of CPR The Spearman correlation and Friedman tests were used to compare hemodynamic parameters. ETCO2, AMSA, coronary perfusion pressure, cerebral perfusion pressure were lowest with STD CPR, increased with STD CPR + ITD and highest with ACD CPR + ITD Further analysis demonstrated a positive correlation between AMSA and ETCO2 ( r  = 0.37, P  = 0.025) and between AMSA and key hemodynamic parameters ( P  < 0.05). This study established a moderate positive correlation between ETCO2 and AMSA These findings provide the physiological basis for developing and testing a novel noninvasive method that utilizes either ETCO2 alone or the combination of ETCO2 and AMSA to predict when defibrillation might be successful. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability.

    Science.gov (United States)

    Lee, Kilsoo; Lee, Jaehong; Kim, Gwangmook; Kim, Youngjae; Kang, Subin; Cho, Sungjun; Kim, SeulGee; Kim, Jae-Kang; Lee, Wooyoung; Kim, Dae-Eun; Kang, Shinill; Kim, DaeEun; Lee, Taeyoon; Shim, Wooyoung

    2017-11-01

    Fabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes. This study utilizes a writing activity with a pencil and paper, which enables the construction of a fundamental capacitor that can be used as a flexible capacitive pressure sensor with high pressure sensitivity and short response time and that it can be inexpensively fabricated over large areas. Furthermore, the paper-based pressure sensors are integrated into a fully functional 3D touch-pad device, which is a step toward the realization of omnipresent electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

    2008-03-12

    Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of

  19. Effect of magnetic field, pressure and correlated hopping of electrons on conductivity of Mott-Hubbard material

    International Nuclear Information System (INIS)

    Didukh, Leonid; Skorenkyy, Yuriy; Kramar, Oleksandr; Dovhopyaty, Yuriy

    2006-01-01

    We discuss the influence of external magnetic field h and pressure p on a static conductivity of Mott-Hubbard material which is described by model with strong intra-site Coulomb repulsion and correlated hopping of electrons. Green function and energy spectrum are calculated by the use of a variant of projection procedure. The static conductivity σ xx is calculated as a function of electron concentration n, h, p, and temperature T. The correlated hopping is shown to cause the electron-hole asymmetry of transport properties of real materials

  20. X-ray magnetic circular dichroism discloses surface spins correlation in maghemite hollow nanoparticles

    Science.gov (United States)

    Bonanni, Valentina; Basini, Martina; Peddis, Davide; Lascialfari, Alessandro; Rossi, Giorgio; Torelli, Piero

    2018-01-01

    The spin-spin correlations in hollow (H) and full (F) maghemite nanoparticles (NPs) have been studied by X-ray magnetic circular dichroism (XMCD). An unexpected XMCD signal was detected and analyzed under the application of a small field (μ0H = 160 Oe) and at remanence for both F and H NPs. Clear differences in the magnitude and in the lineshape of the XMCD spectra between F and H NPs emerged. By comparing XMCD measurements performed with a variable degree of surface sensitivity, we were able to address the specific role played by the surface spins in the magnetism of the NPs.

  1. Arterial blood pressure but not serum albumin concentration correlates with ADC ratio values in pediatric posterior reversible encephalopathy syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Andre; Zuccoli, Giulio [Section of Neuroradiology Children' s Hospital of Pittsburgh of UPMC, Department of Radiology, Pittsburgh, PA (United States); Hsu, Ariel [University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); La Colla, Luca [University of Parma, Department of Anesthesiology, Parma (Italy)

    2015-07-15

    Posterior reversible encephalopathy syndrome (PRES) is a clinical-radiological entity affecting both adults and children characterized by neurotoxicity often in setting of hypertension coupled with distinct brain magnetic resonance imaging features. Decreased serum albumin level has been suggested to correlate with the presence of vasogenic brain edema in adult PRES. Serum albumin has thus been hypothesized to protect against neurotoxicity in PRES by reducing vasogenic brain edema through its role in maintaining plasma osmotic pressure and endothelial integrity. The purpose of our study was to investigate if such correlation between decreased serum albumin level and PRES-related vasogenic edema could be found in children. We conducted a retrospective study of 25 pediatric patients diagnosed with PRES. Underlying clinical conditions, presenting symptoms, blood pressures, and serum albumin levels at onset of symptoms were collected. Brain MR imaging studies were reviewed. We used a quantitative method to evaluate the degree of vasogenic edema by measuring apparent diffusion coefficient (ADC) values of the T2-FLAIR hyperintense brain lesions. No significant correlation was found between serum albumin level and degree of PRES-related vasogenic edema. A significant correlation was found between elevated blood pressure and degree of vasogenic edema in the temporal lobes (p = 0.02 and 0.04, respectively) but not in the other cerebral lobes or cerebellum. Our initial results suggest blood pressure, not serum albumin level, as a main biomarker for brain edema in children with PRES. Thus, our study does not suggest a protective role of serum albumin against PRES-related neurotoxicity in children. (orig.)

  2. Surface reconstruction of GaAs(001) nitrided under the controlled As partial pressure [rapid communication

    Science.gov (United States)

    Imayoshi, Takahiro; Oigawa, Haruhiro; Shigekawa, Hidemi; Tokumoto, Hiroshi

    2003-08-01

    Under the controlled As partial pressure, the nitridation process of GaAs(0 0 1)-(2 × 4) surface was studied using a scanning tunneling microscope (STM) combined with an electron cyclotron resonance plasma-assisted molecular beam epitaxy system. With either prolonging the nitridation time or decreasing the As partial pressure, the previously reported (3 × 3) structure with two dimers per surface cell ((3 × 3)-2D) was found to progressively convert into a new (3 × 3) structure characterized by one dimer per surface cell ((3 × 3)-1D). Reversely the exposure to arsenic transformed the structure from (3 × 3)-1D to (3 × 3)-2D, suggesting that the topmost layer is composed of As 2-dimers. Based on these STM images together with the X-ray photoelectron spectroscopy data, we propose the new As 2-dimer coverage models to explain both (3 × 3)-1D and -2D structures involving the exchange reaction of arsenic with nitrogen in the subsurface region of GaAs.

  3. The intrinsic error thresholds of the surface code with correlated errors

    Science.gov (United States)

    Jouzdani, Pejman; Mucciolo, Eduardo; Novais, Eduardo

    2014-03-01

    We study how the resilience of the surface code to decoherence is affected by the presence of a bosonic bath. The surface code experiences an effective dynamics due to the coupling to a bosonic bath that correlates the qubits of the code. The range of the effective induced qubit-qubit interaction depends on parameters related to the bath correlation functions. We show hat different ranges set different intrinsic bounds on the fidelity of the code. These bounds appear to be independent of the stochastic error probabilities frequently studied in the literature and to be merely a consequence of the induced dynamics by the bath. We introduce a new definition of stabilizers based on logical operators that allows us to efficiently implement a Metropolis algorithm to determine the intrinsic upper bounds to the error threshold. Supported by the ONR and the NSF grant CCF 1117241.

  4. Static Air Support Surfaces to Prevent Pressure Injuries: A Multicenter Cohort Study in Belgian Nursing Homes.

    Science.gov (United States)

    Serraes, Brecht; Beeckman, Dimitri

    2016-01-01

    The aim of this study was to investigate the incidence and risk factors for developing pressure injuries (PIs) in patients placed on a static air support surfaces: mattress overlay, heel wedge, and seat cushion. Multicenter cohort study. The sample comprised 176 residents; their mean age was 87 (SD = 6.76) years; their mean Braden Scale score was 14 (SD = 2.54). The study was performed on a convenience sample of 6 nursing homes in Belgium. Data were collected on 23 care units. The primary outcome measure, cumulative PI incidence (category [stage] II-IV) over a 30-day observation period, was calculated. Pressure injury occurrence was defined according to the 2014 European and US National Pressure Injury Advisory panels, Pan Pacific Pressure Injury Alliance classification system. The PI incidence for category (stage) II-IV was 5.1%. Six residents (3.4%) developed a category II PI, and 3 (1.7%) developed a category III PI; no category IV ulcers occurred. No significant risk factors for category II-IV PIs were identified using multivariate logistic regression. Time of sitting in a chair was found to be a risk factor for development of nonblanchable erythema (category I PI) (odds ratio = 21.608; 95% confidence interval [CI], 20.510-22.812; P = .013). The median time to develop a category II-IV PI was 16 days (interquartile range = 2-26). The interrater reliability between the observations of the researcher and nurses on-site was almost perfect (0.86; 95% CI, 0.81-0.91). We found a low incidence of PIs when using a static air overlay mattress for patients at risk in a nursing home population. Static air support surfaces, alongside patient-tailored patient repositioning protocols, should be considered to prevent PIs in this patient population.

  5. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    Science.gov (United States)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  6. Correlation between the wear behaviour and the mechanical properties of several surface treatments

    International Nuclear Information System (INIS)

    Lelait, L.; Lina, A.; Rezakhanlou, R.; Duysen, J.C. van; Stebut, J. von

    1993-01-01

    Surface mechanical strength of chromium base (electrolytic and plasma sprayed) coatings is studied for friction and wear applications in nuclear environment. Indentation, scratch, and wear testing results are compared. In particular intrinsic coating brittleness is investigated as a mechanism responsible for impact wear. Electrolytic, hard chromium plate has a wear resistance well below that of the spray coated specimens studied. Acoustic emission level and brittle damage features are shown to be correlated. (orig.)

  7. Correlative assessment of two predictive soil hydrology models with measured surface soil geochemistry

    Science.gov (United States)

    Filley, T. R.; Li, M.; Le, P. V.; Kumar, P.; Yan, Q.; Papanicolaou, T.; Hou, T.; Wang, J.

    2017-12-01

    Spatial variability of surface soil organic matter on the hill slope scale is strongly influenced by topographic variation, especially in sloping terrains, where the coupled effects of soil moisture and texture are principle drivers for stabilization and decomposition. Topographic wetness index (TWI) calculations have shown reasonable correlations with soil organic carbon (SOC) content at broad spatial scales. However, due to inherent limitations of the "depression filling" approach, traditional TWI methods are generally ineffectual at capturing how small-scale micro-topographic ( 1m2) variation controls water dynamics and, subsequently, poorly correlate to surface soil biogeochmical measures. For TWI models to capture biogeochmical controls at the scales made possible by LiDAR data they need to incoportate the dynamic connection between soil moisture, local climate, edaphic properties, and micro-topographic variability. We present the results of a study correlating surface soil geochemical data across field sites in the Upper Sangamon River Basin (USRB) in Central Illinois, USA with a range of land use types to SAGA TWI and a newly developed Dynamic Topographic Wetness Index (DTWI). The DTWI for all field sites were obtained from the probability distribution of long-term stochastically modeled soil moisture in between wilting point (WP) and field capacity (FC) using Dhara modeling framework. Whereas the SAGA TWI showed no correlation with soil geochemistry measures across the site-specific data, the DTWI, within a site, was strongly, positively correlated with soil nitrogen, organic carbon, and δ15N at three of the six sites and revealed controls potentially related to connectivity to local drainage paths. Overall, this study indicates that soil moisture derived by DTWI may offer a significant improvement in generating estimates in long-term soil moisture, and subsequently, soil biogeochemistry dynamics at a crucial landscape scale.

  8. Investigation of surface treatment of conductive wire in cylindrical atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Ye Rubin; Kagohashi, Tsutomu; Zheng Wei

    2009-01-01

    Polyethylene insulated electric wire was treated in He and Ar dielectric barrier discharge atmospheric pressure plasmas generated in a quartz tube wound with tubular electrodes. The wire was put penetrating through the high voltage and the grounded electrodes, improving the discharge and facilitating uniform surface treatment. In this work, the influences of conductivity of the wire on the effects of surface treatment and discharge behavior were investigated. Surface properties of the wire samples were analyzed by means of surface energy measurement and X-ray photoelectron spectroscopy. In order to reveal the mechanism for treating the conductive wire, I-V discharge waveforms were measured and time-resolved plasma images were taken. It was demonstrated that the conductive wire was involved in the discharge process, reducing the breakdown voltage significantly and enhancing the discharge. It shows that the discharge mode was strongly dependent on the conductivity of a wire. Intensive surface discharges developed along the conductive wire were found to be mainly responsible for noticeable improvement in the treatment effect.

  9. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  10. Hydrophilic film polymerized on the inner surface of PMMA tube by an atmospheric pressure plasma jet

    Science.gov (United States)

    Yin, Mengmeng; Huang, Jun; Yu, Jinsong; Chen, Guangliang; Qu, Shanqing

    2017-07-01

    Polymethyl methacrylate (PMMA) tube is widely used in biomedical and mechanical engineering fields. However, it is hampered for some special applications as the inner surface of PMMA tube exhibts a hydrophobic characteristic. The aim of this work is to explore the hydrophilic modification of the inner surface of the PMMA tubes using an atmospheric pressure plasma jet (APPJ) system that incorporates the acylic acid monomer (AA). Polar groups were grafted onto the inner surface of PMMA tube via the reactive radicals (•OH, •H, •O) generated in the Ar/O2/AA plasma, which were observed by the optical emission spectroscopy (OES). The deposition of the PAA thin layer on the PMMA surface was verified through the ATR-FTIR spectra, which clearly showed the strengthened stretching vibration of the carbonyl group (C=O) at 1700 cm-1. The XPS data show that the carbon ratios of C-OH/R and COOH/R groups increased from 9.50% and 0.07% to 13.49% and 17.07% respectively when a discharge power of 50 W was used in the APPJ system. As a result, the static water contat angle (WCA) of the modified inner surface of PMMA tube decreased from 100° to 48°. Furthermore, the biocompatibility of the APP modified PMMA tubes was illustrated by the study of the adhesion of the cultured MC3T3-E1 osteocyte cells, which exhibted a significantly enhanced adhesion density.

  11. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  12. [Measurements of surface ocean carbon dioxide partial pressure during WOCE]. Summary of research progress

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This paper discusses the research progress of the second year of research under ``Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE`` and proposes to continue measurements of underway pCO{sub 2}. During most of the first year of this grant, our efforts to measure pCO{sub 2} on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO{sub 2} in air and surface seawater indicate air-sea equilibrium.

  13. Study on the reforming of alcohols in a surface wave discharge (SWD) at atmospheric pressure

    International Nuclear Information System (INIS)

    Jimenez, M; Yubero, C; Calzada, M D

    2008-01-01

    Surface wave plasma at atmospheric pressure has been used to produce the decomposition of the alcohol molecules introduced into it, in order to obtain hydrogen. Four alcohols, methanol, ethanol, propanol and butanol, have been used for this purpose. Optical emission spectroscopy was the tool used to analyse the radiation emitted by the plasma. Hydrogen atoms and other species such as C 2 and CH in alcohols have been detected but no CO molecular bands. Also, a mass spectrometer has been used in order to detect molecular hydrogen production in methanol decomposition

  14. Prediction and correlation of high-pressure gas solubility in polymers with simplified PC-SAFT

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2005-01-01

    Using simplified PC-SAFT we have modeled gas solubilities at high temperatures and pressures for the gases methane and carbon dioxide in each of the three polymers high-density polyethylene (HDPE), nylon polyamide-11 (PA-11), and poly(vinylidene fluoride) (PVDF). In general the results are satisf......Using simplified PC-SAFT we have modeled gas solubilities at high temperatures and pressures for the gases methane and carbon dioxide in each of the three polymers high-density polyethylene (HDPE), nylon polyamide-11 (PA-11), and poly(vinylidene fluoride) (PVDF). In general the results...... developed prediction scheme which does not rely on binary experimental data....

  15. Long-Term Variability of Surface Albedo and Its Correlation with Climatic Variables over Antarctica

    Directory of Open Access Journals (Sweden)

    Minji Seo

    2016-11-01

    Full Text Available The cryosphere is an essential part of the earth system for understanding climate change. Components of the cryosphere, such as ice sheets and sea ice, are generally decreasing over time. However, previous studies have indicated differing trends between the Antarctic and the Arctic. The South Pole also shows internal differences in trends. These phenomena indicate the importance of continuous observation of the Polar Regions. Albedo is a main indicator for analyzing Antarctic climate change and is an important variable with regard to the radiation budget because it can provide positive feedback on polar warming and is related to net radiation and atmospheric heating in the mainly snow- and ice-covered Antarctic. Therefore, in this study, we analyzed long-term temporal and spatial variability of albedo and investigated the interrelationships between albedo and climatic variables over Antarctica. We used broadband surface albedo data from the Satellite Application Facility on Climate Monitoring and data for several climatic variables such as temperature and Antarctic oscillation index (AAO during the period of 1983 to 2009. Time series analysis and correlation analysis were performed through linear regression using albedo and climatic variables. The results of this research indicated that albedo shows two trends, west trend and an east trend, over Antarctica. Most of the western side of Antarctica showed a negative trend of albedo (about −0.0007 to −0.0015 year−1, but the other side showed a positive trend (about 0.0006 year−1. In addition, albedo and surface temperature had a negative correlation, but this relationship was weaker in west Antarctica than in east Antarctica. The correlation between albedo and AAO revealed different relationships in the two regions; west Antarctica had a negative correlation and east Antarctica showed a positive correlation. In addition, the correlation between albedo and AAO was weaker in the west. This

  16. Use of Pressure-Redistributing Support Surfaces Among Elderly Hip Fracture Patients Across the Continuum of Care: Adherence to Pressure Ulcer Prevention Guidelines

    OpenAIRE

    Baumgarten, Mona; Margolis, David; Orwig, Denise; Hawkes, William; Rich, Shayna; Langenberg, Patricia; Shardell, Michelle; Palmer, Mary H.; McArdle, Patrick; Sterling, Robert; Jones, Patricia S.; Magaziner, Jay

    2009-01-01

    Purpose: To estimate the frequency of use of pressure-redistributing support surfaces (PRSS) among hip fracture patients and to determine whether higher pressure ulcer risk is associated with greater PRSS use. Design and Methods: Patients (n = 658) aged ≥65 years who had surgery for hip fracture were examined by research nurses at baseline and on alternating days for 21 days. Information on PRSS use and pressure ulcer risk factors was recorded at each assessment visit. Other information was o...

  17. Correlation between sub-micron surface roughness of iron oxide encrustations and trace element concentrations

    International Nuclear Information System (INIS)

    Fischer, Cornelius; Karius, Volker; Luettge, Andreas

    2009-01-01

    Iron oxide encrustations are formed on black slate surfaces during oxidative weathering of iron sulfide and phosphate bearing, organic matter-rich slates. Synchronously, trace elements are released during ongoing weathering. Laser ablation ICP-MS analyses of a weathered and encrusted slate showed that major portions of the V, Cu, As, Mo, Pb, Th, and U reside in the encrustation. Recently a potential relationship between several micrometer to 500 nm surface topography roughness of such encrustations and its uranium concentration was shown. Based on laser scanning microscopy measurements, the present study shows that this interrelation must be expanded to small submicron-sized half-pores with diameters between 100 nm and 500 nm. We demonstrate that the relationship is not limited to topography variations of a single encrustation in the hand-specimen scale. Surface topography and geochemical analyses of iron oxide encrustations from several locations but from the same geochemical environment and with similar weathering history showed that the concentrations of U, P, Cu, and Zn correlate inversely with the surface roughness parameter F. This parameter represents the total surface area and is - in this case - a proxy for the root-mean square surface roughness Rq. This study substantiates the environmental importance that micrometer- to submicrometer topography variations of fluid-rock interfaces govern the trapping of trace elements.

