WorldWideScience

Sample records for surface potential profile

  1. Analytical model of surface potential profiles and transfer characteristics for hetero stacked tunnel field-effect transistors

    Science.gov (United States)

    Xu, Hui Fang; Sun, Wen; Han, Xin Feng

    2018-06-01

    An analytical model of surface potential profiles and transfer characteristics for hetero stacked tunnel field-effect transistors (HS-TFETs) is presented for the first time, where hetero stacked materials are composed of two different bandgaps. The bandgap of the underlying layer is smaller than that of the upper layer. Under different device parameters (upper layer thickness, underlying layer thickness, and hetero stacked materials) and temperature, the validity of the model is demonstrated by the agreement of its results with the simulation results. Moreover, the results show that the HS-TFETs can obtain predominant performance with relatively slow changes of subthreshold swing (SS) over a wide drain current range, steep average subthreshold swing, high on-state current, and large on–off state current ratio.

  2. Exact analytical density profiles and surface tension

    Indian Academy of Sciences (India)

    journal of. May 2005 physics pp. 785–801. Classical charged fluids at equilibrium near ... is provided by the excess surface tension for an air–water interface, which is determined ... the potential drop created by the electric layer which appears as soon as the fluid has ...... radii, by symmetry, the charge density profile is flat,.

  3. Surface, segregation profile for Ni50Pd50(100)

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Ruban, Andrei; Skriver, Hans Lomholt

    1997-01-01

    A recent dynamical LEED study [G.N. Derry, C.B. McVey, P.J. Rous, Surf. Sci. 326 (1995) 59] reported an oscillatory surface segregation profile in the Ni50Pd50(100) system with the surface layer enriched by Pd. We have performed ab-initio total-energy calculations for the surface of this alloy...... system using the coherent potential approximation and obtain an oscillatory segregation profile, in agreement with experiments. We discuss the energetic origin of the oscillatory segregation profile in terms of effective cluster interactions. We include relaxation effects by means of the semi...

  4. Airborne Surface Profiling of Alaskan Glaciers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of glacier outline, laser altimetry profile, and surface elevation change data for 46 glaciers in Alaska and British Columbia, Canada,...

  5. Potential and profile experiments in MM-4

    International Nuclear Information System (INIS)

    Tian Zhongyu; Ming Linzhou; Feng Xiaozhen; Feng Chuntang; Yin Youjun; Liu Yuhua; Wang Jihai

    1988-01-01

    Experimental results in MM-4 are presented. These results show that there were double potential wells and double ion temperatures in the plasma. The mechanism giving rise to such potential profiles can be attributed to the Stormer region in the cusp system and the different operation regimes of the electron gun used. The measured plasma potential was about - 200 - 300V

  6. Potential photosynthesis of crop surfaces.

    NARCIS (Netherlands)

    Wit, de C.T.

    1959-01-01

    A formula for calculating the potential photosynthesis of a closed crop surface is proposed, assuming that the leaves of the crop are not arranged in any definite direction. In the Netherlands, values for potential photosynthesis vary from 290 kg. CH2O/ha./day in June to 50 kg./ha./day in December.

  7. SURFACE BRIGHTNESS PROFILES OF DWARF GALAXIES. I. PROFILES AND STATISTICS

    International Nuclear Information System (INIS)

    Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G.

    2013-01-01

    Radial surface brightness profiles of spiral galaxies are classified into three types: (I) single exponential, or the light falls off with one exponential to a break before falling off (II) more steeply, or (III) less steeply. Profile breaks are also found in dwarf disks, but some dwarf Type IIs are flat or increasing out to a break before falling off. Here we re-examine the stellar disk profiles of 141 dwarfs: 96 dwarf irregulars (dIms), 26 Blue Compact Dwarfs (BCDs), and 19 Magellanic-type spirals (Sms). We fit single, double, or even triple exponential profiles in up to 11 passbands: GALEX FUV and NUV, ground-based UBVJHK and Hα, and Spitzer 3.6 and 4.5 μm. We find that more luminous galaxies have brighter centers, larger inner and outer scale lengths, and breaks at larger radii; dwarf trends with M B extend to spirals. However, the V-band break surface brightness is independent of break type, M B , and Hubble type. Dwarf Type II and III profiles fall off similarly beyond the breaks but have different interiors and IIs break ∼twice as far as IIIs. Outer Type II and III scale lengths may have weak trends with wavelength, but pure Type II inner scale lengths clearly decrease from the FUV to visible bands whereas Type III inner scale lengths increase with redder bands. This suggests the influence of different star formation histories on profile type, but nonetheless the break location is approximately the same in all passbands. Dwarfs continue trends between profile and Hubble types such that later-type galaxies have more Type II but fewer Type I and III profiles than early-type spirals. BCDs and Sms are over-represented as Types III and II, respectively, compared to dIms

  8. Potentials of surfaces in space

    International Nuclear Information System (INIS)

    Whipple, E.C.

    1981-01-01

    The potential of a body in space is determined by a balance between various charging currents such as the transfer of charge from plasma particles, photoemission, and secondary electron emission. These processes are evaluated for bodies in the solar system and in interstellar space under the headings; an overview of charging, survey of early work on charging, charging processes, effects of non-isotropic plasmas and magnetic and electric fields, calculation of surface potentials, differential charging, potential barriers and discharge processes, measurements of potential, potential modification and control on spacecraft, and astrophysical applications. (U.K.)

  9. Doping profile measurement on textured silicon surface

    Science.gov (United States)

    Essa, Zahi; Taleb, Nadjib; Sermage, Bernard; Broussillou, Cédric; Bazer-Bachi, Barbara; Quillec, Maurice

    2018-04-01

    In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.

  10. Design of Softgauge for Surface Profile Evaluation

    International Nuclear Information System (INIS)

    Nie, M Q; Liu, X J; Jiang, X Q

    2006-01-01

    A concept of softgauge has been proposed by ISO in the context of surface texture measurement, in which reference software and reference data are included. In this paper, an effective scheme to build reference software for 2D surface profile measurement is proposed. The advantage of the scheme lies in its effective combination of high numerical calculating capability of MATLAB with perfect interface programming capability of VC. Preliminary reference software is developed, and typical algorithms are tested

  11. Space potential profiles in ELMO Bumpy Torus (EBT) experiment

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Connor, K.A.

    1983-01-01

    Spatially resolved measurements of the electric space potential in the ELMO Bumpy Torus (EBT) have been made by a heavy ion beam probe. The EBT-I device is characterized by positive potentials in the surface plasma the order of 100 V and by a nearly symmetric potential well in the core plasma of up to 300 V with respect to the surface potential. The EBT-S device has a similar potential structure with well depth and peak potential similar to or greater than that of EBT-I. Peak potential and well depth increase as the edge gas pressure is lowered and as the microwave power is increased. The potential structure is strongly linked to the specific heating geometry. The ambipolar electric field is large enough generally to dominate the core electron neoclassical diffusion. The potential profile is approximately parabolic in the core, which is shown to be a natural consequence of the spatially uniform plasma source function

  12. Effects of prebiotic oligosaccharides consumption on the growth and expression profile of cell surface-associated proteins of a potential probiotic Lactobacillus rhamnosus FSMM15.

    Science.gov (United States)

    Murtini, Devi; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Urashima, Tadasu; Fukuda, Kenji

    2016-01-01

    To investigate carbohydrate preference of a potential probiotic, Lactobacillus rhamnosus FSMM15, six prebiotics, including two milk-derived prebiotics, galactooligosaccharides and lacto-N-biose I, and four plant-origin prebiotics, beet oligosaccharide syrup, difructose anhydride III, fructooligosaccharides, and raffinose, were examined. The strain utilized the milk-derived prebiotics at similar levels to glucose but did not utilize the plant-origin ones in the same manner, reflecting their genetic background, which allows them to adapt to dairy ecological niches. These prebiotics had little influence on the expression pattern of cell surface-associated proteins in the strain; however, an ATP-binding cassette transporter substrate-binding protein and a glyceraldehyde-3-phosphate dehydrogenase were suggested to be upregulated in response to carbon starvation stress.

  13. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  14. Corrected body surface potential mapping.

    Science.gov (United States)

    Krenzke, Gerhard; Kindt, Carsten; Hetzer, Roland

    2007-02-01

    In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.

  15. Virtual environment assessment for laser-based vision surface profiling

    Science.gov (United States)

    ElSoussi, Adnane; Al Alami, Abed ElRahman; Abu-Nabah, Bassam A.

    2015-03-01

    Oil and gas businesses have been raising the demand from original equipment manufacturers (OEMs) to implement a reliable metrology method in assessing surface profiles of welds before and after grinding. This certainly mandates the deviation from the commonly used surface measurement gauges, which are not only operator dependent, but also limited to discrete measurements along the weld. Due to its potential accuracy and speed, the use of laser-based vision surface profiling systems have been progressively rising as part of manufacturing quality control. This effort presents a virtual environment that lends itself for developing and evaluating existing laser vision sensor (LVS) calibration and measurement techniques. A combination of two known calibration techniques is implemented to deliver a calibrated LVS system. System calibration is implemented virtually and experimentally to scan simulated and 3D printed features of known profiles, respectively. Scanned data is inverted and compared with the input profiles to validate the virtual environment capability for LVS surface profiling and preliminary assess the measurement technique for weld profiling applications. Moreover, this effort brings 3D scanning capability a step closer towards robust quality control applications in a manufacturing environment.

  16. Atomic profile imaging of ceramic oxide surfaces

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin; Sellar, J.R.

    1989-01-01

    Atomic surface profile imaging is an electron optical technique capable of revealing directly the surface crystallography of ceramic oxides. Use of an image-intensifier with a TV camera allows fluctuations in surface morphology and surface reactivity to be recorded and analyzed using digitized image data. This paper reviews aspects of the electron optical techniques, including interpretations based upon computer-simulation image-matching techniques. An extensive range of applications is then presented for ceramic oxides of commercial interest for advanced materials applications: including uranium oxide (UO 2 ); magnesium and nickel oxide (MgO,NiO); ceramic superconductor YBa 2 Cu 3 O 6.7 ); barium titanate (BaTiO 3 ); sapphire (α-A1 2 O 3 ); haematite (α-Fe-2O 3 ); monoclinic, tetragonal and cubic monocrystalline forms of zirconia (ZrO 2 ), lead zirconium titanate (PZT + 6 mol.% NiNbO 3 ) and ZBLAN fluoride glass. Atomic scale detail has been obtained of local structures such as steps associated with vicinal surfaces, facetting parallel to stable low energy crystallographic planes, monolayer formation on certain facets, relaxation and reconstructions, oriented overgrowth of lower oxides, chemical decomposition of complex oxides into component oxides, as well as amorphous coatings. This remarkable variety of observed surface stabilization mechanisms is discussed in terms of novel double-layer electrostatic depolarization mechanisms, as well as classical concepts of the physics and chemistry of surfaces (ionization and affinity energies and work function). 46 refs., 16 figs

  17. Shallow surface depth profiling with atomic resolution

    International Nuclear Information System (INIS)

    Xi, J.; Dastoor, P.C.; King, B.V.; O'Connor, D.J.

    1999-01-01

    It is possible to derive atomic layer-by-layer composition depth profiles from popular electron spectroscopic techniques, such as X-ray photoelectron spectroscopy (XPS) or Auger electron spectroscopy (AES). When ion sputtering assisted AES or XPS is used, the changes that occur during the establishment of the steady state in the sputtering process make these techniques increasingly inaccurate for depths less than 3nm. Therefore non-destructive techniques of angle-resolved XPS (ARXPS) or AES (ARAES) have to be used in this case. In this paper several data processing algorithms have been used to extract the atomic resolved depth profiles of a shallow surface (down to 1nm) from ARXPS and ARAES data

  18. Consumers and green electricity : profiling potential purchasers

    International Nuclear Information System (INIS)

    Rowlands, I.; Scott, D.; Parker, P.

    2001-01-01

    Electricity markets around the world are being opened to competition and environmental concerns are prompting consumers to consider buying electricity that has been generated by renewable energy sources such as solar or wind power. This report profiles the potential purchaser of such green electricity. It presents 3 sets of hypotheses, each drawing upon the literature on green product purchasers. It is suggested that those who are willing to pay higher premiums for green electricity are likely to have certain demographic characteristics and social values. This study is based on a case-study of a survey conducted in the Waterloo region of southern Ontario, Canada, the objective of which was to determine what kind of people are potential green electricity purchasers. Results were presented to power managers and marketers. A 158-item survey was sent to 1,110 individuals, between September 2000 and April 2001. A total of 474 questionnaires were answered, for a response rate of 43 per cent. It was noted that although the response rate was high, the survey may not be representative because the respondents were older, better educated, and wealthier than the general population. In addition, the respondents had previously indicated they were willing to pay $25 for a home energy evaluation, suggesting a special interest in issues regarding energy and the environment. It was determined that attitudinal characteristics, such as liberalism and perceived consumer effectiveness, ideally identify the potential green electricity buyer. 34 refs., 5 tabs

  19. The loaded surface profile: a new technique for the investigation of contact surfaces

    OpenAIRE

    McBride, J.W.

    2006-01-01

    Contact between rough surfaces produces a complex contact profile. The contact area is usually estimated according to roughness statistics in conjunction withsurface models or by examining the surfaces before and after contact. Most of the existing literature on loaded surface profiles is theoretical or numerical in nature. This paper presents a methodology for a new system to measure the loaded surface profile, based on a non-contact 3D laser profiler. The system allows the measurement of...

  20. The prediction of BRDFs from surface profile measurements

    International Nuclear Information System (INIS)

    Church, E.L.; Takacs, P.Z.; Leonard, T.A.

    1989-01-01

    This paper discusses methods of predicting the BRDF of smooth surfaces from profile measurements of their surface finish. The conversion of optical profile data to the BRDF at the same wavelength is essentially independent of scattering models, while the conversion of mechanical measurements, and wavelength scaling in general, are model dependent. Procedures are illustrated for several surfaces, including two from the recent HeNe BRDF round robin, and results are compared with measured data. Reasonable agreement is found except for surfaces which involve significant scattering from isolated surface defects which are poorly sampled in the profile data

  1. Evaporation rates and surface profiles on heterogeneous surfaces with mass transfer and surface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Flytzani-Stephanopoulos, M; Schmidt, L D

    1979-01-01

    Simple models incorporating surface reaction and diffusion of volatile products through a boundary layer are developed to calculate effective rates of evaporation and local surface profiles on surfaces having active and inactive regions. The coupling between surface heterogeneities with respect to a particular reaction and external mass transfer may provide a mechanism for the surface rearrangement and metal loss encountered in several catalytic systems of practical interest. Calculated transport rates for the volatilization of platinum in oxidizing environments and the rearrangement of this metal during the ammonia oxidation reaction agree well with published experimental data.

  2. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  3. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ida [University of Tennessee, Knoxville (UTK); Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  4. Quantitative sputter profiling at surfaces and interfaces

    International Nuclear Information System (INIS)

    Kirschner, J.; Etzkorn, H.W.

    1981-01-01

    The key problem in quantitative sputter profiling, that of a sliding depth scale has been solved by combined Auger/X-ray microanalysis. By means of this technique and for the model system Ge/Si (amorphous) the following questions are treated quantitatively: shape of the sputter profiles when sputtering through an interface and origin of their asymmetry; precise location of the interface plane on the depth profile; broadening effects due to limited depth of information and their correction; origin and amount of bombardment induced broadening for different primary ions and energies; depth dependence of the broadening, and basic limits to depth resolution. Comparisons are made to recent theoretical calculations based on recoil mixing in the collision cascade and very good agreement is found

  5. Characterization of the intrinsic density profiles for liquid surfaces

    International Nuclear Information System (INIS)

    Chacon, Enrique; Tarazona, Pedro

    2005-01-01

    This paper presents recent advances in the characterization of the intrinsic structures in computer simulations of liquid surfaces. The use of operational definitions for the intrinsic surface, associated with each molecular configuration of a liquid slab, gives direct access to the intrinsic profile and to the wavevector dependent surface tension. However, the characteristics of these functions depend on the definition used for the intrinsic surface. We discuss the pathologies associated with a local Gibbs dividing surface definition, and consider the alternative definition of a minimal area surface, going though a set of surface pivots, self-consistently chosen to represent the first liquid layer

  6. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  7. A Study on Water Surface Profiles of Rivers with Constriction

    Science.gov (United States)

    Qian, Chaochao; Yamada, Tadashi

    2013-04-01

    Water surface profile of rivers with constrictions is precious in both classic hydraulics and river management practice. This study was conducted to clarify the essences of the water surface profiles. 3 cases of experiments and 1D numerical calculations with different discharges were made in the study and analysis solutions of the non-linear basic equation of surface profile in varied flow without considering friction were derived. The manning's number was kept in the same in each case by using crosspiece roughness. We found a new type of water surface profile of varied flow from the results of 1D numerical calculation and that of experiments and named it as Mc curve because of its mild condition with constriction segment. This kind of curves appears as a nature phenomenon ubiquitously. The process of water surface forming is dynamic and bore occurs at the upper side of constriction during increasing discharge before the surface profile formed. As a theoretical work, 3 analysis solutions were derived included 2 physical-meaning solutions in the study by using Man-Machine system. One of the derived physical-meaning solutions was confirmed that it is validity by comparing to the results of 1D numerical calculation and that of experiments. The solution represents a flow profile from under critical condition at the upper side to super critical condition at the down side of constriction segment. The other derived physical-meaning solution represents a flow profile from super critical condition at the upper side to under critical condition at the down side of constriction segment. These two kinds of flow profiles exist in the nature but no theoretical solution can express the phenomenon. We find the depth distribution only concerned with unit width discharge distribution and critical depth under a constant discharge from the derived solutions. Therefor, the profile can be gained simply and precisely by using the theoretical solutions instead of numerical calculation even

  8. Flux surface shape and current profile optimization in tokamaks

    International Nuclear Information System (INIS)

    Dobrott, D.R.; Miller, R.L.

    1977-01-01

    Axisymmetric tokamak equilibria of noncircular cross section are analyzed numerically to study the effects of flux surface shape and current profile on ideal and resistive interchange stability. Various current profiles are examined for circles, ellipses, dees, and doublets. A numerical code separately analyzes stability in the neighborhood of the magnetic axis and in the remainder of the plasma using the criteria of Mercier and Glasser, Greene, and Johnson. Results are interpreted in terms of flux surface averaged quantities such as magnetic well, shear, and the spatial variation in the magnetic field energy density over the cross section. The maximum stable β is found to vary significantly with shape and current profile. For current profiles varying linearly with poloidal flux, the highest β's found were for doublets. Finally, an algorithm is presented which optimizes the current profile for circles and dees by making the plasma everywhere marginally stable

  9. Optimized Estimation of Surface Layer Characteristics from Profiling Measurements

    Directory of Open Access Journals (Sweden)

    Doreene Kang

    2016-01-01

    Full Text Available New sampling techniques such as tethered-balloon-based measurements or small unmanned aerial vehicles are capable of providing multiple profiles of the Marine Atmospheric Surface Layer (MASL in a short time period. It is desirable to obtain surface fluxes from these measurements, especially when direct flux measurements are difficult to obtain. The profiling data is different from the traditional mean profiles obtained at two or more fixed levels in the surface layer from which surface fluxes of momentum, sensible heat, and latent heat are derived based on Monin-Obukhov Similarity Theory (MOST. This research develops an improved method to derive surface fluxes and the corresponding MASL mean profiles of wind, temperature, and humidity with a least-squares optimization method using the profiling measurements. This approach allows the use of all available independent data. We use a weighted cost function based on the framework of MOST with the cost being optimized using a quasi-Newton method. This approach was applied to seven sets of data collected from the Monterey Bay. The derived fluxes and mean profiles show reasonable results. An empirical bias analysis is conducted using 1000 synthetic datasets to evaluate the robustness of the method.

  10. Ion induced optical emission for surface and depth profile analysis

    International Nuclear Information System (INIS)

    White, C.W.

    1977-01-01

    Low-energy ion bombardment of solid surfaces results in the emission of infrared, visible, and ultraviolet radiation produced by inelastic ion-solid collision processes. The emitted optical radiation provides important insight into low-energy particle-solid interactions and provides the basis for an analysis technique which can be used for surface and depth profile analysis with high sensitivity. The different kinds of collision induced optical radiation emitted as a result of low-energy particle-solid collisions are reviewed. Line radiation arising from excited states of sputtered atoms or molecules is shown to provide the basis for surface and depth profile analysis. The spectral characteristics of this type of radiation are discussed and applications of the ion induced optical emission technique are presented. These applications include measurements of ion implant profiles, detection sensitivities for submonolayer quantities of impurities on elemental surfaces, and the detection of elemental impurities on complex organic substrates

  11. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  12. Optical surface profiling of orb-web spider capture silks

    Energy Technology Data Exchange (ETDEWEB)

    Kane, D M; Joyce, A M; Staib, G R [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia); Herberstein, M E, E-mail: deb.kane@mq.edu.a [Department of Biological Sciences, Macquarie University, Sydney, NSW 2109 (Australia)

    2010-09-15

    Much spider silk research to date has focused on its mechanical properties. However, the webs of many orb-web spiders have evolved for over 136 million years to evade visual detection by insect prey. It is therefore a photonic device in addition to being a mechanical device. Herein we use optical surface profiling of capture silks from the webs of adult female St Andrews cross spiders (Argiope keyserlingi) to successfully measure the geometry of adhesive silk droplets and to show a bowing in the aqueous layer on the spider capture silk between adhesive droplets. Optical surface profiling shows geometric features of the capture silk that have not been previously measured and contributes to understanding the links between the physical form and biological function. The research also demonstrates non-standard use of an optical surface profiler to measure the maximum width of a transparent micro-sized droplet (microlens).

  13. Optical surface profiling of orb-web spider capture silks

    International Nuclear Information System (INIS)

    Kane, D M; Joyce, A M; Staib, G R; Herberstein, M E

    2010-01-01

    Much spider silk research to date has focused on its mechanical properties. However, the webs of many orb-web spiders have evolved for over 136 million years to evade visual detection by insect prey. It is therefore a photonic device in addition to being a mechanical device. Herein we use optical surface profiling of capture silks from the webs of adult female St Andrews cross spiders (Argiope keyserlingi) to successfully measure the geometry of adhesive silk droplets and to show a bowing in the aqueous layer on the spider capture silk between adhesive droplets. Optical surface profiling shows geometric features of the capture silk that have not been previously measured and contributes to understanding the links between the physical form and biological function. The research also demonstrates non-standard use of an optical surface profiler to measure the maximum width of a transparent micro-sized droplet (microlens).

  14. Simple laser vision sensor calibration for surface profiling applications

    Science.gov (United States)

    Abu-Nabah, Bassam A.; ElSoussi, Adnane O.; Al Alami, Abed ElRahman K.

    2016-09-01

    Due to the relatively large structures in the Oil and Gas industry, original equipment manufacturers (OEMs) have been implementing custom-designed laser vision sensor (LVS) surface profiling systems as part of quality control in their manufacturing processes. The rough manufacturing environment and the continuous movement and misalignment of these custom-designed tools adversely affect the accuracy of laser-based vision surface profiling applications. Accordingly, Oil and Gas businesses have been raising the demand from the OEMs to implement practical and robust LVS calibration techniques prior to running any visual inspections. This effort introduces an LVS calibration technique representing a simplified version of two known calibration techniques, which are commonly implemented to obtain a calibrated LVS system for surface profiling applications. Both calibration techniques are implemented virtually and experimentally to scan simulated and three-dimensional (3D) printed features of known profiles, respectively. Scanned data is transformed from the camera frame to points in the world coordinate system and compared with the input profiles to validate the introduced calibration technique capability against the more complex approach and preliminarily assess the measurement technique for weld profiling applications. Moreover, the sensitivity to stand-off distances is analyzed to illustrate the practicality of the presented technique.

  15. Flow profiling of a surface-acoustic-wave nanopump

    Science.gov (United States)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  16. Surface activity, lipid profiles and their implications in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Preetha A

    2005-01-01

    Full Text Available Background: The profiles of lipids in normal and cancerous tissues may differ revealing information about cancer development and progression. Lipids being surface active, changes in lipid profiles can manifest as altered surface activity profiles. Langmuir monolayers offer a convenient model for evaluating surface activity of biological membranes. Aims: The aims of this study were to quantify phospholipids and their effects on surface activity of normal and cancerous human cervical tissues as well as to evaluate the role of phosphatidylcholine (PC and sphingomyelin (SM in cervical cancer using Langmuir monolayers. Methods and Materials: Lipid quantification was done using thin layer chromatography and phosphorus assay. Surface activity was evaluated using Langmuir monolayers. Monolayers were formed on the surface of deionized water by spreading tissue organic phase corresponding to 1 mg of tissue and studying their surface pressure-area isotherms at body temperature. The PC and SM contents of cancerous human cervical tissues were higher than those of the normal human cervical tissues. Role of PC and SM were evaluated by adding varying amounts of these lipids to normal cervical pooled organic phase. Statistical analysis: Student′s t-test (p < 0.05 and one-way analysis of variance (ANOVA was used. Results: Our results reveals that the phosphatidylglycerol level in cancerous cervical tissue was nearly five folds higher than that in normal cervical tissue. Also PC and sphingomyelin SM were found to be the major phospholipid components in cancerous and normal cervical tissues respectively. The addition of either 1.5 µg DPPC or 0.5 µg SM /mg of tissue to the normal organic phase changed its surface activity profile to that of the cancerous tissues. Statistically significant surface activity parameters showed that PC and SM have remarkable roles in shifting the normal cervical lipophilic surface activity towards that of cancerous lipophilic

  17. Flow profiling of a surface acoustic wave nanopump

    OpenAIRE

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-01-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing Surface Acoustic Waves is investigated both experimentally and theoretically. Such ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate an internal streaming within the fluid. Such acoustic streaming can be used for controlled agitation during, e.g., microarray hybridization. We use fluorescence correlation spectroscopy and fluorescence microsc...

  18. Optimization for sinusoidal profiles in surface relief gratings ...

    Indian Academy of Sciences (India)

    2014-02-07

    Feb 7, 2014 ... filometry [7–9] and monitoring of surface self-diffusion of solids under ultrahigh vacuum conditions [10]. In the present work, recording parameters, i.e. exposure time and deve- lopment time for fabrication of such holographic gratings have been optimized to obtain nearly perfect sinusoidal profiles in the ...

  19. Application of Volta potential mapping to determine metal surface defects

    International Nuclear Information System (INIS)

    Nazarov, A.; Thierry, D.

    2007-01-01

    As a rule, stress or fatigue cracks originate from various surface imperfections, such as pits, inclusions or locations showing a residual stress. It would be very helpful for material selection to be able to predict the likelihood of environment-assisted cracking or pitting corrosion. By using Scanning Kelvin Probe (the vibrating capacitor with a spatial resolution of 80 μm) the profiling of metal electron work function (Volta potential) in air is applied to the metal surfaces showing residual stress, MnS inclusions and wearing. The Volta potential is influenced by the energy of electrons at the Fermi level and drops generally across the metal/oxide/air interfaces. Inclusions (e.g. MnS) impair continuity of the passive film that locally decreases Volta potential. The stress applied gives rise to dislocations, microcracks and vacancies in the metal and the surface oxide. The defects decrease Volta and corrosion potentials; reduce the overvoltage for processes of passivity breakdown and anodic metal dissolution. These 'anodic' defects can be visualized in potential mapping that can help us to predict locations with higher risk of pitting corrosion or cracking

  20. Reducing Surface Clutter in Cloud Profiling Radar Data

    Science.gov (United States)

    Tanelli, Simone; Pak, Kyung; Durden, Stephen; Im, Eastwood

    2008-01-01

    An algorithm has been devised to reduce ground clutter in the data products of the CloudSat Cloud Profiling Radar (CPR), which is a nadir-looking radar instrument, in orbit around the Earth, that measures power backscattered by clouds as a function of distance from the instrument. Ground clutter contaminates the CPR data in the lowest 1 km of the atmospheric profile, heretofore making it impossible to use CPR data to satisfy the scientific interest in studying clouds and light rainfall at low altitude. The algorithm is based partly on the fact that the CloudSat orbit is such that the geodetic altitude of the CPR varies continuously over a range of approximately 25 km. As the geodetic altitude changes, the radar timing parameters are changed at intervals defined by flight software in order to keep the troposphere inside a data-collection time window. However, within each interval, the surface of the Earth continuously "scans through" (that is, it moves across) a few range bins of the data time window. For each radar profile, only few samples [one for every range-bin increment ((Delta)r = 240 m)] of the surface-clutter signature are available around the range bin in which the peak of surface return is observed, but samples in consecutive radar profiles are offset slightly (by amounts much less than (Delta)r) with respect to each other according to the relative change in geodetic altitude. As a consequence, in a case in which the surface area under examination is homogenous (e.g., an ocean surface), a sequence of consecutive radar profiles of the surface in that area contains samples of the surface response with range resolution (Delta)p much finer than the range-bin increment ((Delta)p 10 dB and a reduction of the contaminated altitude over ocean from about 1 km to about 0.5 km (over the ocean). The algorithm has been embedded in CloudSat L1B processing as of Release 04 (July 2007), and the estimated flat surface clutter is removed in L2B-GEOPROF product from the

  1. Establishing a milkborne disease outbreak profile: potential food defense implications.

    Science.gov (United States)

    Newkirk, Ryan; Hedberg, Craig; Bender, Jeff

    2011-03-01

    The main objectives of this study were to establish baseline characteristics for milkborne outbreaks, establish an expected milkborne outbreak profile, and identify potential indicators of food terrorism. This study used 1990-2006 data from the Centers for Disease Control and Prevention Annual Listings of Disease Outbreaks and the Foodborne Outbreak Database (FOOD) to establish epidemiologic baseline characteristics for disease outbreaks associated with fluid milk. FOOD data from 2007 were used to qualitatively validate the potential of the baseline characteristics and the expected outbreak profile. Eighty-three fluid milkborne outbreaks were reported between 1990 and 2006, resulting in 3621 illnesses. The mean number of illnesses per outbreak was 43.6 (illness range: 2-1644). Consumption of unpasteurized milk was associated with 55.4% of reported outbreaks. Campylobacter spp., Escherichia coli, and Salmonella spp. caused 51.2%, 10.8%, and 9.6% of reported outbreaks, respectively. Private homes accounted for 41.0% of outbreak locations. Number ill, outbreak location, and etiology were the primary characteristics which could signal a potential intentional contamination event. In 2007, one pasteurized milk outbreak caused by Listeria was flagged as aberrative compared with the expected outbreak profile. The creation and dissemination of expected outbreak profiles and epidemiologic baseline characteristics allow public health and Homeland Security officials to quickly assess the potential of intentional food contamination. A faster public health and medical system response can result in decreased morbidity and mortality.

  2. Theoretical studies of potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  3. NEW CONCEPTS AND TEST METHODS OF CURVE PROFILE AREA DENSITY IN SURFACE: ESTIMATION OF AREAL DENSITY ON CURVED SPATIAL SURFACE

    OpenAIRE

    Hong Shen

    2011-01-01

    The concepts of curve profile, curve intercept, curve intercept density, curve profile area density, intersection density in containing intersection (or intersection density relied on intersection reference), curve profile intersection density in surface (or curve intercept intersection density relied on intersection of containing curve), and curve profile area density in surface (AS) were defined. AS expressed the amount of curve profile area of Y phase in the unit containing surface area, S...

  4. Fatty acid methyl ester profiles of bat wing surface lipids.

    Science.gov (United States)

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  5. Surface influence upon vertical profiles in the nocturnal boundary layer

    Science.gov (United States)

    Garratt, J. R.

    1983-05-01

    Near-surface wind profiles in the nocturnal boundary layer, depth h, above relatively flat, tree-covered terrain are described in the context of the analysis of Garratt (1980) for the unstable atmospheric boundary layer. The observations at two sites imply a surface-based transition layer, of depth z *, within which the observed non-dimensional profiles Φ M 0 are a modified form of the inertial sub-layer relation Φ _M ( {{z L}} = ( {{{1 + 5_Z } L}} ) according to Φ _M^{{0}} ˜eq ( {{{1 + 5z} L}} )exp [ { - 0.7( {{{1 - z} z}_ * } )] , where z is height above the zero-plane displacement and L is the Monin-Obukhov length. At both sites the depth z * is significantly smaller than the appropriate neutral value ( z * N ) found from the previous analysis, as might be expected in the presence of a buoyant sink for turbulent kinetic energy.

  6. Nanometer-Scale Electrical Potential Profiling Across Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Ke, Weijun; Wang, Changlei; Gorman, Brian; Yan, Yanfa; Al-Jassim, Mowafak

    2016-11-21

    We used Kelvin probe force microscopy to study the potential distribution on cross-section of perovskite solar cells with different types of electron-transporting layers (ETLs). Our results explain the low open-circuit voltage and fill factor in ETL-free cells, and support the fact that intrinsic SnO2 as an alternative ETL material can make high-performance devices. Furthermore, the potential-profiling results indicate a reduction in junction-interface recombination by the optimized SnO2 layer and adding a fullerene layer, which is consistent with the improved device performance and current-voltage hysteresis.

  7. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  8. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  9. Surface alignment of liquid crystal multilayers evaporated on a photoaligned polyimide film observed by surface profiler

    International Nuclear Information System (INIS)

    Oo, T.N.; Iwata, T.; Kimura, M.; Akahane, T.

    2005-01-01

    The investigation of the surface alignment of liquid crystal (LC) multilayers evaporated on a photoaligned polyimide vertical alignment (PI-VA) film was carried out by means of a novel three-dimensional (3-D) surface profiler. The photoinduced anisotropy of the partially UV-exposed PI-VA film can be visualized as a topological image of LC multilayers. It seems that the topology of LC multilayers is indicating the orientational distribution of LC molecules on the treated film. Moreover, it was shown that the surface profiler can be used to produce non-contact images with high vertical resolution (∼ 0.01 nm). Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  10. SURFACE BRIGHTNESS PROFILES OF DWARF GALAXIES. II. COLOR TRENDS AND MASS PROFILES

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Kimberly A. [Penn State Mont Alto, 1 Campus Drive, Mont Alto, PA 17237 (United States); Hunter, Deidre A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Elmegreen, Bruce G., E-mail: kah259@psu.edu, E-mail: dah@lowell.edu, E-mail: bge@us.ibm.com [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2016-06-01

    In this second paper of a series, we explore the B  −  V , U  −  B , and FUV−NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ∼1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of which mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (−9 >  M{sub B}  > −14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (−14 >  M{sub B}  > −19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1−2  M {sub ⊙} pc{sup −2} for Type II dwarfs but higher at 5.9  M {sub ⊙} pc{sup −2} or 27  M {sub ⊙} pc{sup −2} for

  11. Deep learning for galaxy surface brightness profile fitting

    Science.gov (United States)

    Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.; Domínguez Sánchez, H.; Dimauro, P.

    2018-03-01

    Numerous ongoing and future large area surveys (e.g. Dark Energy Survey, EUCLID, Large Synoptic Survey Telescope, Wide Field Infrared Survey Telescope) will increase by several orders of magnitude the volume of data that can be exploited for galaxy morphology studies. The full potential of these surveys can be unlocked only with the development of automated, fast, and reliable analysis methods. In this paper, we present DeepLeGATo, a new method for 2-D photometric galaxy profile modelling, based on convolutional neural networks. Our code is trained and validated on analytic profiles (HST/CANDELS F160W filter) and it is able to retrieve the full set of parameters of one-component Sérsic models: total magnitude, effective radius, Sérsic index, and axis ratio. We show detailed comparisons between our code and GALFIT. On simulated data, our method is more accurate than GALFIT and ˜3000 time faster on GPU (˜50 times when running on the same CPU). On real data, DeepLeGATo trained on simulations behaves similarly to GALFIT on isolated galaxies. With a fast domain adaptation step made with the 0.1-0.8 per cent the size of the training set, our code is easily capable to reproduce the results obtained with GALFIT even on crowded regions. DeepLeGATo does not require any human intervention beyond the training step, rendering it much automated than traditional profiling methods. The development of this method for more complex models (two-component galaxies, variable point spread function, dense sky regions) could constitute a fundamental tool in the era of big data in astronomy.

  12. Helicity and potential vorticity in the surface boundary layer turbulence

    Science.gov (United States)

    Chkhetiani, Otto; Kurgansky, Michael; Koprov, Boris; Koprov, Victor

    2016-04-01

    An experimental measurement of all three components of the velocity and vorticity vectors, as well as the temperature and its gradient, and potential vorticity, has been developed using four acoustic anemometers. Anemometers were placed at vertices of a tetrahedron, the horizontal base of which was a rectangular triangle with equal legs, and the upper point was exactly above the top of the right angle. The distance from the surface to the tetrahedron its base was 5.5 m, and the lengths of legs and a vertical edge were 5 m. The measurements were carried out of total duration near 100 hours both in stable and unstable stratification conditions (at the Tsimlyansk Scientific Station in a uniform area of virgin steppe 700 x 650 m, August 2012). A covariance-correlation matrix for turbulent variations in all measured values has been calculated. In the daytime horizontal and vertical components of the helicity are of the order of -0.03 and +0.01 m s-2, respectively. The nighttime signs remain unchanged, but the absolute values are several times smaller. It is confirmed also by statistics of a relative helicity. The cospectra and spectral correlation coefficients have been calculated for all helicity components. The time variations in the components of "instantaneous" relative helicity and potential vorticity are considered. Connections of helicity with Monin-Obukhov length and the wind vertical profile structure are discussed. This work was supported by the Russian Science Foundation (Project No 14-27-00134).

  13. Transcriptional profiling: a potential anti-doping strategy.

    Science.gov (United States)

    Rupert, J L

    2009-12-01

    Evolving challenges require evolving responses. The use of illicit performance enhancing drugs by athletes permeates the reality and the perception of elite sports. New drugs with ergogenic or masking potential are quickly adopted, driven by a desire to win and the necessity of avoiding detection. To counter this trend, anti-doping authorities are continually refining existing assays and developing new testing strategies. In the post-genome era, genetic- and molecular-based tests are being evaluated as potential approaches to detect new and sophisticated forms of doping. Transcriptome analysis, in which a tissue's complement of mRNA transcripts is characterized, is one such method. The quantity and composition of a tissue's transcriptome is highly reflective of milieu and metabolic activity. There is much interest in transcriptional profiling in medical diagnostics and, as transcriptional information can be obtained from a variety of easily accessed tissues, similar approaches could be used in doping control. This article briefly reviews current understanding of the transcriptome, common methods of global analysis of gene expression and non-invasive sample sources. While the focus of this article is on anti-doping, the principles and methodology described could be applied to any research in which non-invasive, yet biologically informative sampling is desired.

  14. Profile Curvature Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Profile curvature was calculated from the bathymetry surface for each raster cell using the ArcGIS 3D Analyst "Curvature" Tool. Profile curvature describes the rate...

  15. Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies.

    Science.gov (United States)

    Pollock, Samuel B; Hu, Amy; Mou, Yun; Martinko, Alexander J; Julien, Olivier; Hornsby, Michael; Ploder, Lynda; Adams, Jarrett J; Geng, Huimin; Müschen, Markus; Sidhu, Sachdev S; Moffat, Jason; Wells, James A

    2018-03-13

    Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states. Copyright © 2018 the Author(s). Published by PNAS.

  16. Design and verification of the miniature optical system for small object surface profile fast scanning

    Science.gov (United States)

    Chi, Sheng; Lee, Shu-Sheng; Huang, Jen, Jen-Yu; Lai, Ti-Yu; Jan, Chia-Ming; Hu, Po-Chi

    2016-04-01

    +/-10μm, and the scanning time for each surface of an object was less than 15 seconds. This has proved that our system own the potential to be a fast scanning scanner for small object surface profile scanning.

  17. Green's functions potential fields on surfaces

    CERN Document Server

    Melnikov, Yuri A

    2017-01-01

    This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.

  18. Surface Potential of Polycrystalline Hematite in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Tajana Preočanin

    2011-01-01

    Full Text Available The surface potential of polycrystalline hematite in aqueous sodium perchlorate environment as a function of pH was examined. Surface potential of hematite was obtained from measured electrode potential of a nonporous polycrystalline hematite electrode. Acidic solution was titrated with base, and the backward titration with acid was performed. Substantial hysteresis was obtained which enabled location of the point of zero potential and equilibrium values of surface potentials. The theoretical interpretation of the equilibrium data was performed by applying the surface complexation model and the thermodynamic equilibrium constants for the first and the second step of surface protonation was obtained as logK1∘=11.3;logK2∘=2.8.

  19. Repulsive Casimir-Polder potential by a negative reflecting surface

    Science.gov (United States)

    Yuan, Qi-Zhang

    2015-07-01

    We present a scheme to generate an all-range long repulsive Casimir-Polder potential between a perfect negative reflecting surface and a ground-state atom. The repulsive potential is stable and does not decay with time. The Casimir-Polder potential is proportional to z-2 at short atom-surface distances and to z-4 at long atom-surface distances. Because of these advantages, this potential can help in building quantum reflectors, quantum levitating devices, and waveguides for matter waves.

  20. Theoretical fringe profiles with crossed Babinet compensators in testing concave aspheric surfaces.

    Science.gov (United States)

    Saxena, A K; Lancelot, J P

    1982-11-15

    This paper presents the theory for the use of crossed Babinet compensators in testing concave aspheric surfaces. Theoretical fringe profiles for a sphere and for an aspheric surface with primary aberration are shown. Advantages of this method are discussed.

  1. Frequency response in surface-potential driven electrohydrodynamics

    DEFF Research Database (Denmark)

    Ejsing, Louise Wellendorph; Smistrup, Kristian; Pedersen, Christian Møller

    2006-01-01

    Using a Fourier approach we offer a general solution to calculations of slip velocity within the circuit description of the electrohydrodynamics in a binary electrolyte confined by a plane surface with a modulated surface potential. We consider the case with a spatially constant intrinsic surface...... capacitance where the net flow rate is, in general, zero while harmonic rolls as well as time-averaged vortexlike components may exist depending on the spatial symmetry and extension of the surface potential. In general, the system displays a resonance behavior at a frequency corresponding to the inverse RC...

  2. MEASURING PROTOPLANETARY DISK GAS SURFACE DENSITY PROFILES WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jonathan P.; McPartland, Conor, E-mail: jpw@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-10-10

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams and Best to show that gas surface density profiles can be measured from high fidelity {sup 13}CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M {sub gas} = 0.048 M {sub ⊙}, and accretion disk characteristic size R {sub c} = 213 au and gradient γ = 0.39. The same parameters match the C{sup 18}O 2–1 image and indicate an abundance ratio [{sup 12}CO]/[C{sup 18}O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large {sup 13}CO 2–1 image library and fit simulated data. For disks with gas masses 3–10 M {sub Jup} at 150 pc, ALMA observations with a resolution of 0.″2–0.″3 and integration times of ∼20 minutes allow reliable estimates of R {sub c} to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.

  3. Self-consistent electronic structure and segregation profiles of the Cu-Ni (001) random-alloy surface

    DEFF Research Database (Denmark)

    Ruban, Andrei; Abrikosov, I. A.; Kats, D. Ya.

    1994-01-01

    We have calculated the electronic structure and segregation profiles of the (001) surface of random Cu-Ni alloys with varying bulk concentrations by means of the coherent potential approximation and the linear muffin-tin-orbitals method. Exchange and correlation were included within the local......-density approximation. Temperature effects were accounted for by means of the cluster-variation method and, for comparison, by mean-field theory. The necessary interaction parameters were calculated by the Connolly-Williams method generalized to the case of a surface of a random alloy. We find the segregation profiles...

  4. Potential energy surface from spectroscopic data in the photodissociation of polyatomic molecules

    International Nuclear Information System (INIS)

    Kim, Hwa Joong; Kim, Young Sik

    2001-01-01

    The time-dependent tracking inversion method is studied to extract the potential energy surface of the electronic excited state in the photodissociation of triatomic molecules. Based on the relay of the regularized inversion procedure and time-dependent wave packet propagation, the algorithm extracts the underlying potential energy surface piece by tracking the time-dependent data, which can be synthesized from Raman excitation profiles. We have demonstrated the algorithm to extract the potential energy surface of electronic excited state for NO 2 molecule where the wave packet split on a saddle-shaped surface. Finally, we describe the merits of the time-dependent tracking inversion method compared with the time-dependent inversion method and discussed several extensions of the algorithm

  5. Probing surface charge potentials of clay basal planes and edges by direct force measurements.

    Science.gov (United States)

    Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe

    2008-11-18

    The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the

  6. Surface motion and confinement potential for a microwave confined corona

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1979-07-01

    Approximate time dependent solutions for surface velocities and potentials are given for a plane polarized microwave field confining a hot, over-dense plasma corona. Steady state solutions to Poissons' equation can be applied to the time dependent case, provided transit time effects are included. The product of ion pressure and potential wave (surface) velocity gives an average heating rate approx. 7/32 NKT 0 V/sub theta/ directly to the ions

  7. Career Profiles of Generation Y and Their Potential Influencers

    Directory of Open Access Journals (Sweden)

    Helena Talita Dante Cordeiro

    2017-10-01

    Full Text Available This study aims to identify the predominant career profiles among Generation Y in Brazil and investigate the influence of demographic and professional characteristics in these profiles. Career profiles are defined as combinations of the presence of Boundaryless and Protean career attitudes. This study is descriptive, the sample is non-probabilistic and intentional and consists of 2,376 people. Cluster Analysis and Chi-square tests were used. The results show that people from Generation Y have a high presence of attitudes related to new careers and that these new careers are associated with high education and high income, mainly the Boundaryless career. However, there is a small portion of the sample that doesn’t present new career attitudes, indicating that this is just a movement and cannot be considered a reality for all studied subjects.

  8. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    International Nuclear Information System (INIS)

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae; Jeon, Ryoung-Hoon; Jang, Si-Jung; Lee, Yeon-Mi; Park, Bong-Wook; Byun, June-Ho; Ahn, Chun-Seob; Kim, Jae-Won; Rho, Gyu-Jin

    2014-01-01

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs

  9. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae; Jeon, Ryoung-Hoon; Jang, Si-Jung; Lee, Yeon-Mi [Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Park, Bong-Wook; Byun, June-Ho [Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju 660-702 (Korea, Republic of); Ahn, Chun-Seob; Kim, Jae-Won [Department of Microbiology, Division of Life Sciences, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Rho, Gyu-Jin, E-mail: jinrho@gnu.ac.kr [Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2014-01-01

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.

  10. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  11. Potential utility of the thematic mapper for surface mine monitoring

    International Nuclear Information System (INIS)

    Irons, J.R.; Lachowski, H.M.

    1981-01-01

    One of many potential applications of the thematic mapper (TM) is surface mine monitoring. To assess this potential, data acquired by an aircraft multispectral scanner over Pennsylvania surface mines were preprocessed to simulate the anticipated spectral, spatial, and radiometric characteristics of TM data. False color imagery and thematic maps were derived from the simulated data and compared to imagery and maps derived from LANDSAT multispectral scanner subsystems data. On the basis of this comparison, TM data should definitely increase the detail and accuracy of remotely acquired surface mine information and may enable the remote determination of compliance with reclamation regulations

  12. A framework for profiling a lake's riparian area development potential

    Science.gov (United States)

    Pamela J. Jakes; Ciara Schlichting; Dorothy H. Anderson

    2003-01-01

    Some of the greatest challenges for managing residential development occur at the interface between the terrestrial and aquatic ecosystems -in a lake`s riparian area. Land use planners need a framework they can use to identify development hotspots, areas were the next push for development will most likely occur. Lake riparian development profiles provide a framework...

  13. Potential of capillary electrophoresis for the profiling of propolis

    NARCIS (Netherlands)

    Hilhorst, M.J; Somsen, G.W; de Jong, G.J.

    1998-01-01

    The usefulness of capillary electrophoresis (CE) with diode array detection for the profiling of Propolis, a hive product, is investigated. Water extracts of Propolis were analyzed with both capillary zone electrophoresis (CZE) at pH 7.0 and 9.3, and micellar electrokinetic chromatography (MEKC)

  14. Osteogenic potential of laser modified and conditioned titanium zirconium surfaces

    Directory of Open Access Journals (Sweden)

    P David Charles

    2016-01-01

    Full Text Available Statement of Problem: The osseointegration of dental implant is related to their composition and surface treatment. Titanium zirconium (TiZr has been introduced as an alternative to the commercially pure titanium and its alloys as dental implant material, which is attributed to its superior mechanical and biological properties. Surface treatments of TiZr have been introduced to enhance their osseointegration ability; however, reliable, easy to use surface modification technique has not been established. Purpose: The purpose of this study was to evaluate and compare the effect of neodymium-doped yttrium aluminum garnet (Nd-YAG laser surface treatment of TiZr implant alloy on their osteogenic potential. Materials and Methods: Twenty disc-shaped samples of 5 mm diameter and 2 mm height were milled from the TiZr alloy ingot. The polished discs were ultrasonically cleaned in distilled water. Ten samples each were randomly selected as Group A control samples and Group B consisted of Nd-YAG laser surface etched and conditioned test samples. These were evaluated for cellular response. Cellular adhesion and proliferation were quantified, and the results were statistically analyzed using nonparametric analysis. Cellular morphology was observed using electron and epiflurosence microscopy. Results: Nd-YAG laser surface modified and conditioned TiZr samples increased the osteogenic potential. Conclusion: Nd-YAG laser surface modification of TiZr, improves the cellular activity, surface roughness, and wettability, thereby increasing the osteogenic potential.

