WorldWideScience

Sample records for surface power generation

  1. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    International Nuclear Information System (INIS)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Wu, Yan; Li, Jie

    2013-01-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O 3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O 3 generation was approximate 4 mg kJ −1 ; moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  2. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    Science.gov (United States)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O3 generation was approximate 4 mg kJ-1 moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  3. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Tubel

    2004-02-01

    The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

  4. Magnetic field generation device for magnetohydrodynamic electric power generation

    International Nuclear Information System (INIS)

    Kuriyama, Yoshihiko.

    1993-01-01

    An existent magnetic field generation device for magnetohydrodynamic electric power generation comprises at least a pair of permanent magnets disposed to an inner circumferential surface of a yoke having such a cross sectional area that two pairs of parallel sides are present, in which different magnetic poles are opposed while interposing a flow channel for a conductive fluid therebetween. Then, first permanent magnets which generate main magnetic fields are disposed each at a gap sandwiching a plane surface including a center axis of a flow channel for the conductive fluid. Second permanent magnets which generate auxiliary magnetic fields are disposed to an inner circumferential surface of a yoke intersecting the yoke to which the first permanent magnets are disposed. The magnetic poles on the side of the flow channel for the second permanent magnets have identical polarity with that of the magnetic poles of the adjacent first permanent magnets. As a result, a magnetic flux density in the flow channel for the conductive fluid can be kept homogeneous and at a high level from a position of the axial line of the flow channel to the outer circumference, thereby enabling to remarkably improve a power generation efficiency. (N.H.)

  5. Entropy Generation Analysis of Power-Law Non-Newtonian Fluid Flow Caused by Micropatterned Moving Surface

    Directory of Open Access Journals (Sweden)

    M. H. Yazdi

    2014-01-01

    Full Text Available In the present study, the first and second law analyses of power-law non-Newtonian flow over embedded open parallel microchannels within micropatterned permeable continuous moving surface are examined at prescribed surface temperature. A similarity transformation is used to reduce the governing equations to a set of nonlinear ordinary differential equations. The dimensionless entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient, and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by Dormand-Prince pair and shooting method. Finally, the entropy generation numbers, as well as the Bejan number, are evaluated. It is noted that the presence of the shear thinning (pseudoplastic fluids creates entropy along the surface, with an opposite effect resulting from shear thickening (dilatant fluids.

  6. Electric power generator

    International Nuclear Information System (INIS)

    Carney, H.C.

    1977-01-01

    An electric power generator of the type employing a nuclear heat source and a thermoelectric converter is described wherein a transparent thermal insulating medium is provided inside an encapsulating enclosure to thermally insulate the heat source and thermoelectric generator. The heat source, the thermoelectric converter, and the enclosure are provided with facing surfaces which are heat-reflective to a substantial degree to inhibit radiation of heat through the medium of the encapsulating enclosure. Multiple reflective foils may be spaced within the medium as necessary to inhibit natural convection of heat and/or further inhibit radiation

  7. Behavior of a thermoelectric power generation device based on solar irradiation and the earth’s surface-air temperature difference

    International Nuclear Information System (INIS)

    Zhang, Zhe; Li, Wenbin; Kan, Jiangming

    2015-01-01

    Highlights: • A technical solution to the power supply of wireless sensor networks is presented. • The low voltage produced by TEG is boosted from less than 1 V to more than 4 V. • An output current and voltage of TEG device is acquired as 21.47 mA and 221 mV. • The device successfully provides output power 4.7 mW in no electricity conditions. • The thermo-economic value of TEG device is demonstrated. - Abstract: Motivated by the limited power supply of wireless sensors used to monitor the natural environment, for example, in forests, this study presents a technical solution by recycling solar irradiation heat using thermoelectric generators. Based on solar irradiation and the earth’s surface-air temperature difference, a new type of thermoelectric power generation device has been devised, the distinguishing features of which include the application of an all-glass heat-tube-type vacuum solar heat collection pipe to absorb and transfer solar energy without a water medium and the use of a thin heat dissipation tube to cool the earth surface air temperature. The effects of key parameters such as solar illumination, air temperature, load resistance, the proportional coefficient, output power and power generation efficiency for thermoelectric energy conversion are analyzed. The results of realistic outdoor experiments show that under a state of regular illumination at 3.75 × 10 4 lx, using one TEG module, the thermoelectric device is able to boost the voltage obtained from the natural solar irradiation from 221 mV to 4.41 V, with an output power of 4.7 mW. This means that the electrical energy generated can provide the power supply for low power consumption components, such as low power wireless sensors, ZigBee modules and other low power loads

  8. Aggregated wind power generation probabilistic forecasting based on particle filter

    International Nuclear Information System (INIS)

    Li, Pai; Guan, Xiaohong; Wu, Jiang

    2015-01-01

    Highlights: • A new method for probabilistic forecasting of aggregated wind power generation. • A dynamic system is established based on a numerical weather prediction model. • The new method handles the non-Gaussian and time-varying wind power uncertainties. • Particle filter is applied to forecast predictive densities of wind generation. - Abstract: Probability distribution of aggregated wind power generation in a region is one of important issues for power system daily operation. This paper presents a novel method to forecast the predictive densities of the aggregated wind power generation from several geographically distributed wind farms, considering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a mesoscale numerical weather prediction model, a dynamic system is established to formulate the relationship between the atmospheric and near-surface wind fields of geographically distributed wind farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmospheric state with the near-surface wind power generation measurements, and to forecast the possible samples of the aggregated wind power generation. The predictive densities of the aggregated wind power generation are then estimated based on these predicted samples by a kernel density estimator. In case studies, the new method presented is tested on a 9 wind farms system in Midwestern United States. The testing results that the new method can provide competitive interval forecasts for the aggregated wind power generation with conventional statistical based models, which validates the effectiveness of the new method

  9. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  10. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    Science.gov (United States)

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  11. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  12. Thermoelectric power generator for variable thermal power source

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  13. Power generation technologies

    CERN Document Server

    Breeze, Paul

    2014-01-01

    The new edition of Power Generation Technologies is a concise and readable guide that provides an introduction to the full spectrum of currently available power generation options, from traditional fossil fuels and the better established alternatives such as wind and solar power, to emerging renewables such as biomass and geothermal energy. Technology solutions such as combined heat and power and distributed generation are also explored. However, this book is more than just an account of the technologies - for each method the author explores the economic and environmental costs and risk factor

  14. Parylene-based electret power generators

    International Nuclear Information System (INIS)

    Lo, Hsi-wen; Tai, Yu-Chong

    2008-01-01

    An electret power generator is developed using a new electret made of a charged parylene HT® thin-film polymer. Here, parylene HT® is a room-temperature chemical-vapor-deposited thin-film polymer that is MEMS and CMOS compatible. With corona charge implantation, the surface charge density of parylene HT® is measured as high as 3.69 mC m −2 . Moreover, it is found that, with annealing at 400 °C for 1 h before charge implantation, both the long-term stability and the high-temperature reliability of the electret are improved. For the generator, a new design of the stator/rotor is also developed. The new micro electret generator does not require any sophisticated gap-controlling structure such as tethers. With the conformal coating capability of parylene HT®, it is also feasible to have the electret on the rotors, which is made of either a piece of metal or an insulator. The maximum power output, 17.98 µW, is obtained at 50 Hz with an external load of 80 MΩ. For low frequencies, the generator can harvest 7.7 µW at 10 Hz and 8.23 µW at 20 Hz

  15. Rotary-Atomizer Electric Power Generator

    Science.gov (United States)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  16. Power generation statistics

    International Nuclear Information System (INIS)

    Kangas, H.

    2001-01-01

    The frost in February increased the power demand in Finland significantly. The total power consumption in Finland during January-February 2001 was about 4% higher than a year before. In January 2001 the average temperature in Finland was only about - 4 deg C, which is nearly 2 degrees higher than in 2000 and about 6 degrees higher than long term average. Power demand in January was slightly less than 7.9 TWh, being about 0.5% less than in 2000. The power consumption in Finland during the past 12 months exceeded 79.3 TWh, which is less than 2% higher than during the previous 12 months. In February 2001 the average temperature was - 10 deg C, which was about 5 degrees lower than in February 2000. Because of this the power consumption in February 2001 increased by 5%. Power consumption in February was 7.5 TWh. The maximum hourly output of power plants in Finland was 13310 MW. Power consumption of Finnish households in February 2001 was about 10% higher than in February 2000, and in industry the increase was nearly zero. The utilization rate in forest industry in February 2001 decreased from the value of February 2000 by 5%, being only about 89%. The power consumption of the past 12 months (Feb. 2000 - Feb. 2001) was 79.6 TWh. Generation of hydroelectric power in Finland during January - February 2001 was 10% higher than a year before. The generation of hydroelectric power in Jan. - Feb. 2001 was nearly 2.7 TWh, corresponding to 17% of the power demand in Finland. The output of hydroelectric power in Finland during the past 12 months was 14.7 TWh. The increase from the previous 12 months was 17% corresponding to over 18% of the power demand in Finland. Wind power generation in Jan. - Feb. 2001 was exceeded slightly 10 GWh, while in 2000 the corresponding output was 20 GWh. The degree of utilization of Finnish nuclear power plants in Jan. - Feb. 2001 was high. The output of these plants was 3.8 TWh, being about 1% less than in Jan. - Feb. 2000. The main cause for the

  17. Cheaper power generation from surplus steam generating capacities

    International Nuclear Information System (INIS)

    Gupta, K.

    1996-01-01

    Prior to independence most industries had their own captive power generation. Steam was generated in own medium/low pressure boilers and passed through extraction condensing turbines for power generation. Extraction steam was used for process. With cheaper power made available in Nehru era by undertaking large hydro power schemes, captive power generation in industries was almost abandoned except in sugar and large paper factories, which were high consumers of steam. (author)

  18. Solar thermal aided power generation

    International Nuclear Information System (INIS)

    Hu, Eric; Yang, YongPing; Nishimura, Akira; Yilmaz, Ferdi; Kouzani, Abbas

    2010-01-01

    Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO 2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

  19. Power generation

    International Nuclear Information System (INIS)

    Nunez, Anibal D.

    2001-01-01

    In the second half of twentieth century, nuclear power became an industrial reality. Now the operating 433 power plants, the 37 plants under construction, near 9000 years/reactor with only one serious accident with emission of radioactive material to the environment (Chernobyl) show the maturity of this technology. Today nuclear power contribute a 17% to the global generation and an increase of 75 % of the demand of electricity is estimated for 2020 while this demand is expected to triplicate by 2050. How this requirement can be satisfied? All the indicators seems to demonstrate that nuclear power will be the solution because of the shortage of other sources, the increase of the prices of the non renewable fuels and the scarce contribution of the renewable ones. In addition, the climatic changes produced by the greenhouse effect make even more attractive nuclear power. The situation of Argentina is analyzed and compared with other countries. The convenience of an increase of nuclear power contribution to the total national generation seems clear and the conclusion of the construction of the Atucha II nuclear power plant is recommended

  20. Global analysis of a renewable micro hydro power generation plant

    Science.gov (United States)

    Rahman, Md. Shad; Nabil, Imtiaz Muhammed; Alam, M. Mahbubul

    2017-12-01

    Hydroelectric power or Hydropower means the power generated by the help of flowing water with force. It is one the best source of renewable energy in the world. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. As far as Global is concerned, only a small fraction of electricity is generated by hydro-power. The aim of our analysis is to demonstrate and observe the hydropower of the Globe in micro-scale by our experimental setup which is completely new in concept. This paper consists of all the Global and National Scenario of Hydropower. And how we can more emphasize the generation of Hydroelectric power worldwide.

  1. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  2. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-01

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  3. Power generating device

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Toshihiro

    1989-05-02

    The existing power generating device consisting of static components only lacks effective measures to utilize solar energy and maintain power generation, hence it is inevitable to make the device much larger and more complicated in order to utilize it as the primary power source for artificial satellites. In view of the above, in order to offer a power generating device useful for the primary power source for satellites which is simple and can keep power generation by solar energy, this invention proposes a power generating device composed of the following elements: (1) a rectangular parallelopiped No. II superconductor plate; (2) a measure to apply a magnetic field to one face of the above superconductor plate; (3) a measure to provide a temperature difference within the range between the starting temperature and the critical temperature of superconductivity to a pair of faces meeting at right angles with the face to which the magnetic field was applied by the above measure; (4) a measure to provide an electrode on each of the other pair of faces meeting at right angles with the face to which the magnetic field was applied by the above measure and form a closed circuit by connecting the each electrode above to each of a pair of electrodes of the load respectively; and (5) a switching measure which is installed in the closed circuit prepared by the above measure and shuts off the closed circuit when the direction of the electric current running the above closed circuit is reversed. 6 figs.

  4. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  5. Renewable energies for power generation

    International Nuclear Information System (INIS)

    Freris, L.; Infield, D.

    2009-01-01

    Power generation from renewable energy sources is different from power generation from classical energies (nuclear, thermal..). Therefore, the integration into the grid of the electricity supplied by renewable sources requires a deep thinking. The reason is that these power sources are controlled by variable elements, like wind, water and sun, which condition production. This book deals with the following aspects in detail: characteristics of classical and intermittent generators; grid balancing between supply and demand; conversion methods of renewable energies into electricity; power systems; privatizing of power generation and birth of new markets, in particular the 'green' power market; development of renewable energies thanks to technical advances. It gives a comprehensive overview of the present day available renewable energy sources for power generation. (J.S.)

  6. Philosophy of power generation

    International Nuclear Information System (INIS)

    Amein, H.; Joyia, Y.; Qureshi, M.N.; Asif, M.

    1995-01-01

    In view of the huge power demand in future, the capital investment requirements for the development of power projects to meet the future energy requirements are so alarming that public sector alone cannot manage to raise funds and participation of the private sector in power generation development has become imperative. This paper discusses a power generation philosophy based on preference to the exploitation of indigenous resources and participation of private sector. In order to have diversification in generation resources, due consideration has been given to the development of nuclear power and even non-conventional but promising technologies of solar, wind, biomass and geothermal etc. (author)

  7. Magnetohydrodynamic (MHD) power generation

    International Nuclear Information System (INIS)

    Chandra, Avinash

    1980-01-01

    The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)

  8. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  9. Magnetohydrodynamic power generation

    International Nuclear Information System (INIS)

    Sheindlin, A.E.; Jackson, W.D.; Brzozowski, W.S.; Rietjens, L.H.Th.

    1979-01-01

    The paper describes research and development in the field of magnetohydrodynamic power generation technology, based on discussions held in the Joint IAEA/UNESCO International Liaison Group on MHD electrical power generation. Research and development programmes on open cycle, closed cycle plasma and liquid-metal MHD are described. Open cycle MHD has now entered the engineering development stage. The paper reviews the results of cycle analyses and economic and environmental evaluations: substantial agreement has been reached on the expected overall performance and necessary component specifications. The achievement in the Soviet Union on the U-25 MHD pilot plant in obtaining full rated electrical power of 20.4 MW is described, as well as long duration testing of the integrated operation of MHD components. Work in the United States on coal-fired MHD generators has shown that, with slagging of the walls, a run time of about one hundred hours at the current density and electric field of a commercial MHD generator has been achieved. Progress obtained in closed cycle plasma and liquid metal MHD is reviewed. Electrical power densities of up to 140 MWe/m 3 and an enthalpy extraction as high as 24 per cent have been achieved in noble gas MHD generator experiments. (Auth.)

  10. Power Spectral Density Evaluation of Laser Milled Surfaces

    Directory of Open Access Journals (Sweden)

    Raoul-Amadeus Lorbeer

    2017-12-01

    Full Text Available Ablating surfaces with a pulsed laser system in milling processes often leads to surface changes depending on the milling depth. Especially if a constant surface roughness and evenness is essential to the process, structural degradation may advance until the process fails. The process investigated is the generation of precise thrust by laser ablation. Here, it is essential to predict or rather control the evolution of the surfaces roughness. Laser ablative milling with a short pulse laser system in vacuum (≈1 Pa were performed over depths of several 10 µm documenting the evolution of surface roughness and unevenness with a white light interference microscope. Power spectral density analysis of the generated surface data reveals a strong influence of the crystalline structure of the solid. Furthermore, it was possible to demonstrate that this effect could be suppressed for gold.

  11. Electric power generation

    International Nuclear Information System (INIS)

    Pinske, J.D.

    1981-01-01

    Apart from discussing some principles of power industry the present text deals with the different ways of electric power generation. Both the conventional methods of energy conversion in heating and water power stations and the facilities for utilizing regenerative energy sources (sun, wind, ground heat, tidal power) are considered. The script represents the essentials of the lecture of the same name which is offered to the students of the special subject 'electric power engineering' at the Fachhochschule Hamburg. It does not require any special preliminary knowledge except for the general principles of electrical engineering. It is addressing students of electrical engineering who have passed their preliminary examination at technical colleges and universities. Moreover, it shall also be of use for engineers who want to obtain a quick survey of the structure and the operating characteristics of the extremely different technical methods of power generation. (orig.) [de

  12. Miniature Gas-Turbine Power Generator

    Science.gov (United States)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  13. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    Science.gov (United States)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-03-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  14. Impacts on power generation

    International Nuclear Information System (INIS)

    Myers, J.; Sidebotton, P.

    1998-01-01

    The future impact of the arrival of natural gas in the Maritime provinces on electricity generation in the region was discussed. Currently, electrical generation sources in Nova Scotia include hydro generation (9 per cent), coal generation (80 per cent), heavy fuel oil generation (8 per cent), and light oil, wood chips and purchased power (3 per cent). It is expected that with the introduction of natural gas electric utilities will take advantage of new gas combustion turbines which have high efficiency rates. An overview of Westcoast Power's operations across Canada was also presented. The Company has three projects in the Maritimes - the Courtney Bay project in New Brunswick, the Bayside Power project, the Irving Paper project - in addition to the McMahon cogeneration plant in Taylor, B.C. figs

  15. Power output and efficiency of a thermoelectric generator under temperature control

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Wu, Po-Hua; Wang, Xiao-Dong; Lin, Yu-Li

    2016-01-01

    Highlights: • Power output and efficiency of a thermoelectric generator (TEG) is studied. • Temperatures at the module’s surfaces are approximated by sinusoidal functions. • Mean output power and efficiency are enhanced by the temperature oscillation. • The maximum mean efficiency of the TEG in this study is 8.45%. • The phase angle of 180° is a feasible operation for maximizing the performance. - Abstract: Operation control is an effective way to improve the output power of thermoelectric generators (TEGs). The present study is intended to numerically investigate the power output and efficiency of a TEG and find the operating conditions for maximizing its performance. The temperature distributions at the hot side and cold side surfaces of the TEG are approximated by sinusoidal functions. The influences of the temperature amplitudes at the hot side surface and the cold side surface, the phase angle, and the figure-of-merit (ZT) on the performance of the TEG are analyzed. The predictions indicate that the mean output power and efficiency of the TEG are significantly enhanced by the temperature oscillation, whereas the mean absorbed heat by the TEG is slightly influenced. An increase in the temperature amplitude of the hot side surface and the phase angle can effectively improve the performance. For the phase angle of 0°, a smaller temperature amplitude at the cold side surface renders the better performance compared to that with a larger amplitude. When the ZT value increases from 0.736 to 1.8, the mean efficiency at the phase angle of 180° is amplified by a factor of 1.72, and the maximum mean efficiency is 8.45%. In summary, a larger temperature amplitude at the hot side surface with the phase angle of 180° is a feasible operation for maximizing the performance.

  16. Power Quality Improvements in Wind Diesel Power Generation System

    Directory of Open Access Journals (Sweden)

    Omar Feddaoui

    2015-08-01

    Full Text Available Generation of electricity using diesel is costly for small remote isolated communities. At remote location electricity generation from renewable energy such as wind can help reduce the overall operating costs by reducing the fuel costs. However, the penetration of wind power into small diesel-based grids is limited because of its effect on power quality and reliability. This paper focuses on the combination of Wind Turbine and Diesel Generator systems for sustained power generation, to improve the power quality of wind generation system. The performances of the optimal control structure are assessed and discussed by means of a set of simulations.

  17. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  18. Thermoelectric coolers as power generators

    International Nuclear Information System (INIS)

    Burke, E.J.; Buist, R.J.

    1984-01-01

    There are many applications where thermoelectric (TE) coolers can be used effectively as power generators. The literature available on this subject is scarce and very limited in scope. This paper describes the configuration, capability, limitations and performance of TE coolers to be used as power generators. Also presented are performance curves enabling the user to design the optimum TE module for any given power generation application

  19. Competitiveness of nuclear power generation

    International Nuclear Information System (INIS)

    Sumi, Yoshihiko

    1998-01-01

    In view of the various merits of nuclear power generation, Japanese electric utilities will continue to promote nuclear power generation. At the same time, however, it is essential to further enhance cost performance. Japanese electric utilities plan to reduce the cost of nuclear power generation, such as increasing the capacity factor, reducing operation and maintenance costs, and reducing construction costs. In Asia, nuclear power will also play an important role as a stable source of energy in the future. For those countries planning to newly introduce nuclear power, safety is the highest priority, and cost competitiveness is important. Moreover, financing will be an essential issue to be resolved. Japan is willing to support the establishment of nuclear power generation in Asia, through its experience and achievements. In doing this, support should not only be bilateral, but should include all nuclear nations around the Pacific rim in a multilateral support network. (author)

  20. The nuclear power generation

    International Nuclear Information System (INIS)

    Serres, R.

    1999-01-01

    The French nuclear generating industry is highly competitive. The installations have an average age of fifteen years and are half way through their expected life. Nuclear power accounts for 70% of the profits of the French generating company, EDF. Nuclear generation has a minimal effect on the atmosphere and France has a level of CO 2 emissions, thought to be the main cause of the greenhouse effect, half that of Europe as a whole. The air in France is purer than in neighbouring countries, mainly because 75% of all electrical power is generated in nuclear plants and 15% in hydroelectric stations. The operations and maintenance of French nuclear power plants in the service and distribution companies out of a total of 100 000 employees in all, 90 % of whom are based in mainland France. (authors)

  1. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells

    KAUST Repository

    Cheng, Shaoan; Logan, Bruce E.

    2011-01-01

    Scaling up microbial fuel cells (MFCs) requires a better understanding the importance of the different factors such as electrode surface area and reactor geometry relative to solution conditions such as conductivity and substrate concentration. It is shown here that the substrate concentration has significant effect on anode but not cathode performance, while the solution conductivity has a significant effect on the cathode but not the anode. The cathode surface area is always important for increasing power. Doubling the cathode size can increase power by 62% with domestic wastewater, but doubling the anode size increases power by 12%. Volumetric power density was shown to be a linear function of cathode specific surface area (ratio of cathode surface area to reactor volume), but the impact of cathode size on power generation depended on the substrate strength (COD) and conductivity. These results demonstrate the cathode specific surface area is the most critical factor for scaling-up MFCs to obtain high power densities. © 2010 Elsevier Ltd.

  2. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells

    KAUST Repository

    Cheng, Shaoan

    2011-03-01

    Scaling up microbial fuel cells (MFCs) requires a better understanding the importance of the different factors such as electrode surface area and reactor geometry relative to solution conditions such as conductivity and substrate concentration. It is shown here that the substrate concentration has significant effect on anode but not cathode performance, while the solution conductivity has a significant effect on the cathode but not the anode. The cathode surface area is always important for increasing power. Doubling the cathode size can increase power by 62% with domestic wastewater, but doubling the anode size increases power by 12%. Volumetric power density was shown to be a linear function of cathode specific surface area (ratio of cathode surface area to reactor volume), but the impact of cathode size on power generation depended on the substrate strength (COD) and conductivity. These results demonstrate the cathode specific surface area is the most critical factor for scaling-up MFCs to obtain high power densities. © 2010 Elsevier Ltd.

  3. Thermophotovoltaic Arrays for Electrical Power Generation

    International Nuclear Information System (INIS)

    Sarnoff Corporation

    2003-01-01

    Sarnoff has designed an integrated array of thermophotovoltaic (TPV) cells based on the In(Al)GaAsSb/GaSb materials system. These arrays will be used in a system to generate electrical power from a radioisotope heat source that radiates at temperatures from 700 to 1000 C. Two arrays sandwich the slab heat source and will be connected in series to build voltage. Between the arrays and the heat source is a spectral control filter that transmits above-bandgap radiation and reflects below-bandgap radiation. The goal is to generate 5 mW of electrical power at 3 V from a 700 C radiant source. Sarnoff is a leader in antimonide-based TPV cell development. InGaAsSb cells with a bandgap of 0.53 eV have operated at system conversion efficiencies greater than 17%. The system included a front-surface filter, and a 905 C radiation source. The cells were grown via organo-metallic vapor-phase epitaxy. Sarnoff will bring this experience to bear on the proposed project. The authors first describe array and cell architecture. They then present calculated results showing that about 80 mW of power can be obtained from a 700 C radiator. Using a conservative array design, a 5-V output is possible

  4. Electrokinetic Power Generation from Liquid Water Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  5. Optimal Control of Wind Power Generation

    Directory of Open Access Journals (Sweden)

    Pawel Pijarski

    2018-03-01

    Full Text Available Power system control is a complex task, which is strongly related to the number and kind of generating units as well as to the applied technologies, such as conventional coal fired power plants or wind and photovoltaic farms. Fast development of wind generation that is considered as unstable generation sets new strong requirements concerning remote control and data hubs cooperating with SCADA systems. Considering specific nature of the wind power generation, the authors analyze the problem of optimal control for wind power generation in farms located over a selected remote-controlled part of the Operator grid under advantageous wind conditions. This article presents an original stepwise method for tracing power flows that makes possible to eliminate current (power overloading of power grid branches. Its core idea is to consider the discussed problem as an optimization task.

  6. Power generation in South Africa

    International Nuclear Information System (INIS)

    Van der Walt, N.T.

    1976-01-01

    There have been extensive developments in the power supply industry in South Africa. The most evident of these has been the increase in the size of generating units. Escom has recently placed orders for 600 MW units. In South Africa, with its large indigenous reserves of cheap coal, there was no need to rush into a nuclear power programme before it would be economic and, accordingly the first serious study of nuclear power generation was not undertaken until 1966. A final aspect of power generation which is becoming very important is the control of pollution and protection of the environment

  7. Electrical Power Conversion of River and Tidal Power Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-11-21

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  8. Ocean thermal gradient as a generator of electricity. OTEC power plant

    Science.gov (United States)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  9. Power generation enhancement in a salinity-gradient solar pond power plant using thermoelectric generator

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Saadat, Mohammad; Palideh, Vahid; Afzal, Sadegh

    2017-01-01

    Highlights: • Thermoelectric generator was used and simulated within a salinity-gradient solar pond power plant. • Results showed that the thermoelectric generator can be able to enhance the power plant efficiency. • Results showed that the presented models can be able to produce generation even in the cold months. • The optimum size of area of solar pond based on its effect on efficiency is 50,000 m 2 . - Abstract: Salinity-gradient solar pond (SGSP) has been a reliable supply of heat source for power generation when it has been integrated with low temperature thermodynamics cycles like organic Rankine cycle (ORC). Also, thermoelectric generator (TEG) plays a critical role in the production of electricity from renewable energy sources. This paper investigates the potential of thermoelectric generator as a power generation system using heat from SGSP. In this work, thermoelectric generator was used instead of condenser of ORC with the purpose of improving the performance of system. Two new models of SGSP have been presented as: (1) SGSP using TEG in condenser of ORC without heat exchanger and (2) SGSP using TEG in condenser of ORC with heat exchanger. These proposed systems was evaluated through computer simulations. The ambient conditions were collected from beach of Urmia lake in IRAN. Simulation results indicated that, for identical conditions, the model 1 has higher performance than other model 2. For models 1 and 2 in T LCZ = 90 °C, the overall thermal efficiency of the solar pond power plant, were obtained 0.21% and 0.2% more than ORC without TEG, respectively.

  10. Environmental impact of power generation

    International Nuclear Information System (INIS)

    Hester, R.E.; Harrison, R.M.

    1999-01-01

    A series of articles offers answers to questions on the environmental consequences and impact on man of the power generation industry. Subjects discussed in detail include: (i) acid rain and climate change and how the generators of electricity have been expected to play a role disproportionate to their deleterious contributions in improving the situation; (ii) recently adopted air quality management approaches with regard to airborne emissions from power stations and motor vehicles; (iii) the evolution of the UK power industry towards sustainability through considerations for the environment and use of resources in a liberalised market; (iv) the Best Practicable Environmental Option approach to the design and siting of power stations; (v) the environmental impact of nuclear power generation and (vi) electromagnetic fields and the possible effects on man of transmitting electricity in overhead power lines

  11. Power generation using photovoltaic induction in an isolated power network

    International Nuclear Information System (INIS)

    Kalantar, M.; Jiang, J.

    2001-01-01

    Owing to increased emphasis on renewable resources, the development of suitable isolated power generators driven by energy sources, the development of suitable isolated power generators driven by energy sources such as photovoltaic, wind, small hydroelectric, biogas and etc. has recently assumed greater significance. A single phase capacitor self excited induction generator has emerged as a suitable candidate of isolated power sources. This paper presents performance analysis of a single phase self-excited induction generator driven by photovoltaic (P V) system for low power isolated stand-alone applications. A single phase induction machine can work as a self-excited induction generator when its rotor is driven at suitable speed by an photovoltaic powered do motor. Its excitation is provided by connecting a single phase capacitor bank at a stator terminals. Either to augment grid power or to get uninterrupted power during grid failure stand-alone low capacity ac generators are used. These are driven by photovoltaic, wind power or I C engines using kerosene, diesel, petrol or biogas as fuel. Self-excitation with capacitors at the stator terminals of the stator terminals of the induction machines is well demonstrated experimentally on a P V powered dc motor-induction machine set. The parameters and the excitation requirements of the induction machine run in self-excited induction generator mode are determined. The effects of variations in prime mover speed,terminal capacitance and load power factor on the machine terminal voltage are studied

  12. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  13. Situation of nuclear power generation in Europe

    International Nuclear Information System (INIS)

    Toukai, Kunihiro

    2003-01-01

    Nuclear power plants began to be built in Europe in the latter half of 1960. 146 plants are operating and generating about 33% of total power in 2002. France is top of Europe and operating 59 plants, which generate about 75% of power generation in the country. Germany is second and 30%. England is third and 30%. However, Germany decided not to build new atomic power plant in 2000. Movement of non-nuclear power generation is decreasing in Belgium and Switzerland. The liberalization of power generation decreased the wholesale price and BE Company in England was financial difficulties. New nuclear power generation is planning in Finland and France. (S.Y.)

  14. Is nuclear energy power generation more dangerous than power generation by wind and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y

    1979-03-01

    Since the occurrence of the petroleum crisis, many countries have devoted a great deal of effort to search for substitute energy sources. Aside from nuclear energy, forms of power generation with wind, solar energy, and geothermal energy have all been actually adopted in one place or another. Most recently, a research report was published by the Canadian Bureau of Nuclear Energy Management stating that the use of wind and solar energy to generate electricity is much more dangerous than power generation with nuclear energy. When mining, transportation, machine manufacturing, etc. are included in the process of producing unit power, i.e. kilowatt/year, the data of various risks of death, injury, and diseases are computed in terms of man/day losses by the bureau. They indicate that of the ten forms of power generation, the danger is the least with natural gas, only about a 6 man/day, and nuclear energy is the next least dangerous, about 10 man/day. The danger of using temperature differential of sea water to generate electricity is about 25 man/day, and the most dangerous form of power generation is coal, amounting to three thousand man/day.

  15. Power generator in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to perform stable and dynamic conditioning operation for nuclear fuels in BWR type reactors. Constitution: The conditioning operation for the nuclear fuels is performed by varying the reactor core thermal power in a predetermined pattern by changing the predetermined power changing pattern of generator power, the rising rate of the reactor core thermal power and the upper limit for the rising power of the reactor core thermal power are calculated and the power pattern for the generator is corrected by a power conditioning device such that the upper limit for the thermal power rising rate and the upper limit for the thermal power rising rate are at the predetermined levels. Thus, when the relation between the reactor core thermal power and the generator electrical power is fluctuated, the fluctuation is detected based on the variation in the thermal power rising rate and the limit value for the thermal power rising rate, and the correction is made to the generator power changing pattern so that these values take the predetermined values to thereby perform the stable conditioning operation for the nuclear fuels. (Moriyama, K.)

  16. Thermoelectric power generator with intermediate loop

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  17. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    Science.gov (United States)

    Prasad, Narashimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2010-01-01

    We report the results of fabrication and testing of a thermoelectric power generation module. The module was fabricated using a new "flip-chip" module assembly technique that is scalable and modular. This technique results in a low value of contact resistivity ( surfaces. Under mild testing, a power of 22 mW/sq cm was obtained from small (electrical power of practical and usable magnitude for remote applications using thermoelectric power generation technologies.

  18. Study on development system of increasing gearbox for high-performance wind-power generator

    Science.gov (United States)

    Xu, Hongbin; Yan, Kejun; Zhao, Junyu

    2005-12-01

    Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.

  19. Reactive power supply by distributed generators

    OpenAIRE

    Braun, M.

    2008-01-01

    Distributed reactive power supply is necessary in distribution networks for an optimized network operation. This paper presents first the reactive power supply capabilities of generators connected to the distribution network (distributed generators). In a second step an approach is proposed of determining the energy losses resulting from reactive power supply by distributed generators. The costs for compensating these losses represent the operational costs of reactive power supply. These cost...

  20. Power quality improvement of unbalanced power system with distributed generation units

    DEFF Research Database (Denmark)

    Hu, Y.; Chen, Zhe; Excell, P.

    2011-01-01

    This paper presents a power electronic system for improving the power quality of the unbalanced distributed generation units in three-phase four-wire system. In the system, small renewable power generation units, such as small PV generator, small wind turbines may be configured as single phase...... and control of the converter are described. Simulation results have demonstrated that the system can effectively correct the unbalance and enhance the system power quality....... generation units. The random nature of renewable power sources may result in significant unbalance in the power network and affect the power quality. An electronic converter system is proposed to correct the system unbalance and harmonics so as to deal with the power quality problems. The operation...

  1. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  2. Generation of electricity by wind power

    Energy Technology Data Exchange (ETDEWEB)

    Golding, E W

    1976-01-01

    Information on wind power is presented concerning the history of windmills; estimation of the energy obtainable from the wind; wind characteristics and distribution; wind power sites; wind surveys; wind flow over hills; measurement of wind velocity; wind structure and its determination; wind data and energy estimation; testing of wind driven ac generators; wind-driven machines; propeller type windmills; plants for isolated premises and small communities; economy of wind power generation; construction costs for large wind-driven generators; relationship of wind power to other power sources; research and development; and international cooperation.

  3. Integrated Control for Small Power Wind Generator

    Directory of Open Access Journals (Sweden)

    Hongliang Liu

    2018-05-01

    Full Text Available The control strategies of the small power wind generator are usually divided into the maximum power point tracking (MPPT case, which requires the wind generator produce power as much as possible, and the power limited control (PLC case that demands the wind generator produce a power level following the load requirement. Integration of these two operating cases responding to flexible and sophisticated power demands is the main topic of this article. A small power wind generator including the sluggish mechanical dynamic phenomenon, which uses the permanent magnet synchronous generator, is introduced to validate different control methods integrating MPPT and PLC cases and based on hysteresis control. It is a matter of an indirect power control method derived from three direct methods following perturb and observe principle as well as from a look-up table. To analyze and compare the proposed power control methods, which are implemented into an emulator of a small power wind generator, a power demand profile is used. This profile is randomly generated based on measured rapid wind velocity data. Analyzing experimental results, from the power viewpoint, all proposed methods reveal steady-state error with big amount of peak resulting from the nature of perturb and observe.

  4. Distributed power generation using microturbines

    CSIR Research Space (South Africa)

    Szewczuk, S

    2008-11-01

    Full Text Available At present, the bulk of the world is electricity is generated in central power stations. This approach, one of `economy of size generates electricity in large power stations and delivers it to load centres via an extensive network of transmission...

  5. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  6. Enhancing power generation of floating wave power generators by utilization of nonlinear roll-pitch coupling

    Science.gov (United States)

    Yerrapragada, Karthik; Ansari, M. H.; Karami, M. Amin

    2017-09-01

    We propose utilization of the nonlinear coupling between the roll and pitch motions of wave energy harvesting vessels to increase their power generation by orders of magnitude. Unlike linear vessels that exhibit unidirectional motion, our vessel undergoes both pitch and roll motions in response to frontal waves. This significantly magnifies the motion of the vessel and thus improves the power production by several orders of magnitude. The ocean waves result in roll and pitch motions of the vessel, which in turn causes rotation of an onboard pendulum. The pendulum is connected to an electric generator to produce power. The coupled electro-mechanical system is modeled using energy methods. This paper investigates the power generation of the vessel when the ratio between pitch and roll natural frequencies is about 2 to 1. In that case, a nonlinear energy transfer occurs between the roll and pitch motions, causing the vessel to perform coupled pitch and roll motion even though it is only excited in the pitch direction. It is shown that co-existence of pitch and roll motions significantly enhances the pendulum rotation and power generation. A method for tuning the natural frequencies of the vessel is proposed to make the energy generator robust to variations of the frequency of the incident waves. It is shown that the proposed method enhances the power output of the floating wave power generators by multiple orders of magnitude. A small-scale prototype is developed for the proof of concept. The nonlinear energy transfer and the full rotation of the pendulum in the prototype are observed in the experimental tests.

  7. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Tubel

    2003-10-14

    The fourth quarter of the project was dedicated to the manufacturing of the mechanical system for wireless communications and the power generation module and inspection pre assembly of the mechanical components. Another emphasis for the quarter was the development of filter control and signal detection software. The tasks accomplished during this report period were: (1) Dimensional issues were resolved and revised drawings for manufacturing of the wireless communications gauge and power generator were completed and sent to a machine shop for manufacturing. (2) Finalized the requirements and fittings and connections for testing the tool in the Halliburton flow loop. (3) The new acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly will be outsourced for plastic coating in preparation for hostile environment use. (4) The acoustic two-way communications development continued to progress. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the acoustic generator assembly was manufactured and was successfully tested. Spring mandrel design showed increased acoustic output on the pipe and was implemented. (6) PCBA board carrier with board set was tested for function and fit and is 100% complete. (7) Filter control software is complete and software to allow modification of communication parameters dynamically is 50% complete. (8) All mechanical parts to assemble the wireless gauge and power generator have been received and verified to be within specification. (9) Acoustic generator has been assembled in the tool mandrel and tested successfully. (10) The circuit required to harvest the power generated downhole has been designed and the power generator

  8. Parametric analysis of temperature gradient across thermoelectric power generators

    Directory of Open Access Journals (Sweden)

    Khaled Chahine

    2016-06-01

    Full Text Available This paper presents a parametric analysis of power generation from thermoelectric generators (TEGs. The aim of the parametric analysis is to provide recommendations with respect to the applications of TEGs. To proceed, the one-dimensional steady-state solution of the heat diffusion equation is considered with various boundary conditions representing real encountered cases. Four configurations are tested. The first configuration corresponds to the TEG heated with constant temperature at its lower surface and cooled with a fluid at its upper surface. The second configuration corresponds to the TEG heated with constant heat flux at its lower surface and cooled with a fluid at its upper surface. The third configuration corresponds to the TEG heated with constant heat flux at its lower surface and cooled by a constant temperature at its upper surface. The fourth configuration corresponds to the TEG heated by a fluid at its lower surface and cooled by a fluid at its upper surface. It was shown that the most promising configuration is the fourth one and temperature differences up to 70˚C can be achieved at 150˚C heat source. Finally, a new concept is implemented based on configuration four and tested experimentally.

  9. Power Generation and Distribution via Distributed Coordination Control

    OpenAIRE

    Kim, Byeong-Yeon; Oh, Kwang-Kyo; Ahn, Hyo-Sung

    2014-01-01

    This paper presents power coordination, power generation, and power flow control schemes for supply-demand balance in distributed grid networks. Consensus schemes using only local information are employed to generate power coordination, power generation and power flow control signals. For the supply-demand balance, it is required to determine the amount of power needed at each distributed power node. Also due to the different power generation capacities of each power node, coordination of pow...

  10. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  11. Design and construction features of steam generators at a nuclear power station

    International Nuclear Information System (INIS)

    Chakrabarti, A.K.; Gupta, K.N.; Bapat, C.N.; Sharma, V.K.