  18. Correlation between sub-micron surface roughness of iron oxide encrustations and trace element concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Cornelius, E-mail: cornelius@rice.edu [Department of Earth Science, MS-126, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Geowissenschaftliches Zentrum der Universitaet Goettingen, Abt. Sedimentologie and Umweltgeologie, Goldschmidtstr. 3, D-37077 Goettingen (Germany); Karius, Volker [Geowissenschaftliches Zentrum der Universitaet Goettingen, Abt. Sedimentologie and Umweltgeologie, Goldschmidtstr. 3, D-37077 Goettingen (Germany); Luettge, Andreas [Department of Earth Science, MS-126, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 (United States)

    2009-08-01

    Iron oxide encrustations are formed on black slate surfaces during oxidative weathering of iron sulfide and phosphate bearing, organic matter-rich slates. Synchronously, trace elements are released during ongoing weathering. Laser ablation ICP-MS analyses of a weathered and encrusted slate showed that major portions of the V, Cu, As, Mo, Pb, Th, and U reside in the encrustation. Recently a potential relationship between several micrometer to 500 nm surface topography roughness of such encrustations and its uranium concentration was shown. Based on laser scanning microscopy measurements, the present study shows that this interrelation must be expanded to small submicron-sized half-pores with diameters between 100 nm and 500 nm. We demonstrate that the relationship is not limited to topography variations of a single encrustation in the hand-specimen scale. Surface topography and geochemical analyses of iron oxide encrustations from several locations but from the same geochemical environment and with similar weathering history showed that the concentrations of U, P, Cu, and Zn correlate inversely with the surface roughness parameter F. This parameter represents the total surface area and is - in this case - a proxy for the root-mean square surface roughness Rq. This study substantiates the environmental importance that micrometer- to submicrometer topography variations of fluid-rock interfaces govern the trapping of trace elements.

  19. Density functional theory formulation for fluid adsorption on correlated random surfaces

    Science.gov (United States)

    Aslyamov, Timur; Khlyupin, Aleksey

    2017-10-01

    We provide novel random surface density functional theory (RSDFT) formulation in the case of geometric heterogeneous surfaces of solid media which is essential for the description of thermodynamic properties of confined fluids. The major difference of our theoretical approach from the existing ones is a stochastic model of solid surfaces which takes into account the correlation properties of geometry. The main building blocks are effective fluid-solid potentials developed in the work of Khlyupin and Aslyamov [J. Stat. Phys. 167, 1519 (2017)] and geometry-based modification of the Helmholtz free energy for Lennard-Jones fluids. The efficiency of RSDFT is demonstrated in the calculation of argon and nitrogen low temperature adsorption on real heterogeneous surfaces (BP280 carbon black). These results are in good agreement with experimental data published in the literature. Also several models of corrugated materials are developed in the framework of RSDFT. Numerical analysis demonstrates a strong influence of surface roughness characteristics on adsorption isotherms. Thus the developed formalism provides a connection between a rigorous description of the stochastic surface and confined fluid thermodynamics.

  20. Correlative study of scratch and wear behaviour of several surface treatments for uses in nuclear industries

    International Nuclear Information System (INIS)

    Guerout, F.; Zbinden, M.; Lina, A.; Clemendot, F.; Lelait, L.; Van Duysen, J.C.

    1992-06-01

    We have studied the scratch and wear behaviour of seven different surface treatments on an AISI 304L stainless steel substrate. These surface treatments have been elaborated by different processes: physical vapour deposition, ion nitriding, hypersonic projection and electrochemical deposition. The conventional scratch testing results show that the main surface damage feature is brittle cracking at the trailing edge of the indenter, but the cracking loads are broadly the same for all coatings considered here. So, we have carried out constant load scratch testing and analyzed the crack density inside of the track. The correlation between the crack density and the wear resistance, as measured in the GIBUS test, is satisfactory. This result shows the importance of the coating brittleness in the sliding-impact wear process. It is also necessary to adopt more precise and representative criterion for coating brittleness quantification

  1. Development of a pressure based room acoustic model using impedance descriptions of surfaces

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2013-01-01

    and acoustic radiosity will account for the diffuse reflections. This paper presents the motivation for the new model in the form of results in literature, which show the importance of retaining the angle dependence and phase information in reflections along with simple examples of angle dependent reflection......If a simulation tool is to be used for the optimization of absorbent ceilings, it is important that the simulation tool includes a good description of the surface. This study therefore aims at developing a model which can describe surfaces by their impedance values and not just by their statistical...... absorption coefficient, thus retaining the phase and the angle dependence. The approach of the proposed model will be to calculate the pressure impulse response using a combination of the image source method and acoustic radiosity. The image source method will account for the specular reflections...

  2. Interfacial effects of surface-active agents under zinc pressure leach conditions

    Science.gov (United States)

    Owusu, George; Dreisinger, David B.; Peters, Ernest

    1995-02-01

    Liquid sulfur-zinc sulfate solution interfacial tensions and liquid sulfur-zinc sulfate solution-zinc sulfide (marmatite) contact angles were measured in the absence and presence of surface-active agents. Interfacial tensions measured varied between 54 ± 1 mN/m in the surfactant-free system and 20 ± 1 mN/m in the presence of a surfactant. The liquid sulfur-zinc sulfide mineral-zinc sulfate solution contact angle varies between 80 ± 5 deg, in the absence of any surfactant, and 148 ± 5 deg, depending on the surfactant used. The surface-active agents were used as dispersants for sulfur in bench-scale zinc pressure-leaching experiments. The observed extent of zinc extraction depends on the surfactant and varies from 40 to 96 pct.

  3. Psychosocial Correlates of Nocturnal Blood Pressure Dipping in African Americans: The Jackson Heart Study

    NARCIS (Netherlands)

    Spruill, Tanya M.; Shallcross, Amanda J.; Ogedegbe, Gbenga; Chaplin, William F.; Butler, Mark; Palfrey, Amy; Shimbo, Daichi; Muntner, Paul; Sims, Mario; Sarpong, Daniel F.; Agyemang, Charles; Ravenell, Joseph

    2016-01-01

    African Americans exhibit a lower degree of nocturnal blood pressure (BP) dipping compared with Whites, but the reasons for reduced BP dipping in this group are not fully understood. The aim of this study was to identify psychosocial factors associated with BP dipping in a population-based cohort of

  4. Correlation between surface structure and ordering in GaInP

    International Nuclear Information System (INIS)

    Murata, H.; Lee, S.H.; Ho, I.H.; Stringfellow, G.B.

    1996-01-01

    Ga and In atoms in Ga 0.52 In 0.48 P layers spontaneously segregate to form alternating In- and Ga-rich {111} monolayers during organometallic vapor phase epitaxial (OMVPE) growth on (001) oriented GaAs substrates, thus forming the CuPt ordered structure. This ordering phenomenon is believed to be driven by surface processes, although little direct experimental information is available. This work presents evidence, based on surface photoabsorption data, that [bar 110] oriented P dimers are present on the surface during OMVPE growth using trimethylgallium and ethyldimethylindium combined with tertiarybutylphosphine, suggesting a (2x4)-like surface reconstruction. Furthermore, when the growth temperature is increased above 620 degree C, with other parameters constant, both the concentration of these P dimers and the degree of order are observed to decrease. A similar correlation of decreased P-dimer concentration with decreased degree of order is observed for decreases in V/III ratio. Thus, the changes in order parameter for variations in temperature and TBP flow rate are found to be closely correlated with the changes in the order parameter. A third parameter studied was the misorientation of the substrate from (001) toward either the {111} A or {111} B planes. The concentration of P dimers decreased as the misorientation increased in either direction. The degree of order was also observed to generally decrease, supporting the connection between surface reconstruction and ordering. However, the difference in order parameter observed for the two misorientation directions suggests the importance of a second parameter, the step structure, itself. For exactly (001) oriented substrates the surface was observed, using high resolution atomic force microscopy, to consist of islands, elongated in the [110] direction, with heights of 30 endash 60 A. (Abstract Truncated)

  5. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.

    Science.gov (United States)

    Sum, K S; Pan, J

    2007-07-01

    Distributions of sound pressure and intensity on the surface of a flat impedance strip flush-mounted on a rigid baffle are studied for a grazing incident plane wave. The distributions are obtained by superimposing the unperturbed wave (the specularly reflected wave as if the strip is rigid plus the incident wave) with the radiated wave from the surface vibration of the strip excited by the unperturbed pressure. The radiated pressure interferes with the unperturbed pressure and distorts the propagating plane wave. When the plane wave propagates in the baffle-strip-baffle direction, it encounters discontinuities in acoustical impedance at the baffle-strip and strip-baffle interfaces. The radiated pressure is highest around the baffle-strip interface, but decreases toward the strip-baffle interface where the plane wave distortion reduces accordingly. As the unperturbed and radiated waves have different magnitudes and superimpose out of phase, the surface pressure and intensity increase across the strip in the plane wave propagation direction. Therefore, the surface absorption of the strip is nonzero and nonuniform. This paper provides an understanding of the surface pressure and intensity behaviors of a finite impedance strip for a grazing incident plane wave, and of how the distributed intensity determines the sound absorption coefficient of the strip.

  6. Surface stabilized GMR nanorods of silver coated CrO2 synthesized via a polymer complex at ambient pressure

    Science.gov (United States)

    Biswas, S.; Singh, G. P.; Ram, S.; Fecht, H.-J.

    2013-08-01

    Stable anisotropic nanorods of surface modified CrO2 (˜18 nm diameter) with a correlated diamagnetic layer (2-3 nm thickness) of silver efficiently tailors useful magnetic and magnetoresistance (MR) properties. Essentially, it involves a core-shell structure that is developed by displacing part of Cr4+ ions by Ag atoms on the CrO2 surface (topotactic surface layer) via an etching reaction of a CrO2-polymer complex with Ag+ ions in hot water followed by heating the dried sample at 300-400 °C in air. The stable Ag-layer so obtained in the form of a shell protects CrO2 such that it no longer converts to Cr2O3 in ambient pressure during the processing. X-ray diffractogram of the Rutile type tetragonal CrO2 structure (lattice parameters a=0.4429 nm and c=0.2950 nm) includes weak peaks of a minority phase of an fcc-Ag (a=0.4086 nm). The silver surface layer, which manifests itself in a doublet of the 3d5/2 and 3d3/2 X-ray photoelectron bands of binding energies 368.46 eV and 374.48 eV, respectively, suppresses almost all Cr bands to appear in a measurable intensity. The sample exhibits a distinctly enhanced MR-value, e.g., (-) 7.6% at 77 K, than reported values in compacted CrO2 powders or composites. Such a large MR-value in the Coulomb blockade regime (<100 K) arises not only due to the suppressed spin flipping at low temperature but also from a spin dependent co-tunneling through an interlinked structure of silver and silver coated CrO2 nanorods.

  7. The effect of ambient pressure on ejecta sheets from free-surface ablation

    KAUST Repository

    Marston, J. O.

    2016-04-16

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

  8. Role of west Asian surface pressure in summer monsoon onset over central India

    Science.gov (United States)

    Chakraborty, Arindam; Agrawal, Shubhi

    2017-07-01

    Using rain-gauge measurements and reanalysis data sets for 1948-2015, we propose a mechanism that controls the interannual variation of summer monsoon onset over central India. In May, about a month before the onset, the low level jet over the Arabian Sea is about 40% stronger and about 2.5 degrees northward during years of early onset as compared to years of late onset. A stronger and northward shifted low level jet carries about 50% more moisture in early onset years, which increases low level moist static energy over central India in the pre-monsoon season. The increase in low level moist static energy decreases the stability of the atmosphere and makes it conducive for convection. The strength and position of the low level jet are determined by surface pressure gradient between western Asia and the west-equatorial Indian Ocean. Thus, an anomalous surface pressure low over western Asia in the pre-monsoon season increases this gradient and strengthens the jet. Moreover, a stronger low level jet increases the meridional shear of zonal wind and supports the formation of an onset vortex in a stronger baroclinic atmosphere. These developments are favourable for an early onset of the monsoon over the central Indian region. Our study postulates a new physical mechanism for the interannual variation of onset over central India, the core of the Indian monsoon region and relevant to Indian agriculture, and could be tested for real-time prediction.

  9. Surface stabilized GMR nanorods of silver coated CrO{sub 2} synthesized via a polymer complex at ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, S., E-mail: drsomnathbiswas@gmail.com [The LNM Institute of Information Technology, Jaipur-302031 (India); Singh, G.P. [Centre for Nanotechnology, Central University of Jharkhand, Ranchi-835205 (India); Ram, S. [Materials Science Centre, Indian Institute of Technology, Kharagpur-721302 (India); Fecht, H.-J. [Insitut für Micro-und Nanomaterialien, Universität Ulm, Albert Einstein Allee-47, Ulm, D-89081, and Forschungszentrum Karlsruhe, Institute of Nanotechnology, Karlsruhe, D-76021 (Germany)

    2013-08-15

    Stable anisotropic nanorods of surface modified CrO{sub 2} (∼18 nm diameter) with a correlated diamagnetic layer (2–3 nm thickness) of silver efficiently tailors useful magnetic and magnetoresistance (MR) properties. Essentially, it involves a core-shell structure that is developed by displacing part of Cr{sup 4+} ions by Ag atoms on the CrO{sub 2} surface (topotactic surface layer) via an etching reaction of a CrO{sub 2}-polymer complex with Ag{sup +} ions in hot water followed by heating the dried sample at 300–400 °C in air. The stable Ag-layer so obtained in the form of a shell protects CrO{sub 2} such that it no longer converts to Cr{sub 2}O{sub 3} in ambient pressure during the processing. X-ray diffractogram of the Rutile type tetragonal CrO{sub 2} structure (lattice parameters a=0.4429 nm and c=0.2950 nm) includes weak peaks of a minority phase of an fcc-Ag (a=0.4086 nm). The silver surface layer, which manifests itself in a doublet of the 3d{sub 5/2} and 3d{sub 3/2} X-ray photoelectron bands of binding energies 368.46 eV and 374.48 eV, respectively, suppresses almost all Cr bands to appear in a measurable intensity. The sample exhibits a distinctly enhanced MR-value, e.g., (−) 7.6% at 77 K, than reported values in compacted CrO{sub 2} powders or composites. Such a large MR-value in the Coulomb blockade regime (<100 K) arises not only due to the suppressed spin flipping at low temperature but also from a spin dependent co-tunneling through an interlinked structure of silver and silver coated CrO{sub 2} nanorods. - Highlights: • Synthesis and structural studies of a novel GMR material of Ag coated CrO{sub 2}. • Tailoring useful GMR property in CrO{sub 2} nanorods of controlled shape and anisotropy. • Enhanced GMR is explained in correlation to the surface structure of CrO{sub 2} nanorods.

  10. Correlation of H- production and the work function of a surface in a hydrogen plasma

    International Nuclear Information System (INIS)

    Wada, M.

    1983-01-01

    Surface-plasma negative hydrogen ion sources are being developed as possible parts for future netural beam systems. In these ion sources, negative hydrogen ions (H - ) are produced at low work function metal surfaces immersed in hydrogen plasmas. To investigate the correlation between the work function and the H-production at the surface with a condition similar to the one in the actual plasma ion source, these two parameters were simultaneously measured in the hydrogen plasma environment. The photoelectron emission currents from Mo and Cu surfaces in a cesiated hydrogen discharge were measured in the photon energy range from 1.45 to 4.14 eV, to determine the work function based on Fowler's theory. A small magnetic line cusp plasma container was specially designed to minimize the plasma noise and to realize the efficient collection of incident light onto the target. The photelectron current was detected phase sensitively and could be measured with reasonable accuracy up to about 5 x 10 11 cm -3 of the plasma electron density. As Cs density was increased in the hydrogen discharge, the work function decreased until it reached a minimum value. This value of the lowest work function was approximately 1.4 eV for both Mo and Cu surfaces, and the detected total H - current was a maximum at this condition

  11. Preliminary Correlation Map of Geomorphic Surfaces in North-Central Frenchman Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2005-08-01

    This correlation map (scale = 1:12,000) presents the results of a mapping initiative that was part of the comprehensive site characterization required to operate the Area 5 Radioactive Waste Management Site, a low-level radioactive waste disposal facility located in northern Frenchman Flat at the Nevada Test Site. Eight primary map units are recognized for Quaternary surfaces: remnants of six alluvial fan or terrace surfaces, one unit that includes colluvial aprons associated with hill slopes, and one unit for anthropogenically disturbed surfaces. This surficial geology map provides fundamental data on natural processes for reconstruction of the Quaternary history of northern Frenchman Flat, which in turn will aid in the understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. The bedrock units identified on this map were derived from previous published mapping efforts and are included for completeness.

  12. Preliminary Correlation Map of Geomorphic Surfaces in North-Central Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    This correlation map (scale = 1:12,000) presents the results of a mapping initiative that was part of the comprehensive site characterization required to operate the Area 5 Radioactive Waste Management Site, a low-level radioactive waste disposal facility located in northern Frenchman Flat at the Nevada Test Site. Eight primary map units are recognized for Quaternary surfaces: remnants of six alluvial fan or terrace surfaces, one unit that includes colluvial aprons associated with hill slopes, and one unit for anthropogenically disturbed surfaces. This surficial geology map provides fundamental data on natural processes for reconstruction of the Quaternary history of northern Frenchman Flat, which in turn will aid in the understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. The bedrock units identified on this map were derived from previous published mapping efforts and are included for completeness

  13. Burnout correlations for even- and odd-numbered peripheral rod clusters over low pressure range

    International Nuclear Information System (INIS)

    Akaho, E.H.K.

    1995-01-01

    Burnout data with low pressure Freon-113 for even- and odd- numbered peripheral rod clusters with relatively large spacings were used to derive equations in terms of dimensionless parameters suggested by Barnett. The equations which are for three different flow regimes for each rod geometry (even or odd) were found to predict burnout data with maximum RMS deviation being 3.8%. (author). 11 figs., 3 tabs., 15 refs

  14. Correlation of the vapor pressure isotope effect with molecular force fields in the liquid state

    Energy Technology Data Exchange (ETDEWEB)

    Pollin, J.S.; Ishida, T.

    1976-07-01

    The present work is concerned with the development and application of a new model for condensed phase interactions with which the vapor pressure isotope effect (vpie) may be related to molecular forces and structure. The model considers the condensed phase as being represented by a cluster of regularly arranged molecules consisting of a central molecule and a variable number of molecules in the first coordination shell. The methods of normal coordinate analysis are used to determine the modes of vibration of the condensed phase cluster from which, in turn, the isotopic reduced partition function can be calculated. Using the medium cluster model, the observed vpie for a series of methane isotopes has been successfully reproduced with better agreement with experiment than has been possible using the simple cell model. We conclude, however, that insofar as the medium cluster model provides a reasonable picture of the liquid state, the vpie is not sufficiently sensitive to molecular orientation to permit an experimental determination of intermolecular configuration in the condensed phase through measurement of isotopic pressure ratios. The virtual independence of vapor pressure isotope effects on molecular orientation at large cluster sizes is a demonstration of the general acceptability of the cell model assumptions for vpie calculations.