  15. Potential energy surfaces for nucleon exchanging in dinuclear systems

    International Nuclear Information System (INIS)

    Li Jianfeng; Xu Hushan; Li Wenfei; Zuo Wei; Li Junqing; Wang Nan; Zhao Enguang

    2003-01-01

    The experimental measurements have provided the evidence that the suppression of fusion cross-section caused by quasi-fission is very important for the synthesis of super-heavy nuclei by heavy ion collisions. The potential energy surface due to the nucleon transfer in the collision process is the driven potential, which governs the nucleon transfer, so that governs the competition between the fusion and quasi-fission. The dinuclear system potential energy surface also gives the information about the optimum projectile-target combination, as well as the optimum excitation energy for the synthesis of super-heavy nuclei by heavy ion collisions

  16. Biaxial potential of surface-stabilized ferroelectric liquid crystals

    Science.gov (United States)

    Kaznacheev, Anatoly; Pozhidaev, Evgeny; Rudyak, Vladimir; Emelyanenko, Alexander V.; Khokhlov, Alexei

    2018-04-01

    A biaxial surface potential Φs of smectic-C* surface-stabilized ferroelectric liquid crystals (SSFLCs) is introduced in this paper to explain the experimentally observed electric-field dependence of polarization P˜cell(E ) , in particular the shape of the static hysteresis loops. Our potential consists of three independent parts. The first nonpolar part Φn describes the deviation of the prime director n (which is the most probable orientation of the long molecular axes) from the easy alignment axis R , which is located in the boundary surface plane. It is introduced in the same manner as the uniaxial Rapini potential. The second part Φp of the potential is a polar term associated with the presence of the polar axis in a FLC. The third part Φm relates to the inherent FLC biaxiality, which has not been taken into consideration previously. The Φm part takes into account the deviations of the secondary director m (which is the most probable orientation of the short molecular axes) from the normal to the boundary surface. The overall surface potential Φs, which is a sum of Φn,Φp , and Φm, allows one to model the conditions when either one, two, or three minima of the SSFLC cell free energy are realized depending on the biaxiality extent. A monodomain or polydomain structure, as well as the bistability or monostability of SSFLC cells, depends on the number of free-energy minima, as confirmed experimentally. In this paper, we analyze the biaxiality impact on the FLC alignment. We also answer the question of whether the bistable or monostable structure can be formed in an SSFLC cell. Our approach is essentially based on a consideration of the biaxial surface potential, while the uniaxial surface potential cannot adequately describe the experimental observations in the FLC.

  17. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P

    2007-01-01

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  18. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  19. Temperature profiles on the gadolinium surface during electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-03-01

    The distributions of surface temperature of gadolinium in a water-cooled copper crucible during electron beam evaporation were measured by optical pyrometry. The surface temperatures were obtained from the radiation intensity ratio of the evaporating surface and a reference light source using Planck`s law of radiation. The emitted radiation from the evaporating surface and a reference source was detected by a CCD sensor through a band pass filter of 650 nm. The measured surface temperature generally agreed with those estimated from the deposition rate and the data of the saturated vapor pressure. At high input powers, it was found that the measured value had small difference with the estimated one due to variation of the surface condition. (author).

  20. Temperature profiles on the gadolinium surface during electron beam evaporation

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    1995-01-01

    The distributions of surface temperature of gadolinium in a water-cooled copper crucible during electron beam evaporation were measured by optical pyrometry. The surface temperatures were obtained from the radiation intensity ratio of the evaporating surface and a reference light source using Planck's law of radiation. The emitted radiation from the evaporating surface and a reference source was detected by a CCD sensor through a band pass filter of 650 nm. The measured surface temperature generally agreed with those estimated from the deposition rate and the data of the saturated vapor pressure. At high input powers, it was found that the measured value had small difference with the estimated one due to variation of the surface condition. (author)

  1. Anisotropic characterization of rock fracture surfaces subjected to profile analysis

    International Nuclear Information System (INIS)

    Zhou, H.W.; Xie, H.

    2004-01-01

    The mechanical parameters of a rock fracture are dependent on its surface roughness anisotropy. In this Letter, we show how quantitatively describe the anisotropy of a rock fracture surface. A parameter, referred to as the index for the accumulation power spectral density psd*, is proposed to characterize the anisotropy of a rock fracture surface. Variation of psd*, with orientation angle θ of sampling, is also discussed

  2. The Contribution of Surface Potential to Diverse Problems in Electrostatics

    International Nuclear Information System (INIS)

    Horenstein, M

    2015-01-01

    Electrostatics spans many different subject areas. Some comprise “good electrostatics,” where charge is used for desirable purposes. Such areas include industrial manufacturing, electrophotography, surface modification, precipitators, aerosol control, and MEMS. Other areas comprise “bad electrostatics,” where charge is undesirable. Such areas include hazardous discharges, ESD, health effects, nuisance triboelectrification, particle contamination, and lightning. Conference proceedings such as this one inevitably include papers grouped around these topics. One common thread throughout is the surface potential developed when charge resides on an insulator surface. Often, the charged insulator will be in intimate contact with a ground plane. At other times, the charged insulator will be isolated. In either case, the resulting surface potential is important to such processes as propagating brush discharges, charge along a moving web, electrostatic biasing effects in MEMS, non-contacting voltmeters, field-effect transistor sensors, and the maximum possible charge on a woven fabric. (paper)

  3. Sliding surface searching method for slopes containing a potential weak structural surface

    Directory of Open Access Journals (Sweden)

    Aijun Yao

    2014-06-01

    Full Text Available Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simulated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

  4. Combined analysis of surface reflection imaging and vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Daley, T.M.; Majer, E.L.; Karageorgi, E.

    1994-08-01

    This report presents results from surface and borehole seismic profiling performed by the Lawrence Berkeley Laboratory (LBL) on Yucca Mountain. This work was performed as part of the site characterization effort for the potential high-level nuclear waste repository. Their objective was to provide seismic imaging from the near surface (200 to 300 ft. depth) to the repository horizon and below, if possible. Among the issues addressed by this seismic imaging work are location and depth of fracturing and faulting, geologic identification of reflecting horizons, and spatial continuity of reflecting horizons. The authors believe their results are generally positive, with tome specific successes. This was the first attempt at this scale using modem seismic imaging techniques to determine geologic features on Yucca Mountain. The principle purpose of this report is to present the interpretation of the seismic reflection section in a geologic context. Three surface reflection profiles were acquired and processed as part of this study. Because of environmental concerns, all three lines were on preexisting roads. Line 1 crossed the mapped surface trace of the Ghost Dance fault and it was intended to study the dip and depth extent of the fault system. Line 2 was acquired along Drill Hole wash and was intended to help the ESF north ramp design activities. Line 3 was acquired along Yucca Crest and was designed to image geologic horizons which were thought to be less faulted along the ridge. Unfortunately, line 3 proved to have poor data quality, in part because of winds, poor field conditions and limited time. Their processing and interpretation efforts were focused on lines 1 and 2 and their associated VSP studies

  5. Soil and gas and radon entry potentials for substructure surfaces

    International Nuclear Information System (INIS)

    Harrison, J.; Sextro, R.G.

    1990-01-01

    This paper reports on measurement techniques and parameters that describe the potential for areas of a building substructure to have high soil gas and radon entry rates which have been developed. Flows and pressures measured at test holes in substructure surfaces while the substructure was intentionally depressurized were used in a highly simplified electrical circuit to model the substructure/soil network. Data from four New Jersey houses indicate that the soil was a factor of two to six times more resistant to soil gas flow than substructure surfaces, concrete slab floors, including perimeter gaps, cracks, and other penetrations, were approximately five times more resistant to soil gas movement than hollow block walls, and radon entry potentials were highest for slab floors. These indices of entry potential may be useful for characterizing the relative leakiness of below-grade substructure surfaces and for determining the selection and placement of radon control systems

  6. Time-dependent image potential at a metal surface

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2003-01-01

    Transient effects in the image potential induced by a point charge suddenly created in front of a metal surface are studied. The time evolution of the image potential is calculated using linear response theory. Two different time scales are defined: (i) the time required for the creation of the image potential and (ii) the time it takes to converge to its stationary value. Their dependence on the distance of the charge to the surface is discussed. The effect of the electron gas damping is also analyzed. For a typical metallic density, the order of magnitude of the creation time is 0.1 fs, whereas for a charge created close to the surface the convergence time is around 1-2 fs

  7. How well Can We Classify SWOT-derived Water Surface Profiles?

    Science.gov (United States)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  8. Surface potential domains on lamellar P3OT structures

    Energy Technology Data Exchange (ETDEWEB)

    Perez-GarcIa, B [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Abad, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Urbina, A [Departamento Electronica, TecnologIa de Computadoras y Proyectos, Universidad Politecnica de Cartagena, E-30202 Cartagena (Spain); Colchero, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Palacios-Lidon, E [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain)

    2008-02-13

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place.

  9. Surface potential domains on lamellar P3OT structures

    International Nuclear Information System (INIS)

    Perez-GarcIa, B; Abad, J; Urbina, A; Colchero, J; Palacios-Lidon, E

    2008-01-01

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place

  10. An adaptive interpolation scheme for molecular potential energy surfaces

    Science.gov (United States)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  11. Reversible Compositional Control of Oxide Surfaces by Electrochemical Potentials

    KAUST Repository

    Mutoro, Eva

    2012-01-05

    Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically/ionically conducting, and thus, they have been used in a number of solid-state devices such as solid oxide fuel cells (SOFCs) and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface compositions is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface compositional changes of La 0.8Sr 0.2CoO 3-δ (LSC 113), (La 0.5Sr 0.5) 2CoO 4±δ (LSC 214), and LSC 214-decorated LSC 113 films (LSC 113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr were found for the LSC 113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites. © 2011 American Chemical Society.

  12. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  13. Potential profiles obtained from applied dust cloud perturbations

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.

    2002-01-01

    This paper details an experimental investigation of the local potential structure within a cloud of suspended microparticles - a 'dusty' or 'complex' plasma - using particle image velocimetry (PIV) techniques. Applied perturbations, synchronized to the PIV measurements, are used to force a cloud of suspended microparticles to become unconfined. From the free-streaming motion of the particles during the loss of confinement and subsequent reformation of the dust cloud, an analysis of the potential is performed. Furthermore, a new method of analyzing the potential structure from the motion of free-streaming microparticles in the plasma is presented

  14. The deconvolution of sputter-etching surface concentration measurements to determine impurity depth profiles

    International Nuclear Information System (INIS)

    Carter, G.; Katardjiev, I.V.; Nobes, M.J.

    1989-01-01

    The quasi-linear partial differential continuity equations that describe the evolution of the depth profiles and surface concentrations of marker atoms in kinematically equivalent systems undergoing sputtering, ion collection and atomic mixing are solved using the method of characteristics. It is shown how atomic mixing probabilities can be deduced from measurements of ion collection depth profiles with increasing ion fluence, and how this information can be used to predict surface concentration evolution. Even with this information, however, it is shown that it is not possible to deconvolute directly the surface concentration measurements to provide initial depth profiles, except when only ion collection and sputtering from the surface layer alone occur. It is demonstrated further that optimal recovery of initial concentration depth profiles could be ensured if the concentration-measuring analytical probe preferentially sampled depths near and at the maximum depth of bombardment-induced perturbations. (author)

  15. Comparison of two methods of surface profile extraction from multiple ultrasonic range measurements

    NARCIS (Netherlands)

    Barshan, B; Baskent, D

    Two novel methods for surface profile extraction based on multiple ultrasonic range measurements are described and compared. One of the methods employs morphological processing techniques, whereas the other employs a spatial voting scheme followed by simple thresholding. Morphological processing

  16. The way we measure: comparison of methods to derive radial surface brightness profiles

    NARCIS (Netherlands)

    Peters, S. P. C.; van der Kruit, P. C.; de Jong, R. S.

    The breaks and truncations in the luminosity profile of face-on spiral galaxies offer valuable insights in their formation history. The traditional method of deriving the surface photometry profile for face-on galaxies is to use elliptical averaging. In this paper, we explore the question whether

  17. The outer disks of early-type galaxies. I. Surface-brightness profiles of barred galaxies

    NARCIS (Netherlands)

    Erwin, Peter; Pohlen, Michael; Beckman, John E.

    We present a study of 66 barred, early-type (S0-Sb) disk galaxies, focused on the disk surface brightness profile outside the bar region, with the aim of throwing light on the nature of Freeman type I and II profiles, their origins, and their possible relation to disk truncations. This paper

  18. Information profiles on potential occupational hazards: nitrophenols. Draft report (Second)

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Information profiles are presented for the following nitrophenols: 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, and 2,4,6-trinitrophenol. The mononitrophenols were moderately toxic to animals, causing initial stimulation and subsequent depression of the respiratory and central nervous systems. Positive results were obtained in several mutagenicity assays for 3-nitrophenol and 4-nitrophenol. 2,4,-Dinitrophenol was far more acutely toxic than other important nitrophenol derivatives. It was able to uncouple oxidative phosphorylation by suppressing the coupling of electron flow to synthesis of adenosine triphosphatase. It caused weakness, intense thirst and sweating, increased body temperature and respiration rate, neuritis, convulsions, and the rapid onset of rigor mortis after death. It has also caused cataracts in humans when used as a weight-reducing aid. Inhalation of 2,4,6-trinitrophenol has caused considerable irritation to the eyes and to the mucous membrane of the respiratory tract. Dermal exposure has produced severe skin irritation and sensitization.

  19. Optimized surface-slab excited-state muffin-tin potential and surface core level shifts

    International Nuclear Information System (INIS)

    Rundgren, J.

    2003-01-01

    An optimized muffin-tin (MT) potential for surface slabs with preassigned surface core-level shifts (SCLS's) is presented. By using the MT radii as adjustable parameters the model is able to conserve the definition of the SCLS with respect to the bulk and concurrently to generate a potential that is continuous at the MT radii. The model is conceived for elastic electron scattering in a surface slab with exchange-correlation interaction described by the local density approximation. The model employs two data bases for the self-energy of the signal electron (after Hedin and Lundqvist or Sernelius). The potential model is discussed in detail with two surface structures Be(101-bar0), for which SCLS's are available, and Cu(111)p(2x2)Cs, in which the close-packed radii of the atoms are extremely different. It is considered plausible that tensor LEED based on an optimized MT potential can be used for determining SCLS's

  20. The size prediction of potential inclusions embedded in the sub-surface of fused silica by damage morphology

    Directory of Open Access Journals (Sweden)

    Gao Xiang

    2017-04-01

    Full Text Available A model for predicting the size ranges of different potential inclusions initiating damage on the surface of fused silica has been presented. This accounts for the heating of nanometric inclusions whose absorptivity is described based on Mie Theory. The depth profile of impurities has been measured by ICP-OES. By the measured temporal pulse profile on the surface of fused silica, the temperature and thermal stress has been calculated. Furthermore, considering the limit conditions of temperature and thermal stress strength for different damage morphologies, the size range of potential inclusions for fused silica is discussed.

  1. Tuning the surface potential of Ag surfaces by chemisorption of oppositely-oriented thiolated carborane dipoles

    Czech Academy of Sciences Publication Activity Database

    Lübben, J.F.; Baše, Tomáš; Rupper, P.; Künniger, T.; Macháček, Jan; Guimond, S.

    2011-01-01

    Roč. 354, č. 1 (2011), s. 168-174 ISSN 0021-9797 R&D Projects: GA AV ČR(CZ) IAA400320901 Keywords : Adsorption * Thiolated carboranes * Silver surface * Surface potential * X-ray photoelectron spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 3.070, year: 2011

  2. A statistical nanomechanism of biomolecular patterning actuated by surface potential

    Science.gov (United States)

    Lin, Chih-Ting; Lin, Chih-Hao

    2011-02-01

    Biomolecular patterning on a nanoscale/microscale on chip surfaces is one of the most important techniques used in vitro biochip technologies. Here, we report upon a stochastic mechanics model we have developed for biomolecular patterning controlled by surface potential. The probabilistic biomolecular surface adsorption behavior can be modeled by considering the potential difference between the binding and nonbinding states. To verify our model, we experimentally implemented a method of electroactivated biomolecular patterning technology and the resulting fluorescence intensity matched the prediction of the developed model quite well. Based on this result, we also experimentally demonstrated the creation of a bovine serum albumin pattern with a width of 200 nm in 5 min operations. This submicron noncovalent-binding biomolecular pattern can be maintained for hours after removing the applied electrical voltage. These stochastic understandings and experimental results not only prove the feasibility of submicron biomolecular patterns on chips but also pave the way for nanoscale interfacial-bioelectrical engineering.

  3. Profiling application potential for alkali treated sisal fiber ...

    African Journals Online (AJOL)

    The effect of alkali treatment on sisal fiber from the plant agave sisalana in appropriation for composite material application is presented. Effectiveness of the fiber's reinforcement potential within polypropylene (PP) matrix is evaluated through morphological analysis, crystallinity levels, and tensile, where ultimate tensile ...

  4. Electrostatic potential profile and nonlinear current in an interacting ...

    Indian Academy of Sciences (India)

    Unknown

    Since the Poisson distribution crucially depends on charge densities ... formedon a large number of systems using semi-empirical to first-principles ... known by now that the current in these systems is a nonlinear function of the voltage and ..... the middle of the molecule and the potential drop is smaller near the interfaces.

  5. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China. (China)

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH{sub 3} and CH{sub 4} were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  6. The profile of potential organ and tissue donors.

    Science.gov (United States)

    Moraes, Edvaldo Leal de; Silva, Leonardo Borges de Barros E; Moraes, Tatiana Cristine de; Paixão, Nair Cordeiro dos Santos da; Izumi, Nelly Miyuki Shinohara; Guarino, Aparecida de Jesus

    2009-01-01

    This study aimed to characterize donors according to gender, age group, cause of brain death; quantify donors with hypernatremia, hyperpotassemia and hypopotassemia; and get to know which organs were the most used in transplantations. This quantitative, descriptive, exploratory and retrospective study was performed at the Organ Procurement Organization of the University of São Paulo Medical School Hospital das Clínicas. Data from the medical records of 187 potential donors were analyzed. Cerebrovascular accidents represented 53.48% of all brain death causes, sodium and potassium disorders occurred in 82.36% of cases and 45.46% of the potential donors were between 41 and 60 years old. The results evidenced that natural death causes exceeded traumatic deaths, and that most donors presented sodium and potassium alterations, likely associated to inappropriate maintenance.

  7. Phytochemical profile of sugarcane and its potential health aspects

    OpenAIRE

    Singh, Amandeep; Lal, Uma Ranjan; Mukhtar, Hayat Muhammad; Singh, Prabh Simran; Shah, Gagan; Dhawan, Ravi Kumar

    2015-01-01

    Sugarcane (Saccharum officinarum Linn.) is an important perennial grass of Poaceae family, indigenous to tropical South Asia and Southeast Asia. It is cultivated worldwide due to the economical and medicinal value of its high yielding products. Sugarcane juice is well known as a raw material for the production of refined sugar and its wax is considered as a potential substitute for the expensive carnauba wax, which is of cosmetic and pharmaceutical interest. Refined sugar is the primary produ...

  8. Surface density profile and surface tension of the one-component classical plasma

    International Nuclear Information System (INIS)

    Ballone, P.; Senatore, G.; Trieste Univ.; Tosi, M.P.; Oxford Univ.

    1982-08-01

    The density profile and the interfacial tension of two classical plasmas in equilibrium at different densities are evaluated in the square-density-gradient approximation. For equilibrium in the absence of applied external voltage, the profile is oscillatory in the higher-density plasma and the interfacial tension is positive. The amplitude and phase of these oscillations and the magnitude of the interfacial tension are related to the width of the background profile. Approximate representations of the equilibrium profile by matching of its asymptotic forms are analyzed. A comparison with computer simulation data and a critical discussion of a local-density theory are also presented. (author)

  9. Eddy current spectroscopy for near-surface residual stress profiling in surface treated nonmagnetic engine alloys

    Science.gov (United States)

    Abu-Nabah, Bassam A.

    Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on

  10. Valence bond model potential energy surface for H4

    International Nuclear Information System (INIS)

    Silver, D.M.; Brown, N.J.

    1980-01-01

    Potential energy surfaces for the H 4 system are derived using the valence bond procedure. An ab initio evaluation of the valence bond energy expression is described and some of its numerical properties are given. Next, four semiempirical evaluations of the valence bond energy are defined and parametrized to yield reasonable agreement with various ab initio calculations of H 4 energies. Characteristics of these four H 4 surfaces are described by means of tabulated energy minima and equipotential contour maps for selected geometrical arrangements of the four nuclei

  11. Whole genome expression profiling using DNA microarray for determining biocompatibility of polymeric surfaces

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Wang, Zhenyu; Kutter, Jörg Peter

    2006-01-01

    There is an ever increasing need to find surfaces that are biocompatible for applications like medical implants and microfluidics-based cell culture systems. The biocompatibility of five different surfaces with different hydrophobicity was determined using gene expression profiling as well as more...

  12. Phytochemical profile of sugarcane and its potential health aspects.

    Science.gov (United States)

    Singh, Amandeep; Lal, Uma Ranjan; Mukhtar, Hayat Muhammad; Singh, Prabh Simran; Shah, Gagan; Dhawan, Ravi Kumar

    2015-01-01

    Sugarcane (Saccharum officinarum Linn.) is an important perennial grass of Poaceae family, indigenous to tropical South Asia and Southeast Asia. It is cultivated worldwide due to the economical and medicinal value of its high yielding products. Sugarcane juice is well known as a raw material for the production of refined sugar and its wax is considered as a potential substitute for the expensive carnauba wax, which is of cosmetic and pharmaceutical interest. Refined sugar is the primary product of sugarcane juice, but during its processing, various other valuable products are also obtained in an unrefined form, such as, brown sugar, molasses, and jaggery. Sugarcane juice is widely used in India in the treatment of jaundice, hemorrhage, dysuria, anuria, and other urinary diseases. Herein, we have summarized the different phytoconstituents and health benefits of sugarcane and its valuable products. The phytochemistry of sugarcane wax (obtained from the leaves and stalks of sugarcane), leaves, juice, and its products has revealed the presence of various fatty acid, alcohol, phytosterols, higher terpenoids, flavonoids, -O- and -C-glycosides, and phenolic acids. The future prospective of some of the sugarcane products has been discussed, which needs a phytopharmacological study and has a great potential to be a valuable medicinal product.

  13. Liquid crystal elastomer coatings with programmed response of surface profile

    NARCIS (Netherlands)

    Babakhanova, G.; Turiv, T.; Guo, Y.; Hendrikx, M.; Wei, Q.H.; Schenning, A.P.H.J.; Broer, D.J.; Lavrentovich, O.D.

    2018-01-01

    Stimuli-responsive liquid crystal elastomers with molecular orientation coupled to rubber-like elasticity show a great potential as elements in soft robotics, sensing, and transport systems. The orientational order defines their mechanical response to external stimuli, such as thermally activated

  14. Generating strain signals under consideration of road surface profiles

    Science.gov (United States)

    Putra, T. E.; Abdullah, S.; Schramm, D.; Nuawi, M. Z.; Bruckmann, T.

    2015-08-01

    The current study aimed to develop the mechanism for generating strain signal utilising computer-based simulation. The strain data, caused by the acceleration, were undertaken from a fatigue data acquisition involving car movements. Using a mathematical model, the measured strain signals yielded to acceleration data used to describe the bumpiness of road surfaces. The acceleration signals were considered as an external disturbance on generating strain signals. Based on this comparison, both the actual and simulated strain data have similar pattern. The results are expected to provide new knowledge to generate a strain signal via a simulation.

  15. Corrosion Potential Profile Simulation in a Tube under Cathodic Protection

    Directory of Open Access Journals (Sweden)

    Mauricio Ohanian

    2014-01-01

    Full Text Available The potential distribution in tubes of a heat exchanger is simulated when applying cathodic polarization to its extremes. The comparison of two methods to achieve this goal is presented: a numeric solution based on boundary elements carried out with the commercial software Beasy-GID and a semianalytical method developed by the authors. The mathematical model, the simplifications considered, and the problem solving are shown. Since both approaches use polarization curves as a boundary condition, experimental polarization curves (voltage versus current density were determined in the laboratory under flow conditions and cylindrical cell geometry. The results obtained suggest the impossibility of extending the protection along the whole tube length; therefore, other protection methods are considered.

  16. Surface contact potential patches and Casimir force measurements

    International Nuclear Information System (INIS)

    Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.; Dalvit, D. A. R.

    2010-01-01

    We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplace's equation, the presence of patch potentials does not affect an electrostatic calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed.

  17. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    DEFF Research Database (Denmark)

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and doub...... of the complexes, providing valuable results for future experimental investigations. Comparing our results to those previously available for other phosgene complexes, we suggest that the results for Cl2-phosgene should be revised....

  18. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  19. Surface deformation during an action potential in pearled cells

    Science.gov (United States)

    Mussel, Matan; Fillafer, Christian; Ben-Porath, Gal; Schneider, Matthias F.

    2017-11-01

    Electric pulses in biological cells (action potentials) have been reported to be accompanied by a propagating cell-surface deformation with a nanoscale amplitude. Typically, this cell surface is covered by external layers of polymer material (extracellular matrix, cell wall material, etc.). It was recently demonstrated in excitable plant cells (Chara braunii) that the rigid external layer (cell wall) hinders the underlying deformation. When the cell membrane was separated from the cell wall by osmosis, a mechanical deformation, in the micrometer range, was observed upon excitation of the cell. The underlying mechanism of this mechanical pulse has, to date, remained elusive. Herein we report that Chara cells can undergo a pearling instability, and when the pearled fragments were excited even larger and more regular cell shape changes were observed (˜10 -100 μ m in amplitude). These transient cellular deformations were captured by a curvature model that is based on three parameters: surface tension, bending rigidity, and pressure difference across the surface. In this paper these parameters are extracted by curve-fitting to the experimental cellular shapes at rest and during excitation. This is a necessary step to identify the mechanical parameters that change during an action potential.

  20. Profiling of antioxidant potential and phytoconstituents of Plantago coronopus

    Directory of Open Access Journals (Sweden)

    C. G. Pereira

    Full Text Available Abstract The halophyte species Plantago coronopus has several described ethnomedicinal uses, but few reported biological activities. This work carried out for the first time a comparative analysis of P. coronopus organs in terms of phenolic composition and antioxidant activity of organic and water extracts from roots, leaves and flowers. The leaves contents in selected nutrients, namely amino acids and minerals, are also described. Roots (ethyl acetate and methanol extracts had the highest radical scavenging activity (RSA towards 1,1-diphenyl-2-picrylhydrazyl (DPPH and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS radicals, while leaves (hexane extract had higher RSA on nitric oxide radical and iron chelating ability. High performance liquid chromatography (HPLC analysis identified eighteen phenolics from which salicylic acid and epicatechin are here firstly described in Plantago species. Leaves had mineral levels similar to those of most vegetables, proving to be a good source for elements like calcium, sodium, iron and magnesium, and also for several of the essential amino acids justifying it use as food. Our results, especially those regarding the phenolics composition, can explain the main traditional uses given to this plantain and, altogether, emphasize the potential of P. coronopus as a source of bioactive molecules particularly useful for the prevention of oxidative stress-related diseases.

  1. Strong orientation dependence of surface mass density profiles of dark haloes at large scales

    Science.gov (United States)

    Osato, Ken; Nishimichi, Takahiro; Oguri, Masamune; Takada, Masahiro; Okumura, Teppei

    2018-06-01

    We study the dependence of surface mass density profiles, which can be directly measured by weak gravitational lensing, on the orientation of haloes with respect to the line-of-sight direction, using a suite of N-body simulations. We find that, when major axes of haloes are aligned with the line-of-sight direction, surface mass density profiles have higher amplitudes than those averaged over all halo orientations, over all scales from 0.1 to 100 Mpc h-1 we studied. While the orientation dependence at small scales is ascribed to the halo triaxiality, our results indicate even stronger orientation dependence in the so-called two-halo regime, up to 100 Mpc h-1. The orientation dependence for the two-halo term is well approximated by a multiplicative shift of the amplitude and therefore a shift in the halo bias parameter value. The halo bias from the two-halo term can be overestimated or underestimated by up to {˜ } 30 per cent depending on the viewing angle, which translates into the bias in estimated halo masses by up to a factor of 2 from halo bias measurements. The orientation dependence at large scales originates from the anisotropic halo-matter correlation function, which has an elliptical shape with the axis ratio of ˜0.55 up to 100 Mpc h-1. We discuss potential impacts of halo orientation bias on other observables such as optically selected cluster samples and a clustering analysis of large-scale structure tracers such as quasars.

  2. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  3. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity, moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  4. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  5. ACTRIS aerosol vertical profile data and observations: potentiality and first examples of integrated studies with models

    Science.gov (United States)

    Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina

    2016-04-01

    The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2

  6. Nuclear momentum distribution and potential energy surface in hexagonal ice

    Science.gov (United States)

    Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele

    2011-03-01

    The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the potential acting on the protons. This work is supported by NSF and by DOE.

  7. Intermolecular potential energy surface and thermophysical properties of propane.

    Science.gov (United States)

    Hellmann, Robert

    2017-03-21

    A six-dimensional potential energy surface (PES) for the interaction of two rigid propane molecules was determined from supermolecular ab initio calculations up to the coupled cluster with single, double, and perturbative triple excitations level of theory for 9452 configurations. An analytical site-site potential function with 14 sites per molecule was fitted to the calculated interaction energies. To validate the analytical PES, the second virial coefficient and the dilute gas shear viscosity and thermal conductivity of propane were computed. The dispersion part of the potential function was slightly adjusted such that quantitative agreement with the most accurate experimental data for the second virial coefficient at room temperature was achieved. The adjusted PES yields values for the three properties that are in very good agreement with the best experimental data at all temperatures.

  8. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    KAUST Repository

    Yu, Han

    2016-04-26

    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green\\'s function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  9. Chemical profiles of body surfaces and nests from six Bornean stingless bee species.

    Science.gov (United States)

    Leonhardt, Sara Diana; Blüthgen, Nico; Schmitt, Thomas

    2011-01-01

    Stingless bees (Apidae: Meliponini) are the most diverse group of Apid bees and represent common pollinators in tropical ecosystems. Like honeybees they live in large eusocial colonies and rely on complex chemical recognition and communication systems. In contrast to honeybees, their ecology and especially their chemical ecology have received only little attention, particularly in the Old World. We previously have analyzed the chemical profiles of six paleotropical stingless bee species from Borneo and revealed the presence of species-specific cuticular terpenes- an environmentally derived compound class so far unique among social insects. Here, we compared the bees' surface profiles to the chemistry of their nest material. Terpenes, alkanes, and alkenes were the dominant compound groups on both body surfaces and nest material. However, bee profiles and nests strongly differed in their chemical composition. Body surfaces thus did not merely mirror nests, rendering a passive compound transfer from nests to bees unlikely. The difference between nests and bees was particularly pronounced when all resin-derived compounds (terpenes) were excluded and only genetically determined compounds were considered. When terpenes were included, bee profiles and nest material still differed, because whole groups of terpenes (e.g., sesquiterpenes) were found in nest material of some species, but missing in their chemical profile, indicating that bees are able to influence the terpene composition both in their nests and on their surfaces.

  10. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  11. Physisorption of an electron in deep surface potentials off a dielectric surface

    International Nuclear Information System (INIS)

    Heinisch, R. L.; Bronold, F. X.; Fehske, H.

    2011-01-01

    We study phonon-mediated adsorption and desorption of an electron at dielectric surfaces with deep polarization-induced surface potentials where multiphonon transitions are responsible for electron energy relaxation. Focusing on multiphonon processes due to the nonlinearity of the coupling between the external electron and the acoustic bulk phonon triggering the transitions between surface states, we calculate electron desorption times for graphite, MgO, CaO, Al 2 O 3 , and SiO 2 and electron sticking coefficients for Al 2 O 3 , CaO, and SiO 2 . To reveal the kinetic stages of electron physisorption, we moreover study the time evolution of the image-state occupancy and the energy-resolved desorption flux. Depending on the potential depth and the surface temperature, we identify two generic scenarios: (i) adsorption via trapping in shallow image states followed by relaxation to the lowest image state and desorption from that state via a cascade through the second strongly bound image state in not too deep potentials, and (ii) adsorption via trapping in shallow image states but followed by a relaxation bottleneck retarding the transition to the lowest image state and desorption from that state via a one-step process to the continuum in deep potentials.

  12. Pharmaceutical and biomedical potential of surface engineered dendrimers.

    Science.gov (United States)

    Satija, Jitendra; Gupta, Umesh; Jain, Narendra Kumar

    2007-01-01

    Dendrimers are hyperbranched, globular, monodisperse, nanometric polymeric architecture, having definite molecular weight, shape, and size (which make these an inimitable and optimum carrier molecule in pharmaceutical field). Dendritic architecture is having immense potential over the other carrier systems, particularly in the field of drug delivery because of their unique properties, such as structural uniformity, high purity, efficient membrane transport, high drug pay load, targeting potential, and good colloidal, biological, and shelf stability. Despite their enormous applicability in different areas, the inherent cytotoxicity, reticuloendothelial system (RES) uptake, drug leakage, immunogenicity, and hemolytic toxicity restricted their use in clinical applications, which is primarily associated with cationic charge present on the periphery due to amine groups. To overcome this toxic nature of dendrimers, some new types of nontoxic, biocompatible, and biodegradable dendrimers have been developed (e.g., polyester dendrimer, citric acid dendrimer, arginine dendrimer, carbohydrate dendrimers, etc.). The surface engineering of parent dendrimers is graceful and convenient strategy, which not only shields the positive charge to make this carrier more biomimetic but also improves the physicochemical and biological behavior of parent dendrimers. Thus, surface modification chemistry of parent dendrimers holds promise in pharmaceutical applications (such as solubilization, improved drug encapsulation, enhanced gene transfection, sustained and controlled drug release, intracellular targeting) and in the diagnostic field. Development of multifunctional dendrimer holds greater promise toward the biomedical applications because a number of targeting ligands determine specificity in the same manner as another type of group would secure stability in biological milieu and prolonged circulation, whereas others facilitate their transport through cell membranes. Therefore, as a

  13. Surface layer and bloom dynamics observed with the Prince William Sound Autonomous Profiler

    Science.gov (United States)

    Campbell, R. W.

    2016-02-01

    As part of a recent long term monitoring effort, deployments of a WETLabs Autonomous Moored Profiler (AMP) began Prince William Sound (PWS) in 2013. The PWS AMP consists of a positively buoyant instrument frame, with a winch and associated electronics that profiles the frame from a park depth (usually 55 m) to the surface by releasing and retrieving a thin UHMWPE tether; it generally conducts a daily cast and measures temperature, salinity, chlorophyll-a fluorescence, turbidity, and oxygen and nitrate concentrations. Upward and downward looking ADCPs are mounted on a float below the profiler, and an in situ plankton imager is in development and will be installed in 2016. Autonomous profilers are a relatively new technology, and early deployments experienced a number of failures from which valuable lessons may be learned. Nevertheless, an unprecedented time series of the seasonal biogeochemical procession in the surface waters coastal Gulf of Alaska was collected in 2014 and 2015. The northern Gulf of Alaska has experienced a widespread warm anomaly since early 2014, and surface layer temperature anomalies in PWS were strongly positive during winter 2014. The spring bloom observed by the profiler began 2-3 weeks earlier than average, with surface nitrate depleted by late April. Although surface temperatures were still above average in 2015, bloom timing was much later, with a short vigorous bloom in late April and a subsurface bloom in late May that coincided with significant nitrate drawdown. As well as the vernal blooms, wind-driven upwelling events lead to several small productivity pulses that were evident in changes in nitrate and oxygen concentrations, and chlorophyll-a fluorescence. As well as providing a mechanistic understanding of surface layer biogeochemistry, high frequency observations such as these put historical observations in context, and provide new insights into the scales of variability in the annual cycles of the surface ocean in the North

  14. Floquet states of a kicked particle in a singular potential: Exponential and power-law profiles

    Science.gov (United States)

    Paul, Sanku; Santhanam, M. S.

    2018-03-01

    It is well known that, in the chaotic regime, all the Floquet states of kicked rotor system display an exponential profile resulting from dynamical localization. If the kicked rotor is placed in an additional stationary infinite potential well, its Floquet states display power-law profile. It has also been suggested in general that the Floquet states of periodically kicked systems with singularities in the potential would have power-law profile. In this work, we study the Floquet states of a kicked particle in finite potential barrier. By varying the height of finite potential barrier, the nature of transition in the Floquet state from exponential to power-law decay profile is studied. We map this system to a tight-binding model and show that the nature of decay profile depends on energy band spanned by the Floquet states (in unperturbed basis) relative to the potential height. This property can also be inferred from the statistics of Floquet eigenvalues and eigenvectors. This leads to an unusual scenario in which the level spacing distribution, as a window in to the spectral correlations, is not a unique characteristic for the entire system.

  15. Surface characterization of hemodialysis membranes based on streaming potential measurements.

    Science.gov (United States)

    Werner, C; Jacobasch, H J; Reichelt, G

    1995-01-01

    Hemodialysis membranes made from cellulose (CUPROPHAN, HEMOPHAN) and sulfonated polyethersulfone (SPES) were characterized using the streaming potential technique to determine the zeta potential at their interfaces against well-defined aqueous solutions of varied pH and potassium chloride concentrations. Streaming potential measurements enable distinction between different membrane materials. In addition to parameters of the electrochemical double layer at membrane interfaces, thermodynamic characteristics of adsorption of different solved species were evaluated. For that aim a description of double layer formation as suggested by Börner and Jacobasch (in: Electrokinetic Phenomena, p. 231. Institut für Technologie der Polymere, Dresden (1989)) was applied which is based on the generally accepted model of the electrochemical double layer according to Stern (Z. Elektrochemie 30, 508 (1924)) and Grahame (Chem. Rev. 41, 441 (1947)). The membranes investigated show different surface acidic/basic and polar/nonpolar behavior. Furthermore, alterations of membrane interfaces through adsorption processes of components of biologically relevant solutions were shown to be detectable by streaming potential measurements.

  16. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    Science.gov (United States)

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  17. Heterogeneous free-surface profile of B4C polycrystal under shock compression

    International Nuclear Information System (INIS)

    Mashimo, T.; Uchino, M.

    1997-01-01

    Observations of the free-surface behavior under shock compression by the gapped-flat mirror method were performed on B 4 C and Si 3 N 4 ceramics to study their shock-yielding properties. Jagged profiles of the moving free-surface in the plastic region, with a special scale of about one mm and a maximum local displacement of a few 10s of μm, were observed for B 4 C polycrystals. Similar profiles for Si 3 N 4 polycrystals were smooth. Such profiles for B 4 C polycrystals were also observed in the elastic region. It is suggested that these observations reflect the heterogeneous nature of shock compression in solids, and further indicate that a macroscopic slip system plays an important role in the elastoplastic transition of B 4 C material under shock compression and decompression. copyright 1997 American Institute of Physics

  18. Moving gantry method for electron beam dose profile measurement at extended source-to-surface distances.

    Science.gov (United States)

    Fekete, Gábor; Fodor, Emese; Pesznyák, Csilla

    2015-03-08

    A novel method has been put forward for very large electron beam profile measurement. With this method, absorbed dose profiles can be measured at any depth in a solid phantom for total skin electron therapy. Electron beam dose profiles were collected with two different methods. Profile measurements were performed at 0.2 and 1.2 cm depths with a parallel plate and a thimble chamber, respectively. 108cm × 108 cm and 45 cm × 45 cm projected size electron beams were scanned by vertically moving phantom and detector at 300 cm source-to-surface distance with 90° and 270° gantry angles. The profiles collected this way were used as reference. Afterwards, the phantom was fixed on the central axis and the gantry was rotated with certain angular steps. After applying correction for the different source-to-detector distances and incidence of angle, the profiles measured in the two different setups were compared. Correction formalism has been developed. The agreement between the cross profiles taken at the depth of maximum dose with the 'classical' scanning and with the new moving gantry method was better than 0.5 % in the measuring range from zero to 71.9 cm. Inverse square and attenuation corrections had to be applied. The profiles measured with the parallel plate chamber agree better than 1%, except for the penumbra region, where the maximum difference is 1.5%. With the moving gantry method, very large electron field profiles can be measured at any depth in a solid phantom with high accuracy and reproducibility and with much less time per step. No special instrumentation is needed. The method can be used for commissioning of very large electron beams for computer-assisted treatment planning, for designing beam modifiers to improve dose uniformity, and for verification of computed dose profiles.

  19. Conductivity Profile Determination by Eddy Current for Shot Peened Superalloy Surfaces Toward Residual Stress Assessment

    International Nuclear Information System (INIS)

    Shen, Y.; Lo, C. C. H.; Frishman, A. M.; Lee, C.; Nakagawa, N.

    2007-01-01

    This paper describes an eddy current model-based method for inverting near-surface conductivity deviation profiles of surface treated materials from swept-high frequency eddy current (SHFEC) data. This work forms part of our current research directed towards the development of an electromagnetic nondestructive technique for assessing residual stress of shot-peened superalloy components. The inversion procedure is based on the use of a parameterized function to describe the near-surface conductivity as a function of depth for a shot-peened surface, and the laterally uniform multi-layer theory of Cheng, Dodd and Deeds to calculate the resulting coil impedance deviations. The convergence of the inversion procedure has been tested against synthesized eddy current data. As a demonstration, the conductivity deviation profiles of a series of Inconel 718 specimens, shot peened at various Almen intensities, have been obtained by inversion. Several consistency tests were conducted to examine the reliability of the inverted conductivity profiles. The results show that conductivity deviation profiles can be reliably determined from SHFEC data within the accuracy of the current measurement system

  20. Compact Wideband and Low-Profile Antenna Mountable on Large Metallic Surfaces

    DEFF Research Database (Denmark)

    Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    This paper proposes a compact wideband and low-profile antenna mountable on large metallic surfaces. Six rows of coupled microstrip resonators with different lengths are printed on a Teflon block. The lengths of the microstrip resonators in different rows are gradually reduced along the end-fire...

  1. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    Science.gov (United States)

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  2. ANALYSIS OF THE SURFACE PROFILE AND ITS MATERIAL SHARE DURING THE GRINDING INCONEL 718 ALLOY

    Directory of Open Access Journals (Sweden)

    Martin Novák

    2015-05-01

    Full Text Available Grinding is still an important method for surface finishing. At FPTM JEPU research, which deals with this issue is conducted. Experiments are carried out with grinding various materials under different conditions and then selected components of the surface integrity are evaluated. They include roughness Ra, Rm and Rz, Material ratio curve (Abbott Firestone curve and also the obtained roundness. This article deals with grinding nickel Inconel 718 alloy, when selected cutting grinding conditions were used and subsequently the surface profile and the material ratio curve were measured and evaluated.

  3. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    International Nuclear Information System (INIS)

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  4. Experimental survey of the potential energy surfaces associated with fission

    International Nuclear Information System (INIS)

    Britt, H.C.

    1980-01-01

    Progress in the experimental determination of the properties of the potential energy surface associated with fission is reviewed. The importance of nuclear symmetry effects on the calculation of fission widths is demonstrated. Evidence is presented for the fragmentation of the mass-asymmetric second barrier in the thorium region and the axial asymmetric first barrier in the californium region. Detailed analyses of experimental data suggest the presence of two parallel second barriers; the normal mass-asymmetric, axial-symmetric barrier and a slightly higher mass-symmetric, axial-asymmetric barrier. Experimental barrier parameters are determined systematically and compared with calculations from various theoretical models. Techniques for expanding fission probability measurements to higher energies are discussed. (author)

  5. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Alireza Ghasemi, S. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, IR-Zanjan (Iran, Islamic Republic of); Roy, Shantanu [Computational and Systems Biology, Biozentrum, University of Basel, CH-4056 Basel (Switzerland)

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  6. The psychological coping, learning potential and career preferences profiles of operational force military candidates

    CSIR Research Space (South Africa)

    De Beer, M

    2017-01-01

    Full Text Available The aim of this study was to profile the psychological coping, learning potential and career-related interests of 251 candidates for operational force military selection for the South African National Defence Force (SANDF) – 26 of whom were...

  7. Quantitative depth profiling of near surface semiconductor structures using ultra low energy SIMS analysis

    International Nuclear Information System (INIS)

    Elliner, D.I.

    1999-09-01

    The continual reduction in size of semiconductor structures and depths of junctions is putting a greater strain on characterization techniques. Accurate device and process modelling requires quantified electrical and dopant profiles from the topmost few nanometres. Secondary ion mass spectrometry (SIMS) is an analytical technique commonly used in the semiconductor industry to measure concentration depth profiles. To allow the quantification of the features that are closer to the surface, lower energy ions are employed, which also improves the available depth resolution. The development of the floating ion gun (FLIG) has made it possible to use sub keV beam energies on a routine basis, allowing quantified dopant profiles to be obtained within the first few nanometres of the surface. This thesis demonstrates that, when profiling with oxygen ion beams, greatest certainty in the retained dose is achieved at normal incidence, and when analysing boron accurate profile shapes are only obtained when the primary beam energy is less than half that of the implant. It was shown that it is now possible to profile, though with slower erosion rates and a limited dynamic range, with 100 eV oxygen (0 2 + ) ion beams. Profile features that had developed during rapid thermal annealing, that could only be observed when ultra low energy ion beams were used, were investigated using various analytical techniques. Explanations of the apparently inactive dopant were proposed, and included suggestions for cluster molecules. The oxide thickness of fully formed altered layers has also been investigated. The results indicate that a fundamental change in the mechanism of oxide formation occurs, and interfaces that are sharper than those grown by thermal oxidation can be produced using sub-keV ion beams. (author)

  8. Measurement of surface temperature profiles on liquid uranium metal during electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Surface temperature distributions of liquid uranium in a water-cooled copper crucible during electron beam evaporation were measured. Evaporation surface was imaged by a lens through a band-path filter (650{+-}5 nm) and a double mirror system on a charge coupled device (CCD) camera. The video signals of the recorded image were connected to an image processor and converted to two-dimensional spectral radiance profiles. The surface temperatures were obtained from the spectral radiation intensity ratio of the evaporation surface and a freezing point of uranium and/or a reference light source using Planck`s law of radiation. The maximum temperature exceeded 3000 K and had saturation tendency with increasing electron beam input. The measured surface temperatures agreed with those estimated from deposition rates and data of saturated vapor pressure of uranium. (author)

  9. Determining the near-surface current profile from measurements of the wave dispersion relation

    Science.gov (United States)

    Smeltzer, Benjamin; Maxwell, Peter; Aesøy, Eirik; Ellingsen, Simen

    2017-11-01

    The current-induced Doppler shifts of waves can yield information about the background mean flow, providing an attractive method of inferring the current profile in the upper layer of the ocean. We present measurements of waves propagating on shear currents in a laboratory water channel, as well as theoretical investigations of inversion techniques for determining the vertical current structure. Spatial and temporal measurements of the free surface profile obtained using a synthetic Schlieren method are analyzed to determine the wave dispersion relation and Doppler shifts as a function of wavelength. The vertical current profile can then be inferred from the Doppler shifts using an inversion algorithm. Most existing algorithms rely on a priori assumptions of the shape of the current profile, and developing a method that uses less stringent assumptions is a focus of this study, allowing for measurement of more general current profiles. The accuracy of current inversion algorithms are evaluated by comparison to measurements of the mean flow profile from particle image velocimetry (PIV), and a discussion of the sensitivity to errors in the Doppler shifts is presented.

  10. Improving the surface metrology accuracy of optical profilers by using multiple measurements

    Science.gov (United States)

    Xu, Xudong; Huang, Qiushi; Shen, Zhengxiang; Wang, Zhanshan

    2016-10-01

    The performance of high-resolution optical systems is affected by small angle scattering at the mid-spatial-frequency irregularities of the optical surface. Characterizing these irregularities is, therefore, important. However, surface measurements obtained with optical profilers are influenced by additive white noise, as indicated by the heavy-tail effect observable on their power spectral density (PSD). A multiple-measurement method is used to reduce the effects of white noise by averaging individual measurements. The intensity of white noise is determined using a model based on the theoretical PSD of fractal surface measurements with additive white noise. The intensity of white noise decreases as the number of times of multiple measurements increases. Using multiple measurements also increases the highest observed spatial frequency; this increase is derived and calculated. Additionally, the accuracy obtained using multiple measurements is carefully studied, with the analysis of both the residual reference error after calibration, and the random errors appearing in the range of measured spatial frequencies. The resulting insights on the effects of white noise in optical profiler measurements and the methods to mitigate them may prove invaluable to improve the quality of surface metrology with optical profilers.

  11. A thermodynamic perturbation theory for the surface tension and ion density profile of a liquid metal

    International Nuclear Information System (INIS)

    Evans, R.; Kumaravadivel, R.

    1976-01-01

    A simple scheme for determining the ion density profile and the surface tension of a liquid metal is described. Assuming that the interaction between metallic pseudo-ions is of the form introduced by Evans, an approximate expression for the excess free energy of the system is derived using the thermodynamic perturbation theory of Weeks, Chandler and Anderson. This excess free energy is then minimized with respect to a parameter which specifies the ion density profile, and the surface tension is given directly. From a consideration of the dependence of the interionic forces on the electron density it is predicted that the ions should take up a very steep density profile at the liquid metal surface. This behaviour is contrasted with that to be expected for rare-gas fluids in which the interatomic forces are density-independent. The values of the surface tension calculated for liquid Na, K and Al from a simplified version of the theory are in reasonable agreement with experiment. (author)

  12. Applications of nutrient profiling: potential role in diet-related chronic disease prevention and the feasibility of a core nutrient-profiling system.

    Science.gov (United States)

    Sacks, G; Rayner, M; Stockley, L; Scarborough, P; Snowdon, W; Swinburn, B

    2011-03-01

    A number of different nutrient-profiling models have been proposed and several applications of nutrient profiling have been identified. This paper outlines the potential role of nutrient-profiling applications in the prevention of diet-related chronic disease (DRCD), and considers the feasibility of a core nutrient-profiling system, which could be modified for purpose, to underpin the multiple potential applications in a particular country. The 'Four 'P's of Marketing' (Product, Promotion, Place and Price) are used as a framework for identifying and for classifying potential applications of nutrient profiling. A logic pathway is then presented that can be used to gauge the potential impact of nutrient-profiling interventions on changes in behaviour, changes in diet and, ultimately, changes in DRCD outcomes. The feasibility of a core nutrient-profiling system is assessed by examining the implications of different model design decisions and their suitability to different purposes. There is substantial scope to use nutrient profiling as part of the policies for the prevention of DRCD. A core nutrient-profiling system underpinning the various applications is likely to reduce discrepancies and minimise the confusion for regulators, manufacturers and consumers. It seems feasible that common elements, such as a standard scoring method, a core set of nutrients and food components, and defined food categories, could be incorporated as part of a core system, with additional application-specific criteria applying. However, in developing and in implementing such a system, several country-specific contextual and technical factors would need to be balanced.

  13. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers.

    Science.gov (United States)

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-07-21

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.

