WorldWideScience

Sample records for surface potential switching

  1. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    Science.gov (United States)

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  2. Optical switches based on surface plasmons

    International Nuclear Information System (INIS)

    Chen Cong; Wang Pei; Yuan Guanghui; Wang Xiaolei; Min Changjun; Deng Yan; Lu Yonghua; Ming Hai

    2008-01-01

    Great attention is being paid to surface plasmons (SPs) because of their potential applications in sensors, data storage and bio-photonics. Recently, more and more optical switches based on surface plasmon effects have been demonstrated either by simulation or experimentally. This article describes the principles, advantages and disadvantages of various types of optical switches based on SPs, in particular the all-optical switches. (authors)

  3. EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces

    Science.gov (United States)

    Weinelt, Martin; von Oppen, Felix

    2012-10-01

    In nature, molecules exploit interaction with their environment to realize complex functionalities on the nanometer length scale. Physical, chemical and/or biological specificity is frequently achieved by the switching of molecules between microscopically different states. Paradigmatic examples are the energy production in proton pumps of bacteria or the signal conversion in human vision, which rely on switching molecules between different configurations or conformations by external stimuli. The remarkable reproducibility and unparalleled fatigue resistance of these natural processes makes it highly desirable to emulate nature and develop artificial systems with molecular functionalities. A promising avenue towards this goal is to anchor the molecular switches at surfaces, offering new pathways to control their functional properties, to apply electrical contacts, or to integrate switches into larger systems. Anchoring at surfaces allows one to access the full range from individual molecular switches to self-assembled monolayers of well-defined geometry and to customize the coupling between molecules and substrate or between adsorbed molecules. Progress in this field requires both synthesis and preparation of appropriate molecular systems and control over suitable external stimuli, such as light, heat, or electrical currents. To optimize switching and generate function, it is essential to unravel the geometric structure, the electronic properties and the dynamic interactions of the molecular switches on surfaces. This special section, Molecular Switches at Surfaces, collects 17 contributions describing different aspects of this research field. They analyze elementary processes, both in single molecules and in ensembles of molecules, which involve molecular switching and concomitant changes of optical, electronic, or magnetic properties. Two topical reviews summarize the current status, including both challenges and achievements in the field of molecular switches on

  4. Switching between pitch surfaces

    DEFF Research Database (Denmark)

    Rago, Vincenzo; Silva, João R; Brito, João

    2018-01-01

    Soccer training and completion is conventionally practiced on natural grass (NG) or artificial turf (AT). Recently, AT pitches for training / competition, and of unstable surfaces for injury prevention training has increased. Therefore, soccer players are frequently exposed to variations in pitch...... surface during either training or competition. These ground changes may impact physical and physiological responses, adaptations as well as the injury. The aim of this review was to summarize the acute physical and physiological responses, chronic adaptations, and injury risk associated with exercising...... on different pitch surfaces in soccer. Eligible studies were published in English, had pitch surface as an independent variable, and had physical, physiological or epidemiological information as outcome variables. Specific data extracted from the articles included the training response, training adaptations...

  5. Surface potential of diamond and gold nanoparticles can be locally switched by surrounding materials or applied voltage

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Štěpán; Petit, T.; Girard, H.A.; Kromka, Alexander; Arnault, J.-C.; Rezek, Bohuslav

    2014-01-01

    Roč. 16, č. 4 (2014), s. 1-11 ISSN 1388-0764 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : nanoparticles * surface potential * charge trapping * kelvin probe force * microscopy * nanodiamond Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.184, year: 2014

  6. Creation of Principally New Generation of Switching Technique Elements (Reed Switches) with Nanostructured Contact Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Karabanov S M; Zeltser I A; Maizels R M; Moos E N; Arushanov K A, E-mail: zeltseria@rmcip.ru [Russia, Ryazan, 390027, Novaya Str., 51B, Ryazan Metal Ceramics Instrumentation Plant JSC (Russian Federation)

    2011-04-01

    The cycle of activities of the creation of principally new generation of reed switches with nanostructured contact surfaces was implemented. Experimental justification of the opportunity of reed switches creation with modified contact surface was given (instead of precious metals-based galvanic coating). Principally new technological process of modification of magnetically operated contacts contacting surfaces was developed, based on the usage of the ion-plasma methods of nanolayers and nanostructures forming having specified contact features.

  7. Generalization of fewest-switches surface hopping for coherences

    Science.gov (United States)

    Tempelaar, Roel; Reichman, David R.

    2018-03-01

    Fewest-switches surface hopping (FSSH) is perhaps the most widely used mixed quantum-classical approach for the modeling of non-adiabatic processes, but its original formulation is restricted to (adiabatic) population terms of the quantum density matrix, leaving its implementations with an inconsistency in the treatment of populations and coherences. In this article, we propose a generalization of FSSH that treats both coherence and population terms on equal footing and which formally reduces to the conventional FSSH algorithm for the case of populations. This approach, coherent fewest-switches surface hopping (C-FSSH), employs a decoupling of population relaxation and pure dephasing and involves two replicas of the classical trajectories interacting with two active surfaces. Through extensive benchmark calculations of a spin-boson model involving a Debye spectral density, we demonstrate the potential of C-FSSH to deliver highly accurate results for a large region of parameter space. Its uniform description of populations and coherences is found to resolve incorrect behavior observed for conventional FSSH in various cases, in particular at low temperature, while the parameter space regions where it breaks down are shown to be quite limited. Its computational expenses are virtually identical to conventional FSSH.

  8. Chemical switches and logic gates based on surface modified semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Szacilowski; Wojciech, Macyk [Jagiellonian Univ., Dept. of Chemistry, Krakow (Poland)

    2006-02-15

    Photoelectrochemical properties of multicomponent photo-electrodes based on titanium dioxide and cadmium sulfide powders modified with hexacyanoferrate complexes have been examined. Photocurrent responses were recorded as functions of applied potential and photon energy. Surprisingly, the photocurrent can be switched between positive and negative values as a result of potential or photon energy changes. This new effect called Photo Electrochemical Photocurrent Switching (PEPS) opens a possibility of new chemical switches and logic gates construction. Boolean logic analysis and a tentative mechanism of the device are discussed. (authors)

  9. Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts

    International Nuclear Information System (INIS)

    Patton, Steven T; Hu Jianjun; Slocik, Joseph M; Campbell, Angela; Naik, Rajesh R; Voevodin, Andrey A

    2008-01-01

    Reliability continues to be a critical issue in microelectromechanical systems (MEMS) switches. Failure mechanisms include high contact resistance (R), high adhesion, melting/shorting, and contact erosion. Little previous work has addressed the lubrication of MEMS switches. In this study, bimetallic nanoparticles (NPs) are synthesized using a biotemplated approach and deposited on Au MEMS switch contacts as a nanoparticle-based lubricant. Bimetallic nanoparticles are comprised of a metallic core (∼10 nm diameter gold nanoparticle) with smaller metallic nanoparticles (∼2-3 nm diameter Pd nanoparticles) populating the core surface. Adhesion and resistance (R) were measured during hot switching experiments at low (10 μA) and high (1 mA) current. The Au/Pd NP coated contacts led to reduced adhesion as compared to pure Au contacts with a compromise of slightly higher R. For switches held in the closed position at low current, R gradually decreased over tens of seconds due to increased van der Waals force and growth of the real area of contact with temporal effects being dominant over load effects. Contact behavior transitioned from 'Pd-like' to 'Au-like' during low current cycling experiments. Melting at high current resulted in rapid formation of large real contact area, low and stable R, and minimal effect of load on R. Durability at high current was excellent with no failure through 10 6 hot switching cycles. Improvement at high current is due to controlled nanoscale surface roughness that spreads current through multiple nanocontacts, which restricts the size of melting regions and causes termination of nanowire growth (prevents shorting) during contact opening. Based on these results, bimetallic NPs show excellent potential as surface modifiers/lubricants for MEMS switch contacts

  10. Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Steven T; Hu Jianjun [University of Dayton Research Institute, Dayton, OH 45469-0168 (United States); Slocik, Joseph M; Campbell, Angela; Naik, Rajesh R; Voevodin, Andrey A [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433-7750 (United States)], E-mail: steve.patton@wpafb.af.mil, E-mail: rajesh.naik@wpafb.af.mil

    2008-10-08

    Reliability continues to be a critical issue in microelectromechanical systems (MEMS) switches. Failure mechanisms include high contact resistance (R), high adhesion, melting/shorting, and contact erosion. Little previous work has addressed the lubrication of MEMS switches. In this study, bimetallic nanoparticles (NPs) are synthesized using a biotemplated approach and deposited on Au MEMS switch contacts as a nanoparticle-based lubricant. Bimetallic nanoparticles are comprised of a metallic core ({approx}10 nm diameter gold nanoparticle) with smaller metallic nanoparticles ({approx}2-3 nm diameter Pd nanoparticles) populating the core surface. Adhesion and resistance (R) were measured during hot switching experiments at low (10 {mu}A) and high (1 mA) current. The Au/Pd NP coated contacts led to reduced adhesion as compared to pure Au contacts with a compromise of slightly higher R. For switches held in the closed position at low current, R gradually decreased over tens of seconds due to increased van der Waals force and growth of the real area of contact with temporal effects being dominant over load effects. Contact behavior transitioned from 'Pd-like' to 'Au-like' during low current cycling experiments. Melting at high current resulted in rapid formation of large real contact area, low and stable R, and minimal effect of load on R. Durability at high current was excellent with no failure through 10{sup 6} hot switching cycles. Improvement at high current is due to controlled nanoscale surface roughness that spreads current through multiple nanocontacts, which restricts the size of melting regions and causes termination of nanowire growth (prevents shorting) during contact opening. Based on these results, bimetallic NPs show excellent potential as surface modifiers/lubricants for MEMS switch contacts.

  11. Switching behavior of double-decker single molecule magnets on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yingshuang; Schwoebel, Joerg; Hoffmann, Germar; Brede, Jens; Wiesendanger, Roland [University of Hamburg, Hamburg (Germany); Dillulo, Andrew [Ohio University, Athens (United States); Klyatskaya, Svetlana [Karlsruhe Institute of Technology, Karlsruhe (Germany); Ruben, Mario [Karlsruhe Institute of Technology, Karlsruhe (Germany); Universite de Strasbourg, Strasbourg (France)

    2011-07-01

    Single molecule magnets (SMM) are most promising materials for spin based molecular electronics. Due to their large magnetic anisotropy stabilized by inside chemical bonds, SMM can potentially be used for information storage at the single molecule level. For applications, it is of importance to adsorb the SMM onto surfaces and to study their subsequent conformational, electronic and magnetic properties. We have investigated the adsorption behavior of Tb and Dy based double-decker SMM on an Ir(111) surface with low temperature scanning tunneling microscopy and spectroscopy. It is found that Tb double-decker molecules bind tightly to the Ir(111) surface. By resonantly injecting tunneling electrons into its LUMO or HOMO state, the Tb double-decker molecule can be switched from a four-lobed structure to an eight-lobed structure. After switching, energy positions of the HOMO and LUMO states both shift closer to the Fermi level. Dy double-decker molecules also exhibit the same switching properties on the Ir(111) surface. The switching behavior of the molecules is tentatively attributed to a conformational change of the double-decker molecular frame.

  12. Discrepancy of neural response between exogenous and endogenous task switching: an event-related potentials study.

    Science.gov (United States)

    Miyajima, Maki; Toyomaki, Atsuhito; Hashimoto, Naoki; Kusumi, Ichiro; Murohashi, Harumitsu; Koyama, Tsukasa

    2012-08-01

    Task switching is a well-known cognitive paradigm to explore task-set reconfiguration processes such as rule shifting. In particular, endogenous task switching is thought to differ qualitatively from stimulus-triggered exogenous task switching. However, no previous study has examined the neural substrate of endogenous task switching. The purpose of the present study is to explore the differences between event-related potential responses to exogenous and endogenous rule switching at cue stimulus. We modified two patterns of cued switching tasks: exogenous (bottom-up) rule switching and endogenous (top-down) rule switching. In each task cue stimulus was configured to induce switching or maintaining rule. In exogenous switching tasks, late positive deflection was larger in the switch rule condition than in the maintain rule condition. However, in endogenous switching tasks late positive deflection was unexpectedly larger in the maintain-rule condition than in the switch-rule condition. These results indicate that exogenous rule switching is explicit stimulus-driven processes, whereas endogenous rule switching is implicitly parallel processes independent of external stimulus.

  13. Effect of Q-switched Laser Surface Texturing of Titanium on Osteoblast Cell Response

    Science.gov (United States)

    Voisey, K. T.; Scotchford, C. A.; Martin, L.; Gill, H. S.

    Titanium and its alloys are important biomedical materials. It is known that the surface texture of implanted medical devices affects cell response. Control of cell response has the potential to enhance fixation of implants into bone and, in other applications, to prevent undesired cell adhesion. The potential use of a 100W Q-switched YAG laser miller (DMG Lasertec 60 HSC) for texturing titanium is investigated. A series of regular features with dimensions of the order of tens of micrometers are generated in the surface of titanium samples and the cell response to these features is determined. Characterisation of the laser milled features reveals features with a lengthscale of a few microns superposed on the larger scale structures, this is attributed to resolidification of molten droplets generated and propelled over the surface by individual laser pulses. The laser textured samples are exposed to osteoblast cells and it is seen that cells do respond to the features in the laser textured surfaces.

  14. Potential photosynthesis of crop surfaces.

    NARCIS (Netherlands)

    Wit, de C.T.

    1959-01-01

    A formula for calculating the potential photosynthesis of a closed crop surface is proposed, assuming that the leaves of the crop are not arranged in any definite direction. In the Netherlands, values for potential photosynthesis vary from 290 kg. CH2O/ha./day in June to 50 kg./ha./day in December.

  15. Potentials of surfaces in space

    International Nuclear Information System (INIS)

    Whipple, E.C.

    1981-01-01

    The potential of a body in space is determined by a balance between various charging currents such as the transfer of charge from plasma particles, photoemission, and secondary electron emission. These processes are evaluated for bodies in the solar system and in interstellar space under the headings; an overview of charging, survey of early work on charging, charging processes, effects of non-isotropic plasmas and magnetic and electric fields, calculation of surface potentials, differential charging, potential barriers and discharge processes, measurements of potential, potential modification and control on spacecraft, and astrophysical applications. (U.K.)

  16. Influence of surface effects on the pull-in instability of NEMS electrostatic switches

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jianming Bryan; Jiang Liying; Asokanthan, Samuel F, E-mail: lyjiang@eng.uwo.ca, E-mail: sasokanthan@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 (Canada)

    2010-12-17

    The influence of surface effects, including residual surface stress and surface elasticity, on the pull-in instability of electrostatic switches in nanoelectromechanical systems (NEMS) is studied using an Euler-Bernoulli beam model. This model is inherently nonlinear due to the driving electrostatic force and Casimir force which become dominant at the nanoscale. Since no exact solutions are available for the resulting nonlinear differential equation, He's homotopy perturbation method (HPM) is used to get the approximate analytical solutions to the static bending of NEMS switches, which are validated by numerical solutions of the finite difference method (FDM). The results demonstrate that surface effects play a significant role in the selection of basic design parameters of NEMS switches, such as static deflection, pull-in voltage and detachment length. Surface effects on low-voltage actuation windows are also characterized for these switches. The present study is envisaged to provide useful insights for the design of NEMS switches.

  17. Corrected body surface potential mapping.

    Science.gov (United States)

    Krenzke, Gerhard; Kindt, Carsten; Hetzer, Roland

    2007-02-01

    In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.

  18. Controlling friction in a manganite surface by resistive switching

    OpenAIRE

    Schmidt, Hendrik; Krisponeit, Jon-Olaf; Samwer, Konrad; Volkert, Cynthia A.

    2016-01-01

    We report a significant change in friction of a $\\rm La_{0.55}Ca_{0.45}MnO_3$ thin film measured as a function of the materials resistive state under ultrahigh vacuum conditions at room temperature by friction force microscopy. While friction is high in the insulating state, it clearly changes to lower values if the probed local region is switched to the conducting state via nanoscale resistance switching. Thus we demonstrate active control of friction without having to change the temperature...

  19. Pseudospark switches

    International Nuclear Information System (INIS)

    Billault, P.; Riege, H.; Gulik, M. van; Boggasch, E.; Frank, K.

    1987-01-01

    The pseudospark discharge is bound to a geometrical structure which is particularly well suited for switching high currents and voltages at high power levels. This type of discharge offers the potential for improvement in essentially all areas of switching operation: peak current and current density, current rise, stand-off voltage, reverse current capability, cathode life, and forward drop. The first pseudospark switch was built at CERN at 1981. Since then, the basic switching characteristics of pseudospark chambers have been studied in detail. The main feature of a pseudospark switch is the confinement of the discharge plasma to the device axis. The current transition to the hollow electrodes is spread over a rather large surface area. Another essential feature is the easy and precise triggering of the pseudospark switch from the interior of the hollow electrodes, relatively far from the main discharge gap. Nanosecond delay and jitter values can be achieved with trigger energies of less than 0.1 mJ, although cathode heating is not required. Pseudospark gaps may cover a wide range of high-voltage, high-current, and high-pulse-power switching at repetition rates of many kilohertz. This report reviews the basic researh on pseudospark switches which has been going on at CERN. So far, applications have been developed in the range of thyratron-like medium-power switches at typically 20 to 40 kV and 0.5 to 10 kA. High-current pseudospark switches have been built for a high-power 20 kJ pulse generator which is being used for long-term tests of plasma lenses developed for the future CERN Antiproton Collector (ACOL). The high-current switches have operated for several hundred thousand shots, with 20 to 50 ns jitter at 16 kV charging voltage and more than 100 kA peak current amplitude. (orig.)

  20. Surface effects of electrode-dependent switching behavior of resistive random-access memory

    KAUST Repository

    Ke, Jr Jian

    2016-09-26

    The surface effects of ZnO-based resistive random-access memory (ReRAM) were investigated using various electrodes. Pt electrodes were found to have better performance in terms of the device\\'s switching functionality. A thermodynamic model of the oxygen chemisorption process was proposed to explain this electrode-dependent switching behavior. The temperature-dependent switching voltage demonstrates that the ReRAM devices fabricated with Pt electrodes have a lower activation energy for the chemisorption process, resulting in a better resistive switching performance. These findings provide an in-depth understanding of electrode-dependent switching behaviors and can serve as design guidelines for future ReRAM devices.

  1. Ultrafast directional beam switching in coupled vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Ning, C. Z.; Goorjian, P.

    2001-01-01

    We propose a strategy to performing ultrafast directional beam switching using two coupled vertical-cavity surface-emitting lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 μm in diameter placed about 1 μm apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degree. [copyright] 2001 American Institute of Physics

  2. Greenhouse gas emission reduction by means of fuel switching in electricity generation: Addressing the potentials

    International Nuclear Information System (INIS)

    Delarue, Erik; D'haeseleer, William

    2008-01-01

    Many countries committed themselves in the Kyoto protocol to reduce greenhouse gas (GHG) emissions. Some of these targeted emission reductions could result from a switch from coal-fired to gas-fired electricity generation. The focus in this work lies on Western Europe, with the presence of the European Union Emission Trading Scheme (EU ETS). For the switching to occur, several conditions have to be fulfilled. First, an economical incentive must be present, i.e. a sufficiently high European Union Allowance (EUA) price together with a sufficiently low natural gas price. Second, the physical potential for switching must exist, i.e. at a given load, there must remain enough power plants not running to make switching possible. This paper investigates what possibilities exist for switching coal-fired plants for gas-fired plants, dependent on the load level (the latter condition above). A fixed allowance cost and a variable natural gas price are assumed. The method to address GHG emission reduction potentials is first illustrated in a methodological case. Next, the GHG emission reduction potentials are addressed for several Western European countries together with a relative positioning of their electricity generation. GHG emission reduction potentials are also compared with simulation results. GHG emission reduction potentials tend to be significant. The Netherlands have a very widespread switching zone, so GHG emission reduction is practically independent of electricity generation. Other counties, like Germany, Spain and Italy could reduce GHG emissions significantly by switching. With an allowance cost following the switch level of a 50% efficient gas-fired plant and a 40% efficient coal-fired plant in the summer season (like in 2005), the global GHG emission reduction (in the electricity generating sector) for the eight modeled zones could amount to 19%

  3. Potential negative consequences of non-consented switch of inhaled medications and devices in asthma patients.

    Science.gov (United States)

    Björnsdóttir, U S; Gizurarson, S; Sabale, U

    2013-09-01

    Asthma requires individually tailored and careful management to control and prevent symptoms and exacerbations. Selection of the most appropriate treatment is dependent on both the choice of drugs and inhaler device; however, financial pressures may result in patients being switched to alternative medications and devices in an attempt to reduce costs. This review aimed to examine the published literature in order to ascertain whether switching a patient's asthma medications or device negatively impacts clinical and economic outcomes. A literature search of MEDLINE (2001-13 September 2011) was conducted to identify English-language articles focused on the direct impact of switching medications and inhaler devices and switching from fixed-dose combination to monocomponent therapy via separate inhalers in patients with asthma; the indirect impacts of switching were also assessed. Evidence showed that non-consented switching of medications and inhalers in patients with asthma can be associated with a range of negative outcomes, at both individual and organisational levels. Factors that reduce adherence may lead to compromised symptom control resulting in increased healthcare resource utilisation and poorer patient quality of life. The consequences of a non-consented switch should be weighed carefully against arguments supporting an inhaler switch without the patient's consent for non-medical/budgetary reasons, such as potential reductions in initial acquisition costs, which may be associated with subsequent additional healthcare needs. Given the increasing pressure for reduced costs and efficient allocation of limited healthcare resources, an additional investment in ensuring high medication adherence may lead to greater savings due to a potentially decreased demand for healthcare services. In contrast, savings achieved in acquisition costs may result in a greater net loss due to increased healthcare consumption caused by decreased asthma control. © 2013 The Authors

  4. Current-induced switching of magnetic molecules on topological insulator surfaces

    Science.gov (United States)

    Locane, Elina; Brouwer, Piet W.

    2017-03-01

    Electrical currents at the surface or edge of a topological insulator are intrinsically spin polarized. We show that such surface or edge currents can be used to switch the orientation of a molecular magnet weakly coupled to the surface or edge of a topological insulator. For the edge of a two-dimensional topological insulator as well as for the surface of a three-dimensional topological insulator the application of a well-chosen surface or edge current can lead to a complete polarization of the molecule if the molecule's magnetic anisotropy axis is appropriately aligned with the current direction. For a generic orientation of the molecule a nonzero but incomplete polarization is obtained. We calculate the probability distribution of the magnetic states and the switching rates as a function of the applied current.

  5. Adsorption and switching properties of a N-benzylideneaniline based molecular switch on a Au(111) surface

    International Nuclear Information System (INIS)

    Ovari, Laszlo; Luo, Ying; Haag, Rainer; Leyssner, Felix; Tegeder, Petra; Wolf, Martin

    2010-01-01

    High resolution electron energy loss spectroscopy has been employed to analyze the adsorption geometry and the photoisomerization ability of the molecular switch carboxy-benzylideneaniline (CBA) adsorbed on Au(111). CBA on Au(111) adopts a planar (trans) configuration in the first monolayer (ML) as well as for higher coverages (up to 6 ML), in contrast to the strongly nonplanar geometry of the molecule in solution. Illumination with UV light of CBA in direct contact with the Au(111) surface (≤1 ML) caused no changes in the vibrational structure, whereas at higher coverages (>1 ML) pronounced modifications of vibrational features were observed, which we assign to a trans→cis isomerization. Thermal activation induced the back reaction to trans-CBA. We propose that the photoisomerization is driven by a direct (intramolecular) electronic excitation of the adsorbed CBA molecules in the second ML (and above) analogous to CBA in the liquid phase.

  6. Potential Clinical and Economic Impact of Switching Branded Medications to Generics

    Science.gov (United States)

    Straka, Robert J.; Keohane, Denis J.; Liu, Larry Z.

    2017-01-01

    Switching branded to generic medications has become a common cost-containment measure. Although this is an important objective for health care systems worldwide, the impact of this practice on patient outcomes needs to be carefully considered. We reviewed the literature summarizing the potential clinical and economic consequences of switching from branded to generic medications on patient outcomes. A literature search of peer-reviewed articles published 2003–2013 using key words of “generic switching” or “substitution” was conducted using PubMed, OvidSP, and ScienceDirect. Of 30 articles identified and reviewed, most were related to the diseases of the central nervous system, especially epilepsy. Based on our review, potential impacts of switching fell into 3 broad categories: patient attitudes and adherence, clinical and safety outcomes, and cost and resource utilization. Although in many cases generics may represent an appropriate alternative to branded products, this may not always be the case. Specifically, several studies suggested that switching may negatively impact medication adherence, whereas other studies found that generic switching was associated with poorer clinical outcomes and more adverse events. In some instances, switching accomplished cost savings but did so at increased total cost of care because of increased physician visits or hospitalizations. Although in many cases generics may represent an appropriate alternative, mandatory generic switching may lead to unintended consequences, especially in certain therapeutic areas. Although further study is warranted, based on our review, it may be medically justifiable for physicians and patients to retain the right to request the branded product in certain cases. PMID:26099048

  7. Switching On Depression and Potentiation in the Cerebellum

    Directory of Open Access Journals (Sweden)

    Andrew R. Gallimore

    2018-01-01

    Full Text Available Long-term depression (LTD and long-term potentiation (LTP in the cerebellum are important for motor learning. However, the signaling mechanisms controlling whether LTD or LTP is induced in response to synaptic stimulation remain obscure. Using a unified model of LTD and LTP at the cerebellar parallel fiber-Purkinje cell (PF-PC synapse, we delineate the coordinated pre- and postsynaptic signaling that determines the direction of plasticity. We show that LTP is the default response to PF stimulation above a well-defined frequency threshold. However, if the calcium signal surpasses the threshold for CaMKII activation, then an ultrasensitive “on switch” activates an extracellular signal-regulated kinase (ERK-based positive feedback loop that triggers LTD instead. This postsynaptic feedback loop is sustained by another, trans-synaptic, feedback loop that maintains nitric oxide production throughout LTD induction. When full depression is achieved, an automatic “off switch” inactivates the feedback loops, returning the network to its basal state and demarcating the end of the early phase of LTD.

  8. Magnetization switching of a metallic nanomagnet via current-induced surface spin-polarization of an underlying topological insulator

    International Nuclear Information System (INIS)

    Roy, Urmimala; Dey, Rik; Pramanik, Tanmoy; Ghosh, Bahniman; Register, Leonard F.; Banerjee, Sanjay K.

    2015-01-01

    We consider a thermally stable, metallic nanoscale ferromagnet (FM) subject to spin-polarized current injection and exchange coupling from the spin-helically locked surface states of a topological insulator (TI) to evaluate possible non-volatile memory applications. We consider parallel transport in the TI and the metallic FM, and focus on the efficiency of magnetization switching as a function of transport between the TI and the FM. Transport is modeled as diffusive in the TI beneath the FM, consistent with the mobility in the TI at room temperature, and in the FM, which essentially serves as a constant potential region albeit spin-dependent except in the low conductivity, diffusive limit. Thus, it can be captured by drift-diffusion simulation, which allows for ready interpretation of the results. We calculate switching time and energy consumed per write operation using self-consistent transport, spin-transfer-torque (STT), and magnetization dynamics calculations. Calculated switching energies and times compare favorably to conventional spin-torque memory schemes for substantial interlayer conductivity. Nevertheless, we find that shunting of current from the TI to a metallic nanomagnet can substantially limit efficiency. Exacerbating the problem, STT from the TI effectively increases the TI resistivity. We show that for optimum performance, the sheet resistivity of the FM layer should be comparable to or larger than that of the TI surface layer. Thus, the effective conductivity of the FM layer becomes a critical design consideration for TI-based non-volatile memory

  9. On-Demand Final State Control of a Surface-Bound Bistable Single Molecule Switch.

    Science.gov (United States)

    Garrido Torres, José A; Simpson, Grant J; Adams, Christopher J; Früchtl, Herbert A; Schaub, Renald

    2018-04-12

    Modern electronic devices perform their defined action because of the complete reliability of their individual active components (transistors, switches, diodes, and so forth). For instance, to encode basic computer units (bits) an electrical switch can be used. The reliability of the switch ensures that the desired outcome (the component's final state, 0 or 1) can be selected with certainty. No practical data storage device would otherwise exist. This reliability criterion will necessarily need to hold true for future molecular electronics to have the opportunity to emerge as a viable miniaturization alternative to our current silicon-based technology. Molecular electronics target the use of single-molecules to perform the actions of individual electronic components. On-demand final state control over a bistable unimolecular component has therefore been one of the main challenges in the past decade (1-5) but has yet to be achieved. In this Letter, we demonstrate how control of the final state of a surface-supported bistable single molecule switch can be realized. On the basis of the observations and deductions presented here, we further suggest an alternative strategy to achieve final state control in unimolecular bistable switches.

  10. Potential energy landscape and robustness of a gene regulatory network: toggle switch.

    Directory of Open Access Journals (Sweden)

    Keun-Young Kim

    2007-03-01

    Full Text Available Finding a multidimensional potential landscape is the key for addressing important global issues, such as the robustness of cellular networks. We have uncovered the underlying potential energy landscape of a simple gene regulatory network: a toggle switch. This was realized by explicitly constructing the steady state probability of the gene switch in the protein concentration space in the presence of the intrinsic statistical fluctuations due to the small number of proteins in the cell. We explored the global phase space for the system. We found that the protein synthesis rate and the unbinding rate of proteins to the gene were small relative to the protein degradation rate; the gene switch is monostable with only one stable basin of attraction. When both the protein synthesis rate and the unbinding rate of proteins to the gene are large compared with the protein degradation rate, two global basins of attraction emerge for a toggle switch. These basins correspond to the biologically stable functional states. The potential energy barrier between the two basins determines the time scale of conversion from one to the other. We found as the protein synthesis rate and protein unbinding rate to the gene relative to the protein degradation rate became larger, the potential energy barrier became larger. This also corresponded to systems with less noise or the fluctuations on the protein numbers. It leads to the robustness of the biological basins of the gene switches. The technique used here is general and can be applied to explore the potential energy landscape of the gene networks.

  11. Polymeric Shape-Memory Micro-Patterned Surface for Switching Wettability with Temperature

    Directory of Open Access Journals (Sweden)

    Nuria García-Huete

    2015-09-01

    Full Text Available An innovative method to switch the wettability of a micropatterned polymeric surface by thermally induced shape memory effect is presented. For this purpose, first polycyclooctene (PCO is crosslinked with dycumil peroxide (DCP and its melting temperature, which corresponds with the switching transition temperature (Ttrans, is measured by Dynamic Mechanical Thermal Analysis (DMTA in tension mode. Later, the shape memory behavior of the bulk material is analyzed under different experimental conditions employing a cyclic thermomechanical analysis (TMA. Finally, after creating shape memory micropillars by laser ablation of crosslinked thermo-active polycyclooctene (PCO, shape memory response and associated effect on water contact angle is analyzed. Thus, deformed micropillars cause lower contact angle on the surface from reduced roughness, but the original hydrophobicity is restored by thermally induced recovery of the original surface structure.

  12. Effects of plasma treatment time on surface characteristics of indium-tin-oxide film for resistive switching storage applications

    International Nuclear Information System (INIS)

    Chen, Po-Hsun; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Pan, Chih-Hung; Shih, Chih-Cheng; Wu, Cheng-Hsien; Yang, Chih-Cheng; Chen, Wen-Chung; Lin, Jiun-Chiu; Wang, Ming-Hui; Zheng, Hao-Xuan; Chen, Min-Chen; Sze, Simon M.

    2017-01-01

    In this paper, we implement a post-oxidation method to modify surface characteristics of indium tin oxide (ITO) films by using an O_2 inductively coupled plasma (ICP) treatment. Based on field emission-scanning electron microscope (FE-SEM) and atomic force microscope (AFM) analysis, we found that the surface morphologies of the ITO films become slightly flatter after the O_2 plasma treatment. The optical characteristics and X-ray diffraction (XRD) experiments of either pure ITO or O_2 plasma treated ITO films were also verified. Even though the XRD results showed no difference from bulk crystallizations, the oxygen concentrations increased at the film surface after O_2 plasma treatment, according to the XPS inspection results. Moreover, this study investigated the effects of two different plasma treatment times on oxygen concentration in the ITO films. The surface sheet resistance of the plasma treated ITO films became nearly non-conductive when measured with a 4-point probe. Finally, we applied the O_2 plasma treated ITO films as the insulator in resistive random access memory (RRAM) to examine their potential for use in resistive switching storage applications. Stable resistance switching characteristics were obtained by applying the O_2 plasma treatment to the ITO-based RRAM. We also confirmed the relationship between plasma treatment time and RRAM performance. These material analyses and electrical measurements suggest possible advantages in using this plasma treatment technique in device fabrication processes for RRAM applications.

  13. Effects of plasma treatment time on surface characteristics of indium-tin-oxide film for resistive switching storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Po-Hsun [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Chang, Kuan-Chang, E-mail: kcchang@pkusz.edu.cn [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); School of Electronic and Computer Engineering, Peking University, Shenzhen 518055 (China); Tsai, Tsung-Ming; Pan, Chih-Hung; Shih, Chih-Cheng; Wu, Cheng-Hsien; Yang, Chih-Cheng; Chen, Wen-Chung; Lin, Jiun-Chiu; Wang, Ming-Hui [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Zheng, Hao-Xuan; Chen, Min-Chen [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Sze, Simon M. [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 300, Taiwan, ROC (China)

    2017-08-31

    In this paper, we implement a post-oxidation method to modify surface characteristics of indium tin oxide (ITO) films by using an O{sub 2} inductively coupled plasma (ICP) treatment. Based on field emission-scanning electron microscope (FE-SEM) and atomic force microscope (AFM) analysis, we found that the surface morphologies of the ITO films become slightly flatter after the O{sub 2} plasma treatment. The optical characteristics and X-ray diffraction (XRD) experiments of either pure ITO or O{sub 2} plasma treated ITO films were also verified. Even though the XRD results showed no difference from bulk crystallizations, the oxygen concentrations increased at the film surface after O{sub 2} plasma treatment, according to the XPS inspection results. Moreover, this study investigated the effects of two different plasma treatment times on oxygen concentration in the ITO films. The surface sheet resistance of the plasma treated ITO films became nearly non-conductive when measured with a 4-point probe. Finally, we applied the O{sub 2} plasma treated ITO films as the insulator in resistive random access memory (RRAM) to examine their potential for use in resistive switching storage applications. Stable resistance switching characteristics were obtained by applying the O{sub 2} plasma treatment to the ITO-based RRAM. We also confirmed the relationship between plasma treatment time and RRAM performance. These material analyses and electrical measurements suggest possible advantages in using this plasma treatment technique in device fabrication processes for RRAM applications.

  14. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  15. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ida [University of Tennessee, Knoxville (UTK); Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  16. Water adsorption induced in-plane domain switching on BaTiO{sub 3} surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Bai, Y.; Su, Y. J., E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Wang, B. C. [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Multiscale Materials Modelling group, Department of Materials and Engineering, Royal Institute of Technology, SE-10044 Stockholm (Sweden)

    2015-09-07

    In this study, the influences of the adsorption of water molecules on the changes in the atomic and electric structures of BaTiO{sub 3} surface were investigated using ab initio calculation. Water molecules are molecularly and dissociatively adsorbed on the BaTiO{sub 3} surface, which makes electrons transfer from water molecules to the BaTiO{sub 3} surface. The redistribution of electrons in the BaTiO{sub 3} surface layers weakens the Ba-O interactions and strengthens the Ti-O interactions, so that the Ti atom shifts in TiO{sub 2} plane, i.e., an in-plane domain switching. The adsorption of water molecules on BaTiO{sub 3} surfaces also results in a reduction in the surface rumpling.

  17. Self-assembly, Dynamics and Chirality of Conformational Switches on Metal Surfaces Studied by UHV-STM

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli

    2013-01-01

    structures formed by the conformational switches and statistical analysis of conformational states, a detailed study of dynamic processes is performed by acquiring time-resolved STM data. Furthermore, one of the possible applications of conformational switches towards inducing chirality in surface assemblies...

  18. Annealing temperature dependent reversible wettability switching of micro/nano structured ZnO superhydrophobic surfaces

    Science.gov (United States)

    Velayi, Elmira; Norouzbeigi, Reza

    2018-05-01

    Superhydrophobic ZnO surfaces with reversibly tunable wettability were fabricated on stainless steel meshes via a facile chemical bath deposition method just by regulating the micro/nano structured ZnO needles without using chemical post modifications. The obtained surfaces can be easily and reversibly switched between superhydrophobic and superhydrophilic/underwater superoleophobic characteristics by altering the annealing temperatures. As-prepared sample exhibited long-term superhydrophobic properties with a water contact angle (WCA) of 163.8° ± 1.8° and contact angle hysteresis (CAH) of 1.1° ± 0.8°. The SEM, XRD, XPS and Raman analyses were employed to characterize the morphological features and surface chemistry of the prepared samples. SEM images showed the formation of ZnO micro/nanoneedles with a diameter of ∼90 nm on the substrate. The superhydrophobic ZnO surface was switched to highly hydrophilic and underwater superoleophobic properties with an oil contact angle (OCA) of about 172.5° after being annealed at 400 °C in air for 30 min and restored to superhydrophobic state again by altering the annealing temperature to 150 °C. Mechanical durability of the ZnO superhydrophobic surface was tested by an abrasion test. Results confirmed that the prepared surface exhibited an excellent robustness after 20 abrasion cycles under the pressure of 4.7 kPa.

  19. The transient response of a quantum wave to an instantaneous potential step switching

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, F [Departamento de Quimica-Fisica, Universidad del Pais Vasco, Apdo 644, 48080 Bilbao (Spain); Cruz, H [Departamento de Fisica Basica, Universidad de La Laguna (Spain); Muga, J G [Departamento de Quimica-Fisica, Universidad del Pais Vasco, Apdo 644, 48080 Bilbao (Spain)

    2002-12-06

    The transient response of a stationary state of a quantum particle in a step potential to an instantaneous change in the step height (a simplified model for a sudden bias switch in an electronic semiconductor device) is solved exactly by means of a semianalytical expression. The characteristic times for the transient process up to the new stationary state are identified. A comparison is made between the exact results and an approximate method.

  20. Electron beam potential measurements on an inductive-store, opening-switch accelerator

    International Nuclear Information System (INIS)

    Riordan, J.C.; Goyer, J.R.; Kortbawi, D.; Meachum, J.S.; Mendenhall, R.S.; Roth, I.S.

    1993-01-01

    Direct measurement of the accelerating potential in a relativistic electron beam accelerator is difficult, particularly when the diode is downstream from a plasma opening switch. An indirect potential measurement can be obtained from the high energy tail of the bremsstrahlung spectrum generated as the electron beam strikes the anode. The authors' time-resolved spectrometer contains 7 silicon pin diode detectors filtered with 2 to 15 mm of lead to span an electron energy range of 0.5 to 2 MeV. A Monte-Carlo transport code was used to provide calibration curves, and the resulting potential measurements have been confirmed in experiments on the PITHON accelerator. The spectrometer has recently been deployed on PM1, an inductive-store, opening-switch testbed. The diode voltage measurements from the spectrometer are in good agreement with the diode voltage measured upstream and corrected using transmission line relations. The x-ray signal and spectral voltage rise 10 ns later than the corrected electrical voltage, however, indicating plasma motion between the opening switch and the diode

  1. Switching Transient Generation in Surface Interrogation Scanning Electrochemical Microscopy and Time-of-Flight Techniques.

    Science.gov (United States)

    Ahn, Hyun S; Bard, Allen J

    2015-12-15

    In surface interrogation scanning electrochemical microscopy (SI-SECM), fine and accurate control of the delay time between substrate generation and tip interrogation (tdelay) is crucial because tdelay defines the decay time of the reactive intermediate. In previous applications of the SI-SECM, the resolution in the control of tdelay has been limited to several hundreds of milliseconds due to the slow switching of the bipotentiostat. In this work, we have improved the time resolution of tdelay control up to ca. 1 μs, enhancing the SI-SECM to be competitive in the time domain with the decay of many reactive intermediates. The rapid switching SI-SECM has been implemented in a substrate generation-tip collection time-of-flight (SG-TC TOF) experiment of a solution redox mediator, and the results obtained from the experiment exhibited good agreement with that obtained from digital simulation. The reaction rate constant of surface Co(IV) on oxygen-evolving catalyst film, which was inaccessible thus far due to the lack of tdelay control, has been measured by the rapid switching SI-SECM.

  2. Anti-parallel polarization switching in a triglycine sulfate organic ferroelectric insulator: The role of surface charges

    Science.gov (United States)

    Ma, He; Wu, Zhuangchun; Peng, Dongwen; Wang, Yaojin; Wang, Yiping; Yang, Ying; Yuan, Guoliang

    2018-04-01

    Four consecutive ferroelectric polarization switchings and an abnormal ring-like domain pattern can be introduced by a single tip bias of a piezoresponse force microscope in the (010) triglycine sulfate (TGS) crystal. The external electric field anti-parallel to the original polarization induces the first polarization switching; however, the surface charges of TGS can move toward the tip location and induce the second polarization switching once the tip bias is removed. The two switchings allow a ring-like pattern composed of the central domain with downward polarization and the outer domain with upward polarization. Once the two domains disappear gradually as a result of depolarization, the other two polarization switchings occur one by one at the TGS where the tip contacts. However, the backswitching phenomenon does not occur when the external electric field is parallel to the original polarization. These results can be explained according to the surface charges instead of the charges injected inside.

  3. Application of GaN in Hard-switching Converters:Challenges and Potential Solutions%Application of GaN in Hard-switching Converters: Challenges and Potential Solutions

    Institute of Scientific and Technical Information of China (English)

    Bo LIU; Zhe-yu ZHANG; Edward Jones; Fei(Fred) WANG

    2017-01-01

    This paper overviews the benefits,challenges,research trends and potential solutions on the design and application of gallium nitride (GaN) technology in hard-switching power electronic converters from the device level up to converter level.

  4. Sialic acid-triggered macroscopic properties switching on a smart polymer surface

    Science.gov (United States)

    Xiong, Yuting; Li, Minmin; Wang, Hongxi; Qing, Guangyan; Sun, Taolei

    2018-01-01

    Constructing smart surfaces with responsive polymers capable of dynamically and reversibly changing their chemical and physical properties by responding to the recognition of biomolecules remains a challenging task. And, the key to achieving this purpose relies on the design of polymers to precisely interact with the target molecule and successfully transform the interaction signal into tunable macroscopic properties, further achieve special bio-functions. Herein, inspired by carbohydrate-carbohydrate interaction (CCI) in life system, we developed a three-component copolymer poly(NIPAAm-co-PT-co-Glc) bearing a binding unit glucose (Glc) capable of recognizing sialic acid, a type of important molecular targets for cancer diagnosis and therapy, and reported the sialic acid triggered macroscopic properties switching on this smart polymer surface. Detailed mechanism studies indicated that multiple hydrogen bonding interactions between Glc unit and Neu5Ac destroyed the initial hydrogen bond network of the copolymer, leading to a reversible "contraction-to-swelling" conformational transition of the copolymer chains, accompanied with distinct macroscopic property switching (i.e., surface wettability, morphology, stiffness) of the copolymer film. And these features enabled this copolymer to selectively capture sialic acid-containing glycopeptides from complex protein samples. This work provides an inspiration for the design of novel smart polymeric materials with sensitive responsiveness to sialic acid, which would promote the development of sialic acid-specific bio-devices and drug delivery systems.

  5. Thermoresponsive PNIPAAm-modified cotton fabric surfaces that switch between superhydrophilicity and superhydrophobicity

    International Nuclear Information System (INIS)

    Jiang Cheng; Wang Qihua; Wang Tingmei

    2012-01-01

    Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was grafted onto the cotton fabric by atom transfer radical polymerization (ATRP). Introducing 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS) onto the surface, the density of PNIPAAm chains can be adjusted because of the competitive reactions of (3-aminopropyl) triethoxysilane (APS) and PFDTS. With the appropriate ratio of APS and PFDTS, the cotton fabric can be switched from superhydrophilic to superhydrophobic by controlling temperature. The prepared cotton fabric may find application in functional textiles, soft and folding superhydrophobic materials.

  6. Experimental investigation of the material surface modification in microsecond plasma opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Bystritskij, V; Grigor` ev, S; Kharlov, A; Sinebryukhov, A [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of Electrophysics; Burkov, P [Russian Academy of Scinces, Tomsk (Russian Federation). Institute of Strength Physics and Materials Control; Grigorev, V; Koval, T [Institute of Nuclear Physics, Tomsk (Russian Federation)

    1997-12-31

    The paper is devoted to the investigations of the material surface modification by high power ion beam generated in microsecond plasma opening switch (MPOS). Various types of steels were investigated: stainless steel 17-4PH, carbon steel C1020, pure iron. For all these materials, the optimal regimes for irradiation were defined. A significant increase in microhardness (1.5 to 2-fold) was obtained for these materials. Numerical calculations and theoretical estimations of the ion beam-matter interaction were also performed. The advantages and problems of this approach are discussed. (author). 8 figs., 3 refs.

  7. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  8. Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Hira, T.; Homma, T.; Uchiyama, T.; Kuwamura, K.; Saiki, T. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522 (Japan)

    2013-12-09

    As a platform for active nanophotonics, localized surface plasmon resonance (LSPR) switching via interaction with a chalcogenide phase change material (GeSbTe) was investigated. We performed single-particle spectroscopy of gold nanoparticles placed on a GeSbTe thin film. By irradiation with a femtosecond pulsed laser for amorphization and a continuous wave laser for crystallization, significant switching behavior of the LSPR band due to the interaction of GeSbTe was observed. The switching mechanism was explained in terms of both a change in the refractive index and a modification of surface morphology accompanying volume expansion and reduction of GeSbTe.

  9. On switching response surface models, with applications to the structural health monitoring of bridges

    Science.gov (United States)

    Worden, K.; Cross, E. J.

    2018-01-01

    Structural Health Monitoring (SHM) is the engineering discipline of diagnosing damage and estimating safe remaining life for structures and systems. Often, SHM is accomplished by detecting changes in measured quantities from the structure of interest; if there are no competing explanations for the changes, one infers that they are the result of damage. If the structure of interest is subject to changes in its environmental or operational conditions, one must understand the effects of these changes in order that one does not falsely claim that damage has occurred when changes in measured quantities are observed. This problem - the problem of confounding influences - is particularly pressing for civil infrastructure where the given structure is usually openly exposed to the weather and may be subject to strongly varying operational conditions. One approach to understanding confounding influences is to construct a data-based response surface model that can represent measurement variations as a function of environmental and operational variables. The models can then be used to remove environmental and operational variations so that change detection algorithms signal the occurrence of damage alone. The current paper is concerned with such response surface models in the case of SHM of bridges. In particular, classes of response surface models that can switch discontinuously between regimes are discussed. Recently, it has been shown that Gaussian Process (GP) models are an effective means of developing response surface or surrogate models. However, the GP approach runs into difficulties if changes in the latent variables cause the structure of interest to abruptly switch between regimes. A good example here, which is well known in the SHM literature, is given by the Z24 Bridge in Switzerland which completely changed its dynamical behaviour when it cooled below zero degrees Celsius as the asphalt of the deck stiffened. The solution proposed here is to adopt the recently

  10. Modulation of resistive switching characteristics for individual BaTiO3 microfiber by surface oxygen vacancies

    Science.gov (United States)

    Miao, Zhilei; Chen, Lei; Zhou, Fang; Wang, Qiang

    2018-01-01

    Different from traditional thin-film BaTiO3 (BTO) RRAM device with planar structure, individual microfiber-shaped RRAM device, showing promising application potentials in the micro-sized non-volatile memory system, has not been investigated so far to demonstrate resistive switching behavior. In this work, individual sol-gel BTO microfiber has been formed using the draw-bench method, followed by annealing in different atmospheres of air and argon, respectively. The resistive switching characteristics of the individual BTO microfiber have been investigated by employing double-probe SEM measurement system, which shows great convenience to test local electrical properties by modulating the contact sites between the W probes and the BTO microfiber. For the sample annealed in air, the average resistive ON/OFF ratio is as high as 108, enhanced about four orders in comparison with the counterpart that annealed in Argon. For the sample annealed in argon ambience, the weakened resistive ON/OFF ratio can be attributed to the increased presence of oxygen vacancies in the surface of BTO fibers, and the underlying electrical conduction mechanisms are also discussed.