  15. Using Response Surface Methods to Correlate the Modal Test of an Inflatable Test Article

    Science.gov (United States)

    Gupta, Anju

    2013-01-01

    This paper presents a practical application of response surface methods (RSM) to correlate a finite element model of a structural modal test. The test article is a quasi-cylindrical inflatable structure which primarily consists of a fabric weave, with an internal bladder and metallic bulkheads on either end. To mitigate model size, the fabric weave was simplified by representing it with shell elements. The task at hand is to represent the material behavior of the weave. The success of the model correlation is measured by comparing the four major modal frequencies of the analysis model to the four major modal frequencies of the test article. Given that only individual strap material properties were provided and material properties of the overall weave were not available, defining the material properties of the finite element model became very complex. First it was necessary to determine which material properties (modulus of elasticity in the hoop and longitudinal directions, shear modulus, Poisson's ratio, etc.) affected the modal frequencies. Then a Latin Hypercube of the parameter space was created to form an efficiently distributed finite case set. Each case was then analyzed with the results input into RSM. In the resulting response surface it was possible to see how each material parameter affected the modal frequencies of the analysis model. If the modal frequencies of the analysis model and its corresponding parameters match the test with acceptable accuracy, it can be said that the model correlation is successful.

  16. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Kittur, Jayant K.; Herwadkar, T. V.; Parappagoudar, M. B.

    2010-01-01

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  17. Bentonite swelling pressure in strong NaCl solutions. Correlation of model calculations to experimentally determined data

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology, Lund (Sweden)

    1998-01-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed. This report discusses a number of models which possibly can be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved model predicts a substantial bentonite swelling pressure also in a saturated sodium chloride solution if the density of the system is sufficiently high. This means in practice that the buffer in a KBS-3 repository will give rise to an acceptable swelling pressure, but that the positive effects of mixing bentonite into a backfill material will be lost if the system is exposed to brines. (orig.). 14 refs.

  18. Bentonite swelling pressure in strong NaCl solutions. Correlation between model calculations and experimentally determined data

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology, Lund (Sweden)

    1997-12-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density 37 refs, 15 figs

  19. Bentonite swelling pressure in strong NaCl solutions. Correlation between model calculations and experimentally determined data

    International Nuclear Information System (INIS)

    Karnland, O.

    1997-12-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density

  20. Bentonite swelling pressure in strong NaCl solutions. Correlation of model calculations to experimentally determined data

    International Nuclear Information System (INIS)

    Karnland, O.

    1998-01-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed. This report discusses a number of models which possibly can be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved model predicts a substantial bentonite swelling pressure also in a saturated sodium chloride solution if the density of the system is sufficiently high. This means in practice that the buffer in a KBS-3 repository will give rise to an acceptable swelling pressure, but that the positive effects of mixing bentonite into a backfill material will be lost if the system is exposed to brines. (orig.)

  1. Rehme correlation for spacer pressure drop compared to XT-ADS rod bundle simulations and water experiment

    International Nuclear Information System (INIS)

    Batta, A.; Class, A.; Litfin, K.; Wetzel, T.

    2011-01-01

    The Rehme correlation is the most common formula to estimate the pressure drop of spacers in the design phase of new bundle geometries. It is based on considerations of momentum losses and takes into account the obstruction of the flow cross section but it ignores the geometric details of the spacer design. Within the framework of accelerator driven sub-critical reactor systems (ADS), heavy-liquid-metal (HLM) cooled fuel assemblies are considered. At the KArlsruhe Liquid metal LAboratory (KALLA) of the Karlsruhe Institute of Technology a series of experiments to quantify both pressure losses and heat transfer in HLM-cooled rod bundles are performed. The present study compares simulation results obtained with the commercial CFD code Star-CCM to experiments and the Rehme correlation. It can be shown that the Rehme correlation, simulations and experiments all yield similar trends, but quantitative predictions can only be delivered by the CFD which takes into account the full geometric details of the spacer geometry. (orig.)

  2. Communication: Thermodynamics of condensed matter with strong pressure-energy correlations

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Bøhling, Lasse; Schrøder, Thomas

    2012-01-01

    in the phase diagram of invariant structure and dynamics) are described by h(ρ)/T = Const., (2) the density-scaling exponent is a function of density only, and (3) a Grüneisen-type equation of state applies for the configurational degrees of freedom. For strongly correlating atomic systems one has h(ρ) = ∑n...

  3. Development of neutron irradiation embrittlement correlation of reactor pressure vessel materials of light water reactors

    International Nuclear Information System (INIS)

    Soneda, Naoki; Dohi, Kenji; Nomoto, Akiyoshi; Nishida, Kenji; Ishino, Shiori

    2007-01-01

    A large amount of surveillance data of the RPV embrittlement of the Japanese light water reactors have been compiled since the current Japanese embrittlement correlation has been issued in 1991. Understanding on the mechanisms of the embrittlement has also been greatly improved based on both experimental and theoretical studies. CRIEPI and the Japanese electric power utilities have started research project to develop a new embrittlement correlation method, where extensive study of the microstructural analyses of the surveillance specimens irradiated in the Japanese commercial reactors has been conducted. The new findings obtained from the experimental study are that the formation of solute-atom clusters with little or no copper is responsible for the embrittlement in low-copper materials, and that the flux effect exists especially in high-copper materials and this is supported by the difference in the microstructure of the high-copper materials irradiated at different fluxes. Based on these new findings, a new embrittlement correlation method is formulated using rate equations. The new methods has higher prediction capability than the current Japanese embrittlement correlation in terms of smaller standard deviation as well as smaller mean value of the prediction error. (author)

  4. Prevention of pressure ulcers in the intensive care unit: a randomized trial of 2 viscoelastic foam support surfaces.

    Science.gov (United States)

    Ozyurek, Pakize; Yavuz, Meryem

    2015-01-01

    The aim of this study is to compare whether differences exist between 2 viscoelastic foam support surfaces in the development of new pressure ulcers. There is evidence to support the use of viscoelastic foam over standard hospital foam to reduce pressure. A comparative effectiveness study was done to compare 2 viscoelastic foam support surfaces. A randomized controlled trial was carried out. The study was performed in 2 intensive care units between October 1, 2008, and January 4, 2010. Patients (n = 105) admitted to intensive care unit were randomly assigned to viscoelastic foam 1 (n = 53) or viscoelastic foam 2 support surface (n = 52). In total, 42.8% of all patients developed a new pressure ulcer of stage 1 or worse. By stages, pressure ulcer incidence was 28.6%, 13.3%, and 1.0% for stages 1, 2, and 3, respectively. There was no significant difference in pressure ulcer incidence between the viscoelastic foam 1 and 2 groups (X2 = 0.07, df = 1, P > .05). No difference was found between 2 different viscoelastic foam surfaces in the prevention of pressure ulcers in patients treated in intensive care. Pressure ulcer incidence in critically ill patients remains high. Nurses must compare current products for effectiveness and develop innovative systems, processes, or devices to deliver best practices.

  5. Examination of adolescents' screen time and physical fitness as independent correlates of weight status and blood pressure.

    Science.gov (United States)

    Ullrich-French, Sarah C; Power, Thomas G; Daratha, Kenn B; Bindler, Ruth C; Steele, Michael M

    2010-09-01

    Physical fitness performance is an important health correlate yet is often unrelated to sedentary behaviour in early adolescence. In this study, we examined the association of sedentary behaviour (i.e. screen time) with weight-related health markers and blood pressure, after controlling for cardiorespiratory fitness performance. American middle school students (N = 153, 56% females) aged 11-15 years (mean 12.6 years, s = 0.5) completed assessments of cardiorespiratory fitness performance, screen time, weight status (BMI percentile, waist-to-height ratio), and blood pressure. Multivariate analysis of covariance, controlling for cardiorespiratory fitness performance, found those who met the daily recommendation of 2 h or less of screen time (n = 36, 23.5%) had significantly lower BMI (p fitness and sedentary behaviours to maximize early adolescent health because these behaviours are likely to have unique and independent effects on youth health markers.

  6. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

    DEFF Research Database (Denmark)

    Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas

    2012-01-01

    A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...... the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error...... estimation functional with van der Waals correlation (BEEF-vdW), a semilocal approximation with an additional nonlocal correlation term. Furthermore, an ensemble of functionals around BEEF-vdW comes out naturally, offering an estimate of the computational error. An extensive assessment on a range of data...

  7. Investigation of working pressure on the surface roughness controlling technology of glow discharge polymer films based on the diagnosed plasma

    Science.gov (United States)

    Zhang, Ling; Chen, Guo; He, Zhibing; Ai, Xing; Huang, Jinglin; Liu, Lei; Tang, Yongjian; He, Xiaoshan

    2017-07-01

    The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on plasma characteristics diagnosis. The composition and ion energy distributions of a multi-carbon (C4H8/H2) plasma mixture at different working pressures were diagnosed by an energy-resolved mass spectrometer (MS) during the GDP film deposition process. The Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (SEM) and white-light interferometer (WLI) results were obtained to investigate the structure, morphology and roughness characterization of the deposited films, respectively. It was found that the degree of ionization of the C4H8/H2 plasma reduces with an increase in the working pressure. At a low working pressure, the C-H fragments exhibited small-mass and high ion energy in plasma. In this case, the film had a low CH3/CH2 ratio, and displayed a smooth surface without any holes, cracks or asperities. While the working pressure increased to 15 Pa, the largest number of large-mass fragments led to the deposition rate reaching a maximum of 2.11 μm h-1, and to hole defects on the film surface. However, continuing to increase the working pressure, the film surface became smooth again, and the interface between clusters became inconspicuous without etching pits.

  8. Generalized virial theorem and pressure relation for a strongly correlated Fermi gas

    International Nuclear Information System (INIS)

    Tan, Shina

    2008-01-01

    For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations

  9. Surface properties correlate to the digestibility of hydrothermally pretreated lignocellulosic Poaceae biomass feedstocks

    DEFF Research Database (Denmark)

    Tristan Djajadi, Demi; Hansen, Aleksander R.; Jensen, Anders

    2017-01-01

    physical and chemical features of the biomass surfaces, specifically contact angle measurements (wettability) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy (surfacebiopolymer composition) produced data correlating pretreatment severity and enzymatic digestibility......Background: Understanding factors that govern lignocellulosic biomass recalcitrance is a prerequisite for designingefficient 2nd generation biorefining processes. However, the reasons and mechanisms responsible for quantitative differences in enzymatic digestibility of various biomass feedstocks...... in response to hydrothermal pretreatment at different severities are still not sufficiently understood. Results: Potentially important lignocellulosic feedstocks for biorefining, corn stover (Zea mays subsp. mays L.), stalks of Miscanthus × giganteus, and wheat straw (Triticum aestivum L.) were systematically...

  10. Changes in Land Surface Water Dynamics since the 1990s and Relation to Population Pressure

    Science.gov (United States)

    Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W. B.; Matthews, E.

    2012-01-01

    We developed a remote sensing approach based on multi-satellite observations, which provides an unprecedented estimate of monthly distribution and area of land-surface open water over the whole globe. Results for 1993 to 2007 exhibit a large seasonal and inter-annual variability of the inundation extent with an overall decline in global average maximum inundated area of 6% during the fifteen-year period, primarily in tropical and subtropical South America and South Asia. The largest declines of open water are found where large increases in population have occurred over the last two decades, suggesting a global scale effect of human activities on continental surface freshwater: denser population can impact local hydrology by reducing freshwater extent, by draining marshes and wetlands, and by increasing water withdrawals. Citation: Prigent, C., F. Papa, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure, in section 4, insisting on the potential applications of the wetland dataset.

  11. Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure

    Science.gov (United States)

    Ridenti, Marco Antonio; de Amorim, Jayr; Dal Pino, Arnaldo; Guerra, Vasco; Petrov, George

    2018-01-01

    In this work we compute the main features of a surface-wave-driven plasma in argon at atmospheric pressure in view of a better understanding of the contraction phenomenon. We include the detailed chemical kinetics dynamics of Ar and solve the mass conservation equations of the relevant neutral excited and charged species. The gas temperature radial profile is calculated by means of the thermal diffusion equation. The electric field radial profile is calculated directly from the numerical solution of the Maxwell equations assuming the surface wave to be propagating in the TM00 mode. The problem is considered to be radially symmetrical, the axial variations are neglected, and the equations are solved in a self-consistent fashion. We probe the model results considering three scenarios: (i) the electron energy distribution function (EEDF) is calculated by means of the Boltzmann equation; (ii) the EEDF is considered to be Maxwellian; (iii) the dissociative recombination is excluded from the chemical kinetics dynamics, but the nonequilibrium EEDF is preserved. From this analysis, the dissociative recombination is shown to be the leading mechanism in the constriction of surface-wave plasmas. The results are compared with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar2+. An explanation is proposed for the trends seen by Thomson scattering diagnostics that shows a substantial increase of electron temperature towards the plasma borders where the electron density is small.

  12. The dimensionality reduction at surfaces as a playground for many-body and correlation effects

    Science.gov (United States)

    Tejeda, A.; Michel, E. G.; Mascaraque, A.

    2013-03-01

    Low-dimensional systems have always deserved attention due to the peculiarity of their physics, which is different from or even at odds with three-dimensional expectations. This is precisely the case for many-body effects, as electron-electron correlation or electron-phonon coupling are behind many intriguing problems in condensed matter physics. These interesting phenomena at low dimensions can be studied in one of the paradigms of two dimensionality—the surface of crystals. The maturity of today's surface science techniques allows us to perform thorough experimental studies that can be complemented by the current strength of state-of-the-art calculations. Surfaces are thus a natural two-dimensional playground for studying correlation and many-body effects, which is precisely the object of this special section. This special section presents a collection of eight invited articles, giving an overview of the current status of selected systems, promising techniques and theoretical approaches for studying many-body effects at surfaces and low-dimensional systems. The first article by Hofmann investigates electron-phonon coupling in quasi-free-standing graphene by decoupling graphene from two different substrates with different intercalating materials. The following article by Kirschner deals with the study of NiO films by electron pair emission, a technique particularly well-adapted for studying high electron correlation. Bovensiepen investigates electron-phonon coupling via the femtosecond time- and angle-resolved photoemission spectroscopy technique. The next article by Malterre analyses the phase diagram of alkalis on Si(111):B and studies the role of many-body physics. Biermann proposes an extended Hubbard model for the series of C, Si, Sn and Pb adatoms on Si(111) and obtains the inter-electronic interaction parameters by first principles. Continuing with the theoretical studies, Bechstedt analyses the influence of on-site electron correlation in insulating

  13. Absolute Height of Sea Surface by Trajectory of GPS Antennae Over Submerged Pressure Gauges

    Science.gov (United States)

    Bouin, M.; Calmant, S.; Cheng, K.; Ballu, V.; Shum, C. K.; Testut, L.

    2003-12-01

    Water height data provided by seafloor tide gauges is a combination of sea-level variations and ground motion. Both of these signals are of scientific interest, but they must be separated in order to be useful. Estimating ground motion is specially important in very tectonically active areas such as the Pacific Ocean rim. One promising method to separate the two contributions is to use satellite altimetry data which gives absolute water height, but these data must be calibrated using ground truth measurements. Once different components of the signal are separated, bottom pressure gauges can be used to detect vertical movements of the seafloor such as co-seismic or slow inter-seismic motions. The Vanuatu archipelago is part of the Pacific ring of fire, where plates are rapidly converging. In the area, movements are very rapid and the seismic activity is intense, which gives a good opportunity to study deformation and seismic cycle. To get an integrate picture of vertical deformation over one plate and between the two plates, one needs to be able to monitor vertical movements on both underwater and emerged areas. We conducted an experiment in the Vanuatu archipelago, South-West Pacific, to compare measurements from bottom pressure gauges located beneath altimetry satellite tracks with sea surface altitude measurements from GPS. Two bottom pressure gauges are immerged since Nov. 1999 on Sabine bank (15.90° S, 166.14° E) and Wusi Bank (15.34° S, 166.55° E), West of Santo island, Vanuatu. In order to perform absolute calibrations of JASON and ENVISAT altimeters that overfly the Wusi and Sabine banks, respectively, we performed GPS measurements of instantaneous sea surface altitude. The GPS antennae were fixed on top of the 30m long R/V Alis. An inertial unit also recorded the high frequency vessel motions. The height of the antennae over the sea surface was measured using a laser distancemeter in calibration sessions during particularly calm sea states. We present

  14. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.

    Science.gov (United States)

    Yang, Cheng; Trikantzopoulos, Elefterios; Jacobs, Christopher B; Venton, B Jill

    2017-05-01

    Fibers made of CNTs are attractive microelectrode sensors because they can be directly fabricated into microelectrodes. Different protocols for making CNT fibers have been developed, but differences in surface structure and therefore electrochemical properties that result have not been studied. In this study, we correlated the surface and electrochemical properties for neurochemical detection at 3 types of materials: CNT fibers produced by wet spinning with (1) polyethylenimine (PEI/CNT) or (2) chlorosulfonic acid (CA/CNT), and (3) CNT yarns made by solid-based CNT drawing. CNT yarns had well-aligned, high purity CNTs, abundant oxygen functional groups, and moderate surface roughness which led to the highest dopamine current density (290 ± 65 pA/cm 2 ) and fastest electron transfer kinetics. The crevices of the CNT yarn and PEI/CNT fiber microelectrodes allow dopamine to be momentarily trapped during fast-scan cyclic voltammetry detection, leading to thin-layer cell conditions and a response that was independent of applied waveform frequency. The larger crevices on the PEI/CNT fibers led to a slower time response, showing too much roughness is detrimental to fast detection. CA/CNT fibers have a smoother surface and lower currents, but their negative surface charge results in high selectivity for dopamine over uric acid or ascorbic acid. Overall, small crevices, high conductivity, and abundant oxygen groups led to high sensitivity for amine neurotransmitters, such as dopamine and serotonin. Thus, different surfaces of CNT fibers result in altered electrochemical properties and could be used in the future to predict and control electrochemical performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Derek Robert [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    High Pressure Scanning Tunneling Microscopy (HP-STM) and Ambient Pressure X-ray Photoelectron Spectroscopy were used to study the structural properties and catalytic behavior of noble metal surfaces at high pressure. HP-STM was used to study the structural rearrangement of the top most atomic surface layer of the metal surfaces in response to changes in gas pressure and reactive conditions. AP-XPS was applied to single crystal and nanoparticle systems to monitor changes in the chemical composition of the surface layer in response to changing gas conditions. STM studies on the Pt(100) crystal face showed the lifting of the Pt(100)-hex surface reconstruction in the presence of CO, H2, and Benzene. The gas adsorption and subsequent charge transfer relieves the surface strain caused by the low coordination number of the (100) surface atoms allowing the formation of a (1 x 1) surface structure commensurate with the bulk terminated crystal structure. The surface phase change causes a transformation of the surface layer from hexagonal packing geometry to a four-fold symmetric surface which is rich in atomic defects. Lifting the hex reconstruction at room temperature resulted in a surface structure decorated with 2-3 nm Pt adatom islands with a high density of step edge sites. Annealing the surface at a modest temperature (150 C) in the presence of a high pressure of CO or H2 increased the surface diffusion of the Pt atoms causing the adatom islands to aggregate reducing the surface concentration of low coordination defect sites. Ethylene hydrogenation was studied on the Pt(100) surface using HP-STM. At low pressure, the lifting of the hex reconstruction was observed in the STM images. Increasing the ethylene pressure to 1 Torr, was found to regenerate the hexagonally symmetric reconstructed phase. At room temperature ethylene undergoes a structural rearrangement to form ethylidyne. Ethylidyne preferentially binds at the three-fold hollow sites, which

  16. Low pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    DEFF Research Database (Denmark)

    Fumagalli, F; Kylian, O; Amato, Letizia

    2012-01-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can...... be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several...... operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water...