  14. Global Properties of M31's Stellar Halo from the SPLASH Survey. I. Surface Brightness Profile

    Science.gov (United States)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.; Bullock, James; Geha, Marla C.; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Ostheimer, James C.; Patterson, Richard J.; Tollerud, Erik J.; Tanaka, Mikito; Chiba, Masashi

    2012-11-01

    We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 ± 0.2 and extends to a projected distance of at least ~175 kpc (~2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California

  15. Rapid Identification of Potential Drugs for Diabetic Nephropathy Using Whole-Genome Expression Profiles of Glomeruli

    Directory of Open Access Journals (Sweden)

    Jingsong Shi

    2016-01-01

    Full Text Available Objective. To investigate potential drugs for diabetic nephropathy (DN using whole-genome expression profiles and the Connectivity Map (CMAP. Methodology. Eighteen Chinese Han DN patients and six normal controls were included in this study. Whole-genome expression profiles of microdissected glomeruli were measured using the Affymetrix human U133 plus 2.0 chip. Differentially expressed genes (DEGs between late stage and early stage DN samples and the CMAP database were used to identify potential drugs for DN using bioinformatics methods. Results. (1 A total of 1065 DEGs (FDR 1.5 were found in late stage DN patients compared with early stage DN patients. (2 Piperlongumine, 15d-PGJ2 (15-delta prostaglandin J2, vorinostat, and trichostatin A were predicted to be the most promising potential drugs for DN, acting as NF-κB inhibitors, histone deacetylase inhibitors (HDACIs, PI3K pathway inhibitors, or PPARγ agonists, respectively. Conclusion. Using whole-genome expression profiles and the CMAP database, we rapidly predicted potential DN drugs, and therapeutic potential was confirmed by previously published studies. Animal experiments and clinical trials are needed to confirm both the safety and efficacy of these drugs in the treatment of DN.

  16. Determination of the High Frequency Inductance Profile of Surface Mounted Permanent Magnet Synchronous Motors

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2008-01-01

    ) synchronous motors. This paper presents an AC+DC measurement method for determination of the d-axis and q-axis high frequency inductance profiles of SMPM synchronous motors. This method uses DC currents to set a desired magnetic working point on the motor laminations, and then superimpose balanced small AC......Accurate knowledge of the high frequency inductance profile plays an important role in many designs of sensorless controllers for Surface inductance. A special algorithm is used to decouple the cross-coupling effects between the d-axis and the q-axis, which allows Mounted Permanent Magnet (SMPM...... signals to measure the incremental a separate determination of the d, q inductance profiles as functions of the d, q currents. Experimental results on a commercial SMPM motor using the proposed method are presented in this paper....

  17. Deep Vs Profiling Along the Top of Yucca Mountain Using a Vibroseis Source and Surface Waves

    International Nuclear Information System (INIS)

    Stokoe, K.; Rosenblad, B.; Wong, I.; Bay, J.; Thomas, P.; Silva, W.

    2004-01-01

    Yucca Mountain, Nevada, was approved as the site for development of the geologic repository for high-level radioactive waste and spent nuclear fuel in the United States. The U.S. Department of Energy has been conducting studies to characterize the site and assess its future performance as a geologic repository. As part of these studies, a program of deep seismic profiling, to depths of 200 m, was conducted along the top of Yucca Mountain to evaluate the shear-wave velocity (V s ) structure of the repository block. The resulting V s data were used as input into the development of ground motions for the preclosure seismic design of the repository and for postclosure performance assessment. The noninvasive spectral-analysis-of-surface-waves (SASW) method was employed in the deep profiling. Field measurements involved the use of a modified Vibroseis as the seismic source. The modifications allowed the Vibroseis to be controlled by a signal analyzer so that slow frequency sweeps could be performed while simultaneous narrow-band filtering was performed on the receiver outputs. This process optimized input energy from the source and signal analysis of the receiver outputs. Six deep V s profiles and five intermediate-depth (about 100 m) profiles were performed along the top of Yucca Mountain over a distance of about 5 km. In addition, eleven shallower profiles (averaging about 45-m deep) were measured using a bulldozer source. The shallower profiles were used to augment the deeper profiles and to evaluate further the near-surface velocity structure. The V s profiles exhibit a strong velocity gradient within 5 m of the surface, with the mean V s value more than doubling. Below this depth, V s gradually increases from a mean value of about 900 to 1000 m/s at a depth of 150 m. Between the depths of 150 and 210 m, V s increases more rapidly to about 1350 m/s, but this trend is based on limited data. At depths less than 50 m, anisotropy in V s was measured for surveys conducted

  18. Mathematical description of tooth flank surface of globoidal worm gear with straight axial tooth profile

    Science.gov (United States)

    Połowniak, Piotr; Sobolak, Mariusz

    2017-12-01

    In this article, a mathematical description of tooth flank surface of the globoidal worm and worm wheel generated by the hourglass worm hob with straight tooth axial profile is presented. The kinematic system of globoidal worm gear is shown. The equation of globoid helix and tooth axial profile of worm is derived to determine worm tooth surface. Based on the equation of meshing the contact lines are obtained. The mathematical description of globoidal worm wheel tooth flank is performed on the basis of contact lines and generating the tooth side by the extreme cutting edge of worm hob. The presented mathematical model of tooth flank of TA worm and worm wheel can be used e.g. to analyse the contact pattern of the gear.

  19. A Comparison Between Jerusalem Cross and Square Patch Frequency Selective Surfaces for Low Profile Antenna Applications

    Science.gov (United States)

    Cure, David; Weller, Thomas; Miranda, Felix A.

    2011-01-01

    In this paper, a comparison between Jerusalem Cross (JC) and Square Patch (SP) based Frequency Selected Surfaces (FSS) for low profile antenna applications is presented. The comparison is aimed at understanding the performance of low profile antennas backed by high impedance surfaces. In particular, an end loaded planar open sleeve dipole (ELPOSD) antenna is examined due to the various parameters within its configuration, offering significant design flexibility and a wide operating bandwidth. Measured data of the antennas demonstrate that increasing the number of unit cells improves the fractional bandwidth. The antenna bandwidth increased from 0.8% to 1.8% and from 0.8% to 2.7% for the JC and SP structures, respectively. The number of unit cells was increased from 48 to 80 for the JC-FSS and from 24 to 48 for the SP-FSS.

  20. Self-Consistent Approach to Global Charge Neutrality in Electrokinetics: A Surface Potential Trap Model

    Directory of Open Access Journals (Sweden)

    Li Wan

    2014-03-01

    Full Text Available In this work, we treat the Poisson-Nernst-Planck (PNP equations as the basis for a consistent framework of the electrokinetic effects. The static limit of the PNP equations is shown to be the charge-conserving Poisson-Boltzmann (CCPB equation, with guaranteed charge neutrality within the computational domain. We propose a surface potential trap model that attributes an energy cost to the interfacial charge dissociation. In conjunction with the CCPB, the surface potential trap can cause a surface-specific adsorbed charge layer σ. By defining a chemical potential μ that arises from the charge neutrality constraint, a reformulated CCPB can be reduced to the form of the Poisson-Boltzmann equation, whose prediction of the Debye screening layer profile is in excellent agreement with that of the Poisson-Boltzmann equation when the channel width is much larger than the Debye length. However, important differences emerge when the channel width is small, so the Debye screening layers from the opposite sides of the channel overlap with each other. In particular, the theory automatically yields a variation of σ that is generally known as the “charge regulation” behavior, attendant with predictions of force variation as a function of nanoscale separation between two charged surfaces that are in good agreement with the experiments, with no adjustable or additional parameters. We give a generalized definition of the ζ potential that reflects the strength of the electrokinetic effect; its variations with the concentration of surface-specific and surface-nonspecific salt ions are shown to be in good agreement with the experiments. To delineate the behavior of the electro-osmotic (EO effect, the coupled PNP and Navier-Stokes equations are solved numerically under an applied electric field tangential to the fluid-solid interface. The EO effect is shown to exhibit an intrinsic time dependence that is noninertial in its origin. Under a step-function applied

  1. Hexabromocyclododecanes (HBCDDs) in surface soils from coastal cities in North China: Correlation between diastereoisomer profiles and industrial activities.

    Science.gov (United States)

    Zhang, Yueqing; Li, Qifeng; Lu, Yonglong; Jones, Kevin; Sweetman, Andrew J

    2016-04-01

    Hexabromocyclododecane (HBCDD) is a brominated flame retardant with a wide range of industrial applications, although little is known about its patterns of spatial distribution in soils in relation to industrial emissions. This study has undertaken a large-scale investigation around an industrialized coastal area of China, exploring the concentrations, spatial distribution and diastereoisomer profiles of HBCDD in 188 surface soils from 21 coastal cities in North China. The detection frequency was 100% and concentrations of total HBCDD in the surface soils ranged from 0.123 to 363 ng g(-1) and averaged 7.20 ng g(-1), showing its ubiquitous existence at low levels. The spatial distribution of HBCDD exhibited a correlation with the location of known manufacturing facilities in Weifang, suggesting the production of HBCDD as major emission source. Diastereoisomer profiles varied in different cities. Diastereoisomer compositions in soils were compared with emissions from HBCDD industrial activities, and correlations were found between them, which has the potential for source identification. Although the contemporary concentrations of HBCDD in soils from the study were relatively low, HBCDD-containing products (expanded/extruded polystyrene insulation boards) would be a potential source after its service life, and attention needs to be paid to prioritizing large-scale waste management efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. From Intensity Profile to Surface Normal: Photometric Stereo for Unknown Light Sources and Isotropic Reflectances.

    Science.gov (United States)

    Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi

    2015-10-01

    We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.

  3. Simulations geometric structures of the stepped profile bearing surface of the piston

    Directory of Open Access Journals (Sweden)

    Wroblewski Emil

    2017-01-01

    Full Text Available The main node piston-pin-piston rings are most responsible for the formation of mechanical losses. It is advisable to reduce friction losses in the piston-cylinder group lead to an increase in the overall efficiency of the engine and thus reduce the fuel consumption. The method to reduce the area covered by the oil film is a modification of the bearing surface of the piston by adjusting the profile. In this paper the results of simulation for the stepped microgeometry piston bearing surface are presented.

  4. Surface profiling of normally responding and nonreleasing basophils by flow cytometry

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Lars Kærgaard; Jensen, Bettina Margrethe

    a maximum release blood mononuclear cells were purified by density centrifugation and using flow cytometry, basophils, defined as FceRIa+CD3-CD14-CD19-CD56-,were analysed for surface expression of relevant markers. All samples were compensated and analysed in logicle display. All gates......c, C3aR, C5aR CCR3, FPR1, ST2, CRTH2 on anti-IgE respondsive and nonreleasing basophils by flow cytometry, thereby generating a surface profile of the two phenotypes. Methods Fresh buffy coat blood (

  5. Characterizing water-metal interfaces and machine learning potential energy surfaces

    Science.gov (United States)

    Ryczko, Kevin

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  6. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles

    Science.gov (United States)

    Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo

    2018-04-01

    Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.

  7. Potential Energy Surface of NO on Pt(997: Adsorbed States and Surface Diffusion

    Directory of Open Access Journals (Sweden)

    N. Tsukahara

    2012-01-01

    Full Text Available The potential energy surface (PES of NO on Pt(997 has been elucidated: the adsorption states and diffusion processes of NO on Pt(997 at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS and scanning tunneling microscopy (STM. When NO molecules adsorb on a surface at a low temperature (11 K, each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997: a bridge site of the upper step, an fcc- (or hcp- hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.

  8. An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements

    Science.gov (United States)

    Kang, D.

    2015-12-01

    In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.

  9. Effect of surface roughness and surface modification of indium tin oxide electrode on its potential response to tryptophan

    International Nuclear Information System (INIS)

    Khan, Md. Zaved Hossain; Nakanishi, Takuya; Kuroiwa, Shigeki; Hoshi, Yoichi; Osaka, Tetsuya

    2011-01-01

    Highlights: → We examine factors affecting potential response of ITO electrode to tryptophan. → Surface roughness of ITO electrode affects the stability of its rest potential. → Surface modification is effective for ITO electrode with a certain roughness. → Optimum values of work function exist for potential response of ITO to tryptophan. - Abstract: The effect of surface modification of indium tin oxide (ITO) electrode on its potential response to tryptophan was investigated for ITO substrates with different surface roughness. It was found that a small difference in surface roughness, between ∼1 and ∼2 nm of R a evaluated by atomic force microscopy, affects the rest potential of ITO electrode in the electrolyte. A slight difference in In:Sn ratio at the near surface of the ITO substrates, measured by angle-resolved X-ray photoelectron spectrometry and Auger electron spectroscopy is remarkable, and considered to relate with surface roughness. Interestingly, successive modification of the ITO surface with aminopropylsilane and disuccinimidyl suberate, of which essentiality to the potential response to indole compounds we previously reported, improved the stability of the rest potential and enabled the electrodes to respond to tryptophan in case of specimens with R a values ranging between ∼2 and ∼3 nm but not for those with R a of ∼1 nm. It was suggested that there are optimum values of effective work function of ITO for specific potential response to tryptophan, which can be obtained by the successive modification of ITO surface.

  10. Nanoscale surface potential imaging of the photocatalytic TiO2 films on aluminum

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Dirscherl, Kai; Canulescu, Stela

    2013-01-01

    in the surface potential of TiO2 coatings upon UV-illumination are closely correlated to the band gap and thickness of the coatings. The inhomogeneity surface potential distribution of a 100 nm TiO2 film indicates a heterogeneous coating. Transition to a homogeneous surface potential distribution was observed...

  11. Potential of surface-eroding poly(ethylene carbonate) for drug delivery to macrophages

    DEFF Research Database (Denmark)

    Bohr, Adam; Water, Jorrit J; Wang, Yingya

    2016-01-01

    Films composed of poly(ethylene carbonate) (PEC), a biodegradable polymer, were compared with poly(lactide-co-glycolide) (PLGA) films loaded with and without the tuberculosis drug rifampicin to study the characteristics and performance of PEC as a potential carrier for controlled drug delivery...... to macrophages. All drug-loaded PLGA and PEC films were amorphous indicating good miscibility of the drug in the polymers, even at high drug loading (up to 50wt.%). Polymer degradation studies showed that PLGA degraded slowly via bulk erosion while PEC degraded more rapidly and near-linearly via enzyme mediated...... surface erosion (by cholesterol esterase). Drug release studies performed with polymer films indicated a diffusion/erosion dependent delivery behavior for PLGA while an almost zero-order drug release profile was observed from PEC due to the controlled polymer degradation process. When exposed to polymer...

  12. Adaptive Sampling based 3D Profile Measuring Method for Free-Form Surface

    Science.gov (United States)

    Duan, Xianyin; Zou, Yu; Gao, Qiang; Peng, Fangyu; Zhou, Min; Jiang, Guozhang

    2018-03-01

    In order to solve the problem of adaptability and scanning efficiency of the current surface profile detection device, a high precision and high efficiency detection approach is proposed for surface contour of free-form surface parts based on self- adaptability. The contact mechanical probe and the non-contact laser probe are synthetically integrated according to the sampling approach of adaptive front-end path detection. First, the front-end path is measured by the non-contact laser probe, and the detection path is planned by the internal algorithm of the measuring instrument. Then a reasonable measurement sampling is completed according to the planned path by the contact mechanical probe. The detection approach can effectively improve the measurement efficiency of the free-form surface contours and can simultaneously detect the surface contours of unknown free-form surfaces with different curvatures and even different rate of curvature. The detection approach proposed in this paper also has important reference value for free-form surface contour detection.

  13. Molecular profiling techniques as tools to detect potential unintended effects in genetically engineered maize

    CSIR Research Space (South Africa)

    Barros, E

    2010-05-01

    Full Text Available Molecular Profiling Techniques as Tools to Detect Potential Unintended Effects in Genetically Engineered Maize Eugenia Barros Introduction In the early stages of production and commercialization of foods derived from genetically engineered (GE) plants... systems. In a recent paper published in Plant Biotechnology Journal,4 we compared two transgenic white maize lines with the non-transgenic counterpart to investigate two possible sources of variation: genetic engineering and environmental variation...

  14. Surface profile measurement by using the integrated Linnik WLSI and confocal microscope system

    Science.gov (United States)

    Wang, Wei-Chung; Shen, Ming-Hsing; Hwang, Chi-Hung; Yu, Yun-Ting; Wang, Tzu-Fong

    2017-06-01

    The white-light scanning interferometer (WLSI) and confocal microscope (CM) are the two major optical inspection systems for measuring three-dimensional (3D) surface profile (SP) of micro specimens. Nevertheless, in practical applications, WLSI is more suitable for measuring smooth and low-slope surfaces. On the other hand, CM is more suitable for measuring uneven-reflective and low-reflective surfaces. As for aspect of surface profiles to be measured, the characteristics of WLSI and CM are also different. WLSI is generally used in semiconductor industry while CM is more popular in printed circuit board industry. In this paper, a self-assembled multi-function optical system was integrated to perform Linnik white-light scanning interferometer (Linnik WLSI) and CM. A connecting part composed of tubes, lenses and interferometer was used to conjunct finite and infinite optical systems for Linnik WLSI and CM in the self-assembled optical system. By adopting the flexibility of tubes and lenses, switching to perform two different optical measurements can be easily achieved. Furthermore, based on the shape from focus method with energy of Laplacian filter, the CM was developed to enhance the on focal information of each pixel so that the CM can provide all-in-focus image for performing the 3D SP measurement and analysis simultaneously. As for Linnik WLSI, eleven-step phase shifting algorithm was used to analyze vertical scanning signals and determine the 3D SP.

  15. Profiles

    International Nuclear Information System (INIS)

    2004-01-01

    Profiles is a synthetic overview of more than 100 national energy markets in the world, providing insightful facts and key energy statistics. A Profile is structured around 6 main items and completed by key statistics: Ministries, public agencies, energy policy are concerned; main companies in the oil, gas, electricity and coal sectors, status, shareholders; reserve, production, imports and exports, electricity and refining capacities; deregulation of prices, subsidies, taxes; consumption trends by sector, energy market shares; main energy projects, production and consumption prospects. Statistical Profiles are present in about 3 pages the main data and indicators on oil, gas, coal and electricity. (A.L.B.)

  16. Surface processing: existing and potential applications of ultraviolet light.

    Science.gov (United States)

    Manzocco, Lara; Nicoli, Maria Cristina

    2015-01-01

    Solid foods represent optimal matrices for ultraviolet processing with effects well beyond nonthermal surface disinfection. UV radiation favors hormetic response in plant tissues and degradation of toxic compound on the product surface. Photoinduced reactions can also provide unexplored possibilities to steer structure and functionality of food biopolymers. The possibility to extensively exploit this technology will depend on availability of robust information about efficacious processing conditions and adequate strategies to completely and homogeneously process food surface.

  17. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife.

    Directory of Open Access Journals (Sweden)

    Stephen R Griffiths

    Full Text Available Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance, white boxes (high reflectance, and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and

  18. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer.

    Science.gov (United States)

    Liu, Huimin; Xu, Wei; Tan, Wanyi; Zhu, Xuhui; Wang, Jian; Peng, Junbiao; Cao, Yong

    2016-03-01

    Line printing offers a feasible approach to remove the pixel well structure which is widely used to confine the ink-jet printed solution. In the study, a uniform line is printed by an ink-jet printer. To achieve a uniform surface profile of the printed line, 10vol% low-volatile solvent DMA (3,4-Dimethylanisole) is mixed with high-volatile solvent Pxy (p-xylene) as the solvent. After a solution-processable small molecule is dissolved, the surface tension of DMA solution becomes lower than that of Pxy solution, which creates an inward Marangoni flow during the solvent evaporation. The inward Marangoni flow balances out the outward capillary flow, thereby forming a flat film surface. The line width of the printed line depends on the contact angle of the solution on the hole injection layer. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M. [Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Kóspál, Ágnes; Moór, Attila; Ábrahám, Peter [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Kamp, Inga [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Wilner, David J.; Andrews, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); Kastner, Joel H., E-mail: amhughes@astro.wesleyan.edu [Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2017-04-20

    We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  20. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. J. Sheridan

    2012-12-01

    Full Text Available Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1 measure the in situ aerosol properties and determine their vertical and temporal variability and (2 relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc., however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93–0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and

  1. Surface grafted polymer brushes: potential applications in dengue biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco, E-mail: ozahiga@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de, E-mail: alencar@unifei.edu.br [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Fisica e Quimica

    2013-07-01

    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar{sup +} ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  2. Surface grafted polymer brushes: potential applications in dengue biosensors

    International Nuclear Information System (INIS)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco; Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de

    2013-01-01

    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar + ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  3. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina; Brümmer, B.

    2007-01-01

    -Obukhov similarity. Above the surface layer the second length scale (L-MBL ) becomes independent of height but not of stability, and at the top of the boundary layer the third length scale is assumed to be negligible. A simple model for the combined length scale that controls the wind profile and its stability...... dependence is formulated by inverse summation. Based on these assumptions the wind profile for the entire boundary layer is derived. A parameterization of L-MBL is formulated using the geostrophic drag law, which relates friction velocity and geostrophic wind. The empirical parameterization of the resistance...... law functions A and B in the geostrophic drag law is uncertain, making it impractical. Therefore an expression for the length scale, L-MBL , for applied use is suggested, based on measurements from the two sites....

  4. Modelling of composition and stress profiles in low temperature surface engineered stainless steel

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard; Hattel, Jesper Henri; Somers, Marcel A. J.

    2015-01-01

    temperature, time and gas composition is a prerequisite for targeted process optimization. A realistic model to simulate the developing case has to take the following influences on composition and stress into account: - a concentration dependent diffusion coefficient - trapping of nitrogen by chromium atoms...... stresses are introduced in the developing case, arising from the volume expansion that accompanies the dissolution of high interstitial contents in expanded austenite. Modelling of the composition and stress profiles developing during low temperature surface engineering from the processing parameters...... - the effect of residual stress on diffusive flux - the effect of residual stress on solubility of interstitials - plastic accommodation of residual stress. The effect of all these contributions on composition and stress profiles will be addressed....

  5. Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Orentas, Rimas J. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Yang, James J. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Wen, Xinyu; Wei, Jun S. [Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Mackall, Crystal L. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Khan, Javed, E-mail: rimas.orentas@nih.gov [Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States)

    2012-12-17

    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues.

  6. Ionic profile of honey as a potential indicator of botanical origin and global environmental pollution

    International Nuclear Information System (INIS)

    Fermo, Paola; Beretta, Giangiacomo; Maffei Facino, Roberto; Gelmini, Fabrizio; Piazzalunga, Andrea

    2013-01-01

    Aim of this study was to determine by Ion Chromatography ions (Na + , Ca ++ , Mg ++ , NH 4 + , Cl − , Br − , SO 4 2− , NO 3 − , PO 4 3− ) in honeys (honeydew and floral nectar honeys) from different Italian Regions and from countries of the Western Balkan area. The compositional data were processed by multivariate analysis (PCA and HCA). Arboreal honeydew honeys from the Western Balkans had higher concentrations (from two to three times) of some environmental pollutants (Br − , SO 4 2− and PO 4 3− contents), due to industrial and agricultural activities, than those from Italian regions. The cationic profiles were very similar in both groups. Multivariate analysis indicated a clear difference between nectar honeys and arboreal/honeydew honeys (recognition of the botanical origin). These findings point to the potential of ionic constituents of honey as indicators of environmental pollution, botanical origin and authenticity. -- Highlights: •Analysis by IC of honeys from two areas with different environmental pollution (Italy and Balkans). •Chemometric techniques such as PCA and HCA used. •In Balkans area higher Br − , SO 4 2− and PO 4 3− due to industrial and agricultural activities. •Discrimination of honey botanical origin and authenticity on the base of IC data. •Honey ionic profiles as indicators of environmental pollution and botanical origin. -- Capsule: Ionic profiles of honey could be potential indicators of environmental pollution (industrial and agricultural), botanical origin and authenticity

  7. Geometric Parameters of Cutting Tools that Can be Used for Forming Sided Surfaces with Variable Profile

    Directory of Open Access Journals (Sweden)

    Razumov M.

    2017-03-01

    Full Text Available This article describes machining technology of polyhedral surfaces with varying profile, which is provided by planetary motion of multiblade block tools. The features of the technology and urgency of the problem is indicated. The purpose of the study is to determine the minimum value of the clearance angle of the tool. Also, the study is carried out about changing the value of the front and rear corners during the formation of polygonal surface using a planetary gear. The scheme of calculating the impact of various factors on the value of the minimum clearance angle of the tool and kinematic front and rear corners of the instrument is provided. The mathematical formula for calculating the minimum clearance angle of the tool is given. Also, given the formula for determining the front and rear corners of the tool during driving. This study can be used in the calculation of the design operations forming multifaceted external surfaces with a variable profile by using the planetary gear.

  8. Surface damage and gas trapping profile measurements in copper during 20 kev He+ irradiation

    International Nuclear Information System (INIS)

    Terreault, B.; Veilleux, G.

    1980-01-01

    Surface damage due to 20 keV he + irradiation of OFHC Cu was studied by optical and scanning electron microscopy, and by gas trapping profile measurements with proton backscattering and elastic recoil detection. Both annealed (1 h at 773 K) and unannealed Cu were implanted, at 300 K (0.22Tsub(m)) and 500 K(0.37 Tsub(m)), up to fluences of 3 x 10 18 cm -2 . Additional results with thin (1 μm) evaporated films and stressed cold-rolled foils (3 μm) were obtained. At 500 K in bulk OFHC Cu pores and/or large (approx. 1μm) but scattered blisters appear; at 300 K in bulk or thin film Cu blisters are large and abundant. In all these cases a very large (>=1.5 x 10 1 7 cm -2 ) and sudden release of deeply implanted helium takes place, leading to a depleted profile at a depth of about 90 nm (approx. Rsub(p)). In contrast in cold-rolled foils the blisters are small (approx. 0.4 μm) and the profiles are undepleted. These results are explained by fissuration of helium-pressurized cavities. At high fluence blisters disappear, leaving a porous structure at 500 K and a rough micro-relief at 300 K; the helim profiles are flat and very wide (2-3 Rsub(p)). Blister disappearance, absence of flaking, and porous structure are discussed in terms of the width of the profiles and the formation of a helium-saturated, highly damaged (recrystallized), and permeable layer. (orig.)

  9. Mobile depth profiling and sub-surface imaging techniques for historical paintings—A review

    International Nuclear Information System (INIS)

    Alfeld, Matthias; Broekaert, José A.C.

    2013-01-01

    Hidden, sub-surface paint layers and features contain valuable information for the art-historical investigation of a painting's past and for its conservation for coming generations. The number of techniques available for the study of these features has been considerably extended in the last decades and established techniques have been refined. This review focuses on mobile non-destructive subsurface imaging and depth profiling techniques, which allow for the in-situ investigation of easel paintings, i.e. paintings on a portable support. Among the techniques discussed are: X-ray radiography and infrared reflectography, which are long established methods and are in use for several decades. Their capabilities of element/species specific imaging have been extended by the introduction of energy/wavelength resolved measurements. Scanning macro-X-ray fluorescence analysis made it for the first time possible to acquire elemental distribution images in-situ and optical coherence tomography allows for the non-destructive study the surface paint layers in virtual cross-sections. These techniques and their variants are presented next to other techniques, such as Terahertz imaging, Nuclear Magnetic Resonance depth profiling and established techniques for non destructive testing (thermography, ultrasonic imaging and laser based interference methods) applied in the conservation of historical paintings. Next to selected case studies the capabilities and limitations of the techniques are discussed. - Highlights: • All mobile sub-surface and depth-profiling techniques for paintings are reviewed. • The number of techniques available has increased considerably in the last years. • X-ray radiography and infrared reflectography are still the most used techniques. • Scanning macro-XRF and optical coherence tomography begin to establish. • Industrial non destructive testing techniques support the preservation of paintings

  10. Mobile depth profiling and sub-surface imaging techniques for historical paintings—A review

    Energy Technology Data Exchange (ETDEWEB)

    Alfeld, Matthias, E-mail: matthias.alfeld@desy.de [University of Hamburg, Department of Chemistry, Martin-Luther-King Platz 6, D-20146 Hamburg (Germany); University of Antwerp, Department of Chemistry, Groenenbrogerlaan 171, B-2020 Antwerp (Belgium); Broekaert, José A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [University of Hamburg, Department of Chemistry, Martin-Luther-King Platz 6, D-20146 Hamburg (Germany)

    2013-10-01

    Hidden, sub-surface paint layers and features contain valuable information for the art-historical investigation of a painting's past and for its conservation for coming generations. The number of techniques available for the study of these features has been considerably extended in the last decades and established techniques have been refined. This review focuses on mobile non-destructive subsurface imaging and depth profiling techniques, which allow for the in-situ investigation of easel paintings, i.e. paintings on a portable support. Among the techniques discussed are: X-ray radiography and infrared reflectography, which are long established methods and are in use for several decades. Their capabilities of element/species specific imaging have been extended by the introduction of energy/wavelength resolved measurements. Scanning macro-X-ray fluorescence analysis made it for the first time possible to acquire elemental distribution images in-situ and optical coherence tomography allows for the non-destructive study the surface paint layers in virtual cross-sections. These techniques and their variants are presented next to other techniques, such as Terahertz imaging, Nuclear Magnetic Resonance depth profiling and established techniques for non destructive testing (thermography, ultrasonic imaging and laser based interference methods) applied in the conservation of historical paintings. Next to selected case studies the capabilities and limitations of the techniques are discussed. - Highlights: • All mobile sub-surface and depth-profiling techniques for paintings are reviewed. • The number of techniques available has increased considerably in the last years. • X-ray radiography and infrared reflectography are still the most used techniques. • Scanning macro-XRF and optical coherence tomography begin to establish. • Industrial non destructive testing techniques support the preservation of paintings.

  11. Rayleigh beacon for measuring the surface profile of a radio telescope.

    Science.gov (United States)

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  12. Surface coil imaging of the spine using fast sequences: Improvement of intensity profile and contrast behavior

    International Nuclear Information System (INIS)

    Requardt, H.; Deimling, M.; Weber, H.

    1986-01-01

    Sagittal and axial images obtained using a surface coil suffer from the extreme intensity profile caused by physical properties of the coil and the anatomic entity of subcutaneous fat. The authors present a measuring device that reduces these disadvantages by means of Helmholtz-type coils, and sequences that reduce the fat signal by dephasing its signal part. The extremely short repetition time (<30 msec) allows acquisition times shorter than 10 sec. Breath-holding for this short period to avoid movement artifacts is possible. Images are presented that illustrate the enhanced contrast of spinal tissue and surrounding structures. Comparisons are made with spin-echo and CHESS images

  13. Investigation of surface residual stress profile on martensitic stainless steel weldment with X-ray diffraction

    Directory of Open Access Journals (Sweden)

    I.I. Ahmed

    2018-04-01

    Full Text Available The development of residual stresses during fabrication is inevitable and often neglected with dire consequences during the service life of the fabricated components. In this work, the surface residual stress profile following the martensitic stainless steel (MSS pipe welding was investigated with X-ray diffraction technique. The results revealed the presence of residual stresses equilibrated across the weldment zones. Tensile residual stress observed in weld metal was balanced by compressive residual stresses in the parent material on the opposing sides of weld metal. Keywords: Residual stress, Weld, Stainless steel, X-ray, HAZ

  14. Cold atoms near surfaces: designing potentials by sculpturing wires

    International Nuclear Information System (INIS)

    Della Pietra, Leonardo; Aigner, Simon; Hagen, Christoph vom; Lezec, Henri J; Schmiedmayer, Joerg

    2005-01-01

    The magnetic trapping potentials for atoms on atom chips are determined by the current flow pattern in the chip wires. By modifying the wire shape using focused ion beam nano-machining we can design specialized current flow patterns and therefore micro-design the magnetic trapping potentials. We give designs for a barrier, a quantum dot, and a double well or double barrier and show preliminary experiments with ultra cold atoms in these designed potentials

  15. Potential Biosignificant Interest and Surface Activity of Efficient Heterocyclic Derivatives.

    Science.gov (United States)

    El-Sayed, Refat; Althagafi, Ismail

    2016-01-01

    Some functionalized pyridine and fused system derivatives were synthesized using enaminonitrile derivative 5 as a starting material for the reaction, with various reagents under different conditions. Propoxylation of these compounds using different moles of propylene oxide (3, 5 and 7 moles) leads to a novel group of surface active agents. The antimicrobial and surface activities of the synthesized compounds were investigated. Most of the evaluated compounds proved to be active as antibacterial and antifungal agents and showed good surface activity, which makes them suitable for diverse applications such as the manufacturing of emulsifiers, cosmetics, drugs, pesticides, etc. Additionally, biodegradation testing exhibits significant breakdown within six to seven days, and hence, lowers the toxicity to human beings and becomes environmentally friendly.

  16. Nuclear stimulated desorption as a potential tool for surface study

    International Nuclear Information System (INIS)

    Nir, Dror.

    1993-03-01

    The described research work constitutes a base for an experimental method to be implemented in the study of solid surfaces. Nuclear Stimulated Desorption (NSD) is a new mode of experimentation in thin film and surface physics. It Is based on the interplay between nuclear phenomena (reactions and spontaneous decays), and atomic - scale induced effects on surfaces and very thin films. One may distinguish between two generically different relationships between the two. First, the dynamics of the nuclear reaction -primarily the recoil of the nucleus - may effect the position of the atom or molecule containing it. Second, the nuclear reaction (or decay) may serve as an analytical indicator of the whereabouts of the atom, or molecule, in question. In nuclear stimulated desorption, both thee aspects combine in an essential way. Namely, one employs a series of two consecutive decays (normally weak decays or isomeric transition) . The first of these decays causes the nucleus to desorb from a surface onto which it had been placed; the second serves to determine the position of the daughter and thereby the characteristics of the primary desorption . The essential feature in NSD is that it occurs almost exclusively from the outermost surface layer. This is because we choose to work with nuclei whose recoil energy Is of the same order of magnitude of the binding energy of the atom to the surface . Furthermore, the desorption probability and its angular (and temporal) characteristics, depend on the features (topology, morphology) of its immediate neighborhood. This work describes experiments which were designed to give relevant, phenomenological information about the outgoing flux of the radioactive daughters (for specifically chosen nuclear species) , and in particular the magnitude of the flux, its time dependence and its charged state. In addition. the basic phenomena itself is being distinguished from competing processes (thermal desorption, in particular). We will now

  17. Surface waves at the interface with an antisymmetric gain/loss profile

    International Nuclear Information System (INIS)

    Ctyroky, Jiri; Kuzmiak, Vladimir; Eyderman, Sergey

    2010-01-01

    We studied properties of strongly guiding two-mode waveguides with antisymmetric gain/loss profile which constitute photonic analogues of quantum mechanical structures with parity-time symmetry breaking. For both TE and TM polarizations, the dependences of effective indices of the guided modes vs. gain/loss coefficient exhibit a degenerate critical point that defines two regimes with profoundly different behavior. In addition, we have shown that the interface between the two media supports propagation of a strongly confined non-attenuated TM polarized surface wave. We examined the properties of the surface wave obtained by both the modal and FDTD method and discuss the differences between the results obtained by both techniques as both the material and geometrical parameters are varied.

  18. Exploring the Plant–Microbe Interface by Profiling the Surface-Associated Proteins of Barley Grains

    DEFF Research Database (Denmark)

    Sultan, Abida; Andersen, Birgit; Svensson, Birte

    2016-01-01

    Cereal grains are colonized by a microbial community that actively interacts with the plant via secretion of various enzymes, hormones, and metabolites. Microorganisms decompose plant tissues by a collection of depolymerizing enzymes, including β-1,4-xylanases, that are in turn inhibited by plant...... xylanase inhibitors. To gain insight into the importance of the microbial consortia and their interaction with barley grains, we used a combined gel-based (2-DE coupled to MALDI-TOF-TOF MS) and gel-free (LC–MS/MS) proteomics approach complemented with enzyme activity assays to profile the surface......-associated proteins and xylanolytic activities of two barley cultivars. The surface-associated proteome was dominated by plant proteins with roles in defense and stress-responses, while the relatively less abundant microbial (bacterial and fungal) proteins were involved in cell-wall and polysaccharide degradation...

  19. Otter trawls in Greece: Landing profiles and potential mιtiers

    Directory of Open Access Journals (Sweden)

    S. KATSANEVAKIS

    2010-02-01

    Full Text Available A fleet of 326 bottom trawlers operate in Greek Seas and their landings represent approximately 30% of the total fish production in Greece. In this study, otter trawl landings data were analyzed in order to identify potential métiers. Landings data between 2002 and 2006 were used, collected from 42 ports in the Aegean and East Ionian Sea. A three-step procedure was applied to identify potential métiers: the first step involved a factorial analysis of the log-transformed landings profiles, the second step a classification of the factorial coordinates, and the third step a further aggregation of clusters based on expert knowledge. In all, six potential métiers were identified in the Aegean Sea, and five in the Ionian Sea. The most important target species were European hake (Merluccius merluccius, deepwater pink shrimp (Parapenaeus longirostris, red mullet (Mullus barbatus, caramote prawn (Melicertus kerathurus, picarel (Spicara smaris, cephalopods, bogue (Boops boops, anglers (Lophiusspp., and Norway lobster (Nephrops norvegicus. Otter trawls in Greece use more or less the same gear with minor modification, and métier selection is basically reflected as a choice of geographical sub-area and hauling depth. The limitations of using landings profiles to identify métiers and the need for further verification are discussed.

  20. Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis

    International Nuclear Information System (INIS)

    Boaga, J; Vignoli, G; Cassiani, G

    2011-01-01

    Inversion is a critical step in all geophysical techniques, and is generally fraught with ill-posedness. In the case of seismic surface wave studies, the inverse problem can lead to different equivalent subsoil models and consequently to different local seismic response analyses. This can have a large impact on an earthquake engineering design. In this paper, we discuss the consequences of non-uniqueness of surface wave inversion on seismic responses, with both numerical and experimental data. Our goal is to evaluate the consequences on common seismic response analysis in the case of different impedance contrast conditions. We verify the implications of inversion uncertainty, and consequently of data information content, on realistic local site responses. A stochastic process is used to generate a set of 1D shear wave velocity profiles from several specific subsurface models. All these profiles are characterized as being equivalent, i.e. their responses, in terms of a dispersion curve, are compatible with the uncertainty in the same surface wave data. The generated 1D shear velocity models are then subjected to a conventional one-dimensional seismic ground response analysis using a realistic input motion. While recent analyses claim that the consequences of surface wave inversion uncertainties are very limited, our test points out that a relationship exists between inversion confidence and seismic responses in different subsoils. In the case of regular and relatively smooth increase of shear wave velocities with depth, as is usual in sedimentary plains, our results show that the choice of a specific model among equivalent solutions strongly influences the seismic response. On the other hand, when the shallow subsoil is characterized by a strong impedance contrast (thus revealing a characteristic soil resonance period), as is common in the presence of a shallow bedrock, equivalent solutions provide practically the same seismic amplification, especially in the

  1. Multiplex flow cytometry barcoding and antibody arrays identify surface antigen profiles of primary and metastatic colon cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Kumar Sukhdeo

    Full Text Available Colon cancer is a deadly disease affecting millions of people worldwide. Current treatment challenges include management of disease burden as well as improvements in detection and targeting of tumor cells. To identify disease state-specific surface antigen signatures, we combined fluorescent cell barcoding with high-throughput flow cytometric profiling of primary and metastatic colon cancer lines (SW480, SW620, and HCT116. Our multiplexed technique offers improvements over conventional methods by permitting the simultaneous and rapid screening of cancer cells with reduced effort and cost. The method uses a protein-level analysis with commercially available antibodies on live cells with intact epitopes to detect potential tumor-specific targets that can be further investigated for their clinical utility. Multiplexed antibody arrays can easily be applied to other tumor types or pathologies for discovery-based approaches to target identification.

  2. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  3. Fasciculation potentials in high-density surface EMG.

    NARCIS (Netherlands)

    Drost, G.; Kleine, B.U.; Stegeman, D.F.; Engelen, B.G.M. van; Zwarts, M.J.

    2007-01-01

    Fasciculation potentials (FPs) are observed in healthy individuals, but also in patients with neurogenic disorders. The exact site of origin and the clinical relevance in distinguishing, for example, amyotrophic lateral sclerosis (ALS) from other neurogenic diseases based on specific characteristics

  4. Effect of potential attraction term on surface tension of ionic liquids

    Science.gov (United States)

    Vaziri, N.; Khordad, R.; Rezaei, G.

    2018-03-01

    In this work, we have studied the effect of attraction term of molecular potential on surface tension of ionic liquids (ILs). For this purpose, we have introduced two different potential models to obtain analytical expressions for the surface tension of ILs. The introduced potential models have different attraction terms. The obtained surface tensions in this work have been compared with other theoretical methods and also experimental data. Using the calculated surface tension, the sound velocity is also estimated. We have studied the structural effects on the surface tensions of imidazolium-based ionic liquids. It is found that the cation alkyl chain length and the anion size play important roles to the surface tension of the selected ionic liquids. The calculated surface tensions show a good harmony with experimental data. It is clear that the attraction term of molecular potential has an important role on surface tension and sound velocity of our system.

  5. Difference in Dwarf Galaxy Surface Brightness Profiles as a Function of Environment

    Science.gov (United States)

    Lee, Youngdae; Park, Hong Soo; Kim, Sang Chul; Moon, Dae-Sik; Lee, Jae-Joon; Kim, Dong-Jin; Cha, Sang-Mok

    2018-05-01

    We investigate surface brightness profiles (SBPs) of dwarf galaxies in field, group, and cluster environments. With deep BV I images from the Korea Microlensing Telescope Network Supernova Program, SBPs of 38 dwarfs in the NGC 2784 group are fitted by a single-exponential or double-exponential model. We find that 53% of the dwarfs are fitted with single-exponential profiles (“Type I”), while 47% of the dwarfs show double-exponential profiles; 37% of all dwarfs have smaller sizes for the outer part than the inner part (“Type II”), while 10% have a larger outer than inner part (“Type III”). We compare these results with those in the field and in the Virgo cluster, where the SBP types of 102 field dwarfs are compiled from a previous study and the SBP types of 375 cluster dwarfs are measured using SDSS r-band images. As a result, the distributions of SBP types are different in the three environments. Common SBP types for the field, the NGC 2784 group, and the Virgo cluster are Type II, Type I and II, and Type I and III profiles, respectively. After comparing the sizes of dwarfs in different environments, we suggest that since the sizes of some dwarfs are changed due to environmental effects, SBP types are capable of being transformed and the distributions of SBP types in the three environments are different. We discuss possible environmental mechanisms for the transformation of SBP types. Based on data collected at KMTNet Telescopes and SDSS.

  6. OCT-based profiler for automating ocular surface prosthetic fitting (Conference Presentation)

    Science.gov (United States)

    Mujat, Mircea; Patel, Ankit H.; Maguluri, Gopi N.; Iftimia, Nicusor V.; Patel, Chirag; Agranat, Josh; Tomashevskaya, Olga; Bonte, Eugene; Ferguson, R. Daniel

    2016-03-01

    The use of a Prosthetic Replacement of the Ocular Surface Environment (PROSE) device is a revolutionary treatment for military patients that have lost their eyelids due to 3rd degree facial burns and for civilians who suffer from a host of corneal diseases. However, custom manual fitting is often a protracted painful, inexact process that requires multiple fitting sessions. Training for new practitioners is a long process. Automated methods to measure the complete corneal and scleral topology would provide a valuable tool for both clinicians and PROSE device manufacturers and would help streamline the fitting process. PSI has developed an ocular anterior-segment profiler based on Optical Coherence Tomography (OCT), which provides a 3D measure of the surface of the sclera and cornea. This device will provide topography data that will be used to expedite and improve the fabrication process for PROSE devices. OCT has been used to image portions of the cornea and sclera and to measure surface topology for smaller contact lenses [1-3]. However, current state-of-the-art anterior eye OCT systems can only scan about 16 mm of the eye's anterior surface, which is not sufficient for covering the sclera around the cornea. In addition, there is no systematic method for scanning and aligning/stitching the full scleral/corneal surface and commercial segmentation software is not optimized for the PROSE application. Although preliminary, our results demonstrate the capability of PSI's approach to generate accurate surface plots over relatively large areas of the eye, which is not currently possible with any other existing platform. Testing the technology on human volunteers is currently underway at Boston Foundation for Sight.

  7. Potential controls of isoprene in the surface ocean

    Science.gov (United States)

    Hackenberg, S. C.; Andrews, S. J.; Airs, R.; Arnold, S. R.; Bouman, H. A.; Brewin, R. J. W.; Chance, R. J.; Cummings, D.; Dall'Olmo, G.; Lewis, A. C.; Minaeian, J. K.; Reifel, K. M.; Small, A.; Tarran, G. A.; Tilstone, G. H.; Carpenter, L. J.

    2017-04-01

    Isoprene surface ocean concentrations and vertical distribution, atmospheric mixing ratios, and calculated sea-to-air fluxes spanning approximately 125° of latitude (80°N-45°S) over the Arctic and Atlantic Oceans are reported. Oceanic isoprene concentrations were associated with a number of concurrently monitored biological variables including chlorophyll a (Chl a), photoprotective pigments, integrated primary production (intPP), and cyanobacterial cell counts, with higher isoprene concentrations relative to all respective variables found at sea surface temperatures greater than 20°C. The correlation between isoprene and the sum of photoprotective carotenoids, which is reported here for the first time, was the most consistent across all cruises. Parameterizations based on linear regression analyses of these relationships perform well for Arctic and Atlantic data, producing a better fit to observations than an existing Chl a-based parameterization. Global extrapolation of isoprene surface water concentrations using satellite-derived Chl a and intPP reproduced general trends in the in situ data and absolute values within a factor of 2 between 60% and 85%, depending on the data set and algorithm used.

  8. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles.

    Science.gov (United States)

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-Yu; Zhang, Xiao-Mei; Song, Da-Feng; Zhang, Chen

    2016-08-01

    In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate.

  9. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles* #

    Science.gov (United States)

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-yu; Zhang, Xiao-mei; Song, Da-feng; Zhang, Chen

    2016-01-01

    Objective: In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. Methods: The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). Results: We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Conclusions: Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate. PMID:27487802

  10. Mutational Profiling of Malignant Mesothelioma Revealed Potential Therapeutic Targets in EGFR and NRAS

    Directory of Open Access Journals (Sweden)

    Jeong Eun Kim

    2018-04-01

    Full Text Available Pemetrexed and platinum (PP combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM. However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions. We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found.

  11. Mutational Profiling of Malignant Mesothelioma Revealed Potential Therapeutic Targets in EGFR and NRAS.

    Science.gov (United States)

    Kim, Jeong Eun; Kim, Deokhoon; Hong, Yong Sang; Kim, Kyu-Pyo; Yoon, Young Kwang; Lee, Dae Ho; Kim, Sang-We; Chun, Sung-Min; Jang, Se Jin; Kim, Tae Won

    2018-04-01

    Pemetrexed and platinum (PP) combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM). However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions). We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. On the effectiveness of surface assimilation in probabilistic nowcasts of planetary boundary layer profiles

    Science.gov (United States)

    Rostkier-Edelstein, Dorita; Hacker, Joshua

    2013-04-01

    Surface observations comprise a wide, non-expensive and reliable source of information about the state of the near-surface planetary boundary layer (PBL). Operational data assimilation systems have encountered several difficulties in effectively assimilating them, among others due to their local-scale representativeness, the transient coupling between the surface and the atmosphere aloft and the balance constraints usually used. A long-term goal of this work is to find an efficient system for probabilistic PBL nowcasting that can be employed wherever surface observations are present. Earlier work showed that surface observations can be an important source of information with a single column model (SCM) and an ensemble filter (EF). Here we extend that work to quantify the probabilistic skill of ensemble SCM predictions with a model including added complexity. We adopt a factor separation analysis to quantify the contribution of surface assimilation relative to that of selected model components (parameterized radiation and externally imposed horizontal advection) to the probabilistic skill of the system, and of any beneficial or detrimental interactions between them. To assess the real utility of the flow-dependent covariances estimated with the EF and of the SCM of the PBL we compare the skill of the SCM/EF system to that of a reference one based on climatological covariances and a 30-min persistence model. It consists of a dressing technique, whereby a deterministic 3D mesoscale forecast (e.g. from WRF model) is adjusted and dressed with uncertainty using a seasonal sample of mesoscale forecasts and surface forecast errors. Results show that assimilation of surface observations can improve deterministic and probabilistic profile predictions more significantly than major model improvements. Flow-dependent covariances estimated with the SCM/EF show clear advantage over the use of climatological covariances when the flow is characterized by wide variability, when

  13. 3D Surface Profile and Color Stability of Tooth Colored Filling Materials after Bleaching

    Directory of Open Access Journals (Sweden)

    Bryant Anthony Irawan

    2015-01-01

    Full Text Available This study aims to evaluate the effects of vital tooth bleaching with carbamide peroxide home bleaching and in-office bleaching on the color stability and 3D surface profile of dental restorative filling materials. Thirty discs (n=30 measure 6 mm in diameter and 2 mm thick for each of three restorative materials. These are nanofilled composite Filtek Z350 XT, the submicron composite Estelite Σ Quick, and nanofilled glass ionomer Ketac N100 nanoionomer and were fabricated in shade A2. Each group was further divided into three subgroups (n=10: subgroup A (Opalescence PF, subgroup B (Opalescence Boost in-office bleaching, and subgroup C (distilled water serving as control. Samples were bleached according to the manufacturer’s instructions for a period of two weeks. The Commission Internationale de L’Eclairage (CIE L*, a*, b* system was chosen for image processing, while 3D surface profile was tested with atomic force microscopy (AFM. Statistical analyses were performed with the Mann-Whitney tests and Krusal-Wallis with a P value of ≤0.05. The three restorative materials showed significant color changes (ΔE; P≤0.05. In diminishing order, the mean color changes recorded were Estelite Σ (3.82 ± 1.6 > Ketac Nano (2.97 ± 1.2 > Filtek Z350 XT (2.25 ± 1.0. However, none of the tested materials showed statistically significant changes in surface roughness; P>0.05.

  14. Deep and surface circulation in the Northwest Indian Ocean from Argo, surface drifter, and in situ profiling current observations

    Science.gov (United States)

    Stryker, S. A.; Dimarco, S. F.; Stoessel, M. M.; Wang, Z.