    1996-01-01

    The Indian nuclear power programme is based on Pressurised Heavy Water Reactors (PHWRs) using natural uranium as fuel and heavy water as reactor coolant as well as moderator. The nuclear heat is generated in the fuel located in the pressure tubes. Pressurised heavy water in the primary heat transport (PHT) system is circulated through the tubes which picks up the heat from the fuel and transfers it to ordinary water in steam generators (SGs) to produce steam. The steam is used for providing power to the turbine. The steam generator is a critical equipment in the nuclear steam supply system (NSSS) of a nuclear reactor. SG tube surface area constitute about 80% of total primary circuit surface area. A typical value in a 220 MWe reactor is 9000 m 2 which can release considerable amount of corrosion products unless very low corrosion rates are achieved by proper design, material selection and water chemistry control. Design and construction features of SGs are given. 1 tab

  12. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    Science.gov (United States)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  13. Conscience of Japanese on nuclear power generation

    International Nuclear Information System (INIS)

    Hayashi, Chikio

    1995-01-01

    There are considerably many investigations and researches on the attitude of general public to nuclear power generation, but those which analyzed the contents of attitude or the research which got into the problem of what method is desirable to obtain the understanding of nuclear power generation for power generation side is rarely found. Therefore, the research on where is its cause was begun. As the result, since the attitude to nuclear power generation is related to the attitudes to many things that surround nuclear power generation in addition to that directly to nuclear power generation, it is necessary to elucidate the problem synthetically. The social investigation was carried out for the public of from 18 to 79 years old who live in the supply area of Kansai Electric Power Co., Inc. The data were obtained from those selected by probabilistic sampling, 1000 in urban area (rate of recovery 76%) and 440 in country area (rate of recovery 77%). The way of thinking on making questionnaire is shown. The investigation and the analysis of the obtained data were carried out. What do you recollect as a dangerous matter, the attitude to nuclear power generation, the structure of the conscience to nuclear power generation and its significance, the type classification of people and its features are reported and discussed. (K.I.)

  14. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M. K.; Wind, L.; Canter, B.; Moeller, T.

    2002-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 2000 and 2001. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (SM)

  15. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  16. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  17. Power generation systems and methods

    Science.gov (United States)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  18. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  19. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2013-01-01

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  20. An Implanted, Stimulated Muscle Powered Piezoelectric Generator

    Science.gov (United States)

    Lewandowski, Beth; Gustafson, Kenneth; Kilgore, Kevin

    2007-01-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle could be used to augment the power systems of implanted medical devices, such as neural prostheses, by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The features of our generator design are no moving parts and the use of a portion of the generated power for system operation and regulation. A software model of the system has been developed and simulations have been performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces have been experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to approximately 700 W of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 50 W. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and further investigation is underway.

  1. High-power density miniscale power generation and energy harvesting systems

    International Nuclear Information System (INIS)

    Lyshevski, Sergey Edward

    2011-01-01

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro (∼100 μW) to medium (∼100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems.

  2. Power generation, operation and control

    CERN Document Server

    Wood, Allen J; Sheblé, Gerald B

    2013-01-01

    Since publication of the second edition, there have been extensive changes in the algorithms, methods, and assumptions in energy management systems that analyze and control power generation. This edition is updated to acquaint electrical engineering students and professionals with current power generation systems. Algorithms and methods for solving integrated economic, network, and generating system analysis are provided. Also included are the state-of-the-art topics undergoing evolutionary change, including market simulation, multiple market analysis, multiple interchange contract analysis, c

  3. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  4. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  5. Wind electric power generation

    International Nuclear Information System (INIS)

    Groening, B.; Koch, M.; Canter, B.; Moeller, T.

    1995-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1988 and 1989. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. The statistics for December 1994 comprise 2328 wind turbines

  6. Cassie state robustness of plasma generated randomly nano-rough surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Di Mundo, Rosa, E-mail: rosa.dimundo@poliba.it; Bottiglione, Francesco; Carbone, Giuseppe

    2014-10-15

    Graphical abstract: - Highlights: • Superhydrophobic randomly rough surfaces are generated by plasma etching. • Statistical analysis of roughness allows calculation of theWenzel roughness factor, r{sub W.} • A r{sub W} threshold is theoretically determined, above which superhydrophobicity is “robust”. • Dynamic wetting, e.g. with high speed impacting drops, confirms this prediction. - Abstract: Superhydrophobic surfaces are effective in practical applications provided they are “robust superhydrophobic”, i.e. able to retain the Cassie state, i.e. with water suspended onto the surface protrusions, even under severe conditions (high pressure, vibrations, high speed impact, etc.). We show that for randomly rough surfaces, given the Young angle, Cassie states are robust when a threshold value of the Wenzel roughness factor, r{sub W}, is exceeded. In particular, superhydrophobic nano-textured surfaces have been generated by self-masked plasma etching. In view of their random roughness, topography features, acquired by Atomic Force Microscopy, have been statistically analyzed in order to gain information on statistical parameters such as power spectral density, fractal dimension and Wenzel roughness factor (r{sub W}), which has been used to assess Cassie state robustness. Results indicate that randomly rough surfaces produced by plasma at high power or long treatment duration, which are also fractal self-affine, have a r{sub W} higher than the theoretical threshold, thus for them a robust superhydrophobicity is predicted. In agreement with this, under dynamic wetting conditionson these surfaces the most pronounced superhydrophobic character has been appreciated: they show the lowest contact angle hysteresis and result in the sharpest bouncing when hit by drops at high impact velocity.

  7. Power generation in Southern Africa

    International Nuclear Information System (INIS)

    Beer, J.A. de

    2002-01-01

    This paper outlines the main characteristics of power generation in Southern Africa, in terms of primary energy resources, existing and projected power supply and demand, types and location of power plants, regional integration, and environmental management aspects. Various options for future development of power generation are presented as part of an overall integrated resource planning (IRP) process for the power industry. These include coal and natural gas based options, hydro power and other renewable energy, and nuclear power plants. A specific option, the pebble bed modular reactor (PBMR), under development by Eskom Enterprises and other international and local partners, is described in terms of overall design parameters, inherent safety features, economics and environmental aspects. Included is a high level discussion on the selection of materials for the design of this PBMR plant, an advanced design version of a high temperature gas reactor (HTGR). (orig.)

  8. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  9. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  10. Unregulated generation relationships at Niagara Mohawk Power Corporation

    International Nuclear Information System (INIS)

    Schrayshuen, H.

    1995-01-01

    This paper examines the contractual and mandated power generation pricing relationships between an electric utility and unregulated power generation stations. The topics of the paper include types of generation facilities, current capacity of unregulated generators, rights to power markets, utility planning, responding to a changing market, power purchase agreement relationships, enforcement and renegotiation

  11. A dynamic isotope power system for Space Exploration Initiative surface transport systems

    International Nuclear Information System (INIS)

    Hunt, M.E.; Harty, R.B.; Cataldo, R.

    1992-03-01

    The Dynamic Isotope Power System (DIPS) Demonstration Program, sponsored by the U.S. Department of Energy with support funding from NASA, is currently focused on the development of a standardized 2.5-kWe portable generator for multiple applications on the lunar or Martian surface. A variety of remote and mobile potential applications have been identified by NASA, including surface rovers for both short- and extended-duration missions, remote power to science packages, and backup to central base power. Recent work focused on refining the 2.5-kWe design and emphasizing the compatibility of the system with potential surface transport systems. Work included an evaluation of the design to ensure compatibility with the Martian atmosphere while imposing only a minor mass penalty on lunar operations. Additional work included a study performed to compare the DIPS with regenerative fuel cell systems for lunar mobile and remote power systems. Power requirements were reviewed and a modular system chosen for the comparison. 4 refs

  12. Improvements of high-power diode laser line generators open up new application fields

    Science.gov (United States)

    Meinschien, J.; Bayer, A.; Bruns, P.; Aschke, L.; Lissotschenko, V. N.

    2009-02-01

    Beam shaping improvements of line generators based on high power diode lasers lead to new application fields as hardening, annealing or cutting of various materials. Of special interest is the laser treatment of silicon. An overview of the wide variety of applications is presented with special emphasis of the relevance of unique laser beam parameters like power density and beam uniformity. Complementary to vision application and plastic processing, these new application markets become more and more important and can now be addressed by high power diode laser line generators. Herewith, a family of high power diode laser line generators is presented that covers this wide spectrum of application fields with very different requirements, including new applications as cutting of silicon or glass, as well as the beam shaping concepts behind it. A laser that generates a 5m long and 4mm wide homogeneous laser line is shown with peak intensities of 0.2W/cm2 for inspection of railway catenaries as well as a laser that generates a homogeneous intensity distribution of 60mm x 2mm size with peak intensities of 225W/cm2 for plastic processing. For the annealing of silicon surfaces, a laser was designed that generates an extraordinary uniform intensity distribution with residual inhomogeneities (contrast ratio) of less than 3% over a line length of 11mm and peak intensities of up to 75kW/cm2. Ultimately, a laser line is shown with a peak intensity of 250kW/cm2 used for cutting applications. Results of various application tests performed with the above mentioned lasers are discussed, particularly the surface treatment of silicon and the cutting of glass.

  13. High-power density miniscale power generation and energy harvesting systems

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, Sergey Edward [Department of Electrical and Microelectronics Engineering, Rochester Institute of Technology, Rochester, NY 14623-5603 (United States)

    2011-01-15

    This paper reports design, analysis, evaluations and characterization of miniscale self-sustained power generation systems. Our ultimate objective is to guarantee highly-efficient mechanical-to-electrical energy conversion, ensure premier wind- or hydro-energy harvesting capabilities, enable electric machinery and power electronics solutions, stabilize output voltage, etc. By performing the advanced scalable power generation system design, we enable miniscale energy sources and energy harvesting technologies. The proposed systems integrate: (1) turbine which rotates a radial- or axial-topology permanent-magnet synchronous generator at variable angular velocity depending on flow rate, speed and load, and, (2) power electronic module with controllable rectifier, soft-switching converter and energy storage stages. These scalable energy systems can be utilized as miniscale auxiliary and self-sustained power units in various applications, such as, aerospace, automotive, biotechnology, biomedical, and marine. The proposed systems uniquely suit various submersible and harsh environment applications. Due to operation in dynamic rapidly-changing envelopes (variable speed, load changes, etc.), sound solutions are researched, proposed and verified. We focus on enabling system organizations utilizing advanced developments for various components, such as generators, converters, and energy storage. Basic, applied and experimental findings are reported. The prototypes of integrated power generation systems were tested, characterized and evaluated. It is documented that high-power density, high efficiency, robustness and other enabling capabilities are achieved. The results and solutions are scalable from micro ({proportional_to}100 {mu}W) to medium ({proportional_to}100 kW) and heavy-duty (sub-megawatt) auxiliary and power systems. (author)

  14. Integration of Renewable Generation in Power System Defence Plans

    DEFF Research Database (Denmark)

    Das, Kaushik

    Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity of conven......Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity......, one of them being the North East area with high share of wind power generation.The aim of this study is to investigate how renewable generations like wind power can contribute to the power system defence plans. This PhD project “Integration of Renewable Generation in Power System Defence Plans...

  15. Stand-alone excitation synchronous wind power generators with power flow management strategy

    Directory of Open Access Journals (Sweden)

    Tzuen-Lih Chern

    2014-09-01

    Full Text Available This study presents a stand-alone excitation synchronous wind power generator (SESWPG with power flow management strategy (PFMS. The rotor speed of the excitation synchronous generator tracks the utility grid frequency by using servo motor tracking technologies. The automatic voltage regulator governs the exciting current of generator to achieve the control goals of stable voltage. When wind power is less than the needs of the consumptive loading, the proposed PFMS increases motor torque to provide a positive power output for the loads, while keeping the generator speed constant. Conversely, during the periods of wind power greater than output loads, the redundant power of generator production is charged to the battery pack and the motor speed remains constant with very low power consumption. The advantage of the proposed SESWPG is that the generator can directly output stable alternating current (AC electricity without using additional DC–AC converters. The operation principles with software simulation for the system are described in detail. Experimental results of a laboratory prototype are shown to verify the feasibility of the system.

  16. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    Science.gov (United States)

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  17. Nuclear power generation cost methodology

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1980-08-01

    A simplified calculational procedure for the estimation of nuclear power generation cost is outlined. The report contains a discussion of the various components of power generation cost and basic equations for calculating that cost. An example calculation is given. The basis of the fixed-charge rate, the derivation of the levelized fuel cycle cost equation, and the heavy water charge rate are included as appendixes

  18. A large capacity turbine generator for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Susumu; Miki, Takahiro; Suzuki, Kazuichi

    2000-01-01

    In future large capacity nuclear power plant, capacity of a generator to be applied will be 1800 MVA of the largest class in the world. In response to this, the Mitsubishi Electric Co., Ltd. began to carry out element technology verification of a four-pole large capacity turbine generator mainly using upgrading technique of large capacity, since 1994 fiscal year. And, aiming at reliability verification of the 1800 MVA class generator, a model generator with same cross-section as that of an actual one was manufactured, to carry out some verifications on its electrified tests, and so on. Every performance evaluation result of tests on the model generator were good, and high reliability to design and manufacturing technique of the 1800 MVA class generator could be verified. In future, on the base of these technologies, further upgrading of reliability on the large capacity turbine generator for nuclear power generation is intended to be carried out. (G.K.)

  19. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter......This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...

  20. Situation of nuclear power generation in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, S [Swedish Atomic Forum

    1978-01-01

    In Sweden, nuclear power generation was received initially favorably. In the end of 1960s, however, nuclear power generation got involved in the activities of environment preservation. Then, political parties became opposed to nuclear power generation, and now, the need of nuclear power generation itself is regarded as questionable. In the general election in 1976, the Government opposing the nuclear power generation won. As the result, the conditional nuclear power development law and the energy committee were set up. The committee composed of parliament members, experts, and representatives of enterprises and trade unions is to submit its report so that the parliament can prepare a new energy program in the fall of 1978. Meanwhile, the nuclear fuel safety project formed newly has studied to satisfy the conditions of the law. In Sweden, which has developed nuclear reactors independently from the technology of USA, the oppositions are on the decrease, however. It is awaited what decision will be made by the Government in this fall.

  1. Electrical Power Conversion of a River and Tidal Power Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-09-01

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  2. Nuclear power generation and automation technology

    International Nuclear Information System (INIS)

    Korei, Yoshiro

    1985-01-01

    The proportion of nuclear power in the total generated electric power has been increasing year after year, and the ensuring of its stable supply has been demanded. For the further development of nuclear power generation, the heightening of economical efficiency which is the largest merit of nuclear power and the public acceptance as a safe and stable electric power source are the important subjects. In order to solve these subjects, in nuclear power generation, various automation techniques have been applied for the purpose of the heightening of reliability, labor saving and the reduction of radiation exposure. Meeting the high needs of automation, the automation technology aided by computers have been applied to the design, manufacture and construction, operation and maintenance of nuclear power plants. Computer-aided design and the examples of design of a reactor building, pipings and a fuel assembly, an automatic welder for pipings of all position TIG welding type, a new central monitoring and control system, an automatic exchanger of control rod-driving mechanism, an automatic in-service inspection system for nozzles and pipings, and a robot for steam generator maintenance are shown. The trend of technical development and an intelligent moving robot, a system maintenance robot and a four legs walking robot are explained. (Kako, I.)

  3. 18 CFR 801.12 - Electric power generation.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power generation. 801.12 Section 801.12 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made...

  4. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Lee, Young Gun; Lee, Han Myung; Song, Ki Dong; Lee, Man Ki; Kim, Seung Su; Moon, Kee Hwan; Chung, Whan Sam; Kim, Kyung Pyo; Cho, Sang Goo

    1992-01-01

    The purpose of this study is to clarify the role of nuclear power generation under the circumstances of growing concerns about environmental impact and to help decision making in electricity sector. In this study, efforts are made to estimate electricity power generation cost of major power options by incorporating additional cost to reduce environmental impact and to suggest an optimal plant mix in this case. (Author)

  5. Nuclear power generation: challenge in the 1980s

    International Nuclear Information System (INIS)

    Eklund, S.A.

    1981-01-01

    In the lecture ''Nuclear power generation - challenge in the 1980s'', attempt is made to predict the events arising in 1980s on the basis of the data available in the International Atomic Energy Agency. By the term ''challenge'', emphasis is placed on the potentiality of nuclear power for solving the world energy problem. This is indicated clearly by nuclear power currently accounting for 8%, of the total power generation in the world. The explanation in the above connection with figures and tables is made, including geographical distribution of reactors, nuclear power generation and total power generation in various countries, future capacity of nuclear power generation, situation of reactor operation, future installation of nuclear power plants, uranium demand/supply situation, spent fuel storage, etc. Then, discussion and analysis are made on such problems as waste management, economy, safety, and safeguards. (J.P.N.)

  6. Generating electric power for export from Atlantic Canada to the U.S

    International Nuclear Information System (INIS)

    Valentine, H.

    2009-01-01

    Hydroelectric power from Newfoundland-Labrador and Quebec has been imported to the northeastern United States for many years. Newfoundland's government has recently declared its intention to develop a Lower Churchill Falls hydroelectric power project. Electricity from the new project will be transported using an undersea power cable placed under the Strait of Belle Isle from Labrador to Newfoundland. A second undersea cable will transport power into Nova Scotia, New Brunswick, and the United States. The cable may also support the development of several other hydroelectric projects in New Brunswick and Nova Scotia. Studies have shown that the construction of 2 trans-isthmus power canals will reduce the extreme tidal height and raise the mass of water flowing into the Bay of Fundy. Kinetic turbines placed beneath the ocean surface across the entrances to the Bay of Fundy, Chignecto Bay, and the Minas Basin will generate up to 500 MW of power. Power generation from off-peak periods can be stored using pumped hydraulic storage installations. It was concluded that the projects may become viable within 10 to 30 years. 4 figs

  7. Power Generation from Coal 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report focuses mainly on developments to improve the performance of coal-based power generation technologies, which should be a priority -- particularly if carbon capture and storage takes longer to become established than currently projected. A close look is taken of the major ongoing developments in process technology, plant equipment, instrumentation and control. Coal is an important source of energy for the world, particularly for power generation. To meet the growth in demand for energy over the past decade, the contribution from coal has exceeded that of any other energy source. Additionally, coal has contributed almost half of total growth in electricity over the past decade. As a result, CO2 emissions from coal-fired power generation have increased markedly and continue to rise. More than 70% of CO2 emissions that arise from power generation are attributed to coal. To play its role in a sustainable energy future, its environmental footprint must be reduced; using coal more efficiently is an important first step. Beyond efficiency improvement, carbon capture and storage (CCS) must be deployed to make deep cuts in CO2 emissions. The need for energy and the economics of producing and supplying it to the end-user are central considerations in power plant construction and operation. Economic and regulatory conditions must be made consistent with the ambition to achieve higher efficiencies and lower emissions. In essence, clean coal technologies must be more widely deployed.

  8. Power generation and the environment

    International Nuclear Information System (INIS)

    Robert, L.E.J.; Liss, P.S.; Saunders, P.A.H.

    1990-01-01

    This book reviews environmental aspects of large-scale power generation. It includes historic background of present-generation patterns and a discussion of fossil fuel, nuclear energy, and renewable technologies

  9. The exergy underground coal gasification technology for power generation and chemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Blinderman, M.S. [Ergo Exergy Technologies Inc., Montreal, PQ (Canada)

    2006-07-01

    Underground coal gasification (UCG) is a gasification process carried out in non-mined coal seams using injection and production wells drilled from the surface, converting coal in situ into a product gas usable for chemical processes and power generation. The UCG process developed, refined and practised by Ergo Exergy Technologies is called the Exergy UCG Technology or {epsilon}UCG{trademark} technology. This paper describes the technology and its applications. The {epsilon}UCG technology is being applied in numerous power generation and chemical projects worldwide, some of which are described. These include power projects in South Africa, India, Pakistan and Canada, as well as chemical projects in Australia and Canada. A number of {epsilon}UCG{trademark} based industrial projects are now at a feasibility usage in India, New Zealand, USA and Europe. An {epsilon}UCG{trademark} IGCC power plant will generate electricity at a much lower cost than existing fossil fuel power plants. CO{sub 2} emissions of the plant can be reduced to a level 55% less than those of a supercritical coal-fired plant and 25% less than the emissions of NG CC. 10 refs., 8 figs.

  10. Generator technology for HTGR power plants

    International Nuclear Information System (INIS)

    Lomba, D.; Thiot, D.

    1997-01-01

    Approximately 15% of the worlds installed capacity in electric energy production is from generators developed and manufactured by GEC Alsthom. GEC Alsthom is now working on the application of generators for HTGR power conversion systems. The main generator characteristics induced by the different HTGR power conversion technology include helium immersion, high helium pressure, brushless excitation system, magnetic bearings, vertical lineshaft, high reliability and long periods between maintenance. (author)

  11. Third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1988-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached or are about to step into the third generation phase of development. The paper concludes that to achieve the objectives of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry

  12. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  13. Investment strategy for low-carbon power generation

    International Nuclear Information System (INIS)

    Yamasaki, Yukihiro; Matsuhashi, Ryuji; Yoshida, Yoshikuni

    2011-01-01

    Recently, it is needed to reduce CO 2 emissions for prevention of global warming. In Japan, the power generation sector is the biggest part in terms of CO 2 emissions, therefore it is very important to cope with the reduction of the emissions from this sector. From this point of view, it is assumed that the nuclear power generation is the most practical option to reduce them. In order to evaluate the possibility of introduction of the nuclear power, we built a generation planning model and simulate to analyze the transition of the optimal generation mix. Also, we evaluate the investment in the introduction of the nuclear power quantitatively using the real option analysis. (author)

  14. Simulation of the energy - environment economic system power generation costs in power-stations

    International Nuclear Information System (INIS)

    Weible, H.

    1978-09-01

    The costs of power generation are an important point in the electricity industry. The present report tries to supply a model representation for these problems. The costs of power generation for base load, average and peak load power stations are examined on the basis of fossil energy sources, nuclear power and water power. The methods of calculation where dynamic investment calculation processes are used, are given in the shape of formulae. From the point of view of long term prediction, power generation cost sensitivity studies are added to the technical, economic and energy-political uncertainties. The sensitivity of models for calculations is examined by deterministic and stochastic processes. In the base load and average region, power generation based on nuclear power and water power is economically more favourable than that from fossilfired power stations. Even including subsidies, this cost advantage is not in doubt. In the peak load region, pumped storage power stations are more economic than fossilfired power stations. (orig.) [de

  15. Nanodevices for generating power from molecules and batteryless sensing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2017-01-03

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  16. Peak power ratio generator

    Science.gov (United States)

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  17. Power generation from waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Nitsche, H

    1980-04-18

    Since the energy crisis, power generation from waste wood has become increasingly important. The most profitable way to use waste wood in woodworking plants with an annual production of 100 to 150,000 m/sup 3/ solid measure of wood chips and bark is by combustion and thermal energy recovery. In plants with an annual production of 10,000 m/sup 3/ solid measure of wood chips and bark, electric power generation is a suitable application.

  18. Power: towards a third generation definition

    OpenAIRE

    13250612 - Zaaiman, Stephanus Johannes

    2008-01-01

    Power is a well-established concept in the social sciences especially in the political sciences. Although it is widely used in scientific discourse, different definitions and perspectives prevail with regard to it. This article aims to explore the possibilities of taking the debate further towards a third generation definition of social power. Although first generation definitions (associated with Weber and Dahl) and second generation definitions (associated with inter alia Giddens and Morris...

  19. Power generation in India: analysing trends and outlook

    International Nuclear Information System (INIS)

    2011-01-01

    The objective of this report is to provide up-to-date data, critical analysis and information encompassing all aspects of power generation in India. The report provides historic and future outlook for power generation in India. It also provides an evaluation of private participation in power generation segment of India and investment opportunities in Indian power sector. In addition, the report examines policies, regulatory framework and financing of power generation in India. It also highlights key issues and challenges that are restricting the accelerated development of this sector. The report has thirteen chapters in total. (author)

  20. Evaluation Of Different Power Conditioning Options For Stirling Generators

    Science.gov (United States)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  1. Centralized power generation: what share for gas?

    International Nuclear Information System (INIS)

    Honore, A.; Pharabod, E.; Lecointe, O.; Poyer, L.

    2007-01-01

    Up to a recent past, most energy scenarios were foreseeing a fast growth of natural gas consumption thanks to an assumed strong penetration of gas-fueled power plants. The share of natural gas in the centralized power generation has been the subject of a meeting of the French gas association (AFG) which aimed at answering the following questions: today's position of gas power generation in Europe in the present day context of gas prices (level, volatility), the share of natural gas in the French power mix in the coming years, the strategies of development of gas power plants by historical operators and newcomers, the gas arbitration between its sale to end-users and its use for power generation, and the integration of the CO 2 risk. (J.S.)

  2. Life cycle analysis of geothermal power generation with supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Frank, Edward D; Sullivan, John L; Wang, Michael Q

    2012-01-01

    Life cycle analysis methods were employed to model the greenhouse gas emissions and fossil energy consumption associated with geothermal power production when supercritical carbon dioxide (scCO 2 ) is used instead of saline geofluids to recover heat from below ground. Since a significant amount of scCO 2 is sequestered below ground in the process, a constant supply is required. We therefore combined the scCO 2 geothermal power plant with an upstream coal power plant that captured a portion of its CO 2 emissions, compressed it to scCO 2 , and transported the scCO 2 by pipeline to the geothermal power plant. Emissions and energy consumption from all operations spanning coal mining and plant construction through power production were considered, including increases in coal use to meet steam demand for the carbon capture. The results indicated that the electricity produced by the geothermal plant more than balanced the increase in energy use resulting from carbon capture at the coal power plant. The effective heat rate (BTU coal per total kW h of electricity generated, coal plus geothermal) was comparable to that of traditional coal, but the ratio of life cycle emissions from the combined system to that of traditional coal was 15% when 90% carbon capture efficiency was assumed and when leakage from the surface was neglected. Contributions from surface leakage were estimated with a simple model for several hypothetical surface leakage rates. (letter)

  3. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas...... or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up...

  4. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    International Nuclear Information System (INIS)

    John Darrell Bess

    2008-01-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for

  5. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-12-31

    During the wind power generator project a design algorithm for a gearless permanent magnet generator with an axially orientated magnetic flux was developed and a 10 kW model machine was constructed. Utilising the test results a variable wind speed system of 100 kW was designed that incorporates a permanent magnet generator, a frequency converter and a fuzzy controller. This system produces about 5-15% more energy than existing types and stresses to the blades are minimised. The type of generator designed in the project represents in general a gearless solution for slow-speed electrical drives. (orig.)

  6. Power generation from nuclear reactors in aerospace applications

    International Nuclear Information System (INIS)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion

  7. Power Generation from Nuclear Reactors in Aerospace Applications

    Science.gov (United States)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  8. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  9. Micro combustion in sub-millimeter channels for novel modular thermophotovoltaic power generators

    International Nuclear Information System (INIS)

    Pan, J F; Tang, A K; Duan, L; Li, X C; Yang, W M; Chou, S K; Xue, H

    2010-01-01

    The performance of micro combustion-driven power systems is strongly influenced by the combustor structure. A novel modular thermophotovoltaic (TPV) power generator is presented, which is based on the sub-millimeter parallel plate combustor. It has the potential to achieve a high power density because of the high radiation energy per unit volume due to the high surface-to-volume ratio of the micro-combustor. The work experimentally investigated the ignition limitation for two micro-combustors. It also studied the effects of three major parameters on a sub-millimeter combustor, namely hydrogen to oxygen mixing ratio, hydrogen volumetric flow rate and nozzle geometry. The results show that the combustion efficiency decreases with the increase of the hydrogen flow rate, which is caused by reduced residence time. The average wall temperature with the rectangular nozzle is 25 K higher than that with the circle nozzle. The output electrical power and power density of the modular TPV power generator are projected to be 0.175 W and 0.0722 W cm −3 respectively. We experimentally achieve 0.166 W of electrical power, which is in good agreement with the model prediction

  10. Wind Turbine Generator Efficiency Based on Powertrain Combination and Annual Power Generation Prediction

    Directory of Open Access Journals (Sweden)

    Dongmyung Kim

    2018-05-01

    Full Text Available Wind turbine generators are eco-friendly generators that produce electric energy using wind energy. In this study, wind turbine generator efficiency is examined using a powertrain combination and annual power generation prediction, by employing an analysis model. Performance testing was conducted in order to analyze the efficiency of a hydraulic pump and a motor, which are key components, and so as to verify the analysis model. The annual wind speed occurrence frequency for the expected installation areas was used to predict the annual power generation of the wind turbine generators. It was found that the parallel combination of the induction motors exhibited a higher efficiency when the wind speed was low and the serial combination showed higher efficiency when wind speed was high. The results of predicting the annual power generation considering the regional characteristics showed that the power generation was the highest when the hydraulic motors were designed in parallel and the induction motors were designed in series.

  11. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1996-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  12. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  13. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  14. Optimization of power generation from shrouded wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis (United States)

    2013-07-01

    In past several years, several studies have shown that the shrouded wind turbines can generate greater power compared to bare turbines. The objective of this study is to determine the potential of shrouded wind turbines for increased power generation by conducting numerical simulations. An analytical/computational study is performed by employing the well-known commercial Computational Fluid Dynamics (CFD) software FLUENT. An actuator disc model is used to model the turbine. The incompressible Navier-Stokes equations and a two equation realizable {kappa}-{epsilon} model are employed in the calculations. The power coefficient Cp and generated power are calculated for a large number of cases for horizontal axis wind turbines (HAWT) of various diameters and wind speeds for both bare and shrouded turbines. The design of the shroud is optimized by employing a single objective genetic algorithm; the objective being the maximization of the power coefficient Cp. It was found that the shroud indeed increases the Cp beyond the Betz’s limit significantly and as a result the generated power; this effect is consistent with that found in the recent literature that the shrouded wind-turbines can generate greater power than the bare turbines. The optimized shape of the shroud or diffuser further increases the generated power and Cp.

  15. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-01-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO 2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  16. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  17. Future perspective of cost for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Ichiro

    1988-01-01

    The report presents and discussed results of evaluation of the cost for power generation in this and forthcoming years on the basis of an analysis of the current fuel prices and the economics of various power sources. Calculations show that nuclear power generation at present is inferior to coal-firing power generation in terms of required costs, but can become superior in the future due to an increased burn-up and reduced construction cost. Investigations are made of possible contributions of future technical improvements to reduction in the overall cost. Results suggest that nuclear power generation will be the most efficient among the various electric sources because of its technology-intensive feature. Development of improved light water reactors is of special importance to achieve a high burn-up and reduced construction costs. In general, the fixed cost accounts for a large part of the overall nuclear power generation cost, indicating that a reduction in construction cost can greatly increase the economic efficiency. Changes in the yen's exchange rate seem to have little effect on the economics of nuclear power generation, which represents another favorable aspect of this type of energy. (Nogami, K.)

  18. LPGC, Levelized Steam Electric Power Generator Cost

    International Nuclear Information System (INIS)

    Coen, J.J.; Delene, J.G.

    1994-01-01

    1 - Description of program or function: LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generation cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized-water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor. Costs for plant having either one or two units may be obtained. 2 - Method of solution: LPGC consists of nine individual menu-driven programs controlled by a driver program, MAINPWR. The individual programs are PLANTCAP, for calculating capital investment costs; NUCLOM, for determining operation and maintenance (O and M) costs for nuclear plants; COALOM, for computing O and M costs for coal-fired plants; NFUEL, for calculating levelized fuel costs for nuclear plants; COALCOST, for determining levelized fuel costs for coal-fired plants; FCRATE, for computing the fixed charge rate on the capital investment; LEVEL, for calculating levelized power generation costs; CAPITAL, for determining capitalized cost from overnight cost; and MASSGEN, for generating, deleting, or changing fuel cycle mass balance data for use with NFUEL. LPGC has three modes of operation. In the first, each individual code can be executed independently to determine one aspect of the total

  19. Ocean Current Power Generator. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, G. A.

    2002-07-26

    The Ocean Power Generator is both technically and economically suitable for deployment in the Gulf Stream from the US Navy facility in Dania, Florida. Yet to be completed is the calibration test in the Chesapeake Bay with the prototype dual hydroturbine Underwater Electric Kite. For the production units a revised design includes two ballast tanks mounted as pontoons to provide buoyancy and depth control. The power rating of the Ocean Power Generator has been doubled to 200 kW ready for insertion into the utility grid. The projected cost for a 10 MW installation is $3.38 per watt, a cost that is consistent with wind power pricing when it was in its deployment infancy, and a cost that is far better than photovoltaics after 25 years of research and development. The Gulf Stream flows 24 hours per day, and water flow is both environmentally and ecologically perfect as a renewable energy source. No real estate purchases are necessary, and you cannot see, hear, smell, or touch an Ocean Power Generator.

  20. Operating of Small Wind Power Plants with Induction Generators

    Directory of Open Access Journals (Sweden)

    Jakub Nevrala

    2008-01-01

    Full Text Available This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generators connected to the power grid. Methods of control these systems as a separately working, directly connecting to power grid, control by frequency converter and wiring by synchronous cascade are confronted on the measuring base too.

  1. Power generation from nuclear reactors in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  2. A mechatronic power boosting design for piezoelectric generators

    International Nuclear Information System (INIS)

    Liu, Haili; Liang, Junrui; Ge, Cong

    2015-01-01

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation

  3. A mechatronic power boosting design for piezoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haili; Liang, Junrui, E-mail: liangjr@shanghaitech.edu.cn; Ge, Cong [School of Information Science and Technology, ShanghaiTech University, No. 8 Building, 319 Yueyang Road, Shanghai 200031 (China)

    2015-10-05

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  4. Options for Affordable Fission Surface Power Systems

    International Nuclear Information System (INIS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  5. Economic analysis of power generation from floating solar chimney power plant

    International Nuclear Information System (INIS)

    Zhou, Xinping; Yang, Jiakuan; Xiao, Bo; Wang, Fen

    2009-01-01

    Solar chimney thermal power technology that has a long life span is a promising large-scale solar power generating technology. This paper performs economic analysis of power generation from floating solar chimney power plant (FSCPP) by analyzing cash flows during the whole service period of a 100 MW plant. Cash flows are influenced by many factors including investment, operation and maintenance cost, life span, payback period, inflation rate, minimum attractive rate of return, non-returnable subsidy rate, interest rate of loans, sale price of electricity, income tax rate and whether additional revenue generated by carbon credits is included or not. Financial incentives and additional revenue generated by carbon credits can accelerate the development of the FSCPP. Sensitivity analysis to examine the effects of the factors on cash flows of a 100 MW FSCPP is performed in detail. The results show that the minimum price for obtaining minimum attractive rate of return (MARR) of 8% reaches 0.83 yuan (kWh) -1 under financial incentives including loans at a low interest rate of 2% and free income tax. Comparisons of economics of the FSCPP and reinforced concrete solar chimney power plant or solar photovoltaic plant are also performed by analyzing their cash flows. It is concluded that FSCPP is in reality more economical than reinforced concrete solar chimney power plant (RCSCPP) or solar photovoltaic plant (SPVP) with the same power capacity. (author)

  6. Present state of research and development of MHD power generation

    International Nuclear Information System (INIS)

    Ikeda, Shigeru

    1978-01-01

    MHD power generation can obtain electric energy directly from the heat energy of high speed plasma flow, and the power generating plant of 1 million kW can be realized by this method. When the MHD power generation method is combined before conventional thermal power generation method, the thermal efficiency can be raised to about 60% as compared with 38% in thermal power generation plants. The research and development of MHD power generation are in progress in USA and USSR. The research and development in Japan are in the second stage now after the first stage project for 10 years, and the Mark 7 generator with 100 kW electric output for 200 hr continuous operation is under construction. The MHD power generation is divided into three types according to the conductive fluids used, namely combustion type for thermal power generation, unequilibrated type and liquid metal type for nuclear power generation. The principle of MHD power generation and the constitution of the plant are explained. In Japan, the Mark 2 generator generated 1,180 kW for 1 min in 1971, and the Mark 3 generator generated 1.9 kW continuously for 110 hr in 1967. The MHD generator with superconducting magnet succeeded in 1969 to generate 25 kW for 6 min. The second stage project aimes at collecting design data and obtaining operational experience for the construction of 10 MW class pilot plant, and the Mark 7 and 8 generators are planned. (Kako, I.)

  7. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  8. Analysis of Linear MHD Power Generators

    Energy Technology Data Exchange (ETDEWEB)

    Witalis, E A

    1965-02-15

    The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.

  9. Power Generation for River and Tidal Generators

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Donegan, James [Ocean Renewable Power Company (ORPC), Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company (ORPC), Portland, ME (United States); McEntee, Jarlath [Ocean Renewable Power Company (ORPC), Portland, ME (United States)

    2016-06-01

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered one of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.

  10. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    International Nuclear Information System (INIS)

    Hashiba, Takashi

    2001-01-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO 2 on generation, and awareness of energy environmental concerns. (author)

  11. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Costa, L.M.

    2008-12-01

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  12. High-Altitude Wind Power Generation

    NARCIS (Netherlands)

    Fagiano, L.; Milanese, M.; Piga, D.

    2010-01-01

    Abstract—The paper presents the innovative technology of highaltitude wind power generation, indicated as Kitenergy, which exploits the automatic flight of tethered airfoils (e.g., power kites) to extract energy from wind blowing between 200 and 800 m above the ground. The key points of this

  13. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  14. On the reliability of steam generator performance at nuclear power plants with WWER type reactors

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Margulova, T.Kh.

    1974-01-01

    The problem of ensuring reliable operation of steam generators in a nuclear power plant with a water-cooled, water-moderated reactor (WWER) was studied. At a nuclear power plant with a vertical steam generator (specifically, a Westinghouse product) the steam generator tubes were found to have been penetrated. Shutdown was due to corrosion disintegration of the austenitic stainless steel, type 18/8, used as pipe material for the heater surface. The corrosion was the result of the action of chlorine ions concentrated in the moisture contained in the iron oxide films deposited in low parts of the tube bundle, directly at the tube plate. Blowing through did not ensure complete removal of the film, and in some cases the construction features of the steam generator made removal of the film practically impossible. Replacement of type 18/8 stainless steel by other construction material, e.g., Inconel, did not give good results. To ensure reliable operation of vertical steam generators in domestic practice, the generators are designed without a low tube plate (a variant diagram of the vertical steam generator of such construction for the water-cooled, water-moderated reactor 1000 is presented). When low tube plates are used the film deposition is intolerable. For organization of a non-film regime a complex treatment of the feed water is used, in which the amount of complexion is calculated from the stoichmetric ratios with the composition of the feed water. It is noted that, if 100% condensate purification is used with complexon processing of the feed water to the generator, we can calculate the surface of the steam-generator heater without considering the outer placement on the tubes. In this the cost of the steam generator and all the nuclear power plants with WWER type reactors is decreased even with installation of a 100% condensate purification. It is concluded that only simultaneous solution of construction and water-regime problems will ensure relaible operation of

  15. Operating of Small Wind Power Plants with Induction Generators

    OpenAIRE

    Jakub Nevrala; Stanislav Misak

    2008-01-01

    This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generator...

  16. Nuclear power generation and fuel cycle report 1997

    International Nuclear Information System (INIS)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East

  17. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  18. Use of thermoelectric generators for improve power dependability over grid power

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Jack [Global Thermoelectric, Calgary (Canada)

    2005-07-01

    A natural gas transportation company was experiencing extensive pipeline corrosion on some sections of their pipeline protected by impressed current using grid power and rectifiers. After determining that grid power was being interrupted on the affected sections, the gas transporter began looking for a more dependable power supply and chose thermoelectric generators. Since installing thermoelectric generators in 2002, the pipeline potentials have stabilized and transporter was able to experience 100% operational time on affected sections. (author)

  19. Dual-loop self-optimizing robust control of wind power generation with Doubly-Fed Induction Generator.

    Science.gov (United States)

    Chen, Quan; Li, Yaoyu; Seem, John E

    2015-09-01

    This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. How is Electricity Generated from Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lajnef, D.

    2015-01-01

    Nuclear power is a proven, safe and clean source of power generation. A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical in all conventional thermal power stations the heat is used to generate steam which drives a steam turbine: the energy released from continuous fission of the atoms of the fuel is harnessed as heat in either a gas or water, and is used to produce steam. Nuclear Reactors are classified by several methods. It can be classified by type of nuclear reaction, by the moderator material, by coolant or by generation. There are several components common to most types of reactors: fuel, moderator, control rods, coolant, and containment. Nuclear reactor technology has been under continuous development since the first commercial exploitation of civil nuclear power in the 1950s. We can mention seven key reactor attributes that illuminate the essential differences between the various generations of reactors: cost effectiveness, safety, security and non-proliferation, fuel cycle, grid appropriateness and Economics. Today there are about 437 nuclear power reactors that are used to generate electricity in about 30 countries around the world. (author)

  1. Reactive power management of power networks with wind generation

    CERN Document Server

    Amaris, Hortensia; Ortega, Carlos Alvarez

    2012-01-01

    As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key

  2. The Tethered Balloon Current Generator - A space shuttle-tethered subsatellite for plasma studies and power generation

    Science.gov (United States)

    Williamson, P. R.; Banks, P. M.