  17. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    International Nuclear Information System (INIS)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D; Kylian, O

    2009-01-01

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O 2 mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  18. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via E. Fermi 2749, 21027 Ispra (Vatican City State, Holy See) (Italy); Kylian, O [Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, Prague 8, 180 00 (Czech Republic)], E-mail: francois.rossi@jrc.ec.europa.eu

    2009-11-15

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O{sub 2} mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  19. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    Science.gov (United States)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

  20. [Correlation of resistance to peer pressure and risky decision-making with adolescent health risk behaviors].

    Science.gov (United States)

    An, Jing; Sun, Ying; Wang, Xi; Zu, Ping; Mai, Jin-cheng; Liang, Jian-ping; Xu, Zhi-yong; Man, Xue-jun; Mao, Yan; Tao, Fang-biao

    2013-03-01

    To explore possible interrelationships among resistance to peer pressure, risky decision-making and health risk behaviors among young adolescents. Based on the cluster sampling method, the participants who were recruited from 5 junior middle schools in Guangzhou and 3 junior middle schools in Shenyang city on October, 2010, were administered to complete the questionnaire concerned with their experiences with drinking and smoking during the past 30 days preceding the survey, and the hours using computer daily both in weekdays and in weekend. The level of resistance to peer influence and risky decision-making were assessed by Resistance to peer influence scale (RPIS) and Youth decision-making questionnaire (YDMQ). Logistic regression was used to explore possible interrelationships among resistance to peer influence, risky decision-making and health risk behaviors among young adolescents. A total of 1985 questionnaires were valid, including 1001(50.4%) boys and 984 (49.6%) girls. About 27.1% (537/1985) junior middle school students reported having health risk behaviors, boys' (30.7%, 307/1001) was higher than girls' (23.4%, 230/984) with significant gender difference (P peer influence (low and middle level vs high level, had odds ratios of 2.97 (1.96 - 4.50) and 1.51 (1.05 - 2.16)), and also the middle and high level of risky decision-making (middle and high level vs low level, had odds ratios of 1.62 (1.19 - 2.22) and 3.43 (2.39 - 4.90)) were all the risk factors of adolescent health risk behaviors. Adolescents with poor ability of resistance to peer pressure and high risky decision-making were both the risk factors of adolescent health risk behaviors.

  1. Experimental and numerical investigations of stable crack growth of axial surface flaws in a pressure vessel

    International Nuclear Information System (INIS)

    Brocks, W.; Krafka, H.; Mueller, W.; Wobst, K.

    1988-01-01

    In connection with the problem of the transferability of parameters obtained experimentally with the help of fracture-mechanical test specimens and used for the initiation and the stable propagation of cracks in cases of pulsating stress and of the elasto-plastic behaviour of construction components, a pressure vessel with an inside diameter of 1500 mm, a cylindrical length of 3000 mm and a wall thickness of 40 mm was hydraulically loaded with the help of internal pressure in the first stage, to attain an average crack growth of 1 mm at Δ a ≅, the loading taking place at about 21deg C. This stress-free annealed vessel exhibited an axial semielliptical vibration-induced surface crack about 181 mm long and 20 mm deep, as a test defect, in a welded circular blank made of the steel 20MnMoNi 55. The fractographic analysis of the first stable crack revealed that its growth rate of Δa was highest in the area of transition from the weak to the strong bend of the crack front (55deg m /σ v (average principal stress: σ m , Mises' reference stress: σ v v). A comparison of the experimental with the numerical results from the first stable crack shows that the local stable crack growth Δa cannot be calculated solely with reference to J, because Δa appears to depend essentially on the quotient σ m /σ v . (orig./MM) [de

  2. Diagnostics of surface wave driven low pressure plasmas based on indium monoiodide-argon system

    International Nuclear Information System (INIS)

    Ögün, C M; Kaiser, C; Kling, R; Heering, W

    2015-01-01

    Indium monoiodide is proposed as a suitable alternative to hazardous mercury, i.e. the emitting component inside the compact fluorescent lamps (CFL), with comparable luminous efficacy. Indium monoiodide-argon low pressure lamps are electrodelessly driven with surface waves, which are launched and coupled into the lamp by the ‘surfatron’, a microwave coupler optimized for an efficient operation at a frequency of 2.45 GHz. A non intrusive diagnostic method based on spatially resolved optical emission spectroscopy is employed to characterize the plasma parameters. The line emission coefficients of the plasma are derived by means of Abel’s inversion from the measured spectral radiance data. The characteristic plasma parameters, e.g. electron temperature and density are determined by comparing the experimentally obtained line emission coefficients with simulated ones from a collisional-radiative model. Additionally, a method to determine the absolute plasma efficiency via irradiance measurements without any goniometric setup is presented. In this way, the relationship between the plasma efficiency and the plasma parameters can be investigated systematically for different operating configurations, e.g. electrical input power, buffer gas pressure and cold spot temperature. The performance of indium monoiodide-argon plasma is compared with that of conventional CFLs. (paper)

  3. Efficiency of cleaning and disinfection of surfaces: correlation between assessment methods

    Directory of Open Access Journals (Sweden)

    Oleci Pereira Frota

    Full Text Available ABSTRACT Objective: to assess the correlation among the ATP-bioluminescence assay, visual inspection and microbiological culture in monitoring the efficiency of cleaning and disinfection (C&D of high-touch clinical surfaces (HTCS in a walk-in emergency care unit. Method: a prospective and comparative study was carried out from March to June 2015, in which five HTCS were sampled before and after C&D by means of the three methods. The HTCS were considered dirty when dust, waste, humidity and stains were detected in visual inspection; when ≥2.5 colony forming units per cm2 were found in culture; when ≥5 relative light units per cm2 were found at the ATP-bioluminescence assay. Results: 720 analyses were performed, 240 per method. The overall rates of clean surfaces per visual inspection, culture and ATP-bioluminescence assay were 8.3%, 20.8% and 44.2% before C&D, and 92.5%, 50% and 84.2% after C&D, respectively (p<0.001. There were only occasional statistically significant relationships between methods. Conclusion: the methods did not present a good correlation, neither quantitative nor qualitatively.

  4. Characteristics of PAHs adsorbed on street dust and the correlation with specific surface area and TOC.

    Science.gov (United States)

    Wang, Chengkun; Li, Yingxia; Liu, Jingling; Xiang, Li; Shi, Jianghong; Yang, Zhifeng

    2010-10-01

    Street dust was collected from five roads with different traffic volumes in the metropolitan area of Beijing and separated into five size fractions. Concentrations of polycyclic aromatic hydrocarbons (PAHs) adsorbed on street dust in different size ranges and their correlation with specific surface area and total organic carbon (TOC) were investigated. Results show that the concentration of 16-PAHs of sieved samples ranges from 0.27 to 1.30 mg/kg for all the sampling sites. Particles smaller than 40 mum in diameter have the highest 16-PAHs concentration among all of the size ranges for street dust from the four sampling sites with vehicles running on. PAHs with three or four rings account for 68% of the overall 16-PAHs on average. Remarkable positive correlation exists between 16-PAHs concentration and specific surface area with R(2) values from 0.7 to 0.96 for the four sampling sites with vehicles running on. The relationship between the concentration of 16-PAHs and TOC is less clear.

  5. Correlation of inferior vena cava (ivc) diameter and central venous pressure (cvp) for fluid monitoring in icu

    International Nuclear Information System (INIS)

    Khalil, A.; Hayat, A.

    2015-01-01

    To determine intravascular fluid status in critically ill patients using inferior vena cava diameter and correlating it with central venous pressure. Study Design: Cross sectional study. Place and Duration of Study: Intensive care department, Military Hospital Rawalpindi from Jan 2013 to Aug 2013. Material and Methods: We included 115 adult patients of both genders in age range of 18 to 87 years by consecutive sampling admitted in intensive care unit. Ultrasound guided IVC diameter was assessed in supine patients. Data was simultaneously collected from the CVP catheter. Variables included in study were age, gender, CVP, IVC diameter. Results: CVP ranged from -4 to 26 cm H/sub 2/O with mean of 8 cm H/sub 2/O (SD = 6.24). Mean IVC diameters increased with increase in CVP. Correlation between CVP and max IVC diameter was moderate and significant (r = 0.53, p < 0.001). Correlation between CVP and min IVC diameter was also moderate and significant (r = 0.58, p < 0.001). Conclusion: A simple bedside sonography of inferior vena cava diameter correlates well with extremes of CVP values and can be helpful in assessing intravascular fluid status in these patients. (author)

  6. Correlation between three-dimentional surface topography and color stability of different nanofilled composites.

    Science.gov (United States)

    Öztürk, Elif; Güder, Gizem

    2015-01-01

    The aim of this study was to evaluate the 3-dimensional (3D) surface topography and color stability of four different resin composites after immersion in different soft-beverages. One hundred sixty disk-shaped specimens (diameter: 10 mm, and thickness: 2 mm) were made from four different resin composites (i.e., Filtek Z550, Tetric N-Ceram, Clearfil Majesty Esthetic, and Cavex Quadrant Universal LC). Each specimen was cured under mylar strips for 20 sec for both top and bottom surfaces. All of the specimens were stored in distilled water for 24 h at 37°C. Surface measurements were carried out using a noncontact 3D-optical-profilometer in terms of surface topography (Ra values). Color measurements of each specimen were performed with Vita Easy Shade system. All the measurements were performed at baseline and after 30 days of immersion in the selected soft-beverages (Redbull, Coca-Cola and Dimes-Lemonade). Control groups were stored in distilled water during the study. Ra values and color changes (ΔE values) of the groups were recorded. The data were statistically analyzed using a one way ANOVA and Tukey's post-hoc tests (SPSS 18.0). The tested soft-beverages in the present study caused color changes at a 30-day evaluation period for the tested resin composites (p topography of resin composites was not influenced by the tested soft-beverages (p > 0.05). There was no significant interaction between the composite and beverage type on the Ra values of the resin composites (p > 0.05). No correlation was found between color stability and 3D surface topography of the resin composites. Color stability of resin composites may be affected by soft beverages. © Wiley Periodicals, Inc.

  7. A heat transfer correlation based on a surface renewal model for molten core concrete interaction study

    International Nuclear Information System (INIS)

    Tourniaire, B. . E-mail bruno.tourniaire@cea.fr

    2006-01-01

    The prediction of heat transfer between corium pool and concrete basemat is of particular significance in the framework of the study of PWR's severe accident. Heat transfer directly governs the ablation velocity of concrete in case of molten core concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. From a restricted hydrodynamic point of view, this issue is related to heat transfer between a heated bubbling pool and a porous wall with gas injection. Several experimental studies have been performed with simulant materials and many correlations have been provided to address this issue. The comparisons of the results of these correlations with the measurements and their extrapolation to reactor materials show that strong discrepancies between the results of these models are obtained which probably means that some phenomena are not well taken into account. The main purpose of this paper is to present an alternative heat transfer model which was originally developed for chemical engineering applications (bubble columns) by Deckwer. A part of this work is devoted to the presentation of this model, which is based on a surface renewal assumption. Comparison of the results of this model with available experimental data in different systems are presented and discussed. These comparisons clearly show that this model can be used to deal with the particular problem of MCCI. The analyses also lead to enrich the original model by taking into account the thermal resistance of the wall: a new formulation of the Deckwer's correlation is finally proposed

  8. Correlations between sea surface temperature, circulation patterns and the distribution of hermatypic corals of Japan

    Science.gov (United States)

    Veron, J. E. N.; Minchin, Peter R.

    1992-07-01

    Techniques of multivariate exploratory data analysis and regression are used to examine correlations between patterns of distribution of the hermatypic corals of the Ryukyu Islands and mainland Japan, sea surface temperature (SST) and dispersal time. The species composition of all localities is highly correlated with geographic position, with species richness decreasing with latitude. There is an abrupt decrease in diversity between reefal (Ryukyu Islands) and non-reefal (mainland) localities. The compositional data are strongly unidimensional and this dimension is correlated with SST. There are eight high latitude endemic species as well as other species "locked-up" in northern localities as a result of the northward-flowing Kuroshio Current. On a broad scale, overall similarity in coral species composition can be predicted solely from absolute differences in SST and dispersal time makes no significant contribution. Except for short term or localized chilling, the minimum SST for coral reef development is 18°C. Of all Japanese species, 22.5% tolerate a minimum SST of 10.4°C, 27% tolerate 13.2°C and 48% tolerate 14.1°C. Thus, approximately half of all species tolerate temperatures 4°C below the 18°C minimum required for reef development.

  9. Surface properties correlated with the human gingival fibroblasts attachment on various materials for implant abutments: a multiple regression analysis.

    Science.gov (United States)

    Kim, Young-Sung; Shin, Seung-Yun; Moon, Seung-Kyun; Yang, Seung-Min

    2015-01-01

    To reveal the suitable surface condition of an implant abutment for fibroblast attachment, the correlation between the surface characteristics of various materials and the human gingival fibroblast (HGF-1) attachment to the surfaces were analyzed. Six kinds of surfaces comprised of machined titanium alloy (SM), machined Co-Cr-Mo alloy (CCM), titanium nitride coated titanium alloy (TiN), anodized titanium alloy (AO), composite resin coating on titanium alloy (R) and zirconia (Zr) were used. The measured surface parameters were Sa, Sq, Sz, Sdr, Sdq, Sal, Str and water contact angle (WCA). The HGF-1 cell attachment was investigated and the correlations were analyzed using a multiple regression analysis. The HGF-1 cell attachment was greater in the SM, TiN and Zr groups than the other groups and smallest in the CCM group (p = 0.0096). From the multiple regression analysis, the HGF-1 cell attachment was significantly correlated with Sdr, Sdq and WCA. When the R group was excluded, only WCA showed significant correlation with the fibroblast attachment. Within the limitations of this study, the cell attachment of human gingival fibroblasts was correlated with WCA, developed interfacial area ratio and surface slope. When the surfaces with Sa values of ∼ 0.2 μm or less were concerned, only WCA showed a correlation in a third order manner.

  10. Correlation of both corneal surfaces in corneal ectasia after myopic LASIK.

    Science.gov (United States)

    Peinado, Teresa Fernández; Piñero, David P; López, Ignacio Alcaraz; Alio, Jorge L

    2011-04-01

    We report a case of corneal ectasia in a 25-year-old man after myopic laser in situ keratomileusis in which a complete characterization of the corneal structure was performed by means of a Scheimpflug photography-based system. The patient presented in the ectatic eye with a subjective refraction of +0.50 to 6.00 × 100°, which with correction gave a visual acuity of 20/25. With the topographic analysis, corneal shapes from both corneal surfaces at the four different quadrants were found to be complementary, maintaining the meniscus-shaped profile of the cornea. This correlation between the anterior and posterior corneal surfaces was also confirmed with an optical tomography evaluation. Corneal biomechanics was also evaluated by means of the Ocular Response Analyzer (Reichert), which confirmed the biomechanical alteration. In summary, biomechanical changes leading to corneal ectasia in this case affected the global corneal structure, inducing alterations in the shape of both anterior and posterior corneal surfaces.

  11. Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes

    Directory of Open Access Journals (Sweden)

    Mia M. Bengtsson

    2017-07-01

    Full Text Available Eelgrass (Zostera marina is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.

  12. High-pressure coolant effect on the surface integrity of machining titanium alloy Ti-6Al-4V: a review

    Science.gov (United States)

    Liu, Wentao; Liu, Zhanqiang

    2018-03-01

    Machinability improvement of titanium alloy Ti-6Al-4V is a challenging work in academic and industrial applications owing to its low thermal conductivity, low elasticity modulus and high chemical affinity at high temperatures. Surface integrity of titanium alloys Ti-6Al-4V is prominent in estimating the quality of machined components. The surface topography (surface defects and surface roughness) and the residual stress induced by machining Ti-6Al-4V occupy pivotal roles for the sustainability of Ti-6Al-4V components. High-pressure coolant (HPC) is a potential choice in meeting the requirements for the manufacture and application of Ti-6Al-4V. This paper reviews the progress towards the improvements of Ti-6Al4V surface integrity under HPC. Various researches of surface integrity characteristics have been reported. In particularly, surface roughness, surface defects, residual stress as well as work hardening are investigated in order to evaluate the machined surface qualities. Several coolant parameters (including coolant type, coolant pressure and the injection position) deserve investigating to provide the guidance for a satisfied machined surface. The review also provides a clear roadmap for applications of HPC in machining Ti-6Al4V. Experimental studies and analysis are reviewed to better understand the surface integrity under HPC machining process. A distinct discussion has been presented regarding the limitations and highlights of the prospective for machining Ti-6Al4V under HPC.

  13. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    Science.gov (United States)

    Li, Zhanguo; Li, Ying; Cao, Peng; Zhao, Hongjie

    2013-07-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.

  14. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    International Nuclear Information System (INIS)

    Li Zhanguo; Li Ying; Cao Peng; Zhao Hongjie

    2013-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet

  15. Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch

    International Nuclear Information System (INIS)

    Yonson, S; Coulombe, S; Leveille, V; Leask, R L

    2006-01-01

    A miniature atmospheric pressure glow discharge plasma torch was used to detach cells from a polystyrene Petri dish. The detached cells were successfully transplanted to a second dish and a proliferation assay showed the transplanted cells continued to grow. Propidium iodide diffused into the cells, suggesting that the cell membrane had been permeabilized, yet the cells remained viable 24 h after treatment. In separate experiments, hydrophobic, bacteriological grade polystyrene Petri dishes were functionalized. The plasma treatment reduced the contact angle from 93 0 to 35 0 , and promoted cell adhesion. Two different torch nozzles, 500 μm and 150 μm in internal diameter, were used in the surface functionalization experiments. The width of the tracks functionalized by the torch, as visualized by cell adhesion, was approximately twice the inside diameter of the nozzle. These results indicate that the miniature plasma torch could be used in biological micropatterning, as it does not use chemicals like the present photolithographic techniques. Due to its small size and manouvrability, the torch also has the ability to pattern complex 3D surfaces

  16. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    Science.gov (United States)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  17. Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma.

    Science.gov (United States)

    Dorraki, Naghme; Mahdavi, Vahideh; Ghomi, Hamid; Ghasempour, Alireza

    2016-12-06

    The food industry is in a constant search for new technologies to improve the commercial sterilization process of agricultural commodities. Plasma treatment may offer a novel and efficient method for pesticide removal from agricultural product surfaces. To study the proposed technique of plasma food treatment, the degradation behavior of diazinon insecticide by air-dielectric barrier discharge (DBD) plasma was investigated. The authors studied the effect of different plasma powers and treatment times on pesticide concentration in liquid form and coated on the surface of cucumbers, where the diazinon residue was analyzed with mass spectroscopy gas chromatography. Our results suggest that atmospheric pressure air-DBD plasma is potentially effective for the degradation of diazinon insecticide, and mainly depends on related operating parameters, including plasma treatment time, discharge power, and pesticide concentrations. Based on the interaction between reactive oxygen species and electrons in the plasma with the diazinon molecule, two degradation pathway of diazinon during plasma treatment are proposed. It was also found that produced organophosphate pesticides are harmless and less hazardous compounds than diazinon.