  11. Fundamental properties of molecules on surfaces. Molecular switching and interaction of magnetic molecules with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hatter, Nino

    2016-12-14

    In this thesis, we investigate individual molecular switches and metal-organic complexes on surfaces with scanning tunneling microscopy (STM) and spectroscopy (STS) at low temperatures. One focus addresses the switching ability and mechanism of diarylethene on Ag(111). The other focus lies on resolving and tuning magnetic interactions of individual molecules with superconductors. 4,4'-(4,4'-(perfluorocyclopent-1-ene-1,2-diyl)bis (5-methylthiophene-4,2-diyl)dip yridine (PDTE) is a prototypical photochromic switch. We can induce a structural change of individual PDTE molecules on Ag(111) with the STM tip. This change is accompanied by a reduction of the energy gap between the occupied and unoccupied molecular orbitals. Density functional theory (DFT) calculations reveal that the induced switching corresponds to a ring-closing reaction from an open isomer in a flat adsorption configuration to a ring-closed isomer with its methyl groups in a cis configuration. The final product is thermodynamically stabilized by strong dispersion interactions with the surface. A linear dependence of the switching threshold with the tip-sample distance with a minimal threshold of 1.4 V is found, which we assign to a combination of an electric-field induced process and a tunneling-electron contribution. DFT calculations suggest a large activation barrier for a ring-closing reaction from the open flat configuration into the closed cis configuration. The interaction of magnetic molecules with superconductors is studied on manganese phthalocyanine (MnPc) adsorbed on Pb(111). We find triplets of Shiba states inside the superconducting gap. Different adsorption sites of MnPc provide a large variety of exchange coupling strengths, which lead to a collective energy shift of the Shiba triplets. We can assign the splitting of the Shiba states to be an effect of magnetic anisotropy in the system. A quantum phase transition from a ''Kondo screened'' to a &apos

  12. Surface effects of electrode-dependent switching behavior of resistive random-access memory

    KAUST Repository

    Ke, Jr Jian; Wei, Tzu Chiao; Tsai, Dung Sheng; Lin, Chun-Ho; He, Jr-Hau

    2016-01-01

    of the oxygen chemisorption process was proposed to explain this electrode-dependent switching behavior. The temperature-dependent switching voltage demonstrates that the ReRAM devices fabricated with Pt electrodes have a lower activation energy

  13. Cellulose ionics: switching ionic diode responses by surface charge in reconstituted cellulose films.

    Science.gov (United States)

    Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank

    2017-09-25

    Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.

  14. Bulk chirality effect for symmetric bistable switching of liquid crystals on topologically self-patterned degenerate anchoring surface.

    Science.gov (United States)

    Park, Min-Kyu; Joo, Kyung-Il; Kim, Hak-Rin

    2017-06-26

    We demonstrate a bistable switching liquid crystal (LC) mode utilizing a topologically self-structured dual-groove surface for degenerated easy axes of LC anchoring. In our study, the effect of the bulk elastic distortion of the LC directors on the bistable anchoring surface is theoretically analyzed for balanced bistable states based on a free energy diagram. By adjusting bulk LC chirality, we developed ideally symmetric and stable bistable anchoring and switching properties, which can be driven by a low in-plane pulsed field of about 0.7 V/µm. The fabricated device has a contrast ratio of 196:1.

  15. Adhesion switch on a gecko-foot inspired smart nanocupule surface

    Science.gov (United States)

    Song, Wenlong

    2014-10-01

    A gecko-foot inspired nanocupule surface prepared by an AAO template covering method was composed of poly(N-isopropylacrylamide) and polystyrene blend. Both superhydrophobicity and high adhesion force were exhibited on the PNIPAm/PS film at room temperature. Moreover, by controlling the temperature, the wettability of the film could be switched between 138.1 +/- 5.5° and 150.6 +/- 1.5°, and the adhesion force could also be correspondingly tuned accurately by temperature. This reversibility in both wettability and adhesion force could be used to construct smart devices for fine selection of water droplets. The proof-of-concept was demonstrated by the selective catching of precise weight controlled water droplets at different temperatures. This work could help us to design new type of devices for blood bioanalysis or lossless drug transportation.A gecko-foot inspired nanocupule surface prepared by an AAO template covering method was composed of poly(N-isopropylacrylamide) and polystyrene blend. Both superhydrophobicity and high adhesion force were exhibited on the PNIPAm/PS film at room temperature. Moreover, by controlling the temperature, the wettability of the film could be switched between 138.1 +/- 5.5° and 150.6 +/- 1.5°, and the adhesion force could also be correspondingly tuned accurately by temperature. This reversibility in both wettability and adhesion force could be used to construct smart devices for fine selection of water droplets. The proof-of-concept was demonstrated by the selective catching of precise weight controlled water droplets at different temperatures. This work could help us to design new type of devices for blood bioanalysis or lossless drug transportation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04090b

  16. Theoretical studies of potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  17. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  18. Design and testing of a surface switch for the dynamic load current multiplier on the SPHINX microsecond LTD

    International Nuclear Information System (INIS)

    Maysonnave, T.; Bayol, F.; Demol, G.; Almeida, T. d'; Morell, A.; Lassalle, F.; Grunenwald, J.; Chuvatin, A.S.; Pecastaing, L.; De Ferron, A.S.

    2013-01-01

    SPHINX is a microsecond linear transformer driver located at Atomic Energy Commission (CEA) Gramat (France), which can deliver a current pulse of 6 MA within 800 ns in a Z-pinch load. Using the concept of the dynamic load current multiplier (DLCM), which was proposed by Chuvatin, we expect to increase the load current above 6 MA, while decreasing its rise time to ∼300 ns. The DLCM developed by the CEA Gramat and International Technologies for High Pulsed Power (ITHPP) is a compact system made up of concentric electrodes (auto-transformer), a dynamic flux extruder (cylindrical wire array), a vacuum convolute (eight post-hole rods), and a closing switch (compact vacuum surface switch). The latter is a key component of the system, which is used to prevent the current from flowing into the load until the inductance builds up due to the implosion of the wire array. This paper presents the design and testing of the DLCM surface switch, resulting from both electrostatic simulations and experiments on the SPHINX generator. These studies, carried out either with or without load (open circuit), were valuable for a first experimental evaluation of the DLCM scheme in a microsecond regime and provided detailed information on the surface switch behavior. (authors)

  19. Exploring the switching of the focus of attention within working memory: A combined event-related potential and behavioral study.

    Science.gov (United States)

    Frenken, Marius; Berti, Stefan

    2018-04-01

    Working memory enables humans to maintain selected information for cognitive processes and ensures instant access to the memorized contents. Theories suggest that switching the focus of attention between items within working memory realizes the access. This is reflected in object-switching costs in response times when the item for the task processing is to be changed. Another correlate of attentional allocation in working memory is the P3a-component of the human event-related potential. The aim of this study was to demonstrate that switching of attention within working memory is a separable processing step. Participants completed a cued memory-updating task in which they were instructed to update one memory item at a time out of a memory list of four digits by applying a mathematical operation indicated by a target sign. The hypotheses predicted (1) prolonged updating times in switch (different item compared to previous trial) versus repetition trials (same item), (2) an influence of cues (valid/neutral) presented before the mathematical target on switching costs, and (3) that the P3a-component is more pronounced in the cue-target interval in the valid cue condition and more pronounced in the post-target interval in the neutral cue condition. A student's t-test verified the first hypothesis, repeated-measurement analyses of variance demonstrated that hypotheses 2 and 3 should be rejected. Results suggest that switching of attention within working memory could not be separated from further processing steps and retro-cue benefits are not due to a head start of retrieval as well as that switch costs represent internal processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Local digital control of power electronic converters in a dc microgrid based on a-priori derivation of switching surfaces

    Science.gov (United States)

    Banerjee, Bibaswan

    In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes

  1. Development of a piping thickness monitoring system using equipotential switching direct current potential drop method

    International Nuclear Information System (INIS)

    Kyung Ha, Ryu; Na Young, Lee; Il Soon, Hwang

    2007-01-01

    As nuclear power plants age, low alloy steel piping undergoes wall thickness reduction due to Flow Accelerated Corrosion (FAC). Persisting pipe rupture accidents prompted thinned pipe management programs. As a consequence extensive inspection activities are made based on the Ultrasonic Technique (UT). As the inspection points increase, time is needed to cover required inspection areas. In this paper, we present the Wide Range Monitoring (WiRM) concept with Equipotential Switching Direct Current Potential Drop (ES-DCPD) method by which FAC-active areas can be screened for detailed UT inspections. To apply ES-DCPD, we developed an electric resistance network model and electric field model based on Finite Element Analysis (FEA) to verify its feasibility. Experimentally we measured DCPD of the pipe elbow and confirmed the validity using UT inspections. For a more realistic validation test, we designed a high temperature flow test loop with environmental parameters turned for FAC simulation in the laboratory. Using electrochemical monitoring of water chemistry and local flow velocity prediction by computational fluid dynamic model, FAC rate is estimated. Based on the FAC prediction model and the simulation loop test, we plan to demonstrate the applicability of ES-DCPD in the PWR secondary environment. (authors)

  2. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  3. Evaluation of the potential of optical switching materials for overheating protection of thermal solar collectors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huot, G.; Roecker, Ch.; Schueler, A.

    2008-01-15

    Providing renewable energy for domestic hot water production and space heating, thermal solar collectors are more and more widespread, and users' expectations with respect to performance and service lifetime are rising continuously. The durability of solar collector materials is a critical point as the collector lifetime should be at least 25 years. Overheating and the resulting stagnation of the collector is a common problem with solar thermal systems. During stagnation high temperatures lead to water evaporation, glycol degradation, and stresses in the collector with increasing pressure. Special precautions are necessary to release this pressure; only mechanical solutions exist nowadays. Additionally, the occurring elevated temperatures lead to degradation of the materials that compose collectors: seals, insulation materials, and also the selective coating which is the most important part of the collector. A promising way to achieve active cooling of collectors without any mechanical device for pressure release or collector emptying is to produce a selective coating which is able to switch its optical properties at a critical temperature Tc. An optical switch allows changing the selective coating efficiency; the goal is to obtain a coating with a poor selectivity above Tc (decreasing of absorptance, increasing of emittance). Obtaining self-cooling collectors will allow increasing collector surfaces on facades and roofs in order to get high efficiency and hot water production during winter without inconvenient overheating during summer. Optical switching of materials can be obtained by many ways. Inorganic and organic thermochromic compounds, and organic thermotropic coatings are the main types of switching coatings that have been studied at EPFL-LESO-PB. Aging studies of organic thermochromic paints fabricated at EPFL suggest that the durability of organic compounds might not be sufficient for glazed metallic collectors. First samples of inorganic coatings

  4. Fluorescence quenching studies of potential-dependent DNA reorientation dynamics at glassy carbon electrode surfaces.

    Science.gov (United States)

    Li, Qin; Cui, Chenchen; Higgins, Daniel A; Li, Jun

    2012-09-05

    The potential-dependent reorientation dynamics of double-stranded DNA (ds-DNA) attached to planar glassy carbon electrode (GCE) surfaces were investigated. The orientation state of surface-bound ds-DNA was followed by monitoring the fluorescence from a 6-carboxyfluorescein (FAM6) fluorophore covalently linked to the distal end of the DNA. Positive potentials (i.e., +0.2 V vs open circuit potential, OCP) caused the ds-DNA to align parallel to the electrode surface, resulting in strong dipole-electrode quenching of FAM6 fluorescence. Switching of the GCE potential to negative values (i.e., -0.2 V vs OCP) caused the ds-DNA to reorient perpendicular to the electrode surface, with a concomitant increase in FAM6 fluorescence. In addition to the very fast (submilliseconds) dynamics of the initial reorientation process, slow (0.1-0.9 s) relaxation of FAM6 fluorescence to intermediate levels was also observed after potential switching. These dynamics have not been previously described in the literature. They are too slow to be explained by double layer charging, and chronoamperometry data showed no evidence of such effects. Both the amplitude and rate of the dynamics were found to depend upon buffer concentration, and ds-DNA length, demonstrating a dependence on the double layer field. The dynamics are concluded to arise from previously undetected complexities in the mechanism of potential-dependent ds-DNA reorientation. The possible origins of these dynamics are discussed. A better understanding of these dynamics will lead to improved models for potential-dependent ds-DNA reorientation at electrode surfaces and will facilitate the development of advanced electrochemical devices for detection of target DNAs.

  5. Microscopic observation of zenithal bistable switching in nematic devices with different surface relief structures

    International Nuclear Information System (INIS)

    Uche, C; Elston, S J; Parry-Jones, L A

    2005-01-01

    Nematic liquid crystals have been shown to exhibit zenithal electro-optic bistability in devices containing sinusoidal and deformed sinusoidal gratings. Recently it has been shown that zenithal bistable states can also be supported at isolated edges of square gratings. In this paper, we present microscopic observations of bistability in cells containing sinusoidal gratings and long-pitch square gratings. We have also investigated a novel display based on square wells. High frame-rate video microscopy was used to obtain time-sequenced images when the devices were switched with monopolar pulses. These show that zenithal bistable switching can occur by two different processes: (i) domain growth (observed in cells containing sinusoidal gratings) and (ii) homogenous switching (observed in cells containing isolated edges

  6. Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Bazin, Alexandre; Monnier, Paul; Beaudoin, Grégoire; Sagnes, Isabelle; Raj, Rama [Laboratoire de Photonique et de Nanostructures (CNRS UPR20), Route de Nozay, Marcoussis 91460 (France); Lenglé, Kevin; Gay, Mathilde; Bramerie, Laurent [Université Européenne de Bretagne (UEB), 5 Boulevard Laënnec, 35000 Rennes (France); CNRS-Foton Laboratory (UMR 6082), Enssat, BP 80518, 22305 Lannion Cedex (France); Braive, Rémy; Raineri, Fabrice, E-mail: fabrice.raineri@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures (CNRS UPR20), Route de Nozay, Marcoussis 91460 (France); Université Paris Diderot, Sorbonne Paris Cité, 75207 Paris Cedex 13 (France)

    2014-01-06

    Ultrafast switching with low energies is demonstrated using InP photonic crystal nanocavities embedding InGaAs surface quantum wells heterogeneously integrated to a silicon on insulator waveguide circuitry. Thanks to the engineered enhancement of surface non radiative recombination of carriers, switching time is obtained to be as fast as 10 ps. These hybrid nanostructures are shown to be capable of achieving systems level performance by demonstrating error free wavelength conversion at 10 Gbit/s with 6 mW switching powers.

  7. Respiratory infections and pneumonia: potential benefits of switching from smoking to vaping.

    Science.gov (United States)

    Campagna, Davide; Amaradio, Maria Domenica; Sands, Mark F; Polosa, Riccardo

    2016-01-01

    Abstaining from tobacco smoking is likely to lower the risk of respiratory infections and pneumonia. Unfortunately, quitting smoking is not easy. Electronic cigarettes (ECs) are emerging as an attractive long-term alternative nicotine source to conventional cigarettes and are being adopted by smokers who wish to reduce or quit cigarette consumption. Also, given that the propylene glycol in EC aerosols is a potent bactericidal agent, switching from smoking to regular vaping is likely to produce additional lung health benefits. Here, we critically address some of the concerns arising from regular EC use in relation to lung health, including respiratory infections and pneumonia. In conclusion, smokers who quit by switching to regular ECs use can reduce risk and reverse harm from tobacco smoking. Innovation in the e-vapour category is likely not only to further minimise residual health risks, but also to maximise health benefits.

  8. Green's functions potential fields on surfaces

    CERN Document Server

    Melnikov, Yuri A

    2017-01-01

    This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.

  9. The signs of ocular-surface disorders after switching from latanoprost to tafluprost/timolol fixed combination: a prospective study

    Directory of Open Access Journals (Sweden)

    Okumichi H

    2017-06-01

    Full Text Available Hideaki Okumichi,1 Yoshiaki Kiuchi,1 Tetsuya Baba,2 Takashi Kanamoto,3 Tomoko Naito,4,5 Shunsuke Nakakura,6 Hitoshi Tabuchi,6 Hiroki Nii,7 Chie Sueoka,7 Yosuke Sugimoto1,8 1Department of Ophthalmology and Visual Science, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; 2Shirai Eye Hospital, Mitoyo, Japan; 3Department of Ophthalmology, Hiroshima Memorial Hospital, Hiroshima, Japan; 4Department of Ophthalmology, Okayama University Graduate School of Medicine, Okayama, Japan; 5Department of Ophthalmology, Konko Hospital, Asakuchi, Japan; 6Department of Ophthalmology, Saneikai Tsukazaki Hospital, Himeji, Japan; 7Department of Ophthalmology, Hiroshima General Hospital, Hiroshima, Japan; 8Department of Ophthalmology, Hiroshima Prefectural Hospital, Hiroshima, Japan Purpose: To evaluate the ocular-surface safety of a 0.001% benzalkonium chloride-containing tafluprost/timolol fixed combination (TTFC in patients with primary open-angle glaucoma (POAG or ocular hypertension who have inadequate intraocular pressure (IOP control with latanoprost monotherapy.Methods: This study is a multicenter, prospective, single-arm, open-label clinical study. Patients with POAG or ocular hypertension who have inadequate IOP control with latanoprost monotherapy were considered eligible. After providing informed consent, patients continued latanoprost monotherapy for 12 weeks, followed by a switch to TTFC. We evaluated the extent of ocular-surface damage using superficial punctate keratopathy (SPK score, tear breakup time (TBUT, hyperemia score, IOP, systolic blood pressure (SBP, diastolic blood pressure (DBP, and heart rate at 0, 4, and 12 weeks after switching.Results: A total of 68 patients were enrolled, of whom, 64 patients were included in the final analysis. No significant changes in SPK score, TBUT, or hyperemia score were observed at 4 and 12 weeks compared with week 0. IOP decreased significantly at 4 (13.9±2.5 mmHg and 12

  10. Surface Potential of Polycrystalline Hematite in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Tajana Preočanin

    2011-01-01

    Full Text Available The surface potential of polycrystalline hematite in aqueous sodium perchlorate environment as a function of pH was examined. Surface potential of hematite was obtained from measured electrode potential of a nonporous polycrystalline hematite electrode. Acidic solution was titrated with base, and the backward titration with acid was performed. Substantial hysteresis was obtained which enabled location of the point of zero potential and equilibrium values of surface potentials. The theoretical interpretation of the equilibrium data was performed by applying the surface complexation model and the thermodynamic equilibrium constants for the first and the second step of surface protonation was obtained as logK1∘=11.3;logK2∘=2.8.

  11. Repulsive Casimir-Polder potential by a negative reflecting surface

    Science.gov (United States)

    Yuan, Qi-Zhang

    2015-07-01

    We present a scheme to generate an all-range long repulsive Casimir-Polder potential between a perfect negative reflecting surface and a ground-state atom. The repulsive potential is stable and does not decay with time. The Casimir-Polder potential is proportional to z-2 at short atom-surface distances and to z-4 at long atom-surface distances. Because of these advantages, this potential can help in building quantum reflectors, quantum levitating devices, and waveguides for matter waves.

  12. Potential health impact of switching from car to public transportation when commuting to work.

    Science.gov (United States)

    Morabia, Alfredo; Mirer, Franklin E; Amstislavski, Tashia M; Eisl, Holger M; Werbe-Fuentes, Jordan; Gorczynski, John; Goranson, Chris; Wolff, Mary S; Markowitz, Steven B

    2010-12-01

    We assessed humidity-corrected particulate matter (PM(2.5)) exposure and physical activity (using global positioning system monitors and diaries) among 18 people who commuted by car to Queens College, New York, New York, for 5 days, and then switched to commuting for the next 5 days via public transportation. The PM(2.5) differed little between car and public transportation commutes (1.41 μg/M(3)·min; P = .226). Commuting by public transportation rather than by car increased energy expenditure (+124 kcal/day; P < .001) equivalent to the loss of 1 pound of body fat per 6 weeks.

  13. Effects of Piezoelectric Potential of ZnO on Resistive Switching Characteristics of Flexible ZnO/TiO2 Heterojunction Cells

    Science.gov (United States)

    Li, Hongxia; Zhou, You; Du, Gang; Huang, Yanwei; Ji, Zhenguo

    2018-03-01

    Flexible resistance random access memory (ReRAM) devices with a heterojunction structure of PET/ITO/ZnO/TiO2/Au were fabricated on polyethylene terephthalate/indium tin oxide (PET/ITO) substrates by different physical and chemical preparation methods. X-ray diffraction, scanning electron microscopy and atomic force microscopy were carried out to investigate the crystal structure, surface topography and cross-sectional structure of the prepared films. X-ray photoelectron spectroscopy was also used to identify the chemical state of Ti, O and Zn elements. Theoretical and experimental analyses were conducted to identify the effect of piezoelectric potential of ZnO on resistive switching characteristics of flexible ZnO/TiO2 heterojunction cells. The results showed a pathway to enhance the performance of ReRAM devices by engineering the interface barrier, which is also feasible for other electronics, optoelectronics and photovoltaic devices.

  14. Changes in Ocular Surface Characteristics after Switching from Benzalkonium Chloride-Preserved Latanoprost to Preservative-Free Tafluprost or Benzalkonium Chloride-Preserved Tafluprost

    Directory of Open Access Journals (Sweden)

    Naoto Tokuda

    2017-01-01

    Full Text Available Purpose. The aim of the present study was to examine the effects of switching from Latanoprost ophthalmic solution containing a preservative to preservative-free Tafluprost ophthalmic solution or Tafluprost containing a preservative on ocular surfaces. Materials and Methods. Forty patients (40 eyes with glaucoma (mean age: 62.0 ± 10.9 years using Latanoprost with preservative for six months or longer were assigned either to a Tafluprost-containing-preservative group (20 eyes or preservative-free-Tafluprost group (20 eyes. The intraocular pressure, corneal epithelial barrier function (fluorescein uptake concentration with fluorophotometer FL-500, superficial punctate keratopathy (AD classification, and tear film breakup time (TBUT were assessed before switching and at 12 weeks after switching. Results. No significant differences in intraocular pressure were noted after switching in either group. Corneal epithelial barrier function was improved significantly after switching in both the Tafluprost-containing-preservative and the preservative-free-Tafluprost groups. There were no significant differences in AD scores after switching in the Tafluprost-containing-preservative group, but significant improvements were noted in the preservative-free-Tafluprost group. No significant differences in TBUT were noted in the Tafluprost-containing-preservative or preservative-free-Tafluprost groups after switching. Conclusion. After switching from preservative Latanoprost to Tafluprost containing-preservative or preservative-free Tafluprost, corneal epithelial barrier function was improved while the intraocular pressure reduction was retained.

  15. Changes in Ocular Surface Characteristics after Switching from Benzalkonium Chloride-Preserved Latanoprost to Preservative-Free Tafluprost or Benzalkonium Chloride-Preserved Tafluprost.

    Science.gov (United States)

    Tokuda, Naoto; Kitaoka, Yasushi; Matsuzawa, Akiko; Tsukamoto, Ayaka; Sase, Kana; Sakae, Shinsuke; Takagi, Hitoshi

    2017-01-01

    The aim of the present study was to examine the effects of switching from Latanoprost ophthalmic solution containing a preservative to preservative-free Tafluprost ophthalmic solution or Tafluprost containing a preservative on ocular surfaces. Forty patients (40 eyes) with glaucoma (mean age: 62.0 ± 10.9 years) using Latanoprost with preservative for six months or longer were assigned either to a Tafluprost-containing-preservative group (20 eyes) or preservative-free-Tafluprost group (20 eyes). The intraocular pressure, corneal epithelial barrier function (fluorescein uptake concentration with fluorophotometer FL-500), superficial punctate keratopathy (AD classification), and tear film breakup time (TBUT) were assessed before switching and at 12 weeks after switching. No significant differences in intraocular pressure were noted after switching in either group. Corneal epithelial barrier function was improved significantly after switching in both the Tafluprost-containing-preservative and the preservative-free-Tafluprost groups. There were no significant differences in AD scores after switching in the Tafluprost-containing-preservative group, but significant improvements were noted in the preservative-free-Tafluprost group. No significant differences in TBUT were noted in the Tafluprost-containing-preservative or preservative-free-Tafluprost groups after switching. After switching from preservative Latanoprost to Tafluprost containing-preservative or preservative-free Tafluprost, corneal epithelial barrier function was improved while the intraocular pressure reduction was retained.

  16. Frequency response in surface-potential driven electrohydrodynamics

    DEFF Research Database (Denmark)

    Ejsing, Louise Wellendorph; Smistrup, Kristian; Pedersen, Christian Møller

    2006-01-01

    Using a Fourier approach we offer a general solution to calculations of slip velocity within the circuit description of the electrohydrodynamics in a binary electrolyte confined by a plane surface with a modulated surface potential. We consider the case with a spatially constant intrinsic surface...... capacitance where the net flow rate is, in general, zero while harmonic rolls as well as time-averaged vortexlike components may exist depending on the spatial symmetry and extension of the surface potential. In general, the system displays a resonance behavior at a frequency corresponding to the inverse RC...

  17. Surface motion and confinement potential for a microwave confined corona

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1979-07-01

    Approximate time dependent solutions for surface velocities and potentials are given for a plane polarized microwave field confining a hot, over-dense plasma corona. Steady state solutions to Poissons' equation can be applied to the time dependent case, provided transit time effects are included. The product of ion pressure and potential wave (surface) velocity gives an average heating rate approx. 7/32 NKT 0 V/sub theta/ directly to the ions

  18. Optical switching systems using nanostructures

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2004-01-01

    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  19. Role of inhibition in language switching: Evidence from event-related brain potentials in overt picture naming

    NARCIS (Netherlands)

    Verhoef, K.M.W.; Roelofs, A.P.A.; Chwilla, D.J.

    2009-01-01

    How are bilinguals able to switch from one language to another? The prevailing inhibition hypothesis takes larger reaction-time (RT) costs for switching to the first language (L1) than to the second language (L2) as evidence for suppression of the non-target language. Switch cost asymmetries can

  20. Potential utility of the thematic mapper for surface mine monitoring

    International Nuclear Information System (INIS)

    Irons, J.R.; Lachowski, H.M.

    1981-01-01

    One of many potential applications of the thematic mapper (TM) is surface mine monitoring. To assess this potential, data acquired by an aircraft multispectral scanner over Pennsylvania surface mines were preprocessed to simulate the anticipated spectral, spatial, and radiometric characteristics of TM data. False color imagery and thematic maps were derived from the simulated data and compared to imagery and maps derived from LANDSAT multispectral scanner subsystems data. On the basis of this comparison, TM data should definitely increase the detail and accuracy of remotely acquired surface mine information and may enable the remote determination of compliance with reclamation regulations

  1. Osteogenic potential of laser modified and conditioned titanium zirconium surfaces

    Directory of Open Access Journals (Sweden)

    P David Charles

    2016-01-01

    Full Text Available Statement of Problem: The osseointegration of dental implant is related to their composition and surface treatment. Titanium zirconium (TiZr has been introduced as an alternative to the commercially pure titanium and its alloys as dental implant material, which is attributed to its superior mechanical and biological properties. Surface treatments of TiZr have been introduced to enhance their osseointegration ability; however, reliable, easy to use surface modification technique has not been established. Purpose: The purpose of this study was to evaluate and compare the effect of neodymium-doped yttrium aluminum garnet (Nd-YAG laser surface treatment of TiZr implant alloy on their osteogenic potential. Materials and Methods: Twenty disc-shaped samples of 5 mm diameter and 2 mm height were milled from the TiZr alloy ingot. The polished discs were ultrasonically cleaned in distilled water. Ten samples each were randomly selected as Group A control samples and Group B consisted of Nd-YAG laser surface etched and conditioned test samples. These were evaluated for cellular response. Cellular adhesion and proliferation were quantified, and the results were statistically analyzed using nonparametric analysis. Cellular morphology was observed using electron and epiflurosence microscopy. Results: Nd-YAG laser surface modified and conditioned TiZr samples increased the osteogenic potential. Conclusion: Nd-YAG laser surface modification of TiZr, improves the cellular activity, surface roughness, and wettability, thereby increasing the osteogenic potential.

  2. Potential energy surfaces for nucleon exchanging in dinuclear systems

    International Nuclear Information System (INIS)

    Li Jianfeng; Xu Hushan; Li Wenfei; Zuo Wei; Li Junqing; Wang Nan; Zhao Enguang

    2003-01-01

    The experimental measurements have provided the evidence that the suppression of fusion cross-section caused by quasi-fission is very important for the synthesis of super-heavy nuclei by heavy ion collisions. The potential energy surface due to the nucleon transfer in the collision process is the driven potential, which governs the nucleon transfer, so that governs the competition between the fusion and quasi-fission. The dinuclear system potential energy surface also gives the information about the optimum projectile-target combination, as well as the optimum excitation energy for the synthesis of super-heavy nuclei by heavy ion collisions

  3. Biaxial potential of surface-stabilized ferroelectric liquid crystals

    Science.gov (United States)

    Kaznacheev, Anatoly; Pozhidaev, Evgeny; Rudyak, Vladimir; Emelyanenko, Alexander V.; Khokhlov, Alexei

    2018-04-01

    A biaxial surface potential Φs of smectic-C* surface-stabilized ferroelectric liquid crystals (SSFLCs) is introduced in this paper to explain the experimentally observed electric-field dependence of polarization P˜cell(E ) , in particular the shape of the static hysteresis loops. Our potential consists of three independent parts. The first nonpolar part Φn describes the deviation of the prime director n (which is the most probable orientation of the long molecular axes) from the easy alignment axis R , which is located in the boundary surface plane. It is introduced in the same manner as the uniaxial Rapini potential. The second part Φp of the potential is a polar term associated with the presence of the polar axis in a FLC. The third part Φm relates to the inherent FLC biaxiality, which has not been taken into consideration previously. The Φm part takes into account the deviations of the secondary director m (which is the most probable orientation of the short molecular axes) from the normal to the boundary surface. The overall surface potential Φs, which is a sum of Φn,Φp , and Φm, allows one to model the conditions when either one, two, or three minima of the SSFLC cell free energy are realized depending on the biaxiality extent. A monodomain or polydomain structure, as well as the bistability or monostability of SSFLC cells, depends on the number of free-energy minima, as confirmed experimentally. In this paper, we analyze the biaxiality impact on the FLC alignment. We also answer the question of whether the bistable or monostable structure can be formed in an SSFLC cell. Our approach is essentially based on a consideration of the biaxial surface potential, while the uniaxial surface potential cannot adequately describe the experimental observations in the FLC.

  4. Electric Field Distribution and Switching Impulse Discharge under Shield Ball Surface Scratch Defect in an UHVDC Hall

    Directory of Open Access Journals (Sweden)

    Jianghai Geng

    2018-05-01

    Full Text Available The dimension and surface state of shielding fittings in ultra high voltage direct current (UHVDC converter station valve halls have a great influence on their surface electric field and switching impulse characteristics, which are important parameters confirming the air gap distance in the valve hall. The characteristics of impulse discharge under different lengths, dent degrees and burrs around the scratches of Φ1.3 m shield balls with a 2 m sphere-plane gap length were tested, in the UHVDC testing base of the Hebei Electric Power Research Institute. The discharge characteristics under the influence of the surface scratches of the shield ball were obtained. The results demonstrate that the discharge voltage of sphere-plane gap decreases obviously when there are unpolished scratches on the surface of the shield ball. However, when the scratches are polished, the discharge voltage has no significant impact. At the same time, a 1:1 full-scale impulse test model was established based on the finite element method. The electric field intensity and the space electric field distribution of the shield ball were obtained under the influence of scratches with or without burrs. The results of the simulation show that when the surface of the shield ball is smooth, the electric field distribution around it is even. The electric field intensity on the surface of the shield ball increases obviously when there are burrs around the scratches. When there is no burr around the scratches, the length and depth of the scratches have no obvious effect on its electric field distribution. Meanwhile, calculation results are consistent with test results. The results can provide an important basis for the design and optimization of shielding fittings, and technical support for its localization.

  5. Photoelectron spectroscopy of self-assembled monolayers of molecular switches on noble metal surfaces; Photoelektronenspektroskopie selbstorganisierter Adsorbatschichten aus molekularen Schaltern auf Edelmetalloberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Nils

    2012-09-12

    Self-assembled monolayers (SAMs) of butanethiolate (C4) on single crystalline Au(111) surfaces were prepared by adsorption from solution. The thermally activated desorption behaviour of the C4 molecules from the gold substrate was examined by qualitative thermal desorption measurements (TDM), through this a desorption temperature T{sub Des}=473 K could be determined. With this knowledge, it was possible to produce samples of very good surface quality, by thermal treatment T{sub Sample}potential states. The reversible photo- and thermally activated isomerization of the molecular switch 3-(4-(4-Hexyl-phenylazo)-phenoxy)-propane-1-thiol (ABT), deposited by self-assembly from solution on Au(111), was examined using laser-based photoelectron spectroscopy. Differences in the molecular dipole moment characteristic for the trans and the cis isomer of ABT were observed via changes in the sample work function, accessible by detection of the threshold energy for photoemission. A quantitative

  6. The Contribution of Surface Potential to Diverse Problems in Electrostatics

    International Nuclear Information System (INIS)

    Horenstein, M

    2015-01-01

    Electrostatics spans many different subject areas. Some comprise “good electrostatics,” where charge is used for desirable purposes. Such areas include industrial manufacturing, electrophotography, surface modification, precipitators, aerosol control, and MEMS. Other areas comprise “bad electrostatics,” where charge is undesirable. Such areas include hazardous discharges, ESD, health effects, nuisance triboelectrification, particle contamination, and lightning. Conference proceedings such as this one inevitably include papers grouped around these topics. One common thread throughout is the surface potential developed when charge resides on an insulator surface. Often, the charged insulator will be in intimate contact with a ground plane. At other times, the charged insulator will be isolated. In either case, the resulting surface potential is important to such processes as propagating brush discharges, charge along a moving web, electrostatic biasing effects in MEMS, non-contacting voltmeters, field-effect transistor sensors, and the maximum possible charge on a woven fabric. (paper)

  7. Sliding surface searching method for slopes containing a potential weak structural surface

    Directory of Open Access Journals (Sweden)

    Aijun Yao

    2014-06-01

    Full Text Available Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simulated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

  8. Soil and gas and radon entry potentials for substructure surfaces

    International Nuclear Information System (INIS)

    Harrison, J.; Sextro, R.G.

    1990-01-01

    This paper reports on measurement techniques and parameters that describe the potential for areas of a building substructure to have high soil gas and radon entry rates which have been developed. Flows and pressures measured at test holes in substructure surfaces while the substructure was intentionally depressurized were used in a highly simplified electrical circuit to model the substructure/soil network. Data from four New Jersey houses indicate that the soil was a factor of two to six times more resistant to soil gas flow than substructure surfaces, concrete slab floors, including perimeter gaps, cracks, and other penetrations, were approximately five times more resistant to soil gas movement than hollow block walls, and radon entry potentials were highest for slab floors. These indices of entry potential may be useful for characterizing the relative leakiness of below-grade substructure surfaces and for determining the selection and placement of radon control systems

  9. Time-dependent image potential at a metal surface

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2003-01-01

    Transient effects in the image potential induced by a point charge suddenly created in front of a metal surface are studied. The time evolution of the image potential is calculated using linear response theory. Two different time scales are defined: (i) the time required for the creation of the image potential and (ii) the time it takes to converge to its stationary value. Their dependence on the distance of the charge to the surface is discussed. The effect of the electron gas damping is also analyzed. For a typical metallic density, the order of magnitude of the creation time is 0.1 fs, whereas for a charge created close to the surface the convergence time is around 1-2 fs

  10. Electron induced conformational changes of an imine-based molecular switch on a Au(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Lotze, Christian; Henningsen, Nils; Franke, Katharina; Schulze, Gunnar; Pascual, Jose Ignacio [Inst. f. Experimentalphysik, Freie Universitaet Berlin (Germany); Luo, Ying; Haag, Rainer [Inst. f. Organische Chemie, Freie Universitaet Berlin (Germany)

    2009-07-01

    Azobenzene-based molecules exhibit a cis-trans configurational photoisomerisation in solution. Recently, the adsorption properties of azobenzene derivatives have been investigated on different metal surfaces in order to explore the possible changes in the film properties induced by external stimuli. In azobenzene, the diazo-bridge is a key group for the isomerization process. Its interaction with a metal surface is dominated through the N lone-pair electrons, which reduces the efficiency of the conformational change. In order to reduce the molecule-surface interaction, we explore an alternative molecular architecture by substituting the diazo-bridge (-N=N-) of azobenzene by an imine-group (-N=CH-). We have investigated the imine-based compound para-carboxyl-di-benzene-imine (PCI) adsorbed on a Au(111) surface. The carboxylic terminations mediates the formation of strongly bonded molecular dimers, which align in ordered rows preferentially following the fcc regions of the Au(111) herringbone reconstruction. Low temperature scanning tunneling microscopy was used to induce conformational changes between trans and cis state of individual molecules in a molecular monolayer.

  11. Surface potential domains on lamellar P3OT structures

    Energy Technology Data Exchange (ETDEWEB)

    Perez-GarcIa, B [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Abad, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Urbina, A [Departamento Electronica, TecnologIa de Computadoras y Proyectos, Universidad Politecnica de Cartagena, E-30202 Cartagena (Spain); Colchero, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Palacios-Lidon, E [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain)

    2008-02-13

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place.

  12. Surface potential domains on lamellar P3OT structures

    International Nuclear Information System (INIS)

    Perez-GarcIa, B; Abad, J; Urbina, A; Colchero, J; Palacios-Lidon, E

    2008-01-01

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place

  13. An adaptive interpolation scheme for molecular potential energy surfaces

    Science.gov (United States)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  14. Reversible Compositional Control of Oxide Surfaces by Electrochemical Potentials

    KAUST Repository

    Mutoro, Eva

    2012-01-05

    Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically/ionically conducting, and thus, they have been used in a number of solid-state devices such as solid oxide fuel cells (SOFCs) and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface compositions is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface compositional changes of La 0.8Sr 0.2CoO 3-δ (LSC 113), (La 0.5Sr 0.5) 2CoO 4±δ (LSC 214), and LSC 214-decorated LSC 113 films (LSC 113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr were found for the LSC 113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites. © 2011 American Chemical Society.

  15. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  16. The potential for host switching via ecological fitting in the emerald ash borer-host plant system.

    Science.gov (United States)

    Cipollini, Don; Peterson, Donnie L

    2018-02-27

    The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.

  17. Switching Attention within Working Memory is Reflected in the P3a Component of the Human Event-Related Brain Potential.

    Directory of Open Access Journals (Sweden)

    Stefan eBerti

    2016-01-01

    Full Text Available The flexible access to information in working memory is crucial for adaptive behavior. It is assumed that this is realized by switching the focus of attention within working memory. Switching of attention is mirrored in the P3a component of the human event-related brain potential (ERP and it has been argued that the processes reflected by the P3a are also relevant for selecting information within working memory. The aim of the present study was to further evaluate whether the P3a mirrors genuine switching of attention within working memory by applying an object switching task: Participants updated a memory list of four digits either by replacing one item with another digit or by processing the stored digit. ERPs were computed separately for two types of trials: (1 trials in which an object was repeated and (2 trials in which a switch to a new object was required in order to perform the task. Object switch trials showed increased response times compared with repetition trials in both task conditions. In addition, switching costs were increased in the processing compared with the replacement condition. Pronounced P3a’s were obtained in switching trials but there were no difference between the two updating tasks (replacement or processing. These results were qualified by the finding that the magnitude of the visual location shift also affects the ERPs in the P3a time window. Taken together, the present pattern of results suggest that the P3a reflects an initial process of selecting information in working memory but not the memory updating itself.

  18. Optimized surface-slab excited-state muffin-tin potential and surface core level shifts

    International Nuclear Information System (INIS)

    Rundgren, J.

    2003-01-01

    An optimized muffin-tin (MT) potential for surface slabs with preassigned surface core-level shifts (SCLS's) is presented. By using the MT radii as adjustable parameters the model is able to conserve the definition of the SCLS with respect to the bulk and concurrently to generate a potential that is continuous at the MT radii. The model is conceived for elastic electron scattering in a surface slab with exchange-correlation interaction described by the local density approximation. The model employs two data bases for the self-energy of the signal electron (after Hedin and Lundqvist or Sernelius). The potential model is discussed in detail with two surface structures Be(101-bar0), for which SCLS's are available, and Cu(111)p(2x2)Cs, in which the close-packed radii of the atoms are extremely different. It is considered plausible that tensor LEED based on an optimized MT potential can be used for determining SCLS's

  19. Tuning the surface potential of Ag surfaces by chemisorption of oppositely-oriented thiolated carborane dipoles

    Czech Academy of Sciences Publication Activity Database

    Lübben, J.F.; Baše, Tomáš; Rupper, P.; Künniger, T.; Macháček, Jan; Guimond, S.

    2011-01-01

    Roč. 354, č. 1 (2011), s. 168-174 ISSN 0021-9797 R&D Projects: GA AV ČR(CZ) IAA400320901 Keywords : Adsorption * Thiolated carboranes * Silver surface * Surface potential * X-ray photoelectron spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 3.070, year: 2011

  20. A statistical nanomechanism of biomolecular patterning actuated by surface potential

    Science.gov (United States)

    Lin, Chih-Ting; Lin, Chih-Hao

    2011-02-01

    Biomolecular patterning on a nanoscale/microscale on chip surfaces is one of the most important techniques used in vitro biochip technologies. Here, we report upon a stochastic mechanics model we have developed for biomolecular patterning controlled by surface potential. The probabilistic biomolecular surface adsorption behavior can be modeled by considering the potential difference between the binding and nonbinding states. To verify our model, we experimentally implemented a method of electroactivated biomolecular patterning technology and the resulting fluorescence intensity matched the prediction of the developed model quite well. Based on this result, we also experimentally demonstrated the creation of a bovine serum albumin pattern with a width of 200 nm in 5 min operations. This submicron noncovalent-binding biomolecular pattern can be maintained for hours after removing the applied electrical voltage. These stochastic understandings and experimental results not only prove the feasibility of submicron biomolecular patterns on chips but also pave the way for nanoscale interfacial-bioelectrical engineering.

  1. A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1

    Science.gov (United States)

    Kilisch, Markus; Lytovchenko, Olga; Arakel, Eric C.; Bertinetti, Daniela; Schwappach, Blanche

    2016-01-01

    ABSTRACT The transport of the K+ channels TASK-1 and TASK-3 (also known as KCNK3 and KCNK9, respectively) to the cell surface is controlled by the binding of 14-3-3 proteins to a trafficking control region at the extreme C-terminus of the channels. The current model proposes that phosphorylation-dependent binding of 14-3-3 sterically masks a COPI-binding motif. However, the direct effects of phosphorylation on COPI binding and on the binding parameters of 14-3-3 isoforms are still unknown. We find that phosphorylation of the trafficking control region prevents COPI binding even in the absence of 14-3-3, and we present a quantitative analysis of the binding of all human 14-3-3 isoforms to the trafficking control regions of TASK-1 and TASK-3. Surprisingly, the affinities of 14-3-3 proteins for TASK-1 are two orders of magnitude lower than for TASK-3. Furthermore, we find that phosphorylation of a second serine residue in the C-terminus of TASK-1 inhibits 14-3-3 binding. Thus, phosphorylation of the trafficking control region can stimulate or inhibit transport of TASK-1 to the cell surface depending on the target serine residue. Our findings indicate that control of TASK-1 trafficking by COPI, kinases, phosphatases and 14-3-3 proteins is highly dynamic. PMID:26743085

  2. Application of Volta potential mapping to determine metal surface defects

    International Nuclear Information System (INIS)

    Nazarov, A.; Thierry, D.

    2007-01-01

    As a rule, stress or fatigue cracks originate from various surface imperfections, such as pits, inclusions or locations showing a residual stress. It would be very helpful for material selection to be able to predict the likelihood of environment-assisted cracking or pitting corrosion. By using Scanning Kelvin Probe (the vibrating capacitor with a spatial resolution of 80 μm) the profiling of metal electron work function (Volta potential) in air is applied to the metal surfaces showing residual stress, MnS inclusions and wearing. The Volta potential is influenced by the energy of electrons at the Fermi level and drops generally across the metal/oxide/air interfaces. Inclusions (e.g. MnS) impair continuity of the passive film that locally decreases Volta potential. The stress applied gives rise to dislocations, microcracks and vacancies in the metal and the surface oxide. The defects decrease Volta and corrosion potentials; reduce the overvoltage for processes of passivity breakdown and anodic metal dissolution. These 'anodic' defects can be visualized in potential mapping that can help us to predict locations with higher risk of pitting corrosion or cracking

  3. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China. (China)

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH{sub 3} and CH{sub 4} were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  4. Valence bond model potential energy surface for H4

    International Nuclear Information System (INIS)

    Silver, D.M.; Brown, N.J.

    1980-01-01

    Potential energy surfaces for the H 4 system are derived using the valence bond procedure. An ab initio evaluation of the valence bond energy expression is described and some of its numerical properties are given. Next, four semiempirical evaluations of the valence bond energy are defined and parametrized to yield reasonable agreement with various ab initio calculations of H 4 energies. Characteristics of these four H 4 surfaces are described by means of tabulated energy minima and equipotential contour maps for selected geometrical arrangements of the four nuclei

  5. Surface contact potential patches and Casimir force measurements

    International Nuclear Information System (INIS)

    Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.; Dalvit, D. A. R.

    2010-01-01

    We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplace's equation, the presence of patch potentials does not affect an electrostatic calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed.

  6. Online monitoring method using Equipotential Switching Direct Current potential drop for piping wall loss by flow accelerated corrosion

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Lee, Tae Hyun; Kim, Ji Hak; Hwang, Il Soon; Lee, Na Young; Kim, Ji Hyun; Park, Jin Ho; Sohn, Chang Ho

    2010-01-01

    The flow accelerated corrosion (FAC) phenomenon persistently impacts plant reliability and personnel safety. We have shown that Equipotential Switching Direct Current Potential Drop (ES-DCPD) can be employed to detect piping wall loss induced by FAC. It has been demonstrated to have sufficient sensitivity to cover both long and short lengths of piping. Based on this, new FAC screening and inspection approaches have been developed. For example, resolution of ES-DCPD can be adjusted according to its monitoring purpose. The developed method shows good integrity during long test periods. It also shows good reproducibility. The Seoul National University FAC Accelerated Simulation Loop (SFASL) has been constructed for ES-DCPD demonstration purposes. During one demonstration, the piping wall was thinned by 23.7% through FAC for a 13,000 min test period. In addition to the ES-DCPD method, ultrasonic technique (UT) has been applied to SFASL for verification while water chemistry was continually monitored and controlled using electrochemical sensors. Developed electrochemical sensors showed accurate and stable water conditions in the SFASL during the test period. The ES-DCPD results were also theoretically predicted by the Sanchez-Caldera's model. The UT, however, failed to detect thinning because of its localized characteristics. Online UT that covers only local areas cannot assure the detection of wall loss.

  7. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    DEFF Research Database (Denmark)

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and doub...... of the complexes, providing valuable results for future experimental investigations. Comparing our results to those previously available for other phosgene complexes, we suggest that the results for Cl2-phosgene should be revised....