    1976-01-01

    The objectives of the Tethered Balloon Current Generator experiment are to: (1) generate relatively large regions of thermalized, field-aligned currents, (2) produce controlled-amplitude Alfven waves, (3) study current-driven electrostatic plasma instabilities, and (4) generate substantial amounts of power or propulsion through the MHD interaction. A large balloon (a diameter of about 30 m) will be deployed with a conducting surface above the space shuttle at a distance of about 10 km. For a generally eastward directed orbit at an altitude near 400 km, the balloon, connected to the shuttle by a conducting wire, will be positive with respect to the shuttle, enabling it to collect electrons. At the same time, the shuttle will collect positive ions and, upon command, emit an electron beam to vary current flow in the system.

  3. Concentrated solar power generation using solar receivers

    Science.gov (United States)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  4. Experimental study of power generation utilizing human excreta

    International Nuclear Information System (INIS)

    Mudasar, Roshaan; Kim, Man-Hoe

    2017-01-01

    Highlights: • Power generation from human excreta has been studied under ambient conditions. • Biogas increases with solid wastes and continuous feeding at mesophilic conditions. • Understand the potential of human excreta for domestic power generating systems. • 26.8 kW h power is generated using biogas of 0.35 m 3 /kg from waste of 35 kg. • Continuous feeding produces 0.7 m 3 /kg biogas and generates 60 kW h power. - Abstract: This study presents the energetic performance of the biomass to produce power for micro scale domestic usage. Human excreta are chosen as the subject of the study to investigate their potential to produce biogas under ambient conditions. Furthermore, the research examines the approaches by which biogas production can be enhanced and purified, leading to a high-power generation system. The experimental work focuses on the design and fabrication of a biogas digester with a reverse solar reflector, water scrubbing tower, and a dryer. Anaerobic digestion has been considered as the decomposition method using solar energy which is a heat providing source. Specifically, two types of experiments have been performed, namely, feces to water weight proportion and continuous feeding experiments, each involving a set of six samples. The effect of parameters such as pH, ambient temperature, and biogas upgradation reveals that volume of biogas and power generation can be best obtained when an 8:2 feces to water weight sample is employed and when the feeding is applied every fifth day. In addition, this study discusses the environmental prospects of the biogas technology, which is achieved by using the water purification method to improve the methane percentage to 85% and remove undesired gases. The motivation behind this work is to understand the potential of human excreta for the development of domestic power generating systems. The results obtained reveal that 0.35 m 3 /kg of biogas is produced with 8:2 weight proportion sample, which

  5. The third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1987-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached of are about to step into the third generation phase of development. The paper concludes that to achieve the objective of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry. (author)

  6. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su

    1997-12-01

    The major contents in this study are as follows : - long-term forecast to the year of 2040 is provided for nuclear electricity generating capacity by means of logistic curve fitting method. - the role of nuclear power in a national economy is analyzed in terms of environmental regulation. To do so, energy-economy linked model is developed. By using this model, the benefits from the introduction of nuclear power in Korea are estimated. Study on inter-industry economic activity for nuclear industry is carried out by means of an input-output analysis. Nuclear industry is examined in terms of inducement effect of production, of value-added, and of import. - economic analysis of nuclear power generation is performed especially taking into consideration wide variations of foreign currency exchange rate. The result is expressed in levelized generating costs. (author). 27 refs., 24 tabs., 44 figs

  7. Nuclear power generating costs

    International Nuclear Information System (INIS)

    Srinivasan, M.R.; Kati, S.L.; Raman, R.; Nanjundeswaran, K.; Nadkarny, G.V.; Verma, R.S.; Mahadeva Rao, K.V.

    1983-01-01

    Indian experience pertaining to investment and generation costs of nuclear power stations is reviewed. The causes of investment cost increases are analysed and the increases are apportioned to escalation, design improvements and safety related adders. The paper brings out the fact that PHWR investment costs in India compare favourably with those experienced in developed countries in spite of the fact that the programme and the unit size are relatively much smaller in India. It brings out that in India at current prices a nuclear power station located over 800 km from coal reserves and operating at 75% capacity factor is competitive with thermal power at 60% capacity factor. (author)

  8. Fission Surface Power System Initial Concept Definition

    Science.gov (United States)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk

  9. Costs of electric power generation in different types of power plants

    International Nuclear Information System (INIS)

    Weible, H.

    1977-01-01

    In the framework of our study 'energy - environment - industry' we need among other things the costs of electric power generation. We register their structure in a sub-model. Recently there was disagreement on effective costs of electric power generation particularly when comparing fossil-fuel power plants to nuclear power plants. For this reason, expertises on the costs of electric power generation in nuclear and fossil-fuel power plants were ordered with the Energy-Economic Institute in Cologne as well as with the Battelle Institute in Frankfurt. In the framwork of our paper on the system 'energy - environment - industry' we do not want to give new data potentially required for our task, before the expertises will be finished. Therefore the results given in part III of this lecture are only meant as an example in order to show possible consequences of the cost programs set up, depending on initial data whose general recognition is to be aimed at. Furthermore, the theoretical approach to investment calculation has to win general recognition when recording calculation methods computer-compatibly. Any new formulations discussed in industrial management have not been taken into account. (orig.) [de

  10. Working environment in power generation

    International Nuclear Information System (INIS)

    1989-05-01

    The proceedings contain 21 papers, of which 7 are devoted to nuclear power generation. They are concerned with the working environment in the controlled areas of the Bohunice nuclear power plant, the unsuitable design of the control rooms with respect to reliability and safety of operation of the nuclear power plant, optimization of the man-working conditions relation, operation of transport facilities, refuelling and fuel element inspection, the human factor and the probabilityy assessment of the nuclear power plant operating safety, a proposal to establish a universal ergonometric programme for the electric power distribution system, and physical factors in the ergonometric analysis of the working environment. (J.B.)

  11. Present status and problems of nuclear power generation

    International Nuclear Information System (INIS)

    Harada, Hiroshi.

    1984-01-01

    The nuclear power generation in Japan began in 1963 with the successful power generation in the JPDR of the Japan Atomic Energy Research Institute, and since then, more than 20 years have elapsed. The Japan Atomic Power Co. started the operation of an imported Calder Hall type gas-cooled reactor with 166,000 kWe output in Tokai Nuclear Power Station in July, 1966. In 1983, the quantity of nuclear power generation was 113.1 billion kWh, which was equivalent to 21.4 % of the total power generation in Japan. As of April 1, 1984, 25 nuclear power plants with 18.28 million kW output were in operation, 12 plants of 11.8 million kW were under construction, and 7 plants of 6.05 million kW were in preparation phase. Besides, the ATR ''Fugen'' with 165,000 kW output has been in operation, and the FBR ''Monju'' with 280,000 kW output is under construction. The capacity ratio of Japanese nuclear power stations attained 71.5 % in 1983. According to the ''Long term energy demand and supply outlook'' revised in November, 1983, the nuclear power generation in 2000 will be about 62 million kW to cater for about 16 % of primary energy supply. The problems are the improvement of economy, the establishment of independent nuclear fuel cycle, the decommissioning of nuclear reactors and so on. (Kako, I.)

  12. Certification of power generation from sewage gas

    International Nuclear Information System (INIS)

    Ronchetti, C.

    2004-01-01

    This article discusses the certification of power generated from sewage gas in packaged co-generation units in Switzerland. Since 2003, such electricity can be sold as 'green power' to consumers, who pay an additional charge for this ecologically generated power. Since the eco-balance of this electricity generated in wastewater treatment plant is considered as being excellent, the prestigious 'Naturemade Star' label has been awarded to it. This label sets most stringent requirements. The Canius wastewater treatment plant in the 'Lenzerheide' in eastern Switzerland is taken as an example to illustrate the procedure that has to be gone through to receive certification. This certification is carried out by independent auditors and guarantees that the 'green' electricity offered by the utility meets the high ecological criteria set by the label

  13. Power import or domestic power generation using gas?

    International Nuclear Information System (INIS)

    Saettler, M.; Bohnenschaefer, W.; Schlesinger, M.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) presents expert opinion on the question of how Switzerland could meet its demands for power in the future. The results of the analysis of two options - the import of electrical power or its generation using natural-gas-fired power stations - made in the light of gas market liberalisation are presented. These include the assessment of the use of 'GuD' (combined gas and steam-turbine) power stations in the 100 MW e l to 400 MW e l class regarding their cost, their emissions and primary energy consumption. The authors discuss the assessments from the political and economic points of view. An appendix supplies characteristic data for 'GuD' power stations and an example of a model calculation for a 400 MW e l 'GuD' power station

  14. Electrical power systems for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T.A.; Huval, S.J. [Stewart & Stevenson Services, Inc., Houston, TX (United States)

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  15. A thermoelectric generator using loop heat pipe and design match for maximum-power generation

    KAUST Repository

    Huang, Bin-Juine

    2015-09-05

    The present study focuses on the thermoelectric generator (TEG) using loop heat pipe (LHP) and design match for maximum-power generation. The TEG uses loop heat pipe, a passive cooling device, to dissipate heat without consuming power and free of noise. The experiments for a TEG with 4W rated power show that the LHP performs very well with overall thermal resistance 0.35 K W-1, from the cold side of TEG module to the ambient. The LHP is able to dissipate heat up to 110W and is maintenance free. The TEG design match for maximum-power generation, called “near maximum-power point operation (nMPPO)”, is studied to eliminate the MPPT (maximum-power point tracking controller). nMPPO is simply a system design which properly matches the output voltage of TEG with the battery. It is experimentally shown that TEG using design match for maximum-power generation (nMPPO) performs better than TEG with MPPT.

  16. Economic analysis of nuclear power generation

    International Nuclear Information System (INIS)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su; Lim, Chae Young

    1998-12-01

    An energy security index was developed to measure how the introduction of nuclear power generation improved the national security of energy supply in Korea. Using the developed index, a quantitative effort was made to analyze the relationship between the nuclear power generation and the national energy security. Environmental impacts were evaluated and a simplified external cost of a specific coal-fired power plant in Korea was estimated using the QUERI program, which was developed by IAEA. In doing so, efforts were made to quantify the health impacts such as mortality, morbidity, and respiratory hospital admissions due to particulates, SOx, and Nox. The effects of CO 2 emission regulation on the national economy were evaluated. In doing so, the introduction of carbon tax was assumed. Several scenarios were established about the share of nuclear power generation and an effort was made to see how much contribution nuclear energy could make to lessen the burden of the regulation on the national economy. This study re-evaluated the methods for estimating and distributing decommissioning cost of nuclear power plant over lifetime. It was resulted out that the annual decommissioning deposit and consequently, the annual decommissioning cost could vary significantly depending on estimating and distributing methods. (author). 24 refs., 44 tabs., 9 figs

  17. Optimal Output of Distributed Generation Based On Complex Power Increment

    Science.gov (United States)

    Wu, D.; Bao, H.

    2017-12-01

    In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.

  18. Market power and technological bias in electricity generation markets

    International Nuclear Information System (INIS)

    Twomey, Paul; Neuhoff, Karsten

    2005-01-01

    It is difficult or very costly to avoid all market power in electricity markets. A recurring response is that a limited amount of market power is accepted with the justification that it is necessary to produce revenues to cover some of the fixed costs. It is assumed that all market participants benefit equally from the increased prices. However, this assumption is not satisfied if different production technologies are used. We assess the case of a generation mix of conventional generation and intermittent generation with exogenously varying production levels. If all output is sold in the spot market, then intermittent generation benefits less from market power than conventional generation. If forward contracts or option contracts are signed, then market power might be reduced but the bias against returns to intermittent generators persists. Thus allowing some level of market power as a means of encouraging investment in new generation may result in a bias against intermittent technologies or increase the costs of strategic deployment to achieve renewable quotas. (Author)

  19. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  20. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Perez-Navarro, A.; Alfonso, D.; Alvarez, C.; Ibanez, F.; Sanchez, C.; Segura, I.

    2010-01-01

    Massive implementation of renewable energy resources is a key element to reduce CO 2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  1. Super power generators

    International Nuclear Information System (INIS)

    Martin, T.H.; Johnson, D.L.; McDaniel, D.H.

    1977-01-01

    PROTO II, a super power generator, is presently undergoing testing at Sandia Laboratories. It has operated with an 80 ns, 50 ns, 35 ns, and 20 ns positive output pulse high voltage mode and achieved total current rates of rise of 4 x 10 14 A/s. The two sided disk accelerator concept using two diodes has achieved voltages of 1.5 MV and currents of 4.5 MA providing a power exceeding 6 TW in the electron beam and 8 TW in the transmission lines. A new test bed named MITE (Magnetically Insulated Transmission Experiment) was designed and is now being tested. The pulse forming lines are back to back short pulse Blumleins which use untriggered water switching. Output data showing a ten ns half width power pulse peaking above one terrawatt were obtained. MITE is a module being investigated for use in the Electron Beam Fusion Accelerator and will be used to test the effects of short pulses propagating down vacuum transmission lines

  2. Life cycle analysis of advanced nuclear power generation technologies

    International Nuclear Information System (INIS)

    Uchiyama, Yoji; Yokoyama, Hayaichi

    1996-01-01

    In this research, as for light water reactors and fast breeder reactors, for the object of all the processes from the mining, transport and refining of fuel, electric power generation to the treatment and disposal of waste, the amount of energy input and the quantity of CO 2 emission over the life cycle were analyzed, and regarding the influence that the technical progress of nuclear power generation exerted to environment, the effect of improvement was elucidated. Attention has been paid to nuclear power generation as its CO 2 emission is least, and the effect of global warming is smallest. In order to reduce the quantity of radioactive waste generation in LWRs and the cost of fuel cycle, and to extend the operation cycle, the technical development for heightening fuel burnup is in progress. The process of investigation of the new technologies of nuclear power generation taken up in this research is described. The analysis of the energy balance of various power generation methods is discussed. In the case of pluthermal process, the improvement of energy balance ratio is dependent on uranium enrichment technology. Nuclear power generation requires much materials and energy for the construction, and emits CO 2 indirectly. The CO 2 unit emission based on the analysis of energy balance was determined for the new technologies of nuclear power generation, and the results are shown. (K.I.)

  3. CHP in Switzerland from 1990 to 1998. Thermal power generation including combined heat and power

    International Nuclear Information System (INIS)

    Kaufmann, U.

    1999-01-01

    The results of a study on thermal power generation in Switzerland show that combined heat and power (CHP) systems have grown rapidly. Statistics are presented on the development of CHP-based power and also on thermal power stations without waste heat usage. Figures are given for gas and steam turbine installations, combined gas and steam turbine stations and motor-driven CHP units. Power production is categorised, separating small and large (over 1 Megawatt electrical) power generation facilities. On-site, distributed power generation at consumers' premises and the geographical distribution of plant is described

  4. Brushless power generating system having reduced conducted emissions in output power

    International Nuclear Information System (INIS)

    Walton, D.N.; Dolan, C.F.; Shah, M.J.

    1991-01-01

    This patent describes a brushless electrical power generating system. It comprises an exciter for producing alternating current from an exciter rotor; a rectifier mounted for rotation with the rotor for producing a rectified control current from the alternating current; a common mode inductor, coupled to the rectifier, for cancelling common mode noise components within the rectified control current; and a main generator, having a rotating field winding mounted on a main generator rotor excited by the control current and producing an alternating current power output from a stator

  5. Assessment of Environmental External Effects in Power Generation

    DEFF Research Database (Denmark)

    Meyer, Henrik Jacob; Morthorst, Poul Erik; Ibsen, Liselotte Schleisner

    1996-01-01

    to the production of electricity based on a coal fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas.In the report the individual externalities from...

  6. FY 2000 report on the demonstrative research for photovoltaic power generation system in Thailand. Demonstrative study on photovoltaic power generation grid-connected system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    In relation to the demonstrative study of the photovoltaic power system that is planned in Libong island, Thailand, the FY 2000 results were reported. In this R and D, construction/demonstrative operation were planned for a photovoltaic power station with a generation output of 100kW, photovoltaic power system in school facilities, and system for transmitting/distributing power to houses by connecting the power station and power system. In this fiscal year, the field survey was conducted together with the alteration from Yao Yai island, for which the demonstrative study was planned at first, to Libong island. The electric equipment was selected which met the requests from Thailand and the results of the field survey, and the basic design of the photovoltaic power generation/transmission/distribution system was completed. Based on this, the design/manufacture of photovoltaic power generation modules, power control equipment, measuring equipment, etc. were made. At the construction site of photovoltaic power station, construction work such as land formation was conducted. Further, Thai engineers who visited Japan did the following: discussions about power system, presence at test/inspection of photovoltaic power generation modules, visits to photovoltaic power stations, wind power stations, etc. (NEDO)

  7. Evaluation of Wear on Macro-Surface Textures Generated by ns Fiber Laser

    Science.gov (United States)

    Harish, V.; Soundarapandian, S.; Vijayaraghavan, L.; Bharatish, A.

    2018-03-01

    The demand for improved performance and long term reliability of mechanical systems dictate the use of advanced materials and surface engineering techniques. A small change in the surface topography can lead to substantial improvements in the tribological behaviour of the contact surfaces. One way of altering the surface topography is by surface texturing by introducing dimples or channels on the surfaces. Surface texturing is already a successful technique which finds a wide area of applications ranging from heavy industries to small scale devices. This paper reports the effect of macro texture shapes generated using a nanosecond fiber laser on wear of high carbon chromium steel used in large size bearings having rolling contacts. Circular and square shaped dimples were generated on the surface to assess the effect of sliding velocities on friction coefficient. Graphite was used as solid lubricant to minimise the effect of wear on textured surfaces. The laser parameters such as power, scan speed and passes were optimised to obtain macro circular and square dimples which was characterised using a laser confocal microscope. The friction coefficients of the circular and square dimples were observed to lie in the same range due to minimum wear on the surface. On the contrary, at medium and higher sliding velocities, square dimples exhibited lower friction coefficient values compared to circular dimples. The morphology of textured specimen was characterised using Scanning Electron Microscope.

  8. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    Science.gov (United States)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  9. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

    International Nuclear Information System (INIS)

    Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

    2017-01-01

    This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method. (paper)

  10. Optical generation of radio-frequency power

    International Nuclear Information System (INIS)

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100's of mW's at millimeter wave frequencies with a theoretical ''wall-plug'' efficiency approaching 34%

  11. An approach to the conversion of the power generated by an offshore wind power farm connected into seawave power generator

    Energy Technology Data Exchange (ETDEWEB)

    Franzitta, Vicenzo; Messineo, Antonio; Trapanese, Marco

    2011-07-01

    The development of renewable energy systems has been undergoing for the past decades but sea wave's energy resource has been under-utilized. This under-utilization has several reasons: the energy concentration is low in sea waves, extraction of this energy requires leading edge technologies and conversion of the energy into electrical energy is difficult. This study compares two different methods to connect the sea waves' generator to the network and to the offshore wind power farm. The first method consists in a decentralized approach: each generator is connected to the grid through an AC converter. The second method is a partially centralized approach: a rectifier is connected to each generator, all of the generators are then connected together to a common DC bus and power is then converted in AC to be connected to the grid. This study has shown that the partially centralized approach is more reliable and efficient than the decentralized approach.

  12. Is there a tomorrow for nuclear power generation?

    International Nuclear Information System (INIS)

    Kanoh, T.

    1996-01-01

    Critical comments are publicly made about nuclear power generation and the nuclear fuel cycle. This criticism is directed at three areas of concern: accidents, radioactive waste disposal, and proliferation of nuclear weapons. In addition, there are other comments that ask 'Why are there countries pushing for nuclear power generation when other countries around the world are giving it up?' and 'Will further efforts to develop new energy sources and energy conservation not eliminate the nneed for nuclear power generation?' Such critical comments appear in some media more often than those expressing other opinions. Is there really no tomorrow for nuclear power? This question is studied below. (author)

  13. X-ray evaluation of residual stress distributions within surface machined layer generated by surface machining and sequential welding

    International Nuclear Information System (INIS)

    Taniguchi, Yuu; Okano, Shigetaka; Mochizuki, Masahito

    2017-01-01

    The excessive tensile residual stress generated by welding after surface machining may be an important factor to cause stress corrosion cracking (SCC) in nuclear power plants. Therefore we need to understand and control the residual stress distribution appropriately. In this study, residual stress distributions within surface machined layer generated by surface machining and sequential welding were evaluated by X-ray diffraction method. Depth directional distributions were also investigated by electrolytic polishing. In addition, to consider the effect of work hardened layer on the residual stress distributions, we also measured full width at half maximum (FWHM) obtained from X-ray diffraction. Testing material was a low-carbon austenitic stainless steel type SUS316L. Test specimens were prepared by surface machining with different cutting conditions. Then, bead-on-plate welding under the same welding condition was carried out on the test specimens with different surface machined layer. As a result, the tensile residual stress generated by surface machining increased with increasing cutting speed and showed nearly uniform distributions on the surface. Furthermore, the tensile residual stress drastically decreased with increasing measurement depth within surface machined layer. Then, the residual stress approached 0 MPa after the compressive value showed. FWHM also decreased drastically with increasing measurement depth and almost constant value from a certain depth, which was almost equal regardless of the machining condition, within surface machined layer in all specimens. After welding, the transverse distribution of the longitudinal residual stress varied in the area apart from the weld center according to machining conditions and had a maximum value in heat affected zone. The magnitude of the maximum residual stress was almost equal regardless of the machining condition and decreased with increasing measurement depth within surface machined layer. Finally, the

  14. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  15. Anode modification with formic acid: A simple and effective method to improve the power generation of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weifeng; Cheng, Shaoan, E-mail: shaoancheng@zju.edu.cn; Guo, Jian

    2014-11-30

    Highlights: • Carbon cloth anode is modified with formic acid by a simple and reliable approach. • The modification significantly enhances the power output of microbial fuel cells. • The modified anode surface favors the bacterial attachment and growth on anode. • The electron transfer rate of anode is promoted. - Abstract: The physicochemical properties of anode material directly affect the anodic biofilm formation and electron transfer, thus are critical for the power generation of microbial fuel cells (MFCs). In this work, carbon cloth anode was modified with formic acid to enhance the power production of MFCs. Formic acid modification of anode increased the maximum power density of a single-chamber air-cathode MFC by 38.1% (from 611.5 ± 6 mW/m{sup 2} to 877.9 ± 5 mW/m{sup 2}). The modification generated a cleaner electrode surface and a reduced content of oxygen and nitrogen groups on the anode. The surface changes facilitated bacterial growth on the anode and resulted in an optimized microbial community. Thus, the electron transfer rate on the modified anodes was enhanced remarkably, contributing to a higher power output of MFCs. Anode modification with formic acid could be an effective and simple method for improving the power generation of MFCs. The modification method holds a huge potential for large scale applications and is valuable for the scale-up and commercialization of microbial fuel cells.

  16. Pratt and Whitney ESCORT derivative for mars surface power

    International Nuclear Information System (INIS)

    Feller, Gerald J.; Joyner, Russell

    1999-01-01

    The purpose of this paper is to address the applicability of a common reactor system design from the Pratt and Whitney ESCORT nuclear thermal rocket engine concept to support current NASA mars surface-based power requirements. The ESCORT is a bimodal engine capable of supporting a wide range of propulsive thermal and vehicle electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In addition to an expander cycle propulsive mode, the ESCORT is capable of operating in an electrical power mode. In this mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. Recent Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential mars transfer missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. Additionally, these requirements detailed a surface power system capable of providing approximately 160 kW of electrical energy over an approximate 10 year period within a given weight and volume envelope. Current NASA studies use a SP-100 reactor (0.8 MT) and a NERVA derivative (1.6 MT) as baseline systems. A mobile power cart of approximate dimensions 1.7 mx4.5 mx4.4 m has been conceptualized to transport the reactor power system on the Mars Surface. The 63.25 cm diameter and 80.25 cm height of the ESCORT and its 1.3 MT of weight fit well within the current weight and volume target range of the NASA DRM requirements. The modifications required to the ESCORT reactor system to support this upgraded electrical power requirements along with operation in the Martian atmospheric conditions are addressed in this paper. Sufficient excess reactivity and burnup capability

  17. Set up for simultaneous water desalination and power generation

    International Nuclear Information System (INIS)

    Hasan, S.W.; Mookhi, M.B.; Sadiq, M.A.; Hasan, Z.; Zaidi, S.I.; Shah, W.A.

    2010-01-01

    Instead of following the conventional fuel oriented power generation methods and dissipating its heat into environment, we evaporate saline water into steam and use its energy to generate power. Using this scheme would make sea water usable in power generation which at the moment is only being used for cooling purposes in the power plants. The steam used for generating electricity is eventually collected, condensed and used for potable purposes. The proposed scheme may be seen as Steam Power Generation with additional feature of desalination. We set up an experimental test bed in order to calculate the electric power available using this scheme. To ensure safety for human consumption, we also perform chemical tests on the desalinated water to see whether it is fit to be used for drinking and agricultural purposes. Our conclusions are based on actual experiments and laboratory tests; procedures outlined here may be used at larger scale for more in-depth analyses. We also highlight future extensions and modifications in this work. (author)

  18. Accelerator magnet power supply using storage generator

    International Nuclear Information System (INIS)

    Karady, G.; Thiessen, H.A.

    1987-01-01

    Recently, a study investigated the feasibility of a large, 60 GeV accelerator. This paper presents the conceptual design of the magnet power supply (PS() and energy storage system. The main ring magnets are supplied by six, high-voltage and two, low-voltage power supplies. These power supplies drive a trapezoidal shaped current wave through the magnets. The peak current is 10 kA and the repetition frequency is 3.3 Hz. During the acceleration period the current is increased from 1040 A to 10,000 A within 50 msec which requires a loop voltage of 120 kV and a peak power of 1250 MW. During the reset period, the PS operates as an inverter with a peak power of -1250 MW. The large energy fluctuation necessitates the use of a storage generator. Because of the relatively high operation frequency, this generator operates in a transient mode which significantly increases the rotor current and losses. The storage generator is directly driven by a variable speed drive, which draws a practically constant power of 17 MW from the ac supply network and eliminates the pulse loading. For the reduction of dc ripple, the power supplies operate in a 24 pulse mode

  19. Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power

    Directory of Open Access Journals (Sweden)

    Fang-Fang Li

    2015-07-01

    Full Text Available To maximize annual power generation and to improve firm power are important but competing goals for hydropower stations. The firm power output is decisive for the installed capacity in design, and represents the reliability of the power generation when the power plant is put into operation. To improve the firm power, the whole generation process needs to be as stable as possible, while the maximization of power generation requires a rapid rise of the water level at the beginning of the storage period. Taking the minimal power output as the firm power, both the total amount and the reliability of the hydropower generation are considered simultaneously in this study. A multi-objective model to improve the comprehensive benefits of hydropower stations are established, which is optimized by Non-dominated Sorting Genetic Algorithm-II (NSGA-II. The Three Gorges Cascade Hydropower System (TGCHS is taken as the study case, and the Pareto Fronts in different search spaces are obtained. The results not only prove the effectiveness of the proposed method, but also provide operational references for the TGCHS, indicating that there is room of improvement for both the annual power generation and the firm power.

  20. Power generation and power system development for the period after 2000

    International Nuclear Information System (INIS)

    Fushtikj, Vangel

    1998-01-01

    The paper presents an overview of the power generation and power system development worldwide in terms of forecast power and energy production. The conditions of power system ability to meet the changes, caused by the new technologies development and regulatory policy, in the next intensive energy period are also considered. Identified key issues are used to emphasize the guided concepts and principles in power system evolution. (Author)

  1. Capacity expansion model of wind power generation based on ELCC

    Science.gov (United States)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  2. Free piston linear generator for low grid power generation

    Directory of Open Access Journals (Sweden)

    Abdalla Izzeldin

    2017-01-01

    Full Text Available Generating power is of great importance nowadays across the world. However, recently, the world became aware of the climatic changes due to the greenhouse effect caused by CO2 emissions and began seeking solutions to reduce the negative impact on the environment. Besides, the exhaustion of fossil fuels and their environmental impact, make it is crucial to develop clean energy sources, and efforts are focused on developing and improving the efficiency of all energy consuming systems. The tubular permanent magnet linear generators (TPMLGs are the best candidate for energy converters. Despite being suffering problem of attraction force between permanent magnets and stator teeth, to eliminate such attraction force, ironless-stator could be considered. Thus, they could waive the presence of any magnetic attraction between the moving and stator part. This paper presents the design and analysis of ironless -cored TPMLG for low grid power generation. The main advantages of this generator are the low cogging force and high efficiency. Therefore, the magnetic field computation of the proposed generator has been performed by applying a magnetic vector potential and utilizing a 2-D finite element analysis (FEA. Moreover, the experimental results for the current profile, pressure profile and velocity profile have been presented.

  3. Environmental codes of practice for steam electric power generation

    International Nuclear Information System (INIS)

    1985-03-01

    The Design Phase Code is one of a series of documents being developed for the steam electric power generation industry. This industry includes fossil-fuelled stations (gas, oil and coal-fired boilers), and nuclear-powered stations (CANDU heavy water reactors). In this document, environmental concerns associated with water-related and solid waste activities of steam electric plants are discussed. Design recommendations are presented that will minimize the detrimental environmental effects of once-through cooling water systems, of wastewaters discharged to surface waters and groundwaters, and of solid waste disposal sites. Recommendations are also presented for the design of water-related monitoring systems and programs. Cost estimates associated with the implementation of these recommendations are included. These technical guides for new or modified steam electric stations are the result to consultation with a federal-provincial-industry task force

  4. Geothermal electric power generation in Iceland for the proposed Iceland/United Kingdom HVDC power link

    International Nuclear Information System (INIS)

    Hammons, T.J.; Palmason, G.; Thorhallsson, S.

    1991-01-01

    The paper reviews geothermal electric power potential in Iceland which could economically be developed to supplement hydro power for the proposed HVDC Power Link to the United Kingdom, and power intensive industries in Iceland, which are envisaged for development at this time. Technically harnessable energy for electricity generation taking account of geothermal resources down to an assumed base depth, temperature distribution in the crust, probable geothermal recovery factor, and accessibility of the field, has been assessed. Nineteen known high-temperature fields and 9 probable fields have been identified. Technically harnessable geo-heat for various areas is indicated. Data on high temperature fields suitable for geothermal electric power generation, and on harnessable energy for electric power generation within volcanic zones, is stated, and overall assessments are made. The paper then reviews how the potential might be developed, discussing preference of possible sites, and cost of the developments at todays prices. Cost of geothermal electric power generation with comparative costs for hydro generation are given. Possible transmission system developments to feed the power to the proposed HVDC Link converter stations are also discussed

  5. Synthesizing modeling of power generation and power limits in energy systems

    International Nuclear Information System (INIS)

    Sieniutycz, Stanislaw

    2015-01-01

    Applying the common mathematical procedure of thermodynamic optimization the paper offers a synthesizing or generalizing modeling of power production in various energy generators, such as thermal, solar and electrochemical engines (fuel cells). Static and dynamical power systems are investigated. Dynamical models take into account the gradual downgrading of a resource, caused by power delivery. Analytical modeling includes conversion efficiencies expressed in terms of driving fluxes. Products of efficiencies and driving fluxes determine the power yield and power maxima. While optimization of static systems requires using of differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. In reacting mixtures balances of mass and energy serve to derive power yield in terms of an active part of chemical affinity. Power maximization approach is also applied to fuel cells treated as flow engines driven by heat flux and fluxes of chemical reagents. The results of power maxima provide limiting indicators for thermal, solar and SOFC generators. They are more exact than classical reversible limits of energy transformation. - Highlights: • Systematic evaluation of power limits by optimization. • Common thermodynamic methodology for engine systems. • Original, in-depth study of power maxima. • Inclusion of fuel cells to a class of thermodynamic power systems

  6. Power generation from solid fuels

    CERN Document Server

    Spliethoff, Hartmut

    2010-01-01

    Power Generation from Solid Fuels introduces the different technologies to produce heat and power from solid fossil (hard coal, brown coal) and renewable (biomass, waste) fuels, such as combustion and gasification, steam power plants and combined cycles etc. The book discusses technologies with regard to their efficiency, emissions, operational behavior, residues and costs. Besides proven state of the art processes, the focus is on the potential of new technologies currently under development or demonstration. The main motivation of the book is to explain the technical possibilities for reduci

  7. Flux compression generators as plasma compression power sources

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; Thomson, D.B.; Garn, W.B.

    1979-01-01

    A survey is made of applications where explosive-driven magnetic flux compression generators have been or can be used to directly power devices that produce dense plasmas. Representative examples are discussed that are specific to the theta pinch, the plasma gun, the dense plasma focus and the Z pinch. These examples are used to illustrate the high energy and power capabilities of explosive generators. An application employing a rocket-borne, generator-powered plasma gun emphasizes the size and weight potential of flux compression power supplies. Recent results from a local effort to drive a dense plasma focus are provided. Imploding liners ae discussed in the context of both the theta and Z pinches

  8. Gas-fired Power Generation in India: Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    India's fast growing economy needs to add 100,000 MW power generating capacity between 2002-2012. Given limitations to the use of coal in terms of environmental considerations, quality and supply constraints, gas is expected to play an increasingly important role in India's power sector. This report briefs NMC Delegates on the potential for gas-fired power generation in India and describes the challenges India faces to translate the potential for gas-fired power generation into reality.

  9. Power generation planning: a survey from monopoly to competition

    International Nuclear Information System (INIS)

    Kagiannas, A.G.; Askounis, D.T.; Psarras, J.

    2004-01-01

    During the last two decades electric power generation industry in many countries and regions around the world has undergone a significant transformation from being a centrally coordinated monopoly to a deregulated liberalized market. In the majority of those countries, competition has been introduced through the adoption of a competitive wholesale electricity spot market. Short-term efficiency of power generators under competitive environment has attracted considerable effort from researchers, while long-term investment performance has received less attention. In this context, the paper aims to serve as a comprehensive review basis for generation planning methods applied in a competitive electric power generation market. The traditional modeling techniques developed for generation expansion planning under monopoly are initially presented in an effort to assess the evolution of generation planning according to the evolution of the structure of the electric power market. (author)

  10. Wind power generation

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. The data are arranged according to the size of the turbines. For each wind turbine the name of the site and type of turbine is given as well as the production during the last 3 months in 1998, and the total production in 1997 and 1998. Data on the operation is given

  11. A dynamic isotope power system portable generator for the Moon or Mars

    International Nuclear Information System (INIS)

    Johnson, R.A.; Hunt, M.E.; Mason, L.S.

    1991-01-01

    The Dynamic Isotope Power Systems (DIPS) Demonstration Program is focused on a standardized 2.5 kWe portable generator for multipole uses on the Lunar or Martian surface. A variety of potential remote or mobile applications has been identified by the National Aeronautics and Space Administration (NASA). These applications include remote power to science packages, surface rovers for both short and extended duration missions, and back up to central base power. In this paper, reviews conducted on alternative power sources for these applications are described. These include the comparison of DIPS to regenerative fuel cells (RFCs) related to such things as mass, complexity, and life cycle costs, and concluded that each power source has application. Recent work is presented refining the 2.5 kWe design to assure compatibility with the Martian environment while imposing only a minor mass penalty on Lunar operations. This was accomplished by limiting temperatures, except in the heat source unit (HSU), to the nonrefractory materials regime and protecting the necessary refractories in the HSU from the environment. Design changes to the HSU are described. Finally, work related to recent concerns regarding astronaut radiation doses is described. This work includes the bases for the calculations to determine the necessary shielding or operational limitations

  12. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  13. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    . As an example, the latest published grid codes stress the ability of distributed generators, especially wind turbines, to stay connected during short grid disturbances and in addition to provide active/reactive power control at the point of common coupling. Based on the above facts, the need for improving...... reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power and an enhanced contribution of distributed power generation systems to power system stability...... and adding more features to the control of distributed power generation systems (DPGS) arises. As a consequence, this thesis focuses on grid monitoring methods and possible approaches in control in order to obtain a more reliable and  exible power generation system during normal and faulty grid conditions...

  14. Wind power generation and dispatch in competitive power markets

    Science.gov (United States)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  15. Gas-fired electric power generating technologies

    International Nuclear Information System (INIS)

    1994-09-01

    The workshop that was held in Madrid 25-27 May 1994 included participation by experts from 16 countries. They represented such diverse fields and disciplines as technology, governmental regulation, economics, and environment. Thus, the participants provided an excellent cross section of key areas and a diversity of viewpoints. At the workshop, a broad range of topics regarding gas-fired electric power generation was discussed. These included political, regulatory and financial issues as well as more specific technical questions regarding the environment, energy efficiency, advanced generation technologies and the status of competitive developments. Important technological advances in gas-based power and CHP technologies have already been achieved including higher energy efficiency and lower emissions, with further improvements expected in the near future. Advanced technology trends include: (a) The use of gas technology to reduce emissions from existing coal-fired power plants. (b) The wide-spread application of combined-cycle gas turbines in new power plants and the growing use of aero-derivative gas turbines in CHP applications. (c) Phosphoric acid fuel cells that are being introduced commercially. Their market penetration will grow over the next 10 years. The next generation of fuel cells (solid oxide and molten carbonate) is expected to enter the market around the year 2000. (EG)

  16. Economics of generating electricity from nuclear power

    International Nuclear Information System (INIS)

    Boadu, H.O.

    2001-01-01

    The paper reviews and compares experiences and projected future construction and electricity generation costs for nuclear and fossil fired power plants. On the basis of actual operating experience, nuclear power has been demonstrated to be economically competitive with other base load generation options, and international studies project that this economic competitiveness will be largely maintained in the future, over a range of conditions and in a number of countries. However, retaining and improving this competitive position requires concerted efforts to ensure that nuclear plants are constructed within schedule and budgets, and are operated reliably and efficiently. Relevant cost impacting factors is identified, and conclusions for successful nuclear power plant construction and operation are drawn. The desire to attain sustainable development with balanced resource use and control of the environmental and climate impacts of energy systems could lead to renewed interest in nuclear power as an energy source that does not emit greenhouse gases, thus contributing to a revival of the nuclear option. In this regard, mitigation of emissions from fossil-fuelled power plants could lead to restrictions of fossil fuel use and/or result in higher costs of fossil based generation, thus improving the economic competitiveness of nuclear power (au)

  17. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...

  18. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lim Chong C.

    2014-07-01

    Full Text Available Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material for power generation. Besides, the concept of portability will enable different power source like solar, wasted heat from air conditioner, refrigerator, stove etc, i.e. to create temperature different on thermoelectric material for power generation. Furthermore, thermoelectric will generate direct current which is used by all the gadgets like Smartphone, tablet, laptop etc. The portable concept of renewable energy will encourage the direct usage of renewable energy for portable gadgets. The working principle and design of portable thermoelectric power generator coupled with phase change material is presented in this paper.

  19. Examples of grid generation with implicitly specified surfaces using GridPro (TM)/az3000. 1: Filleted multi-tube configurations

    Science.gov (United States)

    Cheng, Zheming; Eiseman, Peter R.

    1995-01-01

    With examples, we illustrate how implicitly specified surfaces can be used for grid generation with GridPro/az3000. The particular examples address two questions: (1) How do you model intersecting tubes with fillets? and (2) How do you generate grids inside the intersected tubes? The implication is much more general. With the results in a forthcoming paper which develops an easy-to-follow procedure for implicit surface modeling, we provide a powerful means for rapid prototyping in grid generation.

  20. Economics of power generation from imported biomass

    International Nuclear Information System (INIS)

    Lako, P.; Van Rooijen, S.N.M.

    1998-02-01

    Attention is paid to the economics of import of biomass to the Netherlands, and subsequent utilisation for power generation, as a means to reduce dependence on (imported) fossil fuels and to reduce CO2 emission. Import of wood to the extent of 40 PJ or more from Baltic and South American states seems to be readily achievable. Import of biomass has various advantages, not only for the European Union (reduced CO2 emissions) but also for the countries of origin (employment creation). However, possible disadvantages or risks should be taken into account. With that in mind, import of biomass from Baltic states seems very interesting, although it should be noted that in some of those countries the alternative of fuel-switching to biomass seems to be more cost-effective than import of biomass from those countries. Given the expected increase in inland biomass consumption in the Baltic countries and the potential substantial future demand for biomass in other Western European countries it is expected that the biomass supply from Baltic countries will not be sufficient to fulfill the demand. An early focus on import from other countries seems advisable. Several power generation options are available with short to medium term potential and long term potential. The margin between costs of biomass-fuelled power and of coal fired power will be smaller, due to substantial improvements in power generating efficiency and reductions of investment costs of options for power generation from biomass, notably Biomass Gasification Combined Cycle. 18 refs

  1. Optimal generator bidding strategies for power and ancillary services

    Science.gov (United States)

    Morinec, Allen G.