  18. Psychosocial Correlates of Nocturnal Blood Pressure Dipping in African Americans: The Jackson Heart Study.

    Science.gov (United States)

    Spruill, Tanya M; Shallcross, Amanda J; Ogedegbe, Gbenga; Chaplin, William F; Butler, Mark; Palfrey, Amy; Shimbo, Daichi; Muntner, Paul; Sims, Mario; Sarpong, Daniel F; Agyemang, Charles; Ravenell, Joseph

    2016-08-01

    African Americans exhibit a lower degree of nocturnal blood pressure (BP) dipping compared with Whites, but the reasons for reduced BP dipping in this group are not fully understood. The aim of this study was to identify psychosocial factors associated with BP dipping in a population-based cohort of African Americans. This cross-sectional study included 668 Jackson Heart Study (JHS) participants with valid 24-hour ambulatory BP data and complete data on psychosocial factors of interest including stress, negative emotions, and psychosocial resources (e.g., perceived support). The association of each psychosocial factor with BP dipping percentage and nondipping status (defined as Higher depressive symptoms, higher hostility, and lower perceived social support were associated with a lower BP dipping percentage in unadjusted models and after adjustment for age, sex, body mass index, and mean 24-hour systolic BP (P social support as a potentially modifiable determinant of nocturnal BP dipping warrants further investigation. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Benchmarking exchange-correlation functionals for hydrogen at high pressures using quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Raymond C. [Univ. of Illinois, Urbana, IL (United States); Mcminis, Jeremy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McMahon, Jeffrey M. [Univ. of Illinois, Urbana, IL (United States); Pierleoni, Carlo [Istituto Nazionale di Fisica Nucleare (INFN), L' aquila (Italy). Lab. Nazionali del Gran Sasso (INFN-LNGS); Ceperley, David M. [Univ. of Illinois, Urbana, IL (United States); Morales, Miguel A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-05-01

    The ab initio phase diagram of dense hydrogen is very sensitive to errors in the treatment of electronic correlation. Recently, it has been shown that the choice of the density functional has a large effect on the predicted location of both the liquid-liquid phase transition and the solid insulator-to-metal transition in dense hydrogen. To identify the most accurate functional for dense hydrogen applications, we systematically benchmark some of the most commonly used functionals using quantum Monte Carlo. By considering several measures of functional accuracy, we conclude that the van der Waals and hybrid functionals significantly outperform local density approximation and Perdew-Burke-Ernzerhof. We support these conclusions by analyzing the impact of functional choice on structural optimization in the molecular solid, and on the location of the liquid-liquid phase transition.

  20. Comparison of air-fluidized therapy with other support surfaces used to treat pressure ulcers in nursing home residents.

    Science.gov (United States)

    Ochs, Rachel F; Horn, Susan D; van Rijswijk, Lia; Pietsch, Catherine; Smout, Randall J

    2005-02-01

    To provide empirical evidence comparing pressure ulcer healing rates between different support surfaces, data were analyzed from eligible residents with pressure ulcers (N = 664) enrolled in the National Pressure Ulcer Long-Term Care Study, a retrospective pressure ulcer prevention and treatment study. Support surfaces were categorized as: Group 1 (static overlays and replacement mattresses), Group 2 (low-air-loss beds, alternating pressure, and powered/non-powered overlays/mattresses), and Group 3 (air-fluidized beds). Calculation of healing rates, using the largest ulcer from each resident, found mean healing rates greatest for air-fluidized therapy (Group 3) (mean = 5.2 cm(2)/week) versus Group 1 (mean =1.5 cm(2)/week) and Group 2 (mean = 1.8 cm(2)/week) surfaces (P = 0.007). Healing rates also were assessed using 7- to 10-day "episodes"; each ulcer generated separate episode(s) that included all ulcers when residents had multiple ulcers. Mean healing rates were significantly greater for Stage III/IV ulcers on Group 3 surfaces (mean = 3.1 cm(2)/week) versus Group 1 (mean = 0.6 cm(2)/week) and Group 2 (mean = 0.7 cm(2)/week) surfaces (Group 2 versus Group 3: P = 0.0211). This finding persisted for ulcers with comparable initial baseline areas (20 cm(2) to 75 cm(2)) on Group 2 and Group 3 surfaces; healing improved on Group 3 surfaces (+2.3 cm(2)/week) versus Group 2 surfaces (-2.1 cm(2)/week, P = 0.0399). Residents on Group 3 (6 out of 82; 7.3%) and Group 1 (47 out of 461; 10.2%) surfaces had fewer hospitalizations and emergency room visits than those on Group 2 surfaces (23 out of 121; 19.0%, P = 0.01) despite significantly greater illness in residents on Group 2 and 3 versus Group 1 surfaces (P is less than 0.0001). Despite limitations inherent in retrospective studies, ulcers on Group 3 surfaces versus Groups 1 and Group 2 surfaces had statistically significant faster healing rates (particularly for Stage III/IV ulcers) with significantly fewer

  1. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Seyed Mahdi [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of); Karimi-Sabet, Javad, E-mail: j_karimi@alum.sharif.edu [NFCRS, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Shariaty-Niassar, Mojtaba, E-mail: mshariat@ut.ac.ir [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-31

    Highlights: • Manipulation of the Cu surface morphology in a wide range by electropolishing treatment. • Comparison of the nucleation density of graphene at low pressure and atmospheric pressure CVD processes. • Controlling the evolution of the Cu surface morphology inside a novel confined space. • Growth of large-size graphene domains. - Abstract: In this work, we study the influence of the surface morphology of the catalytic copper substrate on the nucleation density and the growth rate of graphene domains at low and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) processes. In order to obtain a wide range of initial surface morphology, precisely controlled electropolishing methods were developed to manipulate the roughntreess value of the as-received Cu substrate (RMS = 30 nm) to ultra-rough (RMS = 130 nm) and ultra-smooth (RMS = 2 nm) surfaces. The nucleation and growth of graphene domains show obviously different trends at LPCVD and APCVD conditions. In contrast to APCVD condition, the nucleation density of graphene domains is almost equal in substrates with different initial roughness values at LPCVD condition. We show that this is due to the evolution of the surface morphology of the Cu substrate during the graphene growth steps. By stopping the surface sublimation of copper substrate in a confined space saturated with Cu atoms, the evolution of the Cu surface was impeded. This results in the reduction of the nucleation density of graphene domains up to 24 times in the pre-smoothed Cu substrates at LPCVD condition.

  2. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Guru Prasad, A S; Sharath, U; Asokan, S; Nagarjun, V; Hegde, G M

    2013-01-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other. (paper)

  3. Correlation between intraocular pressure and the biometric structure of the anterior chamber in patients of chronic renal failure with hemodialysis

    Directory of Open Access Journals (Sweden)

    Zhi-Ying Yu

    2017-02-01

    Full Text Available AIM: To investigate the correlation between intraocular pressure(IOPchanges pre- and post-hemodialysis(HDand the biometric structure of the anterior chamber in patients of chronic renal failure. METHODS: Fifty-two patients(take right eye as study onewith hemodialysis that were diagnosed with chronic renal failure by nephrology in our hospital from January 2015 to December 2015 were collected. Fifty-two eyes were divided into four groups based on Shaffer classification combined with ultrasound biomicroscopy(UBMand gonioscopy manifestations: wide angle group, narrow angle group, extremely narrow group and close angle group. Venous blood was collected to get plasma colloid osmotic pressure before HD and within 60s after HD. IOP was measured with rebound intraocular pressure gauge in a supine positon approximately 30min before starting HD, 2h after HD begin and approximately 30min after HD ending. Approximately 30min before and after HD, central corneal thickness was measured with corneal endothelial cell counter, central anterior chamber depth and lens thickness were taken by A scan, angle opening distance, trabecular iris angle, iris thickness and ciliary body thickness were measured by UBM. RESULTS: Plasma osmotic pressure reduced after HD, the difference was statistically significant(t=3.04, PF=41.69, PPPF=6.44, PPt=2.61, PCONCLUSION: The influence of hemodialysis on IOP is related to the biometric structure of the anterior chamber. And extremely narrow angle is risk factor of elevated IOP during hemodialysis, narrow angle may be a risk factor. While patients with wide angle is relatively safe. We suggest to take ocular examination as early as possible for patients with hemodialysis, and focus on patients with narrow angle.

  4. Correlation of mechanical property changes in neutron-irradiated pressure vessel steels on the basis of spectral effects

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1991-01-01

    Comparisons are made of tensile data on specimens of A212B and A302B pressure vessel steels irradiated at low temperatures (40-90degC) and to low doses (<0.1 dpa) with 14 MeV D-T fusion neutrons in the Rotating Target Neutron Source (RTNS-II), with fission reactor neutrons in the Omega West Reactor (OWR) and the Oak Ridge Research Reactor (ORR), and with the highly thermal spectrum at the pressure vessel surveillance positions of the High Flux Isotope Reactor (HFIR). For each neutron spectrum, damage cross sections are determined for several defect production functions derived from atomistic computer simulations of collision cascades. Displacements per atom (dpa) and the numbers of freely migrating defects are tested as damage correlation parameters for the tensile data. The data from RTNS-II, OWR and ORR correlate fairly well when compared on the basis of dpa, but the data from HFIR show only about one sixth as many dpa are needed to produce the same radiation-induced yield stress changes as in the other neutron spectra. In the HFIR surveillance position a significant fraction of the displacements is produced by recoils resulting from thermal neutron captures. Having energies of about 400 eV, these recoils are much more efficient per unit energy at producing freely migrating defects than the high energy recoils responsible for most of the displacements in the other neutron spectra considered. A significantly better correlation of data from HFIR with those from the other spectra is achieved when the property changes are compared on the basis of the production of freely migrating self-interstitial defects. (orig./MM)

  5. Correlation analysis of the changes in arterial blood pressure in people with acute mountain sickness when exposed to high altitude

    Directory of Open Access Journals (Sweden)

    Yang LIU

    2014-03-01

    Full Text Available Objectives  To investigate the changes in arterial blood pressure in the healthy lowlanders when they were exposed to different altitudes and duration, and the relationship of the exposure with the prevalence and susceptibility of acute mountain sickness (AMS, in order to evaluate the significance of arterial blood pressure changes in the diagnosis of AMS and its clinical risk. Methods  Demographic data and blood pressure parameters [systolic blood pressure (SBP, diastolic blood pressure (DBP, mean arterial BP (MABP] of healthy lowlanders (inhabitants in ≤500m were collected after being exposed to 3700m on day 1, 3, 5 and 7, and also after being exposed to 4400m on day 5, while healthy young men living at low altitude were randomly selected as the control group. Simultaneously the AMS symptoms Questionnaire was filled. The Lake Louise acute mountain sickness scoring system (LLS was used to diagnose AMS. The changes in arterial blood pressure in people above and its correlation with AMS were analyzed. Results  After acute exposure to 3700m (day 1, SBP, DBP and MABP rose obviously, and then descended moderately after adaptation for about a week, but still higher than that of LA level (P<0.05. And then SBP, DBP and MABP rose again at high-altitude of 4400m, but lower than the levels of day 1 at 3700m. MABP at 3700m and 4400m were related to LLS (r=0.138, P=0.048; r=0.145, P=0.045, respectively. MABP levels for diagnosis of AMS at 3700m showed an cut-off point of 98.5mmHg with sensitivity of 32.8% and specificity of 73.7% (P<0.05, and MABP levels for diagnosis of AMS at 4400m showed an cut-off point of 97.8mmHg with sensitivity of 42.4% and specificity of 75.5% (P<0.05. Conclusions  After exposure to acute hypoxia, MABP may serve as a predictive parameter for diagnosis of AMS. However, the clinical application of MABP as a diagnostic criterion is limited because of its poor specificity or sensitivity. The use of MABP as a diagnostic

  6. Intraocular pressure and its correlation with midnight plasma cortisol level in Cushing's disease and other endogenous Cushing's syndrome

    Directory of Open Access Journals (Sweden)

    Priyadarshini Mishra

    2017-01-01

    Full Text Available Purpose: The purpose of this study is to measure intraocular pressure (IOP and evaluate the correlation between IOP and midnight plasma cortisol (MPC level in patients with Cushing's disease (CD and other endogenous Cushing's syndrome (ECS. Methods: This is a cross-sectional study from a single center including newly diagnosed patients with CD or ECS. All patients underwent detailed ophthalmological evaluation. IOP was measured by Goldmann applanation tonometry in the morning and evening on two consecutive days. MPC value was obtained for each patient. The data were compared using paired and unpaired t-test, Mann–Whitney U-test, and Spearman's rank correlation coefficient. Results: Among 32 patients, 22 were CD (68.75% and 10 patients were other ECS (31.25%. A total of 25 patients (78.12% in our study group had normal IOP (<22 mmHg, and seven patients (21.88% had increased IOP (≥22 mmHg. The percentage of patients with normal IOP was found to be significantly higher compared to percentage of patients with high IOP (P = 0.001 using one-sample Chi-square test. Mean MPC value was 468.6 ± 388.3 nmol/L in patients having IOP ≥22 mmHg and 658.5 ± 584 nmol/L in those with IOP <22 mmHg from both CD and ECS groups, but the difference was not statistically significant. No correlation was found between IOP and MPC (Spearman's rank correlation rho = −0.16 [P = 0.38]. Conclusion: In CD and ECS patients, IOP elevation is an uncommon feature, and high IOP in either group does not correlate with MPC level.

  7. Evaluation of existing correlations for the prediction of pressure drop in wire-wrapped hexagonal array pin bundles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.K., E-mail: shihkueichen@hotmail.com [Institute of Nuclear Energy Research (retired), Longtan 32546, Taiwan (China); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Todreas, N.E.; Nguyen, N.T. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-02-15

    Highlights: • Wire-wrapped bundle friction factor data and correlations thoroughly collected. • Three methodologies proposed for identifying the best fit correlation. • 80 out of 141 bundles selected as database for evaluation. • The detailed Cheng and Todreas correlation identified to fit the data best. - Abstract: Existing wire-wrapped fuel bundle friction factor correlations were evaluated to identify their comparative fit to the available pressure drop experimental data. Five published correlations, those of Rehme (REH), Baxi and Dalle Donne (BDD, which used the correlations of Novendstern in the turbulent regime and Engel et al. in the laminar and transition regimes), detailed Cheng and Todreas (CTD), simplified Cheng and Todreas (CTS), and Kirillov (KIR, developed by Russian scientists) were studied. Other correlations applicable to a specific case were also evaluated but only for that case. Among all 132 available bundle data, an 80 bundle data set was judged to be appropriate for this evaluation. Three methodologies, i.e., the Prediction Error Distribution, Agreement Index and Credit Score were principally used for investigating the goodness of each correlation in fitting the data. Evaluations have been performed in two categories: 4 cases of general user interest and 3 cases of designer specific interest. The four general user interest cases analyzed bundle data sets in four flow regimes – i.e., all regimes, the transition and/or turbulent regimes, the turbulent regime, and the laminar regime. The three designer interest cases analyzed bundles in the fuel group, the blanket and control group and those with P/D > 1.06, for the transition/turbulent regimes. For all these cases, the detailed Cheng and Todreas correlation is identified as yielding the best fit. Specifically for the all flow regimes evaluation, the best fit correlation in descending order is CTD, BDD/CTS (tie), REH and KIR. For the combined transition/turbulent regime, the order is

  8. High temperature and high pressure oxidation behavior of Zr-2.5Nb pressure tube material – Effect of β phase composition and surface machining

    Energy Technology Data Exchange (ETDEWEB)

    Nouduru, S.K., E-mail: nouduru@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kumar, M. Kiran; Kain, Vivekanand [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Khanna, A.S. [Dept. of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Saibaba, N. [Nuclear Fuel Complex, ECILPost, Hyderabad 500062 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-03-15

    Pressure tube material, Zr-2.5Nb, of pressurized heavy water reactors was given selective heat-treatments. The objective was to generate microstructures with different compositions of the second phase β namely, Νb depleted β{sub Zr} phase and Nb rich β{sub Nb} phase. The material with β{sub Zr} was then subjected to surface machining. The presence of phases after different heat-treatments was confirmed by X-ray diffraction and the resultant microstructures were characterized by transmission electron microscopy and electron back scattered diffraction. The Nb content in the β phase after heat-treatments and residual stresses before and after surface machining were measured using X-ray diffraction. Oxidation was carried out in steam at 400 °C and 10 MPa up to 30 days and the oxides were characterized by Raman spectroscopy. It is shown that the presence of Nb rich β{sub Nb} in the microstructure and faster diffusion of Nb into β phase brought about by surface machining resulted in an enhanced oxidation resistance. - Highlights: • Effect of heat treatments in formation of Nb rich/depleted phases established. • Microstructure with β{sub Nb} and Nb depleted α shown to have high oxidation resistance. • Surface machining resulted in grain refinement, strain and tensile residual stress. • Surface machining improved oxidation resistance and its extent increased with time. • Machined specimen showed higher fraction of tetragonal zirconia.

  9. High temperature and high pressure oxidation behavior of Zr-2.5Nb pressure tube material – Effect of β phase composition and surface machining

    International Nuclear Information System (INIS)

    Nouduru, S.K.; Kumar, M. Kiran; Kain, Vivekanand; Khanna, A.S.; Saibaba, N.; Dey, G.K.

    2016-01-01

    Pressure tube material, Zr-2.5Nb, of pressurized heavy water reactors was given selective heat-treatments. The objective was to generate microstructures with different compositions of the second phase β namely, Νb depleted β Zr phase and Nb rich β Nb phase. The material with β Zr was then subjected to surface machining. The presence of phases after different heat-treatments was confirmed by X-ray diffraction and the resultant microstructures were characterized by transmission electron microscopy and electron back scattered diffraction. The Nb content in the β phase after heat-treatments and residual stresses before and after surface machining were measured using X-ray diffraction. Oxidation was carried out in steam at 400 °C and 10 MPa up to 30 days and the oxides were characterized by Raman spectroscopy. It is shown that the presence of Nb rich β Nb in the microstructure and faster diffusion of Nb into β phase brought about by surface machining resulted in an enhanced oxidation resistance. - Highlights: • Effect of heat treatments in formation of Nb rich/depleted phases established. • Microstructure with β Nb and Nb depleted α shown to have high oxidation resistance. • Surface machining resulted in grain refinement, strain and tensile residual stress. • Surface machining improved oxidation resistance and its extent increased with time. • Machined specimen showed higher fraction of tetragonal zirconia.

  10. Correlation between Ni base alloys surface conditioning and cation release mitigation in primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Clauzel, M.; Guillodo, M.; Foucault, M. [AREVA NP SAS, Technical Centre, Le Creusot (France); Engler, N.; Chahma, F.; Brun, C. [AREVA NP SAS, Chemistry and Radiochemistry Group, Paris La Defense (France)

    2010-07-01

    The mastering of the reactor coolant system radioactive contamination is a real stake of performance for operating plants and new builds. The reduction of activated corrosion products deposited on RCS surfaces allows minimizing the global dose integrated by workers which supports the ALARA approach. Moreover, the contamination mastering limits the volumic activities in the primary coolant and thus optimizes the reactor shutdown duration and environment releases. The main contamination sources on PWR are due to Co-60 and Co-58 nuclides which come respectively Co-59 and Ni-58, naturally present in alloys used in the RCS. Co is naturally present as an impurity in alloys or as the main component of hardfacing materials (Stellites™). Ni is released mainly by SG tubes which represent the most important surface of the RCS. PWR steam generators (SG), due to the huge wetted surface are the main source of corrosion products release in the primary coolant circuit. As corrosion products may be transported throughout the whole circuit, activated in the core, and redeposited all over circuit surfaces, resulting in an increase of activity buildup, it is of primary importance to gain a better understanding of phenomenon leading to corrosion product release from SG tubes before setting up mitigation measures. Previous studies have shown that SG tubing made of the same material had different release rates. To find the origin of these discrepancies, investigations have been performed on tubes at the as-received state and after exposure to a nominal primary chemistry in titanium recirculating loop. These investigations highlighted the existence of a correlation between the inner surface metallurgical properties and the release of corrosion products in primary coolant. Oxide films formed in nominal primary chemistry are always protective, their morphology and their composition depending strongly on the geometrical, metallurgical and physico-chemical state of the surface on which they

  11. Localization, correlation, and visualization of electroencephalographic surface electrodes and brain anatomy in epilepsy studies

    Science.gov (United States)

    Brinkmann, Benjamin H.; O'Brien, Terence J.; Robb, Richard A.; Sharbrough, Frank W.