    2010-12-01

    The northwest Indian Ocean is a region of complex circulation and atmospheric influence. The Persian (Arabian) Gulf and Red Sea contribute toward the complexity of the region. This study encompasses the surface and deep circulation in the region ranging from 0°N-35°N and 40°E-80°E from January 2002-December 2009. Emphasis is in the Persian Gulf, Oman Sea and Arabian Sea (roughly from 21°N-26°N and 56°E-63°E) using a variety of in situ and observation data sets. While there is a lot known about the Persian Gulf and Arabian Sea, little is known about the Oman Sea. Circulation in the northwest Indian Ocean is largely influenced by seasonal monsoon winds. From the winter monsoon to the summer monsoon, current direction reverses. Marginal sea inflow and outflow are also seasonally variable, which greatly impacts the physical water mass properties in the region. In situ and observation data sets include data from Argo floats (US GODAE), surface drifters (AOML) and an observation system consisting of 4 independent moorings and a cabled ocean observatory in the Oman Sea. The observing system in the Oman Sea was installed by Lighthouse R & D Enterprises, Inc. beginning in 2005, and measures current, temperature, conductivity, pressure, dissolved oxygen and turbidity, using the Aanderaa Recording Doppler Current Profiler (RDCP) 600 and the Aanderaa Recording Current Meter (RCM) 11. The cabled ocean observatory measures dissolved oxygen, temperature and salinity between 65 m and 1000 m and reports in real-time. Argo floats in the region have a parking depth range from 500 m to 2000 m. At 1000 m depth, 98% of the velocity magnitudes range from less than 1 cm/s to 20 cm/s. The Somali Current and Northeast/Southwest Monsoon Currents are present, reversing from summer to winter. At 2000 m depth, the Somali and Monsoon Currents are still present but have smaller velocities with 98% ranging from less than 1 cm/s to 13 cm/s. At both 1000 m and 2000 m, larger velocities occur

  15. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms.

    Science.gov (United States)

    Shahbazi, Mohammad-Ali; Fernández, Tahia D; Mäkilä, Ermei M; Le Guével, Xavier; Mayorga, Cristobalina; Kaasalainen, Martti H; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-11-01

    Nanoparticles (NPs) have been suggested for immunotherapy applications in order to optimize the delivery of immuno-stimulative or -suppressive molecules. However, low attention towards the impact of the NPs' physicochemical properties has presented a major hurdle for developing efficient immunotherapeutic agents. Here, the effects of porous silicon (PSi) NPs with different surface chemistries were evaluated on human monocyte-derived dendritic cells (MDDCs) and lymphocytes in order to highlight the importance of the NPs selection in immuno-stimulative or -suppressive treatment. Although all the PSi NPs showed high biocompatibility, only thermally oxidized PSi (TOPSi) and thermally hydrocarbonized PSi (THCPSi) NPs were able to induce very high rate of immunoactivation by enhancing the expression of surface co-stimulatory markers of the MDDCs (CD80, CD83, CD86, and HLA-DR), inducing T-cell proliferation, and also the secretion of interleukins (IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α). These results indicated a balanced increase in the secretion of Th1, Th2, and Treg cytokines. Moreover, undecylenic acid functionalized THCPSi, as well as poly(methyl vinyl ether-alt-maleic acid) conjugated to (3-aminopropyl)triethoxysilane functionalized thermally carbonized PSi and polyethyleneimine conjugated undecylenic acid functionalized THCPSi NPs showed moderate immunoactivation due to the mild increase in the above-mentioned markers. By contrast, thermally carbonized PSi (TCPSi) and (3-aminopropyl)triethoxysilane functionalized TCPSi NPs did not induce any immunological responses, suggesting that their application could be in the delivery of immunosuppressive molecules. Overall, our findings suggest all the NPs containing more nitrogen or oxygen on the outermost backbone layer have lower immunostimulatory effect than NPs with higher C-H structures on the surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Extension of a He-H2 potential energy surface

    International Nuclear Information System (INIS)

    Raczkowski, A.W.; Lester, W.A. Jr.

    1977-01-01

    The CI surface of Tsapline and Kutzelnigg is extended to smaller H 2 -He separations. Defining R as the H 2 -He distance, r as the H 2 separation, and γ as the angle between them, the ab initio values are fit to a Legendre series in cosγ retaining the first three (even) terms with the coefficients given as analytic functions of R and r to facilitate semiclassical scattering computations. The fit is quantitative for 1.0 approximately r/2+1. (Auth.)

  17. Research on improved design of airfoil profiles based on the continuity of airfoil surface curvature of wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Cheng, Jiangtao; Shen, Wenzhong

    2013-01-01

    Aerodynamic of airfoil performance is closely related to the continuity of its surface curvature, and airfoil profiles with a better aerodynamic performance plays an important role in the design of wind turbine. The surface curvature distribution along the chord direction and pressure distributio...

  18. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  19. Analysis and optimization of surface profile correcting mechanism of the pitch lap in large-aperture annular polishing

    Science.gov (United States)

    Zhang, Huifang; Yang, Minghong; Xu, Xueke; Wu, Lunzhe; Yang, Weiguang; Shao, Jianda

    2017-10-01

    The surface figure control of the conventional annular polishing system is realized ordinarily by the interaction between the conditioner and the lap. The surface profile of the pitch lap corrected by the marble conditioner has been measured and analyzed as a function of kinematics, loading conditions, and polishing time. The surface profile measuring equipment of the large lap based on laser alignment was developed with the accuracy of about 1μm. The conditioning mechanism of the conditioner is simply determined by the kinematics and fully fitting principle, but the unexpected surface profile deviation of the lap emerged frequently due to numerous influencing factors including the geometrical relationship, the pressure distribution at the conditioner/lap interface. Both factors are quantitatively evaluated and described, and have been combined to develop a spatial and temporal model to simulate the surface profile evolution of pitch lap. The simulations are consistent with the experiments. This study is an important step toward deterministic full-aperture annular polishing, providing a beneficial guidance for the surface profile correction of the pitch lap.

  20. Calculation of surface potentials at the silica–water interface using molecular dynamics: Challenges and opportunities

    Science.gov (United States)

    Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.; Shibuta, Yasushi; Sakata, Toshiya

    2018-04-01

    Continuum-based methods are important in calculating electrostatic properties of interfacial systems such as the electric field and surface potential but are incapable of providing sufficient insight into a range of fundamentally and technologically important phenomena which occur at atomistic length-scales. In this work a molecular dynamics methodology is presented for interfacial electric field and potential calculations. The silica–water interface was chosen as an example system, which is highly relevant for understanding the response of field-effect transistors sensors (FET sensors). Detailed validation work is presented, followed by the simulated surface charge/surface potential relationship. This showed good agreement with experiment at low surface charge density but at high surface charge density the results highlighted challenges presented by an atomistic definition of the surface potential. This methodology will be used to investigate the effect of surface morphology and biomolecule addition; both factors which are challenging using conventional continuum models.

  1. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    Science.gov (United States)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by

  2. Development of Pseudorandom Binary Arrays for Calibration of Surface Profile Metrology Tools

    International Nuclear Information System (INIS)

    Barber, S.K.; Takacs, P.; Soldate, P.; Anderson, E.H.; Cambie, R.; McKinney, W.R.; Voronov, D.L.; Yashchuk, V.V.

    2009-01-01

    Optical metrology tools, especially for short wavelengths (extreme ultraviolet and x-ray), must cover a wide range of spatial frequencies from the very low, which affects figure, to the important mid-spatial frequencies and the high spatial frequency range, which produces undesirable scattering. A major difficulty in using surface profilometers arises due to the unknown point-spread function (PSF) of the instruments [G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, Bellingham, WA, 2001)] that is responsible for distortion of the measured surface profile. Generally, the distortion due to the PSF is difficult to account for because the PSF is a complex function that comes to the measurement via the convolution operation, while the measured profile is described with a real function. Accounting for instrumental PSF becomes significantly simpler if the result of measurement of a profile is presented in the spatial frequency domain as a power spectral density (PSD) distribution [J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, Englewood, CO, 2005)]. For example, measured PSD distributions provide a closed set of data necessary for three-dimensional calculations of scattering of light by the optical surfaces [E. L. Church et al., Opt. Eng. (Bellingham) 18, 125 (1979); J. C. Stover, Optical Scattering, 2nd ed. (SPIE Optical Engineering Press, Bellingham, WA, 1995)]. The distortion of the surface PSD distribution due to the PSF can be modeled with the modulation transfer function (MTF), which is defined over the spatial frequency bandwidth of the instrument. The measured PSD distribution can be presented as a product of the squared MTF and the ideal PSD distribution inherent for the system under test. Therefore, the instrumental MTF can be evaluated by comparing a measured PSD distribution of a known test surface with the corresponding ideal numerically simulated PSD. The square root of the ratio of the

  3. Influence of surface conductivity on the apparent zeta potential of calcite.

    Science.gov (United States)

    Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-04-15

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Towards the development of a hybrid-integrated chip interferometer for online surface profile measurements

    International Nuclear Information System (INIS)

    Kumar, P.; Martin, H.; Jiang, X.

    2016-01-01

    Non-destructive testing and online measurement of surface features are pressing demands in manufacturing. Thus optical techniques are gaining importance for characterization of complex engineering surfaces. Harnessing integrated optics for miniaturization of interferometry systems onto a silicon wafer and incorporating a compact optical probe would enable the development of a handheld sensor for embedded metrology applications. In this work, we present the progress in the development of a hybrid photonics based metrology sensor device for online surface profile measurements. The measurement principle along with test and measurement results of individual components has been presented. For non-contact measurement, a spectrally encoded lateral scanning probe based on the laser scanning microscopy has been developed to provide fast measurement with lateral resolution limited to the diffraction limit. The probe demonstrates a lateral resolution of ∼3.6 μm while high axial resolution (sub-nanometre) is inherently achieved by interferometry. Further the performance of the hybrid tuneable laser and the scanning probe was evaluated by measuring a standard step height sample of 100 nm.

  5. Towards the development of a hybrid-integrated chip interferometer for online surface profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.; Martin, H.; Jiang, X. [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom)

    2016-06-15

    Non-destructive testing and online measurement of surface features are pressing demands in manufacturing. Thus optical techniques are gaining importance for characterization of complex engineering surfaces. Harnessing integrated optics for miniaturization of interferometry systems onto a silicon wafer and incorporating a compact optical probe would enable the development of a handheld sensor for embedded metrology applications. In this work, we present the progress in the development of a hybrid photonics based metrology sensor device for online surface profile measurements. The measurement principle along with test and measurement results of individual components has been presented. For non-contact measurement, a spectrally encoded lateral scanning probe based on the laser scanning microscopy has been developed to provide fast measurement with lateral resolution limited to the diffraction limit. The probe demonstrates a lateral resolution of ∼3.6 μm while high axial resolution (sub-nanometre) is inherently achieved by interferometry. Further the performance of the hybrid tuneable laser and the scanning probe was evaluated by measuring a standard step height sample of 100 nm.

  6. Measurements of strongly localized potential well profiles in an inertial electrostatic fusion neutron source

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Takiyama, K.; Koyama, T.

    2001-01-01

    Direct measurements of localized electric fields are made by the laser-induced fluorescence (LIF) method by use of the Stark effects in the central cathode core region of an Inertial-Electrostatic Confinement Fusion (IECF) neutron (proton) source, which is expected for various applications, such as luggage security inspection, non-destructive testing, land mine detector, or positron emitter production for cancer detection, currently producing continuously about 10 7 n/sec D-D neutrons. Since 1967 when the first fusion reaction was successfully proved experimentally in a very compact IECF device, potential well formation due to space charge associated with spherically converging ion beams has been a central key issue to be clarified in the beam-beam colliding fusion, which is the major mechanism of the IECF neutron source. Many experiments, but indirect, were made so far to clarify the potential well, but none of them produced definitive evidence, however. Results by the present LIF method show a double well potential profile with a slight concave for ion beams with relatively larger angular momenta, whereas for ions with smaller angular momenta, potential but much steeper peak to develop. (author)

  7. Gene expression profiling reveals new potential players of gonad differentiation in the chicken embryo.

    Directory of Open Access Journals (Sweden)

    Gwenn-Aël Carré

    Full Text Available BACKGROUND: In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s involved in gonad differentiation is still incomplete. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of improving characterization of the molecular pathway(s involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. CONCLUSION/SIGNIFICANCE: This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors

  8. Gene Expression Profiling Reveals New Potential Players of Gonad Differentiation in the Chicken Embryo

    Science.gov (United States)

    Carré, Gwenn-Aël; Couty, Isabelle; Hennequet-Antier, Christelle; Govoroun, Marina S.

    2011-01-01

    Background In birds as in mammals, a genetic switch determines whether the undifferentiated gonad develops into an ovary or a testis. However, understanding of the molecular pathway(s) involved in gonad differentiation is still incomplete. Methodology/Principal Findings With the aim of improving characterization of the molecular pathway(s) involved in gonad differentiation in the chicken embryo, we developed a large scale real time reverse transcription polymerase chain reaction approach on 110 selected genes for evaluation of their expression profiles during chicken gonad differentiation between days 5.5 and 19 of incubation. Hierarchical clustering analysis of the resulting datasets discriminated gene clusters expressed preferentially in the ovary or the testis, and/or at early or later periods of embryonic gonad development. Fitting a linear model and testing the comparisons of interest allowed the identification of new potential actors of gonad differentiation, such as Z-linked ADAMTS12, LOC427192 (corresponding to NIM1 protein) and CFC1, that are upregulated in the developing testis, and BMP3 and Z-linked ADAMTSL1, that are preferentially expressed in the developing ovary. Interestingly, the expression patterns of several members of the transforming growth factor β family were sexually dimorphic, with inhibin subunits upregulated in the testis, and bone morphogenetic protein subfamily members including BMP2, BMP3, BMP4 and BMP7, upregulated in the ovary. This study also highlighted several genes displaying asymmetric expression profiles such as GREM1 and BMP3 that are potentially involved in different aspects of gonad left-right asymmetry. Conclusion/Significance This study supports the overall conservation of vertebrate sex differentiation pathways but also reveals some particular feature of gene expression patterns during gonad development in the chicken. In particular, our study revealed new candidate genes which may be potential actors of chicken gonad

  9. Gene expression profile identifies potential biomarkers for human intervertebral disc degeneration.

    Science.gov (United States)

    Guo, Wei; Zhang, Bin; Li, Yan; Duan, Hui-Quan; Sun, Chao; Xu, Yun-Qiang; Feng, Shi-Qing

    2017-12-01

    The present study aimed to reveal the potential genes associated with the pathogenesis of intervertebral disc degeneration (IDD) by analyzing microarray data using bioinformatics. Gene expression profiles of two regions of the intervertebral disc were compared between patients with IDD and controls. GSE70362 containing two groups of gene expression profiles, 16 nucleus pulposus (NP) samples from patients with IDD and 8 from controls, and 16 annulus fibrosus (AF) samples from patients with IDD and 8 from controls, was downloaded from the Gene Expression Omnibus database. A total of 93 and 114 differentially expressed genes (DEGs) were identified in NP and AF samples, respectively, using a limma software package for the R programming environment. Gene Ontology (GO) function enrichment analysis was performed to identify the associated biological functions of DEGs in IDD, which indicated that the DEGs may be involved in various processes, including cell adhesion, biological adhesion and extracellular matrix organization. Pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that the identified DEGs were potentially involved in focal adhesion and the p53 signaling pathway. Further analysis revealed that there were 35 common DEGs observed between the two regions (NP and AF), which may be further regulated by 6 clusters of microRNAs (miRNAs) retrieved with WebGestalt. The genes in the DEG‑miRNA regulatory network were annotated using GO function and KEGG pathway enrichment analysis, among which extracellular matrix organization was the most significant disrupted biological process and focal adhesion was the most significant dysregulated pathway. In addition, the result of protein‑protein interaction network modules demonstrated the involvement of inflammatory cytokine interferon signaling in IDD. These findings may not only advance the understanding of the pathogenesis of IDD, but also identify novel potential

  10. Dynamic potential and surface morphology study of sertraline membrane sensors

    Science.gov (United States)

    Khater, M.M.; Issa, Y.M.; Hassib, H.B.; Mohammed, S.H.

    2014-01-01

    New rapid, sensitive and simple electrometric method was developed to determine sertraline hydrochloride (Ser-Cl) in its pure raw material and pharmaceutical formulations. Membrane sensors based on heteropolyacids as ion associating material were prepared. Silicomolybdic acid (SMA), silicotungstic acid (STA) and phosphomolybdic acid (PMA) were used. The slope and limit of detection are 50.00, 60.00 and 53.24 mV/decade and 2.51, 5.62 and 4.85 μmol L−1 for Ser-ST, Ser-PM and Ser-SM membrane sensors, respectively. Linear range is 0.01–10.00 for the three sensors. These new sensors were used for the potentiometric titration of Ser-Cl using sodium tetraphenylborate as titrant. The surface morphologies of the prepared membranes with and without the modifier (ion-associate) were studied using scanning and atomic force microscopes. PMID:26257944

  11. Electrohydrodynamics of binary electrolytes driven by modulated surface potentials

    DEFF Research Database (Denmark)

    Mortensen, Asger; Olesen, Laurits Højgaard; Belmon, L.

    2005-01-01

    We study the electrohydrodynamics of the Debye screening layer that arises in an aqueous binary solution near a planar insulating wall when applying a spatially modulated ac voltage. Combining this with first order perturbation theory we establish the governing equations for the full nonequilibrium...... problem and obtain analytic solutions in the bulk for the pressure and velocity fields of the electrolyte and for the electric potential. We find good agreement between the numerics of the full problem and the analytics of the linear theory. Our work provides the theoretical foundations of circuit models...

  12. Oxathiiranes 8 On the OCS2 Singlet Potential Energy Surface

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1982-01-01

    The reaction between atomic oxygen and carbon disulfide is predicted to lead to at least two primary products, which are the dithiiranone (1) and the oxathiirane-thione (2) and/or the carbon disulfide S-oxide (4). The possible intramolecular equilibria 1 ⇄ 2, 1 ⇄ 3, 2 ⇄ 4, and 2 ⇄ 5 as well...... as the fragmentations of the possible intermediates 1–5 have been studied theoretically within the semiempirical cndo/B framework as conceivable ground-state reactions. On the basis of mo correlations and potential energy changes along the reaction paths, supplementary with previously reported experimental data...

  13. Antibiotic susceptibility profiling and virulence potential of Campylobacter jejuni isolates from different sources in Pakistan.

    Science.gov (United States)

    Siddiqui, Fariha Masood; Akram, Muhammad; Noureen, Nighat; Noreen, Zobia; Bokhari, Habib

    2015-03-01

    To determine antibiotic resistance patterns and virulence potential of Campylobacter jejuni (C. jejuni) isolates from clinical human diarrheal infections, cattle and healthy broilers. Antibiotic sensitivity patterns of C. jejuni isolates were determined by Kirby Bauer Disc Diffusion assay. These isolates were then subjected to virulence profiling for the detection of mapA (membrane-associated protein), cadF (fibronectin binding protein), wlaN (beta-l,3-galactosyltransferase) and neuAB (sialic acid biosynthesis gene). Further C. jejuni isolates were grouped by random amplification of polymorphic DNA (RAPD) profiling. A total of 436 samples from poultry (n=88), cattle (n=216) and humans (n=132) from different locations were collected. Results revealed percentage of C. jejuni isolates were 35.2% (31/88), 25.0% (54/216) and 11.3% (15/132) among poultry, cattle and clinical human samples respectively. Antibiotic susceptibility results showed that similar resistance patterns to cephalothin was ie. 87.0%, 87.1% and 89%among humans, poultry and cattle respectively, followed by sulfamethoxazole+trimethoprim 40.0%, 38.7% and 31.0% in humans, poultry and cattle and Ampicillin 40%, 32% and 20% in humans, poultry and cattle respectively. Beta-lactamase activity was detected in 40.00% humans, 20.37% cattle and 32.25% in poultry C. jejuni isolates. CadF and mapA were present in all poultry, cattle and human C. jejuni isolates, wlaN was not detected in any isolate and neuAB was found in 9/31 (36%) poultry isolates. RAPD profiling results suggested high diversity of C. jejuni isolates. Detection of multidrug resistant C. jejuni strains from poultry and cattle is alarming as they can be potential hazard to humans. Moreover, predominant association of virulence factors, cadF and mapA (100% each) in C. jejuni isolates from all sources and neuAB (36%) with poultry isolates suggest the potential source of transmission of diverse types of C. jejuni to humans. Copyright © 2015 Hainan

  14. Intermolecular potential energy surface and thermophysical properties of ethylene oxide.

    Science.gov (United States)

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  15. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential.

    Science.gov (United States)

    Janero, David R

    2014-08-01

    Technology often serves as a handmaiden and catalyst of invention. The discovery of safe, effective medications depends critically upon experimental approaches capable of providing high-impact information on the biological effects of drug candidates early in the discovery pipeline. This information can enable reliable lead identification, pharmacological compound differentiation and successful translation of research output into clinically useful therapeutics. The shallow preclinical profiling of candidate compounds promulgates a minimalistic understanding of their biological effects and undermines the level of value creation necessary for finding quality leads worth moving forward within the development pipeline with efficiency and prognostic reliability sufficient to help remediate the current pharma-industry productivity drought. Three specific technologies discussed herein, in addition to experimental areas intimately associated with contemporary drug discovery, appear to hold particular promise for strengthening the preclinical valuation of drug candidates by deepening lead characterization. These are: i) hydrogen-deuterium exchange mass spectrometry for characterizing structural and ligand-interaction dynamics of disease-relevant proteins; ii) activity-based chemoproteomics for profiling the functional diversity of mammalian proteomes; and iii) nuclease-mediated precision gene editing for developing more translatable cellular and in vivo models of human diseases. When applied in an informed manner congruent with the clinical understanding of disease processes, technologies such as these that span levels of biological organization can serve as valuable enablers of drug discovery and potentially contribute to reducing the current, unacceptably high rates of compound clinical failure.

  16. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens.

    Directory of Open Access Journals (Sweden)

    Marie Desnos-Ollivier

    Full Text Available New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes. Interestingly, geometric mean minimum inhibitory concentrations (MICs of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001. Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically "resistant" to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens.

  17. Phenolic profiles of nectar and honey of Quillaja saponaria Mol. (Quillajaceae as potential chemical markers

    Directory of Open Access Journals (Sweden)

    Gloria Montenegro

    2013-01-01

    Full Text Available Quillaja saponaria Mol. (Quillajaceae is one of the most important melliferous species in Chile, mainly as a source of monofloral honey. Honey made by A. mellifera presents biological activity against pathogens and antioxidant capacity associated with the presence of phenolic compounds deriving from the nectar, as a result of bee honey foraging. The aim of this study was to identify and quantify the phenolic compounds from the floral nectar of Q. saponaria and the honey made in apiaries in the central zone, and compare the composition of the chromatographic profiles of nectar and honey to known phenolic compounds. The results obtained by HPLC-DAD (high-performance liquid chromatography with diode-array detection showed a similar profile of phenolic compounds, in which gallic acid, myricetin, rutin, quercetin and naringenin were identified. The phenolic compounds detected could be used as a reference for future studies for determining potential chemical markers of this honey, complementing the present identification of honeys by determining their botanical origin. The identification of bioindicators of the floral origins for honey of this species could provide added value to honey commercialization by certifying the botanical origin of their chemical features and biological attributes.

  18. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma.

    Science.gov (United States)

    Arora, Shilpi; Gonzales, Irma M; Hagelstrom, R Tanner; Beaudry, Christian; Choudhary, Ashish; Sima, Chao; Tibes, Raoul; Mousses, Spyro; Azorsa, David O

    2010-08-18

    Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells. Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis. In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.

  19. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    Directory of Open Access Journals (Sweden)

    A. Cherkasheva

    2013-04-01

    Full Text Available Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database for the years 1957–2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL exceeding 0.7 mg C m−3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll

  20. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  1. Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions

    National Research Council Canada - National Science Library

    Pai, Sharmila

    1998-01-01

    ... on the potential energy surface were calculated using the 6-31G and 6-311 +Gbasis sets. DFT(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential energy surface were calculated with the 6-31G, 6-311...

  2. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  3. Characterization of electrical conductivity of carbon fiber reinforced plastic using surface potential distribution

    Science.gov (United States)

    Kikunaga, Kazuya; Terasaki, Nao

    2018-04-01

    A new method of evaluating electrical conductivity in a structural material such as carbon fiber reinforced plastic (CFRP) using surface potential is proposed. After the CFRP was charged by corona discharge, the surface potential distribution was measured by scanning a vibrating linear array sensor along the object surface with a high spatial resolution over a short duration. A correlation between the weave pattern of the CFRP and the surface potential distribution was observed. This result indicates that it is possible to evaluate the electrical conductivity of a material comprising conducting and insulating regions.

  4. Effects of mode profile on tunneling and traversal of ultracold atoms through vacuum-induced potentials

    Science.gov (United States)

    Badshah, Fazal; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid

    2016-04-01

    We consider the resonant interaction of an ultracold two-level atom with an electromagnetic field inside a high-Q micromaser cavity. In particular, we study the tunneling and traversal of ultracold atoms through vacuum-induced potentials for secant hyperbolic square and sinusoidal cavity mode functions. The phase time which may be considered as an appropriate measure of the time required for the atoms to cross the cavity, significantly modifies with the change of cavity mode profile. For example, switching between the sub and superclassical behaviors in phase time can occur due to the mode function. Similarly, negative phase time appears for the transmission of the two-level atoms in both excited and ground states for secant hyperbolic square mode function which is in contrast to the mesa mode case.

  5. Potential surfaces in symmetric heavy-ion reactions

    International Nuclear Information System (INIS)

    Royer, G.; Piller, C.; Mignen, J.; Raffray, Y.

    1989-01-01

    The entrance channel in symmetric heavy-ion reactions is studied in the liquid-drop model approach including the nuclear proximity energy and allowing ellipsoidal deformations of the colliding nuclei. In the whole mass range a sudden transition occurs from oblate to prolate shapes when the proximity forces become important. This strongly affects the effective moment of inertia. The ellipsoidal deformations reduce the fusion barrier width for light systems and lower the potential barrier height for medium and heavy nuclei. The results are in agreement with the empirical effective barrier shift determined by Aguiar et al for the 58 Ni + 58 Ni, 74 Ge + 74 Ge and 80 Se + 80 Se systems. The sub-barrier fusion enhancement in heavy-ion reactions might be explained by the slowness of the process. Below the static fusion barrier, the reaction time is long; allowing some adiabaticity and deformations of the colliding ions. Above the barrier, the reaction is more sudden and the deformation degree of freedom is frozen

  6. Characterization of the thrombogenic potential of surface oxides on stainless steel for implant purposes

    International Nuclear Information System (INIS)

    Shih, C.-C.; Shih, C.-M.; Su, Y.-Y.; Chang, M.-S.; Lin, S.-J.

    2003-01-01

    Marketed stents are manufactured from various metals and passivated with different degrees of surface oxidation. The functional surface oxides on the degree of antithrombotic potential were explored through a canine femoral extracorporeal circuit model. Related properties of these oxide films were studied by open-circuit potential, current density detected at open-circuit potential, the electrochemical impedance spectroscopy, transmission electron microscopy, Auger spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. Experimental evidences showed that blood clot weight after a 30-min follow-up was significantly lower for the stainless steel wire passivated with amorphous oxide (AO) compared to the wire passivated with polycrystalline oxide (PO) or commercial as-received wire coils (AS). Surface characterizations showed that a stable negative current density at open-circuit potential and a significant lower potential were found for the wire surface passivated with AO than for the surface passivated with PO. Time constant of AO is about 25 times larger than that of polycrystalline oxide. Significant difference in oxide grain sizes was found between PO and AO. Surface chemistries revealed by the AES and XPS spectra indicated the presence of a Cr- and oxygen-rich surface oxide for AO, and a Fe-rich and oxygen-lean surface oxide for PO. These remarkable characteristics of AO surface film might have a potential to provide for excellent antithrombotic characteristics for the 316L stainless steel stents

  7. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    Science.gov (United States)

    McGaugh, Stacy S.

    2016-01-01

    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For R0 = 8 kpc, the models have stellar mass 5 spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus arm is a ˜50% overdensity). The rotation curve switches between positive and negative over scales of hundreds of parsecs. The rms amplitude { }1/2≈ 14 {km} {{{s}}}-1 {{kpc}}-1, implying that commonly neglected terms in the Jeans equations may be nonnegligible. The spherically averaged local dark matter density is ρ0,DM ≈ 0.009 {M}⊙ {{pc}}-3 (0.34 {GeV} {{cm}}-3). Adiabatic compression of the dark matter halo may help reconcile the Milky Way with the c-V200 relation expected in ΛCDM while also helping to mitigate the too-big-to-fail problem, but it remains difficult to reconcile the inner bulge/bar-dominated region with a cuspy halo. We note that NGC 3521 is a near twin to the Milky Way, having a similar luminosity, scale length, and rotation curve.

  8. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zhaoxia [Univ. of Utah, Salt Lake City, UT (United States)

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  9. Wideband, Low-Profile, Dual-Polarized Slot Antenna with an AMC Surface for Wireless Communications

    Directory of Open Access Journals (Sweden)

    Wei Hu

    2016-01-01

    Full Text Available A wideband dual-polarized slot antenna loaded with artificial magnetic conductor (AMC is proposed for WLAN/WIMAX and LTE applications. The slot antenna mainly consists of two pairs of arrow-shaped slots along the diagonals of the square patch. Stepped microstrip feedlines are placed orthogonally to excite the horizontal and vertical polarizations of the antenna. To realize unidirectional radiation and low profile, an AMC surface composed of 7 × 7 unit cells is designed underneath a distance of 0.09λ0 (λ0 being the wavelength in free space at 2.25 GHz from the slot antenna. Both the dual-polarized slot antenna and the AMC surface are fabricated and measured. Experimental results demonstrate that the proposed antenna achieves for both polarizations a wide impedance bandwidth (return loss 10 dB of 36.7%, operating from 1.96 to 2.84 GHz. The isolation between the two input ports keeps higher than 29 dB whereas the cross-polarization levels basically maintain lower than −30 dB across the entire frequency band. High front-to-back ratios better than 22 dB and a stable gain higher than 8 dBi are obtained over the whole band.

  10. Interatomic potentials from rainbow scattering of keV noble gas atoms under axial surface channeling

    International Nuclear Information System (INIS)

    Schueller, A.; Wethekam, S.; Mertens, A.; Maass, K.; Winter, H.; Gaertner, K.

    2005-01-01

    For grazing scattering of keV Ne and Ar atoms from a Ag(1 1 1) and a Cu(1 1 1) surface under axial surface channeling conditions we observe well defined peaks in the angular distributions for scattered projectiles. These peaks can be attributed to 'rainbow-scattering' and are closely related to the geometry of potential energy surfaces which can be approximated by the superposition of continuum potentials along strings of atoms in the surface plane. The dependence of rainbow angles on the scattering geometry provides stringent tests on the scattering potentials. From classical trajectory calculations based on universal (ZBL), adjusted Moliere (O'Connor and Biersack), and individual interatomic potentials we obtain corresponding rainbow angles for comparison with the experimental data. We find good overall agreement with the experiments for a description of trajectories based on adjusted Moliere and individual potentials, whereas the agreement is poorer for potentials with ZBL screening

  11. Cellulase Production Potentials of the Microbial Profile of Some Sugarcane Bagasse Dumping Sites in Ilorin, Nigeria

    Directory of Open Access Journals (Sweden)

    Kamoldeen Abiodun AJIJOLAKEWU

    2013-11-01

    Full Text Available This research work investigated cellulase production potentials of the microbial profile of three sugarcane bagasse dumping sites at Zango area, Ilorin, Nigeria. The microbial isolates were screened for cellulase production with a view to select the best organism for eventual cellulase production. Pour Plate method was used for the isolation and a total of thirteen (13 different organisms including both fungal and bacterial species were isolated and screened. Six (6 fungal isolates identified as Mucor racemosus, Aspergillus niger, Aspergillus flavus, Neurospora sitophilus, Penicillium oxalicum and Penicillium citrinum were isolated, while seven (7 different bacterial species isolated include Clostridium cellobioparum, Clostridium thermocellum,Bacillus subtilis, Bacillus pumillus, Lactobacillus spp, Pseudomonas flavescens and Serratia spp. Generally, bacterial isolates were more in abundance than fungal species. However; fungal isolates were constant and were isolated through the experimental period of three weeks. All the isolates showed cellulase production potential in varying degrees as reflected in the clearance zone around their colonies. Fungal isolates produced more cellulase than the bacterial isolates. Mucor racemosus had the highest clearance zone (75.0 mm among the fungal isolates while Clostridium cellobioparum (35.0 mm were the best producer among bacterial isolates. The least producer among fungal isolates, Penicillium citrinum (40.0 mm, is a little more than the bacterial cellulase producer (35.0 mm and is far greater than the least bacterium Serratia spp (14.0 mm.

  12. Toe clearance and velocity profiles of young and elderly during walking on sloped surfaces

    Directory of Open Access Journals (Sweden)

    Begg Rezaul K

    2010-04-01

    Full Text Available Abstract Background Most falls in older adults are reported during locomotion and tripping has been identified as a major cause of falls. Challenging environments (e.g., walking on slopes are potential interventions for maintaining balance and gait skills. The aims of this study were: 1 to investigate whether or not distributions of two important gait variables [minimum toe clearance (MTC and foot velocity at MTC (VelMTC] and locomotor control strategies are altered during walking on sloped surfaces, and 2 if altered, are they maintained at two groups (young and elderly female groups. Methods MTC and VelMTC data during walking on a treadmill at sloped surfaces (+3°, 0° and -3° were analysed for 9 young (Y and 8 elderly (E female subjects. Results MTC distributions were found to be positively skewed whereas VelMTC distributions were negatively skewed for both groups on all slopes. Median MTC values increased (Y = 33%, E = 7% at negative slope but decreased (Y = 25%, E = 15% while walking on the positive slope surface compared to their MTC values at the flat surface (0°. Analysis of VelMTC distributions also indicated significantly (p th percentile (Q1 values in the elderly at all slopes. Conclusion The young displayed a strong positive correlation between MTC median changes and IQR (interquartile range changes due to walking on both slopes; however, such correlation was weak in the older adults suggesting differences in control strategies being employed to minimize the risk of tripping.

  13. Pollen lipidomics: lipid profiling exposes a notable diversity in 22 allergenic pollen and potential biomarkers of the allergic immune response.

    Directory of Open Access Journals (Sweden)

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND/AIM: Pollen grains are the male gametophytes that deliver sperm cells to female gametophytes during sexual reproduction of higher plants. Pollen is a major source of aeroallergens and environmental antigens. The pollen coat harbors a plethora of lipids that are required for pollen hydration, germination, and penetration of the stigma by pollen tubes. In addition to proteins, pollen displays a wide array of lipids that interact with the human immune system. Prior searches for pollen allergens have focused on the identification of intracellular allergenic proteins, but have largely overlooked much of the extracellular pollen matrix, a region where the majority of lipid molecules reside. Lipid antigens have attracted attention for their potent immunoregulatory effects. By being in close proximity to allergenic proteins on the pollen surface when they interact with host cells, lipids could modify the antigenic properties of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We performed a comparative pollen lipid profiling of 22 commonly allergenic plant species by the use of gas chromatography-mass spectroscopy, followed by detailed data mining and statistical analysis. Three experiments compared pollen lipid profiles. We built a database library of the pollen lipids by matching acquired pollen-lipid mass spectra and retention times with the NIST/EPA/NIH mass-spectral library. We detected, identified, and relatively quantified more than 106 lipid molecular species including fatty acids, n-alkanes, fatty alcohols, and sterols. Pollen-derived lipids stimulation up-regulate cytokines expression of dendritic and natural killer T cells co-culture. CONCLUSIONS/SIGNIFICANCE: Here we report on a lipidomic analysis of pollen lipids that can serve as a database for identifying potential lipid antigens and/or novel candidate molecules involved in allergy. The database provides a resource that facilitates studies on the role of lipids in the

  14. Surface effects on mean inner potentials studied using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, Robert S., E-mail: robert.pennington@uni-ulm.de [Institute for Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany); Boothroyd, Chris B.; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre and Peter Grüneberg Institute, Forschungzentrum Jülich, 52425 Jülich (Germany)

    2015-12-15

    Quantitative materials characterization using electron holography frequently requires knowledge of the mean inner potential, but reported experimental mean inner potential measurements can vary widely. Using density functional theory, we have simulated the mean inner potential for materials with a range of different surface conditions and geometries. We use both “thin-film” and “nanowire” specimen geometries. We consider clean bulk-terminated surfaces with different facets and surface reconstructions using atom positions from both structural optimization and experimental data and we also consider surfaces both with and without adsorbates. We find that the mean inner potential is surface-dependent, with the strongest dependency on surface adsorbates. We discuss the outlook and perspective for future mean inner potential measurements. - Highlights: • Density functional theory (DFT) is used to simulate mean inner potentials (MIP). • Applications for MIP electron holography measurements are considered. • MIPs are found to be surface-dependent, for thin-film and nanowire geometries. • The DFT simulation precision is extensively tested for multiple materials. • Surface adsorbates can create a strong positive or negative effect.

  15. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and

  16. An augmented space recursive method for the first principles study of concentration profiles at CuNi alloy surfaces

    International Nuclear Information System (INIS)

    Dasgupta, I.; Mookerjee, A.

    1995-07-01

    We present here a first principle method for the calculation of effective cluster interactions for semi-infinite solid alloys required for the study of surface segregation and surface ordering on disordered surfaces. Our method is based on the augmented space recursion coupled with the orbital peeling method of Burke in the framework of the TB-LMTO. Our study of surface segregation in CuNi alloys demonstrates strong copper segregation and a monotonic concentration profile throughout the concentration range. (author). 35 refs, 4 figs, 2 tabs

  17. The potentially neglected culprit of DC surface flashover: electron migration under temperature gradients.

    Science.gov (United States)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2017-06-12

    This report intends to reveal the role of electron migration and its effects in triggering direct current (DC) surface flashover under temperature gradient conditions when using epoxy-based insulating composites. The surface potential and the surface flashover voltage are both measured using insulators that are bridged between two thermo-regulated electrodes. The space charge injection and migration properties under different temperature are detected. The results show that the surface potential rises significantly because of electron migration near the high voltage (HV) electrode under high temperature conditions, thus creating an "analogous ineffective region". The expansion of this "analogous ineffective region" results in most of the voltage drop occurring near the ground electrode, which serves as an important factor triggering positive streamers across the insulation surface. This work is helpful in understanding of DC surface flashover mechanism from a new perspective and also has important significance in design of a suitable DC insulator to avoid surface flashover problem.

  18. A semiparametric modeling framework for potential biomarker discovery and the development of metabonomic profiles

    Directory of Open Access Journals (Sweden)

    Dey Dipak K

    2008-01-01

    Full Text Available Abstract Background The discovery of biomarkers is an important step towards the development of criteria for early diagnosis of disease status. Recently electrospray ionization (ESI and matrix assisted laser desorption (MALDI time-of-flight (TOF mass spectrometry have been used to identify biomarkers both in proteomics and metabonomics studies. Data sets generated from such studies are generally very large in size and thus require the use of sophisticated statistical techniques to glean useful information. Most recent attempts to process these types of data model each compound's intensity either discretely by positional (mass to charge ratio clustering or through each compounds' own intensity distribution. Traditionally data processing steps such as noise removal, background elimination and m/z alignment, are generally carried out separately resulting in unsatisfactory propagation of signals in the final model. Results In the present study a novel semi-parametric approach has been developed to distinguish urinary metabolic profiles in a group of traumatic patients from those of a control group consisting of normal individuals. Data sets obtained from the replicates of a single subject were used to develop a functional profile through Dirichlet mixture of beta distribution. This functional profile is flexible enough to accommodate variability of the instrument and the inherent variability of each individual, thus simultaneously addressing different sources of systematic error. To address instrument variability, all data sets were analyzed in replicate, an important issue ignored by most studies in the past. Different model comparisons were performed to select the best model for each subject. The m/z values in the window of the irregular pattern are then further recommended for possible biomarker discovery. Conclusion To the best of our knowledge this is the very first attempt to model the physical process behind the time-of flight mass

  19. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films.

    Science.gov (United States)

    Tang, Bolin; Zhang, Bo; Zhuang, Junjun; Wang, Qi; Dong, Lingqing; Cheng, Kui; Weng, Wenjian

    2018-05-02

    Surface potential of biomaterials can dramatically influence cellular osteogenic differentiation. In this work, a wide range of surface potential on ferroelectric polyvinylidene fluoride trifluoroethylene (P(VDF-TrFE)) films was designed to get insight into the interfacial interaction of cell-charged surface. The P(VDF-TrFE) films poled by contact electric poling at various electric fields obtained well stabilized surface potential, with wide range from -3 to 915 mV. The osteogenic differentiation level of cells cultured on the films was strongly dependent on surface potential and reached the optimum at 391 mV in this system. Binding specificity assay indicated that surface potential could effectively govern the binding state of the adsorbed fibronectin (FN) with integrin. Molecular dynamic (MD) simulation further revealed that surface potential brought a significant difference in the relative distance between RGD and synergy PHSRN sites of adsorbed FN, resulting in a distinct integrin-FN binding state. These results suggest that the full binding of integrin α5β1 with both RGD and PHSRN sites of FN possesses a strong ability to activate osteogenic signaling pathway. This work sheds light on the underlying mechanism of osteogenic differentiation behavior on charged material surfaces, and also provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. The ferroelectric P(VDF-TrFE) films with steady and a wide range of surface potential were designed to understand underlying mechanism of cell-charged surface interaction. The results showed that the charged surface well favored upregulation of osteogenic differentiation of MC3T3-E1 cells, and more importantly, a highest level occurred on the film with a moderate surface potential. Experiments and molecular dynamics simulation demonstrated that the surface potential could govern fibronectin conformation and then the integrin-fibronectin binding. We propose that a full binding

  20. Characterization of MicroRNA Expression Profiles and Identification of Potential Biomarkers in Leprosy.

    Science.gov (United States)

    Jorge, Karina T O S; Souza, Renan P; Assis, Marieta T A; Araújo, Marcelo G; Locati, Massimo; Jesus, Amélia M R; Dias Baptista, Ida M F; Lima, Cristiano X; Teixeira, Antônio L; Teixeira, Mauro M; Soriani, Frederico M

    2017-05-01

    Leprosy is an important cause of disability in the developing world. Early diagnosis is essential to allow for cure and to interrupt transmission of this infection. MicroRNAs (miRNAs) are important factors for host-pathogen interaction and they have been identified as biomarkers for various infectious diseases. The expression profile of 377 microRNAs were analyzed by TaqMan low-density array (TLDA) in skin lesions of tuberculoid and lepromatous leprosy patients as well as skin specimens from healthy controls. In a second step, 16 microRNAs were selected for validation experiments with reverse transcription-quantitative PCR (qRT-PCR) in skin samples from new individuals. Principal-component analysis followed by logistic regression model and receiver operating characteristic (ROC) curve analyses were performed to evaluate the diagnostic potential of selected miRNAs. Four patterns of differential expression were identified in the TLDA experiment, suggesting a diagnostic potential of miRNAs in leprosy. After validation experiments, a combination of four miRNAs (miR-101, miR-196b, miR-27b, and miR-29c) was revealed as able to discriminate between healthy control and leprosy patients with 80% sensitivity and 91% specificity. This set of miRNAs was also able to discriminate between lepromatous and tuberculoid patients with a sensitivity of 83% and 80% specificity. In this work, it was possible to identify a set of miRNAs with good diagnostic potential for leprosy. Copyright © 2017 American Society for Microbiology.

  1. Periodontal Bioengineering: A Discourse in Surface Topographies, Progenitor Cells and Molecular Profiles

    Science.gov (United States)

    Dangaria, Smit J.

    2011-12-01

    Stem/progenitor cells are a population of cells capable of providing replacement cells for a given differentiated cell type. We have applied progenitor cell-based technologies to generate novel tissue-engineered implants that use biomimetic strategies with the ultimate goal of achieving full regeneration of lost periodontal tissues. Mesenchymal periodontal tissues such as cementum, alveolar bone (AB), and periodontal ligament (PDL) are neural crest-derived entities that emerge from the dental follicle (DF) at the onset of tooth root formation. Using a systems biology approach we have identified key differences between these periodontal progenitors on the basis of global gene expression profiles, gene cohort expression levels, and epigenetic modifications, in addition to differences in cellular morphologies. On an epigenetic level, DF progenitors featured high levels of the euchromatin marker H3K4me3, whereas PDL cells, AB osteoblasts, and cementoblasts contained high levels of the transcriptional repressor H3K9me3. Secondly, we have tested the influence of natural extracellular hydroxyapatite matrices on periodontal progenitor differentiation. Dimension and structure of extracellular matrix surfaces have powerful influences on cell shape, adhesion, and gene expression. Here we show that natural tooth root topographies induce integrin-mediated extracellular matrix signaling cascades in tandem with cell elongation and polarization to generate physiological periodontium-like tissues. In this study we replanted surface topography instructed periodontal ligament progenitors (PDLPs) into rat alveolar bone sockets for 8 and 16 weeks, resulting in complete attachment of tooth roots to the surrounding alveolar bone with a periodontal ligament fiber apparatus closely matching physiological controls along the entire root surface. Displacement studies and biochemical analyses confirmed that progenitor-based engineered periodontal tissues were similar to control teeth and

  2. A potential synbiotic product improves the lipid profile of diabetic rats

    Directory of Open Access Journals (Sweden)

    Roselino Mariana N

    2012-09-01

    Full Text Available Abstract Background Previous studies showed that intake of yacon or some lactic acid bacteria was able to inhibit the development of diabetes mellitus, by reducing glucose and associated symptoms, for example, the lipid profile. Objective The purpose of this study was to assess the consumption influence of a potential symbiotic product of soybean and yacon extract and fermented Enterococcus faecium CRL 183 and Lactobacillus helveticus ssp jugurti 416 in reducing blood glucose and lipid levels in an animal model. Methods Diabetes mellitus was chemically induced by intraperitoneal administration of streptozotocin (50 mg/kg body weight. The rats were divided into four groups (n=10: GI – non-diabetic animals that received only a standard chow diet (negative control, GII – diabetic animals that received only chow diet (positive control, GIII – diabetic animals that received the chow diet + 1 mL/kg body weight/day of soybean and yacon unfermented product, GIV – diabetic rats that received the chow diet + 1 mL/kg body weight/day of soybean and yacon fermented product. There was a seven-week treatment period and the following parameters were evaluated: animal body weight, food and water intake, blood glucose, enzyme activities of aspartate aminotransferase (AST and alanine aminotransferase (ALT, triglycerides levels, total cholesterol, HDL-C, non-HDL-C. Cell viability of the fermented product was checked weekly for a seven-week period. Results The product average viable population was 108-109 CFU/mL, by ensuring both the rods and cocci regular intake. No difference was observed between the water and feed intake and body weight of groups that received unfermented and fermented products and the untreated diabetic group. The same was observed for the blood glucose and AST and ALT activities, while some improvement was observed for a lipid profile, represented by reduction of triglycerides level by 15.07% and 33.50% in groups III and IV

  3. Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis

    International Nuclear Information System (INIS)

    Estilo, Cherry L; Boyle, Jay O; Kraus, Dennis H; Patel, Snehal; Shaha, Ashok R; Wong, Richard J; Huryn, Joseph M; Shah, Jatin P; Singh, Bhuvanesh; O-charoenrat, Pornchai; Talbot, Simon; Socci, Nicholas D; Carlson, Diane L; Ghossein, Ronald; Williams, Tijaana; Yonekawa, Yoshihiro; Ramanathan, Yegnanarayana

    2009-01-01

    The present study is aimed at identifying potential candidate genes as prognostic markers in human oral tongue squamous cell carcinoma (SCC) by large scale gene expression profiling. The gene expression profile of patients (n=37) with oral tongue SCC were analyzed using Affymetrix HG-U95Av2 high-density oligonucleotide arrays. Patients (n=20) from which there were available tumor and matched normal mucosa were grouped into stage (early vs. late) and nodal disease (node positive vs. node negative) subgroups and genes differentially expressed in tumor vs. normal and between the subgroups were identified. Three genes, GLUT3, HSAL2, and PACE4, were selected for their potential biological significance in a larger cohort of 49 patients via quantitative real-time RT-PCR. Hierarchical clustering analyses failed to show significant segregation of patients. In patients (n=20) with available tumor and matched normal mucosa, 77 genes were found to be differentially expressed (P< 0.05) in the tongue tumor samples compared to their matched normal controls. Among the 45 over-expressed genes, MMP-1 encoding interstitial collagenase showed the highest level of increase (average: 34.18 folds). Using the criterion of two-fold or greater as overexpression, 30.6%, 24.5% and 26.5% of patients showed high levels of GLUT3, HSAL2 and PACE4, respectively. Univariate analyses demonstrated that GLUT3 over-expression correlated with depth of invasion (P<0.0001), tumor size (P=0.024), pathological stage (P=0.009) and recurrence (P=0.038). HSAL2 was positively associated with depth of invasion (P=0.015) and advanced T stage (P=0.047). In survival studies, only GLUT3 showed a prognostic value with disease-free (P=0.049), relapse-free (P=0.002) and overall survival (P=0.003). PACE4 mRNA expression failed to show correlation with any of the relevant parameters. The characterization of genes identified to be significant predictors of prognosis by oligonucleotide microarray and further validation by

  4. In-Situ Observation of Undisturbed Surface Layer Scaler Profiles for Characterizing Evaporative Duct Properties

    Science.gov (United States)

    2016-06-01

    9 Figure 4. Prototype RHIB-based tethered balloon MAPS used in CASPER Pilot. The...profile measurements over the ocean. The system is designed to make profiling measurements with multiple up/downs using an instrumented tethered balloon ...temperature profiles with high vertical resolution. With the ultimate goal of improving evaporative duct prediction, we use a tethered 2 balloon

  5. 2D Analytical Modeling of Magnetic Vector Potential in Surface Mounted and Surface Inset Permanent Magnet Machines

    Directory of Open Access Journals (Sweden)

    A. Jabbari

    2017-12-01

    Full Text Available A 2D analytical method for magnetic vector potential calculation in inner rotor surface mounted and surface inset permanent magnet machines considering slotting effects, magnetization orientation and winding layout has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in quasi- Cartesian coordinate by using sub-domain method and hyperbolic functions. The developed method is applied on the performance computation of two prototypes surface mounted permanent magnet motors and two prototypes surface inset permanent magnet motors. A radial and a parallel magnetization orientation is considered for each type of motor. The results of these models are validated through FEM method.

  6. Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces

    DEFF Research Database (Denmark)

    Hall, B.; Deumens, E.; Ohrn, Y.

    2014-01-01

    A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...

  7. On quantum motion of particle in linear potential bounded by perfectly reflecting plane and parabolic surfaces

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.