    As the electric power industry transitions to a deregulated market, power transactions are made upon price rather than cost. Generator companies are interested in maximizing their profits rather than overall system efficiency. A method to equitably compensate generation providers for real power, and ancillary services such as reactive power and spinning reserve, will ensure a competitive market with an adequate number of suppliers. Optimizing the generation product mix during bidding is necessary to maximize a generator company's profits. The objective of this research work is to determine and formulate appropriate optimal bidding strategies for a generation company in both the energy and ancillary services markets. These strategies should incorporate the capability curves of their generators as constraints to define the optimal product mix and price offered in the day-ahead and real time spot markets. In order to achieve such a goal, a two-player model was composed to simulate market auctions for power generation. A dynamic game methodology was developed to identify Nash Equilibria and Mixed-Strategy Nash Equilibria solutions as optimal generation bidding strategies for two-player non-cooperative variable-sum matrix games with incomplete information. These games integrated the generation product mix of real power, reactive power, and spinning reserve with the generators's capability curves as constraints. The research includes simulations of market auctions, where strategies were tested for generators with different unit constraints, costs, types of competitors, strategies, and demand levels. Studies on the capability of large hydrogen cooled synchronous generators were utilized to derive useful equations that define the exact shape of the capability curve from the intersections of the arcs defined by the centers and radial vectors of the rotor, stator, and steady-state stability limits. The available reactive reserve and spinning reserve were calculated given a

  2. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.; Schavemaker, P.H.; Sluis, van der L.; Kling, W.L.; Kurowicka, D.; Cooke, R.M.

    2006-01-01

    Stochastic generation, i.e., electrical power production by an uncontrolled primary energy source, is expected to play an important role in future power systems. A new power system structure is created due to the large-scale implementation of this small-scale, distributed, non-dispatchable

  3. Fuel cell - An alternative for power and heat generating

    International Nuclear Information System (INIS)

    Zubcu, Victor; Ursescu, Gabriel; Zubcu, Dorina Silvia; Miler, Mihai Cristian

    2004-01-01

    One of the most promising energy generating technologies is the fuel cell (FC) because of its high efficiency and low emissions. There are even zero chemical emissions FC and cogeneration plants based on FC generate low heat emissions too. FC was invented 160 years ago but it was usually used only since 1960 in space missions. A FC farm tractor was tested 40 years ago. FC was again taken into account by power engineering since 1990 and it is now considered a credible alternative to power and heat generating. The thermal power engineers (and not only they) have two problems of cardinal importance for mankind to solve: - Energy saving (by increasing of energy generating efficiency) and - Environmental protection (by reducing chemical and heat emissions). The possibilities to use FC to generate power and heat are practically endless: on the earth, in the air and outer space, by and under water, in numberless areas of human activities. FC are now powering buses, cars, trains, boats, plains, scooters, highway road signs etc. There are already miniature FC for portable electronics. Homes, schools, hospitals, institutes, banks, police stations, etc are using FC to generate power and heat for their facilities. The methane gas produced by wastewater treatment plants and landfills is converted into electricity by using FC. Being less expensive than nuclear and solar source of energy, FC is now generally used in the space missions (in addition FC generates water). In this work an analysis of the possibilities to use FC especially for combined power and heat generating is presented. FC is favourite as energy source in space missions because it is less expensive than nuclear or solar sources. All major automobile companies have FC powered automobiles in testing stage. Mini FC for phone, laptop, and electronics are already on market. FC will be use to pagers, video recorders, small portable tools, miniature robots, special devices as hearing aid various devices, smoke detectors

  4. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Hashiba, Takashi [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO{sub 2} on generation, and awareness of energy environmental concerns. (author)

  5. The development situation of biomass gasification power generation in China

    International Nuclear Information System (INIS)

    Zhou, Zhaoqiu; Yin, Xiuli; Xu, Jie; Ma, Longlong

    2012-01-01

    This work presents the development situation of biomass gasification power generation technology in China and analyzes the difficulty and challenge in the development process. For China, a large agricultural country with abundant biomass resources, the utilization of biomass gasification power generation technology is of special importance, because it can contribute to the electricity structure diversification under the present coal-dominant electricity structure, ameliorate the environmental impact, provide energy to electricity-scarce regions and solve the problems facing agriculture. Up to now, China has developed biomass gasification power generation plants of different types and scales, including simple gas engine-based power generation systems with capacity from several kW to 3 MW and integrated gasification combined cycle systems with capacity of more than 5 MW. In recent years, due to the rising cost of biomass material, transportation, manpower, etc., the final cost of biomass power generation has increased greatly, resulting in a serious challenge in the Chinese electricity market even under present preferential policy for biomass power price. However, biomass gasification power generation technology is generally in accord with the characteristics of biomass resources in China, has relatively good adaptability and viability, and so has good prospect in China in the future. - Highlights: ► Biomass gasification power generation of 2 kW–2 MW has wide utilization in China. ► 5.5 MW biomass IGCC demonstration plant has maximum power efficiency of up to 30%. ► Biomass power generation is facing a serious challenge due to biomass cost increase.

  6. Wind energy-hydrogen storage hybrid power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wenjei Yang; Orhan Aydin [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    2001-07-01

    In this theoretical investigation, a hybrid power generation system utilizing wind energy and hydrogen storage is presented. Firstly, the available wind energy is determined, which is followed by evaluating the efficiency of the wind energy conversion system. A revised model of windmill is proposed from which wind power density and electric power output are determined. When the load demand is less than the output of the generation, the excess electric power is relayed to the electrolytic cell where it is used to electrolyse the de-ionized water. Hydrogen thus produced can be stored as hydrogen compressed gas or liquid. Once the hydrogen is stored in an appropriate high-pressure vessel, it can be used in a combustion engine, fuel cell, or burned in a water-cooled burner to produce a very high-quality steam for space heating, or to drive a turbine to generate electric power. It can also be combined with organic materials to produce synthetic fuels. The conclusion is that the system produces no harmful waste and depletes no resources. Note that this system also works well with a solar collector instead of a windmill. (author)

  7. Nuclear power generation as seen from construction aspect

    International Nuclear Information System (INIS)

    Osaki, Yorihiko

    1984-01-01

    The measures to vitalize atomic energy industry in low economical growth age are grasped from the viewpoint of heightening the quality of technology, and the improvement of the economical efficiency of nuclear power generation as seen from construction aspect is discussed. By 2000, the nuclear power generation in Japan will be increased by about four times to 62 million kW, and the proportion of nuclear power increases steadily. Recently, the nuclear power stations in Japan have been stably operated at high level, and the capacity ratio has exceeded 70 %. However, the power generation cost tends to rise, and it is feared that the economical advantage over thermal power will be lost. Recently, the construction cost of nuclear power plants has continued to rise, which causes the high cost of nuclear power. The reason of the high construction cost is in short too much quantity of materials and long construction period. As the proposal to reduce the construction cost, three stages of the rationalization are discussed, such as the rationalization of simulated earthquake for design and the improvement of reactor building design. The promotion of technical development is indispensable for the cost reduction. (Kako, I.)

  8. Rated power factor and excitation system of large turbine generator

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Watanabe, Takashi; Banjou, Minoru.

    1979-01-01

    As for the rated power factor of turbine generators for thermal power stations, 90% has been adopted since around 1960. On the other hand, power transmission system has entered 500 kV age, and 1,000 kV transmission is expected in the near future. As for the supply of reactive power from thermal and nuclear turbine generators, the necessity of supplying leading reactive power has rather increased. Now, the operating power factor of thermal and nuclear generators becomes 96 to 100% actually. As for the excess stability of turbine generators owing to the strengthening of transmission system and the adoption of super-high voltage, the demand of strict conditions can be dealt with by the adoption of super-fast response excitation system of thyristor shunt winding self exciting type. The adoption of the turbine generators with 90 to 95% power factor and the adoption of the thyristor shunt winding self exciting system were examined and evaluated. The rated power factor of generators, excitation system and economy of adopting these systems are explained. When the power factor of generators is increased from 0.9 to 0.95, about 6% of saving can be obtained in the installation cost. When the thyristor shunt winding self excitation is adopted, it is about 10% more economical than AC excitation. (Kako, I.)

  9. Modeling of Optimal Power Generation using Multiple Kites

    NARCIS (Netherlands)

    Williams, P.; Lansdorp, B.; Ockels, W.J.

    2008-01-01

    Kite systems have the potential to revolutionize energy generation. Large scale systems are envisioned that can fly autonomously in “power generation” cycles which drive a ground-based generator. In order for such systems to produce power efficiently, good models of the system are required. This

  10. Indices for planning wind power generation; Furyoku hatsuden no keikaku shihyo

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, H

    1997-11-25

    Outlined herein are status of wind power generation development, indices for planning development, and actual development results. At present, wind power generates electric power of 6,781MW worldwide. USA has been rapidly developing wind power generation since enactment of the PURPA law, and accounted for 25% of the world output in the past. However, the county is recently unseated from the world top position by Germany, which has been extensively developing wind power generation since enactment of the EFL law to reach 1,799MW. In Japan, electric power companies, local governments and public institutions have been positively introducing wind mills since 1992, when Tohoku Electric Power Co. built Ryuhi Wind Park, now generating a total power of 15MW by 64 units located at 33 different points. According to the surveys by NEDO on wind conditions, there are a number of districts suited for wind mills in Hokkaido, Tohoku, Okinawa and sea areas in Honshu. The indices described herein for planning wind power generation include rotor diameter, tower height, speed of rotation, weight, power to be generated, utilization and service factors, noise level, and investment and running costs. In the present state of the development of wind power generation in Japan, development points are 33, generated ouptut 15,097kW and units 64. 14 figs.

  11. Stochastic Modeling and Analysis of Power System with Renewable Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan

    Unlike traditional fossil-fuel based power generation, renewable generation such as wind power relies on uncontrollable prime sources such as wind speed. Wind speed varies stochastically, which to a large extent determines the stochastic behavior of power generation from wind farms...... that such a stochastic model can be used to simulate the effect of load management on the load duration curve. As CHP units are turned on and off by regulating power, CHP generation has discrete output and thus can be modeled by a transition matrix based discrete Markov chain. As the CHP generation has a strong diurnal...

  12. Wastes power generation introduction manual. Main edition; Haikibutsu hatsuden donyu manual. Honpen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A practical and specific working manual was prepared that satisfies the standards and criteria defined in the relevant law such as the Sanitation and Environment Ordinance No. 249, the guideline for generation of dioxins caused by refuse disposal, and that enables the reports evaluating the wastes quantitatively to be submitted to heads of the local governments when persons in charge of planning the introduction of wastes power generation at local governments discuss the wastes power generation systems. Taking general combustible wastes and sewage sludge treatments as the object, this paper details from the economic performance to size of wastes treatment at the priority limit for the power generation facility introduction. The subject power generation systems include the following: the stoker furnace/separation type ash melting furnace power generation system, the fluidized bed/separation type ash melting furnace power generation system, and the direct type gasification melting furnace power generation system, whose establishment of safety, reliability and stability have been verified by full-size system operation record available at the local governments, the gas turbine re-powering composite type power generation system (gas turbine power plants are installed beside the incineration furnaces) that makes high-efficiency power generation possible, and the RDF power generation system (power generation by mixed combustion with general refuses, and power generation using RDF (refuse derived fuel) exclusive combustion). Other important discussion and assessment items include environment and resource utilization performances. (NEDO)

  13. Capacity value evaluation of photovoltaic power generation

    International Nuclear Information System (INIS)

    Kurihara, I.

    1993-01-01

    The paper presents an example of capacity value (kW-value) evaluation of photovoltaic generation from power companies generation planning point of view. The method actually applied to evaluate the supplying capability of conventional generation plants is briefly described. 21 figs, 1 tab

  14. Next power generation-mix for Bangladesh: Outlook and policy priorities

    International Nuclear Information System (INIS)

    Ahamad, Mazbahul; Tanin, Fahian

    2013-01-01

    Bangladesh's strategy for economic development relies heavily on its energy and power policy, searching for an efficient implementation of planned power generation-mix of gas, oil, coal and hydro. At present, the contribution of gas is around 83% of total power generation, which is much higher than other traditional fuel sources. To reduce this single-source dependency on gas, Bangladesh needs to initiate alternative option to sustain its mid-term power generation-mix in addition to achieve its long-term energy security. Government of Bangladesh has already initiated a new master plan for the development of power generation under fuel-diversification scenario. In this view, local coal production and imported coal would assist the power planners to reduce the sole dependency on gas-driven power plants. In addition, cross-border hydropower import from Bhutan, Myanmar and Nepal would also be a vital policy imperative to maintain the country's long-term energy security. Nonetheless, adding extra power to production side is certainly essential, demand side management through efficient energy use and energy conservation could also be of assistance to the release the existing crisis to a greater extent. - Highlights: • In 2010, the contribution of gas in power generation is about 88% in Bangladesh. • Installed capacity (4.29%) and actual power generation (3.75%) from coal is very low. • Local coal-based power plants would be an alternative for next generation-mix. • Cross-border hydropower trade with Bhutan, Myanmar and Nepal would be another alternative. • Public-private partnership (PPP) could solve financing constraints to install new plants

  15. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  16. Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells

    KAUST Repository

    Feng, Yujie

    2010-04-02

    Carbon brush electrodes have been used to provide high surface areas for bacterial growth and high power densities in microbial fuel cells (MFCs). A high-temperature ammonia gas treatment has been used to enhance power generation, but less energy-intensive methods are needed for treating these electrodes in practice. Three different treatment methods are examined here for enhancing power generation of carbon fiber brushes: acid soaking (CF-A), heating (CF-H), and a combination of both processes (CF-AH). The combined heat and acid treatment improve power production to 1370 mW m-2, which is 34% larger than the untreated control (CF-C, 1020 mW m-2). This power density is 25% higher than using only acid treatment (1100 mW m-2) and 7% higher than that using only heat treatment (1280 mW m-2). XPS analysis of the treated and untreated anode materials indicates that power increases are related to higher N1s/C1s ratios and a lower C-O composition. These findings demonstrate efficient and simple methods for improving power generation using graphite fiber brushes, and provide insight into reasons for improving performance that may help to further increase power through other graphite fiber modifications. © 2009 Elsevier B.V. All rights reserved.

  17. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...

  18. Isotope powered Stirling generator for terrestrial applications

    International Nuclear Information System (INIS)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995

  19. Risk of nuclear power generation as business (continued)

    International Nuclear Information System (INIS)

    Sato, Satoshi

    2017-01-01

    This paper described the following: (1) fleet formation of power companies that operate nuclear power plants in the U.S., (2) collaboration, competition, and merger between plant makers, (3) stress corrosion cracking of stream generators for PWR and their thin heat transfer tubes, especially stress corrosion cracking under primary cooling water environment (PWSCC), and (4) replacement project from Inconel 600 MA to Inconel 600 TT or 690 TT of steam generator thin heat transfer tubes of PWR plants in the U.S. and others. In addition, it described the troubles at San Onofre Nuclear Power Station in California: wear of steam generator thin tubes of Units 2 and 3, and leakage from primary system to secondary system of Unit 3, and permanent shutdown. It also described the detail of damages compensation talks between South California Edison Company that operates San Onofre nuclear power plant and Mitsubishi Heavy Industries Ltd. which supplied the steam generator. Although the operation of the 1.7 million kW plant became impossible due to the bud shedding of nuclear power renaissance, these troubles might have saved the nightmare of drifting on the way. (A.O.)

  20. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  1. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  2. Nuclear power generation and fuel cycle report 1996

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included

  3. Demonstration tokamak fusion power plant for early realization of net electric power generation

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Asaoka, Y.; Shinya, K.; Ogawa, Y.

    2005-01-01

    A demonstration tokamak fusion power plant Demo-CREST is proposed as the device for early realization of net electric power generation by fusion energy. The plasma configuration for Demo-CREST is optimized to satisfy the electric breakeven condition (the condition for net electric power, P e net = 0 MW) with the plasma performance of the ITER reference operation mode. This optimization method is considered to be suitable for the design of a demonstration power plant for early realization of net electric power generation, because the demonstration power plant has to ensure the net electric generation. Plasma performance should also be more reliably achieved than in past design studies. For the plasma performance planned in the present ITER programme, net electric power from 0 to 500 MW is possible with Demo-CREST under the following engineering conditions: maximum magnetic field 16 T, thermal efficiency 30%, NBI system efficiency 50% and NBI current drive power restricted to 200 MW. By replacing the blanket system with one of higher thermal efficiency, a net electric power of about 1000 MW is also possible so that the performance of the commercial plant with Demo-CREST can also be studied from the economic point of view. The development path from the experimental reactor 'ITER' to the commercial plant 'CREST' through the demonstration power plant 'Demo-CREST' is proposed as an example of the fast track concept. (author)

  4. Water releasing electric generating device for nuclear power plant

    International Nuclear Information System (INIS)

    Umehara, Toshihiro; Tomohara, Yasutaka; Usui, Yoshihiko.

    1994-01-01

    Warm sea water discharged after being used for cooling in an equipment of a coastal nuclear powder plant is discharged from a water discharge port to a water discharge pit, and a conduit vessel is disposed in front of the water discharge port for receiving overflown warm sea water. The warm sea water taken to the conduit vessel is converted to a fallen flow and charged to a turbine generator under water, and electric power is generated by the water head energy of the fallen flow before it is discharged to the water discharge pit. The conduit vessel incorporates a foam preventing unit having spiral flow channels therein, so that the warm sea water taken to the conduit vessel is flown into the water discharge pit after consuming the water head energy while partially branched and flown downwardly and gives lateral component to the downwarding flowing direction. Then, warm sea water is made calm when it is flown into the water discharge pit and, accordingly, generation of bubbles on the water surface of the water discharge pit is avoided. (N.H.)

  5. Risks of power generation

    International Nuclear Information System (INIS)

    Mostert, P.

    1981-01-01

    A comparison is made between the various ways of power generation in the Netherlands and the hazards attached to them. Tables are presented of fuels used, the quantities used per annum and in the course of the last 20 years, accidents and pollution types and percentages, as well as the toxicity and waste disposal risks. (Auth.)

  6. Captive power generation in Saudi Arabia—Overview and recommendations on policies

    International Nuclear Information System (INIS)

    Abdul-Majeed, Mohammed Arif; Al-Hadhrami, Luai M.; Al-Soufi, Khaled Y.; Ahmad, Firoz; Rehman, Shafiqur

    2013-01-01

    The power sector in the Kingdom of Saudi Arabia is undergoing the restructuring process. Moreover, during the last decade the Kingdom has witnessed a phenomenal growth in the load demand, consequently a huge amount of generation is added to the electric utilities to meet the load. Up to now only the electric utility generation was taken in the planning of the electrical sector. The data regarding the captive power generation was not readily available. A survey is conducted regarding the captive power generation in Saudi Arabia based on its utilization pattern, fuel used and amount of excess energy available to the grid. The existing regulatory framework and institutional structure of the Saudi power industry was also reviewed. Based on the information collected in the survey of captive power, key guidelines that may be considered in developing the policy for the captive power generators are presented. Furthermore, these guidelines and later the policies will help promote the investors to come forward in developing the captive power generation in Saudi Arabia. -- Highlights: •Database of captive power generation in the Kingdom of Saudi Arabia. •Historical perspective of electrical power industry in the Kingdom. •Saudi Arabia′s power requirements. •Regulatory framework and key guidelines regarding captive power generation. •It is first of its kind study in the region

  7. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  8. The central government power generating capacity- reforms and the future

    International Nuclear Information System (INIS)

    Singh, Rajendra

    1995-01-01

    The alarming resource gap that the states were facing in 1970's has prompted the Central Government to augment the resources for power generation by creating two new entities in November 1975 viz the National Thermal Power Corporation (NTPC) and National Hydro Power Corporation (NHPC). Few other organisations also exist in central sector which are engaged in power generation like Nuclear Power Corporation (NPC). NTPC being the leading player in the power sector, it can neither be indifferent nor dissociate itself from the reforms sweeping the sector today. The article describes the Central Government's role in power generation, reforms and NTPC and further prospects of NTPC

  9. Nigeria nuclear power generation programme: Suggested way forward

    International Nuclear Information System (INIS)

    Adesanmi, C.A.

    2007-01-01

    It has now been established worldwide that nuclear power generation is needed to meet growing energy demands. The gases emitted from fossil fuel have serious adverse effects on the environment. The message from the 50th Annual General Conference of the International Atomic Energy Agency (IAEA) held in Vienna, September 2006 was very clear on this issue. There was a unanimous support for more nuclear power generation to meet the world energy demand. All the member states that can afford the nuclear power technology and willing to abide by the international regulations and safeguards were encouraged to do so. The requirements to participate in the nuclear power generation programme are political will and organized diplomacy, legislative and statutory framework, international safety obligations, institutional framework, public acceptability, capacity building and technology transfer, environmental concern , waste management and financing. Nigeria's performance on all the criteria was evaluated and found satisfactory. All these coupled with Nigeria's dire need for more power and better energy mix, are sufficient and undisputable reasons for the whole world to support Nigeria nuclear power generation programme. Definitely the programme poses serious challenges to the Nigerian Physicists. Therefore, Departments of Physics should endeavour to include nuclear physics option in their programme and work in collaboration with the faculty of Engineering in their various tertiary institutions in order to attain the necessary critical human capacity that will be needed to man the nuclear power industry within the next 10 years

  10. A realistic way for graduating from nuclear power generation

    International Nuclear Information System (INIS)

    Kikkawa, Takeo

    2012-01-01

    After Fukushima Daiichi Nuclear Power Plant accident, fundamental reform of Japanese energy policy was under way. As for reform of power generation share for the future, nuclear power share should be decided by three independent elements of the progress: (1) extension of power generation using renewable energy, (2) reduction of power usage by electricity saving and (3) technical innovation toward zero emission of coal-fired thermal power. In 2030, nuclear power share would still remain about 20% obtained by the 'subtraction' but in the long run nuclear power would be shutdown judging from difficulties in solution of backend problems of spent fuel disposal. (T. Tanaka)

  11. Oil-Free Turbomachinery Technologies for Long-Life, Maintenance-Free Power Generation Applications

    Science.gov (United States)

    Dellacorte, Christopher

    2013-01-01

    Turbines have long been used to convert thermal energy to shaft work for power generation. Conventional turbines rely upon oil-lubricated rotor supports (bearings, seals, etc.) to achieve low wear, high efficiency and reliability. Emerging Oil-Free technologies such as gas foil bearings and magnetic bearings offer a path for reduced weight and complexity and truly maintenance free systems. Oil-Free gas turbines, using gaseous and liquid fuels are commercially available in power outputs to at least 250kWe and are gaining acceptance for remote power generation where maintenance is a challenge. Closed Brayton Cycle (CBC) turbines are an approach to power generation that is well suited for long life space missions. In these systems, a recirculating gas is heated by nuclear, solar or other heat energy source then fed into a high-speed turbine that drives an electrical generator. For closed cycle systems such as these, the working fluid also passes through the bearing compartments thus serving as a lubricant and bearing coolant. Compliant surface foil gas bearings are well suited for the rotor support systems of these advanced turbines. Foil bearings develop a thin hydrodynamic gas film that separates the rotating shaft from the bearing preventing wear. During start-up and shut down when speeds are low, rubbing occurs. Solid lubricants are used to reduce starting torque and minimize wear. Other emerging technologies such as magnetic bearings can also contribute to robust and reliable Oil-Free turbomachinery. In this presentation, Oil-Free technologies for advanced rotor support systems will be reviewed as will the integration and development processes recommended for implementation.

  12. High-Power, Solid-State, Deep Ultraviolet Laser Generation

    Directory of Open Access Journals (Sweden)

    Hongwen Xuan

    2018-02-01

    Full Text Available At present, deep ultraviolet (DUV lasers at the wavelength of fourth harmonics of 1 μm (266 nm/258 nm and at the wavelength of 193 nm are widely utilized in science and industry. We review the generation of these DUV lasers by nonlinear frequency conversion processes using solid-state/fiber lasers as the fundamental frequency. A DUV laser at 258 nm by fourth harmonics generation (FHG could achieve an average power of 10 W with a beam quality of M2 < 1.5. Moreover, 1 W of average power at 193 nm was obtained by sum-frequency generation (SFG. A new concept of 193-nm DUV laser generation by use of the diamond Raman laser is also introduced. A proof-of-principle experiment of the diamond Raman laser is reported with the conversion efficiency of 23% from the pump to the second Stokes wavelength, which implies the potential to generate a higher power 193 nm DUV laser in the future.

  13. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    Science.gov (United States)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  14. Power generation in the 12-th five-year plan

    International Nuclear Information System (INIS)

    Troitskij, A.A.

    1986-01-01

    The state of electric power generation in the 11-th five-year plan is summed up. Perspectives of development of heat and electric power generation in the 12-th five-year plan are considered. Thermal power generation of NPPs in 1990 will increase by a factor of 8.4 as compared with 1975. The NPP development will be mainly realized on the basis of the WWER-1000 type reactors. It is planned to commission fast reactors of up to 800 MW

  15. High-performance ionic diode membrane for salinity gradient power generation.

    Science.gov (United States)

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-03

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.

  16. Conditional prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Kariniotakis, Georges

    2010-01-01

    A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform...... on the characteristics of prediction errors for providing conditional interval forecasts. By simultaneously generating prediction intervals with various nominal coverage rates, one obtains full predictive distributions of wind generation. Adapted resampling is applied here to the case of an onshore Danish wind farm...... to the case of a large number of wind farms in Europe and Australia among others is finally discussed....

  17. Potential power density and power generation of wind parks. Share of regional wind power generation in consumption for a ''2% scenario''; Potenzielle Leistungsdichte und Stromerzeugung von Windparks. Anteil der regionalen Windstromerzeugung am Verbrauch fuer ein ''2 %-Szenario''

    Energy Technology Data Exchange (ETDEWEB)

    Konetschny, Claudia; Schmid, Tobias; Jetter, Fabian [Forschungsstelle fuer Energiewirtschaft (FfE) e.V., Muenchen (Germany)

    2017-05-15

    Targets for wind energy use are given in different units. In addition to the number of plants, the power and the annual electricity generation, an information of a surface to be used for the use of wind power has become increasingly established. However, the relationships between area consumption, installed power and generated current are not approximately linear. On the basis of a small-scale modeling of the addition of wind energy installations using the wind resource tools WiSTl developed by the Research Center for Energy Economics (FfE), the article provides recommendations for the conversion of the area identified. In addition, the share of electricity generation based on a 2% scenario of power generation from wind power plants of the electricity consumption will be determined for each Federal State. [German] Ziele zur Windenergienutzung werden in verschiedenen Einheiten angegeben. Neben der Anzahl an Anlagen, der Leistung und der jaehrlichen Stromerzeugung hat sich zunehmend die Angabe einer fuer die Windkraftnutzung auszuweisenden Flaeche etabliert. Die Zusammenhaenge zwischen Flaechenverbrauch, installierter Leistung und erzeugter Strommenge sind jedoch nicht annaehernd linear. Anhand einer kleinteiligen Modeliierung des Zubaus von Windenergieanlagen mithilfe des von der Forschungsstelle fuer Energiewirtschaft (FfE) entwickelten Windszenario-Tools WiSTl gibt der Artikel Empfehlungen zur Umrechnung der ausgewiesenen Flaeche. Zusaetzlich wird basierend auf einem 2 %-Szenario der Anteil der Stromerzeugung aus Windenergieanlagen am Stromverbrauch je Bundesland bestimmt.

  18. Advanced power generation using biomass wastes from palm oil mills

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Kurniawan, Tedi; Oda, Takuya; Kashiwagi, Takao

    2017-01-01

    This study focuses on the energy-efficient utilization of both solid and liquid wastes from palm oil mills, particularly their use for power generation. It includes the integration of a power generation system using empty fruit bunch (EFB) and palm oil mill effluent (POME). The proposed system mainly consists of three modules: EFB gasification, POME digestion, and additional organic Rankine cycle (ORC). EFBs are dried and converted into a syngas fuel with high calorific value through integrated drying and gasification processes. In addition, POME is converted into a biogas fuel for power generation. Biogas engine-based cogenerators are used for generating both electricity and heat. The remaining unused heat is recovered by ORC module to generate electricity. The influences of three EFB gasification temperatures (800, 900 and 1000 °C) in EFB gasification module; and working fluids and pressure in ORC module are evaluated. Higher EFB gasification leads to higher generated electricity and remaining heat for ORC module. Power generation efficiency increases from 11.2 to 24.6% in case of gasification temperature is increased from 800 to 1000 °C. In addition, cyclohexane shows highest energy efficiency compared to toluene and n-heptane in ORC module. Higher pressure in ORC module also leads to higher energy efficiency. Finally, the highest total generated power and power generation efficiency obtained by the system are 8.3 MW and 30.4%, respectively.

  19. Report on demonstrative research on photovoltaic power generation system in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of installation and demonstrative operation in Myanmar of a power generation system combining a small-scale photovoltaic power generation system, a wind power generation system, and a diesel generator, research and development is being made under a six year plan starting in 1999 and ending in 2004. Comparative discussions were given on the installation location of the power generation system for the climatic conditions in Chaungthar and Letkhokekone, whereas the final decision was given on Chaungthar. This project plans installation of a photovoltaic power generation system of 80 kW, a wind power generation system of 40 kW, and a diesel generator of 60 kW. Power generation will start at 6 o'clock in the morning and continue to 11 o'clock at night every day, with a storage battery of 1,000 Ah and a stabilized load comprising of ice maker units to be installed. Observation of wind power and solar insolation is being continued with an aim of acquiring data over a period of one year or longer, whereas the data as have been forecasted are being acquired at the present. The diesel generator was manufactured in Japan, which has been arrived at the port of Yangon in February 2001, and installed at the site in Chaungthar in March. (NEDO)

  20. Reference costs for power generation

    International Nuclear Information System (INIS)

    2003-12-01

    The first part of the 2003 study of reference costs for power generation has been completed. It was carried out by the General Directorate for Energy and Raw Materials (DGEMP) of the French Ministry of the Economy, Finance and Industry, with the collaboration of power-plant operators, construction firms and many other experts. A Review Committee of experts including economists (Forecasting Department, French Planning Office), qualified public figures, representatives of power-plant construction firms and operators, and non-governmental organization (NGO) experts, was consulted in the final phase. The study examines the costs of power generated by different methods (i.e. nuclear and fossil-fuel [gas-, coal-, and oil-fired] power plants) in the context of an industrial operation beginning in the year 2015. - The second part of the study relating to decentralized production methods (wind, photovoltaic, combined heat and power) is still in progress and will be presented at the beginning of next year. - 1. Study approach: The study is undertaken mainly from an investor's perspective and uses an 8% discount rate to evaluate the expenses and receipts from different years. In addition, the investment costs are considered explicitly in terms of interest during construction. - 2. Plant operating on a full-time basis (year-round): The following graph illustrates the main conclusions of the study for an effective operating period of 8000 hours. It can be seen that nuclear is more competitive than the other production methods for a year-round operation with an 8% discount rate applied to expenses. This competitiveness is even better if the costs related to greenhouse-gas (CO 2 ) emission are taken into account in estimating the MWh cost price. Integrating the costs resulting from CO 2 emissions by non-nuclear fuels (gas, coal), which will be compulsory as of 2004 with the transposition of European directives, increases the total cost per MWh of these power generation methods

  1. Review of pulsed rf power generation

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies

  2. Optimizing wind power generation while minimizing wildlife impacts in an urban area.

    Science.gov (United States)

    Bohrer, Gil; Zhu, Kunpeng; Jones, Robert L; Curtis, Peter S

    2013-01-01

    The location of a wind turbine is critical to its power output, which is strongly affected by the local wind field. Turbine operators typically seek locations with the best wind at the lowest level above ground since turbine height affects installation costs. In many urban applications, such as small-scale turbines owned by local communities or organizations, turbine placement is challenging because of limited available space and because the turbine often must be added without removing existing infrastructure, including buildings and trees. The need to minimize turbine hazard to wildlife compounds the challenge. We used an exclusion zone approach for turbine-placement optimization that incorporates spatially detailed maps of wind distribution and wildlife densities with power output predictions for the Ohio State University campus. We processed public GIS records and airborne lidar point-cloud data to develop a 3D map of all campus buildings and trees. High resolution large-eddy simulations and long-term wind climatology were combined to provide land-surface-affected 3D wind fields and the corresponding wind-power generation potential. This power prediction map was then combined with bird survey data. Our assessment predicts that exclusion of areas where bird numbers are highest will have modest effects on the availability of locations for power generation. The exclusion zone approach allows the incorporation of wildlife hazard in wind turbine siting and power output considerations in complex urban environments even when the quantitative interaction between wildlife behavior and turbine activity is unknown.

  3. Microwave and Millimeter-Wave Signal Power Generation

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan

    Among the major limitations in high-speed communications and highresolution radars is the lack of efficient and powerful signal sources with low distortion. Microwave and millimeter-wave (mm-wave) signal power is needed for signal transmission. Progress in signal generation stems largely from...... distortion and high PAE were observed. The estimated output power of 42.5 dBm and PAE of 31.3% are comparable to the state-of-the-art results reported for GaN HEMT amplifiers. Wireless communication systems planned in the near future will operate at E-band, around 71-86 GHz, and require mm-wave-PAs to boost...... the application of novel materials like galliumnitride (GaN) and silicon-carbide (SiC) and fabrication of indiumphosphide (InP) based transistors. One goal of this thesis is to assess GaN HEMT technology with respect to linear efficient signal power generation. While most reports on GaN HEMT high-power devices...

  4. Automatic motion inhibit system for a nuclear power generating system

    International Nuclear Information System (INIS)

    Musick, C.R.; Torres, J.M.

    1977-01-01

    Disclosed is an automatic motion inhibit system for a nuclear power generating system for inhibiting automatic motion of the control elements to reduce reactor power in response to a turbine load reduction. The system generates a final reactor power level setpoint signal which is continuously compared with a reactor power signal. The final reactor power level setpoint is a setpoint within the capacity of the bypass valves to bypass steam which in no event is lower in value than the lower limit of automatic control of the reactor. If the final reactor power level setpoint is greater than the reactor power, an inhibit signal is generated to inhibit automatic control of the reactor. 6 claims, 5 figures

  5. Generating units performances: power system requirements

    Energy Technology Data Exchange (ETDEWEB)

    Fourment, C; Girard, N; Lefebvre, H

    1994-08-01

    The part of generating units within the power system is more than providing power and energy. Their performance are not only measured by their energy efficiency and availability. Namely, there is a strong interaction between the generating units and the power system. The units are essential components of the system: for a given load profile the frequency variation follows directly from the behaviour of the units and their ability to adapt their power output. In the same way, the voltage at the units terminals are the key points to which the voltage profile at each node of the network is linked through the active and especially the reactive power flows. Therefore, the customer will experience the frequency and voltage variations induced by the units behaviour. Moreover, in case of adverse conditions, if the units do not operate as well as expected or trip, a portion of the system, may be the whole system, may collapse. The limitation of the performance of a unit has two kinds of consequences. Firstly, it may result in an increased amount of not supplied energy or loss of load probability: for example if the primary reserve is not sufficient, a generator tripping may lead to an abnormal frequency deviation, and load may have to be shed to restore the balance. Secondly, the limitation of a unit performance results in an economic over-cost for the system: for instance, if not enough `cheap` units are able to load-following, other units with higher operating costs have to be started up. We would like to stress the interest for the operators and design teams of the units on the one hand, and the operators and design teams of the system on the other hand, of dialog and information exchange, in operation but also at the conception stage, in order to find a satisfactory compromise between the system requirements and the consequences for the generating units. (authors). 11 refs., 4 figs.

  6. Electric power generation the changing dimensions

    CERN Document Server

    Tagare, D M

    2011-01-01

    "This book offers an analytical overview of established electric generation processes, along with the present status & improvements for meeting the strains of reconstruction. These old methods are hydro-electric, thermal & nuclear power production. The book covers climatic constraints; their affects and how they are shaping thermal production. The book also covers the main renewable energy sources, wind and PV cells and the hybrids arising out of these. It covers distributed generation which already has a large presence is now being joined by wind & PV energies. It covers their accommodation in the present system. It introduces energy stores for electricity; when they burst upon the scene in full strength are expected to revolutionize electricity production. In all the subjects covered, there are references to power marketing & how it is shaping production. There will also be a reference chapter on how the power market works"--Provided by publisher.

  7. MHD generator performance analysis for the Advanced Power Train study

    Science.gov (United States)

    Pian, C. C. P.; Hals, F. A.

    1984-01-01

    Comparative analyses of different MHD power train designs for early commercial MHD power plants were performed for plant sizes of 200, 500, and 1000 MWe. The work was conducted as part of the first phase of a planned three-phase program to formulate an MHD Advanced Power Train development program. This paper presents the results of the MHD generator design and part-load analyses. All of the MHD generator designs were based on burning of coal with oxygen-enriched air preheated to 1200 F. Sensitivities of the MHD generator design performance to variations in power plant size, coal type, oxygen enrichment level, combustor heat loss, channel length, and Mach number were investigated. Basd on these sensitivity analyses, together with the overall plant performance and cost-of-electricity analyses, as well as reliability and maintenance considerations, a recommended MHD generator design was selected for each of the three power plants. The generators for the 200 MWe and 500 MWe power plant sizes are supersonic designs. A subsonic generator design was selected for the 1000 MWe plant. Off-design analyses of part-load operation of the supersonic channel selected for the 200 MWe power plant were also conductd. The results showed that a relatively high overall net plant efficiency can be maintained during part-laod operation with a supersonic generator design.

  8. Results of Steam-Water-Oxygen Treatment of the Inside of Heating Surfaces in Heat-Recovery Steam Generators of the PGU-800 Power Unit at the Perm' District Thermal Power Station

    Science.gov (United States)

    Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.

    2018-05-01

    Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.

  9. The Hydroelectric Business Unit of Ontario Power Generation Inc

    International Nuclear Information System (INIS)

    Gaboury, J.

    2001-01-01

    The focus of this presentation was on the generation and sale of electricity. Prior to deregulation, companies that generated electricity had a readily available customer base to whom the electricity could be sold. The author discussed some of the changes affecting the industry as a result of deregulation of the electricity market in Ontario: the increasing number of companies, as well as the increased number of generators supplying power within the province. Currently 85 per cent of the generation in Ontario is met by Ontario Power Generation (OPG) and this percentage will decrease through de-control. De-control can be achieved in a variety of ways, either through the sale of assets, leases, asset swaps. The market rules dictate that OPG not control in excess of 35 per cent of the generation supply in Ontario, OPG is examining the situation. New supply being constructed or new interconnections with neighboring markets could affect the total assets that would have to be de-controlled. OPG has a mix of generation that includes hydroelectric, fossil, and nuclear, as well as a single wind turbine. Green power, defined as electricity generation deemed less intrusive environmentally than most traditional generation, includes wind, water, landfill gas, solar and others, and could affect the mix of generation. It is expected that there will be a niche market for green power, especially when one considers the reduction in emissions. It could represent a viable option for smaller startup companies, as less capital is required. The options for selling the power, either to the spot market or by entering into a bilateral contract with another customer, were explained

  10. Wind power, distrubted generation and transmission

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    the possibilities for integration of even more wind power using new power balancing strategies that exploit the possibilities given by the existence of CHP plants as well as the impact of heat pumps for district heating. The analyses demonstrate that it is possible to accommodate 50% or more wind power without......Denmark has the World?s highest penetration of wind power in electricity generation with a share of 15.0% of total domestic demand in 2002 (DEA, 2004). This is unevenly distributed in the two electricity systems of Denmark giving a share as high as 20.7% in Western Denmark in 2003 up from 18...... power balancing strategies are not applied, costly grid expansions will follow expansions in installed wind power capacity....

  11. Modeling and Simulation of Generator Side Converter of Doubly Fed Induction Generator-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Blaabjerg, Frede

    2010-01-01

    A real wind power generation system is given in this paper. SVM control strategy and vector control is applied for generator side converter and doubly fed induction generator respectively. First the mathematical models of the wind turbine rotor, drive train, generator side converter are described...

  12. A study on economics of power generation in Pakistan

    International Nuclear Information System (INIS)

    Akbar, S.; Saleem Shahid, M.; Anwar Khan, M.; Khushnood, S.