  8. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  9. Surface deformation during an action potential in pearled cells

    Science.gov (United States)

    Mussel, Matan; Fillafer, Christian; Ben-Porath, Gal; Schneider, Matthias F.

    2017-11-01

    Electric pulses in biological cells (action potentials) have been reported to be accompanied by a propagating cell-surface deformation with a nanoscale amplitude. Typically, this cell surface is covered by external layers of polymer material (extracellular matrix, cell wall material, etc.). It was recently demonstrated in excitable plant cells (Chara braunii) that the rigid external layer (cell wall) hinders the underlying deformation. When the cell membrane was separated from the cell wall by osmosis, a mechanical deformation, in the micrometer range, was observed upon excitation of the cell. The underlying mechanism of this mechanical pulse has, to date, remained elusive. Herein we report that Chara cells can undergo a pearling instability, and when the pearled fragments were excited even larger and more regular cell shape changes were observed (˜10 -100 μ m in amplitude). These transient cellular deformations were captured by a curvature model that is based on three parameters: surface tension, bending rigidity, and pressure difference across the surface. In this paper these parameters are extracted by curve-fitting to the experimental cellular shapes at rest and during excitation. This is a necessary step to identify the mechanical parameters that change during an action potential.

  10. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  11. Nuclear momentum distribution and potential energy surface in hexagonal ice

    Science.gov (United States)

    Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele

    2011-03-01

    The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the potential acting on the protons. This work is supported by NSF and by DOE.

  12. Intermolecular potential energy surface and thermophysical properties of propane.

    Science.gov (United States)

    Hellmann, Robert

    2017-03-21

    A six-dimensional potential energy surface (PES) for the interaction of two rigid propane molecules was determined from supermolecular ab initio calculations up to the coupled cluster with single, double, and perturbative triple excitations level of theory for 9452 configurations. An analytical site-site potential function with 14 sites per molecule was fitted to the calculated interaction energies. To validate the analytical PES, the second virial coefficient and the dilute gas shear viscosity and thermal conductivity of propane were computed. The dispersion part of the potential function was slightly adjusted such that quantitative agreement with the most accurate experimental data for the second virial coefficient at room temperature was achieved. The adjusted PES yields values for the three properties that are in very good agreement with the best experimental data at all temperatures.

  13. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    International Nuclear Information System (INIS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-01-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time. (paper)

  14. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    Science.gov (United States)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-08-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.

  15. A Novel Silicon-based Wideband RF Nano Switch Matrix Cell and the Fabrication of RF Nano Switch Structures

    Directory of Open Access Journals (Sweden)

    Yi Xiu YANG

    2011-12-01

    Full Text Available This paper presents the concept of RF nano switch matrix cell and the fabrication of RF nano switch. The nano switch matrix cell can be implemented into complex switch matrix for signal routing. RF nano switch is the decision unit for the matrix cell; in this research, it is fabricated on a tri-layer high-resistivity-silicon substrate using surface micromachining approach. Electron beam lithography is introduced to define the pattern and IC compatible deposition process is used to construct the metal layers. Silicon-based nano switch fabricated by IC compatible process can lead to a high potential of system integration to perform a cost effective system-on-a-chip solution. In this paper, simulation results of the designed matrix cell are presented; followed by the details of the nano structure fabrication and fabrication challenges optimizations; finally, measurements of the fabricated nano structure along with analytical discussions are also discussed.

  16. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  17. Physisorption of an electron in deep surface potentials off a dielectric surface

    International Nuclear Information System (INIS)

    Heinisch, R. L.; Bronold, F. X.; Fehske, H.

    2011-01-01

    We study phonon-mediated adsorption and desorption of an electron at dielectric surfaces with deep polarization-induced surface potentials where multiphonon transitions are responsible for electron energy relaxation. Focusing on multiphonon processes due to the nonlinearity of the coupling between the external electron and the acoustic bulk phonon triggering the transitions between surface states, we calculate electron desorption times for graphite, MgO, CaO, Al 2 O 3 , and SiO 2 and electron sticking coefficients for Al 2 O 3 , CaO, and SiO 2 . To reveal the kinetic stages of electron physisorption, we moreover study the time evolution of the image-state occupancy and the energy-resolved desorption flux. Depending on the potential depth and the surface temperature, we identify two generic scenarios: (i) adsorption via trapping in shallow image states followed by relaxation to the lowest image state and desorption from that state via a cascade through the second strongly bound image state in not too deep potentials, and (ii) adsorption via trapping in shallow image states but followed by a relaxation bottleneck retarding the transition to the lowest image state and desorption from that state via a one-step process to the continuum in deep potentials.

  18. Switching on/off the chemisorption of thioctic-based self-assembled monolayers on gold by applying a moderate cathodic/anodic potential.

    Science.gov (United States)

    Sahli, Rihab; Fave, Claire; Raouafi, Noureddine; Boujlel, Khaled; Schöllhorn, Bernd; Limoges, Benoît

    2013-04-30

    An in situ and real-time electrochemical method has been devised for quantitatively monitoring the self-assembly of a ferrocene-labeled cyclic disulfide derivative (i.e., a thioctic acid derivative) on a polycrystalline gold electrode under electrode polarization. Taking advantage of the high sensitivity, specificity, accuracy, and temporal resolution of this method, we were able to demonstrate an unexpectedly facilitated formation of the redox-active SAM when the electrode was held at a moderate cathodic potential (-0.4 V vs SCE in CH3CN), affording a saturated monolayer from only micromolar solutions in less than 10 min, and a totally impeded SAM growth when the electrode was polarized at a slightly anodic potential (+0.5 V vs SCE in CH3CN). This method literally allows for switching on/off the formation of SAMs under "soft" conditions. Moreover the cyclic disulfide-based SAM was completely desorbed at this potential contrary to the facilitated deposition of a ferrocene-labeled alkanethiol. Such a strikingly contrasting behavior could be explained by an energetically favored release of the thioctic-based SAM through homolytic cleavage of the Au-S bond followed by intramolecular cyclization of the generated thiyl diradicals. Moreover, the absence of a discernible transient faradaic current response during the potential-assisted adsorption/desorption of the redox-labeled cyclic disulfide led us to conclude in a potential-dependent reversible surface reaction where no electron is released or consumed. These results provide new insights into the formation of disulfide-based SAMs on gold but also raise some fundamental questions about the intimate mechanism involved in the facilitated adsorption/desorption of SAMs under electrode polarization. Finally, the possibility to easily and selectively address the formation/removal of thioctic-based SAMs on gold by applying a moderate cathodic/anodic potential offers another degree of freedom in tailoring their properties and

  19. Changes in Ocular Surface Characteristics after Switching from Benzalkonium Chloride-Preserved Latanoprost to Preservative-Free Tafluprost or Benzalkonium Chloride-Preserved Tafluprost

    OpenAIRE

    Tokuda, Naoto; Kitaoka, Yasushi; Matsuzawa, Akiko; Tsukamoto, Ayaka; Sase, Kana; Sakae, Shinsuke; Takagi, Hitoshi

    2017-01-01

    Purpose. The aim of the present study was to examine the effects of switching from Latanoprost ophthalmic solution containing a preservative to preservative-free Tafluprost ophthalmic solution or Tafluprost containing a preservative on ocular surfaces. Materials and Methods. Forty patients (40 eyes) with glaucoma (mean age: 62.0 ± 10.9 years) using Latanoprost with preservative for six months or longer were assigned either to a Tafluprost-containing-preservative group (20 eyes) or preservativ...

  20. Pharmaceutical and biomedical potential of surface engineered dendrimers.

    Science.gov (United States)

    Satija, Jitendra; Gupta, Umesh; Jain, Narendra Kumar

    2007-01-01

    Dendrimers are hyperbranched, globular, monodisperse, nanometric polymeric architecture, having definite molecular weight, shape, and size (which make these an inimitable and optimum carrier molecule in pharmaceutical field). Dendritic architecture is having immense potential over the other carrier systems, particularly in the field of drug delivery because of their unique properties, such as structural uniformity, high purity, efficient membrane transport, high drug pay load, targeting potential, and good colloidal, biological, and shelf stability. Despite their enormous applicability in different areas, the inherent cytotoxicity, reticuloendothelial system (RES) uptake, drug leakage, immunogenicity, and hemolytic toxicity restricted their use in clinical applications, which is primarily associated with cationic charge present on the periphery due to amine groups. To overcome this toxic nature of dendrimers, some new types of nontoxic, biocompatible, and biodegradable dendrimers have been developed (e.g., polyester dendrimer, citric acid dendrimer, arginine dendrimer, carbohydrate dendrimers, etc.). The surface engineering of parent dendrimers is graceful and convenient strategy, which not only shields the positive charge to make this carrier more biomimetic but also improves the physicochemical and biological behavior of parent dendrimers. Thus, surface modification chemistry of parent dendrimers holds promise in pharmaceutical applications (such as solubilization, improved drug encapsulation, enhanced gene transfection, sustained and controlled drug release, intracellular targeting) and in the diagnostic field. Development of multifunctional dendrimer holds greater promise toward the biomedical applications because a number of targeting ligands determine specificity in the same manner as another type of group would secure stability in biological milieu and prolonged circulation, whereas others facilitate their transport through cell membranes. Therefore, as a

  1. A surface-micromachining-based inertial micro-switch with compliant cantilever beam as movable electrode for enduring high shock and prolonging contact time

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiu [National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Yang, Zhuoqing, E-mail: yzhuoqing@sjtu.edu.cn [National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Fu, Bo; Li, Jianhua; Wu, Hao [Huaihai Industrial Group Co., Ltd., Changzhi, Shanxi Province, 046012 (China); Zhang, Qihuan; Sun, Yunna; Ding, Guifu; Zhao, Xiaolin [National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China)

    2016-11-30

    Highlights: • The designed cantilever beam attached to the proof mass can endure a larger shock acceleration (∼1000 g order of magnitude) compared to those traditional designs (∼100 g order of magnitude). • Effect of the pulse width on the threshold acceleration, the response time and the contact time is investigated. • A constraint sleeve structure is introduced to lower the off-axis sensitivity. - Abstract: A novel laterally-driven inertial micro-switch with two L-shaped elastic cantilever beams as the movable electrode, which is attached to the proof mass, is proposed in this paper. The advantage of this design is that the contact time of the inertial micro-switch can be prolonged. Meanwhile, the micro-switch can withstand a higher shock than the traditional designs whose cantilever beams are attached to the fixed electrode. The designed inertial micro-switch was simulated and optimized with ANSYS software and fabricated on a quartz substrate by surface micromachining technology. The simulated result demonstrates that the threshold acceleration (a{sub ths}) under stable switch-on state is about 288 g and the contact time is about 198 μs when the pulse width of acceleration loads is 1 ms. At the same time, it indicates that the threshold acceleration, the response time and the contact time of designed micro-switch all increase with the pulse width of acceleration loads. The simulation of impact process in non-sensitive direction shows that the introduced constraint sleeve structure in the novel inertial micro-switch can lower the off-axis sensitivity. The fabricated micro-switch prototype has been tested by a standard dropping hammer system under shock accelerations with various amplitudes and pulse widths. The experimental measurements show that the contact time is about 150 μs when the threshold acceleration is about 288 g. It also indicates that the response time and the contact time both increase with the pulse width, which is consistent with the

  2. Surface characterization of hemodialysis membranes based on streaming potential measurements.

    Science.gov (United States)

    Werner, C; Jacobasch, H J; Reichelt, G

    1995-01-01

    Hemodialysis membranes made from cellulose (CUPROPHAN, HEMOPHAN) and sulfonated polyethersulfone (SPES) were characterized using the streaming potential technique to determine the zeta potential at their interfaces against well-defined aqueous solutions of varied pH and potassium chloride concentrations. Streaming potential measurements enable distinction between different membrane materials. In addition to parameters of the electrochemical double layer at membrane interfaces, thermodynamic characteristics of adsorption of different solved species were evaluated. For that aim a description of double layer formation as suggested by Börner and Jacobasch (in: Electrokinetic Phenomena, p. 231. Institut für Technologie der Polymere, Dresden (1989)) was applied which is based on the generally accepted model of the electrochemical double layer according to Stern (Z. Elektrochemie 30, 508 (1924)) and Grahame (Chem. Rev. 41, 441 (1947)). The membranes investigated show different surface acidic/basic and polar/nonpolar behavior. Furthermore, alterations of membrane interfaces through adsorption processes of components of biologically relevant solutions were shown to be detectable by streaming potential measurements.

  3. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    Science.gov (United States)

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  4. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    Science.gov (United States)

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  5. Adaptive switching of interaction potentials in the time domain: an extended Lagrangian approach tailored to transmute force field to QM/MM simulations and back.

    Science.gov (United States)

    Böckmann, Marcus; Doltsinis, Nikos L; Marx, Dominik

    2015-06-09

    An extended Lagrangian formalism that allows for a smooth transition between two different descriptions of interactions during a molecular dynamics simulation is presented. This time-adaptive method is particularly useful in the context of multiscale simulation as it provides a sound recipe to switch on demand between different hierarchical levels of theory, for instance between ab initio ("QM") and force field ("MM") descriptions of a given (sub)system in the course of a molecular dynamics simulation. The equations of motion can be integrated straightforwardly using the usual propagators, such as the Verlet algorithm. First test cases include a bath of harmonic oscillators, of which a subset is switched to a different force constant and/or equilibrium position, as well as an all-MM to QM/MM transition in a hydrogen-bonded water dimer. The method is then applied to a smectic 8AB8 liquid crystal and is shown to be able to switch dynamically a preselected 8AB8 molecule from an all-MM to a QM/MM description which involves partition boundaries through covalent bonds. These examples show that the extended Lagrangian approach is not only easy to implement into existing code but that it is also efficient and robust. The technique moreover provides easy access to a conserved energy quantity, also in cases when Nosé-Hoover chain thermostatting is used throughout dynamical switching. A simple quadratic driving potential proves to be sufficient to guarantee a smooth transition whose time scale can be easily tuned by varying the fictitious mass parameter associated with the auxiliary variable used to extend the Lagrangian. The method is general and can be applied to time-adaptive switching on demand between two different levels of theory within the framework of hybrid scale-bridging simulations.

  6. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  7. All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium

    Energy Technology Data Exchange (ETDEWEB)

    Hira, T.; Homma, T.; Uchiyama, T.; Kuwamura, K.; Kihara, Y.; Saiki, T. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522 (Japan)

    2015-01-19

    Localized surface plasmon resonance (LSPR) switching was investigated in a Au/GeSbTe/Au nanosandwich as a key active element for plasmonic integrated circuits and devices. Near-infrared single-particle spectroscopy was conducted to examine the interaction of a Au nanorod (AuNR) and Au film, between which a GeSbTe layer was incorporated as an active phase-change media. Numerical calculation revealed that hybridized modes of the AuNR and Au film exhibit a significant change of scattering intensity with the phase change. In particular, the antisymmetric (magnetic resonance) mode can be modulated effectively by the extinction coefficient of GST, as well as its refractive index. Experimental demonstration of the switching operation was performed by alternate irradiation with a picosecond pulsed laser for amorphization and a continuous wave laser for crystallization. Repeatable modulation was obtained by monitoring the scattering light around the LSPR peak at λ = 1070 nm.

  8. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    International Nuclear Information System (INIS)

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  9. Experimental survey of the potential energy surfaces associated with fission

    International Nuclear Information System (INIS)

    Britt, H.C.

    1980-01-01

    Progress in the experimental determination of the properties of the potential energy surface associated with fission is reviewed. The importance of nuclear symmetry effects on the calculation of fission widths is demonstrated. Evidence is presented for the fragmentation of the mass-asymmetric second barrier in the thorium region and the axial asymmetric first barrier in the californium region. Detailed analyses of experimental data suggest the presence of two parallel second barriers; the normal mass-asymmetric, axial-symmetric barrier and a slightly higher mass-symmetric, axial-asymmetric barrier. Experimental barrier parameters are determined systematically and compared with calculations from various theoretical models. Techniques for expanding fission probability measurements to higher energies are discussed. (author)

  10. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Alireza Ghasemi, S. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, IR-Zanjan (Iran, Islamic Republic of); Roy, Shantanu [Computational and Systems Biology, Biozentrum, University of Basel, CH-4056 Basel (Switzerland)

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  11. In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films

    International Nuclear Information System (INIS)

    Mueller, M.; Gonzalez-Garcia, Y.; Pakula, C.; Zaporojtchenko, V.; Strunskus, T.; Faupel, F.; Herges, R.; Zargarani, D.; Magnussen, O.M.

    2011-01-01

    Thin films in the range 40-80 nm of a blend of PMMA with an azobenzene derivative have been studied directly during UV and blue light irradiation by atomic force microscopy (AFM), revealing highly reversible changes in the surface roughness and the film adhesion. UV light induces an ∼80% increase in surface roughness, whereas illumination by blue light completely reverses these changes. Based on the observed surface topography and transition kinetics a reversible mass flow mechanisms is suggested, where the polarity changes upon switching trigger a wetting-dewetting transition in a surface segregation layer of the chromophore. Similar AFM measurements of the pull-off force indicate a decrease upon UV and an increase after blue light illumination with a complex kinetic behavior: a rapid initial change, attributed to the change in the cis isomer fraction of the azobenzene derivative, and a more gradual change, indicative of slow structural reorganization.

  12. Helicity and potential vorticity in the surface boundary layer turbulence

    Science.gov (United States)

    Chkhetiani, Otto; Kurgansky, Michael; Koprov, Boris; Koprov, Victor

    2016-04-01

    An experimental measurement of all three components of the velocity and vorticity vectors, as well as the temperature and its gradient, and potential vorticity, has been developed using four acoustic anemometers. Anemometers were placed at vertices of a tetrahedron, the horizontal base of which was a rectangular triangle with equal legs, and the upper point was exactly above the top of the right angle. The distance from the surface to the tetrahedron its base was 5.5 m, and the lengths of legs and a vertical edge were 5 m. The measurements were carried out of total duration near 100 hours both in stable and unstable stratification conditions (at the Tsimlyansk Scientific Station in a uniform area of virgin steppe 700 x 650 m, August 2012). A covariance-correlation matrix for turbulent variations in all measured values has been calculated. In the daytime horizontal and vertical components of the helicity are of the order of -0.03 and +0.01 m s-2, respectively. The nighttime signs remain unchanged, but the absolute values are several times smaller. It is confirmed also by statistics of a relative helicity. The cospectra and spectral correlation coefficients have been calculated for all helicity components. The time variations in the components of "instantaneous" relative helicity and potential vorticity are considered. Connections of helicity with Monin-Obukhov length and the wind vertical profile structure are discussed. This work was supported by the Russian Science Foundation (Project No 14-27-00134).

  13. Exchange biased FeNi/FeMn bilayers with coercivity and switching field enhanced by FeMn surface oxidation

    Directory of Open Access Journals (Sweden)

    A. V. Svalov

    2013-09-01

    Full Text Available FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 °C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 °C.

  14. Potential Energy Surface of NO on Pt(997: Adsorbed States and Surface Diffusion

    Directory of Open Access Journals (Sweden)

    N. Tsukahara

    2012-01-01

    Full Text Available The potential energy surface (PES of NO on Pt(997 has been elucidated: the adsorption states and diffusion processes of NO on Pt(997 at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS and scanning tunneling microscopy (STM. When NO molecules adsorb on a surface at a low temperature (11 K, each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997: a bridge site of the upper step, an fcc- (or hcp- hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.

  15. Effect of surface roughness and surface modification of indium tin oxide electrode on its potential response to tryptophan

    International Nuclear Information System (INIS)

    Khan, Md. Zaved Hossain; Nakanishi, Takuya; Kuroiwa, Shigeki; Hoshi, Yoichi; Osaka, Tetsuya

    2011-01-01

    Highlights: → We examine factors affecting potential response of ITO electrode to tryptophan. → Surface roughness of ITO electrode affects the stability of its rest potential. → Surface modification is effective for ITO electrode with a certain roughness. → Optimum values of work function exist for potential response of ITO to tryptophan. - Abstract: The effect of surface modification of indium tin oxide (ITO) electrode on its potential response to tryptophan was investigated for ITO substrates with different surface roughness. It was found that a small difference in surface roughness, between ∼1 and ∼2 nm of R a evaluated by atomic force microscopy, affects the rest potential of ITO electrode in the electrolyte. A slight difference in In:Sn ratio at the near surface of the ITO substrates, measured by angle-resolved X-ray photoelectron spectrometry and Auger electron spectroscopy is remarkable, and considered to relate with surface roughness. Interestingly, successive modification of the ITO surface with aminopropylsilane and disuccinimidyl suberate, of which essentiality to the potential response to indole compounds we previously reported, improved the stability of the rest potential and enabled the electrodes to respond to tryptophan in case of specimens with R a values ranging between ∼2 and ∼3 nm but not for those with R a of ∼1 nm. It was suggested that there are optimum values of effective work function of ITO for specific potential response to tryptophan, which can be obtained by the successive modification of ITO surface.

  16. Nanoscale surface potential imaging of the photocatalytic TiO2 films on aluminum

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Dirscherl, Kai; Canulescu, Stela

    2013-01-01

    in the surface potential of TiO2 coatings upon UV-illumination are closely correlated to the band gap and thickness of the coatings. The inhomogeneity surface potential distribution of a 100 nm TiO2 film indicates a heterogeneous coating. Transition to a homogeneous surface potential distribution was observed...

  17. Translocation, switching and gating: potential roles for ATP in long-range communication on DNA by Type III restriction endonucleases.

    Science.gov (United States)

    Szczelkun, Mark D

    2011-04-01

    To cleave DNA, the Type III RM (restriction-modification) enzymes must communicate the relative orientation of two recognition sequences, which may be separated by many thousands of base pairs. This long-range interaction requires ATP hydrolysis by a helicase domain, and both active (DNA translocation) and passive (DNA sliding) modes of motion along DNA have been proposed. Potential roles for ATP binding and hydrolysis by the helicase domains are discussed, with a focus on bipartite ATPases that act as molecular switches.

  18. Surface processing: existing and potential applications of ultraviolet light.

    Science.gov (United States)

    Manzocco, Lara; Nicoli, Maria Cristina

    2015-01-01

    Solid foods represent optimal matrices for ultraviolet processing with effects well beyond nonthermal surface disinfection. UV radiation favors hormetic response in plant tissues and degradation of toxic compound on the product surface. Photoinduced reactions can also provide unexplored possibilities to steer structure and functionality of food biopolymers. The possibility to extensively exploit this technology will depend on availability of robust information about efficacious processing conditions and adequate strategies to completely and homogeneously process food surface.

  19. Surface grafted polymer brushes: potential applications in dengue biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco, E-mail: ozahiga@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de, E-mail: alencar@unifei.edu.br [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Fisica e Quimica

    2013-07-01

    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar{sup +} ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  20. Surface grafted polymer brushes: potential applications in dengue biosensors

    International Nuclear Information System (INIS)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco; Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de

    2013-01-01

    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar + ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  1. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment

    Science.gov (United States)

    Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender

    2018-05-01

    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.

  2. Localization switching of a large object in a crowded cavity: A rigid/soft object prefers surface/inner positioning

    Science.gov (United States)

    Shew, Chwen-Yang; Oda, Soutaro; Yoshikawa, Kenichi

    2017-11-01

    For living cells in the real world, a large organelle is commonly positioned in the inner region away from membranes, such as the nucleus of eukaryotic cells, the nucleolus of nuclei, mitochondria, chloroplast, Golgi body, etc. It contradicts the expectation by the current depletion-force theory in that the larger particle should be excluded from the inner cell space onto cell boundaries in a crowding media. Here we simply model a sizable organelle as a soft-boundary large particle allowing crowders, which are smaller hard spheres in the model, to intrude across its boundary. The results of Monte Carlo simulation indicate that the preferential location of the larger particle switches from the periphery into the inner region of the cavity by increasing its softness. An integral equation theory is further developed to account for the structural features of the model, and the theoretical predictions are found consistent with our simulation results.

  3. Electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M.A. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  4. Cold atoms near surfaces: designing potentials by sculpturing wires

    International Nuclear Information System (INIS)

    Della Pietra, Leonardo; Aigner, Simon; Hagen, Christoph vom; Lezec, Henri J; Schmiedmayer, Joerg

    2005-01-01

    The magnetic trapping potentials for atoms on atom chips are determined by the current flow pattern in the chip wires. By modifying the wire shape using focused ion beam nano-machining we can design specialized current flow patterns and therefore micro-design the magnetic trapping potentials. We give designs for a barrier, a quantum dot, and a double well or double barrier and show preliminary experiments with ultra cold atoms in these designed potentials

  5. Potential Biosignificant Interest and Surface Activity of Efficient Heterocyclic Derivatives.

    Science.gov (United States)

    El-Sayed, Refat; Althagafi, Ismail

    2016-01-01

    Some functionalized pyridine and fused system derivatives were synthesized using enaminonitrile derivative 5 as a starting material for the reaction, with various reagents under different conditions. Propoxylation of these compounds using different moles of propylene oxide (3, 5 and 7 moles) leads to a novel group of surface active agents. The antimicrobial and surface activities of the synthesized compounds were investigated. Most of the evaluated compounds proved to be active as antibacterial and antifungal agents and showed good surface activity, which makes them suitable for diverse applications such as the manufacturing of emulsifiers, cosmetics, drugs, pesticides, etc. Additionally, biodegradation testing exhibits significant breakdown within six to seven days, and hence, lowers the toxicity to human beings and becomes environmentally friendly.

  6. Nuclear stimulated desorption as a potential tool for surface study

    International Nuclear Information System (INIS)

    Nir, Dror.

    1993-03-01

    The described research work constitutes a base for an experimental method to be implemented in the study of solid surfaces. Nuclear Stimulated Desorption (NSD) is a new mode of experimentation in thin film and surface physics. It Is based on the interplay between nuclear phenomena (reactions and spontaneous decays), and atomic - scale induced effects on surfaces and very thin films. One may distinguish between two generically different relationships between the two. First, the dynamics of the nuclear reaction -primarily the recoil of the nucleus - may effect the position of the atom or molecule containing it. Second, the nuclear reaction (or decay) may serve as an analytical indicator of the whereabouts of the atom, or molecule, in question. In nuclear stimulated desorption, both thee aspects combine in an essential way. Namely, one employs a series of two consecutive decays (normally weak decays or isomeric transition) . The first of these decays causes the nucleus to desorb from a surface onto which it had been placed; the second serves to determine the position of the daughter and thereby the characteristics of the primary desorption . The essential feature in NSD is that it occurs almost exclusively from the outermost surface layer. This is because we choose to work with nuclei whose recoil energy Is of the same order of magnitude of the binding energy of the atom to the surface . Furthermore, the desorption probability and its angular (and temporal) characteristics, depend on the features (topology, morphology) of its immediate neighborhood. This work describes experiments which were designed to give relevant, phenomenological information about the outgoing flux of the radioactive daughters (for specifically chosen nuclear species) , and in particular the magnitude of the flux, its time dependence and its charged state. In addition. the basic phenomena itself is being distinguished from competing processes (thermal desorption, in particular). We will now

  7. Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces

    International Nuclear Information System (INIS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-01-01

    A main problem associated with the synchronization of two chaotic systems is that the time in which complete synchronization will occur is not specified. Synchronization time is either infinitely large or is finite but only its upper bound is known and this bound depends on the systems' initial conditions. In this paper we propose a method for synchronizing of two chaotic systems precisely at a time which we want. To this end, time-varying switching surfaces sliding mode control is used and the control law based on Lyapunov stability theorem is derived which is able to synchronize two fractional-order chaotic systems precisely at a pre specified time without concerning about their initial conditions. Moreover, by eliminating the reaching phase in the proposed synchronization scheme, robustness against existence of uncertainties and exogenous disturbances is obtained. Because of the existence of fractional integral of the sign function instead of the sign function in the control equation, the necessity for infinitely fast switching be obviated in this method. To show the effectiveness of the proposed method the illustrative examples under different situations are provided and the simulation results are reported.

  8. Adaptive control of two-wheeled mobile balance robot capable to adapt different surfaces using a novel artificial neural network–based real-time switching dynamic controller

    Directory of Open Access Journals (Sweden)

    Ali Unluturk

    2017-03-01

    Full Text Available In this article, a novel real-time artificial neural network–based adaptable switching dynamic controller is developed and practically implemented. It will be used for real-time control of two-wheeled balance robot which can balance itself upright position on different surfaces. In order to examine the efficiency of the proposed controller, a two-wheeled mobile balance robot is designed and a test platform for experimental setup is made for balance problem on different surfaces. In a developed adaptive controller algorithm which is capable to adapt different surfaces, mean absolute target angle deviation error, mean absolute target displacement deviation error and mean absolute controller output data are employed for surface estimation by using artificial neural network. In a designed two-wheeled mobile balance robot system, robot tilt angle is estimated via Kalman filter from accelerometer and gyroscope sensor signals. Furthermore, a visual robot control interface is developed in C++ software development environment so that robot controller parameters can be changed as desired. In addition, robot balance angle, linear displacement and controller output can be observed online on personal computer. According to the real-time experimental results, the proposed novel type controller gives more effective results than the classic ones.

  9. Fasciculation potentials in high-density surface EMG.

    NARCIS (Netherlands)

    Drost, G.; Kleine, B.U.; Stegeman, D.F.; Engelen, B.G.M. van; Zwarts, M.J.

    2007-01-01

    Fasciculation potentials (FPs) are observed in healthy individuals, but also in patients with neurogenic disorders. The exact site of origin and the clinical relevance in distinguishing, for example, amyotrophic lateral sclerosis (ALS) from other neurogenic diseases based on specific characteristics

  10. Effect of potential attraction term on surface tension of ionic liquids

    Science.gov (United States)

    Vaziri, N.; Khordad, R.; Rezaei, G.

    2018-03-01

    In this work, we have studied the effect of attraction term of molecular potential on surface tension of ionic liquids (ILs). For this purpose, we have introduced two different potential models to obtain analytical expressions for the surface tension of ILs. The introduced potential models have different attraction terms. The obtained surface tensions in this work have been compared with other theoretical methods and also experimental data. Using the calculated surface tension, the sound velocity is also estimated. We have studied the structural effects on the surface tensions of imidazolium-based ionic liquids. It is found that the cation alkyl chain length and the anion size play important roles to the surface tension of the selected ionic liquids. The calculated surface tensions show a good harmony with experimental data. It is clear that the attraction term of molecular potential has an important role on surface tension and sound velocity of our system.

  11. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo; Chen, Rongzhang; Nelsen, Bryan; Chen, Kevin, E-mail: pec9@pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Liu, Lei; Huang, Xi; Lu, Yongfeng [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

    2016-03-15

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.

  12. Potential controls of isoprene in the surface ocean

    Science.gov (United States)

    Hackenberg, S. C.; Andrews, S. J.; Airs, R.; Arnold, S. R.; Bouman, H. A.; Brewin, R. J. W.; Chance, R. J.; Cummings, D.; Dall'Olmo, G.; Lewis, A. C.; Minaeian, J. K.; Reifel, K. M.; Small, A.; Tarran, G. A.; Tilstone, G. H.; Carpenter, L. J.

    2017-04-01

    Isoprene surface ocean concentrations and vertical distribution, atmospheric mixing ratios, and calculated sea-to-air fluxes spanning approximately 125° of latitude (80°N-45°S) over the Arctic and Atlantic Oceans are reported. Oceanic isoprene concentrations were associated with a number of concurrently monitored biological variables including chlorophyll a (Chl a), photoprotective pigments, integrated primary production (intPP), and cyanobacterial cell counts, with higher isoprene concentrations relative to all respective variables found at sea surface temperatures greater than 20°C. The correlation between isoprene and the sum of photoprotective carotenoids, which is reported here for the first time, was the most consistent across all cruises. Parameterizations based on linear regression analyses of these relationships perform well for Arctic and Atlantic data, producing a better fit to observations than an existing Chl a-based parameterization. Global extrapolation of isoprene surface water concentrations using satellite-derived Chl a and intPP reproduced general trends in the in situ data and absolute values within a factor of 2 between 60% and 85%, depending on the data set and algorithm used.

  13. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms.

    Science.gov (United States)

    Shahbazi, Mohammad-Ali; Fernández, Tahia D; Mäkilä, Ermei M; Le Guével, Xavier; Mayorga, Cristobalina; Kaasalainen, Martti H; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-11-01

    Nanoparticles (NPs) have been suggested for immunotherapy applications in order to optimize the delivery of immuno-stimulative or -suppressive molecules. However, low attention towards the impact of the NPs' physicochemical properties has presented a major hurdle for developing efficient immunotherapeutic agents. Here, the effects of porous silicon (PSi) NPs with different surface chemistries were evaluated on human monocyte-derived dendritic cells (MDDCs) and lymphocytes in order to highlight the importance of the NPs selection in immuno-stimulative or -suppressive treatment. Although all the PSi NPs showed high biocompatibility, only thermally oxidized PSi (TOPSi) and thermally hydrocarbonized PSi (THCPSi) NPs were able to induce very high rate of immunoactivation by enhancing the expression of surface co-stimulatory markers of the MDDCs (CD80, CD83, CD86, and HLA-DR), inducing T-cell proliferation, and also the secretion of interleukins (IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α). These results indicated a balanced increase in the secretion of Th1, Th2, and Treg cytokines. Moreover, undecylenic acid functionalized THCPSi, as well as poly(methyl vinyl ether-alt-maleic acid) conjugated to (3-aminopropyl)triethoxysilane functionalized thermally carbonized PSi and polyethyleneimine conjugated undecylenic acid functionalized THCPSi NPs showed moderate immunoactivation due to the mild increase in the above-mentioned markers. By contrast, thermally carbonized PSi (TCPSi) and (3-aminopropyl)triethoxysilane functionalized TCPSi NPs did not induce any immunological responses, suggesting that their application could be in the delivery of immunosuppressive molecules. Overall, our findings suggest all the NPs containing more nitrogen or oxygen on the outermost backbone layer have lower immunostimulatory effect than NPs with higher C-H structures on the surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Extension of a He-H2 potential energy surface

    International Nuclear Information System (INIS)

    Raczkowski, A.W.; Lester, W.A. Jr.

    1977-01-01

    The CI surface of Tsapline and Kutzelnigg is extended to smaller H 2 -He separations. Defining R as the H 2 -He distance, r as the H 2 separation, and γ as the angle between them, the ab initio values are fit to a Legendre series in cosγ retaining the first three (even) terms with the coefficients given as analytic functions of R and r to facilitate semiclassical scattering computations. The fit is quantitative for 1.0 approximately r/2+1. (Auth.)

  15. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  16. Calculation of surface potentials at the silica–water interface using molecular dynamics: Challenges and opportunities

    Science.gov (United States)

    Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.; Shibuta, Yasushi; Sakata, Toshiya

    2018-04-01

    Continuum-based methods are important in calculating electrostatic properties of interfacial systems such as the electric field and surface potential but are incapable of providing sufficient insight into a range of fundamentally and technologically important phenomena which occur at atomistic length-scales. In this work a molecular dynamics methodology is presented for interfacial electric field and potential calculations. The silica–water interface was chosen as an example system, which is highly relevant for understanding the response of field-effect transistors sensors (FET sensors). Detailed validation work is presented, followed by the simulated surface charge/surface potential relationship. This showed good agreement with experiment at low surface charge density but at high surface charge density the results highlighted challenges presented by an atomistic definition of the surface potential. This methodology will be used to investigate the effect of surface morphology and biomolecule addition; both factors which are challenging using conventional continuum models.

  17. Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities

    Science.gov (United States)

    Harrison, Neil [Santa Fe, NM; Singleton, John [Los Alamos, NM; Migliori, Albert [Santa Fe, NM

    2008-08-05

    A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.

  18. Mechanism of single atom switch on silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Stokbro, Kurt; Thirstrup, C.

    1998-01-01

    We demonstrate single atom switch on silicon which operates by displacement of a hydrogen atom on the silicon (100) surface at room temperature. We find two principal effects by which the switch is controlled: a pronounced maximum of the switching probability as function of sample bias...

  19. Influence of surface conductivity on the apparent zeta potential of calcite.

    Science.gov (United States)

    Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-04-15

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Dynamic potential and surface morphology study of sertraline membrane sensors

    Science.gov (United States)

    Khater, M.M.; Issa, Y.M.; Hassib, H.B.; Mohammed, S.H.

    2014-01-01

    New rapid, sensitive and simple electrometric method was developed to determine sertraline hydrochloride (Ser-Cl) in its pure raw material and pharmaceutical formulations. Membrane sensors based on heteropolyacids as ion associating material were prepared. Silicomolybdic acid (SMA), silicotungstic acid (STA) and phosphomolybdic acid (PMA) were used. The slope and limit of detection are 50.00, 60.00 and 53.24 mV/decade and 2.51, 5.62 and 4.85 μmol L−1 for Ser-ST, Ser-PM and Ser-SM membrane sensors, respectively. Linear range is 0.01–10.00 for the three sensors. These new sensors were used for the potentiometric titration of Ser-Cl using sodium tetraphenylborate as titrant. The surface morphologies of the prepared membranes with and without the modifier (ion-associate) were studied using scanning and atomic force microscopes. PMID:26257944

  1. Thermal switching of the electrical conductivity of Si(111)(√3x√3)Ag due to a surface phase transition

    International Nuclear Information System (INIS)

    Wells, J W; Kallehauge, J F; Hofmann, Ph

    2007-01-01

    The temperature-dependent surface conductivity of the Si(111)(√3x√3)Ag surface was measured using a microscopic four-point probe. The conductivity was found to undergo a sharp increase of about three orders of magnitude when the system was heated above about 220 K. This strong conductivity change is reversible and attributed to the phase transition which is generally believed to occur on this surface. It is also shown that, in order to find the true surface conductivity, it is necessary to separate it from the contribution of the bulk and space charge layer. In this work, this is achieved by using a finite-element model. A percolating network of Ag islands on Si(111) was also studied and a much simpler behaviour (compared to that of Si(111))(√3x√3)Ag) was found. The temperature-dependent conductivity of this system was found to display typical metallic behaviour. The absolute value of the conductivity is comparable to the value expected by modelling the Ag film as exhibiting the bulk Ag transport properties

  2. Electrohydrodynamics of binary electrolytes driven by modulated surface potentials

    DEFF Research Database (Denmark)

    Mortensen, Asger; Olesen, Laurits Højgaard; Belmon, L.

    2005-01-01

    We study the electrohydrodynamics of the Debye screening layer that arises in an aqueous binary solution near a planar insulating wall when applying a spatially modulated ac voltage. Combining this with first order perturbation theory we establish the governing equations for the full nonequilibrium...... problem and obtain analytic solutions in the bulk for the pressure and velocity fields of the electrolyte and for the electric potential. We find good agreement between the numerics of the full problem and the analytics of the linear theory. Our work provides the theoretical foundations of circuit models...

  3. Oxathiiranes 8 On the OCS2 Singlet Potential Energy Surface

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1982-01-01

    The reaction between atomic oxygen and carbon disulfide is predicted to lead to at least two primary products, which are the dithiiranone (1) and the oxathiirane-thione (2) and/or the carbon disulfide S-oxide (4). The possible intramolecular equilibria 1 ⇄ 2, 1 ⇄ 3, 2 ⇄ 4, and 2 ⇄ 5 as well...... as the fragmentations of the possible intermediates 1–5 have been studied theoretically within the semiempirical cndo/B framework as conceivable ground-state reactions. On the basis of mo correlations and potential energy changes along the reaction paths, supplementary with previously reported experimental data...

  4. How to calculate linear absorption spectra with lifetime broadening using fewest switches surface hopping trajectories: A simple generalization of ground-state Kubo theory

    International Nuclear Information System (INIS)

    Petit, Andrew S.; Subotnik, Joseph E.

    2014-01-01

    In this paper, we develop a surface hopping approach for calculating linear absorption spectra using ensembles of classical trajectories propagated on both the ground and excited potential energy surfaces. We demonstrate that our method allows the dipole-dipole correlation function to be determined exactly for the model problem of two shifted, uncoupled harmonic potentials with the same harmonic frequency. For systems where nonadiabatic dynamics and electronic relaxation are present, preliminary results show that our method produces spectra in better agreement with the results of exact quantum dynamics calculations than spectra obtained using the standard ground-state Kubo formalism. As such, our proposed surface hopping approach should find immediate use for modeling condensed phase spectra, especially for expensive calculations using ab initio potential energy surfaces

  5. Intermolecular potential energy surface and thermophysical properties of ethylene oxide.

    Science.gov (United States)

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  6. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  7. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  8. Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions

    National Research Council Canada - National Science Library

    Pai, Sharmila

    1998-01-01

    ... on the potential energy surface were calculated using the 6-31G and 6-311 +Gbasis sets. DFT(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential energy surface were calculated with the 6-31G, 6-311...

  9. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  10. Characterization of electrical conductivity of carbon fiber reinforced plastic using surface potential distribution

    Science.gov (United States)

    Kikunaga, Kazuya; Terasaki, Nao

    2018-04-01

    A new method of evaluating electrical conductivity in a structural material such as carbon fiber reinforced plastic (CFRP) using surface potential is proposed. After the CFRP was charged by corona discharge, the surface potential distribution was measured by scanning a vibrating linear array sensor along the object surface with a high spatial resolution over a short duration. A correlation between the weave pattern of the CFRP and the surface potential distribution was observed. This result indicates that it is possible to evaluate the electrical conductivity of a material comprising conducting and insulating regions.

  11. Potential surfaces in symmetric heavy-ion reactions

    International Nuclear Information System (INIS)

    Royer, G.; Piller, C.; Mignen, J.; Raffray, Y.

    1989-01-01

    The entrance channel in symmetric heavy-ion reactions is studied in the liquid-drop model approach including the nuclear proximity energy and allowing ellipsoidal deformations of the colliding nuclei. In the whole mass range a sudden transition occurs from oblate to prolate shapes when the proximity forces become important. This strongly affects the effective moment of inertia. The ellipsoidal deformations reduce the fusion barrier width for light systems and lower the potential barrier height for medium and heavy nuclei. The results are in agreement with the empirical effective barrier shift determined by Aguiar et al for the 58 Ni + 58 Ni, 74 Ge + 74 Ge and 80 Se + 80 Se systems. The sub-barrier fusion enhancement in heavy-ion reactions might be explained by the slowness of the process. Below the static fusion barrier, the reaction time is long; allowing some adiabaticity and deformations of the colliding ions. Above the barrier, the reaction is more sudden and the deformation degree of freedom is frozen

  12. Characterization of the thrombogenic potential of surface oxides on stainless steel for implant purposes

    International Nuclear Information System (INIS)

    Shih, C.-C.; Shih, C.-M.; Su, Y.-Y.; Chang, M.-S.; Lin, S.-J.

    2003-01-01

    Marketed stents are manufactured from various metals and passivated with different degrees of surface oxidation. The functional surface oxides on the degree of antithrombotic potential were explored through a canine femoral extracorporeal circuit model. Related properties of these oxide films were studied by open-circuit potential, current density detected at open-circuit potential, the electrochemical impedance spectroscopy, transmission electron microscopy, Auger spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. Experimental evidences showed that blood clot weight after a 30-min follow-up was significantly lower for the stainless steel wire passivated with amorphous oxide (AO) compared to the wire passivated with polycrystalline oxide (PO) or commercial as-received wire coils (AS). Surface characterizations showed that a stable negative current density at open-circuit potential and a significant lower potential were found for the wire surface passivated with AO than for the surface passivated with PO. Time constant of AO is about 25 times larger than that of polycrystalline oxide. Significant difference in oxide grain sizes was found between PO and AO. Surface chemistries revealed by the AES and XPS spectra indicated the presence of a Cr- and oxygen-rich surface oxide for AO, and a Fe-rich and oxygen-lean surface oxide for PO. These remarkable characteristics of AO surface film might have a potential to provide for excellent antithrombotic characteristics for the 316L stainless steel stents

  13. Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Luisa Berná

    2017-03-01

    Full Text Available American trypanosomiasis is a chronic and endemic disease which affects millions of people. Trypanosoma cruzi, its causative agent, has a life cycle that involves complex morphological and functional transitions, as well as a variety of environmental conditions. This requires a tight regulation of gene expression, which is achieved mainly by post-transcriptional regulation. In this work we conducted an RNAseq analysis of the three major life cycle stages of T. cruzi: amastigotes, epimastigotes and trypomastigotes. This analysis allowed us to delineate specific transcriptomic profiling for each stage, and also to identify those biological processes of major relevance in each state. Stage specific expression profiling evidenced the plasticity of T. cruzi to adapt quickly to different conditions, with particular focus on membrane remodeling and metabolic shifts along the life cycle. Epimastigotes, which replicate in the gut of insect vectors, showed higher expression of genes related to energy metabolism, mainly Krebs cycle, respiratory chain and oxidative phosphorylation related genes, and anabolism related genes associated to nucleotide and steroid biosynthesis; also, a general down-regulation of surface glycoprotein coding genes was seen at this stage. Trypomastigotes, living extracellularly in the bloodstream of mammals, express a plethora of surface proteins and signaling genes involved in invasion and evasion of immune response. Amastigotes mostly express membrane transporters and genes involved in regulation of cell cycle, and also express a specific subset of surface glycoprotein coding genes. In addition, these results allowed us to improve the annotation of the Dm28c genome, identifying new ORFs and set the stage for construction of networks of co-expression, which can give clues about coded proteins of unknown functions.

  14. Interatomic potentials from rainbow scattering of keV noble gas atoms under axial surface channeling

    International Nuclear Information System (INIS)

    Schueller, A.; Wethekam, S.; Mertens, A.; Maass, K.; Winter, H.; Gaertner, K.

    2005-01-01

    For grazing scattering of keV Ne and Ar atoms from a Ag(1 1 1) and a Cu(1 1 1) surface under axial surface channeling conditions we observe well defined peaks in the angular distributions for scattered projectiles. These peaks can be attributed to 'rainbow-scattering' and are closely related to the geometry of potential energy surfaces which can be approximated by the superposition of continuum potentials along strings of atoms in the surface plane. The dependence of rainbow angles on the scattering geometry provides stringent tests on the scattering potentials. From classical trajectory calculations based on universal (ZBL), adjusted Moliere (O'Connor and Biersack), and individual interatomic potentials we obtain corresponding rainbow angles for comparison with the experimental data. We find good overall agreement with the experiments for a description of trajectories based on adjusted Moliere and individual potentials, whereas the agreement is poorer for potentials with ZBL screening

  15. Verification of the Viability of Equipotential Switching Direct Current Potential Drop Method for Piping Wall Loss Monitoring with Signal Sensitivity Analysis

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Hwang, Il Soon; Kim, Ji Hyun

    2008-01-01

    Flow accelerated corrosion (FAC) phenomenon of low alloy carbon steels in nuclear power plant has been known as one of major degradation mechanisms. It has a potential to cause nuclear pipe rupture accident which may directly impact on the plant reliability and safety. Recently, the equipotential switching direct current potential drop (ES-DCPD) method has been developed, by the present authors, as a method to monitor wall loss in a piping. This method can rapidly monitor the thinning of piping, utilizing either the wide range monitoring (WiRM) or the narrow range monitoring (NaRM) technique. WiRM is a method to monitor wide range of straight piping, whereas NaRM focuses significantly on a narrow range such as an elbow. WiRM and NaRM can improve the reliability of the current FAC screening method that is based on computer modeling on fluid flow conditions. In this paper, the measurements by ES-DCPD are performed with signal sensitivity analyses in the laboratory environment for extended period and showed the viability of ES-DCPD for real plant applications.