    1999-01-01

    The motion of a particle in the linear potential bounded by an inclined plane or parabolic surfaces is considered. The quantization of energy and wave functions is obtained numerically by the separation of the variables method

  8. Profile of rifaximin and its potential in the treatment of irritable bowel syndrome

    Directory of Open Access Journals (Sweden)

    Iorio N

    2015-06-01

    Full Text Available Natalya Iorio, Zubair Malik, Ron Schey Section of Gastroenterology, Department of Medicine, Temple University Hospital, Philadelphia, PA, USA Abstract: Irritable bowel syndrome (IBS is a chronic functional gastrointestinal disorder characterized by recurrent abdominal pain and abnormal bowel patterns. Alteration in gut flora, visceral hypersensitivity, and abnormal bowel motility are among numerous factors in the complex pathophysiology of IBS. Antibiotics have been used adjunctively to treat IBS for many years but are associated with various systemic side effects. Rifaximin is a nonabsorbable, broad-spectrum antimicrobial that inhibits bacterial RNA synthesis by binding the β-subunit of microbial RNA polymerase. It targets the gastrointestinal tract and works by reducing the quantity of gas-producing bacteria and altering the predominant species of bacteria present. In vivo animal studies suggest additional beneficial mechanisms of rifaximin, including reducing mucosal inflammation and visceral hypersensitivity. Clinical studies have demonstrated that rifaximin improves symptoms associated with IBS, such as bloating, flatulence, stool consistency, and abdominal pain, and has a side-effect profile similar to placebo. Although additional investigation into optimal dosing, treatment duration, and potential resistance is required, rifaximin presents as a safe and beneficial addition to the current management options for IBS. Keywords: irritable bowel syndrome, rifaximin, small intestinal bacterial overgrowth, mucosal inflammation

  9. Mycotoxigenic Potentials of Fusarium Species in Various Culture Matrices Revealed by Mycotoxin Profiling

    Science.gov (United States)

    Shi, Wen; Tan, Yanglan; Wang, Shuangxia; Gardiner, Donald M.; De Saeger, Sarah; Liao, Yucai; Wang, Cheng; Fan, Yingying; Wang, Zhouping; Wu, Aibo

    2016-01-01

    In this study, twenty of the most common Fusarium species were molecularly characterized and inoculated on potato dextrose agar (PDA), rice and maize medium, where thirty three targeted mycotoxins, which might be the secondary metabolites of the identified fungal species, were detected by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Statistical analysis was performed with principal component analysis (PCA) to characterize the mycotoxin profiles for the twenty fungi, suggesting that these fungi species could be discriminated and divided into three groups as follows. Group I, the fusaric acid producers, were defined into two subgroups, namely subgroup I as producers of fusaric acid and fumonisins, comprising of F. proliferatum, F. verticillioides, F. fujikuroi and F. solani, and subgroup II considered to only produce fusaric acid, including F. temperatum, F. subglutinans, F. musae, F. tricinctum, F. oxysporum, F. equiseti, F. sacchari, F. concentricum, F. andiyazi. Group II, as type A trichothecenes producers, included F. langsethiae, F. sporotrichioides, F. polyphialidicum, while Group III were found to mainly produce type B trichothecenes, comprising of F. culmorum, F. poae, F. meridionale and F. graminearum. A comprehensive picture, which presents the mycotoxin-producing patterns by the selected fungal species in various matrices, is obtained for the first time, and thus from an application point of view, provides key information to explore mycotoxigenic potentials of Fusarium species and forecast the Fusarium infestation/mycotoxins contamination. PMID:28035973

  10. Depth Profiling (ICP-MS Study of Toxic Metal Buildup in Concrete Matrices: Potential Environmental Impact

    Directory of Open Access Journals (Sweden)

    Ghada Bassioni

    2010-10-01

    Full Text Available This paper explores the potential of concrete material to accumulate toxic trace elements using ablative laser technology (ICP-MS. Concrete existing in offshore structures submerged in seawater acts as a sink for hazardous metals, which could be gradually released into the ocean creating pollution and anoxic conditions for marine life. Ablative laser technology is a valuable tool for depth profiling concrete to evaluate the distribution of toxic metals and locate internal areas where such metals accumulate. Upon rapid degradation of concrete these “hotspots” could be suddenly released, thus posing a distinct threat to aquatic life. Our work simulated offshore drilling conditions by immersing concrete blocks in seawater and investigating accumulated toxic trace metals (As, Be, Cd, Hg, Os, Pb in cored samples by laser ablation. The experimental results showed distinct inhomogeneity in metal distribution. The data suggest that conditions within the concrete structure are favorable for random metal accumulation at certain points. The exact mechanism for this behavior is not clear at this stage and has considerable scope for extended research including modeling and remedial studies.

  11. Characterizing the surface charge of synthetic nanomembranes by the streaming potential method

    OpenAIRE

    Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo

    2010-01-01

    The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt conc...

  12. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.

    Science.gov (United States)

    Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F

    2018-05-01

    The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Ion-step method for surface potential sensing of silicon nanowires

    NARCIS (Netherlands)

    Chen, S.; van Nieuwkasteele, Jan William; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    This paper presents a novel stimulus-response method for surface potential sensing of silicon nanowire (Si NW) field-effect transistors. When an "ion-step" from low to high ionic strength is given as a stimulus to the gate oxide surface, an increase of double layer capacitance is therefore expected.

  14. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-state energy within standard DFT. We extend the Delta SCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can...... be estimated, which is not possible in traditional Delta SCF because of very delocalized Kohn-Sham orbitals. The method is applied to N2, CO, and NO adsorbed on different metallic surfaces and compared to ordinary Delta SCF without our modification, spatially constrained DFT, and inverse...

  15. Streaming potential revisited: the influence of convection on the surface conductivity.

    Science.gov (United States)

    Saini, Rakesh; Garg, Abhinandan; Barz, Dominik P J

    2014-09-16

    Electrokinetic phenomena play an important role in the electrical characterization of surfaces. In terms of planar or porous substrates, streaming potential and/or streaming current measurements can be used to determine the zeta potential of the substrates in contact with aqueous electrolytes. In this work, we perform electrical impedance spectroscopy measurements to infer the electrical resistance in a microchannel with the same conditions as for a streaming potential experiment. Novel correlations are derived to relate the streaming current and streaming potential to the Reynolds number of the channel flow. Our results not only quantify the influence of surface conductivity, and here especially the contribution of the stagnant layer, but also reveal that channel resistance and therefore zeta potential are influenced by the flow in the case of low ionic strengths. We conclude that convection can have a significant impact on the electrical double layer configuration which is reflected by changes in the surfaces conductivity.

  16. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    Science.gov (United States)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  17. Skin denervation does not alter cortical potentials to surface concentric electrode stimulation: A comparison with laser evoked potentials and contact heat evoked potentials.

    Science.gov (United States)

    La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A

    2018-01-01

    In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.

  18. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    Energy Technology Data Exchange (ETDEWEB)

    Steinberger, R., E-mail: roland.steinberger@jku.at [Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Celedón, C.E., E-mail: carlos.celedon@usm.cl [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Departamento de Física, Universidad Técnica Federico Santa María, Valaparaíso, Casilla 110-V (Chile); Bruckner, B., E-mail: barbara.bruckner@jku.at [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Roth, D., E-mail: dietmar.roth@jku.at [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Duchoslav, J., E-mail: jiri.duchoslav@jku.at [Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Arndt, M., E-mail: martin.arndt@voestalpine.com [voestalpine Stahl GmbH, voestalpine-Straße 3, 4031 Linz (Austria); Kürnsteiner, P., E-mail: p.kuernsteiner@mpie.de [Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); and others

    2017-07-31

    Highlights: • Investigation on the impact of residual gas prevailing in UHV chambers. • For some metals detrimental oxygen uptake could be observed within shortest time. • Totally different behavior was found: no changes, solely adsorption and oxidation. • The UHV residual gas may severely corrupt results obtained from depth profiling. • A well-considered data acquisition sequence is the key for reliable depth profiles. - Abstract: Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  19. New twist in the optical schematic of surface slope measuring long trace profiler

    Science.gov (United States)

    Nikitin, Sergey M.; Gevorkyan, Gevork S.; McKinney, Wayne R.; Lacey, Ian; Takacs, Peter Z.; Yashchuk, Valeriy V.

    2017-09-01

    The advents of fully coherent free electron lasers and diffraction limited synchrotron storage ring sources of x-rays are catalyzing the development of new, ultra-high accuracy metrology methods. To fully exploit the potential of these sources, metrology needs to be capable of determining the figure of an optical element with sub-nanometer height accuracy. Currently, the two most prevalent slope measuring instruments used for characterization of x-ray optics are the auto-collimator based nanometer optical measuring device (NOM) and the long trace profiler (LTP) using pencil beam interferometry (PBI). These devices have been consistently improved upon by the x-ray optics metrology community, but appear to be approaching their metrological limits. Here, we revise the traditional optical schematic of the LTP. We experimentally show that, for the level of accuracy desired for metrology with state-of-the-art x-ray optics, the Dove prism in the LTP reference channel appears to be one of the major sources of instrumental error. Therefore, we suggest returning back to the original PBI LTP schematics with no Dove prism in the reference channel. In this case, the optimal scanning strategies [Yashchuk, Rev. Sci. Instrum. 80, 115101 (2009)] used to suppress the instrumental drift error have to be used to suppress a possible drift error associated with laser beam pointing instability. We experimentally and by numerical simulation demonstrate the usefulness of the suggested approach for measurements with x-ray optics with both face up and face down orientations.

  20. A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces.

    Science.gov (United States)

    Schneider, Julian; Ciacchi, Lucio Colombi

    2011-02-08

    The behavior of titanium implants in physiological environments is governed by the thin oxide layer that forms spontaneously on the metal surface and mediates the interactions with adsorbate molecules. In order to study the adsorption of biomolecules on titanium in a realistic fashion, we first build up a model of an oxidized Ti surface in contact with liquid water by means of extensive first-principles molecular dynamics simulations. Taking the obtained structure as reference, we then develop a classical potential to model the Ti/TiOx/water interface. This is based on the mapping with Coulomb and Lennard-Jones potentials of the adsorption energy landscape of single water and ammonia molecules on the rutile TiO2(110) surface. The interactions with arbitrary organic molecules are obtained via standard combination rules to established biomolecular force fields. The transferability of our potential to the case of organic molecules adsorbing on the oxidized Ti surface is checked by comparing the classical potential energy surfaces of representative systems to quantum mechanical results at the level of density functional theory. Moreover, we calculate the heat of immersion of the TiO2 rutile surface and the detachment force of a single tyrosine residue from steered molecular dynamics simulations, finding good agreement with experimental reference data in both cases. As a first application, we study the adsorption behavior of the Arg-Gly-Asp (RGD) peptide on the oxidized titanium surface, focusing particularly on the calculation of the free energy of desorption.

  1. Potential energy surfaces of adsorbates on periodic substrates: Application of the Morse theory

    Czech Academy of Sciences Publication Activity Database

    Pick, Štěpán

    2009-01-01

    Roč. 79, č. 4 (2009), 045403-1-5 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z40400503 Keywords : adsorbed layers * Morse potential * potential energy surfaces * substrates Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.475, year: 2009

  2. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  3. THE INITIAL MASS FUNCTION AND THE SURFACE DENSITY PROFILE OF NGC 6231

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hwankyung [Department of Astronomy and Space Science, Sejong University, 98, Kunja-dong, Kwangjin-gu, Seoul 143-747 (Korea, Republic of); Sana, Hugues [Astronomical Institute ' Anton Pannekeok' , Amsterdam University, Science Park 904, 1098-XH Amsterdam (Netherlands); Bessell, Michael S., E-mail: sungh@sejong.ac.kr, E-mail: H.Sana@uva.nl, E-mail: bessell@mso.anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, MSO, Cotter Road, Weston, ACT 2611 (Australia)

    2013-02-01

    We have performed new wide-field photometry of the young open cluster NGC 6231 to study the shape of the initial mass function (IMF) and mass segregation. We also investigated the reddening law toward NGC 6231 from optical to mid-infrared color excess ratios, and found that the total-to-selective extinction ratio is R{sub V} = 3.2, which is very close to the normal value. But many early-type stars in the cluster center show large color excess ratios. We derived the surface density profiles of four member groups, and found that they reach the surface density of field stars at about 10', regardless of stellar mass. The IMF of NGC 6231 is derived for the mass range 0.8-45 M{sub Sun }. The slope of the IMF of NGC 6231 ({Gamma} = -1.1 {+-} 0.1) is slightly shallower than the canonical value, but the difference is marginal. In addition, the mass function varies systematically, and is a strong function of radius-it is very shallow at the center, and very steep at the outer ring suggesting the cluster is mass segregated. We confirm the mass segregation for the massive stars (m {approx}> 8 M{sub Sun }) by a minimum spanning tree analysis. Using a Monte Carlo method, we estimate the total mass of NGC 6231 to be about 2.6 ({+-} 0.6) Multiplication-Sign 10{sup 3} M{sub Sun }. We constrain the age of NGC 6231 by comparison with evolutionary isochrones. The age of the low-mass stars ranges from 1 to 7 Myr with a slight peak at 3 Myr. However, the age of the high-mass stars depends on the adopted models and is 3.5 {+-} 0.5 Myr from the non-rotating or moderately rotating models of Brott et al. as well as the non-rotating models of Ekstroem et al. But the age is 4.0-7.0 Myr if the rotating models of Ekstroem et al. are adopted. This latter age is in excellent agreement with the timescale of ejection of the high-mass runaway star HD 153919 from NGC 6231, albeit the younger age cannot be entirely excluded.

  4. Transcriptional profiling differences for articular cartilage and repair tissue in equine joint surface lesions

    Directory of Open Access Journals (Sweden)

    Stromberg Arnold J

    2009-09-01

    Full Text Available Abstract Background Full-thickness articular cartilage lesions that reach to the subchondral bone yet are restricted to the chondral compartment usually fill with a fibrocartilage-like repair tissue which is structurally and biomechanically compromised relative to normal articular cartilage. The objective of this study was to evaluate transcriptional differences between chondrocytes of normal articular cartilage and repair tissue cells four months post-microfracture. Methods Bilateral one-cm2 full-thickness defects were made in the articular surface of both distal femurs of four adult horses followed by subchondral microfracture. Four months postoperatively, repair tissue from the lesion site and grossly normal articular cartilage from within the same femorotibial joint were collected. Total RNA was isolated from the tissue samples, linearly amplified, and applied to a 9,413-probe set equine-specific cDNA microarray. Eight paired comparisons matched by limb and horse were made with a dye-swap experimental design with validation by histological analyses and quantitative real-time polymerase chain reaction (RT-qPCR. Results Statistical analyses revealed 3,327 (35.3% differentially expressed probe sets. Expression of biomarkers typically associated with normal articular cartilage and fibrocartilage repair tissue corroborate earlier studies. Other changes in gene expression previously unassociated with cartilage repair were also revealed and validated by RT-qPCR. Conclusion The magnitude of divergence in transcriptional profiles between normal chondrocytes and the cells that populate repair tissue reveal substantial functional differences between these two cell populations. At the four-month postoperative time point, the relative deficiency within repair tissue of gene transcripts which typically define articular cartilage indicate that while cells occupying the lesion might be of mesenchymal origin, they have not recapitulated differentiation to

  5. Occupational injuries and illnesses in rubber factory: Profile, Potential Hazards and possible prevention

    Directory of Open Access Journals (Sweden)

    Tri Hari Irfani

    2015-12-01

    Full Text Available Rubber is one of the important commodities in the world. Globally, workers are facing so many problems of hazards that produce by rubber process. In Indonesia, there are several data of occupational problems such as respiratory diseases, muscle and skeletal diseases, gastrointestinal diseases, diseases of the teeth and oral cavity, skin diseases and skin tissue. In Iranian rubber factory, Iran, workers had suffered from some kind of musculoskeletal symptoms. Stomach and liver cancers in workers are having in Shanghai tire factory. In addition, Germany has cancer problem of their workers who work in rubber factory. Most of the rubber process in the factory can cause some hazards of the workers. In unloading area and area that operator is taking the dirt manually, workers are facing ergonomic problems. The possible control is reduce weight of load, team lift the object with two or more workers and Use mechanical assist. Machine safeguarding is essential for protecting from Cutting process that can make workers amputation organs such as hands, and fingers. In bale process, the workers need to cut raw rubber into bale in bale cutting. Furthermore, workers are facing with amputation problem. To manage that, It must be designed as a standard which has interlocking guards to prevent access to the cutting area. When wrapped using plastic, workers use a heated iron and sticked in plastic so that it blends neatly. The risks are fingers can cut accidently and then the workers also get contamination from polyvinyl chloride (PVC. The possible preventions are use an automatic plastic wrapping machine with palletized product sitting on a turntable and respirator. Another problem is contact dermatitis that has been reported frequently among rubber workers. The prevention for that problem is using Gloves. The aim of researcher is to provide the profile of occupational injuries and illnesses, potential hazards in rubber factory to prevent the workers.

  6. Profile of brivaracetam and its potential in the treatment of epilepsy.

    Science.gov (United States)

    Ferlazzo, Edoardo; Russo, Emilio; Mumoli, Laura; Sueri, Chiara; Gasparini, Sara; Palleria, Caterina; Labate, Angelo; Gambardella, Antonio; De Sarro, Giovambattista; Aguglia, Umberto

    2015-01-01

    Brivaracetam (BRV) (UCB 34714) is currently under review by the US Food and Drug Administration and European Medicines Agency for approval as an add-on treatment for adult patients with partial seizures. Similar to levetiracetam (LEV), BRV acts as a high-affinity ligand of the synaptic vesicle protein 2A, however, it has been shown to be 10- to 30-fold more potent than LEV. Moreover, BRV does not share the LEV inhibitory activity on the high voltage Ca(2+) channels and AMPA receptors, and it has been reported to act as a partial antagonist on neuronal voltage-gated sodium channels. The pharmacokinetic profile of BRV is favorable and linear, and it undergoes an extensive metabolism into inactive compounds, mainly through the hydrolysis of its acetamide group. Furthermore, it does not significantly interact with other antiepileptic drugs and more than 95% is excreted through the urine, with an unchanged fraction of 8%-11%. BRV has a half-life of approximately 8-9 hours and it is usually given twice daily. To date, a wide range of experimental studies have reported the effectiveness of BRV with regards to partial and generalized seizures. In humans, six randomized, placebo-controlled trials and two meta-analyses highlighted the efficacy, or good tolerability, of BRV as an add-on treatment for patients with uncontrolled partial seizures. A wide dose range of BRV has been evaluated in those trials (5-200 mg), but the most suitable for clinical use appears to be 50-100 mg/day. The most common adverse reactions to BRV are mild to moderate, transient, often improve during the course of the treatment, and mainly consist of central nervous system symptoms, such as fatigue, dizziness, and somnolence. The aim of this paper is to critically review the literature data regarding experimental animal models and clinical trials on BRV, and to define its potential usefulness for the clinicians who manage patients with epilepsy.

  7. Oxygen 18 concentration profile measurements near the surface by 18O(p,α)15N resonance reaction

    International Nuclear Information System (INIS)

    Amsel, G.; David, D.

    1975-01-01

    The method of spectrum reduction in nuclear reaction microanalysis does not allow to obtain depth resolutions better than the order of 2000A. Resolutions of the order of 200A may be obtained by using the narrow resonance technique, when applied to thin films. The latter technique was extended to thick targets, with deep concentration profiles presenting a sharp gradient near the surface. This method is presented and illustrated by the study of 18 O profiles in oxygen diffusion measurements in growing ZrO 2 , using the 629keV resonance of the reaction 18 O(p,α) 15 N [fr

  8. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    Directory of Open Access Journals (Sweden)

    Maíra Maciel Mattos de Oliveira

    2010-03-01

    Full Text Available An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4 stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ºC and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  9. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential.

    Science.gov (United States)

    de Oliveira, Maíra Maciel Mattos; Brugnera, Danilo Florisvaldo; Alves, Eduardo; Piccoli, Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 °C and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM) after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  10. Disordered electrical potential observed on the surface of SiO2 by electric field microscopy

    International Nuclear Information System (INIS)

    GarcIa, N; Yan Zang; Ballestar, A; Barzola-Quiquia, J; Bern, F; Esquinazi, P

    2010-01-01

    The electrical potential on the surface of ∼300 nm thick SiO 2 grown on single-crystalline Si substrates has been characterized at ambient conditions using electric field microscopy. Our results show an inhomogeneous potential distribution with fluctuations up to ∼0.4 V within regions of 1 μm. The potential fluctuations observed at the surface of these usual dielectric holders of graphene sheets should induce strong variations in the graphene charge densities and provide a simple explanation for some of the anomalous behaviors of the transport properties of graphene.

  11. Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces

    Science.gov (United States)

    Venable, Alison; Mitalipova, Maisam; Lyons, Ian; Jones, Karen; Shin, Soojung; Pierce, Michael; Stice, Steven

    2005-01-01

    Background Pluripotent human embryonic stem cells (hESCs) have the potential to form every cell type in the body. These cells must be appropriately characterized prior to differentiation studies or when defining characteristics of the pluripotent state. Some developmentally regulated cell surface antigens identified by monoclonal antibodies in a variety of species and stem cell types have proven to be side chains of membrane glycolipids and glycoproteins. Therefore, to examine hESC surfaces for other potential pluripotent markers, we used a panel of 14 lectins, which were chosen based on their specificity for a variety of carbohydrates and carbohydrate linkages, along with stage specific embryonic antigen-4 (SSEA-4), to determine binding quantitation by flow cytometry and binding localization in adherent colonies by immunocytochemistry. Results Enriching cells for SSEA-4 expression increased the percentage of SSEA-4 positive cells to 98–99%. Using enriched high SSEA-4-expressing hESCs, we then analyzed the binding percentages of selected lectins and found a large variation in binding percentages ranging from 4% to 99% binding. Lycopersicon (tomato)esculetum lectin (TL), Ricinus communis agglutinin (RCA), and Concanavalin A (Con A) bound to SSEA-4 positive regions of hESCs and with similar binding percentages as SSEA-4. In contrast, we found Dolichos biflorus agglutinin (DBA) and Lotus tetragonolobus lectin (LTL) did not bind to hESCs while Phaseolus vulgaris leuco-agglutinin (PHA-L), Vicia villosa agglutinin (VVA), Ulex europaeus agglutinin (UEA), Phaseolus vulgaris erythro-agglutinin (PHA-E), and Maackia amurensis agglutinin (MAA) bound partially to hESCs. These binding percentages correlated well with immunocytochemistry results. Conclusion Our results provide information about types of carbohydrates and carbohydrate linkages found on pluripotent hESC surfaces. We propose that TL, RCA and Con A may be used as markers that are associated with the pluripotent

  12. Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces

    Directory of Open Access Journals (Sweden)

    Shin Soojung

    2005-07-01

    Full Text Available Abstract Background Pluripotent human embryonic stem cells (hESCs have the potential to form every cell type in the body. These cells must be appropriately characterized prior to differentiation studies or when defining characteristics of the pluripotent state. Some developmentally regulated cell surface antigens identified by monoclonal antibodies in a variety of species and stem cell types have proven to be side chains of membrane glycolipids and glycoproteins. Therefore, to examine hESC surfaces for other potential pluripotent markers, we used a panel of 14 lectins, which were chosen based on their specificity for a variety of carbohydrates and carbohydrate linkages, along with stage specific embryonic antigen-4 (SSEA-4, to determine binding quantitation by flow cytometry and binding localization in adherent colonies by immunocytochemistry. Results Enriching cells for SSEA-4 expression increased the percentage of SSEA-4 positive cells to 98–99%. Using enriched high SSEA-4-expressing hESCs, we then analyzed the binding percentages of selected lectins and found a large variation in binding percentages ranging from 4% to 99% binding. Lycopersicon (tomatoesculetum lectin (TL, Ricinus communis agglutinin (RCA, and Concanavalin A (Con A bound to SSEA-4 positive regions of hESCs and with similar binding percentages as SSEA-4. In contrast, we found Dolichos biflorus agglutinin (DBA and Lotus tetragonolobus lectin (LTL did not bind to hESCs while Phaseolus vulgaris leuco-agglutinin (PHA-L, Vicia villosa agglutinin (VVA, Ulex europaeus agglutinin (UEA, Phaseolus vulgaris erythro-agglutinin (PHA-E, and Maackia amurensis agglutinin (MAA bound partially to hESCs. These binding percentages correlated well with immunocytochemistry results. Conclusion Our results provide information about types of carbohydrates and carbohydrate linkages found on pluripotent hESC surfaces. We propose that TL, RCA and Con A may be used as markers that are associated with the

  13. Coupled ADCPs can yield complete Reynolds stress tensor profiles in geophysical surface flows

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.

    2011-01-01

    We introduce a new technique to measure profiles of each term in the Reynolds stress tensor using coupled acoustic Doppler current profilers (ADCPs). The technique is based on the variance method which is extended to the case with eight acoustic beams. Methods to analyze turbulence from a single

  14. Investigation of Range Profiles from a Simplified Ship on Rough Sea Surface and Its Multipath Imaging Mechanisms

    Directory of Open Access Journals (Sweden)

    Siyuan He

    2012-01-01

    Full Text Available The range profiles of a two-dimension (2 D perfect electric conductor (PEC ship on a wind-driven rough sea surface are derived by performing an inverse discrete Fourier transform (IDFT on the wide band backscattered field. The rough sea surface is assuming to be a PEC surface. The back scattered field is computed based on EM numerical simulation when the frequencies are sampled between 100 MHz and 700 MHz. Considering the strong coupling interactions between the ship and sea, the complicated multipath effect to the range profile characteristics is fully analyzed based on the multipath imaging mechanisms. The coupling mechanisms could be explained by means of ray theory prediction and numerical extraction of the coupling currents. The comparison of the range profile locations between ray theory prediction and surface current simulation is implemented and analyzed in this paper. Finally, the influence of different sea states on the radar target signatures has been examined and discussed.

  15. An automatic evaluation method for the surface profile of a microlens array using an optical interferometric microscope

    International Nuclear Information System (INIS)

    Lin, Chern-Sheng; Loh, Guo-Hao; Fu, Shu-Hsien; Chang, Hsun-Kai; Yang, Shih-Wei; Yeh, Mau-Shiun

    2010-01-01

    In this paper, an automatic evaluation method for the surface profile of a microlens array using an optical interferometric microscope is presented. For inspecting the microlens array, an XY-table is used to position it. With a He–Ne laser beam and optical fiber as a probing light, the measured image is sent to the computer to analyze the surface profile. By binary image slicing and area recognition, this study located the center of each ring and determined the substrate of the microlens array image through the background of the entire microlens array interference image. The maximum and minimum values of every segment brightness curve were determined corresponding to the change in the segment phase angle from 0° to 180°. According to the ratio of the actual ring area and the ideal ring area, the area ratio method was adopted to find the phase-angle variation of the interference ring. Based on the ratio of actual ring brightness and the ideal ring brightness, the brightness ratio method was used to determine the phase-angle variation of the interference ring fringe. The area ratio method and brightness ratio method are interchangeable in precisely determining the phase angles of the innermost and outermost rings of the interference fringe and obtaining different microlens surface altitudes of respective pixels in the segment, to greatly increase the microlens array surface profile inspection accuracy and quality

  16. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .

  17. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  18. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    Science.gov (United States)

    Steinberger, R.; Celedón, C. E.; Bruckner, B.; Roth, D.; Duchoslav, J.; Arndt, M.; Kürnsteiner, P.; Steck, T.; Faderl, J.; Riener, C. K.; Angeli, G.; Bauer, P.; Stifter, D.

    2017-07-01

    Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  19. Single-cell gene-expression profiling and its potential diagnostic applications

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Kubista, Mikael; Aman, P.

    2011-01-01

    Roč. 11, č. 7 (2011), s. 735-740 ISSN 1473-7159 R&D Projects: GA ČR(CZ) GAP303/10/1338; GA ČR(CZ) GA301/09/1752 Institutional research plan: CEZ:AV0Z50520701 Keywords : gene-expression profiling * RT-qPCR * single-cell gene-expression profiling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.859, year: 2011

  20. Surface potential of methyl isobutyl carbinol adsorption layer at the air/water interface.

    Science.gov (United States)

    Phan, Chi M; Nakahara, Hiromichi; Shibata, Osamu; Moroi, Yoshikiyo; Le, Thu N; Ang, Ha M

    2012-01-26

    The surface potential (ΔV) and surface tension (γ) of MIBC (methyl isobutyl carbinol) were measured on the subphase of pure water and electrolyte solutions (NaCl at 0.02 and 2 M). In contrast to ionic surfactants, it was found that surface potential gradually increased with MIBC concentration. The ΔV curves were strongly influenced by the presence of NaCl. The available model in literature, in which surface potential is linearly proportional to surface excess, failed to describe the experimental data. Consequently, a new model, employing a partial charge of alcohol adsorption layer, was proposed. The new model predicted the experimental data consistently for MIBC in different NaCl solutions. However, the model required additional information for ionic impurity to predict adsorption in the absence of electrolyte. Such inclusion of impurities is, however, unnecessary for industrial applications. The modeling results successfully quantify the influence of electrolytes on surface potential of MIBC, which is critical for froth stability.

  1. Electrocardiogram: his bundle potentials can be recorded noninvasively beat by beat on surface electrocardiogram.

    Science.gov (United States)

    Wang, Gaopin; Liu, Renguang; Chang, Qinghua; Xu, Zhaolong; Zhang, Yingjie; Pan, Dianzhu

    2017-03-15

    The micro waveform of His bundle potential can't be recorded beat-to-beat on surface electrocardiogram yet. We have found that the micro-wavelets before QRS complex may be related to atrioventricular conduction system potentials. This study is to explore the possibility of His bundle potential can be noninvasively recorded on surface electrocardiogram. We randomized 65 patients undergoing radiofrequency catheter ablation of paroxysmal superventricular tachycardia (exclude overt Wolff-Parkinson-White syndrome) to receive "conventional electrocardiogram" and "new electrocardiogram" before the procedure. His bundle electrogram was collected during the procedure. Comparative analysis of PA s (PA interval recorded on surface electrocardiogram), AH s (AH interval recorded on surface electrocardiogram) and HV s (HV interval recorded on surface electrocardiogram) interval recorded on surface "new electrocardiogram" and PA, AH, HV interval recorded on His bundle electrogram was investigated. There was no difference (P > 0.05) between groups in HV s interval (49.63 ± 6.19 ms) and HV interval (49.35 ± 6.49 ms). Results of correlational analysis found that HV S interval was significantly positively associated with HV interval (r = 0.929; P electrocardiogram. Noninvasive His bundle potential tracing might represent a new method for locating the site of atrioventricular block and identifying the origin of a wide QRS complex.

  2. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    Science.gov (United States)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  3. Determination of line profiles on nano-structured surfaces using EUV and x-ray scattering

    Science.gov (United States)

    Soltwisch, Victor; Wernecke, Jan; Haase, Anton; Probst, Jürgen; Schoengen, Max; Krumrey, Michael; Scholze, Frank; Pomplun, Jan; Burger, Sven

    2014-09-01

    Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. Grazing Incidence Small Angle X-ray Scattering (GISAXS) provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range, EUV small angle scattering (EUVSAS), which allows for much steeper angles of incidence but preserves the range of momentum transfer that can be observed. Generally, the potentially higher momentum transfer at shorter wavelengths is counterbalanced by decreasing diffraction efficiency. This results in a practical limit of about 10 nm pitch for which it is possible to observe at least the +/- 1st diffraction orders with reasonable efficiency. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, based on a finite element method (FEM) Maxwell solver and a particle swarm based least-squares optimization yielded consistent results for EUV-SAS and GISAXS. In this contribution we present scatterometry data for line gratings and consistent reconstruction results of the line geometry for EUV-SAS and GISAXS.

  4. The sea surface currents as a potential factor in the estimation and monitoring of wave energy potential

    Science.gov (United States)

    Zodiatis, George; Galanis, George; Nikolaidis, Andreas; Stylianoy, Stavros; Liakatas, Aristotelis

    2015-04-01

    The use of wave energy as an alternative renewable is receiving attention the last years under the shadow of the economic crisis in Europe and in the light of the promising corresponding potential especially for countries with extended coastline. Monitoring and studying the corresponding resources is further supported by a number of critical advantages of wave energy compared to other renewable forms, like the reduced variability and the easier adaptation to the general grid, especially when is jointly approached with wind power. Within the framework, a number of countries worldwide have launched research and development projects and a significant number of corresponding studies have been presented the last decades. However, in most of them the impact of wave-sea surface currents interaction on the wave energy potential has not been taken into account neglecting in this way a factor of potential importance. The present work aims at filling this gap for a sea area with increased scientific and economic interest, the Eastern Mediterranean Sea. Based on a combination of high resolution numerical modeling approach with advanced statistical tools, a detailed analysis is proposed for the quantification of the impact of sea surface currents, which produced from downscaling the MyOcean-FO regional data, to wave energy potential. The results although spatially sensitive, as expected, prove beyond any doubt that the wave- sea surface currents interaction should be taken into account for similar resource analysis and site selection approaches since the percentage of impact to the available wave power may reach or even exceed 20% at selected areas.

  5. Potential of accuracy profile for method validation in inductively coupled plasma spectrochemistry

    International Nuclear Information System (INIS)

    Mermet, J.M.; Granier, G.

    2012-01-01

    Method validation is usually performed over a range of concentrations for which analytical criteria must be verified. One important criterion in quantitative analysis is accuracy, i.e. the contribution of both trueness and precision. The study of accuracy over this range is called an accuracy profile and provides experimental tolerance intervals. Comparison with acceptability limits fixed by the end user defines a validity domain. This work describes the computation involved in the building of the tolerance intervals, particularly for the intermediate precision with within-laboratory experiments and for the reproducibility with interlaboratory studies. Computation is based on ISO 5725‐4 and on previously published work. Moreover, the bias uncertainty is also computed to verify the bias contribution to accuracy. The various types of accuracy profile behavior are exemplified with results obtained by using ICP-MS and ICP-AES. This procedure allows the analyst to define unambiguously a validity domain for a given accuracy. However, because the experiments are time-consuming, the accuracy profile method is mainly dedicated to method validation. - Highlights: ► An analytical method is defined by its accuracy, i.e. both trueness and precision. ► The accuracy as a function of an analyte concentration is an accuracy profile. ► Profile basic concepts are explained for trueness and intermediate precision. ► Profile-based tolerance intervals have to be compared with acceptability limits. ► Typical accuracy profiles are given for both ICP-AES and ICP-MS techniques.

  6. Modeling Solar-Wind Heavy-Ions' Potential Sputtering of Lunar KREEP Surface

    Science.gov (United States)

    Barghouty, A. F.; Meyer, F. W.; Harris, R. P.; Adams, J. H., Jr.

    2012-01-01

    Recent laboratory data suggest that potential sputtering may be an important weathering mechanism that can affect the composition of both the lunar surface and its tenuous exosphere; its role and implications, however, remain unclear. Using a relatively simple kinetic model, we will demonstrate that solar-wind heavy ions induced sputtering of KREEP surfaces is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We will also also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.

  7. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    Science.gov (United States)

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.

  8. Reconstruction of the Tip-Surface Interaction Potential by Analysis of the Brownian Motion of an Atomic Force Microscope Tip

    NARCIS (Netherlands)

    Willemsen, O.H.; Kuipers, L.; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    2000-01-01

    The thermal movement of an atomic force microscope (AFM) tip is used to reconstruct the tip-surface interaction potential. If a tip is brought into the vicinity of a surface, its movement is governed by the sum of the harmonic cantilever potential and the tip-surface interaction potential. By

  9. Limitations in SELDI-TOF MS whole serum proteomic profiling with IMAC surface to specifically detect colorectal cancer

    International Nuclear Information System (INIS)

    Wang, Qi; Gu, Jin; Shen, Jing; Li, Zhen-fu; Jie, Jian-zheng; Wang, Wen-yue; Wang, Jin; Zhang, Zhong-tao; Li, Zhi-xia; Yan, Li

    2009-01-01

    Surface enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF-MS) analysis on serum samples was reported to be able to detect colorectal cancer (CRC) from normal or control patients. We carried out a validation study of a SELDI-TOF MS approach with IMAC surface sample processing to identify CRC. A retrospective cohort of 338 serum samples including 154 CRCs, 67 control cancers and 117 non-cancerous conditions was profiled using SELDI-TOF-MS. No CRC 'specific' classifier was found. However, a classifier consisting of two protein peaks separates cancer from non-cancerous conditions with high accuracy. In this study, the SELDI-TOF-MS-based protein expression profiling approach did not perform to identify CRC. However, this technique is promising in distinguishing patients with cancer from a non-cancerous population; it may be useful for monitoring recurrence of CRC after treatment

  10. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air

    International Nuclear Information System (INIS)

    Zhang Yuzhong; Deng Shuxing; Liu Yanan; Shen Guofeng; Li Xiqing; Cao Jun; Wang Xilong; Reid, Brian; Tao Shu

    2011-01-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH LMW4 ) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH LMW4 within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. - Research highlights: → Design, field test and calibration of the novel passive air sampler, PAS-V-I. → Vertical concentration gradients of PAH LMW4 within a thin layer close to soil. → Comparison of results between PAS-V-I measurement and fugacity approach. → Potential application of PAS-V-I and further modifications. - A novel passive sampling device was developed and tested for measuring vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

  11. Metabolomic profiling identifies potential pathways involved in the interaction of iron homeostasis with glucose metabolism

    Directory of Open Access Journals (Sweden)

    Lars Stechemesser

    2017-01-01

    Full Text Available Objective: Elevated serum ferritin has been linked to type 2 diabetes (T2D and adverse health outcomes in subjects with the Metabolic Syndrome (MetS. As the mechanisms underlying the negative impact of excess iron have so far remained elusive, we aimed to identify potential links between iron homeostasis and metabolic pathways. Methods: In a cross-sectional study, data were obtained from 163 patients, allocated to one of three groups: (1 lean, healthy controls (n = 53, (2 MetS without hyperferritinemia (n = 54 and (3 MetS with hyperferritinemia (n = 56. An additional phlebotomy study included 29 patients with biopsy-proven iron overload before and after iron removal. A detailed clinical and biochemical characterization was obtained and metabolomic profiling was performed via a targeted metabolomics approach. Results: Subjects with MetS and elevated ferritin had higher fasting glucose (p < 0.001, HbA1c (p = 0.035 and 1 h glucose in oral glucose tolerance test (p = 0.002 compared to MetS subjects without iron overload, whereas other clinical and biochemical features of the MetS were not different. The metabolomic study revealed significant differences between MetS with high and low ferritin in the serum concentrations of sarcosine, citrulline and particularly long-chain phosphatidylcholines. Methionine, glutamate, and long-chain phosphatidylcholines were significantly different before and after phlebotomy (p < 0.05 for all metabolites. Conclusions: Our data suggest that high serum ferritin concentrations are linked to impaired glucose homeostasis in subjects with the MetS. Iron excess is associated to distinct changes in the serum concentrations of phosphatidylcholine subsets. A pathway involving sarcosine and citrulline also may be involved in iron-induced impairment of glucose metabolism. Author Video: Author Video Watch what authors say about their articles Keywords: Metabolomics, Hyperferritinemia, Iron overload, Metabolic

  12. Profile of brivaracetam and its potential in the treatment of epilepsy

    Directory of Open Access Journals (Sweden)

    Ferlazzo E

    2015-11-01

    Full Text Available Edoardo Ferlazzo,1,2 Emilio Russo,3 Laura Mumoli,1 Chiara Sueri,2 Sara Gasparini,1,2 Caterina Palleria,3 Angelo Labate,1 Antonio Gambardella,1 Giovambattista De Sarro,3 Umberto Aguglia1,2 1Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, 2Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, 3Institute of Pharmacology, Magna Græcia University, Catanzaro, Italy Abstract: Brivaracetam (BRV (UCB 34714 is currently under review by the US Food and Drug Administration and European Medicines Agency for approval as an add-on treatment for adult patients with partial seizures. Similar to levetiracetam (LEV, BRV acts as a high-affinity ligand of the synaptic vesicle protein 2A, however, it has been shown to be 10- to 30-fold more potent than LEV. Moreover, BRV does not share the LEV inhibitory activity on the high voltage Ca2+ channels and AMPA receptors, and it has been reported to act as a partial antagonist on neuronal voltage-gated sodium channels. The pharmacokinetic profile of BRV is favorable and linear, and it undergoes an extensive metabolism into inactive compounds, mainly through the hydrolysis of its acetamide group. Furthermore, it does not significantly interact with other antiepileptic drugs and more than 95% is excreted through the urine, with an unchanged fraction of 8%–11%. BRV has a half-life of approximately 8–9 hours and it is usually given twice daily. To date, a wide range of experimental studies have reported the effectiveness of BRV with regards to partial and generalized seizures. In humans, six randomized, placebo-controlled trials and two meta-analyses highlighted the efficacy, or good tolerability, of BRV as an add-on treatment for patients with uncontrolled partial seizures. A wide dose range of BRV has been evaluated in those trials (5–200 mg, but the most suitable for clinical use appears to be 50–100 mg/day. The most common adverse reactions to BRV are mild

  13. MRD-CI potential surfaces using balanced basis sets. IV. The H2 molecule and the H3 surface

    International Nuclear Information System (INIS)

    Wright, J.S.; Kruus, E.

    1986-01-01

    The utility of midbond functions in molecular calculations was tested in two cases where the correct results are known: the H 2 potential curve and the collinear H 3 potential surface. For H 2 , a variety of basis sets both with and without bond functions was compared to the exact nonrelativistic potential curve of Kolos and Wolniewicz [J. Chem. Phys. 43, 2429 (1965)]. It was found that optimally balanced basis sets at two levels of quality were the double zeta single polarization plus sp bond function basis (BF1) and the triple zeta double polarization plus two sets of sp bond function basis (BF2). These gave bond dissociation energies D/sub e/ = 4.7341 and 4.7368 eV, respectively (expt. 4.7477 eV). Four basis sets were tested for basis set superposition errors, which were found to be small relative to basis set incompleteness and therefore did not affect any conclusions regarding basis set balance. Basis sets BF1 and BF2 were used to construct potential surfaces for collinear H 3 , along with the corresponding basis sets DZ*P and TZ*PP which contain no bond functions. Barrier heights of 12.52, 10.37, 10.06, and 9.96 kcal/mol were obtained for basis sets DZ*P, TZ*PP, BF1, and BF2, respectively, compared to an estimated limiting value of 9.60 kcal/mol. Difference maps, force constants, and relative rms deviations show that the bond functions improve the surface shape as well as the barrier height

  14. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Brian [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Zhao, Bin; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Li, Jun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331 (China); Jiang, Bin [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-06-14

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H{sub 2} → H{sub 2} + H, H + H{sub 2}O → H{sub 2} + OH, and H + CH{sub 4} → H{sub 2} + CH{sub 3}. A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.

  15. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

    International Nuclear Information System (INIS)

    Kolb, Brian; Zhao, Bin; Guo, Hua; Li, Jun; Jiang, Bin

    2016-01-01

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H 2 → H 2 + H, H + H 2 O → H 2 + OH, and H + CH 4 → H 2 + CH 3 . A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.

  16. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    OpenAIRE

    Oliveira,Maíra Maciel Mattos de; Brugnera,Danilo Florisvaldo; Alves,Eduardo; Piccoli,Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ?C and stirring of 50 rpm. The number of adhered cells was de...

  17. Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles

    Science.gov (United States)

    Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.

    2006-12-01

    Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.

  18. Image potential resonances of the aluminum (100) surface; Bildpotentialresonanzen der Aluminium-(100)-Oberflaeche

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Matthias

    2011-07-08

    Image-potential resonances on the (100) surface of pure Aluminum are investigated experimentally and theoretically. The experiments are conducted both energy- and time-resolved using the method of two-photon photoemission spectroscopy. The main attention of the theoretical examination and extensive numerical calculations is devoted to the interaction between surface and bulk states. Image-potential resonances on Al(100) are a system in which a complete series of discrete Rydberg states strongly couples to a continuum of states. As a simple metal it also provides a good opportunity to test theoretical models of the structure of the potential at metal surfaces. This work represents the first high-resolution investigation of image-potential resonances with such strong resonance character. For the first time, it is demonstrated experimentally that isolated image-potential resonances exist on an Aluminum surface. On the (100) surface of Aluminum the second through fifth image-potential resonance are resolved and both, their energies and lifetimes are measured. The binding energies of the image-potential resonances form a Rydberg series of states {epsilon}{sub n}=-(0,85 eV)/((n+a){sup 2}). Within the accuracy of the measurement it is not necessary to introduce a quantum defect a (a=0.022{+-}0.035). Using angle-resolved two-photon photoemission spectroscopy the effective mass of electrons in the second image-potential resonance is measured to 1.01{+-}0.11 electron masses. The lifetimes of the resonances increase as {tau}{sub n} = (1.0{+-}0.2)fs.n{sup 3} starting from n=2. Calculations using the density matrix formalism show that the experimentally observed lifetimes can be explained well by electrons decaying into the bulk. The effect of resonance trapping leads to extended lifetimes in the process. Contrary to common theoretical models of image-potential states at metal surfaces the first image-potential resonance cannot be observed in two-photon photoemission on Al(100

  19. Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Demetriou, Anna; Welinder, Anne Christina

    2005-01-01

    Monolayers of homocysteine on Au(111)-surfaces have been investigated by voltammetry, in situ scanning tunnelling microscopy (STM) and subtractively normalised interfacial Fourier transform spectroscopy (SNIFTIRS). A pair of sharp voltammetric peaks build up in the potential range 0 to -0.1 V (vs...... potentials at pH 7.7. The molecules pack into highly ordered domains around the peak potential. High-resolution in situ STM reveals a (root 3 x 5) R30 degrees lattice with three homocysteine molecules in each unit cell. The adlayer changes into disordered structures on either side of the peak potential...

  20. Potential of near-surface geothermal heat - Experiences from the planning practice; Potential der oberflaechennahen Geothermie. Erfahrungen aus der Planungspraxis

    Energy Technology Data Exchange (ETDEWEB)

    Kuebert, Markus; Kuntz, David; Walker-Hertkorn, Simone [systherma GmbH, Planungsbuero fuer Erdwaermesysteme, Starzach-Felldorf (Germany)

    2010-07-01

    Near-surface geothermal applications as a heat source for ground source heat pump systems are an approved energy source in the area of residential buildings. Within the commercial range, the near-surface geothermal energy also can supply coldness in order to cool buildings. In the contribution under consideration, a flow chart of a geothermal project is presented by examining the feasibility up to the acceptance of work. With this approach it is possible to exhaust optimally the geothermal potential at a location including the trades and planners involved. In particular, the significance of the preliminary design for the entire later smooth course of the project is to be stated. Practical examples for possible operational areas of the geothermal energy and to their borders are described.

  1. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters.

    Science.gov (United States)

    Adcock, Christopher T; Hausrath, Elisabeth M

    2015-12-01

    Abundant evidence indicates that significant surface and near-surface liquid water has existed on Mars in the past. Evaluating the potential for habitable environments on Mars requires an understanding of the chemical and physical conditions that prevailed in such aqueous environments. Among the geological features that may hold evidence of past environmental conditions on Mars are weathering profiles, such as those in the phosphorus-rich Wishstone-class rocks in Gusev Crater. The weathering profiles in these rocks indicate that a Ca-phosphate mineral has been lost during past aqueous interactions. The high phosphorus content of these rocks and potential release of phosphorus during aqueous interactions also make them of astrobiological interest, as phosphorus is among the elements required for all known life. In this work, we used Mars mission data, laboratory-derived kinetic and thermodynamic data, and data from terrestrial analogues, including phosphorus-rich basalts from Idaho, to model a conceptualized Wishstone-class rock using the reactive transport code CrunchFlow. Modeling results most consistent with the weathering profiles in Wishstone-class rocks suggest a combination of chemical and physical erosion and past aqueous interactions with near-neutral waters. The modeling results also indicate that multiple Ca-phosphate minerals are likely in Wishstone-class rocks, consistent with observations of martian meteorites. These findings suggest that Gusev Crater experienced a near-neutral phosphate-bearing aqueous environment that may have been conducive to life on Mars in the past. Mars-Gusev Crater-Wishstone-Reactive transport modeling-CrunchFlow-Aqueous interactions-Neutral pH-Habitability.

  2. Etalon (standard) for surface potential distribution produced by electric activity of the heart.

    Science.gov (United States)

    Szathmáry, V; Ruttkay-Nedecký, I

    1981-01-01

    The authors submit etalon (standard) equipotential maps as an aid in the evaluation of maps of surface potential distributions in living subjects. They were obtained by measuring potentials on the surface of an electrolytic tank shaped like the thorax. The individual etalon maps were determined in such a way that the parameters of the physical dipole forming the source of the electric field in the tank corresponded to the mean vectorcardiographic parameters measured in a healthy population sample. The technique also allows a quantitative estimate of the degree of non-dipolarity of the heart as the source of the electric field.

  3. GADEP Continuous PM2.5 mass concentration data, VIIRS Day Night Band SDR (SVDNB), MODIS Terra Level 2 water vapor profiles (infrared algorithm for atmospheric profiles for both day and night, NWS surface meteorological data

    Science.gov (United States)

    Data descriptions are provided at the following urls:GADEP Continuous PM2.5 mass concentration data - https://aqs.epa.gov/aqsweb/documents/data_mart_welcome.htmlhttps://www3.epa.gov/ttn/amtic/files/ambient/pm25/qa/QA-Handbook-Vol-II.pdfVIIRS Day Night Band SDR (SVDNB) http://www.class.ngdc.noaa.gov/saa/products/search?datatype_family=VIIRS_SDRMODIS Terra Level 2 water vapor profiles (infrared algorithm for atmospheric profiles for both day and night -MOD0&_L2; http://modis-atmos.gsfc.nasa.gov/MOD07_L2/index.html NWS surface meteorological data - https://www.ncdc.noaa.gov/isdThis dataset is associated with the following publication:Wang, J., C. Aegerter, and J. Szykman. Potential Application of VIIRS Day/Night Band for Monitoring Nighttime Surface PM2.5 Air Quality From Space. ATMOSPHERIC ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 124(0): 55-63, (2016).