    2005-01-01

    Pakistan is a developing country and has ever increasing requirement of electric power for its development process. Due to lack of timely and proper planning in this field, there has been acute shortage of power supply which has resulted into sever set back specially in industrial sector. To make up this deficiency government of Pakistan invited foreign and local companies for power generation, which has been purchased by WAPDA (water and power development authority-government of Pakistan) at exorbitant rates comparatively higher in this region. The Authors have thoroughly deliberated on the subject, collected the relative data from various government agencies, organizations and literature then carried out the comparative cost analysis of generation of electric power using various resources, keeping in mind the following factors: a) Fuel b) Plant Factor c) Investment Cost d) Operating and Maintenance Cost. The tariff rates of WAPDA have also been considered in this study. Recently two others organizations NEPRA (national electric power regulation authority) and PPIB (private power infrastructure board) has been constituted to regulate the tariffs and issuance of license to the private power generating companies. Now the efforts are in hand to regulate the purchase rate of electric power from the private companies by allowing reasonable profit without exploiting any body. The authors has concluded that timely planning, by providing necessary facilities to the power generation companies and regulating the tariff can facilitate the consumer and protecting them from paying exorbitant tariff. (authors)

  13. Utilizing the building envelope for power generation and conservation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, C.H.; Wang, F.J.

    2016-01-01

    Heat loading of the building envelope is caused by strong solar radiation and incorrect material selection. As a result of the heat loading of the building envelope, the indoor air temperature is increased, resulting in high energy consumption by air conditioners to maintain a comfortable indoor thermal environment. This study explores the use of a hybrid wall integrated with heat collectors (water piping system) and solar thermal power generators, which absorbs solar radiation through water to reduce heat transmission thereby saving energy and generating power. Power generation is achieved by an OD (oscillator device) that installed between a water tank (hot side) and building interior (cold side). The device acts by temperature differences between hot air (expansion) and cold air (contraction). CFD (computational dynamic simulation) was used to assess the effects of the hybrid wall on the interior environment. The results show that exterior heat is absorbed by cool water thereby reducing the heat transmission into the building, resulting in less energy consumption by air conditioners and power generation by use of temperature differences. - Highlights: • This study explores a hybrid building wall to save energy and generate power. • Power generators operated by air pressure change via hot tank and cool interior. • Less energy consumption by air conditioners and heating water. • Performance of CFD simulated results and experiment results are similar. • The energy saving efficiency is around 15 kWh/day via hybrid wall in west façade.

  14. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  15. Major issues associated with nuclear power generation cost and their evaluation

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Shimogori, Kei; Suzuki, Atsuhiko

    2015-01-01

    This paper discusses the evaluation of power generation cost that is an important item for energy policy planning. Especially with a focus on nuclear power generation cost, it reviews what will become a focal point on evaluating power generation cost at the present point after the estimates of the 'Investigation Committee on Costs' that was organized by the government have been issued, and what will be a major factor affecting future changes in costs. This paper firstly compared several estimation results on nuclear power generation cost, and extracted/arranged controversial points and unsolved points for discussing nuclear power generation cost. In evaluating nuclear power generation cost, the comparison of capital cost and other costs can give the understanding of what can be important issues. Then, as the main issues, this paper evaluated/discussed the construction cost, operation/maintenance cost, external cost, issue of discount rate, as well as power generation costs in foreign countries and the impact of fossil fuel prices. As other issues related to power generation cost evaluation, it took up expenses for decommissioning, disposal of high-level radioactive waste, and re-processing, outlined the evaluation results by the 'Investigation Committee on Costs,' and compared them with the evaluation examples in foreign countries. These costs do not account for a large share of the entire nuclear power generation costs. The most important point for considering future energy policy is the issue of discount rate, that is, the issue of fund-raising environment for entrepreneurs. This is the factor to greatly affect the economy of future nuclear power generation. (A.O.)

  16. Perspectives of the electric power industry amid the transforming global power generation markets

    Science.gov (United States)

    Makarov, A. A.; Mitrova, T. A.; Veselov, F. V.; Galkina, A. A.; Kulagin, V. A.

    2017-10-01

    A scenario-based prognosis of the evolution of global power generation markets until 2040, which was developed using the Scaner model-and-information complex, was given. The perspective development of fuel markets, vital for the power generation industry, was considered, and an attempt to predict the demand, production, and prices of oil, gas, coal, and noncarbon resources across various regions of the world was made. The anticipated decline in the growth of the global demand for fossil fuels and their sufficiency with relatively low extraction expenses will maintain the fuel prices (the data hereinafter are given as per 2014 prices) lower than their peak values in 2012. The outrunning growth of demand for electric power is shown in comparison with other power resources by regions and large countries in the world. The conditions of interfuel competition in the electric power industry considering the changes in anticipated fuel prices and cost indicators for various power generation technologies were studied. For this purpose, the ratios of discounted costs of electric power production by new gas and coal TPPs and wind and solar power plants were estimated. It was proven that accounting the system effects (operation modes, necessary duplicating and reserving the power of electric power plants using renewable energy sources) notably reduces the competitiveness of the renewable power industry and is not always compensated by the expected lowering of its capital intensity and growth of fuel for TPPs. However, even with a moderate (in relation to other prognoses) growth of the role of power plants using renewable energy sources, they will triple electric power production. In this context, thermal power plants will preserve their leadership covering up to 60% of the global electric power production, approximately half using gas.

  17. Distributed power generation, a market assessment; Marktaspekte der verteilten Energieerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Weller, T.

    2001-03-01

    The article assesses in the light of current energy policy the development of distributed power generation in the future, and resulting impacts on the structure the deregulated power industry in Germany. The author defines the essential characteristics of distributed power generation as opposed to centralized power generation, explains the various existing and emerging power generation technologies, and discusses market penetration scenarios and marketing opportunities in the context of technological developments, environmental and energy efficiency aspects, and consumer attitudes. (orig./CB) [German] Der Artikel bietet wichtige Definitionen fuer eine zielfuehrende Diskussion ueber das gesamte Gebiet der verteilten und dezentralen Energieerzeugung. Er versucht, teilweise emotional besetzte Themen auf sachlich begruendbare Grundannahmen zurueckzufuehren und zieht erste Folgerungen fuer das Zusammenwirken von erneuerbaren Energien und verteilter Energieerzeugung. (orig./CB)

  18. Surface Area Expansion of Electrodes with Grass-like Nanostructures to Enhance Electricity Generation in Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Zhang, Yifeng; Noori, Jafar Safaa

    2012-01-01

    Microbial fuel cells (MFCs) have applications possibilities for wastewater treatment, biotransformation, and biosensor, but the development of highly efficient electrode materials is critical for enhancing the power generation. Two types of electrodes modified with nanoparticles or grass-like nan......Microbial fuel cells (MFCs) have applications possibilities for wastewater treatment, biotransformation, and biosensor, but the development of highly efficient electrode materials is critical for enhancing the power generation. Two types of electrodes modified with nanoparticles or grass...... of plain silicium showed a maximum power density of 86.0 mW/m2. Further expanding the surface area of carbon paper electrodes with gold nanoparticles resulted in a maximum stable power density of 346.9 mW/m2 which is 2.9 times higher than that achieved with conventional carbon paper. These results show...

  19. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    Sergeev, A.A.

    2001-01-01

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  20. Pulse power applications of flux compression generators

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.

    1981-01-01

    Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources

  1. Conceptual survey of Generators and Power Electronics for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Bindner, H.; Soerensen, P.; Bak-Jensen, B.

    2001-12-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: State of the art on generators and power electronics; future concepts and technologies within generators and power electronics; market needs in the shape of requirements to the grid connection, and; consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generator and power electronic concepts was carried out in co-operation between Aalborg University and Risoe National Laboratory in the scope of the research programme Electric Design and Control. (au)

  2. Mini Solar and Sea Current Power Generation System

    Science.gov (United States)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  3. Coherence-generating power of quantum dephasing processes

    Science.gov (United States)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  4. Present state and prospect of nuclear power generation

    International Nuclear Information System (INIS)

    Fukushima, Akira

    1980-01-01

    Energy resources are scarce in Japan, therefore Japan depends heavily on imported petroleum. However, the international situation of petroleum became more unstable recently, and the promotion of the development and utilization of nuclear power generation was agreed upon in the summit meeting and the IEA. In order to achieve the stable growth of economy and improve the national welfare in Japan, it is urgent subject to accelerate the development of nuclear power generation. Japan depends the nuclear fuel also on import, but the stable supply is assured by the contract of long term purchase. It is not necessary to replace nuclear fuel usually for three years, and the transport and storage of nuclear fuel are easy because the quantity is not very large. By establishing the independent nuclear fuel cycle in Japan, it is possible to give the character similar to domestically produced energy to nuclear fuel. Moreover, uranium resources can be effectively utilized by the development of nuclear reactors of new types, such as FBRs. The cost of generating 1 kWh of electricity was about 8 yen in case of nuclear power and 15 yen in petroleum thermal power as of January, 1980. 21 nuclear power plants of about 15 million kW capacity are in operation in Japan, and about 30 million kW will be installed by 1985. The measures to promote the development of nuclear power generation are discussed. (Kako, I.)

  5. Fuel cycle comparison of distributed power generation technologies

    International Nuclear Information System (INIS)

    Elgowainy, A.; Wang, M.Q.

    2008-01-01

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions

  6. Safety improvement technologies for nuclear power generation

    International Nuclear Information System (INIS)

    Nishida, Koji; Adachi, Hirokazu; Kinoshita, Hirofumi; Takeshi, Noriaki; Yoshikawa, Kazuhiro; Itou, Kanta; Kurihara, Takao; Hino, Tetsushi

    2015-01-01

    As the Hitachi Group's efforts in nuclear power generation, this paper explains the safety improvement technologies that are currently under development or promotion. As efforts for the decommissioning of Fukushima Daiichi Nuclear Power Station, the following items have been developed. (1) As for the spent fuel removal of Unit 4, the following items have mainly been conducted: removal of the debris piled up on the top surface of existing reactor building (R/B), removal of the debris deposited in spent fuel pool (SFP), and fuel transfer operation by means of remote underwater work. The removal of all spent fuels was completed in 2014. (2) The survey robots inside R/B, which are composed of a basement survey robot to check leaking spots at upper pressure suppression chamber and a floor running robot to check leaking spots in water, were verified with a field demonstration test at Unit 1. These robots were able to find the leaking spots at midair pipe expansion joint. (3) As the survey robot for reactor containment shells, robots of I-letter posture and horizontal U-letter posture were developed, and the survey on the upper part of first-floor grating inside the containment shells was performed. (4) As the facilities for contaminated water measures, sub-drain purification equipment, Advanced Liquid Processing System, etc. were developed and supplied, which are now showing good performance. On the other hand, an advanced boiling water reactor with high safety of the United Kingdom (UK ABWR) is under procedure of approval for introduction. In addition, a next-generation light-water reactor of transuranic element combustion type is under development. (A.O.)

  7. Nuclear Power as a Basis for Future Electricity Generation

    Science.gov (United States)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  8. Mechanism of power generation - the MHD way

    International Nuclear Information System (INIS)

    Rangachari, S.; Ramash, V.R.; Subramanian, C.K.

    1975-01-01

    The basic physical principles of magnetohydrodynamics and the application of this principle for power generation (direct energy conversion) are explained. A magnetohydrodynamic generator (MHDG) is described both in the Faraday and Hall modes. The advantages of the Faraday mode and the Hall mode for different geometries of the generator are mentioned. The conductor used is a fluid - an ionised gas (plasma) or a liquid metal at high temperature. The difficulties in maintaining high temperature and high velocity for the gas and very low temperature at the same time side by side for superconducting magnets to produce a strong magnetic field, are pointed out. The most commonly used gas is purified air. The advantages of MHD generators and the present power crisis have compelled further research in this field in spite of the high costs involved. (A.K.)

  9. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  10. Managing strategic alliances in the power generation industry

    DEFF Research Database (Denmark)

    Kumar, Rajesh

    2003-01-01

    Highlights the challenges for power development developers in initiating alliances in the power generation industry. Importance of strategic alliances in the industry; Nature of the alliances in the independent power industry; Strategies for creating and sustaining value in global power development......; Management of tensions inherent in internal and external alliances....

  11. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Cleary, Martin; Wang, Xiaowei; Kempf, Nicholas; Schoensee, Luke; Yang, Jian; Joshi, Giri; Meda, Lakshmikanth

    2015-01-01

    Highlights: • A thermoelectric generator (TEG) is fabricated using nanostructured half-Heusler materials. • The TE unicouple devices produce superior power density above 5 W/cm"2. • A TEG system with over 1 kW power output is demonstrated by recovering automotive waste heat. - Abstract: Given increasing energy use as well as decreasing fossil fuel sources worldwide, it is no surprise that interest in promoting energy efficiency through waste heat recovery is also increasing. Thermoelectric generators (TEGs) are one of the most promising pathways for waste heat recovery. Despite recent thermoelectric efficiency improvement in nanostructured materials, a variety of challenges have nevertheless resulted in few demonstrations of these materials for large-scale waste heat recovery. Here we demonstrate a high-performance TEG by combining high-efficiency nanostructured bulk materials with a novel direct metal brazing process to increase the device operating temperature. A unicouple device generates a high power density of 5.26 W cm"−"2 with a 500 °C temperature difference between hot and cold sides. A 1 kW TEG system is experimentally demonstrated by recovering the exhaust waste heat from an automotive diesel engine. The TEG system operated with a 2.1% heat-to-electricity efficiency under the average temperature difference of 339 °C between the TEG hot- and cold-side surfaces at a 550 °C exhaust temperature. The high-performance TEG reported here open up opportunities to use TEGs for energy harvesting and power generation applications.

  12. Optimal investment strategies in decentralized renewable power generation under uncertainty

    International Nuclear Information System (INIS)

    Fleten, S.-E.; Maribu, K.M.; Wangensteen, I.

    2007-01-01

    This paper presents a method for evaluating investments in decentralized renewable power generation under price un certainty. The analysis is applicable for a client with an electricity load and a renewable resource that can be utilized for power generation. The investor has a deferrable opportunity to invest in one local power generating unit, with the objective to maximize the profits from the opportunity. Renewable electricity generation can serve local load when generation and load coincide in time, and surplus power can be exported to the grid. The problem is to find the price intervals and the capacity of the generator at which to invest. Results from a case with wind power generation for an office building suggests it is optimal to wait for higher prices than the net present value break-even price under price uncertainty, and that capacity choice can depend on the current market price and the price volatility. With low price volatility there can be more than one investment price interval for different units with intermediate waiting regions between them. High price volatility increases the value of the investment opportunity, and therefore makes it more attractive to postpone investment until larger units are profitable. (author)

  13. Status of thermal power generation in India-Perspectives on capacity, generation and carbon dioxide emissions

    International Nuclear Information System (INIS)

    Ghosh, Subhodip

    2010-01-01

    India's reliance on fossil-fuel based electricity generation has aggravated the problem of high carbon dioxide (CO 2 ) emissions from combustion of fossil fuels, primarily coal, in the country's energy sector. The objective of this paper is to analyze thermal power generation in India for a four-year period and determine the net generation from thermal power stations and the total and specific CO 2 emissions. The installed generating capacity, net generation and CO 2 emissions figures for the plants have been compared and large generators, large emitters, fuel types and also plant vintage have been identified. Specific emissions and dates of commissioning of plants have been taken into account for assessing whether specific plants need to be modernized. The focus is to find out areas and stations which are contributing more to the total emissions from all thermal power generating stations in the country and identify the overall trends that are emerging.

  14. The global climate change and its effect on power generation in Bangladesh

    International Nuclear Information System (INIS)

    Khan, Iftekhar; Alam, Firoz; Alam, Quamrul

    2013-01-01

    Frequent and intense natural calamities, sea level rises and salinity have been causing adverse impacts on economic, environmental and social aspects of hundreds of millions people across the world. Although a series of studies was undertaken on social and environment impacts, very little information is available on power generation affected by climate change. The power generation in developing countries, especially Bangladesh, whose existence is severely threatened by the rise of sea levels, salinity, the ambient temperature, drought and flood, is not well studied and reported. Therefore, the primary objective of this study was to identify the risks imposed by global climate change on existing and projected power generation in Bangladesh. The climate effect parameters and their impacts on power generation capacity are studied and analysed. The findings indicate that all existing and future power plants and their generation across the country will be affected by global climate change. - Highlights: • Analysed the future climate change impact on power generation in Bangladesh. • Projected future power generation in Bangladesh up to 2100. • Power plant in coastal areas will experience threat of inundation and salinity. • Northwest region power generation in Bangladesh will face more drought threat. • Power generation in middle region of Bangladesh will be in high risk of flood

  15. Development of an HTS hydroelectric power generator for the hirschaid power station

    Energy Technology Data Exchange (ETDEWEB)

    Fair, Ruben; Lewis, Clive; Eugene, Joseph; Ingles, Martin, E-mail: ruben.fair@converteam.co [Advanced Technology Group, Converteam, Rugby, CV21 1BD (United Kingdom)

    2010-06-01

    This paper describes the development and manufacture of a 1.7MW, 5.25kV, 28pole, 214rpm hydroelectric power generator consisting of superconducting HTS field coils and a conventional stator. The generator is to be installed at a hydro power station in Hirschaid, Germany and is intended to be a technology demonstrator for the practical application of superconducting technology for sustainable and renewable power generation. The generator is intended to replace and uprate an existing conventional generator and will be connected directly to the German grid. The HTS field winding uses Bi-2223 tape conductor cooled to about 30K using high pressure helium gas which is transferred from static cryocoolers to the rotor via a bespoke rotating coupling. The coils are insulated with multi-layer insulation and positioned over laminated iron rotor poles which are at room temperature. The rotor is enclosed within a vacuum chamber and the complete assembly rotates at 214rpm. The challenges have been significant but have allowed Converteam to develop key technology building blocks which can be applied to future HTS related projects. The design challenges, electromagnetic, mechanical and thermal tests and results are presented and discussed together with applied solutions.

  16. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  17. Fuel procurement for first generation fusion power plants

    International Nuclear Information System (INIS)

    Gore, B.F.; Hendrickson, P.L.

    1976-09-01

    The provision of deuterium, tritium, lithium and beryllium fuel materials for fusion power plants is examined in this document. Possible fusion reactions are discussed for use in first generation power plants. Requirements for fuel materials are considered. A range of expected annual consumption is given for each of the materials for a 1000 megawatts electric (MWe) fusion power plant. Inventory requirements are also given. Requirements for an assumed fusion power plant electrical generating capacity of 10 6 MWe (roughly twice present U.S. generating capacity) are also given. The supply industries are then examined for deuterium, lithium, and beryllium. Methods are discussed for producing the only tritium expected to be purchased by a commercial fusion industry--an initial inventory for the first plant. Present production levels and methods are described for deuterium, lithium and beryllium. The environmental impact associated with production of these materials is then discussed. The toxicity of beryllium is described, and methods are indicated to keep worker exposure to beryllium as low as achievable

  18. Survey of a technology to introduce the waste-fueled power generation. Basic manual for introduction of the waste-fueled power generation; Haikibutsu hatsuden donyu gijutsu chosa. Haikibutsu hatsuden donyu kihon manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Local government offices, etc., which are expected to shoulder responsibility for introducing the waste-fueled power generation, want to need exact information on technical information concerning the waste-fueled power generation and the method to materialize the introduction plan, etc. Therefore, Electric Power Development Co. surveyed and studied it under the contract with NEDO. The results were collected together as a basic manual for introduction of the waste-fueled power generation. As an outline of the waste-fueled power generation, the manual explains the significance, the present situation and potentials, the waste-fueled power system, an outline of working out the waste-fueled power generation plan, an outline of construction and operation/maintenance of the waste-fueled power generation, an outline of various systems relating to the waste-fueled power generation, etc. As the items for the study of making a concrete plan for power generation equipment, the manual explains the amount of refuse to be incinerated, the present status of generation capacity as viewed from the quality of refuse, the quality of refuse and the design of power generation equipment, boiler efficiency, power generation efficiency, construction cost and operation cost, etc. In addition, the paper describes a case study of the waste-fueled power generation plan. 118 figs., 39 tabs.

  19. Assess and Predict Automatic Generation Control Performances for Thermal Power Generation Units Based on Modeling Techniques

    Science.gov (United States)

    Zhao, Yan; Yang, Zijiang; Gao, Song; Liu, Jinbiao

    2018-02-01

    Automatic generation control(AGC) is a key technology to maintain real time power generation and load balance, and to ensure the quality of power supply. Power grids require each power generation unit to have a satisfactory AGC performance, being specified in two detailed rules. The two rules provide a set of indices to measure the AGC performance of power generation unit. However, the commonly-used method to calculate these indices is based on particular data samples from AGC responses and will lead to incorrect results in practice. This paper proposes a new method to estimate the AGC performance indices via system identification techniques. In addition, a nonlinear regression model between performance indices and load command is built in order to predict the AGC performance indices. The effectiveness of the proposed method is validated through industrial case studies.

  20. Railguns powered by explosive driven flux compression generators

    International Nuclear Information System (INIS)

    Fowler, C.M.; Zimmermann, E.L.; Cummings, C.E.

    1986-01-01

    Explosive driven flux compression generators (FCG's) are single-shot devices that convert part of the energy of high explosives into electromagnetic energy. Some classes of these generators have served quite well as railgun power sources. In this paper and the following paper we describe strip and helical type FCG's, both of which are in use in the Los Alamos railgun program. Advantages and disadvantages these generators have for railgun power supplies will be discussed, together with experimental results obtained and some of the diagnostics we have found particularly useful

  1. Entropy-generated power and its efficiency

    DEFF Research Database (Denmark)

    Golubeva, N.; Imparato, A.; Esposito, M.

    2013-01-01

    We propose a simple model for a motor that generates mechanical motion by exploiting an entropic force arising from the topology of the underlying phase space. We show that the generation of mechanical forces in our system is surprisingly robust to local changes in kinetic and topological paramet...... parameters. Furthermore, we find that the efficiency at maximum power may show discontinuities....

  2. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  3. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  4. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    Directory of Open Access Journals (Sweden)

    Jingqi Sun

    2014-01-01

    Full Text Available As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China’s energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China.

  5. Transforming Ontario's Power Generation Company

    International Nuclear Information System (INIS)

    Manley, J.; Epp, J.; Godsoe, P.C.

    2004-01-01

    The OPG Review Committee was formed by the Ontario Ministry of Energy to provide recommendations and advice on the future role of Ontario Power Generation Inc. (OPG) in the electricity sector. This report describes the future structure of OPG with reference to the appropriate corporate governance and senior management structure. It also discusses the potential refurbishing of the Pickering A nuclear generating Units 1, 2 and 3. The electricity system in Ontario is becoming increasingly fragile. The province relies heavily on electricity imports and the transmission system is being pushed to near capacity. Three nuclear generating units are out of service. The problems can be attributed to the fact that the electricity sector has been subjected to unpredictable policy changes for more than a decade, and that the largest electricity generator (OPG) has not been well governed. OPG has had frequent senior management change, accountability has been weak, and cost overruns have delayed the return to service of the Pickering nuclear power Unit 4. It was noted that the generating assets owned and operated by OPG are capable of providing more than 70 per cent of Ontario's electricity supply. Decisive action is needed now to avoid a potential supply shortage of about 5,000 to 7,000 megawatts by 2007. In its current state, OPG risks becoming a burden on ratepayers. Forty recommendations were presented, some of which suggest that OPG should become a rate-regulated commercial utility focused on running and maintaining its core generating assets. This would require that the government act as a shareholder, and the company operate like a commercial business. It was also emphasized that the market must be allowed to bring in new players. refs., tabs., figs

  6. Complementary power output characteristics of electromagnetic generators and triboelectric generators.

    Science.gov (United States)

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-04

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.

  7. improvement of hydroelectric power generation using pumped

    African Journals Online (AJOL)

    HOD

    1, 4 DEPARTMENT OF SYSTEMS ENGINEERING, UNIVERSITY OF LAGOS, AKOKA, YABA, ... pumped storage system for generating hydroelectric power all year round. ... Power supply situation in Nigeria has no doubt ..... (objective functions), criteria for evaluation of control .... adsen H “Para eter esti ation in distributed.

  8. Repetitive plasma opening switch for powerful high-voltage pulse generators

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Zakatov, L.P.; Nitishinskii, M.S.; Ushakov, A.G.

    1998-01-01

    Results are presented of experimental studies of plasma opening switches that serve to sharpen the pulses of inductive microsecond high-voltage pulse generators. It is demonstrated that repetitive plasma opening switches can be used to create super-powerful generators operating in a quasi-continuous regime. An erosion switching mechanism and the problem of magnetic insulation in repetitive switches are considered. Achieving super-high peak power in plasma switches makes it possible to develop new types of high-power generators of electron beams and X radiation. Possible implementations and the efficiency of these generators are discussed

  9. Power generator system for HCL reaction

    International Nuclear Information System (INIS)

    Scragg, R. L.; Parker, A. B.

    1984-01-01

    A power generation system includes a nuclear reactor having a core which in addition to generating heat generates a high frequency electromagnetic radiation. An electromagnetic radiation chamber is positioned to receive at least a portion of the radiation generated by the reactor core. Hydrogen and chlorine are connected into the electromagnetic reactor chamber and react with controlled explosive violence when exposed to the radiation from the nuclear reactor. Oxygen is fed into the reactor chamber as a control medium. The resulting gases under high pressure and temperature are utilized to drive a gas turbine generators. In an alternative embodiment the highly ionized gases, hydrogen and chlorine are utilized as a fluid medium for use in magnetohydrodynamic generators which are attached to the electromagnetic reactor chambers

  10. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  11. Hybrid power markets in Africa: Generation planning, procurement and contracting challenges

    International Nuclear Information System (INIS)

    Malgas, Isaac; Eberhard, Anton

    2011-01-01

    African power sectors are generally characterised by insufficient generation capacity. Reforms to address poor performances in the 1990s followed a prescribed evolution towards power markets that would allow wholesale competition amongst generators and so lead towards efficiency improvements. Despite reforms being embarked, competitive power markets have not been established in Africa; rather, the result has been the emergence of hybrid markets where state-owned generators and IPPs operate devoid of competition; and although IPPs have emerged in a number of African power sectors, many countries still do not have sufficient generation to meet their electricity demands. This paper investigates the development of private generation power projects in Africa by analysing data collected from both primary and secondary sources in four case studies of power sectors in Ghana, Cote d'Ivoire, Morocco and Tunisia. It identifies how planning and procurement challenges have lead to difficulties in adding sufficient generation capacity in a timely manner, exacerbating the problem of insufficient generation capacity in Africa. It provides suggestions as to how these frameworks could respond more effectively to the capacity challenges faced by hybrid electricity generation markets, and how broader power sector reforms should be guided to reflect the challenges of hybrid markets better. - Research highlights: → The standard model of power sector reform should no longer be used as a progress measure of power sector development in Africa and many other developing countries. → The hybrid market should in itself be recognised as an established 'model' of power sectors in Africa and many developing countries. → Planning, procurement and contracting arrangements should be shaped specifically for hybrid markets in order to address the problem of insufficient generation capacity in developing countries.

  12. Modeling the economics and market adoption of distributed power generation

    International Nuclear Information System (INIS)

    Maribu, Karl Magnus

    2006-01-01

    After decades of power generating units increasing in size, there is currently a growing focus on distributed generation, power generation close to energy loads. Investments in large-scale units have been driven by economy of scale, but recent technological improvements on small generating plants have made it possible to exploit the benefits of local power generation to a larger extent than previously. Distributed generation can improve power system efficiency because heat can be recovered from thermal units to supply heat and thermally activated cooling, and because small-scale renewables have a promising end-user market. Further benefits of distributed generation include improved reliability, deferral of often controversial and costly grid investments and reduction of grid losses. The new appeal of small-scale power generation means that there is a need for new tools to analyze distributed generation, both from a system perspective and from the perspective of potential developers. In this thesis, the focus is on the value of power generation for end-users. The thesis identifies how an end-user can find optimal distributed generation systems and investment strategies under a variety of economic and regulatory scenarios. The final part of the thesis extends the analysis with a bottom up model of how the economics of distributed generation for a representative set of building types can transfer to technology diffusion in a market. Four separate research papers make up the thesis. In the first paper, Optimal Investment Strategies in Decentralized Renewable Power Generation under Uncertainty, a method for evaluation of investments in renewable power units under price uncertainty is presented. It is assumed the developer has a building with an electricity load and a renewable power resource. The case study compares a set of wind power systems with different capacity and finds that capacity depends on the electricity price and that there under uncertain prices can be a

  13. Conceptual survey of generators and power electronics for wind turbines

    DEFF Research Database (Denmark)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.

    2002-01-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent systemoperators as well as manufactures of generators...... and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: - State of the art on generators and power electronics. - future concepts andtechnologies within generators and power electronics. - market needs in the shape of requirements to the grid...... connection, and - consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generatorand power electronic concepts was carried out in co-operation between Aalborg University and Risø National Laboratory in the scope of the research programme Electric...

  14. Windfarm Generation Assessment for ReliabilityAnalysis of Power Systems

    DEFF Research Database (Denmark)

    Negra, Nicola Barberis; Holmstrøm, Ole; Bak-Jensen, Birgitte

    2007-01-01

    Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...

  15. Windfarm generation assessment for reliability analysis of power systems

    DEFF Research Database (Denmark)

    Negra, N.B.; Holmstrøm, O.; Bak-Jensen, B.

    2007-01-01

    Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...

  16. 46 CFR 111.10-4 - Power requirements, generating sources.

    Science.gov (United States)

    2010-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must... or sources must be sufficient to supply those services necessary to provide normal operational...

  17. Optimizing wind power generation while minimizing wildlife impacts in an urban area.

    Directory of Open Access Journals (Sweden)

    Gil Bohrer

    Full Text Available The location of a wind turbine is critical to its power output, which is strongly affected by the local wind field. Turbine operators typically seek locations with the best wind at the lowest level above ground since turbine height affects installation costs. In many urban applications, such as small-scale turbines owned by local communities or organizations, turbine placement is challenging because of limited available space and because the turbine often must be added without removing existing infrastructure, including buildings and trees. The need to minimize turbine hazard to wildlife compounds the challenge. We used an exclusion zone approach for turbine-placement optimization that incorporates spatially detailed maps of wind distribution and wildlife densities with power output predictions for the Ohio State University campus. We processed public GIS records and airborne lidar point-cloud data to develop a 3D map of all campus buildings and trees. High resolution large-eddy simulations and long-term wind climatology were combined to provide land-surface-affected 3D wind fields and the corresponding wind-power generation potential. This power prediction map was then combined with bird survey data. Our assessment predicts that exclusion of areas where bird numbers are highest will have modest effects on the availability of locations for power generation. The exclusion zone approach allows the incorporation of wildlife hazard in wind turbine siting and power output considerations in complex urban environments even when the quantitative interaction between wildlife behavior and turbine activity is unknown.

  18. The price of fuel oil for power generation

    International Nuclear Information System (INIS)

    Hsu, G.J.Y.; Liaw, Y.Y.C.

    1987-01-01

    This study establishes a break-even analysis model for fuel oil generation. The authors calculate the break-even points of the international fuel oil prices for the existing coal-fired power plants, the nuclear power plants and the newly-built coal/oil-fired power plants

  19. The development of market power in the Polish power generation sector: A 10-year perspective

    International Nuclear Information System (INIS)

    Kamiński, Jacek

    2012-01-01

    The paper examines how and to which extent consolidation in the Polish power generation sector has affected the potential for market power over the last 10 years. Although this sector has been undergoing liberalisation (privatisation, introduction of TPA regulations and competition etc.), the consolidation efforts shown by Polish governments have resulted in a significant increase in concentration of both installed capacity and production. The methodology applied in this study includes typical ex-post structural and behavioural measures employed to estimate potential for market power, namely: concentration ratios (for the largest and the three largest suppliers), the Herfindahl–Hirschman Index, entropy, Supply Margin Assessment, the Residual Supply Index and the Lerner Index. Furthermore, an analysis based on the Gini coefficient was employed to obtain an insight into inequalities. The results of this study show that governmental decisions led to a significant increase in the potential to exercise market power held by key power generation companies. Of key importance was the 2007 consolidation, resulting in an increase in the HHI to 1374 (in terms of installed capacity) and 1945 (in terms of electricity production). This consolidation resulted in the creation of the first Pivotal Supplier in the Polish power generation sector in 2008. - Highlights: ► Market power analysis based on structural and behavioural indices was carried out for the Polish power sector. ► Governmental policy resulted in significant increase in concentration of both installed capacity and generation. ► Increase in the Lerner Index of brown coal-based generation and decrease of the hard coal-based one were observed.

  20. Generation of ozone by Ns-width pulsed power

    International Nuclear Information System (INIS)

    Shimomura, Naoyuki; Wakimoto, Masaya; Shinke, Yosuke; Nagata, Masayoshi; Namihira, Takao; Akiyama, Hidenori

    2002-01-01

    The demand of ozone will be increasing for wholesome and environment-conscious sterilizations. The generation of ozone using the pulsed power discharge will apply electron accelerations around the head of streamer discharge principally. The breakdown in reactor often limits the efficient generation. Therefore, the pulse shape should be controlled for dimension of the reactor. It is clear that a pulse shortening is one of effective approaches. Pulsed power voltage with ns-width applies for ozone generation. The effects, on concentration and efficiency of generation, of pulse shape, repetition rate of pulse, flow rate of oxygen gas, and dimension and configuration of reactor, are discussed. The dimension and configuration of the reactor are optimized for the pulse width

  1. Solar power generation system. Solar denryoku hassei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Ohaku, T [Toshiba Corp., Kawasaki (Japan)

    1990-12-21

    In a conventional solar power generation system having shunt elements for controlling generated power and supplying the controlled power to a load, it is difficult to carry out a stable power control, because the shunt characteristics of an analogue shunt element driving circuit vary widely as compared with a digital shunt element driving circuit, as the temperature varies. According to the present invention, in a solar power generation system having a plurality of solar cells divided into two of the first and second cell groups and a first and a second shunt element driving means provided for the first and second cell groups, the first shunt element driving means is composed of a combination of a resisance and level shift diode arranged, and the second shunt element driving means is composed of a combination of a transistor and level shift diode arranged. A stable current control of the shunt elements can be therefore realized, because the control voltage range of the first and second shunt element driving means is changed so as to be expanded, as the temperature varies, so that their overlapped voltage range is kept constant. 7 figs.

  2. Incorporation of a Wind Generator Model into a Dynamic Power Flow Analysis

    Directory of Open Access Journals (Sweden)

    Angeles-Camacho C.

    2011-07-01

    Full Text Available Wind energy is nowadays one of the most cost-effective and practical options for electric generation from renewable resources. However, increased penetration of wind generation causes the power networks to be more depend on, and vulnerable to, the varying wind speed. Modeling is a tool which can provide valuable information about the interaction between wind farms and the power network to which they are connected. This paper develops a realistic characterization of a wind generator. The wind generator model is incorporated into an algorithm to investigate its contribution to the stability of the power network in the time domain. The tool obtained is termed dynamic power flow. The wind generator model takes on account the wind speed and the reactive power consumption by induction generators. Dynamic power flow analysis is carried-out using real wind data at 10-minute time intervals collected for one meteorological station. The generation injected at one point into the network provides active power locally and is found to reduce global power losses. However, the power supplied is time-varying and causes fluctuations in voltage magnitude and power fl ows in transmission lines.

  3. Generation of large-scale PV scenarios using aggregated power curves

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Cutululis, Nicolaos Antonio

    2017-01-01

    The contribution of solar photovoltaic (PV) power to the generation is becoming more relevant in modern power system. Therefore, there is a need to model the variability large-scale PV generation accurately. This paper presents a novel methodology to generate regional PV scenarios based...... on aggregated power curves rather than traditional physical PV conversion models. Our approach is based on hourly mesoscale reanalysis irradiation data and power measurements and do not require additional variables such as ambient temperature or wind speed. It was used to simulate the PV generation...... on the German system between 2012 and 2015 showing high levels of correlation with actual measurements (93.02–97.60%) and small deviations from the expected capacity factors (0.02–1.80%). Therefore, we are confident about the ability of the proposed model to accurately generate realistic large-scale PV...

  4. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients

    NARCIS (Netherlands)

    Yip, N.Y.; Vermaas, D.A.; Nijmeijer, K.; Elimelech, M.

    2014-01-01

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we

  5. Wind Generation Participation in Power System Frequency Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Zhang, Yingchen

    2017-01-01

    The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from that of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.

  6. Development of a novel cascading TPV and TE power generation system

    International Nuclear Information System (INIS)

    Qiu, K.; Hayden, A.C.S.

    2012-01-01

    Highlights: ► A novel cascading thermophotovoltaic (TPV) and thermoelectric (TE) power generation system is proposed and developed. ► The used heat stream is taken from the TPV and applied to the input of a TE converter in the system. ► A prototype was built and tested where GaSb TPV cells and PbSnTe-based TE converter were used. ► The TPV cells generate 123.5 We whereas the TE converter generates 306.2 We in the prototype. ► It is shown the cascading power generation is feasible in fuel-fired furnaces and can be applied to micro-CHP. -- Abstract: Thermophotovoltaic (TPV) cells can convert infrared radiation into electricity. They open up possibilities for silent and stand-alone power production in fuel-fired heating equipment. Similarly, thermoelectric (TE) devices convert thermal energy directly into electricity with no moving parts. However, TE devices have relatively low efficiency for electric power generation. In this study, the concept of cascading TPV and TE power generation was developed where the used heat stream is taken from the TPV and applied to the input of a TE converter. A prototype cascading TPV and TE generation system was built and tested. GaSb TPV cells and an integrated semiconductor TE converter were used in the cascading power system. The electric output characteristics of the TPV cells and the TE converter have been investigated in the power generation system at various operating conditions. Experimental results show that the cascading power generation is feasible and has the potential for certain applications.

  7. Pec power generation system using pure energy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K; Sonai, A; Kano, A [Toshiba International Fuel Cells Corp. (Japan). Cell Technology Development Dept.; Yatake, T [Toshiba International Fuel Cells Corp. (Japan). Plant Engineering Dept.

    2002-07-01

    A polymer electrolyte fuel cell (PEFC) power generation system using pure hydrogen was developed by Toshiba International Fuel Cells (TIFC), Japan, under the sponsorship of the World Energy Network (WE-NET) Project. The goals of the project consist of the construction of 30 kilowatt power generation plant for stationary application and target electrical efficiency of over 50 per cent. Two critical technologies were investigated for high utilization stack, as high hydrogen utilization operation represents one of the most important items for the achievement of target efficiency. The first technology examined was the humidification method from cathode side, while the second was the two-block configuration, which is arranged in series in accordance with the flow of hydrogen. Using these technologies as a basis for the work, a 5 kilowatt short stack was developed, and a steady performance was obtained under high hydrogen utilization of up to 98 per cent. It is expected that by March 2003 the design of the hydrogen fueled 30 kilowatt power generation plant will be completed and assembled. 1 ref., 1 tab., 11 figs.

  8. Remote-site power generation opportunities for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  9. Facing the challenges of nuclear power at Ontario Power Generation

    International Nuclear Information System (INIS)

    Howes, H.

    1999-01-01

    Nuclear power represents a major portion of Ontario Power Generation's generation mix and it will be the bedrock upon which we build a successful, competitive company. Our nuclear units offer many environmental and economic benefits, the one most relevant to this meeting is their significant contribution to the relatively low carbon intensity of Ontario's and Canada's electricity supply. In recent weeks, we have listened with great interest to the endorsement by our federal Minister of the Environment of nuclear technology as a means of reducing global warming. But endorsements of this type alone are not sufficient to ensure that nuclear remains an acceptable option for managing greenhouse gas emissions. Without public acceptance and support, the entire nuclear investment is endangered. At OPG we face three challenges to building this public support: we must continue to improve our safety margins and operating performance; we must continue to improve the environmental performance at our stations; and we must increase our community outreach. Today I would like to focus on the last two challenges and the actions that we are taking to maintain our social and environmental 'licence to operate.' But before I describe these initiatives, I will tell you about: the new company - Ontario Power Generation; the changes in store for Ontario's electricity sector; and our greenhouse gas emissions - the legacy from Ontario Hydro. (author)

  10. Thinking small: Onsite power generation may soon be big

    International Nuclear Information System (INIS)

    Davidson, K.G.; Braun, G.W.