  16. Surface effects on mean inner potentials studied using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, Robert S., E-mail: robert.pennington@uni-ulm.de [Institute for Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany); Boothroyd, Chris B.; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre and Peter Grüneberg Institute, Forschungzentrum Jülich, 52425 Jülich (Germany)

    2015-12-15

    Quantitative materials characterization using electron holography frequently requires knowledge of the mean inner potential, but reported experimental mean inner potential measurements can vary widely. Using density functional theory, we have simulated the mean inner potential for materials with a range of different surface conditions and geometries. We use both “thin-film” and “nanowire” specimen geometries. We consider clean bulk-terminated surfaces with different facets and surface reconstructions using atom positions from both structural optimization and experimental data and we also consider surfaces both with and without adsorbates. We find that the mean inner potential is surface-dependent, with the strongest dependency on surface adsorbates. We discuss the outlook and perspective for future mean inner potential measurements. - Highlights: • Density functional theory (DFT) is used to simulate mean inner potentials (MIP). • Applications for MIP electron holography measurements are considered. • MIPs are found to be surface-dependent, for thin-film and nanowire geometries. • The DFT simulation precision is extensively tested for multiple materials. • Surface adsorbates can create a strong positive or negative effect.

  17. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and

  18. The potentially neglected culprit of DC surface flashover: electron migration under temperature gradients.

    Science.gov (United States)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2017-06-12

    This report intends to reveal the role of electron migration and its effects in triggering direct current (DC) surface flashover under temperature gradient conditions when using epoxy-based insulating composites. The surface potential and the surface flashover voltage are both measured using insulators that are bridged between two thermo-regulated electrodes. The space charge injection and migration properties under different temperature are detected. The results show that the surface potential rises significantly because of electron migration near the high voltage (HV) electrode under high temperature conditions, thus creating an "analogous ineffective region". The expansion of this "analogous ineffective region" results in most of the voltage drop occurring near the ground electrode, which serves as an important factor triggering positive streamers across the insulation surface. This work is helpful in understanding of DC surface flashover mechanism from a new perspective and also has important significance in design of a suitable DC insulator to avoid surface flashover problem.

  19. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films.

    Science.gov (United States)

    Tang, Bolin; Zhang, Bo; Zhuang, Junjun; Wang, Qi; Dong, Lingqing; Cheng, Kui; Weng, Wenjian

    2018-05-02

    Surface potential of biomaterials can dramatically influence cellular osteogenic differentiation. In this work, a wide range of surface potential on ferroelectric polyvinylidene fluoride trifluoroethylene (P(VDF-TrFE)) films was designed to get insight into the interfacial interaction of cell-charged surface. The P(VDF-TrFE) films poled by contact electric poling at various electric fields obtained well stabilized surface potential, with wide range from -3 to 915 mV. The osteogenic differentiation level of cells cultured on the films was strongly dependent on surface potential and reached the optimum at 391 mV in this system. Binding specificity assay indicated that surface potential could effectively govern the binding state of the adsorbed fibronectin (FN) with integrin. Molecular dynamic (MD) simulation further revealed that surface potential brought a significant difference in the relative distance between RGD and synergy PHSRN sites of adsorbed FN, resulting in a distinct integrin-FN binding state. These results suggest that the full binding of integrin α5β1 with both RGD and PHSRN sites of FN possesses a strong ability to activate osteogenic signaling pathway. This work sheds light on the underlying mechanism of osteogenic differentiation behavior on charged material surfaces, and also provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. The ferroelectric P(VDF-TrFE) films with steady and a wide range of surface potential were designed to understand underlying mechanism of cell-charged surface interaction. The results showed that the charged surface well favored upregulation of osteogenic differentiation of MC3T3-E1 cells, and more importantly, a highest level occurred on the film with a moderate surface potential. Experiments and molecular dynamics simulation demonstrated that the surface potential could govern fibronectin conformation and then the integrin-fibronectin binding. We propose that a full binding

  20. 2D Analytical Modeling of Magnetic Vector Potential in Surface Mounted and Surface Inset Permanent Magnet Machines

    Directory of Open Access Journals (Sweden)

    A. Jabbari

    2017-12-01

    Full Text Available A 2D analytical method for magnetic vector potential calculation in inner rotor surface mounted and surface inset permanent magnet machines considering slotting effects, magnetization orientation and winding layout has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in quasi- Cartesian coordinate by using sub-domain method and hyperbolic functions. The developed method is applied on the performance computation of two prototypes surface mounted permanent magnet motors and two prototypes surface inset permanent magnet motors. A radial and a parallel magnetization orientation is considered for each type of motor. The results of these models are validated through FEM method.

  1. Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces

    DEFF Research Database (Denmark)

    Hall, B.; Deumens, E.; Ohrn, Y.

    2014-01-01

    A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...

  2. On quantum motion of particle in linear potential bounded by perfectly reflecting plane and parabolic surfaces

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.

    1999-01-01

    The motion of a particle in the linear potential bounded by an inclined plane or parabolic surfaces is considered. The quantization of energy and wave functions is obtained numerically by the separation of the variables method

  3. Characterizing the surface charge of synthetic nanomembranes by the streaming potential method

    OpenAIRE

    Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo

    2010-01-01

    The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt conc...

  4. Ion-step method for surface potential sensing of silicon nanowires

    NARCIS (Netherlands)

    Chen, S.; van Nieuwkasteele, Jan William; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    This paper presents a novel stimulus-response method for surface potential sensing of silicon nanowire (Si NW) field-effect transistors. When an "ion-step" from low to high ionic strength is given as a stimulus to the gate oxide surface, an increase of double layer capacitance is therefore expected.

  5. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-state energy within standard DFT. We extend the Delta SCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can...... be estimated, which is not possible in traditional Delta SCF because of very delocalized Kohn-Sham orbitals. The method is applied to N2, CO, and NO adsorbed on different metallic surfaces and compared to ordinary Delta SCF without our modification, spatially constrained DFT, and inverse...

  6. Streaming potential revisited: the influence of convection on the surface conductivity.

    Science.gov (United States)

    Saini, Rakesh; Garg, Abhinandan; Barz, Dominik P J

    2014-09-16

    Electrokinetic phenomena play an important role in the electrical characterization of surfaces. In terms of planar or porous substrates, streaming potential and/or streaming current measurements can be used to determine the zeta potential of the substrates in contact with aqueous electrolytes. In this work, we perform electrical impedance spectroscopy measurements to infer the electrical resistance in a microchannel with the same conditions as for a streaming potential experiment. Novel correlations are derived to relate the streaming current and streaming potential to the Reynolds number of the channel flow. Our results not only quantify the influence of surface conductivity, and here especially the contribution of the stagnant layer, but also reveal that channel resistance and therefore zeta potential are influenced by the flow in the case of low ionic strengths. We conclude that convection can have a significant impact on the electrical double layer configuration which is reflected by changes in the surfaces conductivity.

  7. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    Science.gov (United States)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  8. Voltage-controlled low-energy switching of nanomagnets through Ruderman-Kittel-Kasuya-Yosida interactions for magnetoelectric device applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Bahniman, E-mail: bghosh@utexas.edu; Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, University of Texas at Austin, 10100 Burnet Road, Bldg. 160, Austin, Texas 78758 (United States)

    2016-07-21

    In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated for ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.

  9. Voltage-controlled low-energy switching of nanomagnets through Ruderman-Kittel-Kasuya-Yosida interactions for magnetoelectric device applications

    International Nuclear Information System (INIS)

    Ghosh, Bahniman; Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.

    2016-01-01

    In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated for ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.

  10. Skin denervation does not alter cortical potentials to surface concentric electrode stimulation: A comparison with laser evoked potentials and contact heat evoked potentials.

    Science.gov (United States)

    La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A

    2018-01-01

    In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.

  11. A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces.

    Science.gov (United States)

    Schneider, Julian; Ciacchi, Lucio Colombi

    2011-02-08

    The behavior of titanium implants in physiological environments is governed by the thin oxide layer that forms spontaneously on the metal surface and mediates the interactions with adsorbate molecules. In order to study the adsorption of biomolecules on titanium in a realistic fashion, we first build up a model of an oxidized Ti surface in contact with liquid water by means of extensive first-principles molecular dynamics simulations. Taking the obtained structure as reference, we then develop a classical potential to model the Ti/TiOx/water interface. This is based on the mapping with Coulomb and Lennard-Jones potentials of the adsorption energy landscape of single water and ammonia molecules on the rutile TiO2(110) surface. The interactions with arbitrary organic molecules are obtained via standard combination rules to established biomolecular force fields. The transferability of our potential to the case of organic molecules adsorbing on the oxidized Ti surface is checked by comparing the classical potential energy surfaces of representative systems to quantum mechanical results at the level of density functional theory. Moreover, we calculate the heat of immersion of the TiO2 rutile surface and the detachment force of a single tyrosine residue from steered molecular dynamics simulations, finding good agreement with experimental reference data in both cases. As a first application, we study the adsorption behavior of the Arg-Gly-Asp (RGD) peptide on the oxidized titanium surface, focusing particularly on the calculation of the free energy of desorption.

  12. Potential energy surfaces of adsorbates on periodic substrates: Application of the Morse theory

    Czech Academy of Sciences Publication Activity Database

    Pick, Štěpán

    2009-01-01

    Roč. 79, č. 4 (2009), 045403-1-5 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z40400503 Keywords : adsorbed layers * Morse potential * potential energy surfaces * substrates Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.475, year: 2009

  13. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  14. Potential energy surface from spectroscopic data in the photodissociation of polyatomic molecules

    International Nuclear Information System (INIS)

    Kim, Hwa Joong; Kim, Young Sik

    2001-01-01

    The time-dependent tracking inversion method is studied to extract the potential energy surface of the electronic excited state in the photodissociation of triatomic molecules. Based on the relay of the regularized inversion procedure and time-dependent wave packet propagation, the algorithm extracts the underlying potential energy surface piece by tracking the time-dependent data, which can be synthesized from Raman excitation profiles. We have demonstrated the algorithm to extract the potential energy surface of electronic excited state for NO 2 molecule where the wave packet split on a saddle-shaped surface. Finally, we describe the merits of the time-dependent tracking inversion method compared with the time-dependent inversion method and discussed several extensions of the algorithm

  15. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    Directory of Open Access Journals (Sweden)

    Maíra Maciel Mattos de Oliveira

    2010-03-01

    Full Text Available An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4 stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ºC and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  16. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential.

    Science.gov (United States)

    de Oliveira, Maíra Maciel Mattos; Brugnera, Danilo Florisvaldo; Alves, Eduardo; Piccoli, Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 °C and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM) after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  17. Disordered electrical potential observed on the surface of SiO2 by electric field microscopy

    International Nuclear Information System (INIS)

    GarcIa, N; Yan Zang; Ballestar, A; Barzola-Quiquia, J; Bern, F; Esquinazi, P

    2010-01-01

    The electrical potential on the surface of ∼300 nm thick SiO 2 grown on single-crystalline Si substrates has been characterized at ambient conditions using electric field microscopy. Our results show an inhomogeneous potential distribution with fluctuations up to ∼0.4 V within regions of 1 μm. The potential fluctuations observed at the surface of these usual dielectric holders of graphene sheets should induce strong variations in the graphene charge densities and provide a simple explanation for some of the anomalous behaviors of the transport properties of graphene.

  18. Pulsed laser triggered high speed microfluidic switch

    Science.gov (United States)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  19. Functions of NQO1 in Cellular Protection and CoQ10 Metabolism and its Potential Role as a Redox Sensitive Molecular Switch

    Directory of Open Access Journals (Sweden)

    David Ross

    2017-08-01

    Full Text Available NQO1 is one of the two major quinone reductases in mammalian systems. It is highly inducible and plays multiple roles in cellular adaptation to stress. A prevalent polymorphic form of NQO1 results in an absence of NQO1 protein and activity so it is important to elucidate the specific cellular functions of NQO1. Established roles of NQO1 include its ability to prevent certain quinones from one electron redox cycling but its role in quinone detoxification is dependent on the redox stability of the hydroquinone generated by two-electron reduction. Other documented roles of NQO1 include its ability to function as a component of the plasma membrane redox system generating antioxidant forms of ubiquinone and vitamin E and at high levels, as a direct superoxide reductase. Emerging roles of NQO1 include its function as an efficient intracellular generator of NAD+ for enzymes including PARP and sirtuins which has gained particular attention with respect to metabolic syndrome. NQO1 interacts with a growing list of proteins, including intrinsically disordered proteins, protecting them from 20S proteasomal degradation. The interactions of NQO1 also extend to mRNA. Recent identification of NQO1 as a mRNA binding protein have been investigated in more detail using SERPIN1A1 (which encodes the serine protease inhibitor α-1-antitrypsin as a target mRNA and indicate a role of NQO1 in control of translation of α-1-antitrypsin, an important modulator of COPD and obesity related metabolic syndrome. NQO1 undergoes structural changes and alterations in its ability to bind other proteins as a result of the cellular reduced/oxidized pyridine nucleotide ratio. This suggests NQO1 may act as a cellular redox switch potentially altering its interactions with other proteins and mRNA as a result of the prevailing redox environment.

  20. Probing surface charge potentials of clay basal planes and edges by direct force measurements.

    Science.gov (United States)

    Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe

    2008-11-18

    The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the

  1. Surface potential of methyl isobutyl carbinol adsorption layer at the air/water interface.

    Science.gov (United States)

    Phan, Chi M; Nakahara, Hiromichi; Shibata, Osamu; Moroi, Yoshikiyo; Le, Thu N; Ang, Ha M

    2012-01-26

    The surface potential (ΔV) and surface tension (γ) of MIBC (methyl isobutyl carbinol) were measured on the subphase of pure water and electrolyte solutions (NaCl at 0.02 and 2 M). In contrast to ionic surfactants, it was found that surface potential gradually increased with MIBC concentration. The ΔV curves were strongly influenced by the presence of NaCl. The available model in literature, in which surface potential is linearly proportional to surface excess, failed to describe the experimental data. Consequently, a new model, employing a partial charge of alcohol adsorption layer, was proposed. The new model predicted the experimental data consistently for MIBC in different NaCl solutions. However, the model required additional information for ionic impurity to predict adsorption in the absence of electrolyte. Such inclusion of impurities is, however, unnecessary for industrial applications. The modeling results successfully quantify the influence of electrolytes on surface potential of MIBC, which is critical for froth stability.

  2. Electrocardiogram: his bundle potentials can be recorded noninvasively beat by beat on surface electrocardiogram.

    Science.gov (United States)

    Wang, Gaopin; Liu, Renguang; Chang, Qinghua; Xu, Zhaolong; Zhang, Yingjie; Pan, Dianzhu

    2017-03-15

    The micro waveform of His bundle potential can't be recorded beat-to-beat on surface electrocardiogram yet. We have found that the micro-wavelets before QRS complex may be related to atrioventricular conduction system potentials. This study is to explore the possibility of His bundle potential can be noninvasively recorded on surface electrocardiogram. We randomized 65 patients undergoing radiofrequency catheter ablation of paroxysmal superventricular tachycardia (exclude overt Wolff-Parkinson-White syndrome) to receive "conventional electrocardiogram" and "new electrocardiogram" before the procedure. His bundle electrogram was collected during the procedure. Comparative analysis of PA s (PA interval recorded on surface electrocardiogram), AH s (AH interval recorded on surface electrocardiogram) and HV s (HV interval recorded on surface electrocardiogram) interval recorded on surface "new electrocardiogram" and PA, AH, HV interval recorded on His bundle electrogram was investigated. There was no difference (P > 0.05) between groups in HV s interval (49.63 ± 6.19 ms) and HV interval (49.35 ± 6.49 ms). Results of correlational analysis found that HV S interval was significantly positively associated with HV interval (r = 0.929; P electrocardiogram. Noninvasive His bundle potential tracing might represent a new method for locating the site of atrioventricular block and identifying the origin of a wide QRS complex.

  3. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    Science.gov (United States)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  4. The sea surface currents as a potential factor in the estimation and monitoring of wave energy potential

    Science.gov (United States)

    Zodiatis, George; Galanis, George; Nikolaidis, Andreas; Stylianoy, Stavros; Liakatas, Aristotelis

    2015-04-01

    The use of wave energy as an alternative renewable is receiving attention the last years under the shadow of the economic crisis in Europe and in the light of the promising corresponding potential especially for countries with extended coastline. Monitoring and studying the corresponding resources is further supported by a number of critical advantages of wave energy compared to other renewable forms, like the reduced variability and the easier adaptation to the general grid, especially when is jointly approached with wind power. Within the framework, a number of countries worldwide have launched research and development projects and a significant number of corresponding studies have been presented the last decades. However, in most of them the impact of wave-sea surface currents interaction on the wave energy potential has not been taken into account neglecting in this way a factor of potential importance. The present work aims at filling this gap for a sea area with increased scientific and economic interest, the Eastern Mediterranean Sea. Based on a combination of high resolution numerical modeling approach with advanced statistical tools, a detailed analysis is proposed for the quantification of the impact of sea surface currents, which produced from downscaling the MyOcean-FO regional data, to wave energy potential. The results although spatially sensitive, as expected, prove beyond any doubt that the wave- sea surface currents interaction should be taken into account for similar resource analysis and site selection approaches since the percentage of impact to the available wave power may reach or even exceed 20% at selected areas.

  5. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P

    2007-01-01

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  6. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  7. Modeling Solar-Wind Heavy-Ions' Potential Sputtering of Lunar KREEP Surface

    Science.gov (United States)

    Barghouty, A. F.; Meyer, F. W.; Harris, R. P.; Adams, J. H., Jr.

    2012-01-01

    Recent laboratory data suggest that potential sputtering may be an important weathering mechanism that can affect the composition of both the lunar surface and its tenuous exosphere; its role and implications, however, remain unclear. Using a relatively simple kinetic model, we will demonstrate that solar-wind heavy ions induced sputtering of KREEP surfaces is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We will also also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.

  8. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    Science.gov (United States)

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.

  9. Reconstruction of the Tip-Surface Interaction Potential by Analysis of the Brownian Motion of an Atomic Force Microscope Tip

    NARCIS (Netherlands)

    Willemsen, O.H.; Kuipers, L.; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    2000-01-01

    The thermal movement of an atomic force microscope (AFM) tip is used to reconstruct the tip-surface interaction potential. If a tip is brought into the vicinity of a surface, its movement is governed by the sum of the harmonic cantilever potential and the tip-surface interaction potential. By

  10. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  11. MRD-CI potential surfaces using balanced basis sets. IV. The H2 molecule and the H3 surface

    International Nuclear Information System (INIS)

    Wright, J.S.; Kruus, E.

    1986-01-01

    The utility of midbond functions in molecular calculations was tested in two cases where the correct results are known: the H 2 potential curve and the collinear H 3 potential surface. For H 2 , a variety of basis sets both with and without bond functions was compared to the exact nonrelativistic potential curve of Kolos and Wolniewicz [J. Chem. Phys. 43, 2429 (1965)]. It was found that optimally balanced basis sets at two levels of quality were the double zeta single polarization plus sp bond function basis (BF1) and the triple zeta double polarization plus two sets of sp bond function basis (BF2). These gave bond dissociation energies D/sub e/ = 4.7341 and 4.7368 eV, respectively (expt. 4.7477 eV). Four basis sets were tested for basis set superposition errors, which were found to be small relative to basis set incompleteness and therefore did not affect any conclusions regarding basis set balance. Basis sets BF1 and BF2 were used to construct potential surfaces for collinear H 3 , along with the corresponding basis sets DZ*P and TZ*PP which contain no bond functions. Barrier heights of 12.52, 10.37, 10.06, and 9.96 kcal/mol were obtained for basis sets DZ*P, TZ*PP, BF1, and BF2, respectively, compared to an estimated limiting value of 9.60 kcal/mol. Difference maps, force constants, and relative rms deviations show that the bond functions improve the surface shape as well as the barrier height

  12. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Brian [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Zhao, Bin; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Li, Jun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331 (China); Jiang, Bin [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-06-14

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H{sub 2} → H{sub 2} + H, H + H{sub 2}O → H{sub 2} + OH, and H + CH{sub 4} → H{sub 2} + CH{sub 3}. A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.

  13. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

    International Nuclear Information System (INIS)

    Kolb, Brian; Zhao, Bin; Guo, Hua; Li, Jun; Jiang, Bin

    2016-01-01

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H 2 → H 2 + H, H + H 2 O → H 2 + OH, and H + CH 4 → H 2 + CH 3 . A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.

  14. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    OpenAIRE

    Oliveira,Maíra Maciel Mattos de; Brugnera,Danilo Florisvaldo; Alves,Eduardo; Piccoli,Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ?C and stirring of 50 rpm. The number of adhered cells was de...

  15. Image potential resonances of the aluminum (100) surface; Bildpotentialresonanzen der Aluminium-(100)-Oberflaeche

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Matthias

    2011-07-08

    Image-potential resonances on the (100) surface of pure Aluminum are investigated experimentally and theoretically. The experiments are conducted both energy- and time-resolved using the method of two-photon photoemission spectroscopy. The main attention of the theoretical examination and extensive numerical calculations is devoted to the interaction between surface and bulk states. Image-potential resonances on Al(100) are a system in which a complete series of discrete Rydberg states strongly couples to a continuum of states. As a simple metal it also provides a good opportunity to test theoretical models of the structure of the potential at metal surfaces. This work represents the first high-resolution investigation of image-potential resonances with such strong resonance character. For the first time, it is demonstrated experimentally that isolated image-potential resonances exist on an Aluminum surface. On the (100) surface of Aluminum the second through fifth image-potential resonance are resolved and both, their energies and lifetimes are measured. The binding energies of the image-potential resonances form a Rydberg series of states {epsilon}{sub n}=-(0,85 eV)/((n+a){sup 2}). Within the accuracy of the measurement it is not necessary to introduce a quantum defect a (a=0.022{+-}0.035). Using angle-resolved two-photon photoemission spectroscopy the effective mass of electrons in the second image-potential resonance is measured to 1.01{+-}0.11 electron masses. The lifetimes of the resonances increase as {tau}{sub n} = (1.0{+-}0.2)fs.n{sup 3} starting from n=2. Calculations using the density matrix formalism show that the experimentally observed lifetimes can be explained well by electrons decaying into the bulk. The effect of resonance trapping leads to extended lifetimes in the process. Contrary to common theoretical models of image-potential states at metal surfaces the first image-potential resonance cannot be observed in two-photon photoemission on Al(100

  16. Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Demetriou, Anna; Welinder, Anne Christina

    2005-01-01

    Monolayers of homocysteine on Au(111)-surfaces have been investigated by voltammetry, in situ scanning tunnelling microscopy (STM) and subtractively normalised interfacial Fourier transform spectroscopy (SNIFTIRS). A pair of sharp voltammetric peaks build up in the potential range 0 to -0.1 V (vs...... potentials at pH 7.7. The molecules pack into highly ordered domains around the peak potential. High-resolution in situ STM reveals a (root 3 x 5) R30 degrees lattice with three homocysteine molecules in each unit cell. The adlayer changes into disordered structures on either side of the peak potential...

  17. Potential of near-surface geothermal heat - Experiences from the planning practice; Potential der oberflaechennahen Geothermie. Erfahrungen aus der Planungspraxis

    Energy Technology Data Exchange (ETDEWEB)

    Kuebert, Markus; Kuntz, David; Walker-Hertkorn, Simone [systherma GmbH, Planungsbuero fuer Erdwaermesysteme, Starzach-Felldorf (Germany)

    2010-07-01

    Near-surface geothermal applications as a heat source for ground source heat pump systems are an approved energy source in the area of residential buildings. Within the commercial range, the near-surface geothermal energy also can supply coldness in order to cool buildings. In the contribution under consideration, a flow chart of a geothermal project is presented by examining the feasibility up to the acceptance of work. With this approach it is possible to exhaust optimally the geothermal potential at a location including the trades and planners involved. In particular, the significance of the preliminary design for the entire later smooth course of the project is to be stated. Practical examples for possible operational areas of the geothermal energy and to their borders are described.

  18. Etalon (standard) for surface potential distribution produced by electric activity of the heart.

    Science.gov (United States)

    Szathmáry, V; Ruttkay-Nedecký, I

    1981-01-01

    The authors submit etalon (standard) equipotential maps as an aid in the evaluation of maps of surface potential distributions in living subjects. They were obtained by measuring potentials on the surface of an electrolytic tank shaped like the thorax. The individual etalon maps were determined in such a way that the parameters of the physical dipole forming the source of the electric field in the tank corresponded to the mean vectorcardiographic parameters measured in a healthy population sample. The technique also allows a quantitative estimate of the degree of non-dipolarity of the heart as the source of the electric field.

  19. Switched on!

    CERN Multimedia

    2008-01-01

    Like a star arriving on stage, impatiently followed by each member of CERN personnel and by millions of eyes around the world, the first beam of protons has circulated in the LHC. After years in the making and months of increasing anticipation, today the work of hundreds of people has borne fruit. WELL DONE to all! Successfully steered around the 27 kilometres of the world’s most powerful particle accelerator at 10:28 this morning, this first beam of protons circulating in the ring marks a key moment in the transition from over two decades of preparation to a new era of scientific discovery. "It’s a fantastic moment," said the LHC project leader Lyn Evans, "we can now look forward to a new era of understanding about the origins and evolution of the universe". Starting up a major new particle accelerator takes much more than flipping a switch. Thousands of individual elements have to work in harmony, timings have to be synchronize...

  20. Optical Multidimensional Switching for Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija

    2017-01-01

    . Software controlled switching using an on-chip integrated fiber switch is demonstrated and enabling of additional network functionalities such as multicast and optical grooming is experimentally confirmed. Altogether this work demonstrates the potential of optical switching technologies...... for the purpose of deploying optical switching within the network. First, the Hi-Ring data center architecture is proposed. It is based on optical multidimensional switching nodes that provide switching in hierarchically layered space, wavelength and time domain. The performance of the Hi-Ring architecture...... is evaluated experimentally and successful switching of both high capacity wavelength connections and time-shared subwavelengthconnections is demonstrated. Error-free performance is also achieved when transmitting 7 Tbit/s using multicore fiber, confirming the ability to scale the network. Moreover...

  1. Calculation of high-dimensional fission-fusion potential-energy surfaces in the SHE region

    International Nuclear Information System (INIS)

    Moeller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira

    2004-01-01

    We calculate in a macroscopic-microscopic model fission-fusion potential-energy surfaces relevant to the analysis of heavy-ion reactions employed to form heavy-element evaporation residues. We study these multidimensional potential-energy surfaces both inside and outside the touching point.Inside the point of contact we define the potential on a multi-million-point grid in 5D deformation space where elongation, merging projectile and target spheroidal shapes, neck radius and projectile/target mass asymmetry are independent shape variables. The same deformation space and the corresponding potential-energy surface also describe the shape evolution from the nuclear ground-state to separating fragments in fission, and the fast-fission trajectories in incomplete fusion.For separated nuclei we study the macroscopic-microscopic potential energy, that is the ''collision surface'' between a spheroidally deformed target and a spheroidally deformed projectile as a function of three coordinates which are: the relative location of the projectile center-of-mass with respect to the target center-of-mass and the spheroidal deformations of the target and the projectile. We limit our study to the most favorable relative positions of target and projectile, namely that the symmetry axes of the target and projectile are collinear

  2. Which potentials have to be surface peaked to reproduce large angle proton scattering at high energy?

    International Nuclear Information System (INIS)

    Raynal, J.

    1990-01-01

    Corrections to the usual form factors of the optical potential are studied with a view to getting a better fit for proton elastic scattering at large angles on 40 Ca at 497 and 800 MeV. When a real surface form factor is added to the central potential in the Schrodinger formalism, the experimental data are as well reproduced as in the standard Dirac formalism. Coupling to the strong 3 - collective state gives a better fit. The use of surface corrections to the imaginary Dirac potential also gives improved results. A slightly better fit is obtained by coupling to the 3 - state with, at the same time, a weakening of these corrections. Further corrections to the potential do not give significant improvements

  3. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires.

    Science.gov (United States)

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-11

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.

  4. Toward accurate prediction of potential energy surfaces and the spectral density of hydrogen bonded systems

    International Nuclear Information System (INIS)

    Rekik, Najeh

    2014-01-01

    Despite the considerable progress made in quantum theory and computational methods, detailed descriptions of the potential energy surfaces of hydrogen-bonded systems have not yet been achieved. In addition, the hydrogen bond (H-bond) itself is still so poorly understood at the fundamental level that it remains unclear exactly what geometry constitutes a “real” H-bond. Therefore, in order to investigate features essential for hydrogen bonded complexes, a simple, efficient, and general method for calculating matrix elements of vibrational operators capable of describing the stretching modes and the H-bond bridges of hydrogen-bonded systems is proposed. The derived matrix elements are simple and computationally easy to evaluate, which makes the method suitable for vibrational studies of multiple-well potentials. The method is illustrated by obtaining potential energy surfaces for a number of two-dimensional systems with repulsive potentials chosen to be in Gaussian form for the stretching mode and of the Morse-type for the H-bond bridge dynamics. The forms of potential energy surfaces of weak and strong hydrogen bonds are analyzed by varying the asymmetry of the Gaussian potential. Moreover, the choice and applicability of the selected potential for the stretching mode and comparison with other potentials used in the area of hydrogen bond research are discussed. The approach for the determination of spectral density has been constructed in the framework of the linear response theory for which spectral density is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The approach involves anharmonic coupling between the high frequency stretching vibration (double well potential) and low-frequency donor-acceptor stretching mode (Morse potential) as well as the electrical anharmonicity of the dipole moment operator of the fast mode. A direct relaxation mechanism is incorporated through a time decaying exponential

  5. Potential of capillary-column-switching liquid chromatography-tandem mass spectrometry for the quantitative trace analysis of small molecules. Application to the on-line screening of drugs in water.

    Science.gov (United States)

    Pitarch, Elena; Hernandez, Felix; ten Hove, Jan; Meiring, Hugo; Niesing, Willem; Dijkman, Ellen; Stolker, Linda; Hogendoorn, Elbert

    2004-03-26

    We have investigated the potential of capillary-column-switching liquid chromatography coupled to tandem mass spectrometry (cLC-MS-MS) for the quantitative on-line trace analysis of target compounds in aqueous solutions. The technical design of the nano-scale cLC system developed at our Institute for peptide and protein identification has been tested and evaluated for the direct trace analysis of drugs in water samples. Sulphametoxazole, bezafibrate, metoprolol, carbamazepine and bisoprolol occurring frequently in Dutch waters, were selected as test compounds. Adequate conditions for trapping, elution and MS-MS detection were investigated by employing laboratory made 200 microm i.d. capillary columns packed with 5 microm aqua C18 material. In the final cLC-MS-MS conditions, a 1 cm length trapping column and a 4 cm length analytical column were selected. Under these conditions, the target compounds could be directly determined in water down to a level of around 50 ng/l employing only 25 microl of water sample. Validation was done by recovery experiments in ground-, surface- and drinking-water matrices as well as by the analysis of water samples with incurred residues and previously analyzed with a conventional procedure involving off-line solid-phase extraction and narrow-bore LC with MS-MS detection. The new methodology provided recoveries (50-500 ng/l level) between 50 and 114% with RSDs (n = 3, each level) below 20% for most of the compounds. Despite the somewhat less analytical performance in comparison to the conventional procedure, the on-line approach of the new methodology is very suitable for screening of drugs in aqueous samples.

  6. Study of surface potential contamination in radioisotope and radiopharmaceutical production facilities and alternative solutions

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Farida Tusafariah; Djarwanti Rahayu Pipin Soedjarwo

    2013-01-01

    Radioisotope and radiopharmaceutical production facilities that exist in their operations around the world in the form of radiological impacts of radiation exposure, contamination of surface and air contamination. Given the number of existing open source in radioisotope and radiopharmaceutical production facility, then the possibility of surface contamination in the work area is quite high. For that to protect the safety and health of both workers, the public and the environment, then the licensee must conduct an inventory of some of the potential that could result in contamination of surfaces in radioisotope and radiopharmaceutical production facilities. Several potential to cause surface contamination in radioisotope and radiopharmaceutical production facilities consist of loss of resources, the VAC system disorders, impaired production facilities, limited resources and lack of work discipline and radioactive waste handling activities. From the study of some potential, there are several alternative solutions that can be implemented by the licensee to address the contamination of the surface so as not to cause adverse radiological impacts for both radiation workers, the public or the environment. (author)

  7. On the influence of the intermolecular potential on the wetting properties of water on silica surfaces

    Science.gov (United States)

    Pafong, E.; Geske, J.; Drossel, B.

    2016-09-01

    We study the wetting properties of water on silica surfaces using molecular dynamics (MD) simulations. To describe the intermolecular interaction between water and silica atoms, two types of interaction potential models are used: the standard BródkA and Zerda (BZ) model and the Gulmen and Thompson (GT) model. We perform an in-depth analysis of the influence of the choice of the potential on the arrangement of the water molecules in partially filled pores and on top of silica slabs. We find that at moderate pore filling ratios, the GT silica surface is completely wetted by water molecules, which agrees well with experimental findings, while the commonly used BZ surface is less hydrophilic and is only partially wetted. We interpret our simulation results using an analytical calculation of the phase diagram of water in partially filled pores. Moreover, an evaluation of the contact angle of the water droplet on top of the silica slab reveals that the interaction becomes more hydrophilic with increasing slab thickness and saturates around 2.5-3 nm, in agreement with the experimentally found value. Our analysis also shows that the hydroaffinity of the surface is mainly determined by the electrostatic interaction, but the van der Waals interaction nevertheless is strong enough that it can turn a hydrophobic surface into a hydrophilic surface.

  8. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity, moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  9. Recent characterization activities of Midway Valley as a potential repository surface facility site

    International Nuclear Information System (INIS)

    Gibson, J.D.; Wesling, J.R.; Swan, F.H.; Bullard, T.F.

    1992-01-01

    Midway Valley, located at the eastern base of Yucca Mountain, Nye County, Nevada, has been identified as a possible location for the surface facilities of a potential high-level nuclear-waste repository. This structural and topographic valley is bounded by two north- trending, down-to-the-west normal faults: the Paintbrush Canyon fault on the east and the Bow Ridge fault on the west. Surface and near-surface geological data have been acquired from Midway Valley during the past three years with particular emphasis on evaluating the existence of Quaternary faults. A detailed (1:6000) surficial geological map has been prepared based on interpretation of new and existing aerial photographs, field mapping, soil pits, and trenches. No evidence was found that would indicate displacement of these surficial deposits along previously unrecognized faults. However, given the low rates of Quaternary faulting and the extensive areas that are covered by late Pleistocene to Holocene deposits south of Sever Wash, Quaternary faulting between known faults cannot be precluded based on surface evidence alone. Middle to late Pleistocene alluvial fan deposits (Unit Q3) exist at or near the surface throughout Midway Valley. Confidence is increased that the potential for surface fault rupture in Midway Valley can be assessed by excavations that expose the deposits and soils associated with Unit Q3 or older units (middle Pleistocene or earlier)

  10. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  11. Lunar Surface Electric Potential Changes Associated with Traversals through the Earth's Foreshock

    Science.gov (United States)

    Collier, Michael R.; Hills, H. Kent; Stubbs, Timothy J.; Halekas, Jasper S.; Delory, Gregory T.; Espley, Jared; Farrell, William M.; Freeman, John W.; Vondrak, Richard

    2011-01-01

    We report an analysis of one year of Suprathermal Ion Detector Experiment (SIDE) Total Ion Detector (TID) resonance events observed between January 1972 and January 1973. The study includes only those events during which upstream solar wind conditions were readily available. The analysis shows that these events are associated with lunar traversals through the dawn flank of the terrestrial magnetospheric bow shock. We propose that the events result from an increase in lunar surface electric potential effected by secondary electron emission due to primary electrons in the Earth's foreshock region (although primary ions may play a role as well). This work establishes (1) the lunar surface potential changes as the Moon moves through the terrestrial bow shock, (2) the lunar surface achieves potentials in the upstream foreshock region that differ from those in the downstream magnetosheath region, (3) these differences can be explained by the presence of energetic electron beams in the upstream foreshock region and (4) if this explanation is correct, the location of the Moon with respect to the terrestrial bow shock influences lunar surface potential.

  12. Dipyridamole Body Surface Potential Mapping: Noninvasive Differentiation of Syndrome X from Coronary Artery Disease

    Czech Academy of Sciences Publication Activity Database

    Boudík, F.; Anger, Z.; Aschermann, M.; Vojáček, J.; Tomečková, Marie

    2002-01-01

    Roč. 35, č. 3 (2002), s. 181-191 ISSN 0022-0736 R&D Projects: GA MZd IZ4038 Keywords : body surface potential mapping * dipyridamole * coronary artery disease * syndrome X Subject RIV: BD - Theory of Information Impact factor: 0.599, year: 2002

  13. Modified-surface-energy methods for deriving heavy-ion potentials

    International Nuclear Information System (INIS)

    Sierk, A.J.

    1977-01-01

    The use of a modified-surface-energy approach for the calculation of heavy-ion interaction potentials is discussed. It is not possible to simultaneously fit elastic scattering, ion interaction barriers, and fission barriers with the same set of constants in this model. Possible explanations of this deficiency are discussed

  14. A new analytical potential energy surface for the adsorption systemk CO/Cu(100)

    NARCIS (Netherlands)

    Marquardt, R.; Cuvelier, F.; Olsen, R.A.; Baerends, E.J.; Tremblay, J.C.; Saalfrank, P.

    2010-01-01

    Electronic structure data and analytical representations of the potential energy surface for the adsorption of carbon monoxide on a crystalline copper Cu(100) substrate are reviewed. It is found that a previously published and widely used analytical hypersurface for this process [J. C. Tully, M.

  15. Impact of organic overlayers on a-Si:H/c-Si surface potential

    KAUST Repository

    Seif, Johannes P.

    2017-04-11

    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance.

  16. Detection of a strongly negative surface potential at Saturn's moon Hyperion.

    Science.gov (United States)

    Nordheim, T A; Jones, G H; Roussos, E; Leisner, J S; Coates, A J; Kurth, W S; Khurana, K K; Krupp, N; Dougherty, M K; Waite, J H

    2014-10-28

    On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.

  17. Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields

    Energy Technology Data Exchange (ETDEWEB)

    Genenko, Yuri A., E-mail: genenko@mm.tu-darmstadt.de; Hirsch, Ofer [Technische Universität Darmstadt, Darmstadt (Germany); Erhart, Paul [Chalmers University of Technology, Gothenburg (Sweden)

    2014-03-14

    Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO{sub 3} is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.

  18. Construction of an interatomic potential for zinc oxide surfaces by high-dimensional neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Artrith, Nongnuch; Morawietz, Tobias; Behler, Joerg [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2011-07-01

    Zinc oxide (ZnO) is a technologically important material with many applications, e.g. in heterogeneous catalysis. For theoretical studies of the structural properties of ZnO surfaces, defects, and crystal structures it is necessary to simulate large systems over long time-scales with sufficient accuracy. Often, the required system size is not accessible by computationally rather demanding density-functional theory (DFT) calculations. Recently, artificial Neural Networks (NN) trained to first principles data have shown to provide accurate potential-energy surfaces (PESs) for condensed systems. We present the construction and analysis of a NN PES for ZnO. The structural and energetic properties of bulk ZnO and ZnO surfaces are investigated using this potential and compared to DFT calculations.

  19. Impact of organic overlayers on a-Si:H/c-Si surface potential

    KAUST Repository

    Seif, Johannes P.; Niesen, Bjoern; Tomasi, Andrea; Ballif, Christophe; De Wolf, Stefaan

    2017-01-01

    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance.

  20. Digital switched hydraulics

    Science.gov (United States)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  1. Potential dependence of surface crystal structure of iron passive films in borate buffer solution

    International Nuclear Information System (INIS)

    Deng, Huihua; Nanjo, Hiroshi; Qian, Pu; Santosa, Arifin; Ishikawa, Ikuo; Kurata, Yoshiaki

    2007-01-01

    The effect of passivation potential on surface crystal structure, apparent thickness and passivity of oxide films formed on pure iron prepared by plasma sputter deposition was investigated. The crystallinity was improved with passivation potential and the width of atomically flat terraces was expanded to 6 nm when passivating at 750 mV for 15 min, as observed by ex situ scanning tunneling microscopy (STM) after aging in air (<30% RH). Apparent thickness and passivity are linearly dependent on passivation potential. The former weakly depends on passivation duration, the latter strongly depends on passivation duration. This is well explained by the correlation between crystal structure and passivity

  2. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  3. Image-potential states on the metallic (111) surface of bismuth

    International Nuclear Information System (INIS)

    Muntwiler, Matthias; Zhu, X-Y

    2008-01-01

    An extended series (up to n=6, in quantum beats) of image-potential states (IPS) is observed in time-resolved two-photon photoelectron (TR-2PPE) spectroscopy of the Bi(111) surface. Although mainly located in the vacuum, these states probe various properties of the electronic structure of the surface as reflected in their energetics and dynamics. Based on the observation of IPS a projected gap in the surface normal direction is inferred in the region from 3.57 to 4.27 eV above the Fermi level. Despite this band gap, the lifetimes of the IPS are shorter than on comparable metals, which is an indication of the metallic character of the Bi(111) surface.

  4. Potential dependent adhesion forces on bare and underpotential deposition modified electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, J.M.; Hsieh, S.J.; Monahan, J.; Gewirth, A.A. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-03

    Adhesion force measurements are used to determine the potential dependence of the force of adhesion between a Si{sub 3}N{sub 4} cantilever and a Au(111) surface modified by the underpotential deposition (upd) of Bi or Cu in acid solution or by oxide formation. The measured work of adhesion is near zero for most of the potential region examined in Bi upd but rises after the formation of a full Bi monolayer. The work of adhesion is high at positive potentials for Cu upd but then decreases as the Cu partial and full monolayers are formed. The work of adhesion is low in the oxide region on Au(111) but rises following the sulfate disordering transition at 1.1 V vs NHE. These results are interpreted in terms of the degree of solvent order on the electrode surface.

  5. Antarctic Ice Shelf Potentially Stabilized by Export of Meltwater in Surface River

    Science.gov (United States)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-01-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  6. Development of an Urban Multilayer Radiation Scheme and Its Application to the Urban Surface Warming Potential

    Science.gov (United States)

    Aoyagi, Toshinori; Takahashi, Shunji

    2012-02-01

    To investigate how a three-dimensional structure such as an urban canyon can affect urban surface warming, we developed an urban multilayer radiation scheme. The complete consideration of multiple scattering of shortwave and longwave radiation using the radiosity method is an important feature of the present scheme. A brief description of this scheme is presented, followed by evaluations that compare its results with observations of the effective albedo and radiative temperature for urban blocks. Next, we calculate the urban surface warming potential (USWP), defined as the difference between the daily mean radiative temperature of urban surfaces (which are assumed to be black bodies), including their canyon effects and the daily mean temperature of a flat surface with the same material properties, under a radiative equilibrium state. Assuming standard material properties (albedo and emissivity of 0.4 and 0.9, respectively), we studied the sensitivity of the USWP to various aspect ratios of building heights to road widths. The results show that the temporally-averaged surface temperature of an urban area can be higher than that of a flat surface. In addition, we determined the overestimation of the effective temperature of urban surfaces induced by the overestimation of the radiation distribution to the walls when one uses a single-layer scheme for urban block arrays that have a low sky-view factor less than around 0.5.

  7. A new approach to treatment of resistant gram-positive infections: potential impact of targeted IV to oral switch on length of stay

    Directory of Open Access Journals (Sweden)

    Trust Sarah

    2006-06-01

    Full Text Available Abstract Background Patients prescribed intravenous (IV glycopeptides usually remain in hospital until completion of this treatment. Some of these patients could be discharged earlier if a switch to an oral antibiotic was made. This study was designed to identify the percentage of inpatients currently prescribed IV glycopeptides who could be discharged earlier if a switch to an oral agent was used, and to estimate the number of bed days that could be saved. We also aimed to identify the patient group(s most likely to benefit, and to estimate the number of days of IV therapy that could be prevented in patients who remained in hospital. Methods Patients were included if they were prescribed an IV glycopeptide for 5 days or more. Predetermined IV to oral antibiotic switch criteria and discharge criteria were applied. A multiple logistic regression model was used to identify the characteristics of the patients most likely to be suitable for earlier discharge. Results Of 211 patients, 62 (29% could have had a reduced length of stay if they were treated with a suitable oral antibiotic. This would have saved a total of 649 inpatient days (median 5 per patient; range 1–54. A further 31 patients (15% could have switched to oral therapy as an inpatient thus avoiding IV line use. The patients most likely to be suitable for early discharge were those with skin and soft tissue infection, under the cardiology, cardiothoracic surgery, orthopaedics, general medical, plastic surgery and vascular specialities, with no high risk comorbidity and less than five other regularly prescribed drugs. Conclusion The need for glycopeptide therapy has a significant impact on length of stay. Effective targeting of oral antimicrobials could reduce the need for IV access, allow outpatient treatment and thus reduce the length of stay in patients with infections caused by antibiotic resistant gram-positive bacteria.

  8. Guided selective deposition of nanoparticles by tuning of the surface potential

    Science.gov (United States)

    Eklöf, J.; Stolaś, A.; Herzberg, M.; Pekkari, A.; Tebikachew, B.; Gschneidtner, T.; Lara-Avila, S.; Hassenkam, T.; Moth-Poulsen, K.

    2017-07-01

    Guided deposition of nanoparticles onto different substrates is of great importance for a variety of applications such as biosensing, targeted cancer therapy, anti-bacterial coatings and single molecular electronics. It is therefore important to gain an understanding of what parameters are involved in the deposition of nanoparticles. In this work we have deposited 60 nm, negatively charged, citrate stabilized gold nanoparticles onto microstructures consisting of six different materials, (vanadium (V), silicon dioxide (SiO2), gold (Au), aluminum (Al), copper (Cu) and nickel (Ni)). The samples have then been investigated by scanning electron microscopy to extract the particle density. The surface potential was calculated from the measured surface charge density maps measured by atomic force microscopy while the samples were submerged in a KCl water solution. These values were compared with literature values of the isoelectric points (IEP) of different oxides formed on the metals in an ambient environment. According to measurements, Al had the highest surface potential followed by Ni and Cu. The same trend was observed for the nanoparticle densities. No particles were found on V, SiO2 and Au. The literature values of the IEP showed a different trend compared to the surface potential measurements concluding that IEP is not a reliable parameter for the prediction of NP deposition. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  9. Global potential energy surface of ground state singlet spin O4

    Science.gov (United States)

    Mankodi, Tapan K.; Bhandarkar, Upendra V.; Puranik, Bhalchandra P.

    2018-02-01

    A new global potential energy for the singlet spin state O4 system is reported using CASPT2/aug-cc-pVTZ ab initio calculations. The geometries for the six-dimensional surface are constructed using a novel point generation scheme that employs randomly generated configurations based on the beta distribution. The advantage of this scheme is apparent in the reduction of the number of required geometries for a reasonably accurate potential energy surface (PES) and the consequent decrease in the overall computational effort. The reported surface matches well with the recently published singlet surface by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. In addition to the O4 PES, the ground state N4 PES is also constructed using the point generation scheme and compared with the existing PES [Y. Paukku et al., J. Chem. Phys. 139, 044309 (2013)]. The singlet surface is constructed with the aim of studying high energy O2-O2 collisions and predicting collision induced dissociation cross section to be used in simulating non-equilibrium aerothermodynamic flows.

  10. Computational investigation of potential dosing schedules for a switch of medication from warfarin to rivaroxaban-an oral, direct Factor Xa inhibitor.