  4. Fluorescence quenching studies of potential-dependent DNA reorientation dynamics at glassy carbon electrode surfaces.

    Science.gov (United States)

    Li, Qin; Cui, Chenchen; Higgins, Daniel A; Li, Jun

    2012-09-05

    The potential-dependent reorientation dynamics of double-stranded DNA (ds-DNA) attached to planar glassy carbon electrode (GCE) surfaces were investigated. The orientation state of surface-bound ds-DNA was followed by monitoring the fluorescence from a 6-carboxyfluorescein (FAM6) fluorophore covalently linked to the distal end of the DNA. Positive potentials (i.e., +0.2 V vs open circuit potential, OCP) caused the ds-DNA to align parallel to the electrode surface, resulting in strong dipole-electrode quenching of FAM6 fluorescence. Switching of the GCE potential to negative values (i.e., -0.2 V vs OCP) caused the ds-DNA to reorient perpendicular to the electrode surface, with a concomitant increase in FAM6 fluorescence. In addition to the very fast (submilliseconds) dynamics of the initial reorientation process, slow (0.1-0.9 s) relaxation of FAM6 fluorescence to intermediate levels was also observed after potential switching. These dynamics have not been previously described in the literature. They are too slow to be explained by double layer charging, and chronoamperometry data showed no evidence of such effects. Both the amplitude and rate of the dynamics were found to depend upon buffer concentration, and ds-DNA length, demonstrating a dependence on the double layer field. The dynamics are concluded to arise from previously undetected complexities in the mechanism of potential-dependent ds-DNA reorientation. The possible origins of these dynamics are discussed. A better understanding of these dynamics will lead to improved models for potential-dependent ds-DNA reorientation at electrode surfaces and will facilitate the development of advanced electrochemical devices for detection of target DNAs.

  5. Calculation of high-dimensional fission-fusion potential-energy surfaces in the SHE region

    International Nuclear Information System (INIS)

    Moeller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira

    2004-01-01

    We calculate in a macroscopic-microscopic model fission-fusion potential-energy surfaces relevant to the analysis of heavy-ion reactions employed to form heavy-element evaporation residues. We study these multidimensional potential-energy surfaces both inside and outside the touching point.Inside the point of contact we define the potential on a multi-million-point grid in 5D deformation space where elongation, merging projectile and target spheroidal shapes, neck radius and projectile/target mass asymmetry are independent shape variables. The same deformation space and the corresponding potential-energy surface also describe the shape evolution from the nuclear ground-state to separating fragments in fission, and the fast-fission trajectories in incomplete fusion.For separated nuclei we study the macroscopic-microscopic potential energy, that is the ''collision surface'' between a spheroidally deformed target and a spheroidally deformed projectile as a function of three coordinates which are: the relative location of the projectile center-of-mass with respect to the target center-of-mass and the spheroidal deformations of the target and the projectile. We limit our study to the most favorable relative positions of target and projectile, namely that the symmetry axes of the target and projectile are collinear

  6. MicroRNA profiling of antler stem cells in potentiated and dormant states and their potential roles in antler regeneration.

    Science.gov (United States)

    Ba, Hengxing; Wang, Datao; Li, Chunyi

    2016-04-01

    MicroRNAs (miRNAs) can effectively regulate gene expression at the post-transcriptional level and play a critical role in tissue growth, development and regeneration. Our previous studies showed that antler regeneration is a stem cell-based process and antler stem cells reside in the periosteum of a pedicle, the permanent bony protuberance, from which antler regeneration takes place. Antlers are the only mammalian organ that can fully regenerate and hence provide a unique opportunity to identify miRNAs that are involved in organ regeneration. In the present study, we used next generation sequencing technology sequenced miRNAs of the stem cells derived from either the potentiated or the dormant pedicle periosteum. A population of both conserved and 20 deer-specific miRNAs was identified. These conserved miRNAs were derived from 453 homologous hairpin precursors across 88 animal species, and were further grouped into 167 miRNA families. Among them, the miR-296 is embryonic stem cell-specific. The potentiation process resulted in the significant regulation (>±2 Fold, q value cell potentiation process. This research has identified miRNAs that are associated either with the dormant or the potentiated antler stem cells and identified some target miRNAs for further research into their role played in mammalian organ regeneration.

  7. Which potentials have to be surface peaked to reproduce large angle proton scattering at high energy?

    International Nuclear Information System (INIS)

    Raynal, J.

    1990-01-01

    Corrections to the usual form factors of the optical potential are studied with a view to getting a better fit for proton elastic scattering at large angles on 40 Ca at 497 and 800 MeV. When a real surface form factor is added to the central potential in the Schrodinger formalism, the experimental data are as well reproduced as in the standard Dirac formalism. Coupling to the strong 3 - collective state gives a better fit. The use of surface corrections to the imaginary Dirac potential also gives improved results. A slightly better fit is obtained by coupling to the 3 - state with, at the same time, a weakening of these corrections. Further corrections to the potential do not give significant improvements

  8. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires.

    Science.gov (United States)

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-11

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.

  9. Youth Sports Clubs' Potential as Health-Promoting Setting: Profiles, Motives and Barriers

    Science.gov (United States)

    Meganck, Jeroen; Scheerder, Jeroen; Thibaut, Erik; Seghers, Jan

    2015-01-01

    Setting and Objective: For decades, the World Health Organisation has promoted settings-based health promotion, but its application to leisure settings is minimal. Focusing on organised sports as an important leisure activity, the present study had three goals: exploring the health promotion profile of youth sports clubs, identifying objective…

  10. The Profiles of Creative Potential and Personality Characteristics of Adult Professionals

    Science.gov (United States)

    Lee, Seon-Young; Min, Jiyeon

    2016-01-01

    Using 5 divergent thinking indices of the Torrance Tests of Creative Thinking and the Myers-Briggs Type Indicator, this study examined the creative profiles of 236 adult professionals and relationships between their creative characteristics and personality types. All these adults were in their middle or late stage of professional development in…

  11. Towards Current Profile Control in ITER: Potential Approaches and Research Needs

    Science.gov (United States)

    Schuster, E.; Barton, J. E.; Wehner, W. P.

    2014-10-01

    Many challenging plasma control problems still need to be addressed in order for the ITER Plasma Control System (PCS) to be able to successfully achieve the ITER project goals. For instance, setting up a suitable toroidal current density profile is key for one possible advanced scenario characterized by noninductive sustainment of the plasma current and steady-state operation. The nonlinearity and high dimensionality exhibited by the plasma demand a model-based current-profile control synthesis procedure that can accommodate this complexity through embedding the known physics within the design. The development of a model capturing the dynamics of the plasma relevant for control design enables not only the design of feedback controllers for regulation or tracking but also the design of optimal feedforward controllers for a systematic model-based approach to scenario planning, the design of state estimators for a reliable real-time reconstruction of the plasma internal profiles based on limited and noisy diagnostics, and the development of a fast predictive simulation code for closed-loop performance evaluation before implementation. Progress towards control-oriented modeling of the current profile evolution and associated control design has been reported following both data-driven and first-principles-driven approaches. An overview of these two approaches will be provided, as well as a discussion on research needs associated with each one of the model applications described above. Supported by the US Department of Energy under DE-SC0001334 and DE-SC0010661.

  12. The Sickness Impact Profile: Potential Use of a Health Status Instrument for Physician Training

    Science.gov (United States)

    Martin, Diane P.; And Others

    1976-01-01

    The Sickness Impact Profile (SIP) is designed to measure health status in terms of sickness-related changes in behavior. Its content incorporates the perspectives of clinicians, patients, and the apparently healthy, and consists of 235 items. Its reliability and validity were supported in a study with both experienced physicians and residents.…

  13. Toward accurate prediction of potential energy surfaces and the spectral density of hydrogen bonded systems

    International Nuclear Information System (INIS)

    Rekik, Najeh

    2014-01-01

    Despite the considerable progress made in quantum theory and computational methods, detailed descriptions of the potential energy surfaces of hydrogen-bonded systems have not yet been achieved. In addition, the hydrogen bond (H-bond) itself is still so poorly understood at the fundamental level that it remains unclear exactly what geometry constitutes a “real” H-bond. Therefore, in order to investigate features essential for hydrogen bonded complexes, a simple, efficient, and general method for calculating matrix elements of vibrational operators capable of describing the stretching modes and the H-bond bridges of hydrogen-bonded systems is proposed. The derived matrix elements are simple and computationally easy to evaluate, which makes the method suitable for vibrational studies of multiple-well potentials. The method is illustrated by obtaining potential energy surfaces for a number of two-dimensional systems with repulsive potentials chosen to be in Gaussian form for the stretching mode and of the Morse-type for the H-bond bridge dynamics. The forms of potential energy surfaces of weak and strong hydrogen bonds are analyzed by varying the asymmetry of the Gaussian potential. Moreover, the choice and applicability of the selected potential for the stretching mode and comparison with other potentials used in the area of hydrogen bond research are discussed. The approach for the determination of spectral density has been constructed in the framework of the linear response theory for which spectral density is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The approach involves anharmonic coupling between the high frequency stretching vibration (double well potential) and low-frequency donor-acceptor stretching mode (Morse potential) as well as the electrical anharmonicity of the dipole moment operator of the fast mode. A direct relaxation mechanism is incorporated through a time decaying exponential

  14. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Directory of Open Access Journals (Sweden)

    Craig A Gedye

    Full Text Available Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell

  15. Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity.

    Science.gov (United States)

    Gedye, Craig A; Hussain, Ali; Paterson, Joshua; Smrke, Alannah; Saini, Harleen; Sirskyj, Danylo; Pereira, Keira; Lobo, Nazleen; Stewart, Jocelyn; Go, Christopher; Ho, Jenny; Medrano, Mauricio; Hyatt, Elzbieta; Yuan, Julie; Lauriault, Stevan; Meyer, Mona; Kondratyev, Maria; van den Beucken, Twan; Jewett, Michael; Dirks, Peter; Guidos, Cynthia J; Danska, Jayne; Wang, Jean; Wouters, Bradly; Neel, Benjamin; Rottapel, Robert; Ailles, Laurie E

    2014-01-01

    Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers.

  16. Lex-SVM: exploring the potential of exon expression profiling for disease classification.

    Science.gov (United States)

    Yuan, Xiongying; Zhao, Yi; Liu, Changning; Bu, Dongbo

    2011-04-01

    Exon expression profiling technologies, including exon arrays and RNA-Seq, measure the abundance of every exon in a gene. Compared with gene expression profiling technologies like 3' array, exon expression profiling technologies could detect alterations in both transcription and alternative splicing, therefore they are expected to be more sensitive in diagnosis. However, exon expression profiling also brings higher dimension, more redundancy, and significant correlation among features. Ignoring the correlation structure among exons of a gene, a popular classification method like L1-SVM selects exons individually from each gene and thus is vulnerable to noise. To overcome this limitation, we present in this paper a new variant of SVM named Lex-SVM to incorporate correlation structure among exons and known splicing patterns to promote classification performance. Specifically, we construct a new norm, ex-norm, including our prior knowledge on exon correlation structure to regularize the coefficients of a linear SVM. Lex-SVM can be solved efficiently using standard linear programming techniques. The advantage of Lex-SVM is that it can select features group-wisely, force features in a subgroup to take equal weihts and exclude the features that contradict the majority in the subgroup. Experimental results suggest that on exon expression profile, Lex-SVM is more accurate than existing methods. Lex-SVM also generates a more compact model and selects genes more consistently in cross-validation. Unlike L1-SVM selecting only one exon in a gene, Lex-SVM assigns equal weights to as many exons in a gene as possible, lending itself easier for further interpretation.

  17. Electromagnetic response of the protective pellicle of Euglenoids: influence of the surface profile

    Science.gov (United States)

    Inchaussandague, Marina E.; Gigli, Miriam L.; Skigin, Diana C.; Tolivia, Analía.; Conforti, Visitación

    2015-03-01

    In a recent paper we have investigated, from an electromagnetic point of view, the role played by the pellicle of Euglenoids -unicellular aquatic organisms- in the protection of the cell against UV radiation.14 By modelling the pellicle as a diffraction grating, we computed the electromagnetic response of different species that exhibit different behaviors against UV radiation. In this previous study, the pellicle profile was approximated by a sinusoidal grating. However, it has been observed in the transversal cut images that the profiles are not exactly sinusoidal, and also vary from sample to sample. Since the electromagnetic response depends on the geometry of the grating, reflectance calculations that take into account a more accurate representation of the actual profile could provide more insight into this problem. In this paper we investigate the electromagnetic response of the pellicle of Euglenoids for different grating profiles. The diffraction problem is solved by using the Chandezon method, which has demonstrated a successful performance for deep gratings of arbitrary profiles. We analyze the influence of the shape, depth and period of the grating on the UV reflectance. We show that the pellicle characteristics are critical parameters to increase the reflectance, thus reducing the penetration of the UV radiation within the cell and therefore, minimizing the damage and increasing the survival of these organisms.

  18. Study of surface potential contamination in radioisotope and radiopharmaceutical production facilities and alternative solutions

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Farida Tusafariah; Djarwanti Rahayu Pipin Soedjarwo

    2013-01-01

    Radioisotope and radiopharmaceutical production facilities that exist in their operations around the world in the form of radiological impacts of radiation exposure, contamination of surface and air contamination. Given the number of existing open source in radioisotope and radiopharmaceutical production facility, then the possibility of surface contamination in the work area is quite high. For that to protect the safety and health of both workers, the public and the environment, then the licensee must conduct an inventory of some of the potential that could result in contamination of surfaces in radioisotope and radiopharmaceutical production facilities. Several potential to cause surface contamination in radioisotope and radiopharmaceutical production facilities consist of loss of resources, the VAC system disorders, impaired production facilities, limited resources and lack of work discipline and radioactive waste handling activities. From the study of some potential, there are several alternative solutions that can be implemented by the licensee to address the contamination of the surface so as not to cause adverse radiological impacts for both radiation workers, the public or the environment. (author)

  19. Density profiles of small Dirac operator eigenvalues for two color QCD at nonzero chemical potential compared to matrix models

    OpenAIRE

    Akemann, G; Bittner, E; Lombardo, M; Markum, H; Pullirsch, R

    2004-01-01

    We investigate the eigenvalue spectrum of the staggered Dirac matrix in two color QCD at finite chemical potential. The profiles of complex eigenvalues close to the origin are compared to a complex generalization of the chiral Gaussian Symplectic Ensemble, confirming its predictions for weak and strong non-Hermiticity. They differ from the QCD symmetry class with three colors by a level repulsion from both the real and imaginary axis.

  20. Density profiles of small Dirac operator eigenvalues for two color QCD at nonzero chemical potential compared to matrix models

    International Nuclear Information System (INIS)

    Akemann, Gernot; Bittner, Elmar; Lombardo, Maria-Paola; Markum, Harald; Pullirsch, Rainer

    2005-01-01

    We investigate the eigenvalue spectrum of the staggered Dirac matrix in two color QCD at finite chemical potential. The profiles of complex eigenvalues close to the origin are compared to a complex generalization of the chiral Gaussian Symplectic Ensemble, confirming its predictions for weak and strong non-Hermiticity. They differ from the QCD symmetry class with three colors by a level repulsion from both the real and imaginary axis

  1. On the influence of the intermolecular potential on the wetting properties of water on silica surfaces

    Science.gov (United States)

    Pafong, E.; Geske, J.; Drossel, B.

    2016-09-01

    We study the wetting properties of water on silica surfaces using molecular dynamics (MD) simulations. To describe the intermolecular interaction between water and silica atoms, two types of interaction potential models are used: the standard BródkA and Zerda (BZ) model and the Gulmen and Thompson (GT) model. We perform an in-depth analysis of the influence of the choice of the potential on the arrangement of the water molecules in partially filled pores and on top of silica slabs. We find that at moderate pore filling ratios, the GT silica surface is completely wetted by water molecules, which agrees well with experimental findings, while the commonly used BZ surface is less hydrophilic and is only partially wetted. We interpret our simulation results using an analytical calculation of the phase diagram of water in partially filled pores. Moreover, an evaluation of the contact angle of the water droplet on top of the silica slab reveals that the interaction becomes more hydrophilic with increasing slab thickness and saturates around 2.5-3 nm, in agreement with the experimentally found value. Our analysis also shows that the hydroaffinity of the surface is mainly determined by the electrostatic interaction, but the van der Waals interaction nevertheless is strong enough that it can turn a hydrophobic surface into a hydrophilic surface.

  2. Recent characterization activities of Midway Valley as a potential repository surface facility site

    International Nuclear Information System (INIS)

    Gibson, J.D.; Wesling, J.R.; Swan, F.H.; Bullard, T.F.

    1992-01-01

    Midway Valley, located at the eastern base of Yucca Mountain, Nye County, Nevada, has been identified as a possible location for the surface facilities of a potential high-level nuclear-waste repository. This structural and topographic valley is bounded by two north- trending, down-to-the-west normal faults: the Paintbrush Canyon fault on the east and the Bow Ridge fault on the west. Surface and near-surface geological data have been acquired from Midway Valley during the past three years with particular emphasis on evaluating the existence of Quaternary faults. A detailed (1:6000) surficial geological map has been prepared based on interpretation of new and existing aerial photographs, field mapping, soil pits, and trenches. No evidence was found that would indicate displacement of these surficial deposits along previously unrecognized faults. However, given the low rates of Quaternary faulting and the extensive areas that are covered by late Pleistocene to Holocene deposits south of Sever Wash, Quaternary faulting between known faults cannot be precluded based on surface evidence alone. Middle to late Pleistocene alluvial fan deposits (Unit Q3) exist at or near the surface throughout Midway Valley. Confidence is increased that the potential for surface fault rupture in Midway Valley can be assessed by excavations that expose the deposits and soils associated with Unit Q3 or older units (middle Pleistocene or earlier)

  3. Lunar Surface Electric Potential Changes Associated with Traversals through the Earth's Foreshock

    Science.gov (United States)

    Collier, Michael R.; Hills, H. Kent; Stubbs, Timothy J.; Halekas, Jasper S.; Delory, Gregory T.; Espley, Jared; Farrell, William M.; Freeman, John W.; Vondrak, Richard

    2011-01-01

    We report an analysis of one year of Suprathermal Ion Detector Experiment (SIDE) Total Ion Detector (TID) resonance events observed between January 1972 and January 1973. The study includes only those events during which upstream solar wind conditions were readily available. The analysis shows that these events are associated with lunar traversals through the dawn flank of the terrestrial magnetospheric bow shock. We propose that the events result from an increase in lunar surface electric potential effected by secondary electron emission due to primary electrons in the Earth's foreshock region (although primary ions may play a role as well). This work establishes (1) the lunar surface potential changes as the Moon moves through the terrestrial bow shock, (2) the lunar surface achieves potentials in the upstream foreshock region that differ from those in the downstream magnetosheath region, (3) these differences can be explained by the presence of energetic electron beams in the upstream foreshock region and (4) if this explanation is correct, the location of the Moon with respect to the terrestrial bow shock influences lunar surface potential.

  4. Dipyridamole Body Surface Potential Mapping: Noninvasive Differentiation of Syndrome X from Coronary Artery Disease

    Czech Academy of Sciences Publication Activity Database

    Boudík, F.; Anger, Z.; Aschermann, M.; Vojáček, J.; Tomečková, Marie

    2002-01-01

    Roč. 35, č. 3 (2002), s. 181-191 ISSN 0022-0736 R&D Projects: GA MZd IZ4038 Keywords : body surface potential mapping * dipyridamole * coronary artery disease * syndrome X Subject RIV: BD - Theory of Information Impact factor: 0.599, year: 2002

  5. Modified-surface-energy methods for deriving heavy-ion potentials

    International Nuclear Information System (INIS)

    Sierk, A.J.

    1977-01-01

    The use of a modified-surface-energy approach for the calculation of heavy-ion interaction potentials is discussed. It is not possible to simultaneously fit elastic scattering, ion interaction barriers, and fission barriers with the same set of constants in this model. Possible explanations of this deficiency are discussed

  6. A new analytical potential energy surface for the adsorption systemk CO/Cu(100)

    NARCIS (Netherlands)

    Marquardt, R.; Cuvelier, F.; Olsen, R.A.; Baerends, E.J.; Tremblay, J.C.; Saalfrank, P.

    2010-01-01

    Electronic structure data and analytical representations of the potential energy surface for the adsorption of carbon monoxide on a crystalline copper Cu(100) substrate are reviewed. It is found that a previously published and widely used analytical hypersurface for this process [J. C. Tully, M.

  7. Impact of organic overlayers on a-Si:H/c-Si surface potential

    KAUST Repository

    Seif, Johannes P.

    2017-04-11

    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance.

  8. Detection of a strongly negative surface potential at Saturn's moon Hyperion.

    Science.gov (United States)

    Nordheim, T A; Jones, G H; Roussos, E; Leisner, J S; Coates, A J; Kurth, W S; Khurana, K K; Krupp, N; Dougherty, M K; Waite, J H

    2014-10-28

    On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.

  9. Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields

    Energy Technology Data Exchange (ETDEWEB)

    Genenko, Yuri A., E-mail: genenko@mm.tu-darmstadt.de; Hirsch, Ofer [Technische Universität Darmstadt, Darmstadt (Germany); Erhart, Paul [Chalmers University of Technology, Gothenburg (Sweden)

    2014-03-14

    Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO{sub 3} is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.

  10. Construction of an interatomic potential for zinc oxide surfaces by high-dimensional neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Artrith, Nongnuch; Morawietz, Tobias; Behler, Joerg [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2011-07-01

    Zinc oxide (ZnO) is a technologically important material with many applications, e.g. in heterogeneous catalysis. For theoretical studies of the structural properties of ZnO surfaces, defects, and crystal structures it is necessary to simulate large systems over long time-scales with sufficient accuracy. Often, the required system size is not accessible by computationally rather demanding density-functional theory (DFT) calculations. Recently, artificial Neural Networks (NN) trained to first principles data have shown to provide accurate potential-energy surfaces (PESs) for condensed systems. We present the construction and analysis of a NN PES for ZnO. The structural and energetic properties of bulk ZnO and ZnO surfaces are investigated using this potential and compared to DFT calculations.

  11. Impact of organic overlayers on a-Si:H/c-Si surface potential

    KAUST Repository

    Seif, Johannes P.; Niesen, Bjoern; Tomasi, Andrea; Ballif, Christophe; De Wolf, Stefaan

    2017-01-01

    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance.

  12. Potential dependence of surface crystal structure of iron passive films in borate buffer solution

    International Nuclear Information System (INIS)

    Deng, Huihua; Nanjo, Hiroshi; Qian, Pu; Santosa, Arifin; Ishikawa, Ikuo; Kurata, Yoshiaki

    2007-01-01

    The effect of passivation potential on surface crystal structure, apparent thickness and passivity of oxide films formed on pure iron prepared by plasma sputter deposition was investigated. The crystallinity was improved with passivation potential and the width of atomically flat terraces was expanded to 6 nm when passivating at 750 mV for 15 min, as observed by ex situ scanning tunneling microscopy (STM) after aging in air (<30% RH). Apparent thickness and passivity are linearly dependent on passivation potential. The former weakly depends on passivation duration, the latter strongly depends on passivation duration. This is well explained by the correlation between crystal structure and passivity

  13. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  14. Amino acids profile in some nuts as potential ingredients of bakery mixtures

    International Nuclear Information System (INIS)

    Bednáriková, A.; Sádecká, J.

    2010-01-01

    Edible nuts are globally popular and are valued for their sensory, nutritional and health attributes. Nuts need to be kept dry and well store particularly after shelling due to the high unsaturated fat content of the oil. The current study was designed to analyze and compare amino acid profile in walnuts and hazelnuts after irradiation treatment for reduction/elimination of undesirable micro-flora. A simple, reliable and rapid LC-MS method was used for determination of 20 free amino acids. It was found that there were insignificant differences in amino acid profile after irradiation treatment at dose of 5 kGy when the nuts had been packed in paper cover although the selected dose of irradiation (5 kGy) caused dramatic increase of offlavour compound amounts

  15. Reconstruction of the time-averaged sheath potential profile in an argon RF plasma using the ion energy distribution

    International Nuclear Information System (INIS)

    Fivaz, M.; Brunner, S.; Schwarzenbach, W.; Howling, A.A.; Hollenstein, C.

    1994-10-01

    Charge-exchange collisions and radio-frequency excitation combine to give peaks in the ion energy distribution measured at the ground electrode of an argon plasma in a capacitive reactor. These peaks are used as a diagnostic to reconstruct the profile of the time-averaged potential in the sheath. Particle-In-Cell simulations show that the method is accurate. The method is applied to investigate the sheath thickness as a function of excitation frequency at constant plasma power. The time-averaged potential is found to be parabolic in both experimental measurements and numerical simulation. (author) 6 figs., 1 tab., 15 refs

  16. Image-potential states on the metallic (111) surface of bismuth

    International Nuclear Information System (INIS)

    Muntwiler, Matthias; Zhu, X-Y

    2008-01-01

    An extended series (up to n=6, in quantum beats) of image-potential states (IPS) is observed in time-resolved two-photon photoelectron (TR-2PPE) spectroscopy of the Bi(111) surface. Although mainly located in the vacuum, these states probe various properties of the electronic structure of the surface as reflected in their energetics and dynamics. Based on the observation of IPS a projected gap in the surface normal direction is inferred in the region from 3.57 to 4.27 eV above the Fermi level. Despite this band gap, the lifetimes of the IPS are shorter than on comparable metals, which is an indication of the metallic character of the Bi(111) surface.

  17. Near-surface, marine seismic-reflection data defines potential hydrogeologic confinement bypass in a tertiary carbonate aquifer, southeastern Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Walker, Cameron; Westcott, Richard L.

    2012-01-01

    Approximately 210 km of near-surface, high-frequency, marine seismic-reflection data were acquired on the southeastern part of the Florida Platform between 2007 and 2011. Many high-resolution, seismic-reflection profiles, interpretable to a depth of about 730 m, were collected on the shallow-marine shelf of southeastern Florida in water as shallow as 1 m. Landward of the present-day shelf-margin slope, these data image middle Eocene to Pleistocene strata and Paleocene to Pleistocene strata on the Miami Terrace. This high-resolution data set provides an opportunity to evaluate geologic structures that cut across confining units of the Paleocene to Oligocene-age carbonate rocks that form the Floridan aquifer system.Seismic profiles image two structural systems, tectonic faults and karst collapse structures, which breach confining beds in the Floridan aquifer system. Both structural systems may serve as pathways for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability rocks in the Floridan aquifer system. The tectonic faults occur as normal and reverse faults, and collapse-related faults have normal throw. The most common fault occurrence delineated on the reflection profiles is associated with karst collapse structures. These high-frequency seismic data are providing high quality structural analogs to unprecedented depths on the southeastern Florida Platform. The analogs can be used for assessment of confinement of other carbonate aquifers and the sealing potential of deeper carbonate rocks associated with reservoirs around the world.

  18. Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?

    Science.gov (United States)

    Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish

    2015-10-01

    Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.

  19. Effects of Inner Surface Roughness and Asymmetric Pipe Flow on Accuracy of Profile Factor for Ultrasonic Flow Meter

    International Nuclear Information System (INIS)

    Michitsugu Mori; Kenichi Tezuka; Yasushi Takeda

    2006-01-01

    Flow profile factors (PFs), which adjust measurements to real flow rates, also strongly depend on flow profiles. To determine profile factors for actual power plants, manufactures of flowmeters usually conduct factory calibration tests under ambient flow conditions. Indeed, flow measurements with high accuracy for reactor feedwater require them to conduct calibration tests under real conditions, such as liquid conditions and piping layouts. On the contrary, as nuclear power plants are highly aging, readings of flowmeters for reactor feedwater systems drift due to the changes of flow profiles. The causes of those deviations are affected by the change of wall roughness of inner surface of pipings. We have conducted experiments to quantify the effects of flow patterns on the PFs due to pipe roughness and asymmetric flow, and the results of our experiments have shown the effects of elbows and pipe inner roughness, which strongly affect to the creation of the flow patterns. Those changes of flow patterns lead to large errors in measurements with transit time (time-of-flight: TOF) ultrasonic flow meters. In those experiments, changes of pipe roughness result in the changes of PFs with certain errors. Therefore, we must take into account those effects in order to measure the flow rates of feedwater with better accuracy in actual power plants. (authors)

  20. Potential dependent adhesion forces on bare and underpotential deposition modified electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, J.M.; Hsieh, S.J.; Monahan, J.; Gewirth, A.A. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-03

    Adhesion force measurements are used to determine the potential dependence of the force of adhesion between a Si{sub 3}N{sub 4} cantilever and a Au(111) surface modified by the underpotential deposition (upd) of Bi or Cu in acid solution or by oxide formation. The measured work of adhesion is near zero for most of the potential region examined in Bi upd but rises after the formation of a full Bi monolayer. The work of adhesion is high at positive potentials for Cu upd but then decreases as the Cu partial and full monolayers are formed. The work of adhesion is low in the oxide region on Au(111) but rises following the sulfate disordering transition at 1.1 V vs NHE. These results are interpreted in terms of the degree of solvent order on the electrode surface.

  1. Antarctic Ice Shelf Potentially Stabilized by Export of Meltwater in Surface River

    Science.gov (United States)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-01-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  2. Development of an Urban Multilayer Radiation Scheme and Its Application to the Urban Surface Warming Potential

    Science.gov (United States)

    Aoyagi, Toshinori; Takahashi, Shunji

    2012-02-01

    To investigate how a three-dimensional structure such as an urban canyon can affect urban surface warming, we developed an urban multilayer radiation scheme. The complete consideration of multiple scattering of shortwave and longwave radiation using the radiosity method is an important feature of the present scheme. A brief description of this scheme is presented, followed by evaluations that compare its results with observations of the effective albedo and radiative temperature for urban blocks. Next, we calculate the urban surface warming potential (USWP), defined as the difference between the daily mean radiative temperature of urban surfaces (which are assumed to be black bodies), including their canyon effects and the daily mean temperature of a flat surface with the same material properties, under a radiative equilibrium state. Assuming standard material properties (albedo and emissivity of 0.4 and 0.9, respectively), we studied the sensitivity of the USWP to various aspect ratios of building heights to road widths. The results show that the temporally-averaged surface temperature of an urban area can be higher than that of a flat surface. In addition, we determined the overestimation of the effective temperature of urban surfaces induced by the overestimation of the radiation distribution to the walls when one uses a single-layer scheme for urban block arrays that have a low sky-view factor less than around 0.5.

  3. Optimization and evaluation of surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry for protein profiling of cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Gomez-Mancilla Baltazar

    2006-04-01

    Full Text Available Abstract Cerebrospinal fluid (CSF potentially carries an archive of peptides and small proteins relevant to pathological processes in the central nervous system (CNS and surrounding brain tissue. Proteomics is especially well suited for the discovery of biomarkers of diagnostic potential in CSF for early diagnosis and discrimination of several neurodegenerative diseases. ProteinChip surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS is one such approach which offers a unique platform for high throughput profiling of peptides and small proteins in CSF. In this study, we evaluated methodologies for the retention of CSF proteins m/z we found a high degree of overlap between the tested array surfaces. The combination of CM10 and IMAC30 arrays was sufficient to represent between 80–90% of all assigned peaks when using either sinapinic acid or α-Cyano-4-hydroxycinnamic acid as the energy absorbing matrices. Moreover, arrays processed with SPA consistently showed better peak resolution and higher peak number across all surfaces within the measured mass range. We intend to use CM10 and IMAC30 arrays prepared in sinapinic acid as a fast and cost-effective approach to drive decisions on sample selection prior to more in-depth discovery of diagnostic biomarkers in CSF using alternative but complementary proteomic strategies.

  4. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    Science.gov (United States)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  5. Profile of Mutations in the Reverse Transcriptase and Overlapping Surface Genes of Hepatitis B Virus (HBV) in Treatment-Naïve Indonesian HBV Carriers.

    Science.gov (United States)

    Yamani, Laura Navika; Yano, Yoshihiko; Utsumi, Takako; Wasityastuti, Widya; Rinonce, Hanggoro Tri; Widasari, Dewiyani Indah; Juniastuti; Lusida, Maria Inge; Soetjipto; Hayashi, Yoshitake

    2017-11-22

    Mutations in the reverse transcriptase (RT) region of the hepatitis B virus (HBV) genome are an important factor in low therapeutic effectiveness. Nonetheless, the prevalence of these mutations in HBV strains isolated previously in Indonesia has not been systematically examined. Therefore, in this study, we investigated the profile of mutations in the RT region and the associations of these mutations with amino acid changes in the surface protein in the virus of treatment-naïve Indonesian HBV carriers. Overall, 96 sequences of the full-length Indonesian HBV genomes (genotype B, n = 54; genotype C, n = 42) were retrieved from the National Center for Biotechnology Information. Naturally occurring primary and/or compensatory drug resistance mutations were found in 6/54 (11.1%) genotype B strains and in 1/42 (2.4%) genotype C strains. The potential mutations underlying resistance to a nucleos(t)ide analog and/or pretreatment mutations were more frequent in both genotypes but more frequent in genotype C strains than in genotype B strains. The A-B interdomain region in the RT gene was more frequently mutated in genotype C than in genotype B (3.51 ± 2.53 vs. 1.08 ± 1.52, P < 0.001). Knowledge about the mutational profiles of the RT gene and changes in the surface protein may help clinicians to select the most appropriate antiviral drug and vaccination or HBV immunoglobulin regimen for management of HBV infection in Indonesia.

  6. Guided selective deposition of nanoparticles by tuning of the surface potential

    Science.gov (United States)

    Eklöf, J.; Stolaś, A.; Herzberg, M.; Pekkari, A.; Tebikachew, B.; Gschneidtner, T.; Lara-Avila, S.; Hassenkam, T.; Moth-Poulsen, K.

    2017-07-01

    Guided deposition of nanoparticles onto different substrates is of great importance for a variety of applications such as biosensing, targeted cancer therapy, anti-bacterial coatings and single molecular electronics. It is therefore important to gain an understanding of what parameters are involved in the deposition of nanoparticles. In this work we have deposited 60 nm, negatively charged, citrate stabilized gold nanoparticles onto microstructures consisting of six different materials, (vanadium (V), silicon dioxide (SiO2), gold (Au), aluminum (Al), copper (Cu) and nickel (Ni)). The samples have then been investigated by scanning electron microscopy to extract the particle density. The surface potential was calculated from the measured surface charge density maps measured by atomic force microscopy while the samples were submerged in a KCl water solution. These values were compared with literature values of the isoelectric points (IEP) of different oxides formed on the metals in an ambient environment. According to measurements, Al had the highest surface potential followed by Ni and Cu. The same trend was observed for the nanoparticle densities. No particles were found on V, SiO2 and Au. The literature values of the IEP showed a different trend compared to the surface potential measurements concluding that IEP is not a reliable parameter for the prediction of NP deposition. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  7. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles.

    Science.gov (United States)

    Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji

    2012-01-01

    A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Global potential energy surface of ground state singlet spin O4

    Science.gov (United States)

    Mankodi, Tapan K.; Bhandarkar, Upendra V.; Puranik, Bhalchandra P.

    2018-02-01

    A new global potential energy for the singlet spin state O4 system is reported using CASPT2/aug-cc-pVTZ ab initio calculations. The geometries for the six-dimensional surface are constructed using a novel point generation scheme that employs randomly generated configurations based on the beta distribution. The advantage of this scheme is apparent in the reduction of the number of required geometries for a reasonably accurate potential energy surface (PES) and the consequent decrease in the overall computational effort. The reported surface matches well with the recently published singlet surface by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. In addition to the O4 PES, the ground state N4 PES is also constructed using the point generation scheme and compared with the existing PES [Y. Paukku et al., J. Chem. Phys. 139, 044309 (2013)]. The singlet surface is constructed with the aim of studying high energy O2-O2 collisions and predicting collision induced dissociation cross section to be used in simulating non-equilibrium aerothermodynamic flows.

  9. Potential fields on the ventricular surface of the exposed dog heart during normal excitation.

    Science.gov (United States)

    Arisi, G; Macchi, E; Baruffi, S; Spaggiari, S; Taccardi, B

    1983-06-01

    We studied the normal spread of excitation on the anterior and posterior ventricular surface of open-chest dogs by recording unipolar electrograms from an array of 1124 electrodes spaced 2 mm apart. The array had the shape of the ventricular surface of the heart. The electrograms were processed by a computer and displayed as epicardial equipotential maps at 1-msec intervals. Isochrone maps also were drawn. Several new features of epicardial potential fields were identified: (1) a high number of breakthrough points; (2) the topography, apparent widths, velocities of the wavefronts and the related potential drop; (3) the topography of positive potential peaks in relation to the wavefronts. Fifteen to 24 breakthrough points were located on the anterior, and 10 to 13 on the posterior ventricular surface. Some were in previously described locations and many others in new locations. Specifically, 3 to 5 breakthrough points appeared close to the atrioventricular groove on the anterior right ventricle and 2 to 4 on the posterior heart aspect; these basal breakthrough points appeared when a large portion of ventricular surface was still unexcited. Due to the presence of numerous breakthrough points on the anterior and posterior aspect of the heart which had not previously been described, the spread of excitation on the ventricular surface was "mosaic-like," with activation wavefronts spreading in all directions, rather than radially from the two breakthrough points, as traditionally described. The positive potential peaks which lay ahead of the expanding wavefronts moved along preferential directions which were probably related to the myocardial fiber direction.

  10. Critical insight into the influence of the potential energy surface on fission dynamics

    International Nuclear Information System (INIS)

    Mazurek, K.; Schmitt, C.; Wieleczko, J. P.; Ademard, G.; Nadtochy, P. N.

    2011-01-01

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.

  11. Metabolomic Profiling for Identification of Novel Potential Biomarkers in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Maria G. Barderas

    2011-01-01

    Full Text Available Metabolomics involves the identification and quantification of metabolites present in a biological system. Three different approaches can be used: metabolomic fingerprinting, metabolic profiling, and metabolic footprinting, in order to evaluate the clinical course of a disease, patient recovery, changes in response to surgical intervention or pharmacological treatment, as well as other associated features. Characteristic patterns of metabolites can be revealed that broaden our understanding of a particular disorder. In the present paper, common strategies and analytical techniques used in metabolomic studies are reviewed, particularly with reference to the cardiovascular field.

  12. Potential energy surfaces for N = Z, 20Ne-112Ba nuclei

    International Nuclear Information System (INIS)

    Mehta, M.S.; Gupta, Raj K.; Jha, T.K.; Patra, S.K.

    2004-01-01

    We have calculated the potential energy surfaces for N = Z, 20 Ne- 112 Ba nuclei in an axially deformed relativistic mean field approach. A quadratic constraint scheme is applied to determine the complete energy surface for a wide range of the quadrupole deformation. The NL3, NL-RAl and TM1 parameter sets are used. The phenomenon of (multiple) shape coexistence is studied and the calculated ground and excited state binding energies, quadrupole deformation parameters and root mean square (rms) charge radii are compared with the available experimental data and other theoretical predictions. (author)

  13. Surface-active biopolymers from marine bacteria for potential biotechnological applications

    Directory of Open Access Journals (Sweden)

    Karina Sałek

    2016-03-01

    Full Text Available Surface-active agents are amphiphilic chemicals that are used in almost every sector of modern industry, the bulk of which are produced by organo-chemical synthesis. Those produced from biological sources (biosurfactants and bioemulsifiers, however, have gained increasing interest in recent years due to their wide structural and functional diversity, lower toxicities and high biodegradability, compared to their chemically-synthesised counterparts. This review aims to present a general overview on surface-active agents, including their classification, where new types of these biomolecules may lay awaiting discovery, and some of the main bottlenecks for their industrial-scale production. In particular, the marine environment is highlighted as a largely untapped source for discovering new types of surface-active agents. Marine bacteria, especially those living associated with micro-algae (eukaryotic phytoplankton, are a highly promising source of polymeric surface-active agents with potential biotechnological applications. The high uronic acids content of these macromolecules has been linked to conferring them with amphiphilic qualities, and their high structural diversity and polyanionic nature endows them with the potential to exhibit a wide range of functional diversity. Production yields (e.g. by fermentation for most microbial surface-active agents have often been too low to meet the volume demands of industry, and this principally remains as the most important bottleneck for their further commercial development. However, new developments in recombinant and synthetic biology approaches can offer significant promise to alleviate this bottleneck. This review highlights a particular biotope in the marine environment that offers promise for discovering novel surface-active biomolecules, and gives a general overview on specific areas that researchers and the industry could focus work towards increasing the production yields of microbial surface

  14. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    Science.gov (United States)

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

  15. Accelerating electrostatic surface potential calculation with multi-scale approximation on graphics processing units.

    Science.gov (United States)

    Anandakrishnan, Ramu; Scogland, Tom R W; Fenley, Andrew T; Gordon, John C; Feng, Wu-chun; Onufriev, Alexey V

    2010-06-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson-Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multi-scale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Accelerating Electrostatic Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units

    Science.gov (United States)

    Anandakrishnan, Ramu; Scogland, Tom R. W.; Fenley, Andrew T.; Gordon, John C.; Feng, Wu-chun; Onufriev, Alexey V.

    2010-01-01

    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed up these types of electrostatic computations are approximations based on multi-scale coarse-graining and parallelization across multiple processors. This paper demonstrates that for the computation of electrostatic surface potential, these two techniques can be combined to deliver significantly greater speed-up than either one separately, something that is in general not always possible. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is approximated using the hierarchical charge partitioning (HCP) multiscale method, and parallelized on an ATI Radeon 4870 graphical processing unit (GPU). The implementation delivers a combined 934-fold speed-up for a 476,040 atom viral capsid, compared to an equivalent non-parallel implementation on an Intel E6550 CPU without the approximation. This speed-up is significantly greater than the 42-fold speed-up for the HCP approximation alone or the 182-fold speed-up for the GPU alone. PMID:20452792

  17. A theoretical study on the effect of piezoelectric charges on the surface potential and surface depletion region of ZnO nanowires

    International Nuclear Information System (INIS)

    Purahmad, Mohsen; Stroscio, Michael A; Dutta, Mitra

    2013-01-01

    The electrostatic potential and depletion width in piezoelectric semiconductor nanowires are derived by considering a non-depleted region and a surface depleted region and solving the Poisson equation. By determining the piezoelectric-induced charge density, in terms of equivalent density of charges, the effect of piezoelectric charges on the surface depletion region and the distributed electric potential in nanowire have been investigated. The numerical results demonstrate that the ZnO NWs with a smaller radius have a larger surface depletion region which results in a stronger surface potential and depletion region perturbation by induced piezoelectric charges. (paper)

  18. Energy and Momentum Relaxation Times of 2D Electrons Due to Near Surface Deformation Potential Scattering

    Science.gov (United States)

    Pipa, Viktor; Vasko, Fedor; Mitin, Vladimir

    1997-03-01

    The low temperature energy and momentum relaxation rates of 2D electron gas placed near the free or clamped surface of a semi-infinit sample are calculated. To describe the electron-acoustic phonon interaction with allowance of the surface effect the method of elasticity theory Green functions was used. This method allows to take into account the reflection of acoustic waves from the surface and related mutual conversion of LA and TA waves. It is shown that the strength of the deformation potential scattering at low temperatures substantially depends on the mechanical conditions at the surface: relaxation rates are suppressed for the free surface while for the rigid one the rates are enhanced. The dependence of the conductivity on the distance between the 2D layer and the surface is discussed. The effect is most pronounced in the range of temperatures 2 sl pF < T < (2 hbar s_l)/d, where pF is the Fermi momentum, sl is the velocity of LA waves, d is the width of the quantum well.

  19. LUNAR SURFACE AND DUST GRAIN POTENTIALS DURING THE EARTH’S MAGNETOSPHERE CROSSING

    Energy Technology Data Exchange (ETDEWEB)

    Vaverka, J.; Richterová, I.; Pavlu, J.; Šafránková, J.; Němeček, Z., E-mail: jana.safrankova@mff.cuni.cz [Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic)

    2016-07-10

    Interaction between the lunar surface and the solar UV radiation and surrounding plasma environment leads to its charging by different processes like photoemission, collection of charged particles, or secondary electron emission (SEE). Whereas the photoemission depends only on the angle between the surface and direction to the Sun and varies only slowly, plasma parameters can change rapidly as the Moon orbits around the Earth. This paper presents numerical simulations of one Moon pass through the magnetospheric tail including the real plasma parameters measured by THEMIS as an input. The calculations are concentrated on different charges of the lunar surface itself and a dust grain lifted above this surface. Our estimations show that (1) the SEE leads to a positive charging of parts of the lunar surface even in the magnetosphere, where a high negative potential is expected; (2) the SEE is generally more important for isolated dust grains than for the lunar surface covered by these grains; and (3) the time constant of charging of dust grains depends on their diameter being of the order of hours for sub-micrometer grains. In view of these results, we discuss the conditions under which and the areas where a levitation of the lifted dust grains could be observed.

  20. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2017-02-12

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  1. Potential energy surfaces for alkali plus noble gas pairs: a systematic comparison

    Science.gov (United States)

    Blank, L. Aaron; Kedziora, Gary S.; Weeks, David E.

    2010-02-01

    Optically Pumped Alkali Lasers (OPAL) involve interactions of alkali atoms with a buffer gas typically consisting of a noble gas together with C2H4. Line broadening mechanisms are of particular interest because they can be used to match a broad optical pumping source with relatively narrow alkali absorption spectra. To better understand the line broadening processes at work in OPAL systems we focus on the noble gas collisional partners. A matrix of potential energy surfaces (PES) has been generated at the multi-configurational self consistent field (MCSCF) level for M + Ng, where M=Li, Na, K, Rb, Cs and Ng=He, Ne, Ar. The PES include the X2Σ ground state surface and the A2II, B2Σ excited state surfaces. In addition to the MCSCF surfaces, PES for Li+He have been calculated at the multi-reference singles and doubles configuration interaction (MRSDCI) level with spin-orbit splitting effects included. These surfaces provide a way to check the qualitative applicability of the MCSCF calculations. They also exhibit the avoided crossing between the B2Σ and A2II1/2 surfaces that is partially responsible for collision induced relaxation from the 2P3/2 to the 2P1/2 atomic levels.

  2. Heterogeneity of Systemic Oxidative Stress Profiles in COPD: A Potential Role of Gender

    Directory of Open Access Journals (Sweden)

    Jonathan Maury

    2015-01-01

    Full Text Available Oxidative stress (OS plays a key role in the muscle impairment and exercise capacity of COPD patients. However, the literature reveals that systemic OS markers show great heterogeneity, which may hinder the prescription of effective antioxidant supplementation. This study therefore aimed to identify OS markers imbalance of COPD patients, relative to validated normal reference values, and to investigate the possibility of systemic OS profiles. We measured systemic enzymatic/nonenzymatic antioxidant and lipid peroxidation (LP levels in 54 stable COPD patients referred for a rehabilitation program. The main systemic antioxidant deficits in these patients concerned vitamins and trace elements. Fully 89% of the COPD patients showed a systemic antioxidant imbalance which may have caused the elevated systemic LP levels in 69% of them. Interestingly, two patient profiles (clusters 3 and 4 had a more elevated increase in LP combined with increased copper and/or decreased vitamin C, GSH, and GPx. Further analysis revealed that the systemic LP level was higher in COPD women and associated with exercise capacity. Our present data therefore support future supplementations with antioxidant vitamins and trace elements to improve exercise capacity, but COPD patients will probably show different positive responses.

  3. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling

    Science.gov (United States)

    Xu, Pingzhen

    2018-01-01

    Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160

  4. Projected potential profiles across interfaces obtained by reconstructing the exit face wave function from through focal series

    International Nuclear Information System (INIS)

    Bhattacharyya, Somnath; Koch, Christoph T.; Ruehle, Manfred

    2006-01-01

    An iterative method for reconstructing the exit face wave function from a through focal series of transmission electron microscopy image line profiles across an interface is presented. Apart from high-resolution images recorded with small changes in defocus, this method works also well for a large defocus range as used for Fresnel imaging. Using the phase-object approximation the projected electrostatic as well as the absorptive potential profiles across an interface are determined from this exit face wave function. A new experimental image alignment procedure was developed in order to align images with large relative defocus shift. The performance of this procedure is shown to be superior to other image alignment procedures existing in the literature. The reconstruction method is applied to both simulated and experimental images

  5. Time-kill profiles and cell-surface morphological effects of crude ...

    African Journals Online (AJOL)

    MK1201 mycelial extract on the viability and cell surface morphology of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). Methods: Time-kill assays were conducted by incubating test ...

  6. Identifying drought response of semi-arid aeolian systems using near-surface luminescence profiles and changepoint analysis, Nebraska Sandhills.

    Science.gov (United States)

    Buckland, Catherine; Bailey, Richard; Thomas, David

    2017-04-01

    Two billion people living in drylands are affected by land degradation. Sediment erosion by wind and water removes fertile soil and destabilises landscapes. Vegetation disturbance is a key driver of dryland erosion caused by both natural and human forcings: drought, fire, land use, grazing pressure. A quantified understanding of vegetation cover sensitivities and resultant surface change to forcing factors is needed if the vegetation and landscape response to future climate change and human pressure are to be better predicted. Using quartz luminescence dating and statistical changepoint analysis (Killick & Eckley, 2014) this study demonstrates the ability to identify step-changes in depositional age of near-surface sediments. Lx/Tx luminescence profiles coupled with statistical analysis show the use of near-surface sediments in providing a high-resolution record of recent system response and aeolian system thresholds. This research determines how the environment has recorded and retained sedimentary evidence of drought response and land use disturbances over the last two hundred years across both individual landforms and the wider Nebraska Sandhills. Identifying surface deposition and comparing with records of climate, fire and land use changes allows us to assess the sensitivity and stability of the surface sediment to a range of forcing factors. Killick, R and Eckley, IA. (2014) "changepoint: An R Package for Changepoint Analysis." Journal of Statistical Software, (58) 1-19.

  7. Temperature profile data from bucket, surface seawater intake, and XBT casts in a world wide distribution from 07 December 1995 to 18 October 1996 (NODC Accession 9600167)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using bucket, surface seawater intake, and XBT casts from several vessels in a world wide distribution from December 07, 1995...