    1993-01-01

    Utilities are retheinking the way they do business. Eventually, smaller and cleaner generation units located near major load centers could begin to supplement power from central plants. The technologies necessary to this transition are emerging in the form of open-quotes distributed generation.close quotes These technologies typically produce power on a relatively small scale (less than 50 MW per unit) and can be sited in congested urban areas as well as near remote customers. This allows utilities to meet new demand for electricity without building central generating stations and without substantially expanding or upgrading the power delivery system-in other words, at lower cost. Some distributed-generation technologies, such as fuel cells and solar energy harnessed by photovoltaic (PV) cells, are just beginning to carve out niches in th power market. Others, such as engine generator sets and battery storage, have evolved into robust, high-technology systems. In the case of fuel cells and engine-driven systems, natural gas is emerging as an environmentally friendly fuel that should remain available for decades at competitive prices. As gas-fueled distributed power is deployed, utility infrastructures for delivering gas and electricity to customers could become more integrated, allowing planners to smooth load profiles for energy services and creating greater synergies between the two. As distributed-generation technologies become more practical and cost-effective, utilities may find that change can be a path toward least-cost service and sustainable profitability

  11. Reference reactor module for NASA's lunar surface fission power system

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO 2 -fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  12. Development of water demand coefficients for power generation from renewable energy technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2017-01-01

    Highlights: • Water consumption and withdrawals coefficients for renewable power generation were developed. • Six renewable energy sources (biomass, nuclear, solar, wind, hydroelectricity, and geothermal) were studied. • Life cycle water footprints for 60 electricity generation pathways were considered. • Impact of cooling systems for some power generation pathways was assessed. - Abstract: Renewable energy technology-based power generation is considered to be environmentally friendly and to have a low life cycle greenhouse gas emissions footprint. However, the life cycle water footprint of renewable energy technology-based power generation needs to be assessed. The objective of this study is to develop life cycle water footprints for renewable energy technology-based power generation pathways. Water demand is evaluated through consumption and withdrawals coefficients developed in this study. Sixty renewable energy technology-based power generation pathways were developed for a comprehensive comparative assessment of water footprints. The pathways were based on the use of biomass, nuclear, solar, wind, hydroelectricity, and geothermal as the source of energy. During the complete life cycle, power generation from bio-oil extracted from wood chips, a biomass source, was found to have the highest water demand footprint and wind power the lowest. During the complete life cycle, the water demand coefficients for biomass-based power generation pathways range from 260 to 1289 l of water per kilowatt hour and for nuclear energy pathways from 0.48 to 179 l of water per kilowatt hour. The water demand for power generation from solar energy-based pathways ranges from 0.02 to 4.39 l of water per kilowatt hour, for geothermal pathways from 0.04 to 1.94 l of water per kilowatt hour, and for wind from 0.005 to 0.104 l of water per kilowatt hour. A sensitivity analysis was conducted with varying conversion efficiencies to evaluate the impact of power plant performance on

  13. Pulsed discharges produced by high-power surface waves

    Science.gov (United States)

    Böhle, A.; Ivanov, O.; Kolisko, A.; Kortshagen, U.; Schlüter, H.; Vikharev, A.

    1996-02-01

    The mechanisms of the ionization front advance in surface-wave-produced discharges are investigated using two experimental set-ups. The high-power surface waves are excited in a 3 cm wavelength band by a surfaguide and a novel type of launcher (an E-plane junction). The ionization front velocity of the surface wave is measured for a wide range of gas pressures, incident microwave power and initial pre-ionization. The experimental results are compared with theoretical ones based on three different models. The comparison between theory and experiment allows one to suggest a new interpretation of the ionization front's advance. The ionization front velocity is determined by a breakdown wave or an ionization wave in the electric field of a high-power surface wave in the zone near the ionization front.

  14. Optimised deployment of hydro-power generation facilities

    International Nuclear Information System (INIS)

    Werlen, K.

    2004-01-01

    This article discusses how the opening-up of the European electricity market has led to the creation of more room for manoeuvre in the deployment of the generation capacity of dam and pumped-storage-based hydropower facilities and low-head power stations. Software tools for the optimisation of the operation of power generation facilities that can take care of complex hydraulic interdependencies are described. The use of the software for the assessment of new installations being planned or of older installations being extended is examined. The influence of climatic conditions, market prices for power, the general requirements placed on the system and other influences on financial gain are looked at. The article makes recommendations on those factors influencing the design of the software and for its optimal use in practice

  15. High power RF oscillator with Marx generators

    International Nuclear Information System (INIS)

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  16. Arrangement for adapting a wind wheel to an electric power generator

    Energy Technology Data Exchange (ETDEWEB)

    Beusse, H

    1977-08-11

    The invention is concerned with a device for adapting a wind wheel to an electric power generator in such a way that the wind wheel will always be operated with a maximum performance coefficient, that another source of energy, e.g. a prime mover, can supply the power deficit if the wind power is not sufficient, and that the generator at the output of the facility is kept mains-synchronous of constant speed and constant voltage. According to the invention, the shaft power of the wind power engine is transmitted to a first generator driving an electromotor. The motor is coupled to a second generator feeding into a consumer grid. By means of an anemometer the excitation output of the motor is controled in such manner that the speed of the generator is practically constant-provided a sufficient supply of wind is available. On the shaft of the output generator a prinse mover, e.g. a Diesel engine, is mounted being controllable for contant speed by means of a controll device in such a way that the prime mover takes over the missing amount of power if the wind supply falls short of the power taken off at the generator output.

  17. Apparatus and method for thermal power generation

    International Nuclear Information System (INIS)

    Cohen, P.; Redding, A.H.

    1978-01-01

    An improved thermal power plant and method of power generation is described which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant

  18. Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines

    Science.gov (United States)

    Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman

    2017-10-01

    Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.

  19. Relationship between students' interests in science and attitudes toward nuclear power generation

    International Nuclear Information System (INIS)

    Komiya, Izumi; Torii, Hiroyuki; Fujii, Yasuhiko; Hayashizaki, Noriyosu

    2008-01-01

    In order to study the following two points, we conducted an attitude survey among senior high school students. Study 1 The differences in attitudes between nuclear power generation and other science and technologies. Study 2 The relationship between student's interest in science and attitudes toward nuclear power generation. In the questionnaire, the attitude toward nuclear power generation consisted of four questions: (1) pros and cons, (2) safety, (3) necessity, (4) reliability of scientists and engineers who are involved in nuclear power; and we treat four science and technology issues: (1) genetically modified foods, (2) nuclear power generation, (3) humanoid and pet robots, (4) crone technology. From study 1, on attitude to security toward nuclear power generation, about 80% of respondents answered negatively and on attitude to necessity toward it, about 75% of respondents answered positively. Therefore, we found that the structure of attitude was complicated and that it was specific to nuclear power generation. From study 2, we found students' interests in science that influence the attitude toward nuclear power generation. (author)

  20. Prediction of future dispute concerning nuclear power generation

    International Nuclear Information System (INIS)

    1981-04-01

    This investigation is the third research on the public acceptance of nuclear power generation by the National Congress on Social Economics. In this study, how the energy dispute including that concerning nuclear power generation will develop in 1980s and 1990s, how the form of dispute and the point of controversy will change, were predicted. Though the maintenance of the concord of groups strongly regulates the behavior of people, recently they have become to exercise individual rights frequently. The transition to the society of dispute is the natural result of the modernization of society and the increase of richness. The proper prediction of social problems and the planning and execution of proper countermeasures are very important. The background, objective, basic viewpoint, range and procedure of this investigation, the change of social dispute, the history of the dispute concerning nuclear power generation, the basic viewpoint in the prediction of the dispute concerning nuclear power generation, the social situation in 1980s, the prediction and avoidance of the dispute in view of social and energy situations, and the fundamental strategy for seeking a clue to the solution in 1980s and 1990s are described. The establishment of neutral mediation organs and the flexible technologies of nuclear reactors are necessary. (Kako, I.)

  1. Simulation on effect of stopping nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki; Kumakura, Osamu; Sakurai, Norihisa; Nagata, Yutaka; Hattori, Tsuneaki

    1990-01-01

    The effects that the stopping of nuclear power generation exerts on the price of primary energy such as petroleum, LNG and coal and the trend of Japanese energy and economy are analyzed by using the medium term economy forecasting system. In the simulation, the case of stopping nuclear power generation in seven countries of OECD is supposed, and as for the process of stopping, two cases of immediate stopping and stopping by gradual reduction are set up. The models used for the simulation are the world energy model, the competition among energies model and the multiple category model. By the decrease of nuclear power generation, thermal power generation increases, and the demand of fossil fuel increases. As the result, the price of fossil fuel rises (the world energy model), and the price of fossil fuel imported to Japan rises. Also the quantity of fossil fuel import to Japan increase. These price rise and quantity increase exert deflation effect to Japanese economy (the multiple category model). The price rise of fossil fuel affects the competition among energies in Japan through the relative change of secondary energy price (the competition among energies model). The impact to the world and to Japan is discussed. (K.I.)

  2. Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation

    International Nuclear Information System (INIS)

    Taghavi, Reza; Seifi, Ali Reza; Samet, Haidar

    2015-01-01

    Environmental concerns besides fuel costs are the predominant reasons for unprecedented escalating integration of wind turbine on power systems. Operation and planning of power systems are affected by this type of energy due to the intermittent nature of wind speed inputs with high uncertainty in the optimization output variables. Consequently, in order to model this high inherent uncertainty, a PRPO (probabilistic reactive power optimization) framework should be devised. Although MC (Monte-Carlo) techniques can solve the PRPO with high precision, PEMs (point estimate methods) can preserve the accuracy to attain reasonable results when diminishing the computational effort. Also, this paper introduces a methodology for optimally dispatching the reactive power in the transmission system, while minimizing the active power losses. The optimization problem is formulated as a LFP (linear fuzzy programing). The core of the problem lay on generation of 2m + 1 point estimates for solving PRPO, where n is the number of input stochastic variables. The proposed methodology is investigated using the IEEE-14 bus test system equipped with HVDC (high voltage direct current), UPFC (unified power flow controller) and DFIG (doubly fed induction generator) devices. The accuracy of the method is demonstrated in the case study. - Highlights: • This paper uses stochastic loads in optimization process. • AC–DC load flow is modified to use some advantages of DC part in optimization process. • UPFC and DFIG are simulated in a way that could be effective in optimization process. • Fuzzy set has been used as an uncertainty analysis tool in the optimization

  3. Direct Drive Generator for Renewable Power Conversion from Water Currents

    International Nuclear Information System (INIS)

    Segergren, Erik

    2005-01-01

    In this thesis permanent magnet direct drive generator for power conversion from water currents is studied. Water currents as a power source involves a number of constrains as well as possibilities, especially when direct drive and permanent magnets are considered. The high power fluxes and low current velocities of a water current, in combination with its natural variations, will affect the way the generator is operated and, flowingly, the appearance of the generator. The work in this thesis can, thus, be categorized into two general topics, generator technology and optimization. Under the first topic, fundamental generator technology is used to increase the efficiency of a water current generator. Under the latter topic, water current generators are optimized to a specific environment. The conclusion drawn from this work is that it is possible to design very low speed direct drive generators with good electromagnetic properties and wide efficiency peak

  4. Variable structure unit vector control of electric power generation ...

    African Journals Online (AJOL)

    A variable structure Automatic Generation Control (VSAGC) scheme is proposed in this paper for the control of a single area power system model dominated by steam powered electric generating plants. Unlike existing, VSAGC scheme where the selection of the control function is based on a trial and error procedure, the ...

  5. Research of PV Power Generation MPPT based on GABP Neural Network

    Science.gov (United States)

    Su, Yu; Lin, Xianfu

    2018-05-01

    Photovoltaic power generation has become the main research direction of new energy power generation. But high investment and low efficiency of photovoltaic industry arouse concern in some extent. So maximum power point tracking of photovoltaic power generation has been a popular study point. Due to slow response, oscillation at maximum power point and low precision, the algorithm based on genetic algorithm combined with BP neural network are designed detailedly in this paper. And the modeling and simulation are completed by use of MATLAB/SIMULINK. The results show that the algorithm is effective and the maximum power point can be tracked accurately and quickly.

  6. Competition and Cooperation of Distributed Generation and Power System

    Science.gov (United States)

    Miyake, Masatoshi; Nanahara, Toshiya

    Advances in distributed generation technologies together with the deregulation of an electric power industry can lead to a massive introduction of distributed generation. Since most of distributed generation will be interconnected to a power system, coordination and competition between distributed generators and large-scale power sources would be a vital issue in realizing a more desirable energy system in the future. This paper analyzes competitions between electric utilities and cogenerators from the viewpoints of economic and energy efficiency based on the simulation results on an energy system including a cogeneration system. First, we examine best response correspondence of an electric utility and a cogenerator with a noncooperative game approach: we obtain a Nash equilibrium point. Secondly, we examine the optimum strategy that attains the highest social surplus and the highest energy efficiency through global optimization.

  7. Effects of a power shortage in the Tokyo metropolitan area on awareness of nuclear power generation and power savings behavior

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2004-01-01

    The shutdown of a number of nuclear power stations of the Tokyo Electric Power Company in the summer of 2003 caused a power shortage problem in the Tokyo Metropolitan area. To examine the effects of the power shortage, in September 2003 a survey was conducted in the service areas of the Kansai Electric Power Company (Kansai region) and the Tokyo Electric Power Company (Kanto region). This survey was part of a wider opinion survey begun in 1993 concerning nuclear power generation. The results of the September 2003 survey are as follows: The degree of recognition of the power shortage problem in the Metropolitan area was high, with 40% of respondents in the Kansai region and nearly 70% in the Kanto region understanding that the shortage was caused by the shutdown of several nuclear power station. The overall awareness of nuclear power generation was little affected in both the Kansai and Kanto regions, though the sense of a shortage of the generating capacity had been raised slightly. Once respondents knew about the power shortage problem, they estimated the likelihood of an occurrence of large-scale service interruption to be low, nearly at an even chance, and they had been only slightly worried about it, essentially viewing the problem optimistically. In the Kanto region, where public relations activities for power savings had been actively pursued, the frequency of experiencing exposure to such public relations activities was remarkably higher than in the Kansai region. The relation between exposure to public relations activities for power savings and power savings behavior was analyzed using quantification method II. Analysis results suggest that public relations activities for power savings in the Kanto region had the effect of urging power savings behavior. However, the difference in the rate of putting power savings behavior into practice was small between the Kanto and Kansai regions, indicating that public relation activities for power savings in the Kanto

  8. Pulsed corona generation using a diode-based pulsed power generator

    Science.gov (United States)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  9. Thermal and nuclear power generation cost estimates using corporate financial statements

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Nagatomi, Yu; Murakami, Tomoko

    2012-01-01

    There are two generally accepted methods for estimating power generation costs: so-called 'model plant' method and the method using corporate financial statements. The method using corporate financial statements, though under some constraints, can provide useful information for comparing thermal and nuclear power generation costs. This study used this method for estimating thermal and nuclear power generation costs in Japan for the past five years, finding that the nuclear power generation cost remained stable at around 7 yen per kilowatt-hour (kWh) while the thermal power generation cost moved within a wide range of 9 to 12 yen/kWh in line with wild fluctuations in primary energy prices. The cost of nuclear power generation is expected to increase due to the enhancement of safety measures and accident damage compensation in the future, while there are reactor decommissioning, backend and many other costs that the financial statement-using approach cannot accurately estimate. In the future, efforts should be continued to comprehensively and accurately estimate total costs. (author)

  10. 76 FR 36910 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Science.gov (United States)

    2011-06-23

    ... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power [[Page... subscribed docket(s). For assistance with any FERC Online service, please e-mail [email protected

  11. Design of Electricity Markets for Efficient Balancing of Wind Power Generation

    OpenAIRE

    Scharff, Richard

    2015-01-01

    Deploying wind power to a larger extent is one solution to reduce negative environmental impacts of electric power supply. However, various challenges are connected with increasing wind power penetration levels. From the perspective of transmission system operators, this includes balancing of varying as well as - to some extent - uncertain generation levels. From the perspective of power generating companies, changes in the generation mix will affect the market's merit order and, hence, their...

  12. Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system

    International Nuclear Information System (INIS)

    Remeli, Muhammad Fairuz; Tan, Lippong; Date, Abhijit; Singh, Baljit; Akbarzadeh, Aliakbar

    2015-01-01

    Highlights: • A new passive power cogeneration system using industrial waste heat was introduced. • Heat pipes and thermoelectrics were used for recovering waste heat and electricity. • Theoretical model predicted the 2 kW test rig could recover 1.345 kW thermal power. • 10.39 W electrical power was produced equivalent to 0.77% conversion efficiency. - Abstract: This research explores a new method of recovering waste heat and electricity using a combination of heat pipes and thermoelectric generators (HP-TEG). The HP-TEG system consists of Bismuth Telluride (Bi 2 Te 3 ) based thermoelectric generators (TEGs), which are sandwiched between two finned heat pipes to achieve a temperature gradient across the TEG for thermoelectricity generation. A theoretical model was developed to predict the waste heat recovery and electricity conversion performances of the HP-TEG system under different parametric conditions. The modelling results show that the HP-TEG system has the capability of recovering 1.345 kW of waste heat and generating 10.39 W of electrical power using 8 installed TEGs. An experimental test bench for the HP-TEG system is under development and will be discussed in this paper

  13. Electric power generation and uranium management

    International Nuclear Information System (INIS)

    Szergenyi, Istvan

    1989-01-01

    Assuming the present trend of nuclear power generation growth, the ratio of nuclear energy in the world power balance will double by the turn of the century. The time of reasonably exploited uranium resources can be predicted as a few decades. Therefore, new nuclear reactor types and more rational uranium management is needed to prolong life of known uranium resources. It was shown how can a better uranium utilization be expected by closed fuel cycles, and what advantages in uranium management can be expected by a better co-operation between small countries and big powers. (R.P.) 16 refs.; 4 figs

  14. Power Generator with Thermo-Differential Modules

    Science.gov (United States)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  15. Steam generators for nuclear power plants

    International Nuclear Information System (INIS)

    Tillequin, Jean

    1975-01-01

    The role and the general characteristics of steam generators in nuclear power plants are indicated, and particular types are described according to the coolant nature (carbon dioxide, helium, light water, heavy water, sodium) [fr

  16. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Jonathan Lueke

    2011-01-01

    Full Text Available Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  17. MEMS-based power generation techniques for implantable biosensing applications.

    Science.gov (United States)

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  18. 76 FR 34692 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Science.gov (United States)

    2011-06-14

    ... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC... Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC... notification when a document is added to a subscribed docket(s). For assistance with any FERC Online service...

  19. Network integration of distributed power generation

    Science.gov (United States)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  20. Liberalization of power generation sector in the Croatian electricity market

    International Nuclear Information System (INIS)

    Viskovic, Alfredo

    2005-01-01

    The electricity market liberalization and the restructuring of power utilities eventually leads to the establishment of a single electricity market in Europe, which is especially important for efficiency gains in electricity generation coupled with increased security of supply, economic competitiveness and fulfillment of environmental requirements. The European electricity market Directives as well as the Energy Community Treaty for South East Europe (legislative Menu) have remarkable impact on the restructuring of the Croatian power sector and the development of electricity generation. The Croatian model of restructuring includes legal un bundling (in the ownership of one holding company - Hrvatska Elektroprivreda (HEP)). The operation of HEP Group and its subsidiaries in the conditions of partially opened electricity market in an important element that shapes the interactions of competitive activities and regulated activities in the environment influenced by exogenous factors a thirteen percent electricity are controlled by the Energy Market Operator (MO), the Transmission System Operator (TSO) and the Energy Regulatory Agency (CERA). The introduction of eligible procedures and newly created operative procedures for power system operation, are creating completely new conditions for competition in the power generation sector, where almost all power plants are owned by HEP. New generating capacities in Croatia can be built through tendering and licensing procedures carried out by the Regulator. Electricity prices are still regulated by the Government (below the cost reflective level), there is a small share of industrial consumers and the annual electricity production is 12 TWh, with relatively large share of hydro plants. All these have implications on the development of the power generation sector in Croatia as well as on electricity market operation. The subject matter of this paper is an impact of power system restructuring and electricity market opening on the

  1. Large scale renewable power generation advances in technologies for generation, transmission and storage

    CERN Document Server

    Hossain, Jahangir

    2014-01-01

    This book focuses on the issues of integrating large-scale renewable power generation into existing grids. It includes a new protection technique for renewable generators along with the inclusion of current status of smart grid.

  2. Life cycle assessment of rice straw-based power generation in Malaysia

    International Nuclear Information System (INIS)

    Shafie, S.M.; Masjuki, H.H.; Mahlia, T.M.I.

    2014-01-01

    This paper presents an application of LCA (Life Cycle Assessment) with a view to analyzing the environment aspects of rice straw-based power generation in Malaysia. It also compares rice straw-based power generation with that of coal and natural gas. GHG (Greenhouse gas) emission savings were calculated. It finds that rice straw power generation can save GHG (greenhouse gas) emissions of about 1.79 kg CO 2 -eq/kWh compared to coal-based and 1.05 kg CO 2 -eq/kWh with natural gas based power generation. While the development of rice straw-based power generation in Malaysia is still in its early stage, these paddy residues offer a large potential to generate electricity because of their availability. Rice straw power plants not only could solve the problem of removing rice straw from fields without open burning, but also could reduce GHG emissions that contribute to climate change, acidification, and eutrophication, among other environmental problems. - Highlights: • Overall rice straw preparations contribute 224.48 g CO 2 -eq/kg rice straw. • The most constraints due to GHG (greenhouse gas) emission is from transportation. • Distance collection centre to plant less than 110 km to obtains minimum emissions. • Rice straw can save GHG emissions 1.79 kg CO 2 -eq/kWh compared to coal power. • GHG saving 1.05 kg CO 2 -eq/kWh compared to natural gas based power generation

  3. Reduction of wind powered generator cost by use of a one bladed rotor

    Energy Technology Data Exchange (ETDEWEB)

    Pruyn, R R; Wiesner, W; Ljungstroem, O [ed.

    1976-01-01

    Cost analysis supported by preliminary design studies of one and two bladed wind powered generator units shows that a 30% reduction in acquisition cost can be achieved with a one bladed design. Designs studied were sized for an output power of 1000 kilowatts. The one bladed design has the potential for reducing acquisition cost to $680 per available kilowatt if the unit is located in a region with mean surface winds of 15 mph. Vibratory loads of the one bladed design are significant and will require considerable design attention. The one per rev Coriolis torque caused by blade flapping is the most significant problem. The major source of blade flapping will be the velocity gradient of the ground boundary layer. A torsional vibration isolating coupling may be required in the generator drive to reduce the loads due to this vibratory torque. An inclined flapping hinge also is desirable to cause pitch-flap coupling that will suppress blade flap motions.

  4. Grid-connected inverter for wind power generation system

    Institute of Scientific and Technical Information of China (English)

    YANG Yong; RUAN Yi; SHEN Huan-qing; TANG Yan-yan; YANG Ying

    2009-01-01

    In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on PI-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.

  5. Photovoltaic array for Martian surface power

    Science.gov (United States)

    Appelbaum, J.; Landis, G. A.

    1992-01-01

    Missions to Mars will require electric power. A leading candidate for providing power is solar power produced by photovoltaic arrays. To design such a power system, detailed information on solar-radiation availability on the Martian surface is necessary. The variation of the solar radiation on the Martian surface is governed by three factors: (1) variation in Mars-Sun distance; (2) variation in solar zenith angle due to Martian season and time of day; and (3) dust in the Martian atmosphere. A major concern is the dust storms, which occur on both local and global scales. However, there is still appreciable diffuse sunlight available even at high opacity, so that solar array operation is still possible. Typical results for tracking solar collectors are also shown and compared to the fixed collectors. During the Northern Hemisphere spring and summer the isolation is relatively high, 2-5 kW-hr/sq m-day, due to the low optical depth of the Martian atmosphere. These seasons, totalling a full terrestrial year, are the likely ones during which manned mission will be carried out.

  6. Unmanned Surface Sea Vehicle Power System Design and Modeling

    National Research Council Canada - National Science Library

    Pritpal, Singh

    2005-01-01

    .... The power system of the USV is chosen to be a hybrid power source comprising a diesel generator and a lithium-ion battery pack Optimal sizing of the diesel generator and battery pack is important...

  7. Active power control strategies for inverter-based distributed power generation adapted to grid-fault ride-through requirements

    NARCIS (Netherlands)

    Wang, F.; Duarte, J.L.; Hendrix, M.A.M.

    2009-01-01

    Distributed power generation is expected to deliver power into the grid without interruption during voltage dips. To improve system ride-through capabilities, a generalized active power control strategy is proposed for grid-interfacing inverters. Specifically, a current reference generation strategy

  8. Power generation from refuse derived fuel

    International Nuclear Information System (INIS)

    Surroop, Dinesh; Mohee, Romeela

    2010-01-01

    Full text: The beginning of the third millennium has been characterized by a progressive increase in the demand for fossil fuels, which has caused a steep rise in oil price. At the same time, several environmental disasters have increased the sensitivity of world-wide public opinion towards the effect that environmental pollution has on human health and climate change. These conditions have fostered a renewed interest in renewable energy like solar energy, wind energy, biomass and solid wastes. In addition, the disposal of municipal solid waste (MSW) has become a critical and costly problem. The traditional landfill method requires large amounts of land and contaminates air, water and soil. The increase in socio-economic condition during the past ten years has also significantly increased the amount of solid waste generated. There are around 1200 tons of municipal solid waste (MSW) generated daily, of which the combustibles namely plastics, paper and textile waste represent 28%, and with the present generation rate, the landfill will be filled by 2012. The study was, therefore, initiated to assess the potential of power generation from refused derived fuels (RDF) from municipal solid waste (MSW) in order to reduce the dependency on fossil fuels. There are 336 tons which is equivalent to 12 tons/ h of RDF that can be generated daily from the MSW and this would generate 19.2 MW power. There will be 312 kg/ h of ash that would be generated and the NO x and SO 2 concentration were found to be 395.5 and 43.3 mg/ Nm 3 respectively. It was also found that the amount of non-biogenic CO 2 produced was 471 g/ kWhe. (author)

  9. Report on demonstrative research on photovoltaic power generation system in Myanmar. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of installation and demonstrative operation in Myanmar of a power generation system combining a small-scale photovoltaic power generation system, a wind power generation system, and a diesel generator, research and development is being made under a six year plan starting in 1999 and ending in 2004. This paper compiles the appendices related thereto. Collected for the climatic observation are the insolation data and wind velocity data in Chaungthar, and the insolation graph in both of Chaungthar and Lethokekone. Furthermore, materials for selection and decision on the installation location, and design materials for a hybrid power generation system were collected. Collected for procurement, construction, and installation of devices and facilities include test data for the diesel generator, drawings for the power generation control panel, test operation report, bill of lading for the diesel generator, a completion certificate of the diesel generator building, photographs of the building, a certificate of completion of installation of the diesel generator, photographs taken during the installation work, a certificate of completion of power transmission cable installation, photographs of the installation works, and the operation manual for the diesel engine. (NEDO)

  10. A substrate independent approach for generation of surface gradients

    Energy Technology Data Exchange (ETDEWEB)

    Goreham, Renee V. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Mierczynska, Agnieszka; Pierce, Madelene [Ian Wark Research Institute, University of South Australia, Mawson Lakes 5095 (Australia); Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir, E-mail: krasimir.vasilev@unisa.edu.au [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-01-01

    Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands.

  11. A substrate independent approach for generation of surface gradients

    International Nuclear Information System (INIS)

    Goreham, Renee V.; Mierczynska, Agnieszka; Pierce, Madelene; Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E.; Vasilev, Krasimir

    2013-01-01

    Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands

  12. Fear of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Higson, D.J. [Paddington, NSW (Australia)

    2014-07-01

    Communicating the benefits of nuclear power generation, although essential, is unlikely to be sufficient by itself to counter the misconceptions which hinder the adoption of this technology, viz: that it is unsafe, generates intractable waste, facilitates the proliferation of nuclear weapons, etc. Underlying most of these objections is the fear of radiation, engendered by misunderstandings of the effects of exposure - not the actual risks of radiation exposure themselves. Unfortunately, some aspects of current radiation protection practices promote the misconception that there is no safe dose. A prime purpose of communications from the nuclear industry should be to dispel these misconceptions. (author)

  13. Modeling passive power generation in a temporally-varying temperature environment via thermoelectrics

    International Nuclear Information System (INIS)

    Bomberger, Cory C.; Attia, Peter M.; Prasad, Ajay K.; Zide, Joshua M.O.

    2013-01-01

    This paper presents a model to predict the power generation of a thermoelectric generator in a temporally-varying temperature environment. The model employs a thermoelectric plate sandwiched between two different heat exchangers to convert a temporal temperature gradient in the environment to a spatial temperature gradient within the device suitable for thermoelectric power generation. The two heat exchangers are designed such that their temperatures respond to a change in the environment's temperature at different rates which sets up a temperature differential across the thermoelectric and results in power generation. In this model, radiative and convective heat transfer between the device and its surroundings, and heat flow between the two heat exchangers across the thermoelectric plate are considered. The model is simulated for power generation in Death Valley, CA during the summer using the diurnal variation of air temperature and radiative exchange with the sun and night sky as heat sources and sinks. The optimization of power generation via scaling the device size is discussed. Additional applications of this device are considered. -- Highlights: • Thermoelectric power generation with time-varying temperature is modeled. • The ability to generate power without a natural spatial gradient is demonstrated. • Time dependent heat-transfer and differential heat flow rates are considered. • Optimization of power generation via scaling the device size is discussed

  14. The powerful pulsed electron beam effect on the metallic surfaces

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Yuferov, V.B.; Kosik, N.A.; Druj, O.S.; Skibenko, E.I.

    2001-01-01

    Experimental results of the influence of powerful pulsed electron beams on the surface structure,hardness and corrosion resistance of the Cr18ni10ti steel are presented. The experiments were carried out in the powerful electron accelerators of directional effect VGIK-1 and DIN-2K with an energy up to approx 300 KeV and a power density of 10 9 - 10 11 W/cm 2 for micro- and nanosecond range. The essential influence of the irradiation power density on the material structure was established. Pulsed powerful beam action on metallic surface leads to surface melting,modification of the structure and structure-dependent material properties. The gas emission and mass-spectrometer analysis of the beam-surface interaction were defined

  15. Space photovoltaic power generation. Uchu taiyo hatsuden ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, I [Electrotechnical Laboratory, Tsukuba (Japan)

    1993-07-20

    Introduction is made of space photovoltaic power generation which is the ultimate clean energy source. This is a system to obtain electric energy from the solar cells placed on a geostatic orbit and transmit the power onto the earth by microwave. The US formulates a plan of placing 60[times]5GW power generation satellites to obtain 300GW power on the earth in 2000. As for the scale of space structure, the array of solar cells is dimensionally 10km[times]5km and the power transmitting antenna is 1km in diameter. The electric energy is amplified to microwave and power-transmitted by wireless onto the earth. The ground rectenna which receives it is dimensionally 10km[times]13km. The biggest difficulty consists in transportation of construction materials onto the orbit. In Japan, activity comprises three matters, which are research committee organized three years ago by the Agency of Industrial Science and technology, 10MW class model conceptually designed by the Institute of Space and Astronautical Science, and experiment conducted by Kyoto University on the power transmission by wireless. Pertaining to the research on the space power generation, the following two points are judged still unclarified: Reason for which the electric power companies did not apply the power transmission by wireless regarded as high in transmission efficiency. Influence of the microwave on the ionosphere and biosystem. 7 refs., 4 figs.

  16. Optimization of the vacuum insulator stack of the MIG pulsed power generator

    International Nuclear Information System (INIS)

    Khamzakhan, G; Chaikovsky, S A

    2014-01-01

    The MIG multi-purpose pulsed power machine is intended to generate voltage pulses of amplitude up to 6 MV with electron-beam loads and current pulses of amplitude up to 2.5 MA and rise time '00 ns with inductive loads like Z pinches. The MIG generator is capable of producing a peak power of 2.5 TW. Its water transmission line is separated from the vacuum line by an insulator stack. In the existing design of the insulator, some malfunctions have been detected. The most serious problems revealed are the vacuum surface flashover occurring before the current peaks and the deep discharge traces on the water-polyethylene interface of the two rings placed closer to the ground. A comprehensive numerical simulation of the electric field distribution in the insulator of the MIG generator has been performed. It has been found that the chief drawbacks are nonuniform voltage grading across the insulator rings and significant enhancement of the electric field at anode triple junctions. An improved design of the insulator stack has been developed. It is expected that the proposed modification that requires no rearrangement of either the water line or the load-containing vacuum chamber will provide higher electric strength of the insulator

  17. A General Constant Power Generation Algorithm for Photovoltaic Systems

    DEFF Research Database (Denmark)

    Tafti, Hossein Dehghani; Maswood, Ali Iftekhar; Konstantinou, Georgios

    2018-01-01

    Photovoltaic power plants (PVPPs) typically operate by tracking the maximum power point in order to maximize conversion efficiency. However, with the continuous increase of installed grid-connected PVPPs, power system operators have been experiencing new challenges, like overloading, overvoltages...... on a hysteresis band controller in order to obtain fast dynamic response under transients and low power oscillation during steady-state operation. The performance of the proposed algorithm for both single- and two-stage PVPPs is examined on a 50-kVA simulation setup of these topologies. Moreover, experimental...... and operation during grid voltage disturbances. Consequently, constant power generation (CPG) is imposed by grid codes. An algorithm for the calculation of the photovoltaic panel voltage reference, which generates a constant power from the PVPP, is introduced in this paper. The key novelty of the proposed...

  18. Experience of pico/micro hydro based power generation

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, S.S. [Indian Inst. of Technology, Delhi, New Delhi (India). Dept. of Electrical Engineering

    2010-07-01

    Although India has approximately 150,000 megawatts of hydro potential, only a small portion is tapped. There is also significant untapped hydro potential in many developing countries such as Nepal, Bhutan, Vietnam, Indonesia and regions in South America and Africa. Small-scale hydroelectric power systems with capacities of up to a few megawatts are eco-friendly and sustainable. They can be classified based on unit sizes as pico (u pto 10 kilowatts), micro (10-100 kilowatts) and mini (100 kilowatts to a few megawatts) hydro systems. Mini hydro systems are always grid connected while micro can be either grid connected or off grid. Pico is always off grid. In India, there are thousands of favorable sites in this range that should be tapped for distributed power generation to electrify local communities. This need is reflected by the global emphasis on distributed power generation as well as the Government of India's policy to promote this type of power generation. A working stand alone pico-hydro power generating system has been successfully installed in 5 sites in Karnataka. The purpose of the project was to demonstrate the technical, managerial and economic feasibility of setting up small hydro projects in remote hilly areas of Karnataka, India and its positive environmental impact. The presentation discussed the site selection criteria; installed sites of pico hydro; system description; parts of the system; the electric load controller; types of electronic load controllers; and a description of the unit and control scheme. tabs., figs.

  19. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    International Nuclear Information System (INIS)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.; Barsukov, I. V.

    2009-01-01

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests of the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.

  20. Tackling investment challenges in power generation - in IEA countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    In most IEA countries a new investment cycle in power generation is looming. A window of opportunity now exists to push for a cleaner and more efficient generation portfolio that could transform the power sector and help to build a more sustainable infrastructure lasting over the next 40-50 years. What are the recent trends and prospects for investment in power generation? What are the main drivers and barriers? This book assesses these issues and gives special emphasis to the question of how uncertainties may affect investment decisions. Uncertainties on CO{sub 2} constraints, on power plant licensing, on acceptability of nuclear power, on local opposition to any new energy infrastructure, on government support for specific generation technologies and on government policies on energy efficiency are particularly disturbing. Market liberalisation can also be a key uncertainty, but this may be greatly reduced and deliver considerable benefits if liberalisation is implemented whole-heartedly and backed by on-going government commitment. Government action is urgently needed: to reduce regulatory uncertainty for investors, to establish effective competitive markets and to give firm policy directions in those areas where markets fall short, such as in taking environmental costs and security of supply into account.

  1. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces

    International Nuclear Information System (INIS)

    Sprangle, P.; Penano, J.R.; Hafizi, B.; Kapetanakos, C.A.

    2004-01-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, -8 . Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated

  2. STARTER-GENERATOR SYSTEM FOR AUXILIARY POWER UNIT

    Directory of Open Access Journals (Sweden)

    A. V. Levin

    2017-01-01

    Full Text Available The article presents a starter-generator system for an auxiliary power unit of an aircraft. A feature of the presented system is the use of a synchronous generator with excitation from permanent magnets and a semiconductor converter. The main problem of the system is the generation of electric energy of an aircraft on the basis of a synchronous generator with excitation from permanent magnets is the absence of the possibility of regulating the voltage and frequency of electrical energy, in this connection, a semiconductor converter that ensures the conversion of generated electric energy with significant mass-dimensions characteristics.The article proposes an approach to designing a starter-generator system with a parallel connection of a synchronous generator with excitation from permanent magnets and a semiconductor converter. This approach makes it possible to significantly reduce the part of the electrical energy that needs to be converted, as a consequence, the semiconductor converter has significantly smaller mass-and-batch characteristics.In the article the modes of generation of electric energy and the starter mode of operation of the starter-generator system are considered in detail, the circuit realization of the semiconductor converter is shown. A scheme for replacing one phase of the system for generating electric energy and calculating electric parameters is presented.The possibility of creating a highly efficient starter-generator system based on a synchronous generator with excitation from permanent magnets and a semiconductor converter for an auxiliary power plant of aircrafts is shown. Structural and basic schemes for constructing a system for generating electrical energy are proposed. The approach to the choice of rational circuit solutions is substantiated, basic estimates of the electrical parameters of the system are obtained. The possibility of achieving a specific mass of a semiconductor converter for synchronous

  3. Outline of geothermal power generation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ezaki, Y

    1960-01-01

    The utilization of geothermal energy in electrical power generation throughout the world is described. Details of generating capacity and cost are given for Larderello, Italy; Wairakei, New Zealand: and the Geysers, USA. In Japan three types of conversion systems are used. These include the direct use of steam, direct use of hot water and binary fluid type systems. The history of Japanese investigation and exploitation of geothermal energy is reviewed and the status of the Matsukawa, Hakone, Otake and Takenoyu geothermal power plants is discussed. It is recommended that laws be enacted in Japan to encourage the development of this form of energy conversion.

  4. Performance of Doubly-Fed Wind Power Generators During Voltage Dips

    DEFF Research Database (Denmark)

    Aparicio, N.; Chen, Zhe; Beltran, H.

    The growing of wind generation in Spain has forced its Transmission System Operator (TSO) to release new requirements that establish the amount of reactive power that a wind turbine has to supply to the grid during a voltage dip. Wind turbines equipped with doubly-fed induction generators (DFIG......) can regulate easily the reactive power generated in steady state. However, difficulties appear when reactive power has to be generated during voltage dips. Simulations have been carried out in order to check whether DFIG wind turbines can fulfill the reactive power requirements. Protection system...... commonly employed with DFIG in order to achieve ride-through capabilities including crowbar plays an important role to meet the requirements together with grid-side converter. Resistance associated with the crowbar and its connection duration are crucial at the beginning of the fault. Grid-side converter...

  5. Improvements in steam cycle electric power generating plants

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1973-01-01

    The invention relates to a steam cycle electric energy generating plants of the type comprising a fossil or nuclear fuel boiler for generating steam and a turbo alternator group, the turbine of which is fed by the boiler steam. The improvement is characterized in that use is made of a second energy generating group in which a fluid (e.g. ammoniac) undergoes a condensation cycle the heat source of said cycle being obtained through a direct or indirect heat exchange with a portion of the boiler generated steam whereby it is possible without overloading the turbo-alternator group, to accomodate any increase of the boiler power resulting from the use of another fuel while maintaining a maximum energy output. This can be applied to electric power stations [fr

  6. High gas dependence for power generation in Thailand: The vulnerability analysis

    International Nuclear Information System (INIS)

    Nakawiro, Thanawat; Bhattacharyya, Subhes C.

    2007-01-01

    Thailand uses 74% of its natural gas supply for power generation and 70% of its power comes from gas-based technology. High dependence on natural gas in power generation raises concerns about security of electricity supply that could affect competitiveness of Thai manufacturing and other industries at the global level. The effect of fuel dependence on security of electricity supply has received less emphasis in the literature. Given this gap, this research examines the economic impact of high dependence on natural gas for power generation in Thailand by analyzing the effect of changes in fuel prices (including fuel oil and natural gas) on electricity tariff in Thailand. At the same time, the research quantifies the vulnerability of the Thai economy due to high gas dependence in power generation. Our research shows that for every 10% change in natural gas price, electricity tariff in Thailand would change by 3.5%. In addition, we found that the gas bill for power generation consumed between 1.94% and 3.05% of gross domestic product (GDP) between 2000 and 2004 and in terms of GDP share per unit of energy, gas dependence in power generation is almost similar to that of crude oil import dependence. We also found that the basic metal industry, being an electricity intensive industry, is the most affected industry. Additionally, we find that volatility of gas price is the main factor behind the vulnerability concern. The research accordingly simulates two mitigation options of the problem, namely reducing gas dependence and increasing efficiency of gas-fired power plants, where the results show that these methods can reduce the vulnerability of the country from high gas dependence in power generation

  7. Use of non-conventional energy sources for power generation

    International Nuclear Information System (INIS)

    Umapathaiah, R.; Sharma, N.D.