    Science.gov (United States)

    Burghaus, Rolf; Coboeken, Katrin; Gaub, Thomas; Niederalt, Christoph; Sensse, Anke; Siegmund, Hans-Ulrich; Weiss, Wolfgang; Mueck, Wolfgang; Tanigawa, Takahiko; Lippert, Jörg

    2014-01-01

    The long-lasting anticoagulant effect of vitamin K antagonists can be problematic in cases of adverse drug reactions or when patients are switched to another anticoagulant therapy. The objective of this study was to examine in silico the anticoagulant effect of rivaroxaban, an oral, direct Factor Xa inhibitor, combined with the residual effect of discontinued warfarin. Our simulations were based on the recommended anticoagulant dosing regimen for stroke prevention in patients with atrial fibrillation. The effects of the combination of discontinued warfarin plus rivaroxaban were simulated using an extended version of a previously validated blood coagulation computer model. A strong synergistic effect of the two distinct mechanisms of action was observed in the first 2-3 days after warfarin discontinuation; thereafter, the effect was close to additive. Nomograms for the introduction of rivaroxaban therapy after warfarin discontinuation were derived for Caucasian and Japanese patients using safety and efficacy criteria described previously, together with the coagulation model. The findings of our study provide a mechanistic pharmacologic rationale for dosing schedules during the therapy switch from warfarin to rivaroxaban and support the switching strategies as outlined in the Summary of Product Characteristics and Prescribing Information for rivaroxaban.

  11. Computational investigation of potential dosing schedules for a switch of medication from warfarin to rivaroxaban—an oral, direct Factor Xa inhibitor

    Science.gov (United States)

    Burghaus, Rolf; Coboeken, Katrin; Gaub, Thomas; Niederalt, Christoph; Sensse, Anke; Siegmund, Hans-Ulrich; Weiss, Wolfgang; Mueck, Wolfgang; Tanigawa, Takahiko; Lippert, Jörg

    2014-01-01

    The long-lasting anticoagulant effect of vitamin K antagonists can be problematic in cases of adverse drug reactions or when patients are switched to another anticoagulant therapy. The objective of this study was to examine in silico the anticoagulant effect of rivaroxaban, an oral, direct Factor Xa inhibitor, combined with the residual effect of discontinued warfarin. Our simulations were based on the recommended anticoagulant dosing regimen for stroke prevention in patients with atrial fibrillation. The effects of the combination of discontinued warfarin plus rivaroxaban were simulated using an extended version of a previously validated blood coagulation computer model. A strong synergistic effect of the two distinct mechanisms of action was observed in the first 2–3 days after warfarin discontinuation; thereafter, the effect was close to additive. Nomograms for the introduction of rivaroxaban therapy after warfarin discontinuation were derived for Caucasian and Japanese patients using safety and efficacy criteria described previously, together with the coagulation model. The findings of our study provide a mechanistic pharmacologic rationale for dosing schedules during the therapy switch from warfarin to rivaroxaban and support the switching strategies as outlined in the Summary of Product Characteristics and Prescribing Information for rivaroxaban. PMID:25426077

  12. Potential fields on the ventricular surface of the exposed dog heart during normal excitation.

    Science.gov (United States)

    Arisi, G; Macchi, E; Baruffi, S; Spaggiari, S; Taccardi, B

    1983-06-01

    We studied the normal spread of excitation on the anterior and posterior ventricular surface of open-chest dogs by recording unipolar electrograms from an array of 1124 electrodes spaced 2 mm apart. The array had the shape of the ventricular surface of the heart. The electrograms were processed by a computer and displayed as epicardial equipotential maps at 1-msec intervals. Isochrone maps also were drawn. Several new features of epicardial potential fields were identified: (1) a high number of breakthrough points; (2) the topography, apparent widths, velocities of the wavefronts and the related potential drop; (3) the topography of positive potential peaks in relation to the wavefronts. Fifteen to 24 breakthrough points were located on the anterior, and 10 to 13 on the posterior ventricular surface. Some were in previously described locations and many others in new locations. Specifically, 3 to 5 breakthrough points appeared close to the atrioventricular groove on the anterior right ventricle and 2 to 4 on the posterior heart aspect; these basal breakthrough points appeared when a large portion of ventricular surface was still unexcited. Due to the presence of numerous breakthrough points on the anterior and posterior aspect of the heart which had not previously been described, the spread of excitation on the ventricular surface was "mosaic-like," with activation wavefronts spreading in all directions, rather than radially from the two breakthrough points, as traditionally described. The positive potential peaks which lay ahead of the expanding wavefronts moved along preferential directions which were probably related to the myocardial fiber direction.

  13. Critical insight into the influence of the potential energy surface on fission dynamics

    International Nuclear Information System (INIS)

    Mazurek, K.; Schmitt, C.; Wieleczko, J. P.; Ademard, G.; Nadtochy, P. N.

    2011-01-01

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.

  14. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  15. Potential energy surfaces for N = Z, 20Ne-112Ba nuclei

    International Nuclear Information System (INIS)

    Mehta, M.S.; Gupta, Raj K.; Jha, T.K.; Patra, S.K.

    2004-01-01

    We have calculated the potential energy surfaces for N = Z, 20 Ne- 112 Ba nuclei in an axially deformed relativistic mean field approach. A quadratic constraint scheme is applied to determine the complete energy surface for a wide range of the quadrupole deformation. The NL3, NL-RAl and TM1 parameter sets are used. The phenomenon of (multiple) shape coexistence is studied and the calculated ground and excited state binding energies, quadrupole deformation parameters and root mean square (rms) charge radii are compared with the available experimental data and other theoretical predictions. (author)

  16. Surface-active biopolymers from marine bacteria for potential biotechnological applications

    Directory of Open Access Journals (Sweden)

    Karina Sałek

    2016-03-01

    Full Text Available Surface-active agents are amphiphilic chemicals that are used in almost every sector of modern industry, the bulk of which are produced by organo-chemical synthesis. Those produced from biological sources (biosurfactants and bioemulsifiers, however, have gained increasing interest in recent years due to their wide structural and functional diversity, lower toxicities and high biodegradability, compared to their chemically-synthesised counterparts. This review aims to present a general overview on surface-active agents, including their classification, where new types of these biomolecules may lay awaiting discovery, and some of the main bottlenecks for their industrial-scale production. In particular, the marine environment is highlighted as a largely untapped source for discovering new types of surface-active agents. Marine bacteria, especially those living associated with micro-algae (eukaryotic phytoplankton, are a highly promising source of polymeric surface-active agents with potential biotechnological applications. The high uronic acids content of these macromolecules has been linked to conferring them with amphiphilic qualities, and their high structural diversity and polyanionic nature endows them with the potential to exhibit a wide range of functional diversity. Production yields (e.g. by fermentation for most microbial surface-active agents have often been too low to meet the volume demands of industry, and this principally remains as the most important bottleneck for their further commercial development. However, new developments in recombinant and synthetic biology approaches can offer significant promise to alleviate this bottleneck. This review highlights a particular biotope in the marine environment that offers promise for discovering novel surface-active biomolecules, and gives a general overview on specific areas that researchers and the industry could focus work towards increasing the production yields of microbial surface

  17. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    Science.gov (United States)

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

  18. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units.

    Science.gov (United States)

    Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V

    2010-06-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  19. Accelerating Electrostatic Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units

    Science.gov (United States)

    Anandakrishnan, Ramu; Scogland, Tom R. W.; Fenley, Andrew T.; Gordon, John C.; Feng, Wu-chun; Onufriev, Alexey V.

    2010-01-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multiscale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. PMID:20452792

  20. A theoretical study on the effect of piezoelectric charges on the surface potential and surface depletion region of ZnO nanowires

    International Nuclear Information System (INIS)

    Purahmad, Mohsen; Stroscio, Michael A; Dutta, Mitra

    2013-01-01

    The electrostatic potential and depletion width in piezoelectric semiconductor nanowires are derived by considering a non-depleted region and a surface depleted region and solving the Poisson equation. By determining the piezoelectric-induced charge density, in terms of equivalent density of charges, the effect of piezoelectric charges on the surface depletion region and the distributed electric potential in nanowire have been investigated. The numerical results demonstrate that the ZnO NWs with a smaller radius have a larger surface depletion region which results in a stronger surface potential and depletion region perturbation by induced piezoelectric charges. (paper)

  1. Energy and Momentum Relaxation Times of 2D Electrons Due to Near Surface Deformation Potential Scattering

    Science.gov (United States)

    Pipa, Viktor; Vasko, Fedor; Mitin, Vladimir

    1997-03-01

    The low temperature energy and momentum relaxation rates of 2D electron gas placed near the free or clamped surface of a semi-infinit sample are calculated. To describe the electron-acoustic phonon interaction with allowance of the surface effect the method of elasticity theory Green functions was used. This method allows to take into account the reflection of acoustic waves from the surface and related mutual conversion of LA and TA waves. It is shown that the strength of the deformation potential scattering at low temperatures substantially depends on the mechanical conditions at the surface: relaxation rates are suppressed for the free surface while for the rigid one the rates are enhanced. The dependence of the conductivity on the distance between the 2D layer and the surface is discussed. The effect is most pronounced in the range of temperatures 2 sl pF < T < (2 hbar s_l)/d, where pF is the Fermi momentum, sl is the velocity of LA waves, d is the width of the quantum well.

  2. LUNAR SURFACE AND DUST GRAIN POTENTIALS DURING THE EARTH’S MAGNETOSPHERE CROSSING

    Energy Technology Data Exchange (ETDEWEB)

    Vaverka, J.; Richterová, I.; Pavlu, J.; Šafránková, J.; Němeček, Z., E-mail: jana.safrankova@mff.cuni.cz [Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic)

    2016-07-10

    Interaction between the lunar surface and the solar UV radiation and surrounding plasma environment leads to its charging by different processes like photoemission, collection of charged particles, or secondary electron emission (SEE). Whereas the photoemission depends only on the angle between the surface and direction to the Sun and varies only slowly, plasma parameters can change rapidly as the Moon orbits around the Earth. This paper presents numerical simulations of one Moon pass through the magnetospheric tail including the real plasma parameters measured by THEMIS as an input. The calculations are concentrated on different charges of the lunar surface itself and a dust grain lifted above this surface. Our estimations show that (1) the SEE leads to a positive charging of parts of the lunar surface even in the magnetosphere, where a high negative potential is expected; (2) the SEE is generally more important for isolated dust grains than for the lunar surface covered by these grains; and (3) the time constant of charging of dust grains depends on their diameter being of the order of hours for sub-micrometer grains. In view of these results, we discuss the conditions under which and the areas where a levitation of the lifted dust grains could be observed.

  3. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2017-02-12

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  4. Potential energy surfaces for alkali plus noble gas pairs: a systematic comparison

    Science.gov (United States)

    Blank, L. Aaron; Kedziora, Gary S.; Weeks, David E.

    2010-02-01

    Optically Pumped Alkali Lasers (OPAL) involve interactions of alkali atoms with a buffer gas typically consisting of a noble gas together with C2H4. Line broadening mechanisms are of particular interest because they can be used to match a broad optical pumping source with relatively narrow alkali absorption spectra. To better understand the line broadening processes at work in OPAL systems we focus on the noble gas collisional partners. A matrix of potential energy surfaces (PES) has been generated at the multi-configurational self consistent field (MCSCF) level for M + Ng, where M=Li, Na, K, Rb, Cs and Ng=He, Ne, Ar. The PES include the X2Σ ground state surface and the A2II, B2Σ excited state surfaces. In addition to the MCSCF surfaces, PES for Li+He have been calculated at the multi-reference singles and doubles configuration interaction (MRSDCI) level with spin-orbit splitting effects included. These surfaces provide a way to check the qualitative applicability of the MCSCF calculations. They also exhibit the avoided crossing between the B2Σ and A2II1/2 surfaces that is partially responsible for collision induced relaxation from the 2P3/2 to the 2P1/2 atomic levels.

  5. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT).

    Science.gov (United States)

    Maurer, Reinhard J; Reuter, Karsten

    2013-07-07

    Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.

  6. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    International Nuclear Information System (INIS)

    Wang, Yimin; Bowman, Joel M.; Kamarchik, Eugene

    2016-01-01

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na + H 2 O, F − H 2 O, and Cl − H 2 O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H 2 O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na + and aVTZ basis for Cl − and F − ), over a large range of distances and H 2 O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  7. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu [Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States); Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com [Quantum Pomegranate, LLC, 2604 Kings Lake Court NE, Atlanta, Georgia 30345 (United States)

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  8. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  9. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    Science.gov (United States)

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  10. Metrological Aspects of Surface Topographies Produced by Different Machining Operations Regarding Their Potential Functionality

    Directory of Open Access Journals (Sweden)

    Żak Krzysztof

    2017-06-01

    Full Text Available This paper presents a comprehensive methodology for measuring and characterizing the surface topographies on machined steel parts produced by precision machining operations. The performed case studies concern a wide spectrum of topographic features of surfaces with different geometrical structures but the same values of the arithmetic mean height Sa. The tested machining operations included hard turning operations performed with CBN tools, grinding operations with Al2O3 ceramic and CBN wheels and superfinish using ceramic stones. As a result, several characteristic surface textures with the Sa roughness parameter value of about 0.2 μm were thoroughly characterized and compared regarding their potential functional capabilities. Apart from the standard 2D and 3D roughness parameters, the fractal, motif and frequency parameters were taken in the consideration.

  11. Potentialities of some surface characterization techniques for the development of titanium biomedical alloys

    Directory of Open Access Journals (Sweden)

    P.S. Vanzillotta

    2004-09-01

    Full Text Available Bone formation around a metallic implant is a complex process that involves micro- and nanometric interactions. Several surface treatments, including coatings were developed in order to obtain faster osseointegration. To understand the role of these surface treatments on bone formation it is necessary to choose adequate characterization techniques. Among them, we have selected electron microscopy, profilometry, atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS to describe them briefly. Examples of the potentialities of these techniques on the characterization of titanium for biomedical applications were also presented and discussed. Unfortunately more than one technique is usually necessary to describe conveniently the topography (scanning electron microsocopy, profilometry and/or AFM and the chemical state (XPS of the external layer of the material surface. The employment of the techniques above described can be useful especially for the development of new materials or products.

  12. Self-Consistent Approach to Global Charge Neutrality in Electrokinetics: A Surface Potential Trap Model

    Directory of Open Access Journals (Sweden)

    Li Wan

    2014-03-01

    Full Text Available In this work, we treat the Poisson-Nernst-Planck (PNP equations as the basis for a consistent framework of the electrokinetic effects. The static limit of the PNP equations is shown to be the charge-conserving Poisson-Boltzmann (CCPB equation, with guaranteed charge neutrality within the computational domain. We propose a surface potential trap model that attributes an energy cost to the interfacial charge dissociation. In conjunction with the CCPB, the surface potential trap can cause a surface-specific adsorbed charge layer σ. By defining a chemical potential μ that arises from the charge neutrality constraint, a reformulated CCPB can be reduced to the form of the Poisson-Boltzmann equation, whose prediction of the Debye screening layer profile is in excellent agreement with that of the Poisson-Boltzmann equation when the channel width is much larger than the Debye length. However, important differences emerge when the channel width is small, so the Debye screening layers from the opposite sides of the channel overlap with each other. In particular, the theory automatically yields a variation of σ that is generally known as the “charge regulation” behavior, attendant with predictions of force variation as a function of nanoscale separation between two charged surfaces that are in good agreement with the experiments, with no adjustable or additional parameters. We give a generalized definition of the ζ potential that reflects the strength of the electrokinetic effect; its variations with the concentration of surface-specific and surface-nonspecific salt ions are shown to be in good agreement with the experiments. To delineate the behavior of the electro-osmotic (EO effect, the coupled PNP and Navier-Stokes equations are solved numerically under an applied electric field tangential to the fluid-solid interface. The EO effect is shown to exhibit an intrinsic time dependence that is noninertial in its origin. Under a step-function applied

  13. Stair-Step Particle Flux Spectra on the Lunar Surface: Evidence for Nonmonotonic Potentials?

    Science.gov (United States)

    Collier, Michael R.; Newheart, Anastasia; Poppe, Andrew R.; Hills, H. Kent; Farrell, William M.

    2016-01-01

    We present examples of unusual "stair-step" differential flux spectra observed by the Apollo 14 Suprathermal Ion Detector Experiment on the lunar dayside surface in Earth's magnetotail. These spectra exhibit a relatively constant differential flux below some cutoff energy and then drop off precipitously, by about an order of magnitude or more, at higher energies. We propose that these spectra result from photoions accelerated on the lunar dayside by nonmonotonic potentials (i.e.,potentials that do not decay to zero monotonically) and present a model for the expected differential flux. The energy of the cutoff and the magnitude of the differential flux are related to the properties of the local space environment and are consistent with the observed flux spectra. If this interpretation is correct, these surface-based ion observations provide a unique perspective that both complements and enhances the conclusions obtained by remote-sensing orbiter observations on the Moon's exospheric and electrostatic properties.

  14. Surface potential on gold nanodisc arrays fabricated on silicon under light irradiation

    Science.gov (United States)

    Ezaki, Tomotarou; Matsutani, Akihiro; Nishioka, Kunio; Shoji, Dai; Sato, Mina; Okamoto, Takayuki; Isobe, Toshihiro; Nakajima, Akira; Matsushita, Sachiko

    2018-06-01

    This paper proposes Kelvin probe force microscopy (KFM) as a new measurement method of plasmon phenomenon. The surface potential of two arrays, namely, a monomeric array and a tetrameric array, of gold nanodiscs (600 nm diameter) on a silicon substrate fabricated by electron beam lithography was investigated by KFM with the view point of irradiation light wavelength change. In terms of the value of the surface potential, contrasting behaviour, a negative shift in the monomeric disc array and a positive shift in the tetrameric disc array, was observed by light irradiation. This interesting behaviour is thought to be related to a difference in localised plasmons caused by the disc arrangement and was investigated from various viewpoints, including Rayleigh anomalies. Finally, this paper reveals that KFM is powerful not only to investigate the plasmonic behaviour but also to predict the electron transportation.

  15. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters

    Directory of Open Access Journals (Sweden)

    Vitaly V. Chaban

    2016-06-01

    Full Text Available Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden–Fletcher–Goldfarb–Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  16. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters.

    Science.gov (United States)

    Chaban, Vitaly V

    2016-06-01

    Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden-Fletcher-Goldfarb-Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  17. Prediction of Tetraoxygen Reaction Mechanism with Sulfur Atom on the Singlet Potential Energy Surface

    Directory of Open Access Journals (Sweden)

    Ashraf Khademzadeh

    2014-01-01

    Full Text Available The mechanism of S+O4 (D2h reaction has been investigated at the B3LYP/6-311+G(3df and CCSD levels on the singlet potential energy surface. One stable complex has been found for the S+O4 (D2h reaction, IN1, on the singlet potential energy surface. For the title reaction, we obtained four kinds of products at the B3LYP level, which have enough thermodynamic stability. The results reveal that the product P3 is spontaneous and exothermic with −188.042 and −179.147 kcal/mol in Gibbs free energy and enthalpy of reaction, respectively. Because P1 adduct is produced after passing two low energy level transition states, kinetically, it is the most favorable adduct in the 1S+1O4 (D2h atmospheric reactions.

  18. Modification of transition's factor in the compact surface-potential-based MOSFET model

    Directory of Open Access Journals (Sweden)

    Kevkić Tijana

    2016-01-01

    Full Text Available The modification of an important transition's factor which enables continual behavior of the surface potential in entire useful range of MOSFET operation is presented. The various modifications have been made in order to obtain an accurate and computationally efficient compact MOSFET model. The best results have been achieved by introducing the generalized logistic function (GL in fitting of considered factor. The smoothness and speed of the transition of the surface potential from the depletion to the strong inversion region can be controlled in this way. The results of the explicit model with this GL functional form for transition's factor have been verified extensively with the numerical data. A great agreement was found for a wide range of substrate doping and oxide thickness. Moreover, the proposed approach can be also applied on the case where quantum mechanical effects play important role in inversion mode.

  19. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    International Nuclear Information System (INIS)

    Osborn, David L.

    2017-01-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  20. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    Science.gov (United States)

    Osborn, David L.

    2017-05-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  1. Dynamical behavior of the wave packets on adiabatic potential surfaces observed by femtosecond luminescence spectroscopy

    International Nuclear Information System (INIS)

    Suemoto, Tohru; Nakajima, Makoto; Matsuoka, Taira; Yasukawa, Keizo; Koyama, Takeshi

    2007-01-01

    The wave packet dynamics on adiabatic potential surfaces studied by means of time-resolved luminescence spectroscopy is reviewed and the advantages of this method are discussed. In quasi-one-dimensional bromine-bridged platinum complexes, a movie representing the time evolution of the wave packet motion and shape was constructed. A two-dimensional Lissajous-like motion of the wave packet was suggested in the same material at low temperature. In F-centers in KI, evidence for tunneling of the wave packet between the adjacent adiabatic potential surfaces was found. Selective observation of the wave packet motion on the excited state was demonstrated for F-centers in KBr and compared with the results from pump-and-probe experiments in literature

  2. An ab initio potential energy surface for the reaction N+ + H2→ NH+ + H

    International Nuclear Information System (INIS)

    Gittins, M.A.; Hirst, D.M.

    1975-01-01

    Preliminary results of ab initio unrestricted Hartree-Fock calculations for the potential energy surface for the reaction N + + H 2 →NH + + H are reported. For the collinear approach of N + to H 2 , the 3 Σ - surface has no activation barrier and has a shallow well (ca.1eV). For perpendicular approach (Csub(2V)symmetry) the 3 B 2 states is of high energy, the 3 A 2 state has a shallow well but as the bond angle increases the 3 B 1 states decreases in energy to become the state of lowest energy. Neither the collinear nor the perpendicular approaches give adiabatic pathways to the deep potential well of 3 B 1 (HNH) + . (auth.)

  3. Exploring a potential energy surface by machine learning for characterizing atomic transport

    Science.gov (United States)

    Kanamori, Kenta; Toyoura, Kazuaki; Honda, Junya; Hattori, Kazuki; Seko, Atsuto; Karasuyama, Masayuki; Shitara, Kazuki; Shiga, Motoki; Kuwabara, Akihide; Takeuchi, Ichiro

    2018-03-01

    We propose a machine-learning method for evaluating the potential barrier governing atomic transport based on the preferential selection of dominant points for atomic transport. The proposed method generates numerous random samples of the entire potential energy surface (PES) from a probabilistic Gaussian process model of the PES, which enables defining the likelihood of the dominant points. The robustness and efficiency of the method are demonstrated on a dozen model cases for proton diffusion in oxides, in comparison with a conventional nudge elastic band method.

  4. Physisorbed H{sub 2}@Cu(100) surface: Potential and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Eddy; Houriez, Céline; Mitrushchenkov, Alexander O.; Guitou, Marie; Chambaud, Gilberte, E-mail: gilberte.chambaud@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, Champs sur Marne, F-77454 Marne-la-Vallée (France)

    2015-02-07

    Using an embedding approach, a 2-D potential energy function has been calculated to describe the physisorption interaction of H{sub 2} with a Cu(100) surface. For this purpose, a cluster model of the system calculated with highly correlated wavefunctions is combined with a periodic Density-Functional-Theory method using van der Waals-DF2 functional. Rotational and vibrational energy levels of physisorbed H{sub 2}, as well as D{sub 2} and HD, are calculated using the 2D embedding corrected potential energy function. The calculated transitions are in a very good agreement with Electron-Energy-Loss-Spectroscopy observations.

  5. Identifying potential surface water sampling sites for emerging chemical pollutants in Gauteng Province, South Africa

    OpenAIRE

    Petersen, F; Dabrowski, JM; Forbes, PBC

    2017-01-01

    Emerging chemical pollutants (ECPs) are defined as new chemicals which do not have a regulatory status, but which may have an adverse effect on human health and the environment. The occurrence and concentrations of ECPs in South African water bodies are largely unknown, so monitoring is required in order to determine the potential threat that these ECPs may pose. Relevant surface water sampling sites in the Gauteng Province of South Africa were identified utilising a geographic information sy...

  6. Latching micro optical switch

    Science.gov (United States)

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  7. Directed transport by surface chemical potential gradients for enhancing analyte collection in nanoscale sensors.

    Science.gov (United States)

    Sitt, Amit; Hess, Henry

    2015-05-13

    Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.

  8. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  9. CONSTRAINING THE NFW POTENTIAL WITH OBSERVATIONS AND MODELING OF LOW SURFACE BRIGHTNESS GALAXY VELOCITY FIELDS

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; McGaugh, Stacy S.; Mihos, J. Christopher

    2009-01-01

    We model the Navarro-Frenk-White (NFW) potential to determine if, and under what conditions, the NFW halo appears consistent with the observed velocity fields of low surface brightness (LSB) galaxies. We present mock DensePak Integral Field Unit (IFU) velocity fields and rotation curves of axisymmetric and nonaxisymmetric potentials that are well matched to the spatial resolution and velocity range of our sample galaxies. We find that the DensePak IFU can accurately reconstruct the velocity field produced by an axisymmetric NFW potential and that a tilted-ring fitting program can successfully recover the corresponding NFW rotation curve. We also find that nonaxisymmetric potentials with fixed axis ratios change only the normalization of the mock velocity fields and rotation curves and not their shape. The shape of the modeled NFW rotation curves does not reproduce the data: these potentials are unable to simultaneously bring the mock data at both small and large radii into agreement with observations. Indeed, to match the slow rise of LSB galaxy rotation curves, a specific viewing angle of the nonaxisymmetric potential is required. For each of the simulated LSB galaxies, the observer's line of sight must be along the minor axis of the potential, an arrangement that is inconsistent with a random distribution of halo orientations on the sky.

  10. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Fractal analysis as a potential tool for surface morphology of thin films

    Science.gov (United States)

    Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.

    2017-12-01

    Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.

  12. Surface modification of zinc oxide nanorods for potential applications in organic materials

    International Nuclear Information System (INIS)

    Zhang Lei; Zhong Min; Ge Hongliang

    2011-01-01

    A facile and simple modification method towards changing surface property of ZnO nanorods from a hydrophilic one to a hydrophobic one have been developed by refluxing precursor in three-necked flask. Comparing with the other modifiers discussed in the paper, NDZ-311w titanate coupling agent was selected as the best one not only because of the good lipophilic modification effect, but also for its multifunctional groups could play a crucial part in further composite with organic materials. Moreover, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively, were used to evaluate the morphology, structure and combinative way before and after surface modification. The TEM result showed, after modifying process, there was a thin layer capping on the surface of ZnO nanorods which could be considered as NDZ-311w titanate coupling agent. Through the structure analysis by XRD, it was found that the surface modification had not substantially altered crystalline structure. Besides, the FT-IR test proved that NDZ-311w titanate coupling agent was rather covalently bonded to the surface of ZnO nanorods than physically capping. More practically speaking, the NDZ-311w titanate coupling agent modified ZnO nanorods have much more potential applications in organic materials than unmodified ones.

  13. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ge, Zhenpeng; Wang, Yi

    2017-04-20

    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  14. Beyond Massive MIMO: The Potential of Data Transmission With Large Intelligent Surfaces

    Science.gov (United States)

    Hu, Sha; Rusek, Fredrik; Edfors, Ove

    2018-05-01

    In this paper, we consider the potential of data-transmission in a system with a massive number of radiating and sensing elements, thought of as a contiguous surface of electromagnetically active material. We refer to this as a large intelligent surface (LIS). The "LIS" is a newly proposed concept, which conceptually goes beyond contemporary massive MIMO technology, that arises from our vision of a future where man-made structures are electronically active with integrated electronics and wireless communication making the entire environment "intelligent". We consider capacities of single-antenna autonomous terminals communicating to the LIS where the entire surface is used as a receiving antenna array. Under the condition that the surface-area is sufficiently large, the received signal after a matched-filtering (MF) operation can be closely approximated by a sinc-function-like intersymbol interference (ISI) channel. We analyze the capacity per square meter (m^2) deployed surface, \\hat{C}, that is achievable for a fixed transmit power per volume-unit, \\hat{P}. Moreover, we also show that the number of independent signal dimensions per m deployed surface is 2/\\lambda for one-dimensional terminal-deployment, and \\pi/\\lambda^2 per m^2 for two and three dimensional terminal-deployments. Lastly, we consider implementations of the LIS in the form of a grid of conventional antenna elements and show that, the sampling lattice that minimizes the surface-area of the LIS and simultaneously obtains one signal space dimension for every spent antenna is the hexagonal lattice. We extensively discuss the design of the state-of-the-art low-complexity channel shortening (CS) demodulator for data-transmission with the LIS.

  15. Proper construction of ab initio global potential surfaces with accurate long-range interactions

    International Nuclear Information System (INIS)

    Ho, Tak-San; Rabitz, Herschel

    2000-01-01

    An efficient procedure based on the reproducing kernel Hilbert space interpolation method is presented for constructing intermolecular potential energy surfaces (PES) using not only calculated ab initio data but also a priori information on long-range interactions. Explicitly, use of the reciprocal power reproducing kernel on the semiinfinite interval [0,∞) yields a set of exact linear relations between dispersion (multipolar) coefficients and PES data points at finite internuclear separations. Consequently, given a combined set of ab initio data and the values of dispersion (multipolar) coefficients, the potential interpolation problem subject to long-range interaction constraints can be solved to render globally smooth, asymptotically accurate ab initio potential energy surfaces. Very good results have been obtained for the one-dimensional He-He potential curve and the two-dimensional Ne-CO PES. The construction of the Ne-CO PES was facilitated by invoking a new reproducing kernel for the angular coordinate based on the optimally stable and shape-preserving Bernstein basis functions. (c) 2000 American Institute of Physics

  16. Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces

    International Nuclear Information System (INIS)

    Zhang Jingdong; Demetriou, Anna; Welinder, Anne Christina; Albrecht, Tim; Nichols, Richard J.; Ulstrup, Jens

    2005-01-01

    Monolayers of homocysteine on Au(111)-surfaces have been investigated by voltammetry, in situ scanning tunnelling microscopy (STM) and subtractively normalised interfacial Fourier transform spectroscopy (SNIFTIRS). A pair of sharp voltammetric peaks build up in the potential range 0 to -0.1V (vs. SCE) in phosphate buffer pH 7.7. The peak half-widths are about 25mV at a scan rate of 10mVs -1 . This is much smaller than for a one-electron Faradaic process (90.6mV) under similar conditions. The coverage of homocysteine is 6.1 (+/-0.2)x10 -10 molcm -2 , or 5.9x10 -5 Ccm -2 , from Au-S reductive desorption at -0.8V (SCE) in 0.1M NaOH, while the charge is only about 8x10 -6 Ccm -2 (pH 7.7) for the 0 to -0.1V peak. This suggests a capacitive origin. The peak potential and shape depend on pH. At pH 7.7 both cathodic and anodic peak currents reach a maximum, but drop at both higher and lower pH. The midpoint potential shows biphasic behaviour, decreasing linearly with increasing pH until pH 10.4 towards a constant value at higher pH. The cathodic and anodic peak charges decay at pH both higher and lower than 7.7. The homocysteine monolayer was investigated by in situ STM at different potentials at pH 7.7. The molecules pack into highly ordered domains around the peak potential. High-resolution in situ STM reveals a (√3x5) R30 deg. lattice with three homocysteine molecules in each unit cell. The adlayer changes into disordered structures on either side of the peak potential. This process is reversible. We propose that the voltammetric peaks are capacitive. The ordered domains are formed only around the potential of zero charge (pzc) and dissipate at potentials on either side of the peak, inducing mirror charge flow in the metallic electrode as the charged -COO - and -NH 3 + groups approach the surface. No bands for carboxylate coordinated to the surface were observed in SNIFTIRS implying more subtle orientation changes of the charged groups on transcending the voltammetric

  17. Nano surface engineering of Mn 2 O 3 for potential light-harvesting application

    KAUST Repository

    Kar, Prasenjit; Sardar, Samim; Ghosh, Srabanti; Parida, Manas R.; Liu, Bo; Mohammed, Omar F.; Lemmens, Peter; Pal, Samir Kumar

    2015-01-01

    Manganese oxides are well known applied materials including their use as efficient catalysts for various environmental applications. Multiple oxidation states and their change due to various experimental conditions are concluded to be responsible for their multifaceted functionality. Here we demonstrate that the interaction of a small organic ligand with one of the oxide varieties induces completely new optical properties and functionalities (photocatalysis). We have synthesized Mn2O3 microspheres via a hydrothermal route and characterized them using scanning electron microscopy (SEM), X-ray diffraction (XRD) and elemental mapping (EDAX). When the microspheres are allowed to interact with the biologically important small ligand citrate, nanometer-sized surface functionalized Mn2O3 (NPs) are formed. Raman and Fourier transformed infrared spectroscopy confirm the covalent attachment of the citrate ligand to the dangling bond of Mn at the material surface. While cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) analysis confirm multiple surface charge states after the citrate functionalization of the Mn2O3 NPs, new optical properties of the surface engineered nanomaterials in terms of absorption and emission emerge consequently. The engineered material offers a novel photocatalytic functionality to the model water contaminant methylene blue (MB). The effect of doping other metal ions including Fe3+ and Cu2+ on the optical and catalytic properties is also investigated. In order to prepare a prototype for potential environmental application of water decontamination, we have synthesized and duly functionalized the material on the extended surface of a stainless steel metal mesh (size 2 cm × 1.5 cm, pore size 150 μm × 200 μm). We demonstrate that the functionalized mesh always works as a "physical" filter of suspended particulates. However, it works as a "chemical" filter (photocatalyst) for the potential water soluble contaminant (MB) in the presence

  18. Characterizing water-metal interfaces and machine learning potential energy surfaces

    Science.gov (United States)

    Ryczko, Kevin

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  19. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    to the axis perpendicular to the phenylacetylene plane and containing the center of mass. The calculated interaction energy is -418.9 cm(-1). To check further the potential, we obtain the rovibrational spectrum of the complex and the results are compared to the available experimental data. (C) 2012 American......We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set...... extended with a series of 3s3p2d1flg midbond functions. The potential is characterized by two equivalent global minima where the Ar atom is located above and below the phenylacetylene plane at a distance of 3.5781 angstrom from the molecular center of mass and at an angle of 9.08 degrees with respect...

  20. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    Science.gov (United States)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  1. Electrically switched cesium ion exchange

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, J.D.

    1997-04-01

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed as an alternative to conventional ion exchange for removing radionuclides from high-level waste. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution are controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. A case study for the KE Basin on the Hanford Site was conducted based on the results of the development testing. Engineering design baseline parameters for film deposition, film regeneration, cesium loading, and cesium elution were used for developing a conceptual system. Order of magnitude cost estimates were developed to compare with conventional ion exchange. This case study demonstrated that KE Basin wastewater could be processed continuously with minimal secondary waste and reduced associated disposal costs, as well as lower capital and labor expenditures

  2. Acetone n-radical cation internal rotation spectrum: The torsional potential surface

    International Nuclear Information System (INIS)

    Shea, Dana A.; Goodman, Lionel; White, Michael G.

    2000-01-01

    The one color REMPI and two color ZEKE-PFI spectra of acetone-d 3 have been recorded. The 3p x Rydberg state of acetone-d 3 lies at 59 362.3 cm-1 and both of the torsional modes are visible in this spectrum. The antigearing Rydberg (a 2 ) mode, v 12 * , has a frequency of 62.5 cm-1, while the previously unobserved gearing (b 1 ) mode, v 17 * , is found at 119.1 cm-1. An ionization potential of 78 299.6 cm-1 for acetone-d 3 has been measured. In acetone-d 3 n-radical cation ground state, the fundamentals of both of the torsional modes have been observed, v 12 + at 51.0 cm-1 and v 17 + at 110.4 cm-1, while the first overtone of v 12 + has been measured at 122.4 cm-1. Deuterium shifts show that v 12 + behaves like a local C 3v rotor, but that v 17 + is canonical. Combining this data with that for acetone-d 0 and aacetone-d 6 has allowed us to fit the observed frequencies to a torsional potential energy surface based on an ab initio C 2v cation ground state geometry. This potential energy surface allows for prediction of the v 17 vibration in acetone-d 0 and acetone-d 6 . The barrier to synchronous rotation is higher in the cation ground state than in the neutral ground state, but significantly lower than in the 3s Rydberg state. The 3p x Rydberg and cation ground state potential energy surfaces are found to be very similar to each other, strongly supporting the contention that the 3p x Rydberg state has C 2v geometry and is a good model for the ion core. The altered 3s Rydberg state potential surface suggests this state has significant valence character. (c) 2000 American Institute of Physics

  3. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  4. Effects of geometric modulation and surface potential heterogeneity on electrokinetic flow and solute transport in a microchannel

    Science.gov (United States)

    Bera, Subrata; Bhattacharyya, S.

    2018-04-01

    A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in

  5. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    Science.gov (United States)

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan

    2017-06-01

    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  6. Surface modification of β-Type titanium alloy by electrochemical potential pulse polarization

    International Nuclear Information System (INIS)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki

    2009-01-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60 deg. C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  7. Surface modification of {beta}-Type titanium alloy by electrochemical potential pulse polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: fujimoto@mat.eng.osaka-u.ac.jp

    2009-05-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60 deg. C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  8. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface

    Directory of Open Access Journals (Sweden)

    Matthew A. Brown

    2016-01-01

    Full Text Available The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li^{+}, Na^{+}, K^{+}, and Cs^{+} in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.

  9. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface

    Science.gov (United States)

    Brown, Matthew A.; Abbas, Zareen; Kleibert, Armin; Green, Richard G.; Goel, Alok; May, Sylvio; Squires, Todd M.

    2016-01-01

    The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li+ , Na+ , K+ , and Cs+ ) in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.

  10. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake

    Directory of Open Access Journals (Sweden)

    Yi-Min Wang

    2014-12-01

    Full Text Available Many crop plants are exposed to heavy metals and other metals that may intoxicate the crop plants themselves or consumers of the plants. The rhizotoxicity of heavy metals is influenced strongly by the root cell plasma membrane (PM surface’s electrical potential (ψ0. The usually negative ψ0 is created by negatively charged constituents of the PM. Cations in the rooting medium are attracted to the PM surface and anions are repelled. Addition of ameliorating cations (e.g., Ca2+ and Mg2+ to the rooting medium reduces the effectiveness of cationic toxicants (e.g., Cu2+ and Pb2+ and increases the effectiveness of anionic toxicants (e.g., SeO42− and H2AsO4−. Root growth responses to ions are better correlated with ion activities at PM surfaces ({IZ}0 than with activities in the bulk-phase medium ({IZ}b (IZ denotes an ion with charge Z. Therefore, electrostatic effects play a role in heavy metal toxicity that may exceed the role of site-specific competition between toxicants and ameliorants. Furthermore, ψ0 controls the transport of ions across the PM by influencing both {IZ}0 and the electrical potential difference across the PM from the outer surface to the inner surface (Em,surf. Em,surf is a component of the driving force for ion fluxes across the PM and controls ion-channel voltage gating. Incorporation of {IZ}0 and Em,surf into quantitative models for root metal toxicity and uptake improves risk assessments of toxic metals in the environment. These risk assessments will improve further with future research on the application of electrostatic theory to heavy metal phytotoxicity in natural soils and aquatic environments.

  11. Potential Capsule Switching from Serogroup Y to B: The Characterization of Three such Neisseria meningitidis Isolates Causing Invasive Meningococcal Disease in Canada

    Directory of Open Access Journals (Sweden)

    Raymond SW Tsang

    2005-01-01

    Full Text Available Three group B Neisseria meningitidis isolates, recovered from meningococcal disease cases in Canada and typed as B:2c:P1.5, were characterized. Multilocus sequence typing showed that all three isolates were related because of an identical sequence type (ST 573. Isolates typed as 2c:P1.5 are common in serogroup Y meningococci but rare in isolates from serogroups B or C. Although no serogroup Y isolates have been typed as ST-573, eight isolates showed five to six housekeeping gene alleles that were identical to that of ST-573. This suggested that the B:2c:P1.5 isolates may have originated from serogroup Y organisms, possibly by capsule switching.

  12. Potential role of S100A8 in skin rejuvenation with the 1064-nm Q-switched Nd:YAG laser.

    Science.gov (United States)

    Qin, Yan; Qin, Xiaofeng; Xu, Peng; Zhi, Yuanting; Xia, Weili; Dang, Yongyan; Gu, Jun; Ye, Xiyun

    2018-04-01

    The 1064-nm Q-switched Nd:YAG laser is demonstrated to be effective for non-ablative skin rejuvenation, but the molecular mechanism by which dermis responses to laser-induced damage and initiates skin remodeling is still unclear. HaCaT cells and 3T3 skin fibroblasts were irradiated with the 1064-nm Q-switched Nd:YAG laser at the different doses. Then, cells were collected and lysed for PCR and Western blot analysis. Cell viability was detected by Cell Counting Kit-8 (CCK-8) before and after laser irradiation. The expressions of S100A8, advanced glycosylation end product-specific receptor (RAGE) and inflammatory cytokines in two cell lines were markedly upregulated after laser treatments. The PCR, Western blot, and ELISA analysis showed the significant increase of type I and III procollagen in the 3T3 cells treated with the 1064-nm laser. Interestingly, si S100A8 effectively inhibited the expression of cytokines and collagen, while S100A8 treatments significantly increased them. P-p38 and p-p65 levels were also elevated after the 1064-nm laser irradiation, which is positively related with S100A8. Cell viability and reactive oxygen species (ROS) levels were not changed, while the content of superoxidase dismutase (SOD) in two cells was increased after laser irradiation. Our results demonstrated that the overexpression of S100A8 induced by the 1064-nm laser irradiation triggered inflammatory reactions in skin cells. The inflammatory microenvironment and improvement of skin antioxidant capacity contribute to new collagen synthesis in the skin cells. Thus, S100A8 was required for laser-induced new collagen synthesis in skin cells. p38/MAPK and NF-κB signal pathways were involved in S100A8-mediated inflammatory reactions in response to laser irradiation.

  13. Identifying Key Issues and Potential Solutions for Integrated Arrival, Departure, Surface Operations by Surveying Stakeholder Preferences

    Science.gov (United States)

    Aponso, Bimal; Coppenbarger, Richard A.; Jung, Yoon; Quon, Leighton; Lohr, Gary; O’Connor, Neil; Engelland, Shawn

    2015-01-01

    NASA's Aeronautics Research Mission Directorate (ARMD) collaborates with the FAA and industry to provide concepts and technologies that enhance the transition to the next-generation air-traffic management system (NextGen). To facilitate this collaboration, ARMD has a series of Airspace Technology Demonstration (ATD) sub-projects that develop, demonstrate, and transitions NASA technologies and concepts for implementation in the National Airspace System (NAS). The second of these sub-projects, ATD-2, is focused on the potential benefits to NAS stakeholders of integrated arrival, departure, surface (IADS) operations. To determine the project objectives and assess the benefits of a potential solution, NASA surveyed NAS stakeholders to understand the existing issues in arrival, departure, and surface operations, and the perceived benefits of better integrating these operations. NASA surveyed a broad cross-section of stakeholders representing the airlines, airports, air-navigation service providers, and industry providers of NAS tools. The survey indicated that improving the predictability of flight times (schedules) could improve efficiency in arrival, departure, and surface operations. Stakeholders also mentioned the need for better strategic and tactical information on traffic constraints as well as better information sharing and a coupled collaborative planning process that allows stakeholders to coordinate IADS operations. To assess the impact of a potential solution, NASA sketched an initial departure scheduling concept and assessed its viability by surveying a select group of stakeholders for a second time. The objective of the departure scheduler was to enable flights to move continuously from gate to cruise with minimal interruption in a busy metroplex airspace environment using strategic and tactical scheduling enhanced by collaborative planning between airlines and service providers. The stakeholders agreed that this departure concept could improve schedule

  14. Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2005-09-01

    Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however

  15. Associations between motor unit action potential parameters and surface EMG features.

    Science.gov (United States)

    Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario

    2017-10-01

    The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit

  16. A solid-state dielectric elastomer switch for soft logic

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Nixon [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); Slipher, Geoffrey A., E-mail: geoffrey.a.slipher.civ@mail.mil; Mrozek, Randy A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); O' Brien, Benjamin M. [StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Anderson, Iain A. [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Department of Engineering Science, School of Engineering, The University of Auckland, Level 3, 70 Symonds Street, Auckland 1010 (New Zealand)

    2016-03-07

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  17. A solid-state dielectric elastomer switch for soft logic

    International Nuclear Information System (INIS)

    Chau, Nixon; Slipher, Geoffrey A.; Mrozek, Randy A.; O'Brien, Benjamin M.; Anderson, Iain A.

    2016-01-01

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  18. Transformation of potential energy surfaces for estimating isotopic shifts in anharmonic vibrational frequency calculations

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Patrick; Oschetzki, Dominik; Rauhut, Guntram, E-mail: rauhut@theochem.uni-stuttgart.de [Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, Robert [Clemens-Schöpf Institut für Organische Chemie and Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt (Germany)

    2014-05-14

    A transformation of potential energy surfaces (PES) being represented by multi-mode expansions is introduced, which allows for the calculation of anharmonic vibrational spectra of any isotopologue from a single PES. This simplifies the analysis of infrared spectra due to significant CPU-time savings. An investigation of remaining deviations due to truncations and the so-called multi-level approximation is provided. The importance of vibrational-rotational couplings for small molecules is discussed in detail. In addition, an analysis is proposed, which provides information about the quality of the transformation prior to its execution. Benchmark calculations are provided for a set of small molecules.

  19. A fitting program for potential energy surfaces of bent triatomic molecules

    International Nuclear Information System (INIS)

    Searles, D.J.; Nagy-Felsobuki, E.I. von

    1992-01-01

    A program has been developed in order to fit analytical power series expansions (Dunham, Simon-Parr-Finlan, Ogilvie and their exponential variants) and Pade approximants to discrete ab initio potential energy surfaces of non-linear triatomic molecules. The program employs standard least-squares fitting techniques using the singular decomposition method in order to dampen the higher-order coefficients (if deemed necessary) without significantly degrading the fit. The program makes full use of the symmetry of a triatomic molecule and so addresses the D 3h , C 2v and C S cases. (orig.)

  20. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  1. Concise Review: Cell Surface N-Linked Glycoproteins as Potential Stem Cell Markers and Drug Targets.

    Science.gov (United States)

    Boheler, Kenneth R; Gundry, Rebekah L

    2017-01-01

    Stem cells and their derivatives hold great promise to advance regenerative medicine. Critical to the progression of this field is the identification and utilization of antibody-accessible cell-surface proteins for immunophenotyping and cell sorting-techniques essential for assessment and isolation of defined cell populations with known functional and therapeutic properties. Beyond their utility for cell identification and selection, cell-surface proteins are also major targets for pharmacological intervention. Although comprehensive cell-surface protein maps are highly valuable, they have been difficult to define until recently. In this review, we discuss the application of a contemporary targeted chemoproteomic-based technique for defining the cell-surface proteomes of stem and progenitor cells. In applying this approach to pluripotent stem cells (PSCs), these studies have improved the biological understanding of these cells, led to the enhanced use and development of antibodies suitable for immunophenotyping and sorting, and contributed to the repurposing of existing drugs without the need for high-throughput screening. The utility of this latter approach was first demonstrated with human PSCs (hPSCs) through the identification of small molecules that are selectively toxic to hPSCs and have the potential for eliminating confounding and tumorigenic cells in hPSC-derived progeny destined for research and transplantation. Overall, the cutting-edge technologies reviewed here will accelerate the development of novel cell-surface protein targets for immunophenotyping, new reagents to improve the isolation of therapeutically qualified cells, and pharmacological studies to advance the treatment of intractable diseases amenable to cell-replacement therapies. Stem Cells Translational Medicine 2017;6:131-138. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  2. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    Science.gov (United States)

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen

  3. Investigation of the surface potential of TiO2 (110) by frequency-modulation Kelvin probe force microscopy

    Science.gov (United States)

    Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro

    2016-12-01

    We investigate the surface potential distribution on a TiO2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.