  8. Sensitivity of Landsat 8 Surface Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in Dryland Irrigated Systems

    KAUST Repository

    Rosas, Jorge

    2017-09-26

    The land surface temperature (LST) represents a critical element in efforts to characterize global surface energy and water fluxes, as well as being an essential climate variable in its own right. Current satellite platforms provide a range of spatial and temporal resolution radiance data from which LST can be determined. One of the most complete records of data comes via the Landsat series of satellites, which provide a continuous sequence that extends back to 1982. However, for much of this time, Landsat thermal data were provided through a single broadband thermal channel, making surface temperature retrieval challenging. To fully exploit the valuable time-series of thermal information that is available from these satellites requires efforts to better describe and understand the accuracy of temperature retrievals. Here, we contribute to these efforts by examining the impact of atmospheric correction on the estimation of LST, using atmospheric profiles derived from a range of in-situ, reanalysis, and satellite data. Radiance data from the thermal infrared (TIR) sensor onboard Landsat 8 was converted to LST by using the MODTRAN version 5.2 radiative transfer model, allowing the production of an LST time series based upon 28 Landsat overpasses. LST retrievals were then evaluated against in-situ thermal measurements collected over an arid zone farmland comprising both bare soil and vegetated surface types. Atmospheric profiles derived from AIRS, MOD07, ECMWF, NCEP, and balloon-based radiosonde data were used to drive the MODTRAN simulations. In addition to examining the direct impact of using various profile data on LST retrievals, randomly distributed errors were introduced into a range of forcing variables to better understand retrieval uncertainty. Results indicated differences in LST of up to 1 K for perturbations in emissivity and profile measurements, with the analysis also highlighting the challenges in modeling aerosol optical depth (AOD) over arid lands and

  9. Sensitivity of Landsat 8 Surface Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in Dryland Irrigated Systems

    KAUST Repository

    Rosas, Jorge; Houborg, Rasmus; McCabe, Matthew

    2017-01-01

    The land surface temperature (LST) represents a critical element in efforts to characterize global surface energy and water fluxes, as well as being an essential climate variable in its own right. Current satellite platforms provide a range of spatial and temporal resolution radiance data from which LST can be determined. One of the most complete records of data comes via the Landsat series of satellites, which provide a continuous sequence that extends back to 1982. However, for much of this time, Landsat thermal data were provided through a single broadband thermal channel, making surface temperature retrieval challenging. To fully exploit the valuable time-series of thermal information that is available from these satellites requires efforts to better describe and understand the accuracy of temperature retrievals. Here, we contribute to these efforts by examining the impact of atmospheric correction on the estimation of LST, using atmospheric profiles derived from a range of in-situ, reanalysis, and satellite data. Radiance data from the thermal infrared (TIR) sensor onboard Landsat 8 was converted to LST by using the MODTRAN version 5.2 radiative transfer model, allowing the production of an LST time series based upon 28 Landsat overpasses. LST retrievals were then evaluated against in-situ thermal measurements collected over an arid zone farmland comprising both bare soil and vegetated surface types. Atmospheric profiles derived from AIRS, MOD07, ECMWF, NCEP, and balloon-based radiosonde data were used to drive the MODTRAN simulations. In addition to examining the direct impact of using various profile data on LST retrievals, randomly distributed errors were introduced into a range of forcing variables to better understand retrieval uncertainty. Results indicated differences in LST of up to 1 K for perturbations in emissivity and profile measurements, with the analysis also highlighting the challenges in modeling aerosol optical depth (AOD) over arid lands and

  10. Topology of the Adiabatic Potential Energy Surfaces for theResonance States of the Water Anion

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, Daniel J.; Rescigno, Thomas N.; McCurdy, C. William

    2005-04-15

    The potential energy surfaces corresponding to the long-lived fixed-nuclei electron scattering resonances of H{sub 2}O relevant to the dissociative electron attachment process are examined using a combination of ab initio scattering and bound-state calculations. These surfaces have a rich topology, characterized by three main features: a conical intersection between the {sup 2}A{sub 1} and {sup 2}B{sub 2} Feshbach resonance states; charge-transfer behavior in the OH ({sup 2}{Pi}) + H{sup -} asymptote of the {sup 2}B{sub 1} and {sup 2}A{sub 1} resonances; and an inherent double-valuedness of the surface for the {sup 2}B{sub 2} state the C{sub 2v} geometry, arising from a branch-point degeneracy with a {sup 2}B{sub 2} shape resonance. In total, eight individual seams of degeneracy among these resonances are located.

  11. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    Science.gov (United States)

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  12. Metrological Aspects of Surface Topographies Produced by Different Machining Operations Regarding Their Potential Functionality

    Directory of Open Access Journals (Sweden)

    Żak Krzysztof

    2017-06-01

    Full Text Available This paper presents a comprehensive methodology for measuring and characterizing the surface topographies on machined steel parts produced by precision machining operations. The performed case studies concern a wide spectrum of topographic features of surfaces with different geometrical structures but the same values of the arithmetic mean height Sa. The tested machining operations included hard turning operations performed with CBN tools, grinding operations with Al2O3 ceramic and CBN wheels and superfinish using ceramic stones. As a result, several characteristic surface textures with the Sa roughness parameter value of about 0.2 μm were thoroughly characterized and compared regarding their potential functional capabilities. Apart from the standard 2D and 3D roughness parameters, the fractal, motif and frequency parameters were taken in the consideration.

  13. Potentialities of some surface characterization techniques for the development of titanium biomedical alloys

    Directory of Open Access Journals (Sweden)

    P.S. Vanzillotta

    2004-09-01

    Full Text Available Bone formation around a metallic implant is a complex process that involves micro- and nanometric interactions. Several surface treatments, including coatings were developed in order to obtain faster osseointegration. To understand the role of these surface treatments on bone formation it is necessary to choose adequate characterization techniques. Among them, we have selected electron microscopy, profilometry, atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS to describe them briefly. Examples of the potentialities of these techniques on the characterization of titanium for biomedical applications were also presented and discussed. Unfortunately more than one technique is usually necessary to describe conveniently the topography (scanning electron microsocopy, profilometry and/or AFM and the chemical state (XPS of the external layer of the material surface. The employment of the techniques above described can be useful especially for the development of new materials or products.

  14. Stair-Step Particle Flux Spectra on the Lunar Surface: Evidence for Nonmonotonic Potentials?

    Science.gov (United States)

    Collier, Michael R.; Newheart, Anastasia; Poppe, Andrew R.; Hills, H. Kent; Farrell, William M.

    2016-01-01

    We present examples of unusual "stair-step" differential flux spectra observed by the Apollo 14 Suprathermal Ion Detector Experiment on the lunar dayside surface in Earth's magnetotail. These spectra exhibit a relatively constant differential flux below some cutoff energy and then drop off precipitously, by about an order of magnitude or more, at higher energies. We propose that these spectra result from photoions accelerated on the lunar dayside by nonmonotonic potentials (i.e.,potentials that do not decay to zero monotonically) and present a model for the expected differential flux. The energy of the cutoff and the magnitude of the differential flux are related to the properties of the local space environment and are consistent with the observed flux spectra. If this interpretation is correct, these surface-based ion observations provide a unique perspective that both complements and enhances the conclusions obtained by remote-sensing orbiter observations on the Moon's exospheric and electrostatic properties.

  15. Surface potential on gold nanodisc arrays fabricated on silicon under light irradiation

    Science.gov (United States)

    Ezaki, Tomotarou; Matsutani, Akihiro; Nishioka, Kunio; Shoji, Dai; Sato, Mina; Okamoto, Takayuki; Isobe, Toshihiro; Nakajima, Akira; Matsushita, Sachiko

    2018-06-01

    This paper proposes Kelvin probe force microscopy (KFM) as a new measurement method of plasmon phenomenon. The surface potential of two arrays, namely, a monomeric array and a tetrameric array, of gold nanodiscs (600 nm diameter) on a silicon substrate fabricated by electron beam lithography was investigated by KFM with the view point of irradiation light wavelength change. In terms of the value of the surface potential, contrasting behaviour, a negative shift in the monomeric disc array and a positive shift in the tetrameric disc array, was observed by light irradiation. This interesting behaviour is thought to be related to a difference in localised plasmons caused by the disc arrangement and was investigated from various viewpoints, including Rayleigh anomalies. Finally, this paper reveals that KFM is powerful not only to investigate the plasmonic behaviour but also to predict the electron transportation.

  16. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters

    Directory of Open Access Journals (Sweden)

    Vitaly V. Chaban

    2016-06-01

    Full Text Available Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden–Fletcher–Goldfarb–Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  17. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters.

    Science.gov (United States)

    Chaban, Vitaly V

    2016-06-01

    Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden-Fletcher-Goldfarb-Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  18. Prediction of Tetraoxygen Reaction Mechanism with Sulfur Atom on the Singlet Potential Energy Surface

    Directory of Open Access Journals (Sweden)

    Ashraf Khademzadeh

    2014-01-01

    Full Text Available The mechanism of S+O4 (D2h reaction has been investigated at the B3LYP/6-311+G(3df and CCSD levels on the singlet potential energy surface. One stable complex has been found for the S+O4 (D2h reaction, IN1, on the singlet potential energy surface. For the title reaction, we obtained four kinds of products at the B3LYP level, which have enough thermodynamic stability. The results reveal that the product P3 is spontaneous and exothermic with −188.042 and −179.147 kcal/mol in Gibbs free energy and enthalpy of reaction, respectively. Because P1 adduct is produced after passing two low energy level transition states, kinetically, it is the most favorable adduct in the 1S+1O4 (D2h atmospheric reactions.

  19. Modification of transition's factor in the compact surface-potential-based MOSFET model

    Directory of Open Access Journals (Sweden)

    Kevkić Tijana

    2016-01-01

    Full Text Available The modification of an important transition's factor which enables continual behavior of the surface potential in entire useful range of MOSFET operation is presented. The various modifications have been made in order to obtain an accurate and computationally efficient compact MOSFET model. The best results have been achieved by introducing the generalized logistic function (GL in fitting of considered factor. The smoothness and speed of the transition of the surface potential from the depletion to the strong inversion region can be controlled in this way. The results of the explicit model with this GL functional form for transition's factor have been verified extensively with the numerical data. A great agreement was found for a wide range of substrate doping and oxide thickness. Moreover, the proposed approach can be also applied on the case where quantum mechanical effects play important role in inversion mode.

  20. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    International Nuclear Information System (INIS)

    Osborn, David L.

    2017-01-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  1. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    Science.gov (United States)

    Osborn, David L.

    2017-05-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  2. Dynamical behavior of the wave packets on adiabatic potential surfaces observed by femtosecond luminescence spectroscopy

    International Nuclear Information System (INIS)

    Suemoto, Tohru; Nakajima, Makoto; Matsuoka, Taira; Yasukawa, Keizo; Koyama, Takeshi

    2007-01-01

    The wave packet dynamics on adiabatic potential surfaces studied by means of time-resolved luminescence spectroscopy is reviewed and the advantages of this method are discussed. In quasi-one-dimensional bromine-bridged platinum complexes, a movie representing the time evolution of the wave packet motion and shape was constructed. A two-dimensional Lissajous-like motion of the wave packet was suggested in the same material at low temperature. In F-centers in KI, evidence for tunneling of the wave packet between the adjacent adiabatic potential surfaces was found. Selective observation of the wave packet motion on the excited state was demonstrated for F-centers in KBr and compared with the results from pump-and-probe experiments in literature

  3. An ab initio potential energy surface for the reaction N+ + H2→ NH+ + H

    International Nuclear Information System (INIS)

    Gittins, M.A.; Hirst, D.M.

    1975-01-01

    Preliminary results of ab initio unrestricted Hartree-Fock calculations for the potential energy surface for the reaction N + + H 2 →NH + + H are reported. For the collinear approach of N + to H 2 , the 3 Σ - surface has no activation barrier and has a shallow well (ca.1eV). For perpendicular approach (Csub(2V)symmetry) the 3 B 2 states is of high energy, the 3 A 2 state has a shallow well but as the bond angle increases the 3 B 1 states decreases in energy to become the state of lowest energy. Neither the collinear nor the perpendicular approaches give adiabatic pathways to the deep potential well of 3 B 1 (HNH) + . (auth.)

  4. Exploring a potential energy surface by machine learning for characterizing atomic transport

    Science.gov (United States)

    Kanamori, Kenta; Toyoura, Kazuaki; Honda, Junya; Hattori, Kazuki; Seko, Atsuto; Karasuyama, Masayuki; Shitara, Kazuki; Shiga, Motoki; Kuwabara, Akihide; Takeuchi, Ichiro

    2018-03-01

    We propose a machine-learning method for evaluating the potential barrier governing atomic transport based on the preferential selection of dominant points for atomic transport. The proposed method generates numerous random samples of the entire potential energy surface (PES) from a probabilistic Gaussian process model of the PES, which enables defining the likelihood of the dominant points. The robustness and efficiency of the method are demonstrated on a dozen model cases for proton diffusion in oxides, in comparison with a conventional nudge elastic band method.

  5. Physisorbed H{sub 2}@Cu(100) surface: Potential and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Eddy; Houriez, Céline; Mitrushchenkov, Alexander O.; Guitou, Marie; Chambaud, Gilberte, E-mail: gilberte.chambaud@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, Champs sur Marne, F-77454 Marne-la-Vallée (France)

    2015-02-07

    Using an embedding approach, a 2-D potential energy function has been calculated to describe the physisorption interaction of H{sub 2} with a Cu(100) surface. For this purpose, a cluster model of the system calculated with highly correlated wavefunctions is combined with a periodic Density-Functional-Theory method using van der Waals-DF2 functional. Rotational and vibrational energy levels of physisorbed H{sub 2}, as well as D{sub 2} and HD, are calculated using the 2D embedding corrected potential energy function. The calculated transitions are in a very good agreement with Electron-Energy-Loss-Spectroscopy observations.

  6. Information profiles on potential occupational hazards: Inorganic chromium compounds. Draft report (Second)

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    Information profiles are presented for the following inorganic chromium compounds: chromic(VI) acid, chromic(III) hydroxide, chromic(III) oxide, chromic(III) sulfate, chromic(III) sulfate (basic), chromium dioxide, potassium dichromate(VI), lead chromate, sodium-chromate(VI), sodium-dichromate(VI), and zinc-yellow-chromate(VI). Biological effects of hexavalent chromium in humans included skin ulceration, dermatitis, nasal membrane irritation and ulceration, nasal septal perforation, rhinitis, nosebleed, nephritis, liver damage, epigastric pain, pulmonary congestion and edema, and erosion and discoloration of teeth. Chromium(VI) compounds caused mutations in a variety of systems. Exposure to trivalent chromium in the work place has caused contact dermatitis and chrome ulcers. Epidemiological studies indicated respiratory carcinogenicity among workers occupationally exposed during chromate production.

  7. Identifying potential surface water sampling sites for emerging chemical pollutants in Gauteng Province, South Africa

    OpenAIRE

    Petersen, F; Dabrowski, JM; Forbes, PBC

    2017-01-01

    Emerging chemical pollutants (ECPs) are defined as new chemicals which do not have a regulatory status, but which may have an adverse effect on human health and the environment. The occurrence and concentrations of ECPs in South African water bodies are largely unknown, so monitoring is required in order to determine the potential threat that these ECPs may pose. Relevant surface water sampling sites in the Gauteng Province of South Africa were identified utilising a geographic information sy...

  8. Cytotoxic potential and chromatogram profile of sarang semut tuber (Myrmecodia Pendans Merr. & Perry) after gamma irradiation

    International Nuclear Information System (INIS)

    Ermin Katrin Winarno; Susanto; Hendig Winarno; Siva Fauziah

    2015-01-01

    Sarang semut tuber (Myrmecodia pendans Merr. & Perry) has cytotoxic activity. Preservation efforts of sarang semut tuber was performed with gamma irradiation. The research purposed to study the effect of gamma on cytotoxic activity against leukemia L1210 cell lines and chromatogram profiles of sarang semut tuber (Myrmecodia pendans Merr. & Perry). The dried sarang semut tuber were gamma irradiated with a variety of doses of 5; 7.5; 10; and 15 kGy. The experiments were performed with two replicates for each dose. Then samples were macerated with solvent by gradient polarity with n-hexane, ethyl acetate, and ethanol. Extracts were tested against the leukemia L1210 cell lines. From the results obtained showed that the ethanol extract was the most active against leukemia L1210 cell lines (IC50 9.88 μg/ml) compared with n-heksan (IC50 23.44 μg/ml) and ethyl acetate extract (IC50 17.32 μg/ml). Ethanol extracts were fractionated by column chromatography, the result were obtained 7 fractions. Based on the cytotoxic activity test for each fraction, the fraction 1 had the highest activity (IC50 ≤ 3.23 μg/ml). The identifications of ethanol extract and fraction 1 by CLT-densitometry showed that the spots area increased and decreased after gamma irradiation. The chromatogram profile of fraction 1 showed that the major peak area decreased after irradiation. The maximum irradiation dose without damaging the cytotoxic activity of sarang semut tuber againts leukemia L1210 cell lines was 5 kGy. (author)

  9. Proteomic profiling in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Maria Liguori

    Full Text Available The aim of our project was to perform an exploratory analysis of the cerebrospinal fluid (CSF proteomic profiles of Multiple Sclerosis (MS patients, collected in different phases of their clinical course, in order to investigate the existence of peculiar profiles characterizing the different MS phenotypes. The study was carried out on 24 Clinically Isolated Syndrome (CIS, 16 Relapsing Remitting (RR MS, 11 Progressive (Pr MS patients. The CSF samples were analysed using the Matrix Assisted Laser Desorption Ionisation Time Of Flight (MALDI-TOF mass spectrometer in linear mode geometry and in delayed extraction mode (m/z range: 1000-25000 Da. Peak lists were imported for normalization and statistical analysis. CSF data were correlated with demographic, clinical and MRI parameters. The evaluation of MALDI-TOF spectra revealed 348 peak signals with relative intensity ≥ 1% in the study range. The peak intensity of the signals corresponding to Secretogranin II and Protein 7B2 were significantly upregulated in RRMS patients compared to PrMS (p<0.05, whereas the signals of Fibrinogen and Fibrinopeptide A were significantly downregulated in CIS compared to PrMS patients (p<0.04. Additionally, the intensity of the Tymosin β4 peak was the only signal to be significantly discriminated between the CIS and RRMS patients (p = 0.013. Although with caution due to the relatively small size of the study populations, and considering that not all the findings remained significant after adjustment for multiple comparisons, in our opinion this mass spectrometry evaluation confirms that this technique may provide useful and important information to improve our understanding of the complex pathogenesis of MS.

  10. Directed transport by surface chemical potential gradients for enhancing analyte collection in nanoscale sensors.

    Science.gov (United States)

    Sitt, Amit; Hess, Henry

    2015-05-13

    Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.

  11. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  12. CONSTRAINING THE NFW POTENTIAL WITH OBSERVATIONS AND MODELING OF LOW SURFACE BRIGHTNESS GALAXY VELOCITY FIELDS

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; McGaugh, Stacy S.; Mihos, J. Christopher

    2009-01-01

    We model the Navarro-Frenk-White (NFW) potential to determine if, and under what conditions, the NFW halo appears consistent with the observed velocity fields of low surface brightness (LSB) galaxies. We present mock DensePak Integral Field Unit (IFU) velocity fields and rotation curves of axisymmetric and nonaxisymmetric potentials that are well matched to the spatial resolution and velocity range of our sample galaxies. We find that the DensePak IFU can accurately reconstruct the velocity field produced by an axisymmetric NFW potential and that a tilted-ring fitting program can successfully recover the corresponding NFW rotation curve. We also find that nonaxisymmetric potentials with fixed axis ratios change only the normalization of the mock velocity fields and rotation curves and not their shape. The shape of the modeled NFW rotation curves does not reproduce the data: these potentials are unable to simultaneously bring the mock data at both small and large radii into agreement with observations. Indeed, to match the slow rise of LSB galaxy rotation curves, a specific viewing angle of the nonaxisymmetric potential is required. For each of the simulated LSB galaxies, the observer's line of sight must be along the minor axis of the potential, an arrangement that is inconsistent with a random distribution of halo orientations on the sky.

  13. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Fractal analysis as a potential tool for surface morphology of thin films

    Science.gov (United States)

    Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.

    2017-12-01

    Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.

  15. Surface modification of zinc oxide nanorods for potential applications in organic materials

    International Nuclear Information System (INIS)

    Zhang Lei; Zhong Min; Ge Hongliang

    2011-01-01

    A facile and simple modification method towards changing surface property of ZnO nanorods from a hydrophilic one to a hydrophobic one have been developed by refluxing precursor in three-necked flask. Comparing with the other modifiers discussed in the paper, NDZ-311w titanate coupling agent was selected as the best one not only because of the good lipophilic modification effect, but also for its multifunctional groups could play a crucial part in further composite with organic materials. Moreover, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively, were used to evaluate the morphology, structure and combinative way before and after surface modification. The TEM result showed, after modifying process, there was a thin layer capping on the surface of ZnO nanorods which could be considered as NDZ-311w titanate coupling agent. Through the structure analysis by XRD, it was found that the surface modification had not substantially altered crystalline structure. Besides, the FT-IR test proved that NDZ-311w titanate coupling agent was rather covalently bonded to the surface of ZnO nanorods than physically capping. More practically speaking, the NDZ-311w titanate coupling agent modified ZnO nanorods have much more potential applications in organic materials than unmodified ones.

  16. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ge, Zhenpeng; Wang, Yi

    2017-04-20

    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  17. Geophysical Measurements in the Beaver Basin, West-Central Utah; Part 1--Slingram, Magnetic, and Self-Potential Profiles

    OpenAIRE

    Flanigan, Vincent J.; Campbell, David L.; U.S. Geological Survey

    1981-01-01

    This report consists of figures showing profile locations (fig. 1, table 1) in the Beaver Basin, west-central Utah, and ground geophysical data collected in September 1980 along these traverses (figs. 2-11). These data consist of slingram electromagnetic (real and imaginary components at 222, 444, 888, 1777, and 3555 Hz), ground magnetic and self-potential measurements collected at 200-foot (61-m) intervals along about 8.8 miles (14.2 km) of survey line. Table 2 lists equipment used. The r...

  18. Beyond Massive MIMO: The Potential of Data Transmission With Large Intelligent Surfaces

    Science.gov (United States)

    Hu, Sha; Rusek, Fredrik; Edfors, Ove

    2018-05-01

    In this paper, we consider the potential of data-transmission in a system with a massive number of radiating and sensing elements, thought of as a contiguous surface of electromagnetically active material. We refer to this as a large intelligent surface (LIS). The "LIS" is a newly proposed concept, which conceptually goes beyond contemporary massive MIMO technology, that arises from our vision of a future where man-made structures are electronically active with integrated electronics and wireless communication making the entire environment "intelligent". We consider capacities of single-antenna autonomous terminals communicating to the LIS where the entire surface is used as a receiving antenna array. Under the condition that the surface-area is sufficiently large, the received signal after a matched-filtering (MF) operation can be closely approximated by a sinc-function-like intersymbol interference (ISI) channel. We analyze the capacity per square meter (m^2) deployed surface, \\hat{C}, that is achievable for a fixed transmit power per volume-unit, \\hat{P}. Moreover, we also show that the number of independent signal dimensions per m deployed surface is 2/\\lambda for one-dimensional terminal-deployment, and \\pi/\\lambda^2 per m^2 for two and three dimensional terminal-deployments. Lastly, we consider implementations of the LIS in the form of a grid of conventional antenna elements and show that, the sampling lattice that minimizes the surface-area of the LIS and simultaneously obtains one signal space dimension for every spent antenna is the hexagonal lattice. We extensively discuss the design of the state-of-the-art low-complexity channel shortening (CS) demodulator for data-transmission with the LIS.

  19. On the appropriate definition of soil profile configuration and initial conditions for land surface-hydrology models in cold regions

    Science.gov (United States)

    Sapriza-Azuri, Gonzalo; Gamazo, Pablo; Razavi, Saman; Wheater, Howard S.

    2018-06-01

    Arctic and subarctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, carbon cycle, and hydrology in Earth system models. This study focuses on land surface models (LSMs) that represent the lower boundary condition of general circulation models (GCMs) and regional climate models (RCMs), which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 m, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this gap, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme), as embedded in the MESH (Modélisation Environmentale Communautaire - Surface and Hydrology) modelling system, to (1) characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty; (2) assess the effect of including or excluding the geothermal flux in the LSM at the bottom of the soil column; and (3) develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate a dominant role for parameter uncertainty, that is often neglected in LSMs. Considering such high sensitivity to parameter values and dependency on the climate condition, we show that a minimum depth of 20 m is essential to adequately represent

  20. The effect of mining data k-means clustering toward students profile model drop out potential

    Science.gov (United States)

    Purba, Windania; Tamba, Saut; Saragih, Jepronel

    2018-04-01

    The high of student success and the low of student failure can reflect the quality of a college. One of the factors of fail students was drop out. To solve the problem, so mining data with K-means Clustering was applied. K-Means Clustering method would be implemented to clustering the drop out students potentially. Firstly the the result data would be clustering to get the information of all students condition. Based on the model taken was found that students who potentially drop out because of the unexciting students in learning, unsupported parents, diffident students and less of students behavior time. The result of process of K-Means Clustering could known that students who more potentially drop out were in Cluster 1 caused Credit Total System, Quality Total, and the lowest Grade Point Average (GPA) compared between cluster 2 and 3.

  1. Radial dependence of surface streamer-channel luminosity: experimental evidence of Gaussian radiative profiles in Ar and N2

    International Nuclear Information System (INIS)

    Šimek, M; Ambrico, P F

    2012-01-01

    Radial distributions of electronically excited species produced during surface streamer propagation were obtained by applying the Abel inverse transform to projected luminosities of single streamers. The streamers were generated in an argon and nitrogen surface coplanar dielectric barrier discharge at atmospheric pressure and their magnified microscopic images were registered with high time resolution. Selected regions of the projected luminosities were processed by the Abel inverse transform procedure based on the Hankel–Fourier method assuming cylindrical symmetry of the streamer channel. Projected as well as Abel-inverted profiles were fitted by Gaussian functions. It is shown that the projected profiles, in addition to the Abel-inverted ones, can be well approximated by the sum of two coaxial Gaussians with two different half-widths and weights. The sharper Gaussian component with higher weight characterizes the radial dependence of the primary cathode-directed streamer-channel luminosity. The second (broader) Gaussian component probably originates either from the pre-breakdown Townsend phase or from the second wave propagating towards the anode. (paper)

  2. Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes.

    Science.gov (United States)

    Paatero, Ilkka; Casals, Eudald; Niemi, Rasmus; Özliseli, Ezgi; Rosenholm, Jessica M; Sahlgren, Cecilia

    2017-08-21

    Mesoporous silica nanoparticles (MSNs) are extensively explored as drug delivery systems, but in depth understanding of design-toxicity relationships is still scarce. We used zebrafish (Danio rerio) embryos to study toxicity profiles of differently surface functionalized MSNs. Embryos with the chorion membrane intact, or dechoroniated embryos, were incubated or microinjected with amino (NH 2 -MSNs), polyethyleneimine (PEI-MSNs), succinic acid (SUCC-MSNs) or polyethyleneglycol (PEG-MSNs) functionalized MSNs. Toxicity was assessed by viability and cardiovascular function. NH 2 -MSNs, SUCC-MSNs and PEG-MSNs were well tolerated, 50 µg/ml PEI-MSNs induced 100% lethality 48 hours post fertilization (hpf). Dechoroniated embryos were more sensitive and 10 µg/ml PEI-MSNs reduced viability to 5% at 96hpf. Sensitivity to PEG- and SUCC-, but not NH 2 -MSNs, was also enhanced. Typically cardiovascular toxicity was evident prior to lethality. Confocal microscopy revealed that PEI-MSNs penetrated into the embryos whereas PEG-, NH2- and SUCC-MSNs remained aggregated on the skin surface. Direct exposure of inner organs by microinjecting NH 2 -MSNs and PEI-MSNs demonstrated that the particles displayed similar toxicity indicating that functionalization affects the toxicity profile by influencing penetrance through biological barriers. The data emphasize the need for careful analyses of toxicity mechanisms in relevant models and constitute an important knowledge step towards the development of safer and sustainable nanotherapies.

  3. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water.

    Science.gov (United States)

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D

    2004-01-01

    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus.

  4. Free energy profiles of cocaine esterase-cocaine binding process by molecular dynamics and potential of mean force simulations.

    Science.gov (United States)

    Zhang, Yuxin; Huang, Xiaoqin; Han, Keli; Zheng, Fang; Zhan, Chang-Guo

    2016-11-25

    The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profile of the CocE)-(+)-cocaine binding process in comparison with that of the corresponding CocE-(-)-cocaine binding process. According to the MD simulations, the equilibrium CocE-(+)-cocaine binding mode is similar to the CocE-(-)-cocaine binding mode. However, based on the simulated free energy profiles, a significant free energy barrier (∼5 kcal/mol) exists in the CocE-(+)-cocaine binding process whereas no obvious free energy barrier exists in the CocE-(-)-cocaine binding process, although the free energy barrier of ∼5 kcal/mol is not high enough to really slow down the CocE-(+)-cocaine binding process. In addition, the obtained free energy profiles also demonstrate that (+)-cocaine and (-)-cocaine have very close binding free energies with CocE, with a negligible difference (∼0.2 kcal/mol), which is qualitatively consistent with the nearly same experimental K M values of the CocE enzyme for (+)-cocaine and (-)-cocaine. The consistency between the computational results and available experimental data suggests that the mechanistic insights obtained from this study are reasonable. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Oral cancer cells with different potential of lymphatic metastasis displayed distinct biologic behaviors and gene expression profiles.

    Science.gov (United States)

    Zhuang, Zhang; Jian, Pan; Longjiang, Li; Bo, Han; Wenlin, Xiao

    2010-02-01

    Oral squamous cell carcinoma (OSCC) often spreads from the primary tumor to regional lymph nodes in the early stage. Better understanding of the biology of lymphatic spread of oral cancer cells is important for improving the survival rate of cancer patients. We established the cell line LNMTca8113 by repeated injections in foot pads of nude mice, which had a much higher lymphatic metastasis rate than its parental cell line Tca8113. Then, we compared the biologic behaviors of cancer cells between them. Moreover, microarray-based expression profiles between them were also compared, and a panel of differential genes was validated using real-time-PCR. In contrast to Tca8113 cells, LNMTca8113 cells were more proliferative and resistant to apoptosis in the absence of serum, and had enhanced ability of inducing capillary-like structures. Moreover, microarray-based expression profiles between them identified 1341 genes involved in cell cycle, cell adhesion, lymphangiogenesis, regulation of apoptosis, and so on. Some genes dedicating to the metastatic potential, including JAM2, TNC, CTSC, LAMB1, VEGFC, HAPLN1, ACPP, GDF9 and FGF11, were upregulated in LNMTca8113 cells. These results suggested that LNMTca8113 and Tca8113 cells were proper models for lymphatic metastasis study because there were differences in biologic behaviors and metastasis-related genes between them. Additionally, the differentially expressed gene profiles in cancer progression may be helpful in exploring therapeutic targets and provide the foundation for further functional validation of these specific candidate genes for OSCC.

  6. DART MS based chemical profiling for therapeutic potential of Piper betle landraces.

    Science.gov (United States)

    Bajpai, Vikas; Pandey, Renu; Negi, Mahendra Pal Singh; Kumar, Nikhil; Kumar, Brijesh

    2012-12-01

    Piper betle Linn. leaves are traditionally used as a folk medicine in India and other Asiatic countries. Twenty-one P. betle landraces were analyzed using a Direct Analysis in Real Time (DART) mass spectral technique and evaluated on the basis of molecules detected in the leaves. Clustering of landraces based on three well known biologically active phenols (m/z 151,165,193) showed two broad groups with high and low phenol contents suggesting differences in their therapeutic potential. Findings of this study could be useful in rapid screening of the landraces for determining their medicinal potential and optimum utilization of the bioresource.

  7. Potential Impact on Clinical Decision Making via a Genome-Wide Expression Profiling: A Case Report

    Directory of Open Access Journals (Sweden)

    Hyun Kim

    2016-11-01

    Full Text Available Management of men with prostate cancer is fraught with uncertainty as physicians and patients balance efficacy with potential toxicity and diminished quality of life. Utilization of genomics as a prognostic biomarker has improved the informed decision-making process by enabling more rationale treatment choices. Recently investigations have begun to determine whether genomic information from tumor transcriptome data can be used to impact clinical decision-making beyond prognosis. Here we discuss the potential of genomics to alter management of a patient who presented with high-risk prostate adenocarcinoma. We suggest that this information help selecting patients for advanced imaging, chemotherapies, or clinical trial.

  8. Neutron activation analysis to the profile surface sediments from several sites on the Havana Bay

    International Nuclear Information System (INIS)

    Diaz Riso, O.; Gelen, A.; Lopez, N.; Gonzalez, H.; Manso, M.V.; Graciano, A.M.; Nogueira, C.A.; Beltran, J.; Soto, J.

    2003-01-01

    Instrumental neutron activation analysis (INAA) technique was employed to analyze the surface sediments from several sites on the Havana Bay, Cuba. Measurements of heavy and trace elements in the sediments are reported. The results show that the concentration of the elements is site dependent. The data suggest that an anthropogenic input into the bay from domestic sewage and industries occurred

  9. Perfect Composition Depth Profiling of Ionic Liquid Surfaces Using High-Resolution RBS/ERDA.

    Czech Academy of Sciences Publication Activity Database

    Nakajima, K.; Zolboo, E.; Ohashi, T.; Lísal, Martin; Kimura, K.

    2016-01-01

    Roč. 32, č. 10 (2016), s. 1089-1094 ISSN 0910-6340 R&D Projects: GA ČR(CZ) GA16-12291S Institutional support: RVO:67985858 Keywords : surface structure * ionic liquid * hydrogen Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.228, year: 2016

  10. Using GIS techniques for surface runoff potential analysis in the Subcarpathian area between Buzãu and Slãnic rivers, in Romania

    Directory of Open Access Journals (Sweden)

    IULIA FONTANINE

    2013-08-01

    Full Text Available The Subcarpathian area between Buzău and Slănic rivers, located in the south-eastern part of Romania, is one of the most affected areas by the torrential related phenomena. This occurs due to physical-geographical and economical-geographical factors, such as: slope, curvature profile, lithology, soil texture and land use. In order to calculate and spatially model the surface runoff potential index, these factors were integrated and worked in GIS enviroment. Each characteristic of the factors was given a bonitation score, according to the way that it influences surface runoff. By applying the methodology mainly taken after Smith (2003 [1], the Flash-Flood Potential Index was obtained, with values between 19.4 - 44.5. The highest values of the index correspond to deforestated slopes, which exceed 15º, located in Bălăneasa and Sărățel river basins.

  11. Profile of certolizumab and its potential in the treatment of psoriatic arthritis

    Directory of Open Access Journals (Sweden)

    Chimenti MS

    2013-04-01

    Full Text Available Maria Sole Chimenti,1 Rosita Saraceno,2 Andrea Chiricozzi,2,3 Alessandro Giunta,2 Sergio Chimenti,2 Roberto Perricone11Unit of Rheumatology, Allergology, and Clinical Immunology, 2Unit of Dermatology, University of Rome Tor Vergata, Rome, Italy; 3Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USAAbstract: Psoriatic arthritis (PsA is a chronic inflammatory arthropathy associated with psoriasis (PsO. PsA could be considered an enthesal disease because of the link between mechanical stress (entheses and immunologically active tissue (synovium. Evidence of efficacy of anti-tumor necrosis factor alpha (TNF-α is supported by reduction of histological vascularity and immune cell infiltrates in synovial tissue after treatment. Certolizumab pegol (CZP is a polyethylene glycolylated (PEGylated Fab′ fragment of a humanized monoclonal antibody that binds and neutralizes human TNF-α. The PEG moiety of the Fab fragment, markedly increases the half-life of CZP and confers to the drug a unique structure that differs from the other anti-TNF-α agents tested for the treatment of Crohn’s disease, rheumatoid arthritis, ankylosing spondylitis, axial spondyloarthritis, nonradiographic spondyloarthritis, PsO, and PsA. In contrast to other anti-TNF-α agents, CZP did not mediate increased levels of apoptosis, suggesting that these mechanisms are not essential for the anti-TNF-α efficacy in Crohn’s disease. As CZP, infliximab, and adalimumab, but not etanercept, almost completely inhibited lipopolysaccharide-induced interleukin-1 beta release from monocytes, this cytokine-production inhibition may be relevant for drug efficacy. Due to these characteristics, it has been demonstrated in clinical studies that CZP effectively improves signs and symptoms of arthritis and physical function and skin manifestations of PsO, with a safety profile similar to rheumatoid arthritis. This drug can be considered as a valid treatment in patients

  12. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis.

    Science.gov (United States)

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-03-29

    Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).

  13. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells.

    Science.gov (United States)

    Chandran, Parwathy; Riviere, Jim E; Monteiro-Riviere, Nancy A

    2017-05-01

    This study investigated the role of nanoparticle size and surface chemistry on biocorona composition and its effect on uptake, toxicity and cellular responses in human umbilical vein endothelial cells (HUVEC), employing 40 and 80 nm gold nanoparticles (AuNP) with branched polyethyleneimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings. Proteomic analysis identified 59 hard corona proteins among the various AuNP, revealing largely surface chemistry-dependent signature adsorbomes exhibiting human serum albumin (HSA) abundance. Size distribution analysis revealed the relative instability and aggregation inducing potential of bare and corona-bound BPEI-AuNP, over LA- and PEG-AuNP. Circular dichroism analysis showed surface chemistry-dependent conformational changes of proteins binding to AuNP. Time-dependent uptake of bare, plasma corona (PC) and HSA corona-bound AuNP (HSA-AuNP) showed significant reduction in uptake with PC formation. Cell viability studies demonstrated dose-dependent toxicity of BPEI-AuNP. Transcriptional profiling studies revealed 126 genes, from 13 biological pathways, to be differentially regulated by 40 nm bare and PC-bound BPEI-AuNP (PC-BPEI-AuNP). Furthermore, PC formation relieved the toxicity of cationic BPEI-AuNP by modulating expression of genes involved in DNA damage and repair, heat shock response, mitochondrial energy metabolism, oxidative stress and antioxidant response, and ER stress and unfolded protein response cascades, which were aberrantly expressed in bare BPEI-AuNP-treated cells. NP surface chemistry is shown to play the dominant role over size in determining the biocorona composition, which in turn modulates cell uptake, and biological responses, consequently defining the potential safety and efficacy of nanoformulations.

  14. Proper construction of ab initio global potential surfaces with accurate long-range interactions

    International Nuclear Information System (INIS)

    Ho, Tak-San; Rabitz, Herschel

    2000-01-01

    An efficient procedure based on the reproducing kernel Hilbert space interpolation method is presented for constructing intermolecular potential energy surfaces (PES) using not only calculated ab initio data but also a priori information on long-range interactions. Explicitly, use of the reciprocal power reproducing kernel on the semiinfinite interval [0,∞) yields a set of exact linear relations between dispersion (multipolar) coefficients and PES data points at finite internuclear separations. Consequently, given a combined set of ab initio data and the values of dispersion (multipolar) coefficients, the potential interpolation problem subject to long-range interaction constraints can be solved to render globally smooth, asymptotically accurate ab initio potential energy surfaces. Very good results have been obtained for the one-dimensional He-He potential curve and the two-dimensional Ne-CO PES. The construction of the Ne-CO PES was facilitated by invoking a new reproducing kernel for the angular coordinate based on the optimally stable and shape-preserving Bernstein basis functions. (c) 2000 American Institute of Physics

  15. Learning potential, career interest and coping profile of a group of SOF candidates

    CSIR Research Space (South Africa)

    Van Heerden, Adelai

    2015-09-01

    Full Text Available and self-efficacy), learning potential and career related interests and to explore their reasons for wanting to become and their perceptions of what it takes to achieve success as an Operational Forces soldier. Furthermore, those that were successful...

  16. Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces

    International Nuclear Information System (INIS)

    Zhang Jingdong; Demetriou, Anna; Welinder, Anne Christina; Albrecht, Tim; Nichols, Richard J.; Ulstrup, Jens

    2005-01-01

    Monolayers of homocysteine on Au(111)-surfaces have been investigated by voltammetry, in situ scanning tunnelling microscopy (STM) and subtractively normalised interfacial Fourier transform spectroscopy (SNIFTIRS). A pair of sharp voltammetric peaks build up in the potential range 0 to -0.1V (vs. SCE) in phosphate buffer pH 7.7. The peak half-widths are about 25mV at a scan rate of 10mVs -1 . This is much smaller than for a one-electron Faradaic process (90.6mV) under similar conditions. The coverage of homocysteine is 6.1 (+/-0.2)x10 -10 molcm -2 , or 5.9x10 -5 Ccm -2 , from Au-S reductive desorption at -0.8V (SCE) in 0.1M NaOH, while the charge is only about 8x10 -6 Ccm -2 (pH 7.7) for the 0 to -0.1V peak. This suggests a capacitive origin. The peak potential and shape depend on pH. At pH 7.7 both cathodic and anodic peak currents reach a maximum, but drop at both higher and lower pH. The midpoint potential shows biphasic behaviour, decreasing linearly with increasing pH until pH 10.4 towards a constant value at higher pH. The cathodic and anodic peak charges decay at pH both higher and lower than 7.7. The homocysteine monolayer was investigated by in situ STM at different potentials at pH 7.7. The molecules pack into highly ordered domains around the peak potential. High-resolution in situ STM reveals a (√3x5) R30 deg. lattice with three homocysteine molecules in each unit cell. The adlayer changes into disordered structures on either side of the peak potential. This process is reversible. We propose that the voltammetric peaks are capacitive. The ordered domains are formed only around the potential of zero charge (pzc) and dissipate at potentials on either side of the peak, inducing mirror charge flow in the metallic electrode as the charged -COO - and -NH 3 + groups approach the surface. No bands for carboxylate coordinated to the surface were observed in SNIFTIRS implying more subtle orientation changes of the charged groups on transcending the voltammetric

  17. Nano surface engineering of Mn 2 O 3 for potential light-harvesting application

    KAUST Repository

    Kar, Prasenjit; Sardar, Samim; Ghosh, Srabanti; Parida, Manas R.; Liu, Bo; Mohammed, Omar F.; Lemmens, Peter; Pal, Samir Kumar

    2015-01-01

    Manganese oxides are well known applied materials including their use as efficient catalysts for various environmental applications. Multiple oxidation states and their change due to various experimental conditions are concluded to be responsible for their multifaceted functionality. Here we demonstrate that the interaction of a small organic ligand with one of the oxide varieties induces completely new optical properties and functionalities (photocatalysis). We have synthesized Mn2O3 microspheres via a hydrothermal route and characterized them using scanning electron microscopy (SEM), X-ray diffraction (XRD) and elemental mapping (EDAX). When the microspheres are allowed to interact with the biologically important small ligand citrate, nanometer-sized surface functionalized Mn2O3 (NPs) are formed. Raman and Fourier transformed infrared spectroscopy confirm the covalent attachment of the citrate ligand to the dangling bond of Mn at the material surface. While cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) analysis confirm multiple surface charge states after the citrate functionalization of the Mn2O3 NPs, new optical properties of the surface engineered nanomaterials in terms of absorption and emission emerge consequently. The engineered material offers a novel photocatalytic functionality to the model water contaminant methylene blue (MB). The effect of doping other metal ions including Fe3+ and Cu2+ on the optical and catalytic properties is also investigated. In order to prepare a prototype for potential environmental application of water decontamination, we have synthesized and duly functionalized the material on the extended surface of a stainless steel metal mesh (size 2 cm × 1.5 cm, pore size 150 μm × 200 μm). We demonstrate that the functionalized mesh always works as a "physical" filter of suspended particulates. However, it works as a "chemical" filter (photocatalyst) for the potential water soluble contaminant (MB) in the presence

  18. Profile of adalimumab and its potential in the treatment of uveitis.

    Science.gov (United States)

    Balevic, Stephen J; Rabinovich, C Egla

    2016-01-01

    Uveitis refers to the presence of intraocular inflammation, and as a strict definition compromises the iris and ciliary body anteriorly and the choroid posteriorly (the uvea). Untreated, uveitis can lead to visual loss or blindness. The etiology of uveitis can include both infectious and noninfectious (usually immune-mediated) causes, the latter of which are often mediated predominantly by Th1 CD4 + T-cells that secrete proinflammatory cytokines. Tumor necrosis factor-alpha (TNF-α) is a proinflammatory cytokine involved in the pathogenesis of uveitis, which at high concentrations can cause excess inflammation and tissue damage. Adalimumab is a recombinant human IgG1 monoclonal antibody specific for human TNF-α. Historically, corticosteroids and methotrexate were used to treat uveitis; however, newer biologic agents such as adalimumab have revolutionized therapy for noninfectious uveitis. Adalimumab has shown efficacy in treating refractory uveitis in multiple settings, including idiopathic disease, juvenile idiopathic arthritis, sarcoidosis, Behçets disease, and uveitis secondary to spondyloarthropathies, among several other noninfectious uveitis conditions. In this paper, we will review the profile of adalimumab, the role of TNF-α in uveitis, discuss safety data, and summarize key articles evaluating the efficacy of adalimumab in treating uveitis secondary to the most commonly associated autoimmune diseases.

  19. Profile of adalimumab and its potential in the treatment of uveitis

    Directory of Open Access Journals (Sweden)

    Balevic SJ

    2016-09-01

    Full Text Available Stephen J Balevic, C Egla Rabinovich Department of Pediatric Rheumatology, Duke University Medical Center, Durham, NC, USA Abstract: Uveitis refers to the presence of intraocular inflammation, and as a strict definition compromises the iris and ciliary body anteriorly and the choroid posteriorly (the uvea. Untreated, uveitis can lead to visual loss or blindness. The etiology of uveitis can include both infectious and noninfectious (usually immune-mediated causes, the latter of which are often mediated predominantly by Th1 CD4+ T-cells that secrete proinflammatory cytokines. Tumor necrosis factor-alpha (TNF-α is a proinflammatory cytokine involved in the pathogenesis of uveitis, which at high concentrations can cause excess inflammation and tissue damage. Adalimumab is a recombinant human IgG1 monoclonal antibody specific for human TNF-α. Historically, corticosteroids and methotrexate were used to treat uveitis; however, newer biologic agents such as adalimumab have revolutionized therapy for noninfectious uveitis. Adalimumab has shown efficacy in treating refractory uveitis in multiple settings, including idiopathic disease, juvenile idiopathic arthritis, sarcoidosis, Behçets disease, and uveitis secondary to spondyloarthropathies, among several other noninfectious uveitis conditions. In this paper, we will review the profile of adalimumab, the role of TNF-α in uveitis, discuss safety data, and summarize key articles evaluating the efficacy of adalimumab in treating uveitis secondary to the most commonly associated autoimmune diseases.Keywords: uveitis, autoimmune disease, adalimumab, TNF-α

  20. Gene Expression Profiling Reveals Potential Players of Left-Right Asymmetry in Female Chicken Gonads

    Directory of Open Access Journals (Sweden)

    Zhiyi Wan

    2017-06-01

    Full Text Available Most female birds develop only a left ovary, whereas males develop bilateral testes. The mechanism underlying this process is still not completely understood. Here, we provide a comprehensive transcriptional analysis of female chicken gonads and identify novel candidate side-biased genes. RNA-Seq analysis was carried out on total RNA harvested from the left and right gonads on embryonic day 6 (E6, E12, and post-hatching day 1 (D1. By comparing the gene expression profiles between the left and right gonads, 347 differentially expressed genes (DEGs were obtained on E6, 3730 were obtained on E12, and 2787 were obtained on D1. Side-specific genes were primarily derived from the autosome rather than the sex chromosome. Gene ontology and pathway analysis showed that the DEGs were most enriched in the Piwi-interactiing RNA (piRNA metabolic process, germ plasm, chromatoid body, P granule, neuroactive ligand-receptor interaction, microbial metabolism in diverse environments, and methane metabolism. A total of 111 DEGs, five gene ontology (GO terms, and three pathways were significantly different between the left and right gonads among all the development stages. We also present the gene number and the percentage within eight development-dependent expression patterns of DEGs in the left and right gonads of female chicken.

  1. Gene Expression Profiling Reveals Potential Players of Left-Right Asymmetry in Female Chicken Gonads.

    Science.gov (United States)

    Wan, Zhiyi; Lu, Yanan; Rui, Lei; Yu, Xiaoxue; Yang, Fang; Tu, Chengfang; Li, Zandong

    2017-06-20

    Most female birds develop only a left ovary, whereas males develop bilateral testes. The mechanism underlying this process is still not completely understood. Here, we provide a comprehensive transcriptional analysis of female chicken gonads and identify novel candidate side-biased genes. RNA-Seq analysis was carried out on total RNA harvested from the left and right gonads on embryonic day 6 (E6), E12, and post-hatching day 1 (D1). By comparing the gene expression profiles between the left and right gonads, 347 differentially expressed genes (DEGs) were obtained on E6, 3730 were obtained on E12, and 2787 were obtained on D1. Side-specific genes were primarily derived from the autosome rather than the sex chromosome. Gene ontology and pathway analysis showed that the DEGs were most enriched in the Piwi-interactiing RNA (piRNA) metabolic process, germ plasm, chromatoid body, P granule, neuroactive ligand-receptor interaction, microbial metabolism in diverse environments, and methane metabolism. A total of 111 DEGs, five gene ontology (GO) terms, and three pathways were significantly different between the left and right gonads among all the development stages. We also present the gene number and the percentage within eight development-dependent expression patterns of DEGs in the left and right gonads of female chicken.

  2. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    to the axis perpendicular to the phenylacetylene plane and containing the center of mass. The calculated interaction energy is -418.9 cm(-1). To check further the potential, we obtain the rovibrational spectrum of the complex and the results are compared to the available experimental data. (C) 2012 American......We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set...... extended with a series of 3s3p2d1flg midbond functions. The potential is characterized by two equivalent global minima where the Ar atom is located above and below the phenylacetylene plane at a distance of 3.5781 angstrom from the molecular center of mass and at an angle of 9.08 degrees with respect...

  3. Comparison of congener profiles of polychlorinated biphenyls between Yu-cheng children and a potential food source

    Energy Technology Data Exchange (ETDEWEB)

    Lung Shih-Chun Candice [Research Center for Environmental Changes, Academia Sinica, Taipei (Taiwan); Guo Yu-Liang Leon; Chang Ho-Yuan [Dept. of Environmental and Occupational Health, Coll. of Medicine, National Cheng Kung Univ., Tainan (Taiwan)

    2004-09-15

    In 1979, about two thousand people in central Taiwan were intoxicated by consumption of the rice oil that was contaminated with polychlorinated biphenyls (PCBs). This ''Yu-cheng'' incident was one of the two human tragedies which people ingested substantial amounts of PCBs within a short period of time. Some of the follow-up epidemiological studies focused on the children born to the exposed mothers, the Yu-cheng children, since they could be exposed to PCBs via breast-feeding or transplacental transfer. This report presents the results of the serum PCB levels of the 21 Yu-cheng children with a congener-specific analysis. On the other hand, fish consumption is thought to be the single most important exposure route to PCBs to the general public; thus, it is crucial to understand PCB exposure from fish consumption. In a separated study to assess PCB contamination in fish, PCB congener concentrations in tilapia (Oreochromis hybrids), the most popular fish in Taiwan, were evaluated. The consumption quantity of tilapia is the highest throughout the Island. It is mostly farmed in fresh water but can also be bred in saltwater. This report presents the concentrations and profiles in the serums of the Yu-cheng children. The congener profile is compared with PCB profile in the serum of Yu-cheng women reported previously and that in one of the potentially significant exposure source, tilapia, conducted in a separated work. Remarkable similarity between the profile of Yu-cheng children and that of the tilapia is revealed and discussed.