    1997-05-01

    Advances in neuroimaging have enhanced the clinician's ability to localize the epileptogenic zone in focal epilepsy, but 20-50 percent of these cases still remain unlocalized. Many sophisticated modalities have been used to study epilepsy, but scalp electrode recorded electroencephalography is particularly useful due to its noninvasive nature and excellent temporal resolution. This study is aimed at specific locations of scalp electrode EEG information for correlation with anatomical structures in the brain. 3D position localizing devices commonly used in virtual reality systems are used to digitize the coordinates of scalp electrodes in a standard clinical configuration. The electrode coordinates are registered with a high- resolution MRI dataset using a robust surface matching algorithm. Volume rendering can then be used to visualize the electrodes and electrode potentials interpolated over the scalp. The accuracy of the coordinate registration is assessed quantitatively with a realistic head phantom.

  12. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    Science.gov (United States)

    de Vries, N.; Palomares, J. M.; Iordanova, E. I.; van Veldhuizen, E. M.; van der Mullen, J. J. A. M.

    2008-10-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, ne, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, Te, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the ne values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) × 1019 m-3, whereas the ne value (2 ± 0.5) × 1019 m-3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (~1020 m-3). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the Te values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  13. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vries, N de; Iordanova, E I; Van Veldhuizen, E M; Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Palomares, J M [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain)], E-mail: j.j.a.m.v.d.Mullen@tue.nl

    2008-10-21

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, n{sub e}, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, T{sub e}, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the n{sub e} values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 {+-} 0.5) x 10{sup 19} m{sup -3}, whereas the n{sub e} value (2 {+-} 0.5) x 10{sup 19} m{sup -3} obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high ({approx}10{sup 20} m{sup -3}). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the T{sub e} values obtained with TS are equal to 13 400 {+-} 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  14. Automated measurement of cattle surface temperature and its correlation with rectal temperature.

    Directory of Open Access Journals (Sweden)

    HongXiang Kou

    Full Text Available The body temperature of cattle varies regularly with both the reproductive cycle and disease status. Establishing an automatic method for monitoring body temperature may facilitate better management of reproduction and disease control in cattle. Here, we developed an Automatic Measurement System for Cattle's Surface Temperature (AMSCST to measure the temperature of metatarsus by attaching a special shell designed to fit the anatomy of cattle's hind leg. Using AMSCST, the surface temperature (ST on the metatarsus of the hind leg was successively measured during 24 hours a day with an interval of one hour in three tested seasons. Based on ST and rectal temperature (RT detected by AMSCST and mercury thermometer, respectively, a linear mixed model was established, regarding both the time point and seasonal factors as the fixed effects. Unary linear correlation and Bland-Altman analysis results indicated that the temperatures measured by AMSCST were closely correlated to those measured by mercury thermometer (R2 = 0.998, suggesting that the AMSCST is an accurate and reliable way to detect cattle's body temperature. Statistical analysis showed that the differences of STs among the three seasons, or among the different time points were significant (P<0.05, and the differences of RTs among the different time points were similarly significant (P<0.05. The prediction accuracy of the mixed model was verified by 10-fold cross validation. The average difference between measured RT and predicted RT was about 0.10 ± 0.10°C with the association coefficient of 0.644, indicating the feasibility of this model in measuring cattle body temperature. Therefore, an automated technology for accurately measuring cattle body temperature was accomplished by inventing an optimal device and establishing the AMSCST system.

  15. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to

  16. A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Khoo Sze-Wei

    2016-09-01

    Full Text Available Among the full-field optical measurement methods, the Digital Image Correlation (DIC is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.

  17. Correlating the interface resistance and surface adhesion of the Li metal-solid electrolyte interface

    Science.gov (United States)

    Wang, Michael; Sakamoto, Jeff

    2018-02-01

    Solid electrolytes could enable stable cycling of metallic Li anodes, which can offer drastic increases to the capacity of Li-ion batteries. However, little is known about the mechanics of the Li-solid electrolyte interface. This study combines electrochemical and mechanical characterization to correlate interface kinetics with adhesive strength. Cubic garnet with the Li6·25Al0·25La3Zr2O12 (LLZO) formulation was selected as a model solid electrolyte based on its high conductivity and stability against Li metal. Symmetric Li-LLZO cells were tested using electrochemical impedance spectroscopy to determine the interfacial resistance, Rint, and the adhesive strength of the Li-LLZO interface, σadh, was measured using a unique tensile test in an inert atmosphere. It was determined that the Rint is directly correlated to the adhesive strength of Li on LLZO. At the highest Rint in this study, 330 k·cm2 the σadh was 1.1 kPa and at the lowest Rint in this study, 7 ·cm2, σadh was 8 MPa. Furthermore, by optimizing the surface chemistry the wettability of LLZO was enhanced resulting in σadh exceeding the ultimate tensile strength of Li metal. The relationship demonstrated provides a deeper understanding of the mechanical properties of the Li-electrolyte interface, which will play an important role in the design of batteries employing metallic Li anodes.

  18. Explicit correlation treatment of the potential energy surface of CO{sub 2} dimer

    Energy Technology Data Exchange (ETDEWEB)

    Kalugina, Yulia N., E-mail: kalugina@phys.tsu.ru [Tomsk State University, 36 Lenin Ave., Tomsk 634050 (Russian Federation); Buryak, Ilya A. [Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation); Chemistry Department, Lomonosov Moscow State University, Moscow (Russian Federation); Ajili, Yosra [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Bd Descartes, 77454 Marne-La-Vallée (France); Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA Université de Tunis El Manar (Tunisia); Vigasin, Andrei A. [Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation); Jaidane, Nejm Eddine [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA Université de Tunis El Manar (Tunisia); Hochlaf, Majdi [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Bd Descartes, 77454 Marne-La-Vallée (France)

    2014-06-21

    We present an extensive study of the four-dimensional potential energy surface (4D-PES) of the carbon dioxide dimer, (CO{sub 2}){sub 2}. This PES is developed over the set of intermolecular coordinates. The electronic computations are carried out at the explicitly correlated coupled cluster method with single, double, and perturbative triple excitations [CCSD(T)-F12] level of theory in connection with the augmented correlation-consistent aug-cc-pVTZ basis set. An analytic representation of the 4D-PES is derived. Our extensive calculations confirm that “Slipped Parallel” is the most stable form and that the T-shaped structure corresponds to a transition state. Later on, this PES is employed for the calculations of the vibrational energy levels of the dimer. Moreover, the temperature dependence of the dimer second virial coefficient and of the first spectral moment of rototranslational collision-induced absorption spectrum is derived. For both quantities, a good agreement is found between our values and the experimental data for a wide range of temperatures. This attests to the high quality of our PES. Generally, our PES and results can be used for modeling CO{sub 2} supercritical fluidity and examination of its role in planetary atmospheres. It can be also incorporated into dynamical computations of CO{sub 2} capture and sequestration. This allows deep understanding, at the microscopic level, of these processes.

  19. Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure

    Directory of Open Access Journals (Sweden)

    Elena Beltrán-Heredia

    2017-05-01

    Full Text Available Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force. We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive

  20. Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE; FINAL

    International Nuclear Information System (INIS)

    Weiss, R.F.

    1998-01-01

    All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0(sub 2)) and nitrous oxide (N(sub 2)O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in th e global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO(sub 2) and N(sub 2)O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N(sub 2)O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO(sub 2), roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N(sub 2)O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone

  1. Correlation between 24-hour profile of blood pressure and ventricular arrhythmias and their prognostic significance in patients with arterial hypertension

    Directory of Open Access Journals (Sweden)

    Đorđević Dragan

    2008-01-01

    Full Text Available Background/Aim. Left ventricular hypertrophy (LVH, apart from arterial hypertension, is a risk factor for electrophysiologic heart condition disorder and sudden cardiac death. The aim of this study was to examine a relationship between complex ventricular arrhythmias and parameters of 24-hour ambulatory blood pressure monitoring in the patients with arterial hypertension and left ventricular hypertrophy (LVH, as well as their prognostic significance during a five-year follow-up. Methods. Ninety patients with arterial hypertension and LVH were included in this study (mean age 55.2±8.3 years. There were 35 healthy people in the control group (mean age 54.5±7.1 years. Left ventricular mass index was 171.9±32.4 g/m2 in the LVH group and 102.4±13.3 g/m2 in the control group. Clinical examination, echocardiogram, 24-hour ambulatory blood pressure monitoring and 24-hour holter monitoring were done in all of the examined persons. Ventricular arrhythmias were classified by the Lown classification. Results. In the LVH group there were 54 (60.0% of the patients with ≥ III Lown class. The best predictor of a Lown class were left ventricular mass index by using multivariate stepwise regression analyses (β = 0.212; p < 0.05 and small decrease of diastolic blood pressure during the night (β = -0.293; p < 0.01. The main predictor of bad prognosis was left ventricular mass index during a five year follow-up (β = 0.302; p < 0.01, for stepwise regression model: F = 8.828; p < 0.01, adjusted R2 = 0.091. Conclusion. Left ventricular arrhythmias are frequent in patients with lower decrease of blood pressure during the night. There was no correlation between the degree of ventricular arrhythmias and parameters from 24-hour blood pressure monitoring and a five-year prognosis in the patients with arterial hypertension and LVH. A bad five-year follow-up outcome of hypertensive disease depends on left ventricular mass index.

  2. Surface area-burnoff correlation for the steam--graphite reaction

    International Nuclear Information System (INIS)

    Stark, W.A. Jr.; Malinauskas, A.P.

    1977-01-01

    The oxidation of core graphite by steam of air represents a problem area of significant concern in safety analyses for the high temperature gas cooled reactor (HTGR). Core and core-support graphite integrity and strength deteriorate with oxidation of the graphite, and oxidation furthermore could affect the rate of fission product release under upset conditions. Consequently, modeling of core response during steam or air ingress conditions requires an expression for the rate of graphite interaction with those impurities. The steam--graphite reaction in particular is a complex interaction of mass transport within the graphite with chemi-sorption and reaction on accessible surfaces; experimental results from graphite to graphite are highly variable, and the description of the reaction is not yet completely consistent. A simple etch pit model relating surface area to burnoff has been proposed and shown to provide reasonable correlation with experimental data obtained from steam oxidation studies of nuclear grade H-327 graphite. Unaccounted differences between theory and experiment arise at burnoffs exceeding 3 to 5 percent. The model, while not complete nor comprehensive, is consistent with experimental observations of graphite oxidation by O 2 (air), CO 2 , or H 2 O, and could have some utility in safety analysis

  3. Heat capacity mapping mission (HCMM) thermal surface water mapping and its correlation to LANDSAT

    International Nuclear Information System (INIS)

    Colvocoresses, A.P.

    1980-03-01

    Graphics are presented which show HCMM mapped water-surface temperature in Lake Anna, a 13,000 dendrically-shaped lake which provides cooling for a nuclear power plant in Virginia. The HCMM digital data, produced by NASA were processed by NOAA/NESS into image and line-printer form. A LANDSAT image of the lake illustrates the relationship between MSS band 7 data and the HCMM data as processed by the NASA image processing facility which transforms the data to the same distortion-free hotline oblique Mercator projection. Spatial correlation of the two images is relatively simple by either digital or analog means and the HCMM image has a potential accuracy approaching the 80 m of the original LANDSAT data. While it is difficult to get readings that are not diluted by radiation from cooler adjacent land areas in narrow portions of the lake, digital data indicated by the line-printer display five different temperatures for open-water areas. Where the water surface response was not diluted by land areas, the temperature difference recorded by HCMM corresponds to in situ readings with rsme on the order of 1 C

  4. Heat capacity mapping mission (HCMM) thermal surface water mapping and its correlation to LANDSAT

    Energy Technology Data Exchange (ETDEWEB)

    Colvocoresses, A.P.

    1980-03-01

    Graphics are presented which show HCMM mapped water-surface temperature in Lake Anna, a 13,000 dendrically-shaped lake which provides cooling for a nuclear power plant in Virginia. The HCMM digital data, produced by NASA were processed by NOAA/NESS into image and line-printer form. A LANDSAT image of the lake illustrates the relationship between MSS band 7 data and the HCMM data as processed by the NASA image processing facility which transforms the data to the same distortion-free hotline oblique Mercator projection. Spatial correlation of the two images is relatively simple by either digital or analog means and the HCMM image has a potential accuracy approaching the 80 m of the original LANDSAT data. While it is difficult to get readings that are not diluted by radiation from cooler adjacent land areas in narrow portions of the lake, digital data indicated by the line-printer display five different temperatures for open-water areas. Where the water surface response was not diluted by land areas, the temperature difference recorded by HCMM corresponds to in situ readings with rsme on the order of 1 C.

  5. Correlation of endothelin-1 concentration in aqueous humor with intraocular pressure in primary open angle and pseudoexfoliation glaucoma.

    Science.gov (United States)

    Choritz, Lars; Machert, Maren; Thieme, Hagen

    2012-10-23

    Endothelin-1 (ET-1) has been found in elevated concentrations in the aqueous humor of glaucoma patients. Indirect evidence from animal studies suggests that ET-1 might directly influence intraocular pressure (IOP). The aim of this study was to determine whether ET-1 concentrations in aqueous humor of cataract and glaucoma patients correlate with IOP. Aqueous humor and blood samples from patients with either cataract (control, n = 38), primary open angle glaucoma (POAG, n = 35), or pseudoexfoliation glaucoma (PEXG, n = 21), without other ocular or systemic disease, were collected during routine cataract surgery or trabeculectomy. ET-1 concentration was determined by an ET-1 ELISA kit. IOP was measured preoperatively by standard Goldmann applanation tonometry. All statistical analysis was performed using commercial predictive analytics software. Both IOP and ET-1 concentration in aqueous humor were significantly increased in POAG (23.4 ± 6.8 mm Hg, 5.9 ± 2.9 pg/mL) and PEXG (24.3 ± 8.8 mm Hg, 7.7 ± 2.1 pg/mL) compared with control (15.0 ± 2.9 mm Hg, 4.3 ± 2.4 pg/mL). No difference was detected for plasma ET-1 concentrations. IOP and ET-1 in the aqueous humor were significantly correlated (R = 0.394, R² = 0.155, P < 0.001), although no correlation was found between IOP and ET-1 in blood plasma or between ET-1 in aqueous humor and ET-1 in plasma. In this study, a small but highly significant correlation between IOP and the ET-1 concentration in the aqueous humor was found. Although no causative relationship can be deduced from this, ocular ET-1 effects on IOP control may merit further investigation.

  6. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury

    Science.gov (United States)

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J.; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  7. Connectomic and surface-based morphometric correlates of acute mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Patrizia eDall'Acqua

    2016-03-01

    Full Text Available Reduced integrity of white matter (WM pathways and subtle anomalies in gray matter (GM morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI. However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare.Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected

  8. Effect of skin surface lipid on the skin permeation of lidocaine from pressure sensitive adhesives.

    Science.gov (United States)

    Cheng, Y H; Hosoya, O; Sugibayashi, K; Morimoto, Y

    1994-12-01

    Pressure sensitive adhesives (PSA) tapes containing different concentrations of lidocaine were prepared by a general casting method using styrene-isoprene-styrene block copolymer, and the in vitro skin permeation of lidocaine from each tape was evaluated using diffusion cell and excised hairless rat skin. The skin permeation was proportionally increased by up to 40% lidocaine in the PSA tape and did not change after this concentration. Although the bending point of the steady-state flux via skin concentration curve was found at 40%, saturated concentration or solubility of lidocaine in the tape was estimated to be about 20% by differential scanning calorimetry (DSC) measurement. In addition, the steady-state flux of lidocaine through skin from water or silicone fluid suspension (92 or 120 micrograms/cm2.h, respectively) was very similar to those of 40, 50 and 60% tapes (105, 101 and 112 micrograms/cm2.h, respectively). Decrease in the concentration in tapes during the permeation experiment explained only part of these phenomena. To analyze them further, the drug free PSA tape with or without (control) skin surface lipid was affixed to 50% lidocaine PSA tape for 48 h, and the amount of lidocaine crystal in the layered tapes was measured by DSC. The amount was found to be lower in the lipid-containing tape than in the lipid-free tape, suggesting that skin surface lipid can dissolve lidocaine crystal or solid in PSA tape to decrease its thermodynamic activity. Thus it is important to follow the concentration and thermodynamic activity of lidocaine in PSA tape, skin and the interface between the two layers to exactly assess its skin permeation flux.

  9. Highway-railway at-grade crossing structures : trackbed and surface pressure measurements and assessments.

    Science.gov (United States)

    2009-05-01

    Techniques are described for installing instrumentation within highway/railway crossings - to measure vertical pressures under moving highway and railway loadings - using earth pressure cells. Also, techniques are described for installing instrumenta...

  10. A nurse-led randomised trial of pressure-relieving support surfaces.

    Science.gov (United States)

    Nelson, E Andrea; Nixon, Jane; Mason, Su; Barrow, Helen; Phillips, Angela; Cullum, Nicky

    2003-05-01

    A nurse-led trial is currently collecting data comparing interventions for the prevention and treatment of pressure ulcers. The aim is to provide reliable guidance on the relative merits of alternating-pressure mattresses and overlays for people at moderate to high risk of pressure ulceration. This paper outlines the main objectives, methodology and progress of the study.

  11. Development of a commercial Transducer for Measuring Pressure and Friction on the Model Die Surface

    DEFF Research Database (Denmark)

    Andersen, Claus Bo; Ravn, Bjarne Gottlieb; Wanheim, Tarras

    2001-01-01

    deflection in the tool causes incorrect shape of the final component. The dinemsions of the die-cavity have to be corrected taking into account die deflection due to the high internal pressure. The modelling material technique is suitable for measuring internal pressure, but so far only a transducer...... to measure normal pressure has been available....

  12. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  13. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  14. Optimizing pressurized liquid extraction of microbial lipids using the response surface method.

    Science.gov (United States)

    Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L

    2011-01-21

    Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Effects of Surface Roughness, Oxidation, and Temperature on the Emissivity of Reactor Pressure Vessel Alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J. L. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin; Jo, H. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin; Tirawat, R. [National Renewable Energy Laboratory, Concentrating Solar Power Group, Golden, Colorado; Blomstrand, K. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin; Sridharan, K. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin

    2017-08-31

    Thermal radiation will be an important mode of heat transfer in future high-temperature reactors and in off-normal high-temperature scenarios in present reactors. In this work, spectral directional emissivities of two reactor pressure vessel (RPV) candidate materials were measured at room temperature after exposure to high-temperature air. In the case of SA508 steel, significant increases in emissivity were observed due to oxidation. In the case of Grade 91 steel, only very small increases were observed under the tested conditions. Effects of roughness were also investigated. To study the effects of roughening, unexposed samples of SA508 and Grade 91 steel were roughened via one of either grinding or shot-peening before being measured. Significant increases were observed only in samples having roughness exceeding the roughness expected of RPV surfaces. While the emissivity increases for SA508 from oxidation were indeed significant, the measured emissivity coefficients were below that of values commonly used in heat transfer models. Based on the observed experimental data, recommendations for emissivity inputs for heat transfer simulations are provided.