  4. Tutorial: Integrated-photonic switching structures

    Science.gov (United States)

    Soref, Richard

    2018-02-01

    Recent developments in waveguided 2 × 2 and N × M photonic switches are reviewed, including both broadband and narrowband resonant devices for the Si, InP, and AlN platforms. Practical actuation of switches by electro-optical and thermo-optical techniques is discussed. Present datacom-and-computing applications are reviewed, and potential applications are proposed for chip-scale photonic and optoelectronic integrated switching networks. Potential is found in the reconfigurable, programmable "mesh" switches that enable a promising group of applications in new areas beyond those in data centers and cloud servers. Many important matrix switches use gated semiconductor optical amplifiers. The family of broadband, directional-coupler 2 × 2 switches featuring two or three side-coupled waveguides deserves future experimentation, including devices that employ phase-change materials. The newer 2 × 2 resonant switches include standing-wave resonators, different from the micro-ring traveling-wave resonators. The resonant devices comprise nanobeam interferometers, complex-Bragg interferometers, and asymmetric contra-directional couplers. Although the fast, resonant devices offer ultralow switching energy, ˜1 fJ/bit, they have limitations. They require several trade-offs when deployed, but they do have practical application.

  5. Constructing Potential Energy Surfaces for Polyatomic Systems: Recent Progress and New Problems

    Directory of Open Access Journals (Sweden)

    J. Espinosa-Garcia

    2012-01-01

    Full Text Available Different methods of constructing potential energy surfaces in polyatomic systems are reviewed, with the emphasis put on fitting, interpolation, and analytical (defined by functional forms approaches, based on quantum chemistry electronic structure calculations. The different approaches are reviewed first, followed by a comparison using the benchmark H + CH4 and the H + NH3 gas-phase hydrogen abstraction reactions. Different kinetics and dynamics properties are analyzed for these reactions and compared with the available experimental data, which permits one to estimate the advantages and disadvantages of each method. Finally, we analyze different problems with increasing difficulty in the potential energy construction: spin-orbit coupling, molecular size, and more complicated reactions with several maxima and minima, which test the soundness and general applicability of each method. We conclude that, although the field of small systems, typically atom-diatom, is mature, there still remains much work to be done in the field of polyatomic systems.

  6. Evaluation of Surface Water Harvesting Potential in Aq Emam Watershed System in the Golestan Province

    Directory of Open Access Journals (Sweden)

    s. nazaryan

    2016-02-01

    Full Text Available Introduction : Given its low and sparse precipitation both in spatial and temporal scales, Iran is nestled in an arid and semiarid part of the world. On the other hand, because of population growth, urbanization and the development of agriculture and industry sector is frequently encountered with increasing water demand. The increasing trend of water demand will widen the gap between water supply and demand in the future. This, in turn, necessitates urgent attention to the fundamentals of economic planning and allocation of water resources. Considering the limited resources and the declining water table and salinization of groundwater, especially in semi-arid areas forces us to exploit surface waters. When we evaluate the various methods of collecting rainwater, surface water that is the outcome of rainfall-runoff responses in a basin, is found to be a potential source of water and it can be useful to meet some of our water demand if managed properly. Water shortages in arid areas are critical, serious and persistent. Thus, water harvesting is an effective and economic goal. The most important step in the implementation of rain water harvesting systems is proper site selection that could cause significant savings in time and cost. In this study the potential of surface waters in the Aq Emam catchment in the east Golestan province was evaluated. The purpose of this study is to provide a framework for locating areas with water harvesting potential. Materials and Methods: For spatial evaluation of potential runoff, first, the amount of runoff is calculated using curve number and runoff potential maps were prepared with three classes: namely, the potential for low, medium and high levels. Finally, to identify suitable areas for rain water harvesting, rainfall maps, soil texture, slope and land use were weighted and multiplied based on their importance in order to determine the appropriate areas to collect runoff Results and Discussion : The results

  7. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide.

    Science.gov (United States)

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2015-06-28

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N2O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N2O-N2O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N2O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.

  8. Effective embedded-atom potential for metallic adsorbates on crystalline surfaces

    International Nuclear Information System (INIS)

    Förster, G D; Magnin, Y; Rabilloud, F; Calvo, F

    2014-01-01

    Based on the embedded-atom method (EAM), an analytical effective potential is developed to model the interaction of a metallic adsorbate on a perfect crystalline substrate, which is also metallic. The many-body character of the original EAM potential is preserved in the adsorbate energy and in the alteration of the substrate energy due to the presence of the adsorbate. A mean-field-type version neglecting corrugation of the substrate is first derived based on rigorous integration of individual monolayers, followed by an approximate form for the perturbation of the substrate energy. Lateral corrugation is subsequently included by additional phenomenological terms respecting the symmetry of the substrate, again preserving the many-body nature of the original potential. The effective model contains four parameters to describe uncorrugated substrates and eight extra parameters to describe every order of the Fourier lateral expansion. These parameters were fitted to reproduce the adsorption energy of a sample of random configurations of realistic 2D and 3D clusters deposited on the (1 1 1) fcc surface, for metals for which popular EAM models have been parametrized. As a simple application, the local relaxation of pre-formed icosahedral or truncated octahedral clusters soft-landed and exposing (1 1 1) faces in epitaxy to the substrate has been simulated at 0 and 300 K. The deformation of small clusters to wet the substrate is correctly captured by the effective model. This agreement with the exact potential suggests that the present model should be useful for treating metallic environments in large-scale surface studies, notably in structural optimization or as a template for more general models parametrized from ab initio data. (paper)

  9. Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Orentas, Rimas J. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Yang, James J. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Wen, Xinyu; Wei, Jun S. [Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Mackall, Crystal L. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Khan, Javed, E-mail: rimas.orentas@nih.gov [Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States)

    2012-12-17

    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues.

  10. Characterisation of surface antigens of Strongylus vulgaris of potential immunodiagnostic importance.

    Science.gov (United States)

    Nichol, C; Masterson, W J

    1987-08-01

    When antigens prepared by detergent washes of Strongylus vulgaris and Parascaris equorum were probed in an enzyme-linked immunosorbent assay test with horse sera from single species infections of S. vulgaris and P. equorum, a high degree of cross-reaction between the species was demonstrated. Western blot analysis of four common horse nematode species showed a large number of common antigens when probed with horse infection sera. Antisera raised in rabbits against the four species, including S. vulgaris, were also found to cross-react considerably. Rabbit anti-S. vulgaris sera were affinity adsorbed over a series of affinity chromatography columns, bound with cross-reactive surface antigens, to obtain S. vulgaris-specific antisera and thereby identify S. vulgaris-specific antigens by Western blotting. These studies revealed potentially specific antigens of apparent molecular weights of 100,000, 52,000, and 36,000. Of these bands, only the 52 kDa and 36 kDa appeared to be found on the surface as judged by 125I-labelling of intact worms by the Iodogen method, although neither protein was immunoprecipitated by horse infection sera. Finally, immunoprecipitation of in vitro translated proteins derived from larval S. vulgaris RNA suggests that two proteins may be parasite-derived. These findings are discussed both with respect to the surface of S. vulgaris and to the use of these species-specific antigens in immunodiagnosis.

  11. Direct Measurement of Surface Dissolution Rates in Potential Nuclear Waste Forms: The Example of Pyrochlore.

    Science.gov (United States)

    Fischer, Cornelius; Finkeldei, Sarah; Brandt, Felix; Bosbach, Dirk; Luttge, Andreas

    2015-08-19

    The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms.

  12. Exercise body surface potential mapping in single and multiple coronary artery disease

    International Nuclear Information System (INIS)

    Montague, T.J.; Witkowski, F.X.; Miller, R.M.; Johnstone, D.E.; MacKenzie, R.B.; Spencer, C.A.; Horacek, B.M.

    1990-01-01

    Body surface ST integral maps were recorded in 36 coronary artery disease (CAD) patients at: rest; peak, angina-limited exercise; and, 1 and 5 min of recovery. They were compared to maps of 15 CAD patients who exercised to fatigue, without angina, and eight normal subjects. Peak exercise heart rates were similar (NS) in all groups. With exercise angina, patients with two and three vessel CAD had significantly (p less than 0.05) greater decrease in the body surface sum of ST integral values than patients with single vessel CAD. CAD patients with exercise fatigue, in the absence of angina, had decreased ST integrals similar (NS) to patients with single vessel CAD who manifested angina and the normal control subjects. There was, however, considerable overlap among individuals; some patients with single vessel CAD had as much exercise ST integral decrease as patients with three vessel CAD. All CAD patients had persistent ST integral decreases at 5 min of recovery and there was a direct correlation of the recovery and peak exercise ST changes. Exercise ST changes correlated, as well, with quantitative CAD angiographic scores, but not with thallium perfusion scores. These data suggest exercise ST integral body surface mapping allows quantitation of myocardium at ischemic risk in patients with CAD, irrespective of the presence or absence of ischemic symptoms during exercise. A major potential application of this technique is selection of CAD therapy guided by quantitative assessment of ischemic myocardial risk

  13. Photo-stimulated resistive switching of ZnO nanorods

    International Nuclear Information System (INIS)

    Park, Jinjoo; Lee, Seunghyup; Yong, Kijung

    2012-01-01

    Resistive switching memory devices are promising candidates for emerging memory technologies because they yield outstanding device performance. Storage mechanisms for achieving high-density memory applications have been developed; however, so far many of them exhibit typical resistive switching behavior from the limited controlling conditions. In this study, we introduce photons as an unconventional stimulus for activating resistive switching behaviors. First, we compare the resistive switching behavior in light and dark conditions to describe how resistive switching memories can benefit from photons. Second, we drive the switching of resistance not by the electrical stimulus but only by the modulation of photon. ZnO nanorods were employed as a model system to demonstrate photo-stimulated resistive switching in high-surface-area nanomaterials, in which photo-driven surface states strongly affect their photoconductivity and resistance states. (paper)

  14. Quantum Mechanical Determination of Potential Energy Surfaces for TiO and H2O

    Science.gov (United States)

    Langhoff, Stephen R.

    1996-01-01

    We discuss current ab initio methods for determining potential energy surfaces, in relation to the TiO and H2O molecules, both of which make important contributions to the opacity of oxygen-rich stars. For the TiO molecule we discuss the determination of the radiative lifetimes of the excited states and band oscillator strengths for both the triplet and singlet band systems. While the theoretical radiative lifetimes for TiO agree well with recent measurements, the band oscillator strengths differ significantly from those currently employed in opacity calculations. For the H2O molecule we discuss the current results for the potential energy and dipole moment ground state surfaces generated at NASA Ames. We show that it is necessary to account for such effects as core-valence Correlation energy to generate a PES of near spectroscopic accuracy. We also describe how we solve the ro-vibrational problem to obtain the line positions and intensities that are needed for opacity sampling.

  15. Phonon-mediated decay of an atom in a surface-induced potential

    International Nuclear Information System (INIS)

    Kien, Fam Le; Hakuta, K.; Dutta Gupta, S.

    2007-01-01

    We study phonon-mediated transitions between translational levels of an atom in a surface-induced potential. We present a general master equation governing the dynamics of the translational states of the atom. In the framework of the Debye model, we derive compact expressions for the rates for both upward and downward transitions. Numerical calculations for the transition rates are performed for a deep silica-induced potential allowing for a large number of bound levels as well as free states of a cesium atom. The total absorption rate is shown to be determined mainly by the bound-to-bound transitions for deep bound levels and by bound-to-free transitions for shallow bound levels. Moreover, the phonon emission and absorption processes can be orders of magnitude larger for deep bound levels as compared to the shallow bound ones. We also study various types of transitions from free states. We show that, for thermal atomic cesium with a temperature in the range from 100 μK to 400 μK in the vicinity of a silica surface with a temperature of 300 K, the adsorption (free-to-bound decay) rate is about two times larger than the heating (free-to-free upward decay) rate, while the cooling (free-to-free downward decay) rate is negligible

  16. Brainstem auditory evoked potentials in healthy cats recorded with surface electrodes

    Directory of Open Access Journals (Sweden)

    Mihai Musteata

    2013-01-01

    Full Text Available The aim of this study was to evaluate the brainstem auditory evoked potentials of seven healthy cats, using surface electrodes. Latencies of waves I, III and V, and intervals I–III, I–V and III–V were recorded. Monaural and binaural stimulation of the cats were done with sounds ranging between 40 and 90 decibel Sound Pressure Level. All latencies were lower than those described in previous studies, where needle electrodes were used. In the case of binaural stimulation, latencies of waves III and V were greater compared to those obtained for monaural stimulation (P P > 0.05. Regardless of the sound intensity, the interwave latency was constant (P > 0.05. Interestingly, no differences were noticed for latencies of waves III and V when sound intensity was higher than 80dB SPL. This study completes the knowledge in the field of electrophysiology and shows that the brainstem auditory evoked potentials in cats using surface electrodes is a viable method to record the transmission of auditory information. That can be faithfully used in clinical practice, when small changes of latency values may be an objective factor in health status evaluation.

  17. A Comparison of Streaming and Microelectrophoresis Methods for Obtaining the zeta Potential of Granular Porous Media Surfaces.

    Science.gov (United States)

    Johnson

    1999-01-01

    The electrokinetic behavior of granular quartz sand in aqueous solution is investigated by both microelectrophoresis and streaming potential methods. zeta potentials of surfaces composed of granular quartz obtained via streaming potential methods are compared to electrophoretic mobility zeta potential values of colloid-sized quartz fragments. The zeta values generated by these alternate methods are in close agreement over a wide pH range and electrolyte concentrations spanning several orders of magnitude. Streaming measurements performed on chemically heterogeneous mixtures of physically homogeneous sand are shown to obey a simple mixing model based on the surface area-weighted average of the streaming potentials associated with the individual end members. These experimental results support the applicability of the streaming potential method as a means of determining the zeta potential of granular porous media surfaces. Copyright 1999 Academic Press.

  18. An evaluation of the utility and limitations of counting motor unit action potentials in the surface electromyogram

    Science.gov (United States)

    Zhou, Ping; Zev Rymer, William

    2004-12-01

    The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.

  19. Potential Impact of Rainfall on the Air-Surface Exchange of Total Gaseous Mercury from Two Common Urban Ground Surfaces

    Science.gov (United States)

    The impact of rainfall on total gaseous mercury (TGM) flux from pavement and street dirt surfaces was investigated in an effort to determine the influence of wet weather events on mercury transport in urban watersheds. Street dirt and pavement are common urban ground surfaces tha...

  20. Mapping the Diffusion Potential of a Reconstructed Au(111) Surface at Nanometer Scale with 2D Molecular Gas

    International Nuclear Information System (INIS)

    Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian

    2012-01-01

    The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)

  1. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    Science.gov (United States)

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  2. Intermolecular potential energy surface and thermophysical properties of the CH4-N2 system.

    Science.gov (United States)

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Vesovic, Velisa

    2014-12-14

    A five-dimensional potential energy surface (PES) for the interaction of a rigid methane molecule with a rigid nitrogen molecule was determined from quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the CCSD(T) level of theory was utilized to compute a total of 743 points on the PES. The interaction energies were calculated using basis sets of up to quadruple-zeta quality with bond functions and were extrapolated to the complete basis set limit. An analytical site-site potential function with nine sites for methane and five sites for nitrogen was fitted to the interaction energies. The PES was validated by calculating the cross second virial coefficient as well as the shear viscosity and binary diffusion coefficient in the dilute-gas limit for CH4-N2 mixtures. An improved PES was obtained by adjusting a single parameter of the analytical potential function in such a way that quantitative agreement with the most accurate experimental values of the cross second virial coefficient was achieved. The transport property values obtained with the adjusted PES are in good agreement with the best experimental data.

  3. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave

    1999-01-01

    Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... in interferometric wavelength converters is investigated showing that a 10 Gbit/s 19 4x4 swich blocks can be cascaded at a BER of 10-14. An analytical traffic model enables the calculation of the traffice performance of a WDM packet network. Hereby the importance of WDM and wavelegth conversion in the switch blocks...... is established as a flexible means to reduce the optical buffer, e.g., the number of fibre delay lines for a 16x16 switch block is reduced from 23 to 6 by going from 2 to 8 wavelength channels pr. inlet. Additionally, a component count analysis is carried out to illustrate the trade-offs in the switch block...

  4. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  5. Potentiating the antibacterial effect of silver nanospheres by surface-capping with chlorhexidine gluconate

    Energy Technology Data Exchange (ETDEWEB)

    Priyadarshini, Balasankar Meera; Fawzy, Amr S., E-mail: denasfmf@nus.edu.sg [National University of Singapore, Discipline of Oral Sciences, Faculty of Dentistry (Singapore)

    2017-04-15

    In this work, the commercial polyvinylpyrrolidone (PVP)-capped silver nanospheres (Ag-NSP) were surface decorated with chlorhexidine gluconate (CHXg) for potentiating the antibacterial properties of Ag-NSP. Different formulations of CHXg-loaded Ag-NSP (Ag-NSP/CHXg) were prepared by varying the incubation times (0.5, 1.5, and 3 h). A thorough characterization of Ag-NSP/CHXg nanospheres has been carried out by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive surface elemental composition spectral analysis (SEM/EDX), Fourier transform infrared spectroscopy (FTIR), percentage (%) CHXg loading efficiency (LE), in vitro CHXg and Ag{sup +} ion release, antibacterial/biofilm inhibition assay, and human mesenchymal stem cells (hMSCs) cytotoxicity evaluation. DLS measured nanospheres to be <160 nm and indicated that CHXg treatment drastically shifted the surface charge from negative to high positive values, with homogenous distribution. TEM revealed spherical Ag-NSP/CHXg nanospheres with a clearly visible surface coating of CHXg. FTIR confirmed association of CHXg with Ag-NSP nanospheres, whereas SEM/EDX data verified presence of spectral peaks specific to silver (Ag), CHXg, and PVP. The %LE gradually increased with increasing incubation times. In vitro CHXg release exhibited a bi-phasic fashion showing maximum release of ~74.83 ± 20.67% from Ag-NSP/CHXg-3h at 14 days. A slow release of Ag{sup +} ions was detected; however, the surface decoration of Ag-NSP substantially hampered/restricted the liberation of ions. Agar well diffusion, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H–tetrazolium), and crystal violet assay suggested good antibacterial/antibiofilm activity of Ag-NSP/CHXg that correlated with the increasing %LE of nanospheres. hMSCs cytotoxicity study showed low toxicity properties of all nanosphere formulations, except for Ag-NSP/CHXg-3h, affecting the cell viability at all

  6. Effective switching frequency multiplier inverter

    Science.gov (United States)

    Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  7. FreeSWITCH Cookbook

    CERN Document Server

    Minessale, Anthony

    2012-01-01

    This is a problem-solution approach to take your FreeSWITCH skills to the next level, where everything is explained in a practical way. If you are a system administrator, hobbyist, or someone who uses FreeSWITCH on a regular basis, this book is for you. Whether you are a FreeSWITCH expert or just getting started, this book will take your skills to the next level.

  8. Elements of magnetic switching

    International Nuclear Information System (INIS)

    Aaland, K.

    1983-01-01

    This chapter describes magnetic switching as a method of connecting a capacitor bank (source) to a load; reviews several successful applications of magnetic switching, and discusses switching transformers, limitations and future possibilities. Some of the inflexibility and especially the high cost of magnetic materials may be overcome with the availability of the new splash cooled ribbons (Metglas). Experience has shown that magnetics works despite shock, radiation or noise interferences

  9. Pemodelan Markov Switching Autoregressive

    OpenAIRE

    Ariyani, Fiqria Devi; Warsito, Budi; Yasin, Hasbi

    2014-01-01

    Transition from depreciation to appreciation of exchange rate is one of regime switching that ignored by classic time series model, such as ARIMA, ARCH, or GARCH. Therefore, economic variables are modeled by Markov Switching Autoregressive (MSAR) which consider the regime switching. MLE is not applicable to parameters estimation because regime is an unobservable variable. So that filtering and smoothing process are applied to see the regime probabilities of observation. Using this model, tran...

  10. 30 CFR 77.1800 - Cutout switches.

    Science.gov (United States)

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Trolley... be provided with cutout switches at intervals of not more than 2,000 feet and near the beginning of...

  11. 8-Quinolineboronic acid as a potential phosphorescent molecular switch for the determination of alpha-fetoprotein variant for the prediction of primary hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jiaming, E-mail: zzsyliujiaming@163.com [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Xianzhiqian Street, 36 Zhangzhou, Fujian 363000 (China); Li Feiming [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Xianzhiqian Street, 36 Zhangzhou, Fujian 363000 (China); Liu Zhenbo [Third Hospital of Xiamen, Xiamen 316000 (China); Lin Changqing [Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000 (China); Lin Shaoqin [Department of Biochemistry, Fujian Education College, Fuzhou 350001 (China); Lin Liping [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Xianzhiqian Street, 36 Zhangzhou, Fujian 363000 (China); Wang Xinxing [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Xianzhiqian Street, 36 Zhangzhou, Fujian 363000 (China); Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000 (China); Li Zhiming [Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000 (China)

    2010-03-24

    8-Quinolineboronic acid phosphorescent molecular switch (8-QBA-PMS) in the 'off' state emitted weak room temperature phosphorescence (RTP) of 8-QBA on the acetylcellulose membrane (ACM) with the perturbation of Pb{sup 2+}. When 8-QBA-PMS was used to label concanavalin agglutinin (Con A) to form 8-QBA-PMS-Con A based on the reaction between -OH of 8-QBA-PMS and -COOH of Con A, 8-QBA-PMS turned 'on' automatically due to its structure change, and RTP of the system increased 2.7 times. Besides, -NH{sub 2} of 8-QBA-PMS-Con A could carry out affinity adsorption (AA) reaction with the -COOH of alpha-fetoprotein variant (AFP-V) to form the product Con A-AFP-V-Con A-8-QBA-PMS containing -NH-CO- bond, causing the RTP of the system to further increase. Moreover, the amount of AFP-V was linear to the {Delta}I{sub p} of the system in the range of 0.012-2.40 (fg spot{sup -1}). Thus, a new affinity sensitive adsorption solid substrate room temperature phosphorimetry using 8-QBA-PMS as labelling reagent (8-QBA-PMS-AASSRTP) for the determination of AFP-V was proposed with the detection limit (LD) of 9 x 10{sup -15} g mL{sup -1}. It had been used to determine AFP-V in human serum with the results agreeing with enzyme-link immunoassay (ELISA), showing promise for the prediction of PHC due to the intimate association between AFP-V and primary hepatocellular carcinoma (PHC). The mechanism of the promethod was also discussed.

  12. 8-Quinolineboronic acid as a potential phosphorescent molecular switch for the determination of alpha-fetoprotein variant for the prediction of primary hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Liu Jiaming; Li Feiming; Liu Zhenbo; Lin Changqing; Lin Shaoqin; Lin Liping; Wang Xinxing; Li Zhiming

    2010-01-01

    8-Quinolineboronic acid phosphorescent molecular switch (8-QBA-PMS) in the 'off' state emitted weak room temperature phosphorescence (RTP) of 8-QBA on the acetylcellulose membrane (ACM) with the perturbation of Pb 2+ . When 8-QBA-PMS was used to label concanavalin agglutinin (Con A) to form 8-QBA-PMS-Con A based on the reaction between -OH of 8-QBA-PMS and -COOH of Con A, 8-QBA-PMS turned 'on' automatically due to its structure change, and RTP of the system increased 2.7 times. Besides, -NH 2 of 8-QBA-PMS-Con A could carry out affinity adsorption (AA) reaction with the -COOH of alpha-fetoprotein variant (AFP-V) to form the product Con A-AFP-V-Con A-8-QBA-PMS containing -NH-CO- bond, causing the RTP of the system to further increase. Moreover, the amount of AFP-V was linear to the ΔI p of the system in the range of 0.012-2.40 (fg spot -1 ). Thus, a new affinity sensitive adsorption solid substrate room temperature phosphorimetry using 8-QBA-PMS as labelling reagent (8-QBA-PMS-AASSRTP) for the determination of AFP-V was proposed with the detection limit (LD) of 9 x 10 -15 g mL -1 . It had been used to determine AFP-V in human serum with the results agreeing with enzyme-link immunoassay (ELISA), showing promise for the prediction of PHC due to the intimate association between AFP-V and primary hepatocellular carcinoma (PHC). The mechanism of the promethod was also discussed.

  13. Switching addictions between HER2 and FGFR2 in HER2-positive breast tumor cells: FGFR2 as a potential target for salvage after lapatinib failure

    International Nuclear Information System (INIS)

    Azuma, Koichi; Tsurutani, Junji; Sakai, Kazuko; Kaneda, Hiroyasu; Fujisaka, Yasuhito; Takeda, Masayuki; Watatani, Masahiro; Arao, Tokuzo; Satoh, Taroh; Okamoto, Isamu; Kurata, Takayasu; Nishio, Kazuto; Nakagawa, Kazuhiko

    2011-01-01

    Highlights: → A lapatinib-resistant breast cancer cell line, UACC812 (UACC812/LR), was found to harbor amplification of the FGFR2 gene. → Inhibition of the molecule by a specific inhibitor of FGFR dramatically induced growth inhibition accompanied by cell death. → Immunohistochemical analysis of patients with HER2-positive breast cancer demonstrated an association between FGFR2 expression and poor outcome for lapatinib-containing chemotherapy. -- Abstract: Agents that target HER2 have improved the prognosis of patients with HER2-amplified breast cancers. However, patients who initially respond to such targeted therapy eventually develop resistance to the treatment. We have established a line of lapatinib-resistant breast cancer cells (UACC812/LR) by chronic exposure of HER2-amplified and lapatinib-sensitive UACC812 cells to the drug. The mechanism by which UACC812/LR acquired resistance to lapatinib was explored using comprehensive gene hybridization. The FGFR2 gene in UACC812/LR was highly amplified, accompanied by overexpression of FGFR2 and reduced expression of HER2, and a cell proliferation assay showed that the IC 50 of PD173074, a small-molecule inhibitor of FGFR tyrosine kinase, was 10,000 times lower in UACC812/LR than in the parent cells. PD173074 decreased the phosphorylation of FGFR2 and substantially induced apoptosis in UACC812/LR, but not in the parent cells. FGFR2 appeared to be a pivotal molecule for the survival of UACC812/LR as they became independent of the HER2 pathway, suggesting that a switch of addiction from the HER2 to the FGFR2 pathway enabled cancer cells to become resistant to HER2-targeted therapy. The present study is the first to implicate FGFR in the development of resistance to lapatinib in cancer, and suggests that FGFR-targeted therapy might become a promising salvage strategy after lapatinib failure in patients with HER2-positive breast cancer.

  14. Switching addictions between HER2 and FGFR2 in HER2-positive breast tumor cells: FGFR2 as a potential target for salvage after lapatinib failure

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, Koichi [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Tsurutani, Junji, E-mail: tsurutani_j@dotd.med.kindai.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Sakai, Kazuko; Kaneda, Hiroyasu [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Fujisaka, Yasuhito; Takeda, Masayuki [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Watatani, Masahiro [Department of Surgery, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Arao, Tokuzo [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Satoh, Taroh; Okamoto, Isamu; Kurata, Takayasu [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan)

    2011-04-01

    Highlights: {yields} A lapatinib-resistant breast cancer cell line, UACC812 (UACC812/LR), was found to harbor amplification of the FGFR2 gene. {yields} Inhibition of the molecule by a specific inhibitor of FGFR dramatically induced growth inhibition accompanied by cell death. {yields} Immunohistochemical analysis of patients with HER2-positive breast cancer demonstrated an association between FGFR2 expression and poor outcome for lapatinib-containing chemotherapy. -- Abstract: Agents that target HER2 have improved the prognosis of patients with HER2-amplified breast cancers. However, patients who initially respond to such targeted therapy eventually develop resistance to the treatment. We have established a line of lapatinib-resistant breast cancer cells (UACC812/LR) by chronic exposure of HER2-amplified and lapatinib-sensitive UACC812 cells to the drug. The mechanism by which UACC812/LR acquired resistance to lapatinib was explored using comprehensive gene hybridization. The FGFR2 gene in UACC812/LR was highly amplified, accompanied by overexpression of FGFR2 and reduced expression of HER2, and a cell proliferation assay showed that the IC{sub 50} of PD173074, a small-molecule inhibitor of FGFR tyrosine kinase, was 10,000 times lower in UACC812/LR than in the parent cells. PD173074 decreased the phosphorylation of FGFR2 and substantially induced apoptosis in UACC812/LR, but not in the parent cells. FGFR2 appeared to be a pivotal molecule for the survival of UACC812/LR as they became independent of the HER2 pathway, suggesting that a switch of addiction from the HER2 to the FGFR2 pathway enabled cancer cells to become resistant to HER2-targeted therapy. The present study is the first to implicate FGFR in the development of resistance to lapatinib in cancer, and suggests that FGFR-targeted therapy might become a promising salvage strategy after lapatinib failure in patients with HER2-positive breast cancer.

  15. Evaluation of the potential for surface faulting at TA-63. Final report

    International Nuclear Information System (INIS)

    Kolbe, T.; Sawyer, J.; Springer, J.; Olig, S.; Hemphill-Haley, M.; Wong, I.; Reneau, S.

    1995-01-01

    This report describes an investigation of the potential for surface faulting at the proposed sites for the Radioactive Liquid Waste Treatment Facility (RL)WF) and the Hazardous Waste Treatment Facility at TA-63 and TA-52 (hereafter TA-63), Los Alamos National Laboratory (LANL). This study was performed by Woodward-Clyde Federal Services (WCFS) at the request of the LANL. The projections of both the Guaje Mountain and Rendija Canyon faults are mapped in the vicinity of TA-63. Based on results obtained in the ongoing Seismic Hazard Evaluation Program of the LANL, displacement may have occurred on both the Guaje Mountain and Rendija Canyon faults in the past 11,000 years (Holocene time). Thus, in accordance with US Department of Energy (DOE) Orders and Standards for seismic hazards evaluations and the US Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) Regulations for seismic standard requirements, a geologic study of the proposed TA-63 site was conducted

  16. Investigation of surface potentials in reduced graphene oxide flake by Kelvin probe force microscopy

    Science.gov (United States)

    Negishi, Ryota; Takashima, Kai; Kobayashi, Yoshihiro

    2018-06-01

    The surface potential (SP) of reduced graphene oxide (rGO) flakes prepared by thermal treatments of GO under several conditions was analyzed by Kelvin probe force microscopy. The low-crystalline rGO flakes in which a significant amount of oxygen functional groups and structural defects remain have a much lower SP than mechanically exfoliated graphene free from oxygen and defects. On the other hand, the highly crystalline rGO flake after a thermal treatment for the efficient removal of oxygen functional groups and healing of structural defects except for domain boundary shows SP equivalent to that of the mechanically exfoliated graphene. These results indicate that the work function of rGO is sensitively modulated by oxygen functional groups and structural defects remaining after the thermal reduction process, but is not affected significantly by the domain boundary remaining after the healing of structural defects through the thermal treatment at high temperature.

  17. Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications

    DEFF Research Database (Denmark)

    Pavlov, Alexey K.; Granskog, Mats A.; Stedmon, Colin A.

    2015-01-01

    radiation (PAR, 400-700nm), but does result in notable differences in ultraviolet (UV) light penetration, with higher attenuation in the EGC. Future changes in the Arctic Ocean system will likely affect EGC through diminishing sea-ice cover and potentially increasing CDOM export due to increase in river......Underwater light regime is controlled by distribution and optical properties of colored dissolved organic matter (CDOM) and particulate matter. The Fram Strait is a region where two contrasting water masses are found. Polar water in the East Greenland Current (EGC) and Atlantic water in the West...... Spitsbergen Current (WSC) differ with regards to temperature, salinity and optical properties. We present data on absorption properties of CDOM and particles across the Fram Strait (along 79° N), comparing Polar and Atlantic surface waters in September 2009 and 2010. CDOM absorption of Polar water in the EGC...

  18. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo

    International Nuclear Information System (INIS)

    Betts, R.A.

    2000-01-01

    Carbon uptake by forestation is one method proposed to reduce net carbon dioxide emissions to the atmosphere and so limit the radiative forcing of climate change. But the overall impact of forestation on climate will also depend on other effects associated with the creation of new forests. In particular the albedo of a forested landscape is generally lower than that of cultivated land, especially when snow is lying, and decreasing albedo exerts a positive radiative forcing on climate. Here I simulate the radiative forcings associated with changes in surface albedo as a result of forestation in temperate and boreal forest areas, and translate these forcings into equivalent changes in local carbon stock for comparison with estimated carbon sequestration potentials. I suggest that in many boreal forest areas, the positive forcing induced by decreases in albedo can offset the negative forcing that is expected from carbon sequestration. Some high-latitude forestation activities may therefore increase climate change, rather that mitigating it as intended

  19. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-11-28

    A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resulting in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.

  20. Surface Potential and Particle Size Effect on the Rate of Perikinetic Coagulation

    International Nuclear Information System (INIS)

    Molina-Bolivar, J. A.; Galisteo-Gonzalez, F.; Cabrerizo-Vilchez, M.; Hidalgo-alvarez, R.

    1998-01-01

    The diffusion-controlled rapid coagulation rate of monodisperse polystyrene particles in aqueous solutions has been measured with a low angle scattering apparatus (nephelometer). We have refined this technique by using a narrow scattering flow cell and a pneumatic addicting-mixing device to introduce the salt solution and the latex sample in the cell. Coagulation rate constants were determined from analysis of the scattered light intensity dependence with time at an angle of 4.5 degree centigrade ± 1 degree centigrade. Experiments were designed to check the effects of particle size, surface potential and counterion valency on rapid coagulation constant. The particle ranged in diameter from 151 nm to 530 nm. The results are compared with the predictions of Smoluchowski's theory. Experiments to obtain the stability diagrams and the critical coagulation concentration of latexes have been performed. (Author) 31 refs

  1. Potential of surface-eroding poly(ethylene carbonate) for drug delivery to macrophages

    DEFF Research Database (Denmark)

    Bohr, Adam; Water, Jorrit J; Wang, Yingya

    2016-01-01

    Films composed of poly(ethylene carbonate) (PEC), a biodegradable polymer, were compared with poly(lactide-co-glycolide) (PLGA) films loaded with and without the tuberculosis drug rifampicin to study the characteristics and performance of PEC as a potential carrier for controlled drug delivery...... to macrophages. All drug-loaded PLGA and PEC films were amorphous indicating good miscibility of the drug in the polymers, even at high drug loading (up to 50wt.%). Polymer degradation studies showed that PLGA degraded slowly via bulk erosion while PEC degraded more rapidly and near-linearly via enzyme mediated...... surface erosion (by cholesterol esterase). Drug release studies performed with polymer films indicated a diffusion/erosion dependent delivery behavior for PLGA while an almost zero-order drug release profile was observed from PEC due to the controlled polymer degradation process. When exposed to polymer...

  2. A finite-element visualization of quantum reactive scattering. II. Nonadiabaticity on coupled potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Warehime, Mick [Chemical Physics Program, University of Maryland, College Park, Maryland 20742-2021 (United States); Kłos, Jacek; Alexander, Millard H., E-mail: mha@umd.edu [Department of Chemistry and Biochemistry and Institute of Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2021 (United States)

    2015-01-21

    This is the second in a series of papers detailing a MATLAB based implementation of the finite element method applied to collinear triatomic reactions. Here, we extend our previous work to reactions on coupled potential energy surfaces. The divergence of the probability current density field associated with the two electronically adiabatic states allows us to visualize in a novel way where and how nonadiabaticity occurs. A two-dimensional investigation gives additional insight into nonadiabaticity beyond standard one-dimensional models. We study the F({sup 2}P) + HCl and F({sup 2}P) + H{sub 2} reactions as model applications. Our publicly available code (http://www2.chem.umd.edu/groups/alexander/FEM) is general and easy to use.

  3. Beyond Massive MIMO: The Potential of Positioning With Large Intelligent Surfaces

    Science.gov (United States)

    Hu, Sha; Rusek, Fredrik; Edfors, Ove

    2018-04-01

    We consider the potential for positioning with a system where antenna arrays are deployed as a large intelligent surface (LIS), which is a newly proposed concept beyond massive-MIMO where future man-made structures are electronically active with integrated electronics and wireless communication making the entire environment \\lq\\lq{}intelligent\\rq\\rq{}. In a first step, we derive Fisher-information and Cram\\'{e}r-Rao lower bounds (CRLBs) in closed-form for positioning a terminal located perpendicular to the center of the LIS, whose location we refer to as being on the central perpendicular line (CPL) of the LIS. For a terminal that is not on the CPL, closed-form expressions of the Fisher-information and CRLB seem out of reach, and we alternatively find approximations of them which are shown to be accurate. Under mild conditions, we show that the CRLB for all three Cartesian dimensions ($x$, $y$ and $z$) decreases quadratically in the surface-area of the LIS, except for a terminal exactly on the CPL where the CRLB for the $z$-dimension (distance from the LIS) decreases linearly in the same. In a second step, we analyze the CRLB for positioning when there is an unknown phase $\\varphi$ presented in the analog circuits of the LIS. We then show that the CRLBs are dramatically increased for all three dimensions but decrease in the third-order of the surface-area. Moreover, with an infinitely large LIS the CRLB for the $z$-dimension with an unknown $\\varphi$ is 6 dB higher than the case without phase uncertainty, and the CRLB for estimating $\\varphi$ converges to a constant that is independent of the wavelength $\\lambda$. At last, we extensively discuss the impact of centralized and distributed deployments of LIS, and show that a distributed deployment of LIS can enlarge the coverage for terminal-positioning and improve the overall positioning performance.

  4. Surface self-potential patterns related to transmissive fracture trends during a water injection test

    Science.gov (United States)

    DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB

    2018-03-01

    Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.

  5. Calculation of electrical potentials on the surface of a realistic head model by finite differences

    International Nuclear Information System (INIS)

    Lemieux, L.; McBride, A.; Hand, J.W.

    1996-01-01

    We present a method for the calculation of electrical potentials at the surface of realistic head models from a point dipole generator based on a 3D finite-difference algorithm. The model was validated by comparing calculated values with those obtained algebraically for a three-shell spherical model. For a 1.25 mm cubic grid size, the mean error was 4.9% for a superficial dipole (3.75 mm from the inner surface of the skull) pointing in the radial direction. The effect of generator discretization and node spacing on the accuracy of the model was studied. Three values of the node spacing were considered: 1, 1.25 and 1.5 mm. The mean relative errors were 4.2, 6.3 and 9.3%, respectively. The quality of the approximation of a point dipole by an array of nodes in a spherical neighbourhood did not depend significantly on the number of nodes used. The application of the method to a conduction model derived from MRI data is demonstrated. (author)

  6. Charging effects and surface potential variations of Cu-based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.gomes@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Calmeiro, T.R.; Nandy, S.; Pinto, J.V.; Pimentel, A.; Barquinha, P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Carvalho, P.A. [SINTEF Materials and Chemistry, PB 124 Blindern, NO-0314, Oslo (Norway); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa (Portugal); Walmsley, J.C. [SINTEF Materials and Chemistry, Materials and Nanotechnology, Høgskoleringen 5, 7034 Trondheim (Norway); Fortunato, E., E-mail: emf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Martins, R., E-mail: rm@uninova.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-02-29

    The present work reports charging effects and surface potential variations in pure copper, cuprous oxide and cupric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved through microwave irradiation and cupric oxide nanowires were obtained via furnace annealing in atmospheric conditions. Structural characterization of the nanowires was carried out by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO{sub 2} dielectric substrate. Both the probe/nanowire capacitance as well as the substrate polarization increased with the applied bias. Cu{sub 2}O and CuO nanowires behaved distinctively during the EFM measurements in accordance with their band gap energies. The work functions (WF) of the Cu-based nanowires, obtained by KPFM measurements, yielded WF{sub CuO} > WF{sub Cu} > WF{sub Cu{sub 2O}}. - Highlights: • Charge distribution study in Cu, Cu{sub 2}O and CuO nanowires through electrostatic force microscopy • Structural/surface defect role on the charge distribution along the Cu nanowires • Determination of the nanowire work functions by Kelvin probe force microscopy • Three types of nanowires give a broad idea of charge behavior on Cu based-nanowires.

  7. Influence of surface topology and electrostatic potential on water/electrode systems

    Science.gov (United States)

    Siepmann, J. Ilja; Sprik, Michiel

    1995-01-01

    We have used the classical molecular dynamics technique to simulate the ordering of a water film adsorbed on an atomic model of a tip of a scanning tunneling microscope approaching a planar metal surface. For this purpose, we have developed a classical model for the water-substrate interactions that solely depends on the coordinates of the particles and does not require the definition of geometrically smooth boundary surfaces or image planes. The model includes both an electrostatic induction for the metal atoms (determined by means of an extended Lagrangian technique) and a site-specific treatment of the water-metal chemisorption. As a validation of the model we have investigated the structure of water monolayers on metal substrates of various topology [the (111), (110), and (100) crystallographic faces] and composition (Pt, Ag, Cu, and Ni), and compared the results to experiments. The modeling of the electrostatic induction is compatible with a finite external potential imposed on the metal. This feature is used to investigate the structural rearrangements of the water bilayer between the pair of scanning tunneling microscope electrodes in response to an applied external voltage difference. We find significant asymmetry in the dependence on the sign of the applied voltage. Another result of the calculation is an estimate of the perturbation to the work function caused by the wetting film. For the conditions typical for operation of a scanning tunneling microscope probe, the change in the work function is found to be comparable to the applied voltage (a few hundred millivolts).

  8. N-Terminal Plasmodium vivax Merozoite Surface Protein-1, a Potential Subunit for Malaria Vivax Vaccine

    Directory of Open Access Journals (Sweden)

    Fernanda G. Versiani

    2013-01-01

    Full Text Available The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America. Plasmodium vivax started to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack of in vitro cultures for P. vivax represents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1, which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.

  9. Surface potential measurement of insulators in negative-ion implantation by secondary electron energy-peak shift

    International Nuclear Information System (INIS)

    Nagumo, Shoji; Toyota, Yoshitaka; Tsuji, Hiroshi; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1993-01-01

    Negative-ion implantation is expected to realize charge-up free implantation. In this article, about a way to specify surface potential of negative-ion implanted insulator by secondary-electron-energy distribution, its principle and preliminary experimental results are described. By a measuring system with retarding field type energy analyzer, energy distribution of secondary electron from insulator of Fused Quartz in negative-carbon-ion implantation was measured. As a result the peak-shift of its energy distribution resulted according with the surface potential of insulator. It was found that surface potential of insulator is negatively charged by only several volts. Thus, negative-ion implanted insulator reduced its surface charge-up potential (without any electron supply). Therefore negative-ion implantation is considered to be much more effective method than conventional positive-ion implantation. (author)

  10. Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces.

    LENUS (Irish Health Repository)

    Colombo, John S

    2012-09-01

    This study investigated the influence of smooth, roughened, and tricalcium phosphate (TCP)-coated roughened titanium-aluminum-vanadium (Ti-6Al-4V) surfaces on the osteogenic potential of rat bone marrow stromal cells (BMSCs).

  11. Mirror-like slip surfaces in dolostone: natural and experimental constraints on a potential seismic marker

    Science.gov (United States)

    Fondriest, M.; Smith, S. A.; Di Toro, G.; Nielsen, S. B.

    2012-12-01

    The lack of clear geological markers of seismic faulting represents a major limitation in our current comprehension of earthquake physics. At present pseudotachylytes (i.e. friction-induced melts) are the only unambiguously identified indicator of ancient seismicity in exhumed fault zones, but pseudotachylytes are not found in many rock types, including carbonates. We report the occurrence of small-displacement, mirror-like slip surfaces from a fault zone cutting dolostones. A combination of field observations and rotary shear friction experiments suggests that such slip surfaces: 1) are formed only at seismic slip rates, and 2) could potentially be used to estimate power dissipation during individual slip events. The Foiana Line (FL) is a major NNE-SSW-trending sinistral transpressive fault in the Italian Southern Alps. The outcropping fault zone consists of a rotary-shear experiments using SHIVA (INGV, Rome) were performed on 3 mm thick layers of dolomite gouge (grain size friction coefficient (μ) from a peak value of ~0.7 to a steady-state value of ~0.25. The gouge starts to weaken above a threshold velocity in the range 0.19-0.49 m/s following a transient phase of strengthening. During the tests the instantaneous power density (shear stress*slip rate) dissipated on the sample reaches values of 6-10 MW/m2 over distances of 0.02-1 m, comparable to those of natural earthquakes. At 26 MPa normal stress a mirror-like slip surface is formed after only 0.03 m of slip. At intermediate slip rates (0.113 m/s) only moderate reductions in μ are observed. Instantaneous power density is ~1 MW/m2 and the mirror-like slip surface starts to develop after 0.1 m of slip. At sub-seismic slip rates (0.0001-0.0013 m/s) μ remains ~0.7, instantaneous power density is ~0.02 MW/m2, and no mirror-like slip surface develops. Microstructural observations suggest that the natural and experimental slip zones are comparable: both have a compacted layer up to 20 μm thick immediately below

  12. Shape memory thermal conduction switch

    Science.gov (United States)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  13. Transient-Switch-Signal Suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

  14. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway

    Science.gov (United States)

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode

    2017-04-01

    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  15. Electrode erosion properties of gas spark switches for fast linear transformer drivers

    Science.gov (United States)

    Li, Xiaoang; Pei, Zhehao; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2017-12-01

    Fast linear transformer drivers (FLTDs) are a popular and potential route for high-power devices employing multiple "bricks" in series and parallel, but they put extremely stringent demands on gas switches. Electrode erosion of FLTD gas switches is a restrictive and unavoidable factor that degrades performance and limits stability. In this paper, we systematically investigated the electrode erosion characteristics of a three-electrode field distortion gas switch under the typical working conditions of FLTD switches, and the discharge current was 7-46 kA with 46-300 ns rise time. A high speed frame camera and a spectrograph were used to capture the expansion process and the spectral emission of the spark channel was used to estimate the current density and the spark temperature, and then the energy fluxes and the external forces on the electrode surface were calculated. A tens of kilo-ampere nanosecond pulse could generate a 1011 W/m2 energy flux injection and 1.3-3.5 MPa external pressure on the electrode surface, resulting in a millimeter-sized erosion crater with the maximum peak height Rz reaching 100 μm magnitude. According to the morphological images by a laser scanning confocal microscope, the erosion crater of a FLTD switch contained three kinds of local morphologies, namely a center boiling region, an overflow region and a sputtering region. In addition, the crater size, the surface roughness, and the mass loss were highly dependent on the current amplitude and the transferred charge. We also observed Morphology Type I and Type II, respectively, with different pulse parameters, which had an obvious influence on surface roughness and mass loss. Finally, the quantitative relationship between the electrode mass loss and the pulse parameter was clarified. The transferred charge and the current amplitude were proved to be the main factors determining the electrode mass loss of a FLTD switch, and a least squares fitting expression for mass loss was also obtained.

  16. Optimal switching using coherent control

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper

    2013-01-01

    that the switching time, in general, is not limited by the cavity lifetime. Therefore, the total energy required for switching is a more relevant figure of merit than the switching speed, and for a particular two-pulse switching scheme we use calculus of variations to optimize the switching in terms of input energy....

  17. Contributions of solar-wind induced potential sputtering to the lunar surface erosion rate and it's exosphere

    Science.gov (United States)

    Alnussirat, S. T.; Barghouty, A. F.; Edmunson, J. E.; Sabra, M. S.; Rickman, D. L.

    2018-04-01

    Sputtering of lunar regolith by solar-wind protons and heavy ions with kinetic energies of about 1 keV/amu is an important erosive process that affects the lunar surface and exosphere. It plays an important role in changing the chemical composition and thickness of the surface layer, and in introducing material into the exosphere. Kinetic sputtering is well modeled and understood, but understanding of mechanisms of potential sputtering has lagged behind. In this study we differentiate the contributions of potential sputtering from the standard (kinetic) sputtering in changing the chemical composition and erosion rate of the lunar surface. Also we study the contribution of potential sputtering in developing the lunar exosphere. Our results show that potential sputtering enhances the total characteristic sputtering erosion rate by about 44%, and reduces sputtering time scales by the same amount. Potential sputtering also introduces more material into the lunar exosphere.