  4. Two small lymphocyte subpopulations in human peripheral blood. I. Purification and surface marker profiles

    DEFF Research Database (Denmark)

    Hokland, M; Hokland, P; Heron, I

    1978-01-01

    By means of simple rosette sedimentation methods two subsets from human peripheral blood lymphocytes have been isolated: (1) (E, Fc)- and (2) (E, Ig)-. The first subset was obtained by centrifuging suspensions of macrophage-depleted PBL in which E and EA rosettes had been allowed to form simultan......By means of simple rosette sedimentation methods two subsets from human peripheral blood lymphocytes have been isolated: (1) (E, Fc)- and (2) (E, Ig)-. The first subset was obtained by centrifuging suspensions of macrophage-depleted PBL in which E and EA rosettes had been allowed to form...... simultaneously. The dominant marker of these E- Fc- cells was surface Ig, and during 4 days of culture this population did not alter its surface markers. Subset 2 was obtained in two ways following rosette centrifugation with AET-treated SRBC and rabbit anti-human Ig-coated autologous RBC. This 'Null cell...

  5. Simulation of surface profile formation in oxygen laser cutting of mild steel due to combustion cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ermolaev, G V; Kovalev, O B [Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of Russian Academy of Sciences, Institutskaya Str 4/1, Novosibirsk, 630090 (Russian Federation)

    2009-09-21

    A physicomathematical model of cyclic iron combustion in an oxygen flow during oxygen laser cutting of metal sheets is developed. The combustion front is set into motion by focused laser radiation and a heterogeneous oxidation reaction in oxygen. The burning rate is limited by oxygen supply from the gas phase towards the metal surface, and the interface motion depends on the local temperature. A 3D numerical simulation predicts wavy structures on the metal surface; their linear sizes depend on the scanning speed of the laser beam, the thickness of the produced liquid oxide film and the parameters of the oxygen jet flow. Simulation results help in understanding the mechanism of striation formation during oxygen gas-laser cutting of mild steel and are in qualitative agreement with experimental findings.

  6. Potential profile near singularity point in kinetic Tonks-Langmuir discharges as a function of the ion sources temperature

    Science.gov (United States)

    Kos, L.; Tskhakaya, D. D.; Jelić, N.

    2011-05-01

    A plasma-sheath transition analysis requires a reliable mathematical expression for the plasma potential profile Φ(x) near the sheath edge xs in the limit ɛ ≡λD/ℓ =0 (where λD is the Debye length and ℓ is a proper characteristic length of the discharge). Such expressions have been explicitly calculated for the fluid model and the singular (cold ion source) kinetic model, where exact analytic solutions for plasma equation (ɛ =0) are known, but not for the regular (warm ion source) kinetic model, where no analytic solution of the plasma equation has ever been obtained. For the latter case, Riemann [J. Phys. D: Appl. Phys. 24, 493 (1991)] only predicted a general formula assuming relatively high ion-source temperatures, i.e., much higher than the plasma-sheath potential drop. Riemann's formula, however, according to him, never was confirmed in explicit solutions of particular models (e.g., that of Bissell and Johnson [Phys. Fluids 30, 779 (1987)] and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)]) since "the accuracy of the classical solutions is not sufficient to analyze the sheath vicinity" [Riemann, in Proceedings of the 62nd Annual Gaseous Electronic Conference, APS Meeting Abstracts, Vol. 54 (APS, 2009)]. Therefore, for many years, there has been a need for explicit calculation that might confirm the Riemann's general formula regarding the potential profile at the sheath edge in the cases of regular very warm ion sources. Fortunately, now we are able to achieve a very high accuracy of results [see, e.g., Kos et al., Phys. Plasmas 16, 093503 (2009)]. We perform this task by using both the analytic and the numerical method with explicit Maxwellian and "water-bag" ion source velocity distributions. We find the potential profile near the plasma-sheath edge in the whole range of ion source temperatures of general interest to plasma physics, from zero to "practical infinity." While within limits of "very low" and "relatively high" ion source temperatures

  7. [Search for potential gastric cancer biomarkers using low molecular weight blood plasma proteome profiling by mass spectrometry].

    Science.gov (United States)

    Shevchenko, V E; Arnotskaia, N E; Ogorodnikova, E V; Davydov, M M; Ibraev, M A; Turkin, I N; Davydov, M I

    2014-01-01

    Gastric cancer, one of the most widespread malignant tumors, still lacks reliable serum/plasma biomarkers of its early detection. In this study we have developed, unified, and tested a new methodology for search of gastric cancer biomarkers based on profiling of low molecular weight proteome (LMWP) (1-17 kDa). This approach included three main components: sample pre-fractionation, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), data analysis by a bioinformatics software package. Applicability and perspectives of the developed approach for detection of potential gastric cancer markers during LMWP analysis have been demonstrated using 69 plasma samples from patients with gastric cancer (stages I-IV) and 238 control samples. The study revealed peptides/polypeptides, which may be potentially used for detection of this pathology.

  8. Potential profile and photovoltaic effect in nanoscale lateral pn junction observed by Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Nowak, Roland; Moraru, Daniel; Mizuno, Takeshi; Jablonski, Ryszard; Tabe, Michiharu

    2014-01-01

    Nanoscale pn junctions have been investigated by Kelvin probe force microscopy and several particular features were found. Within the depletion region, a localized noise area is observed, induced by temporal fluctuations of dopant states. Electronic potential landscape is significantly affected by dopants with ground-state energies deeper than in bulk. Finally, the effects of light illumination were studied and it was found that the depletion region shifts its position as a function of light intensity. This is ascribed to charge redistribution within the pn junction as a result of photovoltaic effect and due to the impact of deepened-level dopants. - Highlights: • In pn nano-junctions, temporal potential fluctuations are found in depletion layer. • Fluctuations are due to frequent capture and emission of free carriers by dopants. • Depletion layer position shifts as a function of the intensity of irradiated light. • The depletion layer shifts are due to changes of deep-level dopants' charge states

  9. Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure.

    Science.gov (United States)

    Bourdon, Julie A; Williams, Andrew; Kuo, Byron; Moffat, Ivy; White, Paul A; Halappanavar, Sabina; Vogel, Ulla; Wallin, Håkan; Yauk, Carole L

    2013-01-07

    New approaches are urgently needed to evaluate potential hazards posed by exposure to nanomaterials. Gene expression profiling provides information on potential modes of action and human relevance, and tools have recently become available for pathway-based quantitative risk assessment. The objective of this study was to use toxicogenomics in the context of human health risk assessment. We explore the utility of toxicogenomics in risk assessment, using published gene expression data from C57BL/6 mice exposed to 18, 54 and 162 μg Printex 90 carbon black nanoparticles (CBNP). Analysis of CBNP-perturbed pathways, networks and transcription factors revealed concomitant changes in predicted phenotypes (e.g., pulmonary inflammation and genotoxicity), that correlated with dose and time. Benchmark doses (BMDs) for apical endpoints were comparable to minimum BMDs for relevant pathway-specific expression changes. Comparison to inflammatory lung disease models (i.e., allergic airway inflammation, bacterial infection and tissue injury and fibrosis) and human disease profiles revealed that induced gene expression changes in Printex 90 exposed mice were similar to those typical for pulmonary injury and fibrosis. Very similar fibrotic pathways were perturbed in CBNP-exposed mice and human fibrosis disease models. Our synthesis demonstrates how toxicogenomic profiles may be used in human health risk assessment of nanoparticles and constitutes an important step forward in the ultimate recognition of toxicogenomic endpoints in human health risk. As our knowledge of molecular pathways, dose-response characteristics and relevance to human disease continues to grow, we anticipate that toxicogenomics will become increasingly useful in assessing chemical toxicities and in human health risk assessment. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Chlorhexidine controlled-release profile after EDTA root surface etching: an in vivo study.

    Science.gov (United States)

    Gamal, Ahmed Y; Kumper, Radi M; Sadek, Hesham S; El Destawy, Mahmoud T

    2011-05-01

    The main objective of the present study was to quantify chlorhexidine (CHX) release after the use of CHX-EDTA root surface treatment as a local-delivery antimicrobial vehicle. Twenty non-smoking patients clinically diagnosed as having moderate-to-severe chronic periodontitis were selected to participate in this study. After cause-related therapy, one site in every patient received defect overfill with CHX gel 2% (20 sites). In addition, twenty contralateral sites received defect fill of CHX gel after 3 minutes of 24% EDTA gel root surface etching (20 sites). Gingival crevicular fluid samples were collected at 1, 3, 7, and 14 days post-therapy. The CHX-EDTA group showed statistically significantly higher levels of CHX than those of the control group at 1, 3, and 7 days. At 14 days, the CHX-EDTA group showed 0.8 mg/mL values. The use of CHX-EDTA root surface treatment as a local-delivery antimicrobial improves CHX substantivity.

  11. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    Science.gov (United States)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  12. Depositional patterns of the Mississippi Fan surface: Evidence from GLORIA II and high-resolution seismic profiles

    Science.gov (United States)

    Twichell, David C.; Kenyon, Neil H.; Parson, Lindsay M.; McGregor, Bonnie A.

    1991-01-01

    GLORIA long-range side-scan sonar imagery and 3.5-kHz seismic-reflection profiles depict a series of nine elongate deposits with generally high-backscatter surfaces covering most of the latest fanlobe sequence of the Mississippi Fan in the eastern Gulf of Mexico. The youngest deposit is a “slump” that covers a 250 by 100 km area of the middle and upper fan. The remaining mapped deposits, termed depositional lobes, are long (as much as 200 km) and relatively thin (less than 35 m thick) bodies. Small channels and lineations on the surface of many of these depositional lobes radiate from a single, larger main channel that is the conduit through which sediment has been supplied to these surficial deposits on the fan. The 3.5-kHz profiles show that adjacent depositional lobes overlap one another rather than interfingering, indicating that only one lobe was an active site of deposition at a time. Shifting of the depositional sites appears to be caused by both aggradation and avulsion. The chronology developed from the overlapping relations indicates the oldest of the mapped depositional lobes are on the lowermost fan, and the youngest are further up the fan. Depositional lobes on the lower fan consist of a series of smaller, elongate features with high-backscatter surfaces (540 km in length) located at the ends of previously unrecognized small channels (turbidity currents and/or debris flows, sand flows, or mud flows appear to be the dominant transport process constructing these depositional lobes. Channelized flow is an important mechanism for transporting sediment away from the main channel on this fan and the resulting facies created by these small flows are laterally discontinuous.

  13. Protein profiling in serum after traumatic brain injury in rats reveals potential injury markers.

    Science.gov (United States)

    Thelin, Eric Peter; Just, David; Frostell, Arvid; Häggmark-Månberg, Anna; Risling, Mårten; Svensson, Mikael; Nilsson, Peter; Bellander, Bo-Michael

    2018-03-15

    The serum proteome following traumatic brain injury (TBI) could provide information for outcome prediction and injury monitoring. The aim with this affinity proteomic study was to identify serum proteins over time and between normoxic and hypoxic conditions in focal TBI. Sprague Dawley rats (n=73) received a 3mm deep controlled cortical impact ("severe injury"). Following injury, the rats inhaled either a normoxic (22% O 2 ) or hypoxic (11% O 2 ) air mixture for 30min before resuscitation. The rats were sacrificed at day 1, 3, 7, 14 and 28 after trauma. A total of 204 antibodies targeting 143 unique proteins of interest in TBI research, were selected. The sample proteome was analyzed in a suspension bead array set-up. Comparative statistics and factor analysis were used to detect differences as well as variance in the data. We found that complement factor 9 (C9), complement factor B (CFB) and aldolase c (ALDOC) were detected at higher levels the first days after trauma. In contrast, hypoxia inducing factor (HIF)1α, amyloid precursor protein (APP) and WBSCR17 increased over the subsequent weeks. S100A9 levels were higher in hypoxic-compared to normoxic rats, together with a majority of the analyzed proteins, albeit few reached statistical significance. The principal component analysis revealed a variance in the data, highlighting clusters of proteins. Protein profiling of serum following TBI using an antibody based microarray revealed temporal changes of several proteins over an extended period of up to four weeks. Further studies are warranted to confirm our findings. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling

    Directory of Open Access Journals (Sweden)

    Wang Yubing

    2012-12-01

    Full Text Available Abstract Background Brown planthopper (BPH, Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. Results We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT. We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1. We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC of more than 2.0 (P10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. Conclusions We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance strategy is that plants protect themselves by reducing their metabolic level to inhibit feeding by BPH and prevent damage from water and nutrient loss. We have selected 21 TF genes related to BPH resistance for further analyses to understand the molecular responses to BPH feeding in rice.

  15. Lipids of Rhodotorula mucilaginosa IIPL32 with biodiesel potential: Oil yield, fatty acid profile, fuel properties.

    Science.gov (United States)

    Khot, Mahesh; Ghosh, Debashish

    2017-04-01

    This study analyzes the single cell oil (SCO), fatty acid profile, and biodiesel fuel properties of the yeast Rhodotorula mucilaginosa IIPL32 grown on the pentose fraction of acid pre-treated sugarcane bagasse as a carbon source. The yeast biomass from nitrogen limiting culture conditions (15.3 g L -1 ) was able to give the SCO yield of 0.17 g g -1 of xylose consumed. Acid digestion, cryo-pulverization, direct in situ transesterification, and microwave assisted techniques were evaluated in comparison to the Soxhlet extraction for the total intracellular yeast lipid recovery. The significant differences were observed among the SCO yield of different methods and the in situ transesterification stood out most for effective yeast lipid recovery generating 97.23 mg lipid as FAME per gram dry biomass. The method was fast and consumed lesser solvent with greater FAME yield while accessing most cellular fatty acids present. The yeast lipids showed the major presence of monounsaturated fatty esters (35-55%; 18:1, 16:1) suitable for better ignition quality, oxidative stability, and cold-flow properties of the biodiesel. Analyzed fuel properties (density, kinematic viscosity, cetane number) of the yeast oil were in good agreement with international biodiesel standards. The sugarcane bagasse-derived xylose and the consolidated comparative assessment of lab scale SCO recovery methods highlight the necessity for careful substrate choice and validation of analytical method in yeast oil research. The use of less toxic co-solvents together with solvent recovery and recycling would help improve process economics for sustainable production of biodiesel from the hemicellulosic fraction of cheap renewable sources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Surface potential measurement of the insulator with secondary electron caused by negative ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Toyota, Yoshitaka; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1994-01-01

    Ion implantation has the merit of the good controllability of implantation profile and low temperature process, and has been utilized for the impurity introduction in LSI production. However, positive ion implantation is carried out for insulator or insulated conductor substrates, their charged potential rises, which is a serious problem. As the requirement for them advanced, charge compensation method is not the effective means for resolving it. The negative ion implantation in which charging is little was proposed. When the experiment on the negative ion implantation into insulated conductors was carried out, it was verified that negative ion implantation is effective as the implantation process without charging. The method of determining the charged potential of insulators at the time of negative ion implantation by paying attention to the energy distribution of the secondary electrons emitted from substrates at the time was devised. The energy analyzer for measuring the energy distribution of secondary electrons was made, and the measurement of the charged potential of insulators was carried out. The principle of the measurement, the measuring system and the experimental results are reported. (K.I.)

  17. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications

    DEFF Research Database (Denmark)

    Suárez-Fariñas, Mayte; Ungar, Benjamin; Correa da Rosa, Joel

    2015-01-01

    . These limitations might be lessened with next-generation RNA sequencing (RNA-seq). Objective: We sought to define the lesional AD transcriptome using RNA-seq and compare it using microarrays performed on the same cohort. Methods: RNA-seq and microarrays were performed to identify differentially expressed genes...... RNA-seq showed somewhat better agreement with RT-PCR (intraclass correlation coefficient, 0.57 and 0.70 for microarrays and RNA-seq vs RT-PCR, respectively), bias was not eliminated. Among genes uniquely identified by using RNA-seq were triggering receptor expressed on myeloid cells 1 (TREM-1......) signaling (eg, CCL2, CCL3, and single immunoglobulin domain IL1R1 related [SIGIRR]) and IL-36 isoform genes. TREM-1 is a surface receptor implicated in innate and adaptive immunity that amplifies infection-related inflammation. Conclusions: This is the first report of a lesional AD phenotype using RNA...

  18. Acetone n-radical cation internal rotation spectrum: The torsional potential surface

    International Nuclear Information System (INIS)

    Shea, Dana A.; Goodman, Lionel; White, Michael G.

    2000-01-01

    The one color REMPI and two color ZEKE-PFI spectra of acetone-d 3 have been recorded. The 3p x Rydberg state of acetone-d 3 lies at 59 362.3 cm-1 and both of the torsional modes are visible in this spectrum. The antigearing Rydberg (a 2 ) mode, v 12 * , has a frequency of 62.5 cm-1, while the previously unobserved gearing (b 1 ) mode, v 17 * , is found at 119.1 cm-1. An ionization potential of 78 299.6 cm-1 for acetone-d 3 has been measured. In acetone-d 3 n-radical cation ground state, the fundamentals of both of the torsional modes have been observed, v 12 + at 51.0 cm-1 and v 17 + at 110.4 cm-1, while the first overtone of v 12 + has been measured at 122.4 cm-1. Deuterium shifts show that v 12 + behaves like a local C 3v rotor, but that v 17 + is canonical. Combining this data with that for acetone-d 0 and aacetone-d 6 has allowed us to fit the observed frequencies to a torsional potential energy surface based on an ab initio C 2v cation ground state geometry. This potential energy surface allows for prediction of the v 17 vibration in acetone-d 0 and acetone-d 6 . The barrier to synchronous rotation is higher in the cation ground state than in the neutral ground state, but significantly lower than in the 3s Rydberg state. The 3p x Rydberg and cation ground state potential energy surfaces are found to be very similar to each other, strongly supporting the contention that the 3p x Rydberg state has C 2v geometry and is a good model for the ion core. The altered 3s Rydberg state potential surface suggests this state has significant valence character. (c) 2000 American Institute of Physics

  19. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  20. Effects of geometric modulation and surface potential heterogeneity on electrokinetic flow and solute transport in a microchannel

    Science.gov (United States)

    Bera, Subrata; Bhattacharyya, S.

    2018-04-01

    A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in

  1. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    Science.gov (United States)

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan

    2017-06-01

    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  2. Surface modification of β-Type titanium alloy by electrochemical potential pulse polarization

    International Nuclear Information System (INIS)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki

    2009-01-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60 deg. C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  3. Surface modification of {beta}-Type titanium alloy by electrochemical potential pulse polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Shinji; Raman, Vedarajan; Tsuchiya, Hiroaki [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: fujimoto@mat.eng.osaka-u.ac.jp

    2009-05-01

    In the present work, we report the formation of a porous oxide/hydroxide surface layer on the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy achieved by the combination of an alkali immersion and a potential pulse polarisation process. The alkali treatment has been employed for pure titanium to produce amorphous and porous layer prior to hydroxyapatite (HAp) growth. But, in the case of TNTZ, immersion in 5M NaOH at the open circuit potential (OCP) at 60 deg. C for 24 hours, did not yield any uniform layer, instead a thick deposited layer with highly cracked one. The cracks were attributed to the growth of a tantalum enriched particulate. In order to avoid the crack formation, the electrochemical behaviour of the alloy and the pure alloying elements (Ti, Nb, Ta and Zr) was investigated to produce a uniform surface with the application of a square wave modulated potential pulse polarization, leading to the formation of a relatively uniform porous layer on the alloy.

  4. Profiles in fibromyalgia: algometry, auditory evoked potentials and clinical characterization of different subtypes.

    Science.gov (United States)

    Triñanes, Yolanda; González-Villar, Alberto; Gómez-Perretta, Claudio; Carrillo-de-la-Peña, María T

    2014-11-01

    The heterogeneity found in fibromyalgia (FM) patients has led to the investigation of disease subgroups, mainly based on clinical features. The aim of this study was to test the hypothesis that clinical FM subgroups are associated with different underlying pathophysiological mechanisms. Sixty-three FM patients were classified in type I or type II, according to the Fibromyalgia Impact Questionnaire (FIQ), and in mild/moderate versus severe FM, according to the severity of three cardinal symptoms considered in the American College of Rheumatology (ACR) 2010 criteria (unrefreshed sleep, cognitive problems and fatigue). To validate the subgroups obtained by these two classifications, we calculated the area under the receiver operating characteristic curves for various clinical variables and for two potential biomarkers of FM: Response to experimental pressure pain (algometry) and the amplitude/intensity slopes of the auditory evoked potentials (AEPs) obtained to stimuli of increasing intensity. The variables that best discriminated type I versus type II were those related to depression, while the indices of clinical or experimental pain (threshold or tolerance) did not significantly differ between them. The variables that best discriminated the mild/moderate versus severe subgroups were those related to the algometry. The AEPs did not allow discrimination among the generated subsets. The FIQ-based classification allows the identification of subgroups that differ in psychological distress, while the index based on the ACR 2010 criteria seems to be useful to characterize the severity of FM mainly based on hyperalgesia. The incorporation of potential biomarkers to generate or validate classification criteria is crucial to advance in the knowledge of FM and in the understanding of pathophysiological pathways.

  5. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface

    Directory of Open Access Journals (Sweden)

    Matthew A. Brown

    2016-01-01

    Full Text Available The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li^{+}, Na^{+}, K^{+}, and Cs^{+} in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.

  6. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface

    Science.gov (United States)

    Brown, Matthew A.; Abbas, Zareen; Kleibert, Armin; Green, Richard G.; Goel, Alok; May, Sylvio; Squires, Todd M.

    2016-01-01

    The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li+ , Na+ , K+ , and Cs+ ) in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.

  7. Electronic band gap and transport in graphene superlattice with a Gaussian profile potential voltage

    International Nuclear Information System (INIS)

    Zhang Yu-Ping; Yin Yi-Heng; Lü Huan-Huan; Zhang Hui-Yun

    2014-01-01

    We study the electronic properties for the graphene-based one-dimensional superlattices, whose potential voltages vary according to the envelope of a Gaussian function. It is found that an unusual Dirac point exists and its location is exactly associated with a zero-averaged wave number (zero-k-bar ) gap. This zero-k-bar gap is less sensitive to incident angle and lattice constants, properties opposing those of Bragg gap. The defect mode appearing inside the zero-k-bar gap has an effect on transmission, conductance, and shot noise, which will be useful for further investigation. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Gene expression profiling in MDS and AML: potential and future avenues

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, K; Boultwood, J; Ferrari, S

    2011-01-01

    Today, the classification systems for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) already incorporate cytogenetic and molecular genetic aberrations in an attempt to better reflect disease biology. However, in many MDS/AML patients no genetic aberrations have been identified yet...... with regard to diagnosis, prediction of clinical outcome, discovery of novel subclasses and identification of novel therapeutic targets and novel drugs. As many challenges remain ahead, we discuss the pitfalls of this technology and its potential including future integrative studies with other genomics...

  9. Organochlorine pesticides in soils and air of southern Mexico: Chemical profiles and potential for soil emissions

    Science.gov (United States)

    Wong, Fiona; Alegria, Henry A.; Jantunen, Liisa M.; Bidleman, Terry F.; Salvador-Figueroa, Miguel; Gold-Bouchot, Gerardo; Ceja-Moreno, Victor; Waliszewski, Stefan M.; Infanzon, Raul

    The extent of organochlorine pesticides (OCs) contamination in southern Mexico was investigated in this study. Biweekly air samplings were carried out in two sites in the state of Chiapas (during 2002-2003), and one in each state of Veracruz and Tabasco (during 2003-2004). Corresponding to the air sampling locations, soil samples were also collected to gauge the soil-air exchange of OCs in the region. ∑DDTs in soils ranged from 0.057 to 360 ng g -1 whereas those in air ranged from 240 to 2400 pg m -3. DDT and metabolite DDE were expressed as fractional values, FDDTe = p, p'-DDT/( p, p'-DDT + p, p'-DDE) and FDDTo = p,p'-DDT/( p,p'-DDT + o,p'-DDT). FDDTe in soils ranged from 0.30 to 0.69 while those in air ranged from 0.45 to 0.84. FDDTe in air at a farm in Chiapas (0.84) was closer to that of technical DDT (0.95) which is suggestive of fresh DDT input. Enantiomer fractions (EF) of o,p'-DDT in air were racemic at all locations (0.500-0.504). However, nonracemic o,p'-DDT was seen in the soils (EFs = 0.456-0.647). Fugacities of OCs in soil ( fs) and air ( fa) were calculated, and the fugacity fraction, ff = fs/( fs + fa) of DDTs ranged from 0.013 to 0.97 which indicated a mix of net deposition ( ff 0.5) from soil among the sites. It is suggested that DDTs in Mexico air are due to a combination of ongoing regional usage and re-emission of old DDT residues from soils. Total toxaphene in soils ranged from 0.066 to 69 ng g -1 while levels in air ranged from 6.2 to 230 pg m -3. Chromatographic profiles of toxaphenes in both air and soil showed depletion of Parlar congeners 39 and 42. Fugacity fractions of toxaphene were within the equilibrium range or above the upper equilibrium threshold boundary. These findings suggested that soil emission of old residues is the main source of toxaphenes to the atmosphere. Results from this study provide baseline data for establishing a long-term OC monitoring program in Mexico.

  10. Identification of transcription factors potential related to brown planthopper resistance in rice via microarray expression profiling.

    Science.gov (United States)

    Wang, Yubing; Guo, Huimin; Li, Haichao; Zhang, Hao; Miao, Xuexia

    2012-12-10

    Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most destructive insect pests of rice. The molecular responses of plants to sucking insects resemble responses to pathogen infection. However, the molecular mechanism of BPH-resistance in rice remains unclear. Transcription factors (TF) are up-stream regulators of various genes that bind to specific DNA sequences, thereby controlling the transcription from DNA to mRNA. They are key regulators for transcriptional expression in biological processes, and are probably involved in the BPH-induced pathways in resistant rice varieties. We conducted a microarray experiment to analyze TF genes related to BPH resistance in a Sri Lankan rice cultivar, Rathu Heenati (RHT). We compared the expression profiles of TF genes in RHT with those of the susceptible rice cultivar Taichun Native 1 (TN1). We detected 2038 TF genes showing differential expression signals between the two rice varieties. Of these, 442 TF genes were probably related to BPH-induced resistance in RHT and TN1, and 229 may be related to constitutive resistance only in RHT. These genes showed a fold change (FC) of more than 2.0 (Pgenes related to BPH-induced resistance, most of them were readily induced in TN1 than in RHT by BPH feeding, for instance, 154 TF genes were up-regulated in TN1, but only 31 TF genes were up-regulated in RHT at 24 hours after BPH infestation; 2-4 times more TF genes were induced in TN1 than in RHT by BPH. At an FC threshold of >10, there were 37 induced TF genes and 26 constitutive resistance TF genes. Of these, 13 were probably involved in BPH-induced resistance, and 8 in constitutive resistance to BPH in RHT. We explored the molecular mechanism of resistance to BPH in rice by comparing expressions of TF genes between RHT and TN1. We speculate that the level of gene repression, especially for early TF genes, plays an important role in the defense response. The fundamental point of the resistance strategy is that plants

  11. Profile of sarilumab and its potential in the treatment of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Raimondo MG

    2017-05-01

    Full Text Available Maria Gabriella Raimondo,1 Martina Biggioggero,1 Chiara Crotti,1 Andrea Becciolini,2 Ennio Giulio Favalli2 1Department of Clinical Sciences and Health Community, Division of Rheumatology, University of Milan, 2Department of Rheumatology, Gaetano Pini Institute, Milan, Italy Abstract: In recent years the use of biotechnological agents has drastically revolutionized the therapeutic approach and the progression of rheumatoid arthritis (RA. In particular, interleukin-6 (IL-6 has been demonstrated as a pivotal cytokine in the pathogenesis of the disease by contributing to both the innate and the adaptive immune system perturbation, and to the production of acute-phase proteins involved in the systemic expression of the disorder. The first marketed IL-6 blocker was tocilizumab, a humanized anti-IL-6 receptor (anti-IL-6R monoclonal antibody. The successful use of tocilizumab in RA has encouraged the development of other biologic agents specifically targeting the IL-6 pathway, either directed against IL-6 cytokine (sirukumab, olokizumab, and clazakizumab or IL-6 receptor (sarilumab. One Phase II and six Phase III randomized controlled trials demonstrated a broad efficacy of sarilumab across all RA patient subtypes, ranging from methotrexate (MTX to tumor necrosis factor inhibitor insufficient responders. In particular, sarilumab as monotherapy demonstrated a clear head-to-head superiority over adalimumab in MTX-intolerant subjects. In addition, compared with tocilizumab, sarilumab showed a similar safety profile with significantly higher affinity and longer half-life, responsible for a reduction of the frequency of administration (every other week instead weekly. All these aspects may be important in defining the strategy for positioning sarilumab in the treatment algorithm of RA. Indeed, observational data coming from post-marketing real-life studies may provide crucial additional information for better understanding the role of sarilumab in the

  12. Loading Mode and Environment Effects on Surface Profile Characteristics of Martensite Plates in Cu-Based SMAs

    Science.gov (United States)

    Suru, Marius-Gabriel; Paraschiv, Adrian-Liviu; Lohan, Nicoleta Monica; Pricop, Bogdan; Ozkal, Burak; Bujoreanu, Leandru-Gheorghe

    2014-07-01

    The present work reports the influence of the loading mode provided during training under constant stress, in bending, applied to lamellar specimens of Cu-Zn-Al shape memory alloys (SMAs). During training, the specimens were bent by a load fastened at their free end, while being martensitic at room temperature and they lifted the load by one-way effect (1WE), during heating up to austenitic field. On cooling to martensite field, the lower concave surface of bent specimens was compressed, and during heating it was elongated, being subjected to a series of tension-compression cycles, during heating-cooling, respectively. Conversely, the upper convex surface of bent specimens was elongated during cooling and compressed during heating, being subjected to compression-tension cycles. Furthermore, 2WE-trained actuators were tested by means of a hydraulic installation where, this time heating-cooling cycles were performed in oil conditions. Considering that the lower concave surface of the specimens was kept in compressed state, while the upper convex surface was kept in elongated state, the study reveals the influence of the two loading modes and environments on the width of martensite plates of the specimens trained under various numbers of cycles. In this purpose, Cu-Zn-Al specimens, trained under 100-300-500 cycles, were prepared and analyzed by atomic force microscopy (AFM) as well as optical and scanning electron microscopy (OM and SEM, respectively). The analysis also included AFM micrographs corroborated with statistical evaluations in order to reveal the effects of loading mode (tension or compression) in different environmental conditions of the specimens, on the surface profile characteristics of martensite plates, revealed by electropolishing.

  13. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake

    Directory of Open Access Journals (Sweden)

    Yi-Min Wang

    2014-12-01

    Full Text Available Many crop plants are exposed to heavy metals and other metals that may intoxicate the crop plants themselves or consumers of the plants. The rhizotoxicity of heavy metals is influenced strongly by the root cell plasma membrane (PM surface’s electrical potential (ψ0. The usually negative ψ0 is created by negatively charged constituents of the PM. Cations in the rooting medium are attracted to the PM surface and anions are repelled. Addition of ameliorating cations (e.g., Ca2+ and Mg2+ to the rooting medium reduces the effectiveness of cationic toxicants (e.g., Cu2+ and Pb2+ and increases the effectiveness of anionic toxicants (e.g., SeO42− and H2AsO4−. Root growth responses to ions are better correlated with ion activities at PM surfaces ({IZ}0 than with activities in the bulk-phase medium ({IZ}b (IZ denotes an ion with charge Z. Therefore, electrostatic effects play a role in heavy metal toxicity that may exceed the role of site-specific competition between toxicants and ameliorants. Furthermore, ψ0 controls the transport of ions across the PM by influencing both {IZ}0 and the electrical potential difference across the PM from the outer surface to the inner surface (Em,surf. Em,surf is a component of the driving force for ion fluxes across the PM and controls ion-channel voltage gating. Incorporation of {IZ}0 and Em,surf into quantitative models for root metal toxicity and uptake improves risk assessments of toxic metals in the environment. These risk assessments will improve further with future research on the application of electrostatic theory to heavy metal phytotoxicity in natural soils and aquatic environments.

  14. LINKING MOTOR-RELATED BRAIN POTENTIALS AND VELOCITY PROFILES IN MULTI-JOINT ARM REACHING MOVEMENTS

    Directory of Open Access Journals (Sweden)

    Julià L Amengual

    2014-04-01

    Full Text Available The study of the movement related brain potentials (MRPBs needs accurate technical approaches to disentangle the specific patterns of bran activity during the preparation and execution of movements. During the last forty years, synchronizing the electromiographic activation (EMG of the muscle with the electrophysiological recordings (EEG has been commonly ussed for these purposes. However, new clinical approaches in the study of motor diseases and rehabilitation suggest the demand of new paradigms that might go further into the study of the brain activity associated with the kinematics of movement. As a response to this call, we have used a 3-D hand tracking system with the aim to record continuously the position of an ultrasonic sender located on the hand during the performance of multi-joint self-pace movements. We synchronized the time-series of position of velocity of the sender with the EEG recordings, obtaining specific patterns of brain activity as a function of the fluctuations of the kinematics during the natural movement performance. Additionally, the distribution of the brain activity during the preparation and execution phases of movement was similar that reported previously using the EMG, suggesting the validity of our technique. We claim that this paradigm could be usable in patients because of its simplicity and the potential knowledge that can be extracted from clinical protocols.

  15. Profile of bosutinib and its clinical potential in the treatment of chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Keller-von Amsberg G

    2013-03-01

    Full Text Available Gunhild Keller-von Amsberg,1 Steffen Koschmieder21Department of Hematology and Oncology, University Cancer Center Hamburg, University Hospital Hamburg Eppendorf, 2Department of Medicine (Hematology, Oncology, and Stem Cell Transplantation, University Medical Center of Aachen and RWTH Aachen University, Aachen, GermanyAbstract: Bosutinib (SKI-606 is an orally available, once-daily, dual Src and Abl kinase inhibitor with promising clinical potential in first-, second-, and third-line treatment of chronic myeloid leukemia (CML. Bosutinib effectively inhibits wild-type BCR-ABL and most imatinib-resistant BCR-ABL mutations except for V299L and T315I. Low hematologic toxicity is a remarkable characteristic of this novel second-generation tyrosine kinase inhibitor, and this has been ascribed to its minimal activity against the platelet-derived growth factor receptor and KIT. Low-grade, typically self-limiting diarrhea, which usually appears within the first few weeks after treatment initiation, represents the predominant toxicity of bosutinib. Other treatment-associated adverse events are mostly mild to moderate. Bosutinib has been approved by the US Food and Drug Administration for the treatment of chronic, accelerated, or blast phase Philadelphia chromosome-positive CML in adult patients with resistance or intolerance to prior therapy. This review summarizes the main properties of bosutinib and the currently available data on its clinical potential in the treatment of CML.Keywords: bosutinib, chronic myeloid leukemia, BCR-ABL, Src/Abl kinase inhibitor, point mutation, imatinib resistance

  16. Identifying Key Issues and Potential Solutions for Integrated Arrival, Departure, Surface Operations by Surveying Stakeholder Preferences

    Science.gov (United States)

    Aponso, Bimal; Coppenbarger, Richard A.; Jung, Yoon; Quon, Leighton; Lohr, Gary; O’Connor, Neil; Engelland, Shawn

    2015-01-01

    NASA's Aeronautics Research Mission Directorate (ARMD) collaborates with the FAA and industry to provide concepts and technologies that enhance the transition to the next-generation air-traffic management system (NextGen). To facilitate this collaboration, ARMD has a series of Airspace Technology Demonstration (ATD) sub-projects that develop, demonstrate, and transitions NASA technologies and concepts for implementation in the National Airspace System (NAS). The second of these sub-projects, ATD-2, is focused on the potential benefits to NAS stakeholders of integrated arrival, departure, surface (IADS) operations. To determine the project objectives and assess the benefits of a potential solution, NASA surveyed NAS stakeholders to understand the existing issues in arrival, departure, and surface operations, and the perceived benefits of better integrating these operations. NASA surveyed a broad cross-section of stakeholders representing the airlines, airports, air-navigation service providers, and industry providers of NAS tools. The survey indicated that improving the predictability of flight times (schedules) could improve efficiency in arrival, departure, and surface operations. Stakeholders also mentioned the need for better strategic and tactical information on traffic constraints as well as better information sharing and a coupled collaborative planning process that allows stakeholders to coordinate IADS operations. To assess the impact of a potential solution, NASA sketched an initial departure scheduling concept and assessed its viability by surveying a select group of stakeholders for a second time. The objective of the departure scheduler was to enable flights to move continuously from gate to cruise with minimal interruption in a busy metroplex airspace environment using strategic and tactical scheduling enhanced by collaborative planning between airlines and service providers. The stakeholders agreed that this departure concept could improve schedule

  17. Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2005-09-01

    Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however

  18. Associations between motor unit action potential parameters and surface EMG features.

    Science.gov (United States)

    Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario

    2017-10-01

    The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit

  19. Surface-seismic imaging for nehrp soil profile classifications and earthquake hazards in urban areas

    Science.gov (United States)

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    1998-01-01

    We acquired high-resolution seismic-refraction data on the ground surface in selected areas of the San Fernando Valley (SFV) to help explain the earthquake damage patterns and the variation in ground motion caused by the 17 January 1994 magnitude 6.7 Northridge earthquake. We used these data to determine the compressional- and shear-wave velocities (Vp and Vs) at 20 aftershock recording sites to 30-m depth ( V??s30, and V??p30). Two other sites, located next to boreholes with downhole Vp and Vs data, show that we imaged very similar seismic-vefocity structures in the upper 40 m. Overall, high site response appears to be associated with tow Vs in the near surface, but there can be a wide rangepf site amplifications for a given NEHRP soil type. The data suggest that for the SFV, if the V??s30 is known, we can determine whether the earthquake ground motion will be amplified above a factor of 2 relative to a local rock site.

  20. Proteomic Profiling of Neuroblastoma Cells Adhesion on Hyaluronic Acid-Based Surface for Neural Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2016-01-01

    Full Text Available The microenvironment of neuron cells plays a crucial role in regulating neural development and regeneration. Hyaluronic acid (HA biomaterial has been applied in a wide range of medical and biological fields and plays important roles in neural regeneration. PC12 cells have been reported to be capable of endogenous NGF synthesis and secretion. The purpose of this research was to assess the effect of HA biomaterial combining with PC12 cells conditioned media (PC12 CM in neural regeneration. Using SH-SY5Y cells as an experimental model, we found that supporting with PC12 CM enhanced HA function in SH-SY5Y cell proliferation and adhesion. Through RP-nano-UPLC-ESI-MS/MS analyses, we identified increased expression of HSP60 and RanBP2 in SH-SY5Y cells grown on HA-modified surface with cotreatment of PC12 CM. Moreover, we also identified factors that were secreted from PC12 cells and may promote SH-SY5Y cell proliferation and adhesion. Here, we proposed a biomaterial surface enriched with neurotrophic factors for nerve regeneration application.

  1. Transformation of potential energy surfaces for estimating isotopic shifts in anharmonic vibrational frequency calculations

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Patrick; Oschetzki, Dominik; Rauhut, Guntram, E-mail: rauhut@theochem.uni-stuttgart.de [Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, Robert [Clemens-Schöpf Institut für Organische Chemie and Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt (Germany)

    2014-05-14

    A transformation of potential energy surfaces (PES) being represented by multi-mode expansions is introduced, which allows for the calculation of anharmonic vibrational spectra of any isotopologue from a single PES. This simplifies the analysis of infrared spectra due to significant CPU-time savings. An investigation of remaining deviations due to truncations and the so-called multi-level approximation is provided. The importance of vibrational-rotational couplings for small molecules is discussed in detail. In addition, an analysis is proposed, which provides information about the quality of the transformation prior to its execution. Benchmark calculations are provided for a set of small molecules.

  2. A fitting program for potential energy surfaces of bent triatomic molecules

    International Nuclear Information System (INIS)

    Searles, D.J.; Nagy-Felsobuki, E.I. von

    1992-01-01

    A program has been developed in order to fit analytical power series expansions (Dunham, Simon-Parr-Finlan, Ogilvie and their exponential variants) and Pade approximants to discrete ab initio potential energy surfaces of non-linear triatomic molecules. The program employs standard least-squares fitting techniques using the singular decomposition method in order to dampen the higher-order coefficients (if deemed necessary) without significantly degrading the fit. The program makes full use of the symmetry of a triatomic molecule and so addresses the D 3h , C 2v and C S cases. (orig.)

  3. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  4. Concise Review: Cell Surface N-Linked Glycoproteins as Potential Stem Cell Markers and Drug Targets.

    Science.gov (United States)

    Boheler, Kenneth R; Gundry, Rebekah L

    2017-01-01

    Stem cells and their derivatives hold great promise to advance regenerative medicine. Critical to the progression of this field is the identification and utilization of antibody-accessible cell-surface proteins for immunophenotyping and cell sorting-techniques essential for assessment and isolation of defined cell populations with known functional and therapeutic properties. Beyond their utility for cell identification and selection, cell-surface proteins are also major targets for pharmacological intervention. Although comprehensive cell-surface protein maps are highly valuable, they have been difficult to define until recently. In this review, we discuss the application of a contemporary targeted chemoproteomic-based technique for defining the cell-surface proteomes of stem and progenitor cells. In applying this approach to pluripotent stem cells (PSCs), these studies have improved the biological understanding of these cells, led to the enhanced use and development of antibodies suitable for immunophenotyping and sorting, and contributed to the repurposing of existing drugs without the need for high-throughput screening. The utility of this latter approach was first demonstrated with human PSCs (hPSCs) through the identification of small molecules that are selectively toxic to hPSCs and have the potential for eliminating confounding and tumorigenic cells in hPSC-derived progeny destined for research and transplantation. Overall, the cutting-edge technologies reviewed here will accelerate the development of novel cell-surface protein targets for immunophenotyping, new reagents to improve the isolation of therapeutically qualified cells, and pharmacological studies to advance the treatment of intractable diseases amenable to cell-replacement therapies. Stem Cells Translational Medicine 2017;6:131-138. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  5. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    Science.gov (United States)

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen

  6. Investigation of the surface potential of TiO2 (110) by frequency-modulation Kelvin probe force microscopy

    Science.gov (United States)

    Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro

    2016-12-01

    We investigate the surface potential distribution on a TiO2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.

  7. Constructing Potential Energy Surfaces for Polyatomic Systems: Recent Progress and New Problems

    Directory of Open Access Journals (Sweden)

    J. Espinosa-Garcia

    2012-01-01

    Full Text Available Different methods of constructing potential energy surfaces in polyatomic systems are reviewed, with the emphasis put on fitting, interpolation, and analytical (defined by functional forms approaches, based on quantum chemistry electronic structure calculations. The different approaches are reviewed first, followed by a comparison using the benchmark H + CH4 and the H + NH3 gas-phase hydrogen abstraction reactions. Different kinetics and dynamics properties are analyzed for these reactions and compared with the available experimental data, which permits one to estimate the advantages and disadvantages of each method. Finally, we analyze different problems with increasing difficulty in the potential energy construction: spin-orbit coupling, molecular size, and more complicated reactions with several maxima and minima, which test the soundness and general applicability of each method. We conclude that, although the field of small systems, typically atom-diatom, is mature, there still remains much work to be done in the field of polyatomic systems.

  8. Evaluation of Surface Water Harvesting Potential in Aq Emam Watershed System in the Golestan Province

    Directory of Open Access Journals (Sweden)

    s. nazaryan

    2016-02-01

    Full Text Available Introduction : Given its low and sparse precipitation both in spatial and temporal scales, Iran is nestled in an arid and semiarid part of the world. On the other hand, because of population growth, urbanization and the development of agriculture and industry sector is frequently encountered with increasing water demand. The increasing trend of water demand will widen the gap between water supply and demand in the future. This, in turn, necessitates urgent attention to the fundamentals of economic planning and allocation of water resources. Considering the limited resources and the declining water table and salinization of groundwater, especially in semi-arid areas forces us to exploit surface waters. When we evaluate the various methods of collecting rainwater, surface water that is the outcome of rainfall-runoff responses in a basin, is found to be a potential source of water and it can be useful to meet some of our water demand if managed properly. Water shortages in arid areas are critical, serious and persistent. Thus, water harvesting is an effective and economic goal. The most important step in the implementation of rain water harvesting systems is proper site selection that could cause significant savings in time and cost. In this study the potential of surface waters in the Aq Emam catchment in the east Golestan province was evaluated. The purpose of this study is to provide a framework for locating areas with water harvesting potential. Materials and Methods: For spatial evaluation of potential runoff, first, the amount of runoff is calculated using curve number and runoff potential maps were prepared with three classes: namely, the potential for low, medium and high levels. Finally, to identify suitable areas for rain water harvesting, rainfall maps, soil texture, slope and land use were weighted and multiplied based on their importance in order to determine the appropriate areas to collect runoff Results and Discussion : The results

  9. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide.

    Science.gov (United States)

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2015-06-28

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N2O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N2O-N2O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N2O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.

  10. Effective embedded-atom potential for metallic adsorbates on crystalline surfaces

    International Nuclear Information System (INIS)

    Förster, G D; Magnin, Y; Rabilloud, F; Calvo, F

    2014-01-01

    Based on the embedded-atom method (EAM), an analytical effective potential is developed to model the interaction of a metallic adsorbate on a perfect crystalline substrate, which is also metallic. The many-body character of the original EAM potential is preserved in the adsorbate energy and in the alteration of the substrate energy due to the presence of the adsorbate. A mean-field-type version neglecting corrugation of the substrate is first derived based on rigorous integration of individual monolayers, followed by an approximate form for the perturbation of the substrate energy. Lateral corrugation is subsequently included by additional phenomenological terms respecting the symmetry of the substrate, again preserving the many-body nature of the original potential. The effective model contains four parameters to describe uncorrugated substrates and eight extra parameters to describe every order of the Fourier lateral expansion. These parameters were fitted to reproduce the adsorption energy of a sample of random configurations of realistic 2D and 3D clusters deposited on the (1 1 1) fcc surface, for metals for which popular EAM models have been parametrized. As a simple application, the local relaxation of pre-formed icosahedral or truncated octahedral clusters soft-landed and exposing (1 1 1) faces in epitaxy to the substrate has been simulated at 0 and 300 K. The deformation of small clusters to wet the substrate is correctly captured by the effective model. This agreement with the exact potential suggests that the present model should be useful for treating metallic environments in large-scale surface studies, notably in structural optimization or as a template for more general models parametrized from ab initio data. (paper)

  11. Screening of potential biomarkers in uterine leiomyomas disease via gene expression profiling analysis.

    Science.gov (United States)

    Liu, Xuhui; Liu, Yanfei; Zhao, Jingrong; Liu, Yan

    2018-05-01

    The present study aimed to screen potential biomarkers for uterine leiomyomas disease, particularly target genes associated with the mediator of RNA polymerase II transcription subunit 12 (MED12) mutation. The microarray data of GSE30673, including 10 MED12 wild-type myometrium, 8 MED12 mutation leiomyoma and 2 MED12 wild-type leiomyoma samples, were downloaded from the Gene Expression Omnibus database. Compared with myometrium samples, differently-expressed genes (DEGs) in the MED12 mutation and wild-type leiomyoma samples were identified using the Limma package. The two sets of DEGs obtained were intersected to screen common DEGs. The DEGs in the MED12 mutation and wild-type leiomyoma samples, and common DEGs were defined as group A, B and C. Gene Ontology (GO) and pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery online tool. Based on the Kyoto Encyclopedia of Genes and Genomes database, pathway relation networks were constructed. DEGs in GO terms and pathways were intersected to screen important DEGs. Subsequently, a gene co‑expression network was constructed and visualized using Cytoscape software. Reverse transcription‑quantitative polymerase chain reaction was used to detect the expression levels of important DEGs. A total of 1,258 DEGs in group A were screened, and enriched for extracellular matrix (ECM) organization and ECM‑receptor interaction. In addition, a total of 1,571 DEGs in group B were enriched for cell adhesion. Furthermore, 391 DEGs were involved in extracellular matrix organization. Pathway relation networks of group A, B and C were constructed with nodes of 48, 39, and 28, respectively. Finally, 135 important DEGs were obtained, including Acyl‑CoA synthetase medium‑chain family member 3, protein S (α) (PROS1) and F11 receptor. A gene co‑expression network with 68 nodes was constructed. The expression of caspase 1 (CASP1) and aldehyde dehydrogenase 1 family member

  12. Catastrophe Optics Method to Determine the Micro-Nano Size Profiles at TPL of Liquid Films on a Solid Surface

    Science.gov (United States)

    Chao, David F.; McQuillen, J. B.; Sankovic, J. M.; Zhang, Nengli

    2009-01-01

    As discovered by recent studies, what directly affects the wetting and spreading is curvature in micro-region rather than the macroscopic contact angle. Measuring the profile of the micro-region becomes an important research topic. Recently, catastrophe optics has been applied to this kind of measurements. Optical catastrophe occurring in far field of waves of liquid-refracted laser beam implies a wealth of information about the liquid spreading not only for liquid drops but also for films. When a parallel laser beam passes through a liquid film on a slide glass at three-phase-line (TPL), very interesting optical image patterns occur on a screen far from the film. An analysis based on catastrophe optics discloses and interprets the formation of these optical image patterns. The analysis reveals that the caustic line manifested as the bright-thick line on the screen implies the lowest hierarchy of optical catastrophes, called fold caustic. This optical catastrophe is produced by the inflexion line on liquid surface at the liquid foot, which is formed not only in the spreading of drops but also in spreading of films. The generalized catastrophe optics method enables to identify the edge profiles and determine the edge foot height of liquid films. Keywords: Crossover region, Inflexion line, liquid edge foot, Catastrophe optics, Caustic and diffraction

  13. Mass spectrometry-based cDNA profiling as a potential tool for human body fluid identification.

    Science.gov (United States)