    1999-01-01

    India being a developing country, cannot afford to meet the power and energy demand only from conventional sources. Power generation can be augmented by using non-conventional energy sources. Sufficient importance must be given for recovery of energy from industrial/urban waste. Solar heating system must replace industrial and domestic sectors. Solar photovoltaic, biogas plant, biomass based gasified system must also be given sufficient place in energy sector. More thrust has to be given for generation of power by using sugar cane which is a perennial source

  8. Adoption of nuclear power generation

    International Nuclear Information System (INIS)

    Sommers, P.

    1980-01-01

    This article develops a model of the innovation-adoption decision. The model allows the economic situation of a utility and its perception of uncertainty associated with an innovation to affect the probability of adopting it. This model is useful when uncertainties affecting decisions about adoption persist throughout the diffusion process, thereby making the usual adoption model implicit in rate-of-diffusion studies inappropriate. An empirical test of the model finds that firm size, power pool size, and selected aspects of uncertainty about the innovation are significant predictors of US utility companies' decisions on whether or not to adopt nuclear power generation. 17 references, 2 tables

  9. The effect of using sun tracking systems on the voltage-current characteristics and power generation of flat plate photovoltaics

    International Nuclear Information System (INIS)

    Abdallah, Salah

    2004-01-01

    An experimental study was performed to investigate the effect of using different types of sun tracking systems on the voltage-current characteristics and electrical power generation at the output of flat plate photovoltaics (FPPV). Four electromechanical sun tracking systems, two axes, one axis vertical, one axis east-west and one axis north-south, were designed and constructed for the purpose of investigating the effect of tracking on the electrical values, current, voltage and power, according to the different loads (variable resistance). The above mentioned variables were measured at the output of the FPPV and compared with those on a fixed surface. The results indicated that the volt-ampere characteristics on the tracking surfaces were significantly greater than that on a fixed surface. There were increases of electrical power gain up to 43.87%, 37.53%, 34.43% and 15.69% for the two axes, east-west, vertical and north-south tracking, respectively, as compared with the fixed surface inclined 32 deg. to the south in Amman, Jordan

  10. Nuclear power generation in Chile, possibility or utopia

    International Nuclear Information System (INIS)

    Vergara Aimone, Julio

    2000-01-01

    Regardless the pressure of several groups, nuclear power stands for one sixth of worldwide electricity supply, produced from a resource that well managed could be available for centuries beyond the exhaustion of oil and natural gas. Such power option could support a macro power system with low environmental impact. The Chilean power demand is growing at a high rate. Without fossil supplies, our potential hydraulic capacity would become exhausted at an early date and our country would face a severe energy dependence, without control of generation costs and with increased atmospheric emissions, some of which would be responsible for global environmental effects. Nuclear power would stabilize generation costs in the near and mid terms and would also arrest gaseous emissions. This paper discusses the current status of the nuclear industry and those pending issues, compared to other power options. It also discusses the estimated year for the operation the of first nuclear power plant. Although nuclear power technology seems to be in a mature stage, it is suggested that the aggressive use of advanced and moreover innovative reactor designs would result in a greater nuclear technology penetration. Several of such designs or concepts await commercial demonstration within the decade. Those would also extend the benefits of nuclear power to countries with reduced or moderate power grids, as is our case. (author)

  11. Radiation characteristics of input power from surface wave sustained plasma antenna

    Energy Technology Data Exchange (ETDEWEB)

    Naito, T., E-mail: Naito.Teruki@bc.MitsubishiElectric.co.jp [Advanced Technology R& D Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Yamaura, S. [Information Technology R& D Center, Mitsubishi Electric Corporation, Kamakura, Kanagawa 247-8501 (Japan); Fukuma, Y. [Communication System Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Sakai, O. [Department of Electronic System Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533 (Japan)

    2016-09-15

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  12. Radiation characteristics of input power from surface wave sustained plasma antenna

    International Nuclear Information System (INIS)

    Naito, T.; Yamaura, S.; Fukuma, Y.; Sakai, O.

    2016-01-01

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  13. Open circuit V-I characteristics of a coreless ironless electric generator for low density wind power generation

    Science.gov (United States)

    Razali, Akhtar; Rahman, Fadhlur; Azlan, Syaiful; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The concept is then fabricated and experimentally validated to qualify its no-load characteristics. The rotational torque and power output are measured and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 416VAC at rotational speed of 1762 RPM. Torque required to rotate the generator was at 2Nm for various rotational speed. The generator has shown 30% lesser rotational torque compared to the conventional ironcore type generator due to the absent of cogging torque in the system. Lesser rotational torque required to rotate has made this type of generator has a potential to be used for low wind density wind turbine application.

  14. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  15. Considerations for decision-making on distributed power generation in rural areas

    International Nuclear Information System (INIS)

    Holtmeyer, Melissa L.; Wang, Shuxiao; Axelbaum, Richard L.

    2013-01-01

    Energy resources for rural electrification are variable and widely dispersed, such that a solution for one region might not be appropriate for another. This study evaluates the feasibility of renewable energy technologies, centralized grid extension and local coal-fired power for rural areas that currently do not have sufficient access to electricity. The renewable power generation options considered are solar photovoltaic and wind power, with battery storage or fossil fuel generator backup. New local coal-fired power, as well as extension of the grid from an existing centralized power system, are considered to compare the impacts of scale and traditional approaches to power generation. A case study for a rural area in Northwestern China demonstrates the complexity of energy decision-making when faced with low peak demands and non-ideal renewable resource availability. Economic factors, including cost of electricity generation, breakeven grid extension distance, capacity shortage fraction (the ratio of the annual capacity shortage to the annual electric load) and land use are evaluated. - Highlights: • Considerations include technical and non-technical factors for energy decisions. • Coal and renewable power are compared based on cost and availability of resources. • Key factors for renewable power generation are capacity shortage and availability of resources. • Rural China case study evaluates the viability of distributed wind or solar power relative to coal

  16. Optimal pricing of non-utility generated electric power

    International Nuclear Information System (INIS)

    Siddiqi, S.N.; Baughman, M.L.

    1994-01-01

    The importance of an optimal pricing policy for pricing non-utility generated power is pointed out in this paper. An optimal pricing policy leads to benefits for all concerned: the utility, industry, and the utility's other customers. In this paper, it is shown that reliability differentiated real-time pricing provides an optimal non-utility generated power pricing policy, from a societal welfare point of view. Firm capacity purchase, and hence an optimal price for purchasing firm capacity, are an integral part of this pricing policy. A case study shows that real-time pricing without firm capacity purchase results in improper investment decisions and higher costs for the system as a whole. Without explicit firm capacity purchase, the utility makes greater investment in capacity addition in order to meet its reliability criteria than is socially optimal. It is concluded that the non-utility generated power pricing policy presented in this paper and implied by reliability differentiated pricing policy results in social welfare-maximizing investment and operation decisions

  17. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U 3 O 8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  18. Stand-alone induction generators for small water power schemes

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Adam [Intermediate Technology Development Group, Rugby (United Kingdom); Smith, Nigel [Smith Associates, Nottingham (United Kingdom)

    1996-04-01

    Conventional technology for isolated power generation is the synchronous generator. Using stand-alone induction generators has proved to have tremendous advantages in remote regions of developing countries, where electricity has significant social benefits. (author)

  19. Effects of partial shading conditions on maximum power points and mismatch losses in silicon-based photovoltaic power generators

    Energy Technology Data Exchange (ETDEWEB)

    Maki, A.

    2013-11-01

    Photovoltaic (PV) power generators can be used for converting the energy of solar radiation directly into electrical energy without any moving parts. The operation of the generators is highly affected by operating conditions, most importantly irradiances and temperatures of PV cells. PV power generators are prone to electrical losses if the operating conditions are non-uniform such as in a case where part of the modules of a generator are shaded while the rest are receiving the global solar radiation. These conditions are called partial shading conditions and they have been recognized as a major cause of energy losses in PV power generators. In this thesis, the operation of silicon-based PV power generators under partial shading conditions is studied using Matlab Simulink simulation model. The operation of the model has been verified by measurements of electrical characteristics of a PV module under several different operating conditions and also under partial shading conditions. A systematic approach to study the effects of partial shading conditions has been developed and used. In addition to the systematic approach, a vast amount of data measured from the Tampere University of Technology (TUT) Solar Photovoltaic Power Station Research Plant are analyzed and used as input for the simulation model to study operation of PV power generators under actual operating conditions. Partial shading conditions have severe effects on the electrical characteristics of PV power generators and can cause multiple maximum power points (MPPs) to the power-voltage curve of the generators. In most cases, partial shading conditions lead to the occurrence of multiple MPPs, but also only one MPP can be present despite of partial shading. Reasons for this phenomenon are presented and analyzed in this thesis. Because of multiple MPPs, a considerable amount of available electrical energy may be lost when the generator is operating at a local MPP with low power instead of the global MPP. In

  20. Major faults and troubleshooting for the power generator of Qinshan III

    International Nuclear Information System (INIS)

    Liu Guangming; Lu Yongfang; Wang Jun

    2010-01-01

    Generator faults can be sorted into 20 categories, mainly including water leakage, oil leakage, high temperature and short circuit, etc. The paper comprises two sections, the first section emphasizes on typical fault troubleshooting for power generator cooling water leakage, temperature rise and short circuit of Qinshan III, and the second section is conclusion. By expounding the troubleshooting for power generator cooling pipe leakage, -iron-core high temperature and rotor layer short circuit, the repair process and experience in the troubleshooting of typical fault including water leakage, temperature rise and short circuit are described in detail, so as to obtain the overall performance and parameters of the power generator, and provide useful means and plan for future troubleshooting. The paper can make reference to future troubleshooting for power generators. (authors)

  1. Study of thermoelectric systems applied to electric power generation

    International Nuclear Information System (INIS)

    Rodriguez, A.; Vian, J.G.; Astrain, D.; Martinez, A.

    2009-01-01

    A computational model has been developed in order to simulate the thermal and electric behavior of thermoelectric generators. This model solves the nonlinear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empirical expressions for the convection coefficients. A thermoelectric electric power generation test bench has been built in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, such as the temperature of the Peltier modules. With the computational model, we study the influence of the heat flux supplied as well as the room temperature on the electric power generated.

  2. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    Science.gov (United States)

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  3. The transaction costs driving captive power generation: Evidence from India

    International Nuclear Information System (INIS)

    Ghosh, Ranjan; Kathuria, Vinish

    2014-01-01

    The 2003 Indian Electricity Act incentivizes captive power production through open access in an attempt to harness all sources of generation. Yet, we observe that only some firms self-generate while others do not. In this paper we give a transaction cost explanation for such divergent behavior. Using a primary survey of 107 firms from India, we construct a distinct variable to measure the transaction-specificity of electricity use. The ‘make or buy’ decision is then econometrically tested using probit model. Results are highly responsive to transaction-specificity and the likelihood of captive power generation is positively related to it. At the industrial level, this explains why food and chemical firms are more likely to make their own electricity. Since the burden of poor grid supply is highest on smaller sized and high transaction-specific firms, the grid access policies need to account for firm-level characteristics if government wants to incentivize captive power generation. - Highlights: • We analyze why some firms opt for captive power generation while others do not. • We examine the role of transaction costs in this decision making using probit model. • Unique data from a primary survey of manufacturing firms in Andhra Pradesh, India. • Transaction-specificity significantly determines who installs captive power plant (CPP). • Firm-level characteristics crucial in policies incentivizing captive generation

  4. The Japanese attitude towards nuclear power generation. Changes as seen through time series

    International Nuclear Information System (INIS)

    Kitada, Atsuko; Hayashi, Chikio

    1999-01-01

    This study is intended to determine people's attitudes toward nuclear power generation, shedding light on the changed and unchanged structures of attitudes by comparing data on nuclear power generation for 1993 and 1998. Although some nuclear facility accidents occurred during the last five years, public attitudes toward nuclear power generation remain almost the same. For the utilization of nuclear power generation, there was a slight increase in passive affirmation. The percentage of active affirmation was less than 10 percent, but if passive affirmation is included a high percentage exceeding 70 percent acknowledged the utilization of nuclear power. It was found that people's attitudes toward the utilization of nuclear power became slightly more positive in 1998 than in 1993. The difference was found in the general measure of attitudes based on many questions about nuclear power generation, and in the importance and the utility of nuclear power generation including the purpose of nuclear power generation. People are not conscious of the anxiety about nuclear power generation in ordinary life. However, when people were made to think about nuclear power generation, the degree of anxiety increases even if provided with data that prove its safety. On the other hand, it was revealed that the degree of anxiety about nuclear facility accidents remains the same in the last five years, that is, it has not increased, although a growing interest in the disposal and treatment of radioactive wastes was seen. As a result of a comparison of the structure of attitudes, based on the study by Hayashi 1994, it was found that the group that had no interest in nuclear power generation offered the most noticeable features in answering pattern in both 1993 and 1998. Moreover, it was found also that the latter group of respondents were characterized by a little opportunity to have information. A similarity in the relationship between people's attitudes toward nuclear power generation

  5. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    International Nuclear Information System (INIS)

    Holcomb, R.S.

    1992-01-01

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion system was carried out in the 1960's which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper

  6. Synchronization Methods for Three Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    Nowadays, it is a general trend to increase the electricity production using Distributed Power Generation Systems (DPGS) based on renewable energy resources such as wind, sun or hydrogen. If these systems are not properly controlled, their connection to the utility network can generate problems...... on the grid side. Therefore, considerations about power generation, safe running and grid synchronization must be done before connecting these systems to the utility network. This paper is mainly dealing with the grid synchronization issues of distributed systems. An overview of the synchronization methods...

  7. Problems of coal-based power generation

    International Nuclear Information System (INIS)

    Noskievic, P.

    1996-01-01

    Current problems of and future trends in coal-based power generation are discussed. The present situation is as follows: coal, oil and gas contribute to world fossil fuel resources 75%, 14%, and 11%, respectively, and if the current trend will continue, will be depleted in 240, 50, and 60 years, respectively; the maximum resource estimates (including resources that have not yet been discovered) are 50% higher for oil and 100% higher for gas, for coal such estimates have not been made. While the world prices of coal are expected to remain virtually constant, the prices of gas will probably increase to be twice as high in 2010. Thus, the role of coal may be higher in the next century than it is now, provided that due attention is paid to improving the efficiency of coal-fired power plants and reducing their adverse environmental effects. A comparison of economic data for coal-fired and gas-fired power plants is as follows: Investment cost (USD/kW): 1400, 800; fixed running cost (USD/kW.y): 33.67, 9.0; variable running cost (USD/kWh): 0.30, 0.15; power use (kJ/kWh): 10.29, 7.91; annual availability (%): 70, 50; fuel price (USD/GJ): 1.00, 4.30; power price (USD/kWh): 4.28, 5.52. The investment cost for coal-fired plants covers new construction including flue gas purification. The integrated gasification combined cycle (IGCC) seems to be the future of coal-based power generation. The future problems to be addressed include ways to reduce air pollution, improving the efficiency of the gas-steam cycle, and improving the combustion process particularly with a view to reducing substantially its environmental impact. (P.A.). 4 figs., 4 tabs., 9 refs

  8. Study of novel plasma devices generated by high power lasers coupled with a micro-pulse power technology

    International Nuclear Information System (INIS)

    Nishida, A; Chen, Z L; Jin, Z; Kondo, K; Nakagawa, M; Kodama, R; Arima, H; Yoneda, H

    2008-01-01

    The authors have proposed introducing a micro pulse power technology in high power laser plasma experiments to boost up the return current, resulting in efficiently guiding of energetic electrons. High current pulse power generators with a pulse laser trigger system generate high-density plasma that is well conductor. To efficiently guiding by using a micro pulse power, we estimated parameter of a micro pulse power system that is voltage of rise time, current, charging voltage and capacitance

  9. Promotion of public awareness relating nuclear power in young generation

    International Nuclear Information System (INIS)

    Kobayashi, Yoko

    2011-01-01

    Although nuclear power presents problems of waste, safety and non-proliferation, many people understand that it is an essential energy for addressing the global climate and reducing CO2. However, a vague negative-image to the radiation and nuclear power is deep-rooted among the public. Young generation is not an exception. It is very important to transfer many information from the experienced generation in the industry to young generations. In this paper, the research that applied the information intelligence to nuclear power, which involves of the nuclear fuel cycle, and the communication related activities for the social acceptance and improvement. (author)

  10. 78 FR 32385 - Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC...

    Science.gov (United States)

    2013-05-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-64-000] Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC; Constellation NewEnergy...) Rules of Practice and Procedure, 18 CFR 385.207, Exelon Generation Company, LLC, CER Generation II, LLC...

  11. Current multiplier to improved generator-to-load coupling for pulse-power generators

    International Nuclear Information System (INIS)

    Chuvatin, A.S.; Rudakov, L.I.; Weber, B.V.; Bayol, F.; Cadiergues, R.

    2005-01-01

    The circuit presented improves the coupling of existing and future pulsed power generators to physical loads. The efficiency of the proposed current multiplication scheme could theoretically exceed the values for a typical direct load-to-generator circuit. The scheme could be beneficial for use in actual applications and two examples of such applications are given [ru

  12. Proposal of electric power generation from generators to water edge in the region of Sarapiqui

    International Nuclear Information System (INIS)

    Rodriguez Fallas, Cindy Veronica

    2013-01-01

    A proposed electric power generation is developed from generators to water edge in the region of Sarapiqui. The environmental characteristics, such as the hydrological network, hydrogeology, soil type, life zones, climatology, precipitation, temperature, evapotranspiration and water supply and demand, of rivers crossed by basin in the region of Sarapiqui, are determined by bibliographic consultations to implement the proposal. The most recent production statistics of the electric subsector of Costa Rica are described to reveal the growing annual demand and need for satisfaction. The zone of Sarapiqui is diagnosed as the right place to allow the generation of electric power from generators to water edge [es

  13. Technology survey of electrical power generation and distribution for MIUS application

    Science.gov (United States)

    Gill, W. L.; Redding, T. E.

    1975-01-01

    Candidate electrical generation power systems for the modular integrated utility systems (MIUS) program are described. Literature surveys were conducted to cover both conventional and exotic generators. Heat-recovery equipment associated with conventional power systems and supporting equipment are also discussed. Typical ranges of operating conditions and generating efficiencies are described. Power distribution is discussed briefly. Those systems that appear to be applicable to MIUS have been indicated, and the criteria for equipment selection are discussed.

  14. Sustainability assessment of renewable power and heat generation technologies

    International Nuclear Information System (INIS)

    Dombi, Mihály; Kuti, István; Balogh, Péter

    2014-01-01

    Rationalisation of consumption, more efficient energy usage and a new energy structure are needed to be achieved in order to shift the structure of energy system towards sustainability. The required energy system is among others characterised by intensive utilisation of renewable energy sources (RES). RES technologies have their own advantages and disadvantages. Nevertheless, for the strategic planning there is a great demand for the comparison of RES technologies. Furthermore, there are additional functions of RES utilisation expected beyond climate change mitigation, e.g. increment of employment, economic growth and rural development. The aim of the study was to reveal the most beneficial RES technologies with special respect to sustainability. Ten technologies of power generation and seven technologies of heat supply were examined in a multi-criteria sustainability assessment frame of seven attributes which were evaluated based on a choice experiment (CE) survey. According to experts the most important characteristics of RES utilisation technologies are land demand and social impacts i.e. increase in employment and local income generation. Concentrated solar power (CSP), hydropower and geothermal power plants are favourable technologies for power generation, while geothermal district heating, pellet-based non-grid heating and solar thermal heating can offer significant advantages in case of heat supply. - highlights: • We used choice experiment to estimate the weights of criteria for the sustainability assessment of RES technologies. • The most important attributes of RES technologies according to experts are land demand and social impacts. • Concentrated solar power (CSP), hydropower and geothermal power plants are advantageous technologies for power generation. • Geothermal district heating, pellet-based non-grid heating and solar thermal heating are favourable in case of heat supply

  15. Output power control of two coupled wind generators

    Directory of Open Access Journals (Sweden)

    A Boukhelifa

    2016-09-01

    Full Text Available In this paper we are interested to the power control of two wind generators coupled to the network through power converters. Every energy chain conversion is composed of a wind turbine, a gearbox, a Double Fed Induction Generator (DFIG, two PWM converters and a DC bus. The power exchange and the DC voltage are controlled by the use of proportional integral correctors. For our study, initially we have modeled all the components of the one system energy conversion, and then we have simulated its behavior using Matlab/Simulink. In another part of this paper we present the analysis of the interaction and the powerflow between the two aerogenerators following a disturbance due to wind speed on every turbine. Also we have considered a connection fault to the DC bus. In each case the assessment of power brought into play is checked. Simulation tests are established.

  16. Medical aspects of power generation, present and future.

    Science.gov (United States)

    Linnemann, R E

    1979-01-01

    It can be seen that the radiation emissions of nuclear power plants are small indeed, compared to natural background radiation and other man-made sources of radiation. For example, the poulation is exposed to 100 times more radiation from television sets than from nuclear power reactors. The assumed risks to the people in this country from nuclear power reactors are also small compared to the normal risks which are tolerated in this society. The complete elimination of all hazards is a most difficult if not impossible task. If we need and desire a certain level of electrical energy, if we must choose between alternative sourves of the energy, then it is apparent that the total impact on our health from nuclear power generation of electricity, under normal operations and in consideration of catastrophic accident probabilities, is significantly less than that of continuing or increasing use of fossil fuels to generate electricity.

  17. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  18. Union Gas assessment protocol for power generator air and noise emissions

    International Nuclear Information System (INIS)

    Complin, P.

    2008-01-01

    This paper outlined a procedure for obtaining data to facilitate air and noise compliance assessments for emergency and other fuel-fired power generators. Facilities with the generators may contain additional sources of nitrogen oxides (NO x ). The assessments are required for each new or modified generator in order to ensure that regulatory requirements in the Air Pollution Local Air Quality Regulation and the Noise Pollution Control documents are met. The air emission assessments follow the Ontario Ministry of the Environment (MOE) report. The paper included a screening process to screen out generators with negligible emissions. A maximum power rating was calculated using AP-2 emission factors and a conservative heat rating assumption. Maximum power ratings for various types of generators were presented. The information requirements included a description of the type of engine used; sound power level data; octave band insertion loss data; and plan and section drawings of the generator room. 2 tabs.

  19. Development of wind power generation in China

    International Nuclear Information System (INIS)

    Zhiquan, Y.; Yan, C.; Lijun, X.

    1995-01-01

    Present status and development of wind power generation in China is described in this paper. China is vast in territory with abundant wind resources. The exploitable wind energy in China is estimated up to 253,000 MW. At present, more than 150 thousand small WTGs of a total capacity of 17 MW are used to provide residential electricity uses in non-grid connected areas and 13 wind farms, with above 160 medium and large scale grid connected WTGs (50-500 kW) of a total capacity of 30 MW, have been constructed. At the same time, some progress has been made in the fields of nation-wide wind resource assessment, measurement technology of wind turbine performance, the assimilation of foreign wind turbine technology, grid connected WTG technology and the operation of wind farm etc. It is planned that the total installed capacity of WTGs will reach 1000 MW by the end of 2000. Wind power generation could be a part of electric power industry in China. (Author)

  20. ICAN: High power neutral beam generation

    International Nuclear Information System (INIS)

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  1. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation

    DEFF Research Database (Denmark)

    Heide, Dominik; Greiner, Martin; von Bremen, Lüder

    The storage and balancing needs of a simplified European power system, which is based on wind and solar power generation only, are derived from an extensive weather-driven modeling of hourly power mismatches between generation and load. The storage energy capacity, the annual balancing energy...... and the balancing power are found to depend significantly on the mixing ratio between wind and solar power generation. They decrease strongly with the overall excess generation. At 50% excess generation the required long-term storage energy capacity and annual balancing energy amount to 1% of the annual consumption....... The required balancing power turns out to be 25% of the average hourly load. These numbers are in agreement with current hydro storage lakes in Scandinavia and the Alps, as well as with potential hydrogen storage in mostly North-German salt caverns....

  2. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation

    DEFF Research Database (Denmark)

    Heide, Dominik; Greiner, Martin; von Bremen, Lüder

    2011-01-01

    The storage and balancing needs of a simplified European power system, which is based on wind and solar power generation only, are derived from an extensive weather-driven modeling of hourly power mismatches between generation and load. The storage energy capacity, the annual balancing energy...... and the balancing power are found to depend significantly on the mixing ratio between wind and solar power generation. They decrease strongly with the overall excess generation. At 50% excess generation the required long-term storage energy capacity and annual balancing energy amount to 1% of the annual consumption....... The required balancing power turns out to be 25% of the average hourly load. These numbers are in agreement with current hydro storage lakes in Scandinavia and the Alps, as well as with potential hydrogen storage in mostly North-German salt caverns....

  3. Prediction of Chiller Power Consumption: An Entropy Generation Approach

    KAUST Repository

    Saththasivam, Jayaprakash

    2016-06-21

    Irreversibilities in each component of vapor compression chillers contribute to additional power consumption in chillers. In this study, chiller power consumption was predicted by computing the Carnot reversible work and entropy generated in every component of the chiller. Thermodynamic properties namely enthalpy and entropy of the entire refrigerant cycle were obtained by measuring the pressure and temperature at the inlet and outlet of each primary component of a 15kW R22 water cooled scroll chiller. Entropy generation of each component was then calculated using the First and Second Laws of Thermodynamics. Good correlation was found between the measured and computed chiller power consumption. This irreversibility analysis can be also effectively used as a performance monitoring tool in vapor compression chillers as higher entropy generation is anticipated during faulty operations.

  4. Preliminary Feasibility Study on Application of Very Large Scale-Photovoltaic Power Generation in China

    Institute of Scientific and Technical Information of China (English)

    Hu Xuehao; Zhou Xiaoxin; Bai Xiaomin; Zhang Wentao

    2005-01-01

    Solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based on the forecasting of electric load demand and energy structure of power generation in the middle of 21century, the pictures of VLS-PV power generation is composed, the operation characteristic of VLS-PV power generation and the adaptability of electric power grid for it is analyzed, the ways for transmitting large amount of PV power and the economic and technical bottlenecks for applying VLS-PV power generation are discussed. Finally, the steps and suggestions for developing VLS-PV power generation and its electric power system in China are proposed.

  5. On site power generation protects water supply for Ajax, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, Mohamed

    2011-01-15

    The Ajax water supply plant treats and distribute water for the town of Ajax and the nearby City of Pickering and the operations staff manages two other treatment plants supplying the City of Oshawa and the Town of Whitby, and a dozen pumping stations, reservoirs and elevated tanks. The plant requires around 2 MW of continuous power to supply its 150,000 customers. Although local utility power is reliable, standby generators are mandated by the Ontario Ministry of the Environment. When power goes out problems can result in the plant and system. To avoid these, the Ajax plant staff selected Cummins Power Generation who delivered one 350 kW and two 1500 kW generator sets with automatic transfer switches and paralleling switchgear. These digital systems parallel and synchronize the generator sets with each other and with the utility, which allows the plant to provide continuous service. The plant is designed for twice its current capacity and is ready to handle future requirements.

  6. Reliability of diesel generators in the Finnish and Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Pulkkinen, U.; Huovinen, T.; Norros, L.; Vanhala, J.

    1989-10-01

    Diesel generators are used as emergency AC-power sources in nuclear power plants and they produce electric power for other emergency systems during accidents in which offsite power is lost. The reliability of diesel generators is thus of major concern for overall safety of nuclear power plants. In this study we consider the reliability of diesel generators in the Swedish and Finnish nuclear power plants on the basis of collected operational experience. We classify the occurred failures according to their functional criticality, type and cause. The failures caused by human errors in maintenance and testing are analysed in detail. We analyse also the reliability of the diesel generator subsystems. Further, we study the effect of surveillance test and the type of test on the reliability. Finally we construct an unavailability model for single diesel generator unit and discuss the findings of the study giving some practical recommendations

  7. World nuclear power generation market and prospects of industry reorganization

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2007-01-01

    In late years there are many trends placing nuclear energy with important energy in various countries in the world due to a remarkable rise to an energy price, importance of energy security and a surge of recognition to a global environment problem. Overseas nuclear industry's acquisition by a Japanese nuclear power plant maker and its capital or business tie-up with an overseas company, were announced in succession in 2006. A nuclear power plant maker has played an extremely important role supporting wide technology in all stages of a design, construction, operation and maintenance in a nuclear power generation business. After having surveyed the recent trend of world nuclear power generation situation, a background and the summary of these acquisition/tie-ups made were investigated and analyzed to consider the influence that movement of such an industry gives a world nuclear power generation market. (T. Tanaka)

  8. North Anna Power Station - Unit 1: Overview of steam generator replacement project activities

    International Nuclear Information System (INIS)

    Gettler, M.W.; Bayer, R.K.; Lippard, D.W.

    1993-01-01

    The original steam generators at Virginia Electric and Power Company's (Virginia Power) North Anna Power Station (NAPS) Unit 1 have experienced corrosion-related degradation that require periodic inspection and plugging of steam generator tubes to ensure their continued safe and reliable operation. Despite improvements in secondary water chemistry, continued tube degradation in the steam generators necessitated the removal from service of approximately 20.3 percent of the tubes by plugging, (18.6, 17.3, and 25.1 for steam generators A, B, and C, respectively). Additionally, the unit power was limited to 95 % during, its last cycle of operation. Projections of industry and Virginia Power experience indicated the possibility of mid-cycle inspections and reductions in unit power. Therefore, economic considerations led to the decision to repair the steam generators (i.e., replace the steam generator lower assemblies). Three new Model 51F Steam Generator lower assembly units were ordered from Westinghouse. Virginia Power contracted Bechtel Power Corporation to provide the engineering and construction support to repair the Unit 1 steam generators. On January 4, 1993, after an extended coastdown period, North Anna Unit 1 was brought off-line and the 110 day (breaker-to-breaker) Steam Generator Replacement Project (SGRP) outage began. As of this paper, the outage is still in progress

  9. Sum frequency generation for surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-01-01

    Surface vibrational spectroscopy is one of the best means for characterizing molecular adsorbates. For this reason, many techniques have been developed in the past. However, most of them suffer from poor sensitivity, low spectral and temporal resolution, and applications limited to vacuum solid interfaces. Recently, the second harmonic generation (SHG) technique was proved repeatedly to be a simple but versatile surface probe. It is highly sensitive and surface specific; it is also capable of achieving high temporal, spatial, and spectral resolution. Being an optical technique, it can be applied to any interface accessible by light. The only serious drawback is its lack of molecular selectivity. An obvious remedy is the extension of the technique to IR-visible sum frequency generation (SFG). Surface vibrational spectroscopy with submonolayer sensitivity is then possible using SFG with the help of a tunable IR laser. The authors report here an SFG measurement of the C-H stretch vibration of monolayers of molecules at air-solid and air-liquid interfaces

  10. Flapping foil power generator performance enhanced with a spring-connected tail

    Science.gov (United States)

    Liu, Zhengliang; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.

    2017-12-01

    The flexibility effects on the performance of a flapping foil power generator are numerically studied by using the immersed boundary-lattice Boltzmann method at a Reynolds number of 1100. The flapping foil system consists of a rigid NACA0015 foil undergoing harmonic pitch and plunge motions and a passively actuated flat plate pinned to the trailing edge of the rigid foil. The flexibility is modeled by a torsional spring model at the conjuncture of the rigid foil and the tail. Here, a parametric study on mass density and natural frequency is conducted under the optimum kinematic condition of the rigid system identified from the literature and numerical simulations made for reduced frequency f* = 0.04-0.24 and pitch amplitude θ0 = 40°-90°. Four typical cases are discussed in detail by considering time histories of hydrodynamic loads and tail deformations under the optimal and non-optimal kinematic conditions. Results show that under the rigid-system optimal kinematic condition, a tail with appropriate mass density (μ = 0.60) and resonant frequency ( fr*=1.18 ) can improve the maximum efficiency by 7.24% accompanied by an increase of 6.63% in power compared to those of a rigid foil with a rigid tail. This is because the deflection of the tail reduces the low pressure region on the pressure surface (i.e., the lower surface during the upstroke or the upper surface during the downstroke) caused by the leading edge vortex after the stroke reversal, resulting in a higher efficiency. At high flapping frequencies, a spring-connected tail ( fr*=0.13 ) eliminates the large spike in the moment observed in high stiffness cases, reducing the power required for the pitch motion, resulting in 117% improvement in efficiency over that with a rigid tail at a reduced frequency of 0.24.

  11. Current Control Method for Distributed Generation Power Generation Plants under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Hermoso, Juan Ramon

    2011-01-01

    The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...

  12. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, F.L.; Moraes, A.J.; Guimaraes, G.C.; Sanhueza, S.M.R.; Vaz, A.R. [Federal University of Uberlandia (UFU), MG (Brazil)

    2009-07-01

    In the case of photovoltaic solar systems (PV) acting as a distributed generation (DG), the DC energy obtained is fed through the power-conditioning unit (inverter) to the grid. The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can be utilized instead of CSI, we can generate reactive power commensurate with the remaining unused capacity at any given point in time. According to the theory of instantaneous power, the reactive and active power of inverter can be regulated by changing the amplitude and the phase of the output voltage of the inverter. Based on this theory, the active power output and the reactive power compensation (RPC) of the system are realized simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of PV system can still be used to improve the utilization factor of the inverter. The MATLAB simulation results validate the feasibility of the method. (author)

  13. Application of Thermoelectric Devices to Fuel Cell Power Generation: Demonstration and Evaluation

    National Research Council Canada - National Science Library

    Huston, John; Wyatt, Chris; Nichols, Chris; Binder, Michael J; Holcomb, Franklin H

    2004-01-01

    The Department of Defense (DOD) is concerned with reliable and cost-effective power generation of on-site power generators as well as minimizing the environment impact of these generators. Thermoelectric (TE...

  14. Induction generator-induction motor wind-powered pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R. [CPDEE - UFMG, Belo Horizonte (Brazil)

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  15. Design and optimization of geothermal power generation, heating, and cooling

    Science.gov (United States)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  16. Fiscal 2000 report on the international joint verification of photovoltaic power generation system. Verification of hybrid system comprising photovoltaic power generation system and micro-hydroelectric power generation systems; 2000 nendo taiyoko hatsuden system kokusai kyodo jissho kaihatsu hokokusho. Taiyoko micro suiryoku hybrid system jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    Research was conducted in Vietnam for the development of a hybrid system comprising a photovoltaic power generation system and a micro-hydroelectric power generation system. In verification test operation, data measurement had been under way for approximately 18 months since it was started in September 1999. The rate of days on which effective data were obtained throughout this period was 93.4%. Power generated by the micro-hydroelectric power generation system was 19.4kWh/d with so small a capacity factor of 3.2%. The capacity factor of the photovoltaic power generation system was again very small at 4.5% since the amount consumed by the load was as small as 131.0kWh/d. Weather data of solar radiation and precipitation were being collected smoothly. In the study of hybrid system optimization, the effect of inductor generator activation upon the inverter was taken up. In the study of capacity balance optimization between the constituent elements of the hybrid system, methodology was established and verified, and calculations were carried out. (NEDO)

  17. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  18. Thermodynamic assessment of integrated biogas-based micro-power generation system

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Barzegaravval, Hasan; Wahid, Mazlan Abdul; Ganjehkaviri, Abdolsaeid; Sies, Mohsin Mohd

    2016-01-01

    Highlights: • A thermodynamic modelling of an integrated biogas-based micro-power generation system is reported. • The impact of design parameters on the thermodynamic performance of the system is evaluated. • High turbine inlet temperatures lead the system to the higher energy and exergy efficiency and higher power generation. • Enhancement of GT isentropic efficiency incurs negative effects on the performance of air preheater and heat exchanger. • The rate of power generation increases by the enhancement of steam turbine pressure in ORC. - Abstract: In this paper, a thermodynamic modelling of an integrated biogas (60%CH_4 + 40%CO_2) micro-power generation system for electricity generation is reported. This system involves a gas turbine cycle and organic Rankine cycle (ORC) where the wasted heat of gas turbine cycle is recovered by closed ORC. The net output power of the micro-power generation system is fixed at 1.4 MW includes 1 MW power generated by GT and 0.4 MW by ORC. Energy and exergy assessments and related parametric studies are carried out, and parameters that influence on energy and exergy efficiency are evaluated. The performance of the system with respect to variation of design parameters such as combustion air inlet temperature, turbine inlet temperature, compressor pressure ratio, gas turbine isentropic efficiency and compressor isentropic efficiency (from the top cycle) and steam turbine inlet pressure, and condenser pressure (from bottoming cycle) is evaluated. The results reveal that by the increase of gas turbine isentropic efficiency, the outlet temperature of gas turbine decreases which incurs negative impacts on the performance of air preheater and heat exchanger, however the energy and exergy efficiency increases in the whole system. By the increase of air compressor pressure ratio, the energy and exergy of the combined cycle decreases. The exergy efficiency of ORC alters by the variation of gas turbine parameters which can be

  19. Distributed Power-Generation Systems and Protection

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng; Yang, Dongsheng

    2017-01-01

    the challenging issues and, more importantly, to leverage the energy generation, stringent demands from both utility operators and consumers have been imposed on the DPGS. Furthermore, as the core of energy conversion, numerous power electronic converters employing advanced control techniques have been developed...... for the DPGS to consolidate the integration. In light of the above, this paper reviews the power-conversion and control technologies used for DPGSs. The impacts of the DPGS on the distributed grid are also examined, and more importantly, strategies for enhancing the connection and protection of the DPGS...

  20. Small reactor power systems for manned planetary surface bases

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  1. Small reactor power systems for manned planetary surface bases

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options

  2. Efficiency Analysis of a Wave Power Generation System by Using Multibody Dynamics

    International Nuclear Information System (INIS)

    Kim, Min Soo; Sohn, Jeong Hyun; Kim, Jung Hee; Sung, Yong Jun

    2016-01-01

    The energy absorption efficiency of a wave power generation system is calculated as the ratio of the wave power to the power of the system. Because absorption efficiency depends on the dynamic behavior of the wave power generation system, a dynamic analysis of the wave power generation system is required to estimate the energy absorption efficiency of the system. In this study, a dynamic analysis of the wave power generation system under wave loads is performed to estimate the energy absorption efficiency. RecurDyn is employed to carry out the dynamic analysis of the system, and the Morison equation is used for the wave load model. According to the results, the lower the wave height and the shorter the period, the higher is the absorption efficiency of the system

  3. Efficiency Analysis of a Wave Power Generation System by Using Multibody Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Soo; Sohn, Jeong Hyun [Pukyong National Univ., Busan (Korea, Republic of); Kim, Jung Hee; Sung, Yong Jun [INGINE Inc., Seoul (Korea, Republic of)

    2016-06-15

    The energy absorption efficiency of a wave power generation system is calculated as the ratio of the wave power to the power of the system. Because absorption efficiency depends on the dynamic behavior of the wave power generation system, a dynamic analysis of the wave power generation system is required to estimate the energy absorption efficiency of the system. In this study, a dynamic analysis of the wave power generation system under wave loads is performed to estimate the energy absorption efficiency. RecurDyn is employed to carry out the dynamic analysis of the system, and the Morison equation is used for the wave load model. According to the results, the lower the wave height and the shorter the period, the higher is the absorption efficiency of the system.

  4. The trend of the public opinion upon nuclear power generation in internet blog

    International Nuclear Information System (INIS)

    Maruta, Katsuhiko; Ueda, Yoshitaka

    2011-01-01

    The authors pay attention to and survey internet information which is called 'blog' to grasp how nuclear power generation information is treated in internet and forms public opinion. Examples of the outcomes are as follows. 1) Numbers of blog reference will change by public opinion upon nuclear power generation. A lot of blog references about nuclear power plants are conducted when a big earthquake occurred. 2) As a feature of the report, numbers of the references against nuclear power generation exceed those which are positive for nuclear power. There are a lot of blog reports which are against nuclear power generation and easy to make readers believe that they are true even if they are based on misunderstanding. It is worried that such reports give people too much negative influence for the public opinion upon nuclear power generation. The authors survey short term trend of the internet public opinion after TEPCO's Fukushima Daiichi Power Plants Accident too. As a result, it is made clear that people's concern upon nuclear power became very high and the ratio of the supporters of nuclear power generation changed after the accident. (author)

  5. Power generation from fuelwood by the Nicaraguan sugar mills

    NARCIS (Netherlands)

    Carneiro de Miranda, R.; Broek, R. van den

    1997-01-01

    With new concept development for the sugar industry and with new power market opportunities, two sugar mills in Nicaragua initiated projects aimed at becoming power plants during the sugar cane off-season. Basically the idea is to use more efficient boilers and turbines, and generate power beyond

  6. Virtual Generation (Energy Efficiency) The Cheapest Source For Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Hasnie, Sohail

    2010-09-15

    Energy efficiency is the cheapest source of energy that has escaped the minds of the politicians in the developing countries. This paper argues for large scale utility led end use efficiency programs in a new paradigm, where 1 million efficient light bulbs is synonymous to a 50 MW power station that costs only 2% of the traditional fossil fuel power station and zero maintenance. Bulk procurement, setting up new standards and generation of certified emissions reduction is part of this strategy. It discusses implementation of a $20 million pilot in the Philippines supported by the Asian Development Bank.