  18. Layer Dependence and Light Tuning Surface Potential of 2D MoS2 on Various Substrates.

    Science.gov (United States)

    Li, Feng; Qi, Junjie; Xu, Minxuan; Xiao, Jiankun; Xu, Yuliang; Zhang, Xiankun; Liu, Shuo; Zhang, Yue

    2017-04-01

    Here surface potential of chemical vapor deposition (CVD) grown 2D MoS 2 with various layers is reported, and the effect of adherent substrate and light illumination on surface potential of monolayer MoS 2 are investigated. The surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.84 eV with the increase in the number of layer from 1 to 4 or more. Especially, the surface potentials of monolayer MoS 2 are strongly dependent on its adherent substrate, which are determined to be 4.55, 4.88, 4.93, 5.10, and 5.50 eV on Ag, graphene, Si/SiO 2 , Au, and Pt substrates, respectively. Light irradiation is introduced to tuning the surface potential of monolayer MoS 2 , with the increase in light intensity, the surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.74 eV, while increases from 5.50 to 5.56 eV on Pt substrate. The I-V curves on vertical of monolayer MoS 2 /Pt heterojunction show the decrease in current with the increase of light intensity, and Schottky barrier height at MoS 2 /Pt junctions increases from 0.302 to 0.342 eV. The changed surface potential can be explained by trapped charges on surface, photoinduced carriers, charge transfer, and local electric field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. THE EFFECTS OF CRACKING ON THE SURFACE POTENTIAL OF ICY GRAINS IN SATURN’S E-RING: LABORATORY STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Caixia; Bahr, David A.; Dukes, Catherine A.; Baragiola, Raúl A., E-mail: cb8nw@virginia.edu [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904 (United States)

    2016-07-10

    Within Saturn's E-ring, dust grains are coated by water vapor co-released with ice grains from the geyser-like eruptions of Enceladus. These ice-coated grains have intrinsic surface potential and interact synergistically with the ions and electrons of Saturn's magnetospheric plasmas. We perform laboratory experiments to investigate the effects of water-ice growth on the surface potential, using amorphous solid water (ASW) films. We estimate the growth of the surface potential to be ∼ 2.5 mV (Earth) yr{sup 1} and 112 mV yr{sup 1} for E-ring grains at ∼4.5 R {sub s} and 3.95 R {sub s} outside Enceladus’s plume, respectively. In addition, our measurements show that the linear relationship between the surface potential and the film thickness, as described in previous studies, has an upper limit, where the film spontaneously cracks above a porosity-dependent critical thickness. Heating of the cracked films with (and without) deposited charge shows that significant positive (and negative) surface potentials are retained at temperatures above 110 K, contrary to the minimal values (roughly zero) for thin, transparent ASW films. The significant surface potentials observed on micron-scale cracked ice films after thermal cycling, (5–20) V, are consistent with Cassini measurements, which indicate a negative charge of up to 5 V for E-ring dust particles at ∼5 R {sub s}. Therefore, the native grain surface potential resulting from water-vapor coating must be included in modeling studies of interactions between E-ring icy surfaces and Saturn's magnetospheric plasma.

  20. Switched reluctance motor drives

    Indian Academy of Sciences (India)

    Davis RM, Ray WF, Blake RJ 1981 Inverter drive for switched reluctance: circuits and component ratings. Inst. Elec. Eng. Proc. B128: 126-136. Ehsani M. 1991 Position Sensor elimination technique for the switched reluctance motor drive. US Patent No. 5,072,166. Ehsani M, Ramani K R 1993 Direct control strategies based ...

  1. Manually operated coded switch

    International Nuclear Information System (INIS)

    Barnette, J.H.

    1978-01-01

    The disclosure related to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made

  2. D2 dissociative adsorption on and associative desorption from Si(100): Dynamic consequences of an ab initio potential energy surface

    DEFF Research Database (Denmark)

    Luntz, A. C.; Kratzer, Peter

    1996-01-01

    favors the symmetric one. Under the conditions of many experiments, either could dominate. The calculations show quite weak dynamic coupling to the Si lattice for both paths, i.e., weak surface temperature dependences to dissociation and small energy loss to the lattice upon desorption......Dynamical calculations are reported for D-2 dissociative chemisorption on and associative desorption from a Si(100) surface. These calculations use the dynamically relevant effective potential which is based on an ab initio potential energy surface for the ''pre-paired'' species. Three coordinates...

  3. Switch on, switch off: stiction in nanoelectromechanical switches

    KAUST Repository

    Wagner, Till J W

    2013-06-13

    We present a theoretical investigation of stiction in nanoscale electromechanical contact switches. We develop a mathematical model to describe the deflection of a cantilever beam in response to both electrostatic and van der Waals forces. Particular focus is given to the question of whether adhesive van der Waals forces cause the cantilever to remain in the \\'ON\\' state even when the electrostatic forces are removed. In contrast to previous studies, our theory accounts for deflections with large slopes (i.e. geometrically nonlinear). We solve the resulting equations numerically to study how a cantilever beam adheres to a rigid electrode: transitions between \\'free\\', \\'pinned\\' and \\'clamped\\' states are shown to be discontinuous and to exhibit significant hysteresis. Our findings are compared to previous results from linearized models and the implications for nanoelectromechanical cantilever switch design are discussed. © 2013 IOP Publishing Ltd.

  4. Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems

    International Nuclear Information System (INIS)

    Selmani, Atiða; Kallay, Nikola; Preočanin, Tajana; Lützenkirchen, Johannes

    2014-01-01

    We have carried out surface and zeta-potential measurements on AgCl and AgBr single crystals. As for particle systems we find that, surprisingly and previously unnoted, the zeta-potential exhibits pH-dependence, while the surface potential does not. A possible interpretation of these observations is the involvement of water ions in the interfacial equilibria and in particular, stronger affinity of the hydroxide ion compared to the proton. The pH-dependence of the zeta-potential can be suppressed at sufficiently high silver concentrations, which agrees with previous measurements in particle systems where no pH-dependence was found at high halide ion concentrations. The results suggest a subtle interplay between the surface potential determining the halide and silver ion concentrations, and the water ions. Whenever the charge due to the halide and silver ions is sufficiently high, the influence of the proton/hydroxide ion on the zeta-potential vanishes. This might be related to the water structuring at the relevant interfaces which should be strongly affected by the surface potential. Another interesting observation is accentuation of the assumed water ion effect on the zeta-potential at the flat single crystal surfaces compared to the corresponding silver halide colloids. Previous generic MD simulations have indeed predicted that hydroxide ion adsorption is accentuated on flat/rigid surfaces. A thermodynamic model for AgI single crystals was developed to describe the combined effects of iodide, silver and water ions, based on two independently previously published models for AgI (that only consider constituent and background electrolyte ions) and inert surfaces (that only consider water and background electrolyte ions). The combined model correctly predicts all the experimentally observed trends. (paper)

  5. Optical Multidimensional Switching for Data Center Networks

    OpenAIRE

    Kamchevska, Valerija; Galili, Michael; Oxenløwe, Leif Katsuo; Berger, Michael Stübert

    2017-01-01

    Optical switches are known for the ability to provide high bandwidth connectivity at a relatively low power consumption and low latency. Several recent demonstrations on optical data center architectures confirm the potential for introducing all-optical switching within the data center, thus avoiding power hungry optical-electrical-optical conversions at each node. This Ph.D. thesis focuses precisely on the application of optical technologies in data center networks where optics is not only u...

  6. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in ``avalanche`` mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into ``avalanche`` mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  7. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  8. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1990-01-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential of GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into an avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large are (1 sq cm) and small area (<1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs., 11 figs.

  9. Subnanosecond photoconductive switching in GaAs

    Science.gov (United States)

    Druce, R. L.; Pocha, M. D.; Griffin, K. L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in 'avalanche' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into 'avalanche' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (less than 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300-1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on, and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation.

  10. Active plasmonics in WDM traffic switching applications

    DEFF Research Database (Denmark)

    Papaioannou, S.; Kalavrouziotis, D.; Vyrsokinos, K.

    2012-01-01

    -enabling characteristics of active plasmonic circuits with an ultra-low power 3 response time product represents a crucial milestone in the development of active plasmonics towards real telecom and datacom applications, where low-energy and fast TO operation with small-size circuitry is targeted........ The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce...... active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the smallest TO DLSPP-based Mach-Zehnder interferometric switch reported so far and showing its successful performance in 4310 Gb/s low-power and fast switching operation. The demonstration of the WDM...

  11. Avalanche photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.; Wilson, M. J.; Hofer, W. W.

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV to 35 kV and rise times of 300 to 500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10(exp 3) to over 10(exp 5). Switches with two very different physical configurations and with two different illumination wavelengths (1.06 micrometer, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation.

  12. Avalanche photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.; Wilson, M.J.; Hofer, W.W.

    1989-01-01

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV--35 kV and rise times of 300--500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10{sup 3} to over 10{sup 5}. Switches with two very different physical configurations and with two different illumination wavelengths (1.06 {mu}m, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation. 3 refs., 6 figs.

  13. Artificial Niches for Stromal Stem Cells as a Potential Instrument for the Design of the Surface of Biomimetic Osteogenic Materials

    Science.gov (United States)

    Khlusov, I. A.; Khlusova, M. Yu.; Pichugin, V. F.; Sharkeev, Yu. P.; Legostaeva, E. V.

    2014-02-01

    A relationship between the topography of rough calcium phosphate surfaces having osteogenic niche-reliefs and the electrostatic potential of these surfaces as a possible instrument to control stromal stem cells has been investigated. The in vitro culture of human lung prenatal stromal cells on nanostructured/ultrafine-grained VT1.0 titanium alloy plates with bilateral rough calcium phosphate (CaP) microarc coating was used. It was established that the amplitude of the electret CaP surface potential linearly increased with increasing area of valleys (sockets), and the negative charge is formed on the socket surface. The area of alkaline phosphatase staining (the marker of osteoblast maturation and differentiation) of adherent CD34- CD44+ cells increases linearly with increasing area of artificial microterritory (socket) of the CaP surface occupied with each cell. The negative electret potential in valleys (sockets) of microarc CaP coatings can be the physical mechanism mediating the influence of the surface topography on osteogenic maturation and differentiation of cells in vitro. This mechanism can be called "niche-potential" and can be used as an instrument for biomimetic modification of smooth CaP surfaces to strengthen their integration with the bone tissue.

  14. Therapeutic potential of trichostatin A to control inflammatory and fibrogenic disorders of the ocular surface.

    Science.gov (United States)

    Kitano, Ai; Okada, Yuka; Yamanka, Osamu; Shirai, Kumi; Mohan, Rajiv R; Saika, Shizuya

    2010-12-31

    To examine the effects of a histone deacetylase inhibitor, Trichostatin A (TSA), on the behavior of macrophages and subconjunctival fibroblasts in vitro and on ocular surface inflammation and scarring in vivo using an alkali burn wound healing model. Effects of TSA on expression of inflammation-related growth factors or collagen I were examined by real-time RT-PCR or immunoassay in mouse macrophages or human subconjunctival fibroblasts. Effects of TSA on trans forming growth factor β (TGFβ)/Smad signaling were evaluated with western blotting and/or immunocytochemistry. Alkali-burn injuries on the eyes of mice were performed with three µl of 0.5 N NaOH under general and topical anesthesia. TSA (600 µg/Kg daily) or vehicle was administered to animals via intraperitoneal (i.p.) injection. Histology and real-time RT-PCR investigations evaluated the effects of TSA on the healing process of the cornea. TSA inhibited TGFβ 1 and vascular endothelial growth factor (VEGF) expression in macrophages, and TGFβ1 and collagen I in ocular fibroblasts. It elevated the expression of 5'-TG-3'-interacting factor (TGIF) and Smad7 in fibroblasts and blocked nuclear translocation of phospho-Smad2. Real-time PCR and immunocytochemistry studies showed that systemic administration of TSA suppressed the inflammation and fibrotic response in the stroma and accelerated epithelial healing in the alkali-burned mouse cornea. Systemic administration of TSA reduces inflammatory and fibrotic responses in the alkali-burned mouse ocular surface in vivo. The mechanisms of action involve attenuation of Smad signal in mesenchymal cells and reduction in the activation and recruitment of macrophages. TSA has the potential to treat corneal scarring in vivo.

  15. Electrostatic potential of mean force between two curved surfaces in the presence of counterion connectivity

    Science.gov (United States)

    Zhou, Shiqi

    2015-11-01

    In this paper, we investigate effects of counterion connectivity (i.e., association of the counterions into a chain molecule) on the electrostatic potential of mean force (EPMF) between two similarly charged cylinder rods in a primitive model electrolyte solution by solving a classical density functional theory. The main findings include the following: (i) The counterion connectivity helps in inducing a like-charge-attractionlike (LCA-like) phenomenology even in a monovalent counterion solution wherein the LCA-like observation generally does not occur without the counterion connectivity. (ii) For divalent counterion solutions, the counterion connectivity can reinforce or weaken the LCA-like observation depending on the chain length N , and simply increases the equilibrium nearest surface separation of the rods corresponding to the minimum EPMF to nearly three times the counterion site diameter, whether N is large or small. (iii) If N is large enough, the LCA-like strength tends to be negatively correlated with the electrolyte concentration c over the entire range of the rod surface charge magnitude | σ*| considered; whereas if N drops, the correlation tends to become positive with decrease of the | σ*| value, and particularly for modest | σ*| values, the correlation relationship exhibits an extreme value phenomenon. (iv) In the case of a 1:1 electrolyte, the EPMF effects of the diameters of counterion and coion sites are similar in both situations with and without the counterion connectivity. All of these findings can be explained self-consistently by a recently proposed hydrogen-bonding style mechanism reinforced by one additional concept: flexibility of the counterion chain and the factors affecting it, like N and counterion site valence.

  16. Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill

    International Nuclear Information System (INIS)

    Mangimbulude, Jubhar C.; Straalen, Nico M. van; Röling, Wilfred F.M.

    2012-01-01

    Highlights: ► Microbial nitrogen transformations can alleviate toxic ammonium discharge. ► Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. ►Organic nitrogen ammonification was most dominant. ► Anaerobic nitrate reduction and ammonium oxidation potential were also high. ► A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L −1 . The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential ( −1 h −1 ) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a

  17. Near-surface geothermal potential assessment of the region Leogang - Saalbach-Hinterglemm in Salzburg, Austria

    Science.gov (United States)

    Bottig, Magdalena; Rupprecht, Doris; Hoyer, Stefan

    2017-04-01

    Within the EU-funded Alpine Space project GRETA (Near-surface Geothermal Resources in the Territory of the Alpine space), a potential assessment for the use of near-surface geothermal energy is being performed. The focus region for Austria is represented by the two communities Leogang and Saalbach-Hinterglemm where settlements are located in altitudes of about 800 - 1.000 m. In these communities, as well as in large parts of the alpine space region in Austria, winter sports tourism is an important economic factor. The demand for heating and domestic hot water in this region of about 6.000 inhabitants rises significantly in the winter months due to around 2 million guest nights per year. This makes clear why the focus is on touristic infrastructure like alpine huts or hotels. It is a high-altitude area with a large number of remote houses, thus district-heating is not ubiquitous - thus, near-surface geothermal energy can be a useful solution for a self-sufficient energy supply. The objective of detailed investigation within the project is, to which extent the elevation, the gradient and the orientation of the hillside influence the geothermal usability of the shallow underground. To predict temperatures in depths of up to 100 m and therefore make statements on the geothermal usability of a certain piece of land, it is necessary to attain a precise ground-temperature map which reflects the upper model boundary. As there are no ground temperature measurement stations within the region, the GBA has installed four monitoring stations. Two are located in the valley, at altitudes of about 800 m, and two in higher altitudes of about 1.200 m, one on a south- and one on a north-slope. Using a software invented by the University of Soil Sciences in Vienna a ground-temperature map will be calculated. The calculation is based on climatic data considering parameters like soil composition. Measured values from the installed monitoring stations will help to validate or to

  18. Adsorption of a single polymer chain on a surface: effects of the potential range.

    Science.gov (United States)

    Klushin, Leonid I; Polotsky, Alexey A; Hsu, Hsiao-Ping; Markelov, Denis A; Binder, Kurt; Skvortsov, Alexander M

    2013-02-01

    We investigate the effects of the range of adsorption potential on the equilibrium behavior of a single polymer chain end-attached to a solid surface. The exact analytical theory for ideal lattice chains interacting with a planar surface via a box potential of depth U and width W is presented and compared to continuum model results and to Monte Carlo (MC) simulations using the pruned-enriched Rosenbluth method for self-avoiding chains on a simple cubic lattice. We show that the critical value U(c) corresponding to the adsorption transition scales as W(-1/ν), where the exponent ν=1/2 for ideal chains and ν≈3/5 for self-avoiding walks. Lattice corrections for finite W are incorporated in the analytical prediction of the ideal chain theory U(c)≈(π(2)/24)(W+1/2)(-2) and in the best-fit equation for the MC simulation data U(c)=0.585(W+1/2)(-5/3). Tail, loop, and train distributions at the critical point are evaluated by MC simulations for 1≤W≤10 and compared to analytical results for ideal chains and with scaling theory predictions. The behavior of a self-avoiding chain is remarkably close to that of an ideal chain in several aspects. We demonstrate that the bound fraction θ and the related properties of finite ideal and self-avoiding chains can be presented in a universal reduced form: θ(N,U,W)=θ(NU(c),U/U(c)). By utilizing precise estimations of the critical points we investigate the chain length dependence of the ratio of the normal and lateral components of the gyration radius. Contrary to common expectations this ratio attains a limiting universal value /=0.320±0.003 only at N~5000. Finite-N corrections for this ratio turn out to be of the opposite sign for W=1 and for W≥2. We also study the N dependence of the apparent crossover exponent φ(eff)(N). Strong corrections to scaling of order N(-0.5) are observed, and the extrapolated value φ=0.483±0.003 is found for all values of W. The strong correction to scaling effects found here explain why

  19. Collisional Dissociation of CO: ab initio Potential Energy Surfaces and Quasiclassical Trajectory Rate Coefficients

    Science.gov (United States)

    Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.

    2016-01-01

    We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.

  20. Curvularia Haloperoxidase: Antimicrobial Activity and Potential Application as a Surface Disinfectant

    Science.gov (United States)

    Hansen, Eva H.; Albertsen, Line; Schäfer, Thomas; Johansen, Charlotte; Frisvad, Jens C.; Molin, Søren; Gram, Lone

    2003-01-01

    A presumed antimicrobial enzyme system, the Curvularia haloperoxidase system, was examined with the aim of evaluating its potential as a sanitizing agent. In the presence of hydrogen peroxide, Curvularia haloperoxidase facilitates the oxidation of halides, such as chloride, bromide, and iodide, to antimicrobial compounds. The Curvularia haloperoxidase system caused several-log-unit reductions in counts of bacteria (Pseudomonas spp., Escherichia coli, Serratia marcescens, Aeromonas salmonicida, Shewanella putrefaciens, Staphylococcus epidermidis, and Listeria monocytogenes), yeasts (Candida sp. and Rhodotorula sp.), and filamentous fungi (Aspergillus niger, Aspergillus tubigensis, Aspergillus versicolor, Fusarium oxysporum, Penicillium chrysogenum, and Penicillium paxilli) cultured in suspension. Also, bacteria adhering to the surfaces of contact lenses were killed. The numbers of S. marcescens and S. epidermidis cells adhering to contact lenses were reduced from 4.0 and 4.9 log CFU to 1.2 and 2.7 log CFU, respectively, after treatment with the Curvularia haloperoxidase system. The killing effect of the Curvularia haloperoxidase system was rapid, and 106 CFU of E. coli cells/ml were eliminated within 10 min of treatment. Furthermore, the antimicrobial effect was short lived, causing no antibacterial effect against E. coli 10 min after the system was mixed. Bovine serum albumin (1%) and alginate (1%) inhibited the antimicrobial activity of the Curvularia haloperoxidase system, whereas glucose and Tween 20 did not affect its activity. In conclusion, the Curvularia haloperoxidase system is an effective sanitizing system and has the potential for a vast range of applications, for instance, for disinfection of contact lenses or medical devices. PMID:12902249

  1. Comparing potential recharge estimates from three Land Surface Models across the Western US

    Science.gov (United States)

    NIRAULA, REWATI; MEIXNER, THOMAS; AJAMI, HOORI; RODELL, MATTHEW; GOCHIS, DAVID; CASTRO, CHRISTOPHER L.

    2018-01-01

    Groundwater is a major source of water in the western US. However, there are limited recharge estimates available in this region due to the complexity of recharge processes and the challenge of direct observations. Land surface Models (LSMs) could be a valuable tool for estimating current recharge and projecting changes due to future climate change. In this study, simulations of three LSMs (Noah, Mosaic and VIC) obtained from the North American Land Data Assimilation System (NLDAS-2) are used to estimate potential recharge in the western US. Modeled recharge was compared with published recharge estimates for several aquifers in the region. Annual recharge to precipitation ratios across the study basins varied from 0.01–15% for Mosaic, 3.2–42% for Noah, and 6.7–31.8% for VIC simulations. Mosaic consistently underestimates recharge across all basins. Noah captures recharge reasonably well in wetter basins, but overestimates it in drier basins. VIC slightly overestimates recharge in drier basins and slightly underestimates it for wetter basins. While the average annual recharge values vary among the models, the models were consistent in identifying high and low recharge areas in the region. Models agree in seasonality of recharge occurring dominantly during the spring across the region. Overall, our results highlight that LSMs have the potential to capture the spatial and temporal patterns as well as seasonality of recharge at large scales. Therefore, LSMs (specifically VIC and Noah) can be used as a tool for estimating future recharge rates in data limited regions. PMID:29618845

  2. Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems

    Science.gov (United States)

    Quintano, C.; Fernández-Manso, A.; Calvo, L.; Marcos, E.; Valbuena, L.

    2015-04-01

    Forest fires are one of the most important causes of environmental alteration in Mediterranean countries. Discrimination of different degrees of burn severity is critical for improving management of fire-affected areas. This paper aims to evaluate the usefulness of land surface temperature (LST) as potential indicator of burn severity. We used a large convention-dominated wildfire, which occurred on 19-21 September, 2012 in Northwestern Spain. From this area, a 1-year series of six LST images were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data using a single channel algorithm. Further, the Composite Burn Index (CBI) was measured in 111 field plots to identify the burn severity level (low, moderate, and high). Evaluation of the potential relationship between post-fire LST and ground measured CBI was performed by both correlation analysis and regression models. Correlation coefficients were higher in the immediate post-fire LST images, but decreased during the fall of 2012 and increased again with a second maximum value in summer, 2013. A linear regression model between post-fire LST and CBI allowed us to represent spatially predicted CBI (R-squaredadj > 85%). After performing an analysis of variance (ANOVA) between post-fire LST and CBI, a Fisher's least significant difference test determined that two burn severity levels (low-moderate and high) could be statistically distinguished. The identification of such burn severity levels is sufficient and useful to forest managers. We conclude that summer post-fire LST from moderate resolution satellite data may be considered as a valuable indicator of burn severity for large fires in Mediterranean forest ecosytems.

  3. Surface-Enhanced Separation of Water from Hydrocarbons: Potential Dewatering Membranes for the Catalytic Fast Pyrolysis of Pine Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Engtrakul, Chaiwat; Hu, Michael Z.; Bischoff, Brian L.; Jang, Gyoung G.

    2016-10-20

    The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach used high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over one-ring upgraded biomass pyrolysis hydrocarbons was observed as a result of a surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations, suggesting that water can be selectively removed from the CFP product vapors.

  4. Evaluation of fitting functions for the representation of an O(3P)+H2 potential energy surface. I

    International Nuclear Information System (INIS)

    Wagner, A.F.; Schatz, G.C.; Bowman, J.M.

    1981-01-01

    The DIM surface of Whitlock, Muckerman, and Fisher for the O( 3 P)+H 2 system is used as a test case to evaluate the usefulness of a variety of fitting functions for the representation of potential energy surfaces. Fitting functions based on LEPS, BEBO, and rotated Morse oscillator (RMO) forms are examined. Fitting procedures are developed for combining information about a small portion of the surface and the fitting function to predict where on the surface more information must be obtained to improve the accuracy of the fit. Both unbiased procedures and procedures heavily biased toward the saddle point region of the surface are investigated. Collinear quasiclassical trajectory calculations of the reaction rate constant and one and three dimensional transition state theory rate constant calculations are performed and compared for selected fits and the exact DIM test surface. Fitting functions based on BEBO and RMO forms are found to give quite accurate results

  5. Conformational Explosion: Understanding the Complexity of the Para-Dialkylbenzene Potential Energy Surfaces

    Science.gov (United States)

    Mishra, Piyush; Hewett, Daniel M.; Zwier, Timothy S.

    2017-06-01

    This talk focuses on the single-conformation spectroscopy of small-chain para-dialkylbenzenes. This work builds on previous studies from our group on long-chain n-alkylbenzenes that identified the first folded structure in octylbenzene. The dialkylbenzenes are representative of a class of molecules that are common components of coal and aviation fuel and are known to be present in vehicle exhaust. We bring the molecules para-diethylbenzene, para-dipropylbenzene and para-dibutylbenzene into the gas phase and cool the molecules in a supersonic expansion. The jet-cooled molecules are then interrogated using laser-induced fluorescence excitation, fluorescence dip IR spectroscopy (FDIRS) and dispersed fluorescence. The LIF spectra in the S_{0}-S_{1} origin region show dramatic increases in the number of resolved transitions with increasing length of alkyl chains, reflecting an explosion in the number of unique low-energy conformations formed when two independent alkyl chains are present. Since the barriers to isomerization of the alkyl chain are similar in size, this results in an 'egg carton' shape to the potential energy surface. We use a combination of electronic frequency shift and alkyl CH stretch infrared spectra to generate a consistent set of conformational assignments.

  6. Electronic tunneling through a potential barrier on the surface of a topological insulator

    Science.gov (United States)

    Zhou, Benliang; Zhou, Benhu; Zhou, Guanghui

    2016-12-01

    We investigate the tunneling transport for electrons on the surface of a topological insulator (TI) through an electrostatic potential barrier. By using the Dirac equation with the continuity conditions for all segments of wave functions at the interfaces between regions inside and outside the barrier, we calculate analytically the transmission probability and conductance for the system. It is demonstrated that, the Klein paradox can also been observed in the system same as in graphene system. Interestingly, the conductance reaches the minimum value when the incident electron energy is equal to the barrier strength. Moreover, with increasing barrier width, the conductance turns up some tunneling oscillation peaks, and larger barrier strength can cause lower conductance, shorter period but larger oscillation amplitude. The oscillation amplitude decreases as the barrier width increases, which is similar as that of the system consisting of the compressive uniaxial strain applied on a TI, but somewhat different from that of graphene system where the oscillation amplitude is a constant. The findings here imply that an electrostatic barrier can greatly influence the electron tunneling transport of the system, and may provide a new way to realize directional filtering of electrons.

  7. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    Science.gov (United States)

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-01

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S0) electronic state has been constructed by fitting ˜37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm-1. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm-1 above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  8. Potential of cancer screening with serum surface-enhanced Raman spectroscopy and a support vector machine

    International Nuclear Information System (INIS)

    Li, S X; Zhang, Y J; Zeng, Q Y; Li, L F; Guo, Z Y; Liu, Z M; Xiong, H L; Liu, S H

    2014-01-01

    Cancer is the most common disease to threaten human health. The ability to screen individuals with malignant tumours with only a blood sample would be greatly advantageous to early diagnosis and intervention. This study explores the possibility of discriminating between cancer patients and normal subjects with serum surface-enhanced Raman spectroscopy (SERS) and a support vector machine (SVM) through a peripheral blood sample. A total of 130 blood samples were obtained from patients with liver cancer, colonic cancer, esophageal cancer, nasopharyngeal cancer, gastric cancer, as well as 113 blood samples from normal volunteers. Several diagnostic models were built with the serum SERS spectra using SVM and principal component analysis (PCA) techniques. The results show that a diagnostic accuracy of 85.5% is acquired with a PCA algorithm, while a diagnostic accuracy of 95.8% is obtained using radial basis function (RBF), PCA–SVM methods. The results prove that a RBF kernel PCA–SVM technique is superior to PCA and conventional SVM (C-SVM) algorithms in classification serum SERS spectra. The study demonstrates that serum SERS, in combination with SVM techniques, has great potential for screening cancerous patients with any solid malignant tumour through a peripheral blood sample. (letters)

  9. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    International Nuclear Information System (INIS)

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-01-01

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S 0 ) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm −1 . The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm −1 above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction

  10. Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Huang, Shaohua; Wang, Lan; Chen, Weisheng; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong

    2014-11-01

    Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA-LDA multivariate analysis has potential for non-invasive detection of esophagus cancer.

  11. Potential of non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Huang, Shaohua; Wang, Lan; Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Buhong; Chen, Rong; Chen, Weisheng

    2014-01-01

    Non-invasive esophagus cancer detection based on urine surface-enhanced Raman spectroscopy (SERS) analysis was presented. Urine SERS spectra were measured on esophagus cancer patients (n = 56) and healthy volunteers (n = 36) for control analysis. Tentative assignments of the urine SERS spectra indicated some interesting esophagus cancer-specific biomolecular changes, including a decrease in the relative content of urea and an increase in the percentage of uric acid in the urine of esophagus cancer patients compared to that of healthy subjects. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was employed to analyze and differentiate the SERS spectra between normal and esophagus cancer urine. The diagnostic algorithms utilizing a multivariate analysis method achieved a diagnostic sensitivity of 89.3% and specificity of 83.3% for separating esophagus cancer samples from normal urine samples. These results from the explorative work suggested that silver nano particle-based urine SERS analysis coupled with PCA–LDA multivariate analysis has potential for non-invasive detection of esophagus cancer. (letter)

  12. Toward the detection of the triatomic negative ion SPN-: Spectroscopy and potential energy surfaces

    Science.gov (United States)

    Trabelsi, Tarek; Hochlaf, Majdi; Francisco, Joseph S.

    2018-04-01

    High level theoretical calculations using coupled-cluster theory were performed to provide an accurate description of the electronic structure, spectroscopic properties, and stability of the triatomic negative ion comprising S, N, and P. The adiabatic electron affinities (AEAs) and vertical detachment energies (VDEs) of PNS, SPN, PSN, and cyc-PSN were calculated. The predicted AEA and VDE of the linear SPN isomer are large: 2.24 and 3.04 eV, respectively. The potential energy surfaces (PESs) of the lowest-lying electronic states of the SPN- isomer along the PN and SP bond lengths and bond angle were mapped. A set of spectroscopic parameters for SPN-, PNS-, and PSN- in their electronic ground states is obtained from the 3D PESs to help detect these species in the gas phase. The electronic excited state SPN-(12A″) is predicted to be stable with a long lifetime calculated to be 189.7 μs. The formation of SPN- in its electronic ground state through the bimolecular collision between S- + PN and N + PS- is also discussed.

  13. Design and surface modification of potential luminomagnetic nanocarriers for biomedical applications

    International Nuclear Information System (INIS)

    Dutta, Ranu K.; Sharma, Prashant K.; Pandey, Avinash C.

    2010-01-01

    Targeted delivery of therapeutics possesses the potential to localize therapeutic agents to a specific tissue as a mechanism to enhance treatment efficacy and mitigate side effects. Moeities that combine imaging and therapeutic modalities in a single macromolecular construct may confer advantages in the development and applications of nanomedicine. Here is an insight into the synthesis of luminomagnetic (luminescent and magnetic, simultaneously) nanocarriers of ZnO:Fe, synthesized by a simple co-precipitation method and surface modified by the ligand folate. This functionalized luminomagnetic nanocarrier system is a bioconjugation approach which combines the specificity of folate receptors on cancer cells with the excellent optical and magnetic properties of the nanoparticles so as to develop biocompatible molecular imaging agents, drug delivery systems, and hyperthermia agents. The vibrating sample magnetometer (VSM) studies showed clear hysteresis loops having coercivity 5.1 mT with corresponding magnetization of remanence 7.6 x 10 -3 emu/g, indicating strong magnetic character of the samples. X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements show that these nanoparticles are spherical with 6-9 nm size and hence are quite appropriate for in vivo applications as well. The immobilization of folic acid was confirmed by fourier transform infrared (FTIR) analysis. All these properties make these luminomagnetic nanocarriers one of the most feasible candidates for folate receptor-mediated biomedical applications.

  14. Imaging a multidimensional multichannel potential energy surface: Photodetachment of H(-)(NH3) and NH4 (.).

    Science.gov (United States)

    Hu, Qichi; Song, Hongwei; Johnson, Christopher J; Li, Jun; Guo, Hua; Continetti, Robert E

    2016-06-28

    Probes of the Born-Oppenheimer potential energy surfaces governing polyatomic molecules often rely on spectroscopy for the bound regions or collision experiments in the continuum. A combined spectroscopic and half-collision approach to image nuclear dynamics in a multidimensional and multichannel system is reported here. The Rydberg radical NH4 and the double Rydberg anion NH4 (-) represent a polyatomic system for benchmarking electronic structure and nine-dimensional quantum dynamics calculations. Photodetachment of the H(-)(NH3) ion-dipole complex and the NH4 (-) DRA probes different regions on the neutral NH4 PES. Photoelectron energy and angular distributions at photon energies of 1.17, 1.60, and 2.33 eV compare well with quantum dynamics. Photoelectron-photofragment coincidence experiments indicate dissociation of the nascent NH4 Rydberg radical occurs to H + NH3 with a peak kinetic energy of 0.13 eV, showing the ground state of NH4 to be unstable, decaying by tunneling-induced dissociation on a time scale beyond the present scope of multidimensional quantum dynamics.

  15. Anticancer drugs in Portuguese surface waters - Estimation of concentrations and identification of potentially priority drugs.

    Science.gov (United States)

    Santos, Mónica S F; Franquet-Griell, Helena; Lacorte, Silvia; Madeira, Luis M; Alves, Arminda

    2017-10-01

    Anticancer drugs, used in chemotherapy, have emerged as new water contaminants due to their increasing consumption trends and poor elimination efficiency in conventional water treatment processes. As a result, anticancer drugs have been reported in surface and even drinking waters, posing the environment and human health at risk. However, the occurrence and distribution of anticancer drugs depend on the area studied and the hydrological dynamics, which determine the risk towards the environment. The main objective of the present study was to evaluate the risk of anticancer drugs in Portugal. This work includes an extensive analysis of the consumption trends of 171 anticancer drugs, sold or dispensed in Portugal between 2007 and 2015. The consumption data was processed aiming at the estimation of predicted environmental loads of anticancer drugs and 11 compounds were identified as potentially priority drugs based on an exposure-based approach (PEC b > 10 ng L -1 and/or PEC c > 1 ng L -1 ). In a national perspective, mycophenolic acid and mycophenolate mofetil are suspected to pose high risk to aquatic biota. Moderate and low risk was also associated to cyclophosphamide and bicalutamide exposition, respectively. Although no evidences of risk exist yet for the other anticancer drugs, concerns may be associated with long term effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays

    Science.gov (United States)

    Eckert, Sebastian; da Cruz, Vinícius Vaz; Gel'mukhanov, Faris; Ertan, Emelie; Ignatova, Nina; Polyutov, Sergey; Couto, Rafael C.; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Odelius, Michael; Föhlisch, Alexander

    2018-05-01

    The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule.

  17. Explicit correlation treatment of the potential energy surface of CO{sub 2} dimer

    Energy Technology Data Exchange (ETDEWEB)

    Kalugina, Yulia N., E-mail: kalugina@phys.tsu.ru [Tomsk State University, 36 Lenin Ave., Tomsk 634050 (Russian Federation); Buryak, Ilya A. [Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation); Chemistry Department, Lomonosov Moscow State University, Moscow (Russian Federation); Ajili, Yosra [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Bd Descartes, 77454 Marne-La-Vallée (France); Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA Université de Tunis El Manar (Tunisia); Vigasin, Andrei A. [Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation); Jaidane, Nejm Eddine [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications - LSAMA Université de Tunis El Manar (Tunisia); Hochlaf, Majdi [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Bd Descartes, 77454 Marne-La-Vallée (France)

    2014-06-21

    We present an extensive study of the four-dimensional potential energy surface (4D-PES) of the carbon dioxide dimer, (CO{sub 2}){sub 2}. This PES is developed over the set of intermolecular coordinates. The electronic computations are carried out at the explicitly correlated coupled cluster method with single, double, and perturbative triple excitations [CCSD(T)-F12] level of theory in connection with the augmented correlation-consistent aug-cc-pVTZ basis set. An analytic representation of the 4D-PES is derived. Our extensive calculations confirm that “Slipped Parallel” is the most stable form and that the T-shaped structure corresponds to a transition state. Later on, this PES is employed for the calculations of the vibrational energy levels of the dimer. Moreover, the temperature dependence of the dimer second virial coefficient and of the first spectral moment of rototranslational collision-induced absorption spectrum is derived. For both quantities, a good agreement is found between our values and the experimental data for a wide range of temperatures. This attests to the high quality of our PES. Generally, our PES and results can be used for modeling CO{sub 2} supercritical fluidity and examination of its role in planetary atmospheres. It can be also incorporated into dynamical computations of CO{sub 2} capture and sequestration. This allows deep understanding, at the microscopic level, of these processes.

  18. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    Science.gov (United States)

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  19. Coating possibilities for magnetic switches

    International Nuclear Information System (INIS)

    Sharp, D.J.; Harjes, H.C.; Mann, G.A.; Morgan, F.A.

    1990-01-01

    High average power magnetic pulse compression systems are now being considered for use in several applications such as the High Power Radiation Source (HiPoRS) project. Such systems will require high reliability magnetic switches (saturable inductors) that are very efficient and have long lifetimes. One of the weakest components in magnetic switches is their interlaminar insulation. Considerations related to dielectric breakdown, thermal management of compact designs, and economical approaches for achieving these needs must be addressed. Various dielectric insulation and coating materials have been applied to Metglas foil in an attempt to solve the complex technical and practical problems associated with large magnetic switch structures. This work reports various needs, studies, results, and proposals in selecting and evaluating continuous coating approaches for magnetic foil. Techniques such as electrophoretic polymer deposition and surface chemical oxidation are discussed. We also propose continuous photofabrication processes for applying dielectric ribs or spacers to the foil which permit circulation of dielectric liquids for cooling during repetitive operation. 10 refs., 8 figs., 11 tabs

  20. Energy losses in switches

    International Nuclear Information System (INIS)

    Martin, T.H.; Seamen, J.F.; Jobe, D.O.

    1993-01-01

    The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF 6 polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V peak I peak ) 1.1846 . When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset

  1. Mechanisms of Zr surface corrosion determined via molecular dynamics simulations with charge-optimized many-body (COMB) potentials

    International Nuclear Information System (INIS)

    Noordhoek, Mark J.; Liang, Tao; Chiang, Tsu-Wu; Sinnott, Susan B.; Phillpot, Simon R.

    2014-01-01

    Highlights: • An interatomic potential for zirconium–zirconium oxide–zirconium hydride is presented. • Diffusion of oxygen and hydrogen into Zr (0 0 0 1). • Deposition of O 2 and H 2 O on low-index Zr surfaces. • Surface structure affects resulting corrosion behavior. - Abstract: A charge-optimized many-body (COMB) potential is proposed for the zirconium–zirconium oxide–zirconium hydride system. This potential is developed to describe the energetics of the interactions of oxygen and hydrogen with zirconium metal. We perform classical molecular dynamics simulations showing the initial corrosion behavior of three low-index zirconium surfaces via the deposition of O 2 and H 2 O molecules. The basal (0 0 0 1) surface shows greater resistance to oxygen diffusion than the prism (101 ¯ 0) and (112 ¯ 0) surfaces. We suggest ways in which the surface structure has a unique role in the experimentally observed enhanced corrosion of the prism surfaces

  2. Electromechanical magnetization switching

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M. [Department of Physics and Astronomy, Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Jaafar, Reem [Department of Mathematics, Engineering and Computer Science, LaGuardia Community College, The City University of New York, 31-10 Thomson Avenue, Long Island City, New York 11101 (United States)

    2015-03-14

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.

  3. Electromechanical magnetization switching

    International Nuclear Information System (INIS)

    Chudnovsky, Eugene M.; Jaafar, Reem

    2015-01-01

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained

  4. JUNOS Enterprise Switching

    CERN Document Server

    Reynolds, Harry

    2009-01-01

    JUNOS Enterprise Switching is the only detailed technical book on Juniper Networks' new Ethernet-switching EX product platform. With this book, you'll learn all about the hardware and ASIC design prowess of the EX platform, as well as the JUNOS Software that powers it. Not only is this extremely practical book a useful, hands-on manual to the EX platform, it also makes an excellent study guide for certification exams in the JNTCP enterprise tracks. The authors have based JUNOS Enterprise Switching on their own Juniper training practices and programs, as well as the configuration, maintenanc

  5. Switch mode power supply

    International Nuclear Information System (INIS)

    Kim, Hui Jun

    1993-06-01

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  6. Understanding household switching behavior in the retail electricity market

    International Nuclear Information System (INIS)

    Yang, Yingkui

    2014-01-01

    Deregulation of the Danish retail electricity market nearly a decade ago has produced little consumer switching among suppliers or renegotiation of supplier service contracts. From an energy policy perspective, a certain amount of supplier switching is an important indicator of the success of market deregulation. This argues that poor relationship management and a lack of economic benefits are two critical barriers to consumer switching. Latent class analysis indicates that only 11.4% of consumers are non-switchers, whereas 41.1% can be considered potential switchers and approximately one-half (47.5%) can be considered apathetic consumers. We also discuss the managerial implications for both electricity suppliers and policy makers. - Highlights: • This paper investigates the barriers for electricity supplier switching in Denmark. • Four switching barriers were identified. • Relationship management and economic benefits are critical for consumer switching. • Three consumer segments for electricity supplier switching were identified

  7. The possible tautomerism of the potential rotary switch 2-(2-(2-Hydroxy-4-nitrophenyl)hydrazono)-1-phenylbutane-1,3-dione

    DEFF Research Database (Denmark)

    Hristova, Silvia; Kamounah, Fadhil S.; Molla, Nevse

    2017-01-01

    The title compound is potentially tautomeric and its tautomerism was studied by means of molecular spectroscopy (1H and 13C NMR and UV–Vis) in DMSO as well as by quantum chemical calculations (M06-2X/TZVP). The detailed assignment of the NMR signals supported by the theoretical calculations clearly...... shows that the previous interpretation, available in the literature, about the coexistence of two tautomeric forms is not correct. The compound exists as major and minor isomer of a single tautomeric form. In addition, a 2-methoxy derivative (the OH group replaced by a methoxy group) is also...

  8. Phase contribution of image potential on empty quantum well States in pb islands on the cu(111) surface.

    Science.gov (United States)

    Yang, M C; Lin, C L; Su, W B; Lin, S P; Lu, S M; Lin, H Y; Chang, C S; Hsu, W K; Tsong, Tien T

    2009-05-15

    We use scanning tunneling spectroscopy to explore the quantum well states in the Pb islands grown on a Cu(111) surface. Our observation demonstrates that the empty quantum well states, whose energy levels lie beyond 1.2 eV above the Fermi level, are significantly affected by the image potential. As the quantum number increases, the energy separation between adjacent states is shrinking rather than widening, contrary to the prediction for a square potential well. By simply introducing a phase factor to reckon the effect of the image potential, the shrinking behavior of the energy separation can be reasonably explained with the phase accumulation model. The model also reveals that there exists a quantum regime above the Pb surface in which the image potential is vanished. Moreover, the quasi-image-potential state in the tunneling gap is quenched because of the existence of the quantum well states.

  9. Nano- and micro-electromechanical switch dynamics

    International Nuclear Information System (INIS)

    Pulskamp, Jeffrey S; Proie, Robert M; Polcawich, Ronald G

    2013-01-01

    This paper reports theoretical analysis and experimental results on the dynamics of piezoelectric MEMS mechanical logic relays. The multiple degree of freedom analytical model, based on modal decomposition, utilizes modal parameters obtained from finite element analysis and an analytical model of piezoelectric actuation. The model accounts for exact device geometry, damping, drive waveform variables, and high electric field piezoelectric nonlinearity. The piezoelectrically excited modal force is calculated directly and provides insight into design optimization for switching speed. The model accurately predicts the propagation delay dependence on actuation voltage of mechanically distinct relay designs. The model explains the observed discrepancies in switching speed of these devices relative to single degree of freedom switching speed models and suggests the strong potential for improved switching speed performance in relays designed for mechanical logic and RF circuits through the exploitation of higher order vibrational modes. (paper)

  10. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    Science.gov (United States)

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.

    2018-01-01

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was

  11. Microwave pulse generation by photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.

    1989-03-14

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories (1) the frozen wave generator or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200..mu..J optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency. 3 refs., 6 figs.

  12. Microwave pulse generation by photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.

    1989-03-01

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories: (1) the frozen wave generator, or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200 microJ optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency.

  13. Facile preparation and electrochemical characterization of poly (4-methoxytriphenylamine)-modified separator as a self-activated potential switch for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Haiyan; Cao, Yuliang; Yang, Hanxi; Lu, Shigang; Ai, Xinping

    2013-01-01

    Highlights: • A potential-sensitive separator is prepared by incorporating an electroactive poly (4-methoxytriphenylamine) (PMOTPA) into the micropores of a commercial porous polyolefin film. • This separator can be used as an internal and self-actuating voltage control device to provide overcharge protection for LiFePO 4 /Li 4 Ti 5 O 12 lithium ion batteries. • This type of the separators works reversibly and has no any discernable impact on the battery performances. -- Abstract: A potential-sensitive separator is prepared by incorporating an electroactive poly (4-methoxytriphenylamine) (PMOTPA) into the micropores of a commercial porous polyolefin film and tested as an internal voltage control device for overcharge protection of LiFePO 4 /Li 4 Ti 5 O 12 lithium ion batteries. The experimental results demonstrate that the PMOTPA polymer embedded in the separator can be electrochemically p-doped at overcharged voltages into an electrically conductive state, producing an internal conducting bypass for shunting the charge current to maintain the charge voltage of LiFePO 4 /Li 4 Ti 5 O 12 cells at a safety value less than 2.6 V, thus protecting the cell from voltage runaway. Since this type of the separators works reversibly and has no any discernable impact on the battery performances, it may offer a self-protection mechanism for development of safer lithium ion batteries

  14. A nanoplasmonic switch based on molecular machines

    KAUST Repository

    Zheng, Yue Bing

    2009-06-01

    We aim to develop a molecular-machine-driven nanoplasmonic switch for its use in future nanophotonic integrated circuits (ICs) that have applications in optical communication, information processing, biological and chemical sensing. Experimental data show that an Au nanodisk array, coated with rotaxane molecular machines, switches its localized surface plasmon resonances (LSPR) reversibly when it is exposed to chemical oxidants and reductants. Conversely, bare Au nanodisks and disks coated with mechanically inert control compounds, do not display the same switching behavior. Along with calculations based on time-dependent density functional theory (TDDFT), these observations suggest that the nanoscale movements within surface-bound "molecular machines" can be used as the active components in plasmonic devices. ©2009 IEEE.