  16. Understanding the Hydromechanical Behavior of a Fault Zone From Transient Surface Tilt and Fluid Pressure Observations at Hourly Time Scales

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédérick; Lavenant, Nicolas; Davy, Philippe

    2017-12-01

    Flow through reservoirs such as fractured media is powered by head gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of surface deformation and subsurface pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Among all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically induced deformations over a broad range of time scales with a remarkable precision. Here we investigate the information content of transient surface tilt generated by the pressurization a kilometer scale subvertical fault zone. Our approach involves the combination of field data and results of a fully coupled poromechanical model. The signature of pressure changes in the fault zone due to pumping cycles is clearly recognizable in field tilt data and we aim to explain the peculiar features that appear in (1) tilt time series alone from a set of four instruments and 2) the ratio of tilt over pressure. We evidence that the shape of tilt measurements on both sides of a fault zone is sensitive to its diffusivity and its elastic modulus. The ratio of tilt over pressure predominantly encompasses information about the system's dynamic behavior and extent of the fault zone and allows separating contributions of flow in the different compartments. Hence, tiltmeters are well suited to characterize hydromechanical processes associated with fault zone hydrogeology at short time scales, where spaceborne surveying methods fail to recognize any deformation signal.

  17. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    Directory of Open Access Journals (Sweden)

    Jung Suk Kim

    2015-12-01

    Full Text Available The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233U, 242Pu, 150Nd, and 133Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code.

  18. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    Science.gov (United States)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  19. FE Calculations of J-Integrals in a Constrained Elastomeric Disk with Crack Surface Pressure and Isothermal Load

    National Research Council Canada - National Science Library

    Ching, H. K; Liu, C. T; Yen, S. C

    2004-01-01

    .... For the linear analysis, material compressibility was modeled with Poisson's varying form 0.48 to 0.4999. In addition, with the presence of the crack surface pressure, the J-integral was modified by including an additional line integral...

  20. Operation method for wall surface of pressure suppression chamber of reactor container and floating scaffold used for the method

    International Nuclear Information System (INIS)

    Matsuzaki, Tetsuo; Kounomaru, Toshimi; Saito, Koichi.

    1996-01-01

    A floating scaffold is provisionally disposed in adjacent with the wall surface of pool water of a pressure suppression chamber while being floated on the surface of the pool water before the drainage of the pool water from the pressure vessel. The floating scaffold has guide rollers sandwiching a bent tube of an existent facility so that the horizontal movement is restrained, and is movable only in a vertical direction depending on the change of water level of the pool water. In addition, a handrail for preventing dropping, and a provisional illumination light are disposed. When pool water in the pressure suppression chamber is drained, the water level of the pool water is lowered in accordance with the amount of drained water. The floating scaffold floating on the water surface is lowered while being guided by the bent tube, and the operation position is lowered. An operator riding on the floating scaffold inspects the wall surfaces of the pressure chamber and conducts optional repair and painting. (I.N.)

  1. Frequency averaging of fluctuations in the cross-correlation reception of noiselike signals reflected from a rough sea surface

    Science.gov (United States)

    Baranov, V. F.; Gerasimova, T. I.; Gulin, É. P.

    2007-04-01

    For noiselike signals reflected from a rough sea surface and received by a correlation receiver, the effect achieved at the receiver output as a result of frequency averaging of signal fluctuations is considered. Expressions characterizing the effect of frequency averaging are derived by using the generalized two-scale model describing the frequency correlation of strong fluctuations of the transfer function. Results of numerical calculations for the variance of fluctuations at the output of the correlation receiver are presented for different relative values of the frequency bandwidth of noiselike signals and the frequency correlation scales for the cases of both weak and strong fluctuations.

  2. Correction for blood pressure improves correlation between cerebrovascular reactivity assessed by breath holding and 6% CO(2) breathing.

    Science.gov (United States)

    Prakash, Kiran; Chandran, Dinu S; Khadgawat, Rajesh; Jaryal, Ashok Kumar; Deepak, Kishore Kumar

    2014-04-01

    Changes in cerebral blood flow velocity to hypercapnia are associated with changes in systemic blood pressure (BP). These confounding BP-dependent changes in cerebral blood flow velocity cause misinterpretation of cerebrovascular reactivity (CVR) results. The objective of the study was to determine the relationship between CVR assessed by breath holding and 6% CO2 breathing after correcting for BP-dependent changes in cerebral blood flow velocity. In 33 patients of uncomplicated type 2 diabetes mellitus, CVR was assessed as percentage changes in cerebral blood flow velocity and cerebrovascular conductance index. Percentage change in cerebral blood flow velocity during breath holding was positively correlated with that of during 6% CO2 breathing (r = .35; P = .0448). CVR during breath holding and 6% CO2 breathing were better correlated when expressed as percentage changes in cerebrovascular conductance index (r = .49; P = .0040). Similarly, breath-holding test results expressed as percentage changes in cerebral blood flow velocity correctly identified only 37.5% of the poor reactors to 6% CO2 breathing. However, when the breath-holding test results were expressed as percentage changes in cerebrovascular conductance index, 62.5% of the poor reactors to 6% CO2 breathing were correctly identified indicating a better agreement between the test results obtained by the 2 methods. Cerebrovascular response to breath holding is better correlated with that of 6% CO2 breathing when changes in cerebral blood flow velocity were corrected for associated changes in BP. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. Additive pressures of elevated sea surface temperatures and herbicides on symbiont-bearing foraminifera.

    Directory of Open Access Journals (Sweden)

    Joost W van Dam

    Full Text Available Elevated ocean temperatures and agrochemical pollution individually threaten inshore coral reefs, but these pressures are likely to occur simultaneously. Experiments were conducted to evaluate the combined effects of elevated temperature and the photosystem II (PSII inhibiting herbicide diuron on several types of symbiotic algae (diatom, dinoflagellate or rhodophyte of benthic foraminifera in hospite. Diuron was shown to evoke a direct effect on photosynthetic efficiency (reduced effective PSII quantum yield ΔF/F'(m, while elevated temperatures (>30 °C, only 2 °C above current average summer temperatures were observed to impact photosynthesis more indirectly by causing reductions in maximum PSII quantum yield (F(v/F(m, interpreted as photodamage. Additionally, elevated temperatures were shown to cause bleaching through loss of chlorophyll a in foraminifera hosting either diatoms or dinoflagellates. A significant linear correlation was found between reduced F(v/F(m and loss of chlorophyll a. In most cases, symbionts within foraminifera proved more sensitive to thermal stress in the presence of diuron (≥ 1 µg L(-1. The mixture toxicity model of Independent Action (IA described the combined effects of temperature and diuron on the photosystem of species hosting diatoms or dinoflagellates convincingly and in agreement with probabilistic statistics, so a response additive joint action can be assumed. We thus demonstrate that improving water quality can improve resilience of symbiotic phototrophs to projected increases in ocean temperatures. As IA described the observed combined effects from elevated temperature and diuron stress it may therefore be employed for prediction of untested mixtures and for assessing the efficacy of management measures.

  4. Additive pressures of elevated sea surface temperatures and herbicides on symbiont-bearing foraminifera.

    Science.gov (United States)

    van Dam, Joost W; Negri, Andrew P; Mueller, Jochen F; Altenburger, Rolf; Uthicke, Sven

    2012-01-01

    Elevated ocean temperatures and agrochemical pollution individually threaten inshore coral reefs, but these pressures are likely to occur simultaneously. Experiments were conducted to evaluate the combined effects of elevated temperature and the photosystem II (PSII) inhibiting herbicide diuron on several types of symbiotic algae (diatom, dinoflagellate or rhodophyte) of benthic foraminifera in hospite. Diuron was shown to evoke a direct effect on photosynthetic efficiency (reduced effective PSII quantum yield ΔF/F'(m)), while elevated temperatures (>30 °C, only 2 °C above current average summer temperatures) were observed to impact photosynthesis more indirectly by causing reductions in maximum PSII quantum yield (F(v)/F(m)), interpreted as photodamage. Additionally, elevated temperatures were shown to cause bleaching through loss of chlorophyll a in foraminifera hosting either diatoms or dinoflagellates. A significant linear correlation was found between reduced F(v)/F(m) and loss of chlorophyll a. In most cases, symbionts within foraminifera proved more sensitive to thermal stress in the presence of diuron (≥ 1 µg L(-1)). The mixture toxicity model of Independent Action (IA) described the combined effects of temperature and diuron on the photosystem of species hosting diatoms or dinoflagellates convincingly and in agreement with probabilistic statistics, so a response additive joint action can be assumed. We thus demonstrate that improving water quality can improve resilience of symbiotic phototrophs to projected increases in ocean temperatures. As IA described the observed combined effects from elevated temperature and diuron stress it may therefore be employed for prediction of untested mixtures and for assessing the efficacy of management measures.

  5. Critical heat flux on micro-structured zircaloy surfaces for flow boiling of water at low pressures

    International Nuclear Information System (INIS)

    Haas, C.; Miassoedov, A.; Schulenberg, T.; Wetzel, T.

    2012-01-01

    The influence of surface structure on critical heat flux for flow boiling of water was investigated for Zircaloy tubes in a vertical annular test section. The objectives were to find suitable surface modification processes for Zircaloy tubes and to test their critical heat flux performance in comparison to the smooth tube. Surface structures with micro-channels, porous layer, oxidized layer, and elevations in micro- and nano-scale were produced on a section of a Zircaloy cladding tube. These modified tubes were tested in an internally heated vertical annulus with a heated length of 326 mm and an inner and outer diameter of 9.5 and 18 mm. The experiments were performed with mass fluxes of 250 and 400 kg/(m 2 s), outlet pressures between 120 and 300 kPa, and constant inlet subcooling enthalpy of 167 kJ/kg. Only a small influence of modified surface structures on critical heat flux was observed for the pressure of 120 kPa in the present test section geometry. However, with increasing pressure the critical heat flux could increase up to 29% using the surface structured tubes with micro-channels, porous and oxidized layers. Capillary effects and increased nucleation site density are assumed to improve the critical heat flux performance. (authors)

  6. Correlating the structure and localized surface plasmon resonance of single silver right bipyramids.

    Science.gov (United States)

    Ringe, Emilie; Zhang, Jian; Langille, Mark R; Mirkin, Chad A; Marks, Laurence D; Van Duyne, Richard P

    2012-11-09

    Localized surface plasmon resonances (LSPRs), collective electron oscillations in metal nanoparticles, are being heavily scrutinized for applications in prototype devices and circuits, as well as for chemical and biological sensing. Both the plasmon frequency and linewidth of a LSPR are critical factors for application optimization, for which their dependence on structural factors has been qualitatively unraveled over the past decade. However, quantitative knowledge based on systematic single particle studies has only recently become available for a few particle shapes. We show here that to understand the effect of structure (both size and shape) on plasmonic properties, one must take multiple parameters into account. We have successfully done so for a large data set on silver right bipyramids. By correlating plasmon energy and linewidth with edge length and corner rounding for individual bipyramids, we have found that the corner rounding has a significant effect on the plasmon energy for particles of the same size, and thus corner rounding must be taken into account to accurately describe the dependence of a LSPR on nanoparticle size. A detailed explanation of the phenomena responsible for the observed effects and their relationship to each other is presented.

  7. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility

    Science.gov (United States)

    Kramer, Ryan M.; Shende, Varad R.; Motl, Nicole; Pace, C. Nick; Scholtz, J. Martin

    2012-01-01

    Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. PMID:22768947

  8. Estimation of Time Dependent Properties from Surface Pressure in Open Cavities

    Science.gov (United States)

    2008-02-01

    static pressure of the cavity. The stagnation and static pressures are measured separately with Druck Model DPI 145 pressure transducers (with a quoted...interacting with the ZNMF actuator jets, the 2D shape of the vortical structures transform to a 3D shape with spanwise vortical structures. These...Therefore, the pressure gradient in the d direction is dd ° 3d Substituting Equation (5.3) into Equation (5.5) results in ^l = PJk(e^-Re^)/c^ (5.6

  9. Correlation between surface physicochemical properties and the release of iron from stainless steel AISI 304 in biological media.

    Science.gov (United States)

    Hedberg, Yolanda; Karlsson, Maria-Elisa; Blomberg, Eva; Odnevall Wallinder, Inger; Hedberg, Jonas

    2014-10-01

    Stainless steel is widely used in biological environments, for example as implant material or in food applications, where adsorption-controlled ligand-induced metal release is of importance from a corrosion, health, and food safety perspective. The objective of this study was to elucidate potential correlations between surface energy and wettability of stainless steel surfaces and the release of iron in complexing biological media. This was accomplished by studying changes in surface energies calculated from contact angle measurements, surface oxide composition (X-ray photoelectron spectroscopy), and released iron (graphite furnace atomic absorption spectroscopy) for stainless steel grade AISI 304 immersed in fluids containing bovine serum albumin or citric acid, and non-complexing fluids such as NaCl, NaOH, and HNO3. It was shown that the surface wettability and polar surface energy components were all influenced by adventitious atmospheric carbon (surface contamination of low molecular weight), rather than differences in surface oxide composition in non-complexing solutions. Adsorption of both BSA and citrate, which resulted in ligand-induced metal release, strongly influenced the wettability and the surface energy, and correlated well with the measured released amount of iron. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Assessment of Tablet Surface Hardness by Laser Ablation and Its Correlation With the Erosion Tendency of Core Tablets.

    Science.gov (United States)

    Narang, Ajit S; Breckenridge, Lydia; Guo, Hang; Wang, Jennifer; Wolf, Abraham Avi; Desai, Divyakant; Varia, Sailesh; Badawy, Sherif

    2017-01-01

    Surface erosion of uncoated tablets results in processing problems such as dusting and defects during coating and is governed by the strength of particle bonding on tablet surface. In this study, the correlation between dusting tendency of tablets in a coating pan with friability and laser ablation surface hardness was assessed using tablets containing different concentrations of magnesium stearate and tartaric acid. Surface erosion propensity of different batches was evaluated by assessing their dusting tendency in the coating pan. In addition, all tablets were analyzed for crushing strength, friability, modified friability test using baffles in the friability apparatus, and weight loss after laser ablation. Tablets with similar crushing strength showed differences in their surface erosion and dusting tendency when rotated in a coating pan. These differences did not correlate well with tablet crushing strength or friability but did show reasonably good correlation with mass loss after laser ablation. These results suggest that tablet surface mass loss by laser ablation can be used as a minipiloting (small-scale) tool to assess tablet surface properties during early stages of drug product development to assess the risk of potential large-scale manufacturing issues. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Measurement of waist and hip circumference with a body surface scanner: feasibility, validity, reliability, and correlations with markers of the metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Lina Jaeschke

    Full Text Available Body surface scanners (BS, which visualize a 3D image of the human body, facilitate the computation of numerous body measures, including height, waist circumference (WC and hip circumference (HC. However, limited information is available regarding validity and reliability of these automated measurements (AM and their correlation with parameters of the Metabolic Syndrome (MetS compared to traditional manual measurements (MM.As part of a cross-sectional feasibility study, AM of WC, HC and height were assessed twice in 60 participants using a 3D BS (VitussmartXXL. Additionally, MM were taken by trained personnel according to WHO guidelines. Participants underwent an interview, bioelectrical impedance analysis, and blood pressure measurement. Blood samples were taken to determine HbA1c, HDL-cholesterol, triglycerides, and uric acid. Validity was assessed based on the agreement between AM and MM, using Bland-Altman-plots, correlation analysis, and paired t-tests. Reliability was assessed using intraclass correlation coefficients (ICC based on two repeated AM. Further, we calculated age-adjusted Pearson correlation for AM and MM with fat mass, systolic blood pressure, HbA1c, HDL-cholesterol, triglycerides, and uric acid.Body measures were higher in AM compared to MM but both measurements were strongly correlated (WC, men, difference = 1.5 cm, r = 0.97; women, d = 4.7 cm, r = 0.96; HC, men, d = 2.3 cm, r = 0.97; women, d = 3.0 cm; r = 0.98. Reliability was high for all AM (nearly all ICC>0.98. Correlations of WC, HC, and the waist-to-hip ratio (WHR with parameters of MetS were similar between AM and MM; for example the correlation of WC assessed by AM with HDL-cholesterol was r = 0.35 in men, and r = -0.48 in women, respectively whereas correlation of WC measured manually with HDL cholesterol was r = -0.41 in men, and r = -0.49 in women, respectively.Although AM of WC, HC, and WHR are higher when compared to MM based on WHO guidelines, our data

  12. Device for positioning ultrasonic probes and/or television cameras on the outer surface of reactor pressure vessels

    International Nuclear Information System (INIS)

    Zipser, R.; Dose, G.F.

    1977-01-01

    The device makes possible periodical in-service inspections of welding seams and material of a reactor pressure vessel without local human presence. A 'support ring' encloses the pressure vessel in a horizontal plane with free space. It is vertically moved up and down in the space between pressure vessel and thermal shield by means of tackles. At a control desk placed in a protected area its movement is controlled and its vertical position is indicated. A 'rotating track' with its own drive is rotating remote-controlled on the 'support ring'. By a combination of the vertical with the rotating movement, an ultrasonic probe placed removably on the 'rotating hack', or a television camera will be brought to any position on the cylindrical circumference of the pressure vessel. Special devices extend the radius of action, in upward direction for inspecting the welding seams of the coolant nozzles, and in downward direction for the inspection of welds on the hemispherical bottom of the pressure vessel or on the outlet pipe nozzle placed there. The device remains installed during reactor operation, but is moved down to the lower horizontal surface of the thermal shield. Parts which are sensible to radiation like probes or television cameras and special devices will then be removed respectively mounted before beginning an inspection compaign. This position may be reached by the lower access in the biological shield and through an opening in the horizontal surface of the thermal shield. (HP) [de

  13. Vertical structure of pore pressure under surface gravity waves on a steep, megatidal, mixed sand-gravel-cobble beach

    Science.gov (United States)

    Guest, Tristan B.; Hay, Alex E.

    2017-01-01

    The vertical structure of surface gravity wave-induced pore pressure is investigated within the intertidal zone of a natural, steeply sloping, megatidal, mixed sand-gravel-cobble beach. Results from a coherent vertical array of buried pore pressure sensors are presented in terms of signal phase lag and attenuation as functions of oscillatory forcing frequency and burial depth. Comparison of the observations with the predictions of a theoretical poro-elastic bed response model indicates that the large observed phase lags and attenuation are attributable to interstitial trapped air. In addition to the dependence on entrapped air volume, the pore pressure phase and attenuation are shown to be sensitive to the hydraulic conductivity of the sediment, to the changing mean water depth during the tidal cycle, and to the redistribution/rearrangement of beach face material by energetic wave action during storm events. The latter result indicates that the effects on pore pressure of sediment column disturbance during instrument burial can persist for days to weeks, depending upon wave forcing conditions. Taken together, these results raise serious questions as to the practicality of using pore pressure measurements to estimate the kinematic properties of surface gravity waves on steep, mixed sand-gravel beaches.

  14. The miscibility of milk sphingomyelin and cholesterol is affected by temperature and surface pressure in mixed Langmuir monolayers.