  7. Steam generator replacement at Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Kimura, S.; Dodo, Takashi; Negishi, Kazuo

    1995-01-01

    Eleven nuclear units are in operation at the Kansai Electric Power Co., Inc.. In seven of them, Mihama-1·2·3, Takahama-1·2, and Ohi-1·2, comparatively long duration for tube inspection and repair have been required during late annual outages. KEPCO decided to replace all steam generators in these 7 units with the latest model which was improved upon the past degradation experiences, as a result of comprehensive considerations including public confidence in nuclear power generation, maintenability, and economic efficiency. This report presents the design improvements in new steam generators, replacement techniques, and so on. (author)

  8. Generation reliability assessment in oligopoly power market using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Haroonabadi, H.; Haghifam, M.R.

    2007-01-01

    This paper addressed issues regarding power generation reliability assessment (HLI) in deregulated power pool markets. Most HLI reliability evaluation methods are based on the loss of load (LOLE) approach which is among the most suitable indices to describe the level of generation reliability. LOLE refers to the time in which load is greater than the amount of available generation. While most reliability assessments deal only with power system constraints, this study considered HLI reliability assessment in an oligopoly power market using Monte Carlo simulation (MCS). It evaluated the sensitivity of the reliability index to different reserve margins and future margins. The reliability index was determined by intersecting the offer and demand curves of power plants and comparing them to other parameters. The paper described the fundamentals of an oligopoly power pool market and proposed an algorithm for HLI reliability assessment for such a market. The proposed method was assessed on the IEEE-Reliability Test System with satisfactory results. In all cases, generation reliability indices were evaluated with different reserve margins and various load levels. 19 refs., 7 figs., 1 appendix

  9. Customer adoption of small-scale on-site power generation

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

    2001-04-01

    The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system.

  10. Customer adoption of small-scale on-site power generation

    International Nuclear Information System (INIS)

    Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

    2001-01-01

    The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system

  11. Modeling and simulation of the power demand and supply of a hydrothermal power generating system

    International Nuclear Information System (INIS)

    Pronini, R.A.

    1996-01-01

    Security of supply of electric energy is measured by the capacity to cover the energy demand and power of a supply grid. This coverage is important because the winter peak load period in Switzerland will become problematical in the near future. The objective of this research project is to analyze the ability of a power generating system to satisfy the power requirements of the corresponding supply network. The behaviour of the energy system in critical cases (loss of the largest generator, lack of available power from an external supplier or reduced capacity for energy storage) is tested for the present situation and for the rise in the annual load. The simulation of the load of the supply network is carried out by using a model developed for this project. This model is based on the analysis of half-hourly changes of load and on the statistical maximum values. The power generating system consists of nuclear generating units, hydro units with large reservoirs, run of the river installations and imported energy. Standby units such as gas turbines, spot market and coal-fired power stations are also available. Stochastic and deterministic energy and power models have been developed for the various power stations of the hydrothermal power system. In the case of nuclear power stations, a model has been developed on the basis of the output level, production losses and time and length of outages. The possible feeder streams of the run of the river installations and of the hydro units with a large reservoir are simulated using stochastic methods based on the historical values of the last 35 years. The commitment of the hydro units depends on the peak load requirements. The load and capacity over a period of several days and weeks have been simulated with stochastic models based on the Monte Carlo method and constantly (by half hour intervals) compared. In this manner each month can be simulated. (author) figs., tabs., 46 refs

  12. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    Science.gov (United States)

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  13. Vibration power generator for a linear MR damper

    International Nuclear Information System (INIS)

    Sapiński, Bogdan

    2010-01-01

    The paper describes the structure and the results of numerical calculations and experimental tests of a newly developed vibration power generator for a linear magnetorheological (MR) damper. The generator consists of permanent magnets and coil with foil winding. The device produces electrical energy according to Faraday's law of electromagnetic induction. This energy is applied to vary the damping characteristics of the MR damper attached to the generator by the input current produced by the device. The objective of the numerical calculations was to determine the magnetic field distribution in the generator as well as the electric potential and current density in the generator's coil during the idle run and under the load applied to the MR damper control coil. The results of the calculations were used during the design and manufacturing stages of the device. The objective of the experimental tests carried out on a dynamic testing machine was to evaluate the generator's efficiency and to compare the experimental and predicted data. The experimental results demonstrate that the engineered device enables a change in the kinetic energy of the reciprocal motion of the MR damper which leads to variations in the damping characteristics. That is why the generator may be used to build up MR damper based vibration control systems which require no external power

  14. A Vertical-Axis Off-Grid Squirrel-Cage Induction Generator Wind Power System

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2016-10-01

    Full Text Available In order to broaden the limited utilization range of wind power and improve the charging and discharging control performance of the storage battery in traditional small wind power generation systems, a wind power system based on a vertical-axis off-grid induction generator is proposed in this paper. The induction generator not only can run in a wide wind speed range but can also assist the vertical-axis wind turbine to realize self-starting at low wind speed. Combined with the maximum power point tracking method, the slip frequency control strategy is employed to regulate the pulse width modulation (PWM converter to control the output power of the proposed system when the wind speed and load change. The charge and discharge of the storage battery is realized by the segmented current-limiting control strategy by means of an electric power unloader device connected to the DC bus. All these implement a balanced and stable operation of the proposed power generation system. The experimental research on the 5.5 kW prototype system is developed, and the corresponding results verify the correctness and feasibility of the system design and control strategy. Some comparison experiments with a magnetic suspension permanent magnet synchronous generator (PMSG demonstrate the application prospect of the proposed vertical-axis off-grid induction generator wind power system.

  15. Impact of externalities on various power generation technologies

    International Nuclear Information System (INIS)

    Rubow, L.

    2008-01-01

    This analysis develops and compares the cost of electricity of the envisioned nuclear power plant at Belene1 (with approximately 2000 MW of installed capacity), with the cost of electricity from alternate generation sources, with a view toward the Bulgarian economy. The logical alternate generating sources are: New Lignite fueled Thermal Electric Power Plants (TEPPs) New Coal fueled TEPPs (based on imported coal), and New Natural gas fueled TEPPs. The developed economic cost of electricity considers the internalized costs such as capital, fuel and operating costs, as well as the external costs, such as health and environmental impacts, to the extent possible

  16. Probabilistic Forecast of Wind Power Generation by Stochastic Differential Equation Models

    KAUST Repository

    Elkantassi, Soumaya

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized

  17. Numerical Calculation of the Output Power of a MHD Generator

    Directory of Open Access Journals (Sweden)

    Adrian CARABINEANU

    2014-12-01

    Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.

  18. Efforts onto electricity and instrumentation technology for nuclear power generation

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi

    2000-01-01

    Nuclear power generation shares more than 1/3 of all amounts of in-land generation at present, as a supplying source of stable electric energy after 2000 either. As a recent example of efforts onto electricity and instrumentation technology for nuclear power generation, there are, on instrumentation control system a new central control board aiming at reduction of operator's load, protection of human error, and upgrading of system reliability and economics by applying high level micro-processor applied technique and high speed data transfer technique to central monitoring operation and plant control protection, on a field of reactor instrumentation a new digital control rod position indicator improved of conventional system on a base of operation experience and recent technology, on a field of radiation instrumentation a new radiation instrumentation system accumulating actual results in a wide application field on a concept of application to nuclear power plant by adopting in-situ separation processing system using local network technique, and on a field of operation maintenance and management a conservation management system for nuclear generation plant intending of further effectiveness of operation maintenance management of power plant by applying of operation experience and recent data processing and communication technology. And, in the large electric apparatus, there are some generators carried out production and verification of a model one with actual size in lengthwise dimension, to correspond to future large capacity nuclear power plant. By this verification, it was proved that even large capacity generator of 1800 MVA class could be manufactured. (G.K.)

  19. Green power perspectives on sustainable electricity generation

    CERN Document Server

    Neiva de Figueiredo, Joao

    2014-01-01

    Green Power: Perspectives on Sustainable Electricity Generation; João Neiva de Figueiredo and Mauro GuillénAn Overview of Electricity Generation Sources; Akhil Jariwala and Saumil JariwalaGermany's Energy Revolution; José Carlos Thomaz, Jr. and Sean MichalsonChina's Energy Profile and the Importance of Coal; Julia Zheng and Xiaoting ZhengChina's Search for Cleaner Electricity Generation Alternatives; Julia Zheng and Xiaoting ZhengRenewable Energy in Spain: A Quest for Energy Security; José Normando Bezerra, Jr.Renewable Energy in French Polynesia: From Unpredictable to Energy Independence? Dia

  20. Principles of tariff determination for NPP electric power generation

    International Nuclear Information System (INIS)

    Ratnikov, B.E.; Gitel'man, L.D.; Artemov, Yu.N.; Fiantsev, V.S.

    1988-01-01

    Foundations of price-setting and order of accounting arrangement for NPP electric power are considered. NPP tariffs are established proceeding from standard costs of power generation. The standards are differentiated as to NPP groups, depending on technical, regional and natural geographic factors, taking into account the facility type, unit capacity and the number of similar NPP units. The conclusion is made that under conditions of NPP economic independence expansion and creation of prerequisites for going over to self-financing principles and also due to the qualitatively new stage of nuclear power generation development the level of efficiency, forseen by the tariffs, should be increased

  1. Environmental radiological studies downstream from the Rancho Seco Nuclear Power Generating Station, 1985

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Wong, K.M.; Eagle, R.J.; Brunk, J.L.; Jokela, T.A.

    1986-01-01

    Information compiled in 1985 while assessing the environmental impact of radionuclides previously discharged with aqueous releases from the Rancho Seco Nuclear Power Generating Plant is presented. In October 1984, the quantities of gamma-emitting radionuclides in water discharged to Clay Creek from the plant were reduced below operationally defined detection limits for liquid effluents. However, radionuclides previously discharged persist in the downstream environment and are found in many aquatic dietary components. 134 Cs and 137 Cs are the primary gamma-emitting radionuclides detected in the edible flesh of different fish, crayfish, and frogs. Coefficients for exponential equations are generated, from a least square analysis, that relate the change in concentration of 137 Cs in fish to distance downstream and time between March and October 1985. Concentrations of 137 Cs in surface creek sediments also decreased in the downstream direction much in the same manner as concentrations decreased in fish. However, there was no significant difference in the radiocesium concentrations in surface sediements collected from comparable locations during both 1984 and 1985

  2. Generator gas as a fuel to power a diesel engine

    Directory of Open Access Journals (Sweden)

    Tutak Wojciech

    2014-01-01

    Full Text Available The results of gasification process of dried sewage sludge and use of generator gas as a fuel for dual fuel turbocharged compression ignition engine are presented. The results of gasifying showed that during gasification of sewage sludge is possible to obtain generator gas of a calorific value in the range of 2.15  2.59 MJ/m3. It turned out that the generator gas can be effectively used as a fuel to the compression ignition engine. Because of gas composition, it was possible to run engine with partload conditions. In dual fuel operation the high value of indicated efficiency was achieved equal to 35%, so better than the efficiency of 30% attainable when being fed with 100% liquid fuel. The dual fuel engine version developed within the project can be recommended to be used in practice in a dried sewage sludge gasification plant as a dual fuel engine driving the electric generator loaded with the active electric power limited to 40 kW (which accounts for approx. 50% of its rated power, because it is at this power that the optimal conditions of operation of an engine dual fuel powered by liquid fuel and generator gas are achieved. An additional advantage is the utilization of waste generated in the wastewater treatment plant.

  3. Power generation using sugar cane bagasse: A heat recovery analysis

    Science.gov (United States)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  4. Hybrid Micro-Hydro Power Generation Development in Endau Rompin National Park Johor, Malaysia

    Directory of Open Access Journals (Sweden)

    Yusop Azli

    2017-01-01

    Full Text Available Micro-Hydro electrical power systems are very useful for remote area electrification which does not had supply from the national grid. On the contrary, this area has river streams with high potential for micro-hydro power generation. As such, the UTHM ECO-Hydro Team embarked on a project for erecting a micro-hydro power plant with collaboration with National Education Research Center (NERC, Johor National Park Corporation in Endau Rompin. The existing power generation in this area at present is by using diesel generator gives negative impact on finance and environment in the long run. It supplies power to several including library, offices, open laboratory, chalets and dorms.. At the moment, the micro-hydro system complements the diesel generator, thus becoming a hybrid power generation system.

  5. Syntegra - the next generation of powered bogies; Syntegra - Innovativer Prototyp einer naechsten Triebfahrwerk-Generation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, T.; Teichmann, M. [Siemens AG, Graz (Austria); Joeckel, A. [Siemens AG, Graz (Austria); Loewenstein, L.; Wangelin, F. von [Siemens AG, Erlangen (Germany)

    2007-07-01

    The innovative Syntegra {sup registered} concept fundamentally revolutionizes the characteristics of today's powered bogies and represents a new and highly integrative approach in bogie design. Syntegra combines the traction, bogie and braking technology to form a unified mechatronic system. This approach and, above all, the change of technology generate a large number of synergetic benefits. This new generation of powered bogies unites high efficiency and low weight with reduced lifecycle costs (LCC) and offers considerably better performance than conventional bogie solutions. A first prototype is in service. (orig.)

  6. Solid-State Power Generating Microdevices for Distributed Space System Architectures

    Science.gov (United States)

    Fleurial, J.-P.; Patel, J.; Snyder, G. J.; Huang, C.-K.; Averback, R.; Hill, C.; Chen, G.

    2001-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Conventional power generating devices become inefficient at very low temperatures (temperatures lower than 200 K encountered during Mars missions for example) and rechargeable energy storage devices cannot be operated thereby limiting mission duration. At elevated temperatures (for example for planned solar probe or Venus lander missions), thin film interdiffusion destroys electronic devices used for generating and storing power. Solar power generation strongly depends upon the light intensity, which falls rapidly in deep interplanetary missions (beyond 5 AU), and in planetary missions in the sun shadow or in dusty environments (Mars, for example). Radioisotope thermoelectric generators (RTGs) have been successfully used for a number of deep space missions RTGs. However, their energy conversion efficiency and specific power characteristics are quite low, and this technology has been limited to relatively large systems (more than 100 W). The National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) have been planning the use of much smaller spacecrafts that will incorporate a variety of microdevices and miniature vehicles such as microdetectors, microsensors, and microrovers. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Novel technologies that will function reliably over a long duration mission (ten years and over), in harsh environments (temperature, pressure, and atmosphere) must be developed to enable the success of future space missions. It is also expected that such micropower sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Additional information is contained in the original

  7. Recycling of concrete waste generated from nuclear power plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nagase, Takahiro; Tanaka, Hiroaki; Nawa, Toyoharu

    2012-01-01

    Non-radioactive concrete waste generated from dismantling of a standard large nuclear power plant is estimated to be about 500,000 tons in weight. Using such waste as recycled aggregate within the enclosure of the plant requires a new manufacturing technology that generates a minimal amount of by-product powder. Recycled aggregate has brittle parts with defects such as cracks, pores, and voids in residual paste from original concrete. This study presents a method of selectively removing the defective parts during manufacture to improve the quality of the recycled fine aggregate. With this selective removal method used, the amount of by-product powder can be reduced by half as compared to that by a conventional method. The influences of the characteristics of the recycled fine aggregate on the flowability and strength of the mortar using recycled fine aggregate were evaluated by multiple linear regression analysis. The results clearly showed that the flowability was primarily affected by the filling fraction of recycled fine aggregate, while the compressive strength of mortar was primarily affected by the fraction of defects in the aggregate. It was also found that grains produced by a granulator have more irregularities in the surfaces than those produced by a ball mill, providing an increased mortar strength. Using these findings from this study, efforts are also being made to develop a mechanical technology that enables simultaneous processing of decontamination and recycling. The granulator under consideration is capable of grinding the surfaces of irregularly shaped particles and may be used successfully, under optimal conditions, for the surface decontamination of concrete waste contaminated with radioactive materials. (author)

  8. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    International Nuclear Information System (INIS)

    Kenne, Godpromesse; Goma, Raphael; Nkwawo, Homere; Lamnabhi-Lagarrigue, Francoise; Arzande, Amir; Vannier, Jean Claude

    2010-01-01

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  9. Real-time transient stabilization and voltage regulation of power generators with unknown mechanical power input

    Energy Technology Data Exchange (ETDEWEB)

    Kenne, Godpromesse, E-mail: gokenne@yahoo.co [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun (Cameroon); Goma, Raphael, E-mail: raphael.goma@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere, E-mail: homere.nkwawo@iutv.univ-paris13.f [Departement GEII, Universite Paris XIII, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Lamnabhi-Lagarrigue, Francoise, E-mail: lamnabhi@lss.supelec.f [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Arzande, Amir, E-mail: Amir.arzande@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Vannier, Jean Claude, E-mail: Jean-claude.vannier@supelec.f [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-01-15

    A nonlinear adaptive excitation controller is proposed to enhance the transient stability and voltage regulation of synchronous generators with unknown power angle and mechanical power input. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of relative angular speed, active electric power, infinite bus and generator terminal voltages. The operating conditions are computed online using the above physical available measurements, the terminal voltage reference value and the estimate of the mechanical power input. The proposed design is therefore capable of providing satisfactory voltage in the presence of unknown variations of the power system operating conditions. Using the concept of sliding mode equivalent control techniques, a robust decentralized adaptive controller which insures the exponential convergence of the outputs to the desired ones, is obtained. Real-time experimental results are reported, comparing the performance of the proposed adaptive nonlinear control scheme to one of the conventional AVR/PSS controller. The high simplicity of the overall adaptive control scheme and its robustness with respect to line impedance variation including critical unbalanced operating condition and temporary turbine fault, constitute the main positive features of the proposed approach.

  10. Survey, design, development, and installation of micro hydel power generation

    International Nuclear Information System (INIS)

    Ijaz, M.

    2011-01-01

    This paper presents the survey, design, development and installation Of micro hydel power generation using low head Kaplan water turbine. Electricity production from hydro power has been and still is today, the first renewable source used to generate electricity. The development of energy from renewable is very important step in reduction of carbon emissions(CO/sub 2/).

  11. Short-time action electric generators to power physical devices

    International Nuclear Information System (INIS)

    Glebov, I.A.; Kasharskij, Eh.G.; Rutberg, F.G.; Khutoretskij, G.M.

    1982-01-01

    Requirements to be met by power-supply sources of the native electrophysical facilities have been analyzed and trends in designing foreign electric machine units of short-time action have been considered. Specifications of a generator, manufactured in the form of synchronous bipolar turbogenerator with an all-forged rotor with indirect air cooling of the rotor and stator windings are presented. Front parts of the stator winding are additionally fixed using glass-textolite rings, brackets and gaskets. A flywheel, manufactured in the form of all-forged steel cylinder is joined directly with the generator rotor by means of a half-coupling. An acceleration asynchronous engine with a phase rotor of 4 MW nominal capacity is located on the opposite side of the flywheel. The generator peak power is 242 MVxA; power factor = 0.9; energy transferred to the load 5per 1 pulse =00 MJ; the flywheel weight 81 t

  12. Waste generation comparison: Coal-fired versus nuclear power plants

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1998-01-01

    Low-level radioactive waste generation and disposal attract a great deal of attention whenever the nuclear industry is scrutinized by concerned parties, be it the media, the public, or political interests. It is therefore important to the nuclear industry that this issue be put into perspective relative to other current forms of energy production. Most of the country's fossil-fueled power comes from coal-fired plants, with oil and gas as other fuel sources. Most of the generated waste also comes from coal plants. This paper, therefore, compares waste quantities generated by a typical (1150-MW(electric)) pressurized water reactor (PWR) to that of a comparably sized coal-fired power plant

  13. Solar power generation in a rural region

    International Nuclear Information System (INIS)

    1991-01-01

    The book contains the papers discussions and results of a German/Senegalese seminar on photovoltaic power generation in rural regions of Senegal which was held in Dakar on 19-23 November 1990. (HP) [de

  14. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net-power...

  15. Nuclear excited power generation system

    International Nuclear Information System (INIS)

    Parker, R.Z.; Cox, J.D.

    1989-01-01

    A power generation system is described, comprising: a gaseous core nuclear reactor; means for passing helium through the reactor, the helium being excited and forming alpha particles by high frequency radiation from the core of the gaseous core nuclear reactor; a reaction chamber; means for coupling chlorine and hydrogen to the reaction chamber, the helium and alpha particles energizing the chlorine and hydrogen to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for coupling the helium back to the gaseous core nuclear reactor; and means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, to be coupled back to the reaction chamber in a closed loop. The patent also describes a power generation system comprising: a gaseous core nuclear reactor; means for passing hydrogen through the reactor, the hydrogen being excited by high frequency radiation from the core; means for coupling chlorine to a reaction chamber, the hydrogen energizing the chlorine in the chamber to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, and means for coupling the hydrogen back to the gaseous core nuclear reactor in a closed loop

  16. Outlook of nuclear power generation and international situation

    Energy Technology Data Exchange (ETDEWEB)

    Ekulund, S [International Atomic Energy Agency, Vienna (Austria)

    1978-01-01

    Nuclear power generation is advancing at rapid rate over the world, without any major accident. For the base load of electric power, when choice is made between nuclear energy and petroleum, Nuclear energy has larger economic advantages over petroleum as compared with the days before the oil crisis. The costs of its fuel and fuel cycle technology are reasonable. However, nuclear power generation currently has a number of problems. What causes this uncertainty is not technological, but political, i.e. governmental policy changes, and this is based on the apprehension about nuclear proliferation. What is necessary is to strengthen the existing international framework of nuclear nonproliferation. In this respect, IAEA through comprehensive safeguards will make contributions largely to reduction of the political uncertainty. It is important that the new initiatives toward international nuclear cooperation should eliminate the current trends of restraint and denial.

  17. An Exploratory Study of Thermoelectrostatic Power Generation for Space Flight Applications

    Science.gov (United States)

    Beam, Benjamin H.

    1960-01-01

    A study has been made of a process in which a solar heating cycle is combined with an electrostatic cycle for generating electrical power for space vehicle applications. The power unit, referred to as a thermoelectrostatic generator, is a thin film, solid dielectric capacitor alternately heated by solar radiation and cooled by radiant emission. The theory of operation to extract electrical power is presented. Results of an experiment to illustrate the principle are described. Estimates of the performance of this type of device in space in the vicinity of earth are included. Values of specific power of several kilowatts per kilogram of generator weight are calculated for such a device employing polyethylene terephthalate dielectric.

  18. Thermoelectrical generator powered by human body

    Science.gov (United States)

    Almasyova, Zuzana; Vala, David; Slanina, Zdenek; Idzkowski, Adam

    2017-08-01

    This article deals with the possibility of using alternative energy sources for power of biomedical sensors with low power consumption, especially using the Peltier effect sources. Energy for powering of the target device has been used from the available renewable photovoltaic effect. The work is using of "energy harvesting" or "harvest energy" produced by autonomous generator harvesting accumulate energy. It allows to start working from 0.25 V. Measuring chain consists of further circuit which is a digital monitoring device for monitoring a voltage, current and power with I2C bus interface. Using the Peltier effect was first tested in a thermocontainer with water when the water heating occurred on the basis of different temperature differential between the cold and hot side of the Peltier element result in the production of energy. Realized prototype was also experimentally tested on human skin, specifically on the back, both in idle mode and under load.

  19. Nuclear power generation costs in the United States of America

    International Nuclear Information System (INIS)

    Willis, W.F.

    1983-01-01

    Increasing world energy prices and shortages of fuel resources make the utilization of nuclear power extremely important. The United States nuclear power industry represents the largest body of nuclear power experience in the world. Analysis of the recent United States experience of substantial increases in the cost of nuclear power generation provides good insight into the interdependence of technological, financial, and institutional influences and their combined impact on the economic viability of nuclear power generation. The various factors influencing ultimate generation costs, including construction cost, fuel cost, regulatory reviews, and siting considerations are discussed, and their relative impacts are explored, including discussion of design complexity and related regulatory response. A closer look into the recent relatively high escalation of nuclear plant construction costs shows how differing economic conditions can affect the relative cost effectiveness of various methods of power generation. The vulnerability of capital-intensive, long-lead-time projects to changes in economic conditions and uncertainty in future power demands is discussed. Likewise, the pitfalls of new designs and increased sophistication are contrasted to the advantages which result from proven designs, reliable engineering, and shorter lead times. The value of reliable architect-engineers experienced in the design and construction of the plant is discussed. A discussion is presented of additional regulatory requirements stemming from public safety aspects of nuclear power. These include recognition of requirements for the very large effort for quality assurance of materials and workmanship during plant construction and operation. Likewise, a discussion is included of the demanding nature of operations, maintenance, and modification of plants during the operational phase because of the need for highly qualified operations and maintenance personnel and strict quality assurance

  20. Hybrid system power generation'wind-photovoltaic' connected to the ...

    African Journals Online (AJOL)

    Hybrid system power generation'wind-photovoltaic' connected to the ... from Hybrid System, power delivered to or from grid and phase voltage of the inverter leg. ... Renewable Energy, Electrical Network 220 kV, Hybrid System, Solar, MPPT.

  1. Experimental Study on Effect of Operating Conditions on Thermoelectric Power Generation

    DEFF Research Database (Denmark)

    Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    Effect of boundary conditions of thermal reservoirs on power generation of thermoelectric modules (TEMs) is examined experimentally. To realize the characteristics of the power generation by the TEMs, the system performance is studied over various volumetric flow rates and flow temperatures...

  2. Steam generator life cycle management: Ontario Power Generation (OPG) experience

    International Nuclear Information System (INIS)

    Maruska, C.C.

    2002-01-01

    A systematic managed process for steam generators has been implemented at Ontario Power Generation (OPG) nuclear stations for the past several years. One of the key requirements of this managed process is to have in place long range Steam Generator Life Cycle Management (SG LCM) plans for each unit. The primary goal of these plans is to maximize the value of the nuclear facility through safe and reliable steam generator operation over the expected life of the units. The SG LCM plans integrate and schedule all steam generator actions such as inspection, operation, maintenance, modifications, repairs, assessments, R and D, performance monitoring and feedback. This paper discusses OPG steam generator life cycle management experience to date, including successes, failures and how lessons learned have been re-applied. The discussion includes relevant examples from each of the operating stations: Pickering B and Darlington. It also includes some of the experience and lessons learned from the activities carried out to refurbish the steam generators at Pickering A after several years in long term lay-up. The paper is structured along the various degradation modes that have been observed to date at these sites, including monitoring and mitigating actions taken and future plans. (author)

  3. Power Generation Technology Choice in the Presence of Climate Policy

    International Nuclear Information System (INIS)

    Pettersson, Fredrik

    2005-01-01

    The overall purpose of this thesis is to analyze power generation technology choices in the presence of climate policy. Special attention is paid to the diffusion of renewable power technologies following a carbon pricing policy, and this topic is analyzed in two self-contained papers. The overall objective of paper 1 is to analyze how future investments in the Swedish power sector can be affected by carbon pricing policies following the Kyoto Protocol. In the first part we focus on the price of carbon following the Kyoto commitments and to what extent this policy will affect the relative competitiveness of the available investment alternatives. The second part pays attention to the possible impacts of technology learning - and the resulting cost decreases - on the economics of power generation in the presence of climate policy. The first part considers the majority of power generation technologies available in Sweden, while the second part focuses solely on the competition between combined cycle natural gas plants and the cheapest renewable power alternative, wind power. Methodologically, we approach the above issues from the perspective of a power generator who considers investing in new generation capacity. This implies that we first of all assess the lifetime engineering costs of different power generation technologies in Sweden, and analyze the impact of carbon pricing on the competitive cost position of these technologies under varying rate-of-return requirements. Overall the results indicate that in general it is not certain that compliance with the Kyoto commitments implies substantial increases in renewable power sources. If, therefore, renewable power sources are favored for reasons beyond climate policy additional policy instruments will be needed. The purpose of paper 2 is to analyze the costs for reducing CO 2 emissions in the power-generating sectors in Croatia, the European part of Russia, Macedonia, Serbia and the Ukraine in 2020 by using a linear

  4. Generation of artificial earthquakes for dynamic analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Tsushima, Y.; Hiromatsu, T.; Abe, Y.; Tamaki, T.

    1979-01-01

    A procedure for generating artificial earthquakes for the purpose of the dynamic analysis of the nuclear power plant has been studied and relevant computer codes developed. This paper describes brieafly the generation procedure employed in the computer codes and also deals with the results of two artificial earthquakes generated as an example for input motions for the aseismic design of a BWR-type reactor building. Using one of the generated artificial earthquakes and two actually recorded earthquakes, non-linear responses of the reactor building were computed and the results were compared with each other. From this comparison, it has been concluded that the computer codes are practically usable and the generated artificial earthquakes are useful and powerful as input motions for dynamic analysis of a nuclear power plant. (author)

  5. Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power

    International Nuclear Information System (INIS)

    Hu Jian; Jiang Nan; Li Jie; Shang Kefeng; Lu Na; Wu Yan; Mizuno Akira

    2016-01-01

    The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. (paper)

  6. KOREAN STUDENTS' BEHAVIORAL CHANGE TOWARD NUCLEAR POWER GENERATION THROUGH EDUCATION

    Directory of Open Access Journals (Sweden)

    EUN OK HAN

    2014-10-01

    Full Text Available As a result of conducting a 45 minute-long seminar on the principles, state of use, advantages, and disadvantages of nuclear power generation for Korean elementary, middle, and high school students, the levels of perception including the necessity (p<0.017, safety (p<0.000, information acquisition (p<0.000, and subjective knowledge (p<0.000, objective knowledge (p<0.000, attitude (p<0.000, and behavior (p<0.000 were all significantly higher. This indicates that education can be effective in promoting widespread social acceptance of nuclear power and its continued use. In order to induce behavior change toward positive judgments on nuclear power generation, it is necessary to focus on attitude improvement while providing the information in all areas related to the perception, knowledge, attitude, and behavior. Here, the positive message on the convenience and the safety of nuclear power generation should be highlighted.

  7. Stochastic model of wind-fuel cell for a semi-dispatchable power generation

    DEFF Research Database (Denmark)

    Alvarez-Mendoza, Fernanda; Bacher, Peder; Madsen, Henrik

    2017-01-01

    electrolyte membrane fuel cell, which are embedded in one complete system with the wind power. This study uses historic wind speed data from Mexico; the forecasts are obtained using the recursive least square algorithm with a forgetting factor. The proposed approach provides probabilistic information......Hybrid systems are implemented to improve the efficiency of individual generation technologies by complementing each other. Intermittence is a challenge to overcome especially for renewable energy sources for electric generation, as in the case of wind power. This paper proposes a hybrid system...... for short-term wind power generation and electric generation as the outcome of the hybrid system. A method for a semi-dispatchable electric generation based on time series analysis is presented, and the implementation of wind power and polymer electrolyte membrane fuel cell models controlled by a model...

  8. Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler

    Science.gov (United States)

    Brazdil, Marian; Pospisil, Jiri

    2013-07-01

    The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.

  9. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional-integral, proportio......This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional......-integral, proportional-resonant, and deadbeat (DB) controllers. Additionally, an improved DB controller robust against grid impedance variation is also presented. Since the paper discusses the implementation of these controllers for grid-connected applications, their evaluation is made in three operating conditions....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results...

  10. Nuclear reactor capable of electric power generation during in-service inspection

    International Nuclear Information System (INIS)

    Nakamura, Shinsuke; Nogami, Hitoshi.

    1992-01-01

    The nuclear power plant according to the present invention can generate electric power even in a period when one of a pair of reactors is put to in-service inspection. That is, the nuclear power plant of the present invention comprises a system constitution of two nuclear reactors each of 50% thermal power and one turbine power generator of 100% electric power. Further, facilities of various systems relevant to the two reactors each of 50% thermal power, as a pair, are used in common as much as possible in order to reduce the cost for construction and maintenance/ inspection. Further, a reactor building and a turbine building disposed in adjacent with each for paired two reactors each of 50% thermal power are arranged vertically. This arrangement can facilitate the common use of the facilities for various systems and equipments to attain branching and joining of fluids in reactor feed water systems and main steam system pipelines easily with low pressure loss and low impact shocks. The facility utilization factor of such reactors is remarkably improved by doubling the period of continuous power generation. As a result, economic property is remarkably improved. (I.S.)

  11. System considerations for airborne, high power superconducting generators

    International Nuclear Information System (INIS)

    Southall, H.L.; Oberly, C.E.

    1979-01-01

    The design of rotating superconducting field windings in high power generators is greatly influenced by system considerations. Experience with two superconducting generators designed to produce 5 and 20 Mw resulted in a number of design restrictions. The design restrictions imposed by system considerations have not prevented low weight and high voltage power generation capability. The application of multifilament Nb;sub 3;Sn has permitted a large thermal margin to be designed into the rotating field winding. This margin permits the field winding to remain superconducting under severe system operational requirements. System considerations include: fast rotational startup, fast ramped magnetic fields, load induced transient fields and airborne cryogen logistics. Preliminary selection of a multifilament Nb;sub 3;Sn cable has resulted from these considerations. The cable will carry 864 amp at 8.5K and 6.8 Tesla. 10 refs

  12. Improvement of power quality using distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Munoz, A.; Lopez-Rodriguez, M.A.; Flores-Arias, J.M.; Bellido-Outerino, F.J. [Universidad de Cordoba, Departamento A.C., Electronica y T.E., Escuela Politecnica Superior, Campus de Rabanales, E-14071 Cordoba (Spain); de-la-Rosa, J.J.G. [Universidad de Cadiz, Area de Electronica, Dpto. ISA, TE y Electronica, Escuela Politecnica Superior Avda, Ramon Puyol, S/N, E-11202-Algeciras-Cadiz (Spain); Ruiz-de-Adana, M. [Universidad de Cordoba, Departamento de Quimica Fisica y Termodinamica Aplicada, Campus de Rabanales, E-14071 Cordoba (Spain)

    2010-12-15

    This paper addresses how Distributed Generation (DG), particularly when configured in Combined Heat and Power (CHP) mode, can become a powerful reliability solution in highlight automated factories, especially when integrated with complimentary Power Quality (PQ) measures. The paper presents results from the PQ audit conducted at a highly automated plant over last year. It was found that the main problems for the equipment installed were voltage sags. Among all categories of electrical disturbances, the voltage sag (dip) and momentary interruption are the nemeses of the automated industrial process. The paper analyzes the capabilities of modern electronic power supplies and the convenience of embedded solution. Finally it is addressed the role of the DG/CHP on the reliability of digital factories. (author)

  13. Research and development of peripheral technology for photovoltaic power systems. Meteorological analysis for suitable design of photovoltaic power generation systems; Shuhen gijutsu no kenkyu kaihatsu. Saiteki sekkei no tame no kisho data no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the standard weather data necessary for simulation of PV power generation systems in fiscal 1994. In the study on the selection criterion of the standard weather data from the viewpoint of PV power generation systems, three typical years are used; a year with average solar radiation, and two years with extremely less and more solar radiation for safe simulation. The standard weather data are arranged for output calculation of PV power generation systems by selecting the most typical year based on long-term observation data. The data to be arranged are as follows; total, direct and scattered solar radiations incident upon a horizontal surface, solar radiation upon a slope surface, sunshine duration, air temperature, wind direction, wind velocity, amount of precipitation, and snow depth. For arrangement of the nationwide standard weather data, estimation of total solar radiation is necessary based on sunshine duration data observed by all weather bureaus. In this study, the estimation model was developed of the total solar radiation integrated with time from rotary pyrheliometer data. 5 figs.

  14. Power generation from thermoelectric system-embedded Plexiglas for green building technology

    KAUST Repository

    Inayat, Salman Bin; Hussain, Muhammad Mustafa

    2012-01-01

    10 nW of thermopower generation with a temperature gradient of 21 °C. Albeit tiny at this point with non-optimized design and development, this concept can be extended for relatively large-scale power generation as an additional power supply for green

  15. Power Generation from Coal 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Coal is the biggest single source of energy for electricity production and its share is growing. The efficiency of converting coal into electricity matters: more efficient power plants use less fuel and emit less climate-damaging carbon dioxide. This book explores how efficiency is measured and reported at coal-fired power plants. With many different methods used to express efficiency performance, it is often difficult to compare plants, even before accounting for any fixed constraints such as coal quality and cooling-water temperature. Practical guidelines are presented that allow the efficiency and emissions of any plant to be reported on a common basis and compared against best practice. A global database of plant performance is proposed that would allow under-performing plants to be identified for improvement. Armed with this information, policy makers would be in a better position to monitor and, if necessary, regulate how coal is used for power generation. The tools and techniques described will be of value to anyone with an interest in the more sustainable use of coal.

  16. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.

    Science.gov (United States)

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-07-03

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  17. Photovoltaic power generation field test at Kyodo Newspaper Co. Ltd. (Kakegawa city, Shizuoka prefecture); Kyodo shinbunsha taiyoko hatsuden field test jigyo (Shizuokaken Kakegawashi)

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, T.

    1997-05-30

    Contents are reported of the fiscal 1996 field test of a photovoltaic power generation system installed on the roof surfaces of the parking lot of the above-named newspaper company. The system is used to supply power to the lights in the company office and to a light sign tower for local activities promotion (erected jointly by cities and towns in the neighborhood). It is a 10kW plant operating on system interconnection, provided with an array of 9-series/11-parallel configuration facing due south and inclined at an elevation angle of 15deg. It is so designed that solar cell mounts are installed on two roof surfaces so that space will be secured for the parking lot. The above-mentioned LED-aided light sign tower serves the purpose of informing people of photovoltaic power generation technology and the culture, history, and industry of the local communities involved. Basic data have been collected usable for standardizing the design for example of the mount for the establishment of guidelines for reduction in the system construction cost. Data have been also obtained that will help make propositions about the effective utilization of dead space outdoors. Since the system is installed making use of roof surfaces without affecting parking lot capacity, people`s understanding of the technology has been deepened and data of long-term operation following the experimental introduction and troubles have been collected, all these helping encourage the introduction of photovoltaic power generation

  18. Power and Frequency Control as it Relates to Wind-Powered Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lacommare, Kristina S H

    2010-12-20

    This report is a part of an investigation of the ability of the U.S. power system to accommodate large scale additions of wind generation. The objectives of this report are to describe principles by which large multi-area power systems are controlled and to anticipate how the introduction of large amounts of wind power production might require control protocols to be changed. The operation of a power system is described in terms of primary and secondary control actions. Primary control is fast, autonomous, and provides the first-line corrective action in disturbances; secondary control takes place on a follow-up time scale and manages the deployment of resources to ensure reliable and economic operation. This report anticipates that the present fundamental primary and secondary control protocols will be satisfactory as wind power provides an increasing fraction of the total production, provided that appropriate attention is paid to the timing of primary control response, to short term wind forecasting, and to management of reserves for control action.

  19. Anticorrosion and halobios control for tidal power generating units

    International Nuclear Information System (INIS)

    Shen, J C; Ding, L X

    2012-01-01

    The anticorrosion and halobios control is the key techniquesrelated to the safety and durability of tidal power generating units. The technique of material application, antifouling coating and cathodic protection are often adopted. The technical research, application, updating and development are carried on Jiangxia Tidal Power Station, which is based on the old Unit 1-Unit 5 operated for nearly 30 years, and the new Unit 6 operated in 2007. It is found that stainless steeland the antifouling coating used in Unit 1- Unit 5 are very effective, but cathodic protection is often likely to fail because of the limitation of structure and installation. Analyses and studies for anticorrosion and halobios control techniques of tidal power generating units according to theory, experience and actual effects have been done, which can be for reference to the tidal power station designers and builders.

  20. Z a Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

    Science.gov (United States)

    Spielman, R. B.; Stygar, W. A.; Struve, K. W.; Asay, J. R.; Hall, C. A.; Bernard, M. A.; Bailey, J. E.; McDaniel, D. H.

    2004-11-01

    Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times ~100 ns. The largest such pulsed power driver today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z can deliver more than 20 MA with a time-to-peak of 105 ns to low inductance (~1 nH) loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 cm3 volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression schemes are not new and are, in fact, the basis of all explosive flux-compression generators, but we propose the use of plasma armatures rather than solid, conducting armatures. We present experimental results from the Z accelerator in which magnetic fields of ~2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields are reviewed in context with Z experiments. We describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.