  15. Fundamental science investigations to develop a 6-MV laser triggered gas switch for ZR: first annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Van Den Avyle, James A.; Lehr, Jane Marie; Rose, David (Voss Scientific, Albuquerque, NM); Krompholz, Hermann G. (Texas Tech University, Lubbock, TX); Vela, Russell (Texas Tech University, Lubbock, TX); Jorgenson, Roy Eberhardt; Timoshkin, Igor (University of Strathclyde, Glasgow, Scotland); Woodworth, Joseph Ray; Prestwich, Kenneth Randel (Voss Scientific, Albuquerque, NM); Krile, John (Texas Tech University, Lubbock, TX); Given, Martin (University of Strathclyde, Glasgow, Scotland); McKee, G. Randall; Rosenthal, Stephen Edgar; Struve, Kenneth William; Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Benwell, Andrew L. (University of Missouri-Columbia, Columbia, Missouri); Kovaleski, Scott (University of Missouri-Columbia, Columbia, Missouri); LeChien, Keith, R.; Johnson, David (Titan Pulse Sciences Division); Fouracre, R.A. (University of Strathclyde, Glasgow, Scotland); Yeckel, Chris (University of Missouri-Columbia, Columbia, Missouri); Wakeland, Peter Eric (Ktech Corporation, Albuquerque, NM); Miller, A. R. (Titan Pulse Sciences Division); Hodge, Keith Conquest (Ktech Corporation, Albuquerque, NM); Pasik, Michael Francis; Savage, Mark Edward; Maenchen, John Eric; Curry, Randy D. (University of Missouri-Columbia, Columbia, Missouri); Feltz, Greg (Ktech Corporation, Albuquerque, NM); Bliss, David Emery; MacGregor, Scott (University of Strathclyde, Glasgow, Scotland); Corley, J. P. (Ktech Corporation, Albuquerque, NM); Anaya, Victor (Ktech Corporation, Albuquerque, NM); Wallace, Zachariah (Ktech Corporation, Albuquerque, NM); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Neuber, Andreas. (Texas Tech University, Lubbock, TX)

    2007-03-01

    In October 2005, an intensive three-year Laser Triggered Gas Switch (LTGS) development program was initiated to investigate and solve observed performance and reliability issues with the LTGS for ZR. The approach taken has been one of mission-focused research: to revisit and reassess the design, to establish a fundamental understanding of LTGS operation and failure modes, and to test evolving operational hypotheses. This effort is aimed toward deploying an initial switch for ZR in 2007, on supporting rolling upgrades to ZR as the technology can be developed, and to prepare with scientific understanding for the even higher voltage switches anticipated needed for future high-yield accelerators. The ZR LTGS was identified as a potential area of concern quite early, but since initial assessments performed on a simplified Switch Test Bed (STB) at 5 MV showed 300-shot lifetimes on multiple switch builds, this component was judged acceptable. When the Z{sub 20} engineering module was brought online in October 2003 frequent flashovers of the plastic switch envelope were observed at the increased stresses required to compensate for the programmatically increased ZR load inductance. As of October 2006, there have been 1423 Z{sub 20} shots assessing a variety of LTGS designs. Numerous incremental and fundamental switch design modifications have been investigated. As we continue to investigate the LTGS, the basic science of plastic surface tracking, laser triggering, cascade breakdown, and optics degradation remain high-priority mission-focused research topics. Significant progress has been made and, while the switch does not yet achieve design requirements, we are on the path to develop successively better switches for rolling upgrade improvements to ZR. This report summarizes the work performed in FY 2006 by the large team. A high-level summary is followed by detailed individual topical reports.

  16. The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.

    Science.gov (United States)

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-07

    The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.

  17. The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states

    Science.gov (United States)

    Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry

    2010-06-01

    The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.

  18. Detecting moisture status of pecan orchards and the potential of remotely-sensed surface reflectance data

    Science.gov (United States)

    Othman, Yahia Abdelrahman

    Demand for New Mexico's limited water resources coupled with periodic drought has increased the need to schedule irrigation of pecan orchards based on tree water status. The overall goal of this research was to develop advanced tree water status sensing techniques to optimize irrigation scheduling of pecan orchards. To achieve this goal, I conducted three studies in the La Mancha and Leyendecker orchards, both mature pecan orchards located in the Mesilla Valley, New Mexico. In the first study, I screened leaf-level physiological changes that occurred during cyclic irrigation to determine parameters that best represented changes in plant moisture status. Then, I linked plant physiological changes to remotely-sensed surface reflectance data derived from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+). In the second study, I assessed the impact of water deficits that developed during the flood irrigation dry-down cycles on photosynthesis (A) and gas exchange and established preliminary water deficit thresholds of midday stem water potential (Psi smd) critical to A and gas exchange of pecans. In a third study, I investigated whether hyperspectral data obtained from a handheld spectroradiometer and multispectral remotely-sensed data derived from Landsat 7 ETM+ and Landsat 8 Operational Land Imager (OLI) could detect moisture status in pecans during cyclic flood irrigations. I conducted the first study simultaneously in both orchards. Leaf-level physiological responses and remotely-sensed surface reflectance data were collected from trees that were either well watered or in water deficit. Midday stem water potential was the best leaf-level physiological response to detect moisture status in pecans. Multiple linear regression between Psismd and vegetation indices revealed a significant relationship (R 2 = 0.54) in both orchards. Accordingly, I concluded that remotely-sensed multispectral data form Landsat TMETM+ holds promise for detecting the moisture

  19. XML-BSPM: an XML format for storing Body Surface Potential Map recordings.

    Science.gov (United States)

    Bond, Raymond R; Finlay, Dewar D; Nugent, Chris D; Moore, George

    2010-05-14

    The Body Surface Potential Map (BSPM) is an electrocardiographic method, for recording and displaying the electrical activity of the heart, from a spatial perspective. The BSPM has been deemed more accurate for assessing certain cardiac pathologies when compared to the 12-lead ECG. Nevertheless, the 12-lead ECG remains the most popular ECG acquisition method for non-invasively assessing the electrical activity of the heart. Although data from the 12-lead ECG can be stored and shared using open formats such as SCP-ECG, no open formats currently exist for storing and sharing the BSPM. As a result, an innovative format for storing BSPM datasets has been developed within this study. The XML vocabulary was chosen for implementation, as opposed to binary for the purpose of human readability. There are currently no standards to dictate the number of electrodes and electrode positions for recording a BSPM. In fact, there are at least 11 different BSPM electrode configurations in use today. Therefore, in order to support these BSPM variants, the XML-BSPM format was made versatile. Hence, the format supports the storage of custom torso diagrams using SVG graphics. This diagram can then be used in a 2D coordinate system for retaining electrode positions. This XML-BSPM format has been successfully used to store the Kornreich-117 BSPM dataset and the Lux-192 BSPM dataset. The resulting file sizes were in the region of 277 kilobytes for each BSPM recording and can be deemed suitable for example, for use with any telemonitoring application. Moreover, there is potential for file sizes to be further reduced using basic compression algorithms, i.e. the deflate algorithm. Finally, these BSPM files have been parsed and visualised within a convenient time period using a web based BSPM viewer. This format, if widely adopted could promote BSPM interoperability, knowledge sharing and data mining. This work could also be used to provide conceptual solutions and inspire existing formats

  20. Conformational explosion: Understanding the complexity of short chain para-dialkylbenzene potential energy surfaces

    Science.gov (United States)

    Mishra, Piyush; Hewett, Daniel M.; Zwier, Timothy S.

    2018-05-01

    The single-conformation ultraviolet and infrared spectroscopy of three short-chain para-dialkylbenzenes (para-diethylbenzene, para-dipropylbenzene, and para-dibutylbenzene) is reported for the jet-cooled, isolated molecules. The present study builds off previous work on single-chain n-alkylbenzenes, where an anharmonic local mode Hamiltonian method was developed to account for stretch-bend Fermi resonance in the alkyl CH stretch region [D. P. Tabor et al., J. Chem. Phys. 144, 224310 (2016)]. The jet-cooled molecules are interrogated using laser-induced fluorescence (LIF) excitation, fluorescence dip infrared spectroscopy, and dispersed fluorescence. The LIF spectra in the S1 ← S0 origin region show a dramatic increase in the number of resolved transitions with increasing length of the alkyl chains, reflecting an explosion in the number of unique low-energy conformations formed when two independent alkyl chains are present. Since the barriers to isomerization of the alkyl chain are similar in size, this results in an "egg carton" shaped potential energy surface. A combination of electronic frequency shift and alkyl CH stretch infrared spectra is used to generate a consistent set of conformational assignments. Using these experimental techniques in conjunction with computational methods, subsets of origin transitions in the LIF excitation spectrum can be classified into different conformational families. Two conformations are resolved in para-diethylbenzene, seven in para-dipropylbenzene, and about nineteen in para-dibutylbenzene. These chains are largely independent of each other as there are no new single-chain conformations induced by the presence of a second chain. A cursory LIF excitation scan of para-dioctylbenzene shows a broad congested spectrum at frequencies consistent with interactions of alkyl chains with the phenyl π cloud.

  1. Seasonal and temporal patterns of NDMA formation potentials in surface waters.

    Science.gov (United States)

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2015-02-01

    The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (NDMA FP showed more variability in spring months, while seasonal mean values remained relatively consistent. The study also showed that watershed characteristics played an important role in the seasonal and temporal patterns. In the two dam-controlled river systems (SW A and G), the NDMA FP levels at the downstream sampling locations were controlled by the NDMA levels in the dams independent of either the increases in discharge rates due to water releases from the dams prior to or during the heavy rain events or intermittent high NDMA FP levels observed at the upstream of dams. The large reservoirs and impoundments on rivers examined in this study appeared serving as an equalization basin for NDMA precursors. On the other hand, in a river without an upstream reservoir (SW E), the NDMA levels were influenced by the ratio of an upstream wastewater treatment plant (WWTP) effluent discharge to the river discharge rate. The impact of WWTP effluent decreased during the high river flow periods due to rain events. Linear regression with independent variables DOC, DON, and sucralose yielded poor correlations with NDMA FP (R(2) NDMA FP (R(2) = 0.53). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Multi-surface segmentation of OCT images with AMD using sparse high order potentials.

    Science.gov (United States)

    Oliveira, Jorge; Pereira, Sérgio; Gonçalves, Luís; Ferreira, Manuel; Silva, Carlos A

    2017-01-01

    In age-related macular degeneration (AMD), the quantification of drusen is important because it is correlated with the evolution of the disease to an advanced stage. Therefore, we propose an algorithm based on a multi-surface framework for the segmentation of the limiting boundaries of drusen: the inner boundary of the retinal pigment epithelium + drusen complex (IRPEDC) and the Bruch's membrane (BM). Several segmentation methods have been considerably successful in segmenting retinal layers of healthy retinas in optical coherence tomography (OCT) images. These methods are successful because they incorporate prior information and regularization. Nonetheless, these factors tend to hinder the segmentation for diseased retinas. The proposed algorithm takes into account the presence of drusen and geographic atrophy (GA) related to AMD by excluding prior information and regularization just valid for healthy regions. However, even with this algorithm, prior information and regularization still cause the oversmoothing of drusen in some locations. Thus, we propose the integration of local shape prior in the form of a sparse high order potentials (SHOPs) into the algorithm to reduce the oversmoothing of drusen. The proposed algorithm was evaluated in a public database. The mean unsigned errors, relative to the average of two experts, for the inner limiting membrane (ILM), IRPEDC and BM were 2.94±2.69, 5.53±5.66 and 4.00±4.00 µ m, respectively. Drusen areas measurements were evaluated, relative to the average of two expert graders, by the mean absolute area difference and overlap ratio, which were 1579.7 ± 2106.8 µ m 2 and 0.78 ± 0.11, respectively.

  3. Cold collisions of SH- with He: Potential energy surface and rate coefficients

    Science.gov (United States)

    Bop, C. T.; Trabelsi, T.; Hammami, K.; Mogren Al Mogren, M.; Lique, F.; Hochlaf, M.

    2017-09-01

    Collisional energy transfer under cold conditions is of great importance from the fundamental and applicative point of view. Here, we investigate low temperature collisions of the SH- anion with He. We have generated a three-dimensional potential energy surface (PES) for the SH-(X1Σ+)-He(1S) van der Waals complex. The ab initio multi-dimensional interaction PES was computed using the explicitly correlated coupled cluster approach with simple, double, and perturbative triple excitation in conjunction with the augmented-correlation consistent-polarized valence triple zeta Gaussian basis set. The PES presents two minima located at linear geometries. Then, the PES was averaged over the ground vibrational wave function of the SH- molecule and the resulting two-dimensional PES was incorporated into exact quantum mechanical close coupling calculations to study the collisional excitation of SH- by He. We have computed inelastic cross sections among the 11 first rotational levels of SH- for energies up to 2500 cm-1. (De-)excitation rate coefficients were deduced for temperatures ranging from 1 to 300 K by thermally averaging the cross sections. We also performed calculations using the new PES for a fixed internuclear SH- distance. Both sets of results were found to be in reasonable agreement despite differences existing at low temperatures confirming that accurate predictions require the consideration of all internal degrees of freedom in the case of molecular hydrides. The rate coefficients presented here may be useful in interpreting future experimental work on the SH- negative ion colliding with He as those recently done for the OH--He collisional system as well as for possible astrophysical applications in case SH- would be detected in the interstellar medium.

  4. Surface localization of glucosylceramide during Cryptococcus neoformans infection allows targeting as a potential antifungal.

    Directory of Open Access Journals (Sweden)

    Ryan Rhome

    Full Text Available Cryptococcus neoformans (Cn is a significant human pathogen that, despite current treatments, continues to have a high morbidity rate especially in sub-Saharan Africa. The need for more tolerable and specific therapies has been clearly shown. In the search for novel drug targets, the gene for glucosylceramide synthase (GCS1 was deleted in Cn, resulting in a strain (Δgcs1 that does not produce glucosylceramide (GlcCer and is avirulent in mouse models of infection. To understand the biology behind the connection between virulence and GlcCer, the production and localization of GlcCer must be characterized in conditions that are prohibitive to the growth of Δgcs1 (neutral pH and high CO(2. These prohibitive conditions are physiologically similar to those found in the extracellular spaces of the lung during infection. Here, using immunofluorescence, we have shown that GlcCer localization to the cell surface is significantly increased during growth in these conditions and during infection. We further seek to exploit this localization by treatment with Cerezyme (Cz, a recombinant enzyme that metabolizes GlcCer, as a potential treatment for Cn. Cz treatment was found to reduce the amount of GlcCer in vitro, in cultures, and in Cn cells inhabiting the mouse lung. Treatment with Cz induced a membrane integrity defect in wild type Cn cells similar to Δgcs1. Cz treatment also reduced the in vitro growth of Cn in a dose and condition dependent manner. Finally, Cz treatment was shown to have a protective effect on survival in mice infected with Cn. Taken together, these studies have established the legitimacy of targeting the GlcCer and other related sphingolipid systems in the development of novel therapeutics.

  5. UV laser-ablated surface textures as potential regulator of cellular response.

    Science.gov (United States)

    Chandra, Prafulla; Lai, Karen; Sung, Hak-Joon; Murthy, N Sanjeeva; Kohn, Joachim

    2010-06-01

    Textured surfaces obtained by UV laser ablation of poly(ethylene terephthalate) films were used to study the effect of shape and spacing of surface features on cellular response. Two distinct patterns, cones and ripples with spacing from 2 to 25 μm, were produced. Surface features with different shapes and spacings were produced by varying pulse repetition rate, laser fluence, and exposure time. The effects of the surface texture parameters, i.e., shape and spacing, on cell attachment, proliferation, and morphology of neonatal human dermal fibroblasts and mouse fibroblasts were studied. Cell attachment was the highest in the regions with cones at ∼4 μm spacing. As feature spacing increased, cell spreading decreased, and the fibroblasts became more circular, indicating a stress-mediated cell shrinkage. This study shows that UV laser ablation is a useful alternative to lithographic techniques to produce surface patterns for controlling cell attachment and growth on biomaterial surfaces.

  6. Threshold Switching Induced by Controllable Fragmentation in Silver Nanowire Networks.

    Science.gov (United States)

    Wan, Tao; Pan, Ying; Du, Haiwei; Qu, Bo; Yi, Jiabao; Chu, Dewei

    2018-01-24

    Silver nanowire (Ag NW) networks have been widely studied because of a great potential in various electronic devices. However, nanowires usually undergo a fragmentation process at elevated temperatures due to the Rayleigh instability that is a result of reduction of surface/interface energy. In this case, the nanowires become completely insulating due to the formation of randomly distributed Ag particles with a large distance and further applications are hindered. Herein, we demonstrate a novel concept based on the combination of ultraviolet/ozone irradiation and a low-temperature annealing process to effectively utilize and control the fragmentation behavior to realize the resistive switching performances. In contrast to the conventional fragmentation, the designed Ag/AgO x interface facilitates a unique morphology of short nanorod-like segments or chains of tiny Ag nanoparticles with a very small spacing distance, providing conduction paths for achieving the tunneling process between the isolated fragments under the electric field. On the basis of this specific morphology, the Ag NW network has a tunable resistance and shows volatile threshold switching characteristics with a high selectivity, which is the ON/OFF current ratio in selector devices. Our concept exploits a new function of Ag NW network, i.e., resistive switching, which can be developed by designing a controllable fragmentation.

  7. [Age-related characteristics of the surface bioelectrical potential of human, canine and rat teeth and features of its distribution over the surface of the crown].

    Science.gov (United States)

    Donskiĭ, G I; Pavliuchenko, O N; Palamarchuk, Iu N; Makarova, N Ia

    1989-01-01

    Using a digital electron voltmeter, bioelectrical potentials (BEPs) of dental crowns have been recorded in 180 patients, 36 dogs, and 93 white non-inbred rats. It has been established that the surface BEP is a marker of dental enamel maturation and does not depend on the species of mammals. On the other hand maturation processes differ in their rate on the cutting edge, equator, and neck: with advancing age algebraic difference between the magnitudes of surface BEPs decreases in humans and increases in dogs and rats.

  8. Effects of microwave electric fields on the translational diffusion of dipolar molecules in surface potential: A simulation study

    Science.gov (United States)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2018-01-01

    Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.

  9. An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method

    International Nuclear Information System (INIS)

    Chen, Jun; Sun, Zhigang; Zhang, Dong H.

    2015-01-01

    A three dimensional potential energy surface for the F + H 2 → HF + H reaction has been computed by the spin unrestricted coupled cluster method with singles, doubles, triples, and perturbative quadruples [UCCSDT(2) Q ] using the augmented correlation-consistent polarised valence quadruple zeta basis set for the fluorine atom and the correlation-consistent polarised valence quadruple zeta basis set for the hydrogen atom. All the calculations are based on the restricted open-shell Hartree-Fock orbitals, together with the frozen core approximations, and the UCCSD(T)/complete basis set (CBS) correction term was included. The global potential energy surface was calculated by fitting the sampled ab initio points without any scaling factor for the correlation energy part using a neutral network function method. Extensive dynamics calculations have been carried out on the potential energy surface. The reaction rate constants, integral cross sections, product rotational states distribution, and forward and backward scattering as a function of collision energy of the F + HD → HF + D, F + HD → DF + H, and F + H 2 reaction, were calculated by the time-independent quantum dynamics scattering theory using the new surface. The satisfactory agreement with the reported experimental observations previously demonstrates the accuracy of the new potential energy surface

  10. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems.

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui

    2016-01-07

    The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.

  11. The size prediction of potential inclusions embedded in the sub-surface of fused silica by damage morphology

    Directory of Open Access Journals (Sweden)

    Gao Xiang

    2017-04-01

    Full Text Available A model for predicting the size ranges of different potential inclusions initiating damage on the surface of fused silica has been presented. This accounts for the heating of nanometric inclusions whose absorptivity is described based on Mie Theory. The depth profile of impurities has been measured by ICP-OES. By the measured temporal pulse profile on the surface of fused silica, the temperature and thermal stress has been calculated. Furthermore, considering the limit conditions of temperature and thermal stress strength for different damage morphologies, the size range of potential inclusions for fused silica is discussed.

  12. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers.

    Science.gov (United States)

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-07-21

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.

  13. Surface potentials of (111), (110) and (100) oriented CeO{sub 2−x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wardenga, Hans F.; Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de

    2016-07-30

    Highlights: • Fermi level, work function and ionization potential of CeO{sub 2} thin films determined. • The state of the surface is varied by different deposition conditions and post-deposition treatments. • The ionization potential varies more than 2 eV. This is much higher than for other oxide surfaces. • The Fermi level position varies only slightly upon surface oxidation and reduction. • A Ce{sup 3+} concentration of >10% remains on the most strongly oxidized surfaces. - Abstract: Differently oriented CeO{sub 2} thin films were prepared by radio frequency magnetron sputter deposition from a nominally undoped CeO{sub 2} target. (111), (110) and (100) oriented films were achieved by deposition onto Al{sub 2}O{sub 3}(0001)/Pt(111), MgO(110)/Pt(110) and SrTiO{sub 3}:Nb(100) substrates, respectively. Epitaxial growth is verified using X-ray diffraction analysis. The films were analyzed by in situ photoelectron spectroscopy to determine the ionization potential, work function, Fermi level position and Ce{sup 3+} concentration at the surface in dependence of crystal orientation, deposition conditions and post-deposition treatment in reducing and oxidizing atmosphere. We observed a very high variation of the work function and ionization potential of more than 2 eV for all surface orientations, while the Fermi level varies by only 0.3 eV within the energy gap. The work function generally decreases with increasing Ce{sup 3+} surface concentration but comparatively high Ce{sup 3+} concentrations remain even after strongly oxidizing treatments. This is related to the presence of subsurface oxygen vacancies.

  14. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities

    Science.gov (United States)

    Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of

  15. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles

    Science.gov (United States)

    Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo

    2018-04-01

    Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.

  16. Influence of Surface Charge/Potential of a Gold Electrode on the Adsorptive/Desorptive Behaviour of Fibrinogen

    International Nuclear Information System (INIS)

    Dargahi, Mahdi; Konkov, Evgeny; Omanovic, Sasha

    2015-01-01

    Highlights: • Adsorptive/desorptive behavior of fibrinogen (FG) on an electrochemically-polarized gold substrate is reported. • The adsorption affinity of FG (afFG) is constant on a negatively-charged substrate surface. • The afFG increases linearly with an increase in positive substrate surface charge. • The FG adsorption kinetics is strongly dependant on substrate surface charge. • The adsorbed FG layer can be desorbed by electrochemical evolution of hydrogen and oxygen. - Abstract: The effect of gold substrate surface charge (potential) on adsorptive/desorptive behaviour of fibrinogen (FG) was studied by employing differential capacitance (DC) and polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS), in terms of FG adsorption thermodynamics, kinetics, and desorption kinetics. The gold substrate surface charge was modulated in-situ within the electrochemical double-layer region by means of electrochemical potentiostatic polarization in a FG-containing electrolyte, thus avoiding the interference of other physico-chemical properties of the gold surface on FG’s interfacial behaviour. The FG adsorption equilibrium was modeled using the Langmuir isotherm. Highly negative values of apparent Gibbs free energy of adsorption (ranging from from −52.1 ± 0.4 to −55.8 ± 0.8 kJ mol −1 , depending on the FG adsorption potential) indicated a highly spontaneous and strong adsorption of FG onto the gold surface. The apparent Gibbs free energy of adsorption was found to be independent of surface charge when the surface was negatively charged. However, when the gold surface was positively charged, the apparent Gibbs free energy of adsorption exhibited a pronounced linear relationship with the surface charge, shifting to more negative values with an increase in positive electrode potential. The adsorption kinetics of FG was also found to be dependent on gold surface charge in a similar manner to the apparent Gibbs free energy of adsorption

  17. Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data

    International Nuclear Information System (INIS)

    Lukač, Niko; Žlaus, Danijel; Seme, Sebastijan; Žalik, Borut; Štumberger, Gorazd

    2013-01-01

    Highlights: ► A new method for estimating and rating buildings roofs’ solar potential is presented. ► Considering LiDAR geospatial data together with pyranometer measurements. ► Use of multi-resolution shadowing model with new heuristic vegetation shadowing. ► High correlation between estimated solar potential and onsite measurements. -- Abstract: The roof surfaces within urban areas are constantly attracting interest regarding the installation of photovoltaic systems. These systems can improve self-sufficiency of electricity supply, and can help to decrease the emissions of greenhouse gases throughout urban areas. Unfortunately, some roof surfaces are unsuitable for installing photovoltaic systems. This presented work deals with the rating of roof surfaces within urban areas regarding their solar potential and suitability for the installation of photovoltaic systems. The solar potential of a roof’s surface is determined by a new method that combines extracted urban topography from LiDAR data with the pyranometer measurements of global and diffuse solar irradiances. Heuristic annual vegetation shadowing and a multi-resolution shadowing model, complete the proposed method. The significance of different influential factors (e.g. shadowing) was analysed extensively. A comparison between the results obtained by the proposed method and measurements performed on an actual PV power plant showed a correlation agreement of 97.4%.

  18. Accurate double many-body expansion potential energy surface of HS2A2A′) by scaling the external correlation

    International Nuclear Information System (INIS)

    Zhang Lu-Lu; Song Yu-Zhi; Gao Shou-Bao; Zhang Yuan; Meng Qing-Tian

    2016-01-01

    A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS 2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pV Q Z basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol −1 . The topographical features of the HS 2 (A 2 A′) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS 2 (A 2 A′) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. (paper)

  19. Sudden oak death-caused changes to surface fuel loading and potential fire behavior in Douglas-fir-tanoak forests

    Science.gov (United States)

    Y.S. Valachovic; C.A. Lee; H. Scanlon; J.M. Varner; R. Glebocki; B.D. Graham; D.M. Rizzo

    2011-01-01

    We compared stand structure and fuel loading in northwestern California forests invaded by Phytophthora ramorum, the cause of sudden oak death, to assess whether the continued presence of this pathogen alters surface fuel loading and potential fire behavior in ways that may encumber future firefighting response. To attempt to account for these...

  20. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    International Nuclear Information System (INIS)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-01-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO 2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na 2 Ti 2 O 5 ·H 2 O) particles (W = 9–12 nm and L = 82–115 nm) and rice like pure anatase-TNR particles (W = 8–13 nm and L = 81–134 nm) are obtained by the hydrothermal treatment of P25-TiO 2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = −2.82 (P25-TiO 2 ), −13.5 (TNT) and −22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C 9 H 10 ClN 5 O 2 ) degradation to CO 2 formation under UV irradiation because of its largest surface area 176 m 2 g −1 among the catalysts studied.

  1. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    Science.gov (United States)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na2Ti2O5·H2O) particles (W = 9-12 nm and L = 82-115 nm) and rice like pure anatase-TNR particles (W = 8-13 nm and L = 81-134 nm) are obtained by the hydrothermal treatment of P25-TiO2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = -2.82 (P25-TiO2), -13.5 (TNT) and -22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C9H10ClN5O2) degradation to CO2 formation under UV irradiation because of its largest surface area 176 m2 g-1 among the catalysts studied.

  2. Analysis of Large Array Surface Myoelectric Potentials for the Low Back Muscles

    National Research Council Canada - National Science Library

    Reger, Steven

    2001-01-01

    .... The surface EMC distribution from the low back of 161 healthy and 44 acute LBP subjects were collected in three minimum stress postural positions including standing, 20 degrees of lumbar flexion...

  3. Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons.

    Science.gov (United States)

    Kerckhoff, Joseph; Mabuchi, Hideo

    2009-08-17

    Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on (39)K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions. (c) 2009 Optical Society of America

  4. Potential energy surfaces for ion-molecule reactions. Intersection of the 3A2 and 2B1 surfaces of NH+2

    International Nuclear Information System (INIS)

    Bender, C.F.; Meadows, J.H.; Schaefer, H.F. III.

    1976-04-01

    A theoretical study of two of the low-lying NH 2 + potential energy surfaces was performed. The intersection and avoided intersection (for C/sub s/ geometries) of the lowest 3 A 2 and 3 B 1 surfaces allows a pathway by which the ground state of HH 2 + may be accessed without a potential barrier. The electronic structure calculations employed a double zeta plus polarization basis set, and correlation effects were taken into account using the newly developed Vector Method (VM). To test the validity of this basis, additional self-consistent-field studies were performed using a very large contracted gaussian basis N(13s 8p 3d/9s 6p 3d), H(6s 2p/4s 2p). The 3 A 2 surface, on which N + and H 2 may approach, has a surprising deep potential minimum, approximately 60 kcal/mole, occurring at r/sub e/(NH) approximately 1.26 A and theta/sub e/(HNH) approximately 43 0 . Electron correlation is responsible for about 15 kcal of this well depth, which appears fairly insensitive to extension of the basis set beyond the double zeta plus polarization level. The line of intersection (or seam) of the 3 A 2 and 3 B 1 surfaces is presented both numerically and pictorially. The minimum energy along this seam occurs at approximately 51 kcal below separated N + + H 2 . Thus for sufficiently low energies one expects N + - H 2 collisions to provide considerable ''complex formation.'' 3 figs, 1 table, 28 refs

  5. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young's modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young's modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  6. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-08-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  7. Mapping the environmental risk potential on surface water of pesticide contamination in the Prosecco's vineyard terraced landscape

    Science.gov (United States)

    Pizarro, Patricia; Ferrarese, Francesco; Loddo, Donato; Eugenio Pappalardo, Salvatore; Varotto, Mauro

    2016-04-01

    Intensive cropping systems today represent a paramount issue in terms of environmental impacts, since agricultural pollutants can constitute a potential threat to surface water, non-target organisms and aquatic ecosystems. Levels of pesticide concentrations in surface waters are indeed unquestionably correlated to crop and soil management practices at field-scale. Due to the numerous applications of pesticides required, orchards and vineyards can represent relevant non-point sources for pesticide contamination of water bodies, mainly prompted by soil erosion, surface runoff and spray drift. To reduce risks of pesticide contamination of surface water, the Directive 2009/128/CET imposed the local implementation of agricultural good practices and mitigation actions such as the use of vegetative buffer filter strips and hedgerows along river and pond banks. However, implementation of mitigation actions is often difficult, especially in extremely fragmented agricultural landscapes characterized by a complex territorial matrix set up on urban sprawling, frequent surface water bodies, important geomorphological processes and protected natural areas. Typically, such landscape matrix is well represented by the, Prosecco-DOCG vineyards area (NE of Italy, Province of Treviso) which lays on hogback hills of conglomerate, marls and sandstone that ranges between 50 and 500 m asl. Moreover such vineyards landscape is characterized by traditional and non-traditional agricultural terraces The general aim of this paper is to identify areas of surface water bodies with high potential risk of pesticide contamination from surrounding vineyards in the 735 ha of Lierza river basin (Refrontolo, TV), one of the most representative terraced landscape of the Prosecco-DOCG area. Specific aims are i) mapping terraced Prosecco-DOCG vineyards, ii) classifying potential risk from pesticide of the different areas. Remote sensing technologies such as four bands aerial photos (RGB+NIR) and Light

  8. Repetitive switching for an electromagnetic rail gun

    Science.gov (United States)

    Gruden, J. M.

    1983-12-01

    Previous testing on a repetitive opening switch for inductive energy storage has proved the feasibility of the rotary switch concept. The concept consists of a rotating copper disk (rotor) with a pie-shaped insulator section and brushes which slide along each of the rotor surfaces. While on top of the copper surface, the brushes and rotor conduct current allowing the energy storage inductor to charge. When the brushes slide onto the insulator section, the current cannot pass through the rotor and is diverted into the load. This study investigates two new brush designs and a rotor modification designed to improve the current commutating capabilities of the switch. One brush design (fringe fiber) employs carbon fibers on the leading and trailing edge of the brush to increase the resistive commutating action as the switch opens and closes. The other brush design uses fingers to conduct current to the rotor surface, effectively increasing the number of brush contact points. The rotor modification was the placement of tungsten inserts at the copper-insulator interfaces.

  9. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    Science.gov (United States)

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  10. Optical computer switching network

    Science.gov (United States)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  11. Optically triggered high voltage switch network and method for switching a high voltage

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  12. Optically triggered high voltage switch network and method for switching a high voltage

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Andexler, George (Everett, WA); Silberkleit, Lee I. (Mountlake Terrace, WA)

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  13. Electrically switched cesium ion exchange. FY 1996 annual report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, D.

    1996-12-01

    An electrochemical method for metal ion separations, called Electrically Switched Ion Exchange, is described. Direct oxidation and reduction of an electroactive film attached to an electrode surface is used to load and unload the film with alkali metal cations. The electroactive films under investigation are Ni hexacyanoferrates, which are deposited on the surface by applying an anodic potential to a Ni electrode in a solution containing the ferricyanide anion. Reported film preparation procedures were modified to produce films with improved capacity and stability. Electrochemical behavior of the derivatized electrodes were investigated using cyclic voltammetry and chronocoulometry. The films show selectivity for Cs in concentrated sodium solutions. Raman spectroscopy was used to monitor changes in oxidation state of the film and imaging experiments have demonstrated that the redox reactions are spatially homogenous across the film. Requirements for a bench scale unit were identified

  14. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    Science.gov (United States)

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  15. Wafer-level packaged RF-MEMS switches fabricated in a CMOS fab

    NARCIS (Netherlands)

    Tilmans, H.A.C.; Ziad, H.; Jansen, Henricus V.; Di Monaco, O.; Jourdain, A.; De Raedt, W.; Rottenberg, X.; De Backer, E.; Decoussernaeker, A.; Baert, K.

    2001-01-01

    Reports on wafer-level packaged RF-MEMS switches fabricated in a commercial CMOS fab. Switch fabrication is based on a metal surface micromachining process. A novel wafer-level packaging scheme is developed, whereby the switches are housed in on-chip sealed cavities using benzocyclobutene (BCB) as

  16. Wildfire potential mapping over the state of Mississippi: A land surface modeling approach

    Science.gov (United States)

    William H. Cooke; Georgy V. Mostovoy; Valentine G. Anantharaj; W. Matt Jolly

    2012-01-01

    A relationship between the likelihood of wildfires and various drought metrics (soil moisture-based fire potential indices) were examined over the southern part of Mississippi. The following three indices were tested and used to simulate spatial and temporal wildfire probability changes: (1) the accumulated difference between daily precipitation and potential...

  17. Stochastic Switching Dynamics

    DEFF Research Database (Denmark)

    Simonsen, Maria

    This thesis treats stochastic systems with switching dynamics. Models with these characteristics are studied from several perspectives. Initially in a simple framework given in the form of stochastic differential equations and, later, in an extended form which fits into the framework of sliding...... mode control. It is investigated how to understand and interpret solutions to models of switched systems, which are exposed to discontinuous dynamics and uncertainties (primarily) in the form of white noise. The goal is to gain knowledge about the performance of the system by interpreting the solution...

  18. Constructing polyatomic potential energy surfaces by interpolating diabatic Hamiltonian matrices with demonstration on green fluorescent protein chromophore

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Woo; Rhee, Young Min, E-mail: ymrhee@postech.ac.kr [Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 790-784 (Korea, Republic of); Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

    2014-04-28

    Simulating molecular dynamics directly on quantum chemically obtained potential energy surfaces is generally time consuming. The cost becomes overwhelming especially when excited state dynamics is aimed with multiple electronic states. The interpolated potential has been suggested as a remedy for the cost issue in various simulation settings ranging from fast gas phase reactions of small molecules to relatively slow condensed phase dynamics with complex surrounding. Here, we present a scheme for interpolating multiple electronic surfaces of a relatively large molecule, with an intention of applying it to studying nonadiabatic behaviors. The scheme starts with adiabatic potential information and its diabatic transformation, both of which can be readily obtained, in principle, with quantum chemical calculations. The adiabatic energies and their derivatives on each interpolation center are combined with the derivative coupling vectors to generate the corresponding diabatic Hamiltonian and its derivatives, and they are subsequently adopted in producing a globally defined diabatic Hamiltonian function. As a demonstration, we employ the scheme to build an interpolated Hamiltonian of a relatively large chromophore, para-hydroxybenzylidene imidazolinone, in reference to its all-atom analytical surface model. We show that the interpolation is indeed reliable enough to reproduce important features of the reference surface model, such as its adiabatic energies and derivative couplings. In addition, nonadiabatic surface hopping simulations with interpolation yield population transfer dynamics that is well in accord with the result generated with the reference analytic surface. With these, we conclude by suggesting that the interpolation of diabatic Hamiltonians will be applicable for studying nonadiabatic behaviors of sizeable molecules.

  19. Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks

    Science.gov (United States)

    Pukrittayakamee, A.; Malshe, M.; Hagan, M.; Raff, L. M.; Narulkar, R.; Bukkapatnum, S.; Komanduri, R.

    2009-04-01

    An improved neural network (NN) approach is presented for the simultaneous development of accurate potential-energy hypersurfaces and corresponding force fields that can be utilized to conduct ab initio molecular dynamics and Monte Carlo studies on gas-phase chemical reactions. The method is termed as combined function derivative approximation (CFDA). The novelty of the CFDA method lies in the fact that although the NN has only a single output neuron that represents potential energy, the network is trained in such a way that the derivatives of the NN output match the gradient of the potential-energy hypersurface. Accurate force fields can therefore be computed simply by differentiating the network. Both the computed energies and the gradients are then accurately interpolated using the NN. This approach is superior to having the gradients appear in the output layer of the NN because it greatly simplifies the required architecture of the network. The CFDA permits weighting of function fitting relative to gradient fitting. In every test that we have run on six different systems, CFDA training (without a validation set) has produced smaller out-of-sample testing error than early stopping (with a validation set) or Bayesian regularization (without a validation set). This indicates that CFDA training does a better job of preventing overfitting than the standard methods currently in use. The training data can be obtained using an empirical potential surface or any ab initio method. The accuracy and interpolation power of the method have been tested for the reaction dynamics of H+HBr using an analytical potential. The results show that the present NN training technique produces more accurate fits to both the potential-energy surface as well as the corresponding force fields than the previous methods. The fitting and interpolation accuracy is so high (rms error=1.2 cm-1) that trajectories computed on the NN potential exhibit point-by-point agreement with corresponding

  20. Resistive Switching Characteristics in Electrochemically Synthesized ZnO Films

    Directory of Open Access Journals (Sweden)

    Shuhan Jing

    2015-04-01

    Full Text Available The semiconductor industry has long been seeking a new kind of non-volatile memory technology with high-density, high-speed, and low-power consumption. This study demonstrated the electrochemical synthesis of ZnO films without adding any soft or hard templates. The effect of deposition temperatures on crystal structure, surface morphology and resistive switching characteristics were investigated. Our findings reveal that the crystallinity, surface morphology and resistive switching characteristics of ZnO thin films can be well tuned by controlling deposition temperature. A conducting filament based model is proposed to explain the switching mechanism in ZnO thin films.

  1. Effects of photovoltaic module soiling on glass surface resistance and potential-induced degradation

    DEFF Research Database (Denmark)

    Hacke, Peter; Burton, Patrick; Hendrickson, Alexander

    2015-01-01

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60°C. Sea salt yielded a 3.5 orders of magnitude decrease in resistance on the glass surface when ...

  2. Fabrication of surface micromachined ain piezoelectric microstructures and its potential apllication to rf resonators

    NARCIS (Netherlands)

    Saravanan, S.; Saravanan, S.; Berenschot, Johan W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2005-01-01

    We report on a novel microfabrication method to fabricate aluminum nitride (AlN) piezoelectric microstructures down to 2 microns size by a surface micromachining process. Highly c-axis oriented AlN thin films are deposited between thin Cr electrodes on polysilicon structural layers by rf reactive

  3. Physico-chemical properties and healing capacity of potentially bioactive titanium surface

    Czech Academy of Sciences Publication Activity Database

    Strnad, J.; Strnad, Z.; Šesták, Jaroslav

    2007-01-01

    Roč. 88, č. 3 (2007), s. 775-779 ISSN 1388-6150 R&D Projects: GA AV ČR IAA100100639 Institutional research plan: CEZ:AV0Z10100521 Keywords : implants * surface * titanium * bioactivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.483, year: 2007

  4. The sign, magnitude and potential drivers of change in surface water extent in Canadian tundra

    Science.gov (United States)

    Carroll, Mark L.; Loboda, Tatiana V.

    2018-04-01

    The accelerated rate of warming in the Arctic has considerable implications for all components of ecosystem functioning in the High Northern Latitudes. Changes to hydrological cycle in the Arctic are particularly complex as the observed and projected warming directly impacts permafrost and leads to variable responses in surface water extent which is currently poorly characterized at the regional scale. In this study we take advantage of the 30 plus years of medium resolution (30 m) Landsat data to quantify the spatial patterns of change in the extent of water bodies in the Arctic tundra in Nunavut, Canada. Our results show a divergent pattern of change—growing surface water extent in the north-west and shrinking in the south-east—which is not a function of the overall distribution of surface water in the region. The observed changes cannot be explained by latitudinal stratification, nor is it explained by available temperature and precipitation records. However, the sign of change appears to be consistent within the boundaries of individual watersheds defined by the Canada National Hydro Network based on the random forest analysis. Using land cover maps as a proxy for ecological function we were able to link shrinking tundra water bodies to substrates with shallow soil layers (i.e. bedrock and barren landscapes) with a moderate correlation (R 2 = 0.46, p evaporation as an important driver of surface water decrease in these cases.

  5. Internal oscillating current-sustained RF plasmas: Parameters, stability, and potential for surface engineering

    DEFF Research Database (Denmark)

    Ostrikov, K.; Tsakadze, E.L.; Tsakadze, Z.L.

    2005-01-01

    . Moreover, under certain conditions, the plasma becomes unstable due to spontaneous transitions between low-density (electrostatic, E) and high-density (electromagnetic, H) operating modes. Excellent uniformity of high-density plasmas makes the plasma reactor promising for various plasma processing...... applications and surface engineering. (c) 2005 Elsevier B.V. All rights reserved....

  6. Plasma membrane surface potential: dual effects upon ion uptake and toxicity

    Science.gov (United States)

    Electrical properties of plasma membranes (PMs), partially controlled by the ionic composition of the bathing medium, play significant roles in the distribution of ions at the exterior surface of PMs and in the transport of ions across PMs. The effects of coexistent cations (commonly Al3+, Ca2+, Mg...

  7. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    Science.gov (United States)

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The Role of Code-Switching in Bilingual Creativity

    Science.gov (United States)

    Kharkhurin, Anatoliy V.; Wei, Li

    2015-01-01

    This study further explores the theme of bilingual creativity with the present focus on code-switching. Specifically, it investigates whether code-switching practice has an impact on creativity. In line with the previous research, selective attention was proposed as a potential cognitive mechanism, which on the one hand would benefit from…

  9. Appearance of the minority dz2 surface state and disappearance of the image-potential state: Criteria for clean Fe(001)

    Science.gov (United States)

    Eibl, Christian; Schmidt, Anke B.; Donath, Markus

    2012-10-01

    The unoccupied surface electronic structure of clean and oxidized Fe(001) was studied with spin-resolved inverse photoemission and target current spectroscopy. For the clean surface, we detected a dz2 surface state with minority spin character just above the Fermi level, while the image-potential surface state disappears. The opposite is observed for the ordered p(1×1)O/Fe(001) surface: the dz2-type surface state is quenched, while the image-potential state shows up as a pronounced feature. This behavior indicates enhanced surface reflectivity at the oxidized surface. The appearance and disappearance of specific unoccupied surface states prove to be decisive criteria for a clean Fe(001) surface. In addition, enhanced spin asymmetry in the unoccupied states is observed for the oxidized surface. Our results have implications for the use of clean and oxidized Fe(001) films as spin-polarization detectors.

  10. Very high plasma switches. Basic plasma physics and switch technology

    International Nuclear Information System (INIS)

    Doucet, H.J.; Roche, M.; Buzzi, J.M.

    1988-01-01

    A review of some high power switches recently developed for very high power technology is made with a special attention to the aspects of plasma physics involved in the mechanisms, which determine the limits of the possible switching parameters

  11. High-Voltage MOSFET Switching Circuit

    Science.gov (United States)

    Jensen, Kenneth A.

    1995-01-01

    Circuit reliably switches power at supply potential of minus 1,500 V, with controlled frequency and duty cycle. Used in argon-plasma ion-bombardment equipment for texturing copper electrodes, as described in "Texturing Copper To Reduce Secondary Emission of Electrons" (LEW-15898), also adapted to use in powering gaseous flash lamps and stroboscopes.

  12. Ultrafast gas switching experiments

    International Nuclear Information System (INIS)

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1993-01-01

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes Khz at > 100 kV/m E field

  13. An integrated circuit switch

    Science.gov (United States)

    Bonin, E. L.

    1969-01-01

    Multi-chip integrated circuit switch consists of a GaAs photon-emitting diode in close proximity with S1 phototransistor. A high current gain is obtained when the transistor has a high forward common-emitter current gain.

  14. The Octopus switch

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    2000-01-01

    This chapter1 discusses the interconnection architecture of the Mobile Digital Companion. The approach to build a low-power handheld multimedia computer presented here is to have autonomous, reconfigurable modules such as network, video and audio devices, interconnected by a switch rather than by a

  15. Untriggered water switching

    International Nuclear Information System (INIS)

    Van Devender, J.P.; Martin, T.H.

    Recent experiments indicate that synchronous untriggered multichannel switching in water will permit the development of relatively simple, ultra-low impedance, short pulse, relativistic electron beam (REB) accelerators. These experiments resulted in the delivery of a 1.5 MV, 0.75 MA, 15 ns pulse into a two-ohm line with a current risetime of 2 x 10 14 A/sec. The apparatus consisted of a 3 MV Marx generator and a series of three 112 cm wide strip water lines separated by two edge-plane water-gap switches. The Marx generator charged the first line in less than 400 ns. The first switch then formed five or more channels. The second line was charged in 60 ns and broke down with 10 to 25 channels at a mean field of 1.6 MV/cm. The closure time of each spark channel along both switches was measured with a streak camera and showed low jitter. The resulting fast pulse line construction is simpler and should provide considerable costs savings from previous designs. Multiples of these low impedance lines in parallel can be employed to obtain power levels in the 10 14 W range for REB fusion studies. (U.S.)

  16. Nanoscale Electrical Potential and Roughness of a Calcium Phosphate Surface Promotes the Osteogenic Phenotype of Stromal Cells

    Directory of Open Access Journals (Sweden)

    Igor A. Khlusov

    2018-06-01

    Full Text Available Mesenchymal stem cells (MSCs and osteoblasts respond to the surface electrical charge and topography of biomaterials. This work focuses on the connection between the roughness of calcium phosphate (CP surfaces and their electrical potential (EP at the micro- and nanoscales and the possible role of these parameters in jointly affecting human MSC osteogenic differentiation and maturation in vitro. A microarc CP coating was deposited on titanium substrates and characterized at the micro- and nanoscale. Human adult adipose-derived MSCs (hAMSCs or prenatal stromal cells from the human lung (HLPSCs were cultured on the CP surface to estimate MSC behavior. The roughness, nonuniform charge polarity, and EP of CP microarc coatings on a titanium substrate were shown to affect the osteogenic differentiation and maturation of hAMSCs and HLPSCs in vitro. The surface EP induced by the negative charge increased with increasing surface roughness at the microscale. The surface relief at the nanoscale had an impact on the sign of the EP. Negative electrical charges were mainly located within the micro- and nanosockets of the coating surface, whereas positive charges were detected predominantly at the nanorelief peaks. HLPSCs located in the sockets of the CP surface expressed the osteoblastic markers osteocalcin and alkaline phosphatase. The CP multilevel topography induced charge polarity and an EP and overall promoted the osteoblast phenotype of HLPSCs. The negative sign of the EP and its magnitude at the micro- and nanosockets might be sensitive factors that can trigger osteoblastic differentiation and maturation of human stromal cells.

  17. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO{sub 2} nanostructures of different shapes

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali, E-mail: bpal@thapar.edu

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO{sub 2} catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O) particles (W = 9–12 nm and L = 82–115 nm) and rice like pure anatase-TNR particles (W = 8–13 nm and L = 81–134 nm) are obtained by the hydrothermal treatment of P25-TiO{sub 2} with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = −2.82 (P25-TiO{sub 2}), −13.5 (TNT) and −22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C{sub 9}H{sub 10}ClN{sub 5}O{sub 2}) degradation to CO{sub 2} formation under UV irradiation because of its largest surface area 176 m{sup 2} g{sup −1} among the catalysts studied.

  18. Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter; Burton, Patrick; Hendrickson, Alex; Spartaru, Sergiu; Glick, Stephen; Terwilliger, Kent

    2015-12-03

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 order of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea salt on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.