    Science.gov (United States)

    Cheng, Ken; Ropers, Marie-Hélène; Lopez, Christelle

    2017-06-01

    The miscibility of milk sphingomyelin (milk-SM) and cholesterol was investigated in this study. The effect of different physical states of milk-SM on its interactions with cholesterol was determined by the recording of isotherms of compression of Langmuir films for temperatures above and below the gel to Lα phase transition of milk-SM (T m ∼34°C). For T=15°Ccondensed (LC) phase transition of milk-SM monolayers was observed at surface pressures of 10-15mN/m. For T=43°C>T m , the milk-SM molecules were in a LE phase regardless of the surface pressure applied. A phase diagram pressure - milk-SM/cholesterol composition was established. This study demonstrated that both temperature and surface pressure affected the miscibility between the milk-SM and cholesterol. The strongest attractive forces (i.e. condensing effect) were identified for 30mol% cholesterol when the milk-SM was in the LE phase state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Visualization of Flow in Pressurizer Spray Line Piping and Estimation of Thermal Stress Fluctuation Caused by Swaying of Water Surface

    Science.gov (United States)

    Oumaya, Toru; Nakamura, Akira; Onojima, Daisuke; Takenaka, Nobuyuki

    The pressurizer spray line of PWR plants cools reactor coolant by injecting water into pressurizer. Since the continuous spray flow rate during commercial operation of the plant is considered insufficient to fill the pipe completely, there is a concern that a water surface exists in the pipe and may periodically sway. In order to identify the flow regimes in spray line piping and assess their impact on pipe structure, a flow visualization experiment was conducted. In the experiment, air was used substituted for steam to simulate the gas phase of the pressurizer, and the flow instability causing swaying without condensation was investigated. With a full-scale mock-up made of acrylic, flow under room temperature and atmospheric pressure conditions was visualized, and possible flow regimes were identified based on the results of the experiment. Three representative patterns of swaying of water surface were assumed, and the range of thermal stress fluctuation, when the surface swayed instantaneously, was calculated. With the three patterns of swaying assumed based on the visualization experiment, it was confirmed that the thermal stress amplitude would not exceed the fatigue endurance limit prescribed in the Japanese Design and Construction Code.

  16. Measurement and correlation of solubility of limonene and linalool in high pressure carbon dioxide; Limonene, linalool no koatsu nisanka tanso eno yokaido sokutei to sokan

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, J. [Japan Tabacco Inc., Tokyo (Japan); Nagahama, K. [Tokyo Metropolitan University, Tokyo (Japan)

    1996-01-20

    In order to carry out the deterpenation of orange oil using carbon dioxide extraction under high pressure, the solubilities of constituents were examined experimentally. Limonene and linalool were selected as the major component and a flavor component, respectively. Solubilities of each component in high pressure carbon dioxide were measured by use of a high pressure cell with glass windows at 313K and 333K and from 1 MPa to the near critical point. All isothermal solubilities had minima against pressure and they increased along with temperature. Solubility data have been correlated based not only on the regular solution theory but the SRK equation of state. The solubilities of limonene have been correlated well by the regular solution theory, and those of linalool have been represented fairly accurately by the SRK equation. 14 refs., 6 figs., 2 tabs.

  17. Process for producing curved surface of membrane rings for large containers, particulary for prestressed concrete pressure vessels of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1977-01-01

    Membrane rings for large pressure vessels, particularly for prestressed-concrete pressure vessels, often have curved surfaces. The invention describes a process of producing these at site, which is particularly advantageous as the forming and installation of the vessel component coincide. According to the invention, the originally flat membrane ring is set in a predetermined position, is then pressed in sections by a forming tool (with a preformed support ring as opposite tool), and shaped. After this, the shaped parts are welded to the ring-shaped wall parts of the large vessel. The manufacture of single and double membrane rings arrangements is described. (HP) [de

  18. INITIAL ASSESSMENT OF SURFACE PRESSURE CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS

    Science.gov (United States)

    Jones, Henry E.; Wong, Oliver D.; Watkins, A. Neal; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.; Ingram, Joanne L.

    2006-01-01

    This paper presents results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of fixed system pressure coefficient response to changes in configuration attitude and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect the magnitude of the response. Pressure coefficients were measured using both conventional pressure taps and via pressure sensitive paint. Comparisons between the two methods are presented and demonstrate that the pressure sensitive paint is a promising method; however, further work on the technique is required.

  19. Correlation between Very Short and Short-Term Blood Pressure Variability in Diabetic-Hypertensive and Healthy Subjects.

    Science.gov (United States)

    Casali, Karina R; Schaan, Beatriz D; Montano, Nicola; Massierer, Daniela; M F Neto, Flávio; Teló, Gabriela H; Ledur, Priscila S; Reinheimer, Marilia; Sbruzzi, Graciele; Gus, Miguel

    2018-02-01

    Blood pressure (BP) variability can be evaluated by 24-hour ambulatory BP monitoring (24h-ABPM), but its concordance with results from finger BP measurement (FBPM) has not been established yet. The aim of this study was to compare parameters of short-term (24h-ABPM) with very short-term BP variability (FBPM) in healthy (C) and diabetic-hypertensive (DH) subjects. Cross-sectional study with 51 DH subjects and 12 C subjects who underwent 24h-ABPM [extracting time-rate, standard deviation (SD), coefficient of variation (CV)] and short-term beat-to-beat recording at rest and after standing-up maneuvers [FBPM, extracting BP and heart rate (HR) variability parameters in the frequency domain, autoregressive spectral analysis]. Spearman correlation coefficient was used to correlate BP and HR variability parameters obtained from both FBPM and 24h-ABPM (divided into daytime, nighttime, and total). Statistical significance was set at p ABPM) and LF component of short-term variability (FBPM, total, R = 0.591, p = 0.043); standard deviation (24h-ABPM) with LF component BPV (FBPM, total, R = 0.608, p = 0.036), coefficient of variation (24h-ABPM) with total BPV (FBPM, daytime, -0.585, p = 0.046) and alpha index (FBPM, daytime, -0.592, p = 0.043), time rate (24h-ABPM) and delta LF/HF (FBPM, total, R = 0.636, p = 0.026; daytime R = 0,857, p ABPM (total, daytime) reflect BP and HR variability evaluated by FBPM in healthy individuals. This does not apply for DH subjects.

  20. Iris transillumination defect and its gene modulators do not correlate with intraocular pressure in the BXD family of mice.

    Science.gov (United States)

    Lu, Hong; Lu, Lu; Williams, Robert W; Jablonski, Monica M

    2016-01-01

    Intraocular pressure (IOP) is currently the only treatable phenotype associated with primary open angle glaucoma (POAG). Our group has developed the BXD murine panel for identifying genetic modulators of the various endophenotypes of glaucoma, including pigment dispersion, IOP, and retinal ganglion cell (RGC) death. The BXD family consists of the inbred progeny of crosses between the C57BL/6J (B6) strain and the glaucoma-prone DBA/2J (D2) strain that has mutations in Tyrp1 and Gpnmb. The role of these genes in the iris transillumination defect (TID) has been well documented; however, their possible roles in modulating IOP during glaucoma onset and progression are yet not well understood. We used the IOP data sets and the Eye M430v2 (Sep08) RMA Database available on GeneNetwork to determine whether mutations in Tyrp1 and Gpnmb or TIDs have a direct role in the elevation of IOP in the BXD family. We also determined whether TIDs and IOP are coregulated. As expected, Tyrp1 and Gpnmb expression levels showed a high degree of correlation with TIDs. However, there was no correlation between the expression of these genes and IOP. Moreover, unlike TIDs, IOP did not map to either the Tyrp1 or Gpnmb locus. Although the Tyrp1 and Gpnmb mutations in BXD strains are a prerequisite for the development of TID, they are not required for or associated with elevated IOP. Genetic modulators of IOP thus may be independently identified using the full array of BXD mice without concern for the presence of TIDs or mutations in Typr1 and/or Gpnmb.

  1. Correlative and dynamic imaging of the hatching biology of Schistosoma japonicum from eggs prepared by high pressure freezing.

    Directory of Open Access Journals (Sweden)

    Malcolm K Jones

    Full Text Available BACKGROUND: Schistosome eggs must traverse tissues of the intestine or bladder to escape the human host and further the life cycle. Escape from host tissues is facilitated by secretion of immuno-reactive molecules by eggs and the formation of an intense strong granulomatous response by the host which acts to exclude the egg into gut or bladder lumens. Schistosome eggs hatch on contact with freshwater, but the mechanisms of activation and hatching are poorly understood. In view of the lack of knowledge of the behaviour of egg hatching in schistosomes, we undertook a detailed dynamic and correlative study of the hatching biology of Schistosoma japonicum. METHODOLOGY/PRINCIPAL FINDINGS: Hatching eggs of S. japonicum were studied using correlative light and electron microscopy (EM. The hatching behaviour was recorded by video microscopy. EM preparative methods incorporating high pressure freezing and cryo-substitution were used to investigate ultrastructural features of the miracidium and extra-embryonic envelopes in pre-activated and activated eggs, and immediately after eggshell rupture. Lectin cytochemistry was performed on egg tissues to investigate subcellular location of specific carbohydrate groups. CONCLUSIONS/SIGNIFICANCE: The hatching of S. japonicum eggs is a striking phenomenon, whereby the larva is liberated explosively while still encapsulated within its sub-shell envelopes. The major alterations that occur in the egg during activation are scission of the outer envelope-eggshell boundary, autolysis of the cellular inner envelope, and likely hydration of abundant complex and simple polysaccharides in the lacunal space between the miracidial larva and surrounding envelopes. These observations on hatching provide insight into the dynamic activity of the eggs and the biology of schistosomes within the host.

  2. Correlation of blood pressure and the ratio of S1 to S2 as measured by esophageal stethoscope and wireless bluetooth transmission.

    Science.gov (United States)

    Hoon Lim, Kyoung; Duck Shin, Young; Hi Park, Sang; Ho Bae, Jin; Jae Lee, Hong; Jung Kim, Seon; Yun Shin, Ji; Jin Choi, Young

    2013-07-01

    Objective : Esophageal stethoscope has the advantage of being non-invasive, easily placed and capability to monitor the heart sound. This study was designed to determine whether the ratio of S1 to S2 analyzed by esophageal stethoscope and wireless bluetooth transmission can be accurate indicator that express the correlation with blood pressure. Total 33 adult male and female without cardiac disorder and with normal heart rhythm were selected randomly as the subjects of this Study. Two microphones were used with one for acquisition of heart sound by connecting it to the esophageal stethoscope while the other was used to measure the background noise in the operating room. After having transmitted the heart sound measured with the esophageal stethoscope to the receiver by using bluetooth module, it was saved in PC and outputted, following removal of noise in the operating room and the respiratory sound. S1 and S2 were measured with computation of the ratio of S1 to S2. Correlations between the systolic blood pressure with each of the S1, S2 and ratio of S1 to S2 were examined by using correlation analysis. The ratio of S1 to S2 displayed the highest correlation with the systolic blood pressure, with S1 and S2 also displaying positive correlation with the systolic blood pressure. As the result of analysis of the heart sound and the systolic blood pressure measured by using the esophageal stethoscope, the radio of S1 to S2 displayed greater correlation with the systolic blood pressure in comparison to the S1.

  3. Thermochemical micro imprinting of single-crystal diamond surface using a nickel mold under high-pressure conditions

    International Nuclear Information System (INIS)

    Imoto, Yuji; Yan, Jiwang

    2017-01-01

    Graphical abstract: A Ni mold and thermochemically imprinted microstructures on diamond. - Highlights: • A thermochemical method for micro machining/patterning of diamond is proposed. • Various kinds of microstructures were imprinted on diamond using a Ni mold. • A graphite layer is formed during imprinting which can be removed by acid. • The processing depth depends strongly on pressure and temperature. - Abstract: Single-crystal diamond is an important material for cutting tools, micro electro mechanical systems, optical devices, and semiconductor substrates. However, the techniques for producing microstructures on diamond surface with high efficiency and accuracy have not been established. This paper proposes a thermochemical imprinting method for transferring microstructures from a nickel (Ni) mold onto single-crystal diamond surface. The Ni mold was micro-structured by a nanoindenter and then pressed against the diamond surface under high temperature and pressure in argon atmosphere. Results show that microstructures on the Ni mold were successfully transferred onto the diamond surface, and their depth increased with both pressure and temperature. Laser micro-Raman spectroscopy, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses indicate that a graphite layer was formed over the contact area between diamond and Ni during pressing, and after washing by a mixed acid, the graphite layer could be completely removed. This study demonstrated the feasibility of a cost-efficient fabrication method for large-area microstructures on single-crystal diamond.

  4. Fluorination of poly(dimethylsiloxane surfaces by low pressure CF4 plasma – physicochemical and antifouling properties

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available Fluorinated surface groups were introduced into poly(dimethylsiloxane (PDMS coatings by plasma treatment using a low pressure radio frequency discharge operated with tetrafluoromethane. Substrates were placed in a remote position downstream the discharge. Discharge power and treatment time were tuned to alter the chemical composition of the plasma treated PDMS surface. The physicochemical properties and stability of the fluorine containing PDMS were characterized by X-ray photoelectron spectroscopy (XPS, atomic force microscopy (AFM and contact angle measurements. Smooth PDMS coatings with a fluorine content up to 47% were attainable. The CF4 plasma treatment generated a harder, non-brittle layer at the top-most surface of the PDMS. No changes of surface morphology were observed upon one week incubation in aqueous media. Surprisingly, the PDMS surface was more hydrophilic after the introduction of fluorine. This may be explained by an increased exposure of oxygen containing moieties towards the surface upon re-orientation of fluorinated groups towards the bulk, and/or be a consequence of oxidation effects associated with the plasma treatment. Experiments with strains of marine bacteria with different surface energies, Cobetia marina and Marinobacter hydrocarbonoclasticus, showed a significant decrease of bacteria attachment upon fluorination of the PDMS surface. Altogether, the CF4 plasma treatments successfully introduced fluorinated groups into the PDMS, being a robust and versatile surface modification technology that may find application where a minimization of bacterial adhesion is required.

  5. Self-organized pattern on the surface of a metal anode in low-pressure DC discharge

    Science.gov (United States)

    Yaqi, YANG; Weiguo, LI

    2018-03-01

    Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a low-pressure test platform for 100-200 mm rod-plane gaps with a needle tip, conical tip and hemispherical tip within 1-10 kPa. The factors influencing the pattern profile are the pressure value, gap length and shape of the electrode, and a variety of pattern structures are observed by changing these factors. With increasing pressure, first the pattern diameter increases and then decreases. With the needle tip, layer structure, single-ring structure and double-ring structure are displayed successively with increasing pressure. With the conical tip, the ring-like structure gradually forms separate spots with increasing pressure. With the hemispherical tip, there are anode spots inside the ring structure. With the increase of gap length, the diameter of the self-organized pattern increases and the profile of the pattern changes. The development process of the pattern contains three key stages: pattern enlargement, pattern stabilization and pattern shrink.

  6. A Comprehensive Review on Measurement and Correlation Development of Capillary Pressure for Two-Phase Modeling of Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Chao Si

    2015-01-01

    Full Text Available Water transport and the corresponding water management strategy in proton exchange membrane (PEM fuel cells are quite critical for the improvement of the cell performance. Accuracy modeling of water transport in porous electrodes strongly depends on the appropriate constitutive relationship for capillary pressure which is referred to as pc-s correlation, where pc is the capillary pressure and s is the fraction of saturation in the pores. In the present PEM fuel cell two-phase models, the Leverett-Udell pc-s correlation is widely utilized which is proposed based on fitting the experimental data for packed sands. However, the size and structure of pores for the commercial porous electrodes used in PEM fuel cells differ from those for the packed sands significantly. As a result, the Leverett-Udell correlation should be improper to characterize the two-phase transport in the porous electrodes. In the recent decade, many efforts were devoted to measuring the capillary pressure data and developing new pc-s correlations. The objective of this review is to review the most significant developments in recent years concerning the capillary pressure measurements and the developed pc-s correlations. It is expected that this review will be beneficial to develop the improved PEM fuel cell two-phase model.

  7. Diurnal variations in intraocular pressure and central corneal thickness and the correlation between these factors in dogs.

    Science.gov (United States)

    Garzón-Ariza, Alicia; Guisado, Alicia; Galán, Alba; Martín-Suárez, Eva

    2017-12-12

    To study the diurnal variation in intraocular pressure (IOP) and central corneal thickness (CCT) in healthy Beagles by rebound tonometry and ultrasonic pachymetry, respectively, in addition to determining whether a correlation exists between these two variables. Twenty eyes from 10 healthy Beagle dogs were included in the study. The IOP and CCT were measured by rebound tonometry and ultrasonic pachymetry, respectively, at 2-h intervals over an 8-hour period between 10:00 and 18:00. The mean values (± SD) of IOP obtained were 11.45 ± 2.96 at 10:00, 10.00 ± 1.89 at 12:00, 8.25 ± 1.62 at 14:00, 7.05 ± 1.05 at 16:00, and 6.55 ± 1.36 at 18:00. The mean values (± SD) of CCT obtained were 554.95 ± 72.41 at 10:00, 549.20 ± 69.10 at 12:00, 566.15 ± 80.56 at 14:00, 545.45 ± 70.19 at 16:00, and 538.30 ± 73.33 at 18:00. The IOP and CCT of dogs were found to decrease progressively from the first to the last measurement. There were statistically significant differences between the IOP (P = 0.000) and CCT values (P = 0.032) measured at different times of the day. There was no effect or interaction between gender and eye with the dependent variables. The IOP and CCT were found to be positively correlated (r = 0.213, P = 0.034). The regression equation demonstrated that for every 100 μm increase in CCT, there was an elevation in IOP by 0.8 mmHg. The CCT and IOP values were lower in the afternoon/evening than in the morning, and these were positively correlated. Both findings are important for the diagnostic interpretation of IOP values in dogs. © 2017 American College of Veterinary Ophthalmologists.

  8. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  9. Mechanical properties of fatty acid monolayers on the water surface based on surface pressure relaxation and area creep measurements. Hyomen prime atsu kanwa oyobi menseki creep sokutei ni motozuku suimenjo tanbunshimaku no rikigakuteki seishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Tanizaki, T.; Takahara, A.; Kajiyama, T. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1991-12-20

    The molecule flocculant state and the mechanical properties of myristic acid, stearic acid and behenic acid monolayers on the water surface were studied by surface pressure relaxation and area creep measurements. The initial surface pressures, possessing monolayer structure with little stability of surface pressure relaxation for myristic acid, stearic acid and behenic acid have been 17, 26 and 25mN{center dot}m{sup {minus}1} respectively. These values, are almost equal to the surface pressure with small area creep. Again, for making LB film with less structural defects and large, two criteria, the first is building up of monolayer due to surface pressure with smaller surface pressure and area creep and the second is the ending of building up destruction under high surface pressure, have been proposed. As a result an effective LB film preparation method, with less structural defects in which the surface pressure relaxation has been caused by monolayer build up resulting the formation of single crystal domain due to sintering, has been suggested. 21 refs., 10 figs.

  10. Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Li-Hua Yu

    2015-09-01

    Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

  11. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  12. Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure

    International Nuclear Information System (INIS)

    Wang Wei-long; Li Jun; Song Hui-min; Jin Di; Jia Min; Wu Yun

    2017-01-01

    Thermal and induced flow velocity characteristics of radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins. After several seconds (typically 100 s), the temperature reaches equilibrium among the actuator’s surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of kHz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s. (